
Department of Electrical, Electronic and Information

Engineering,“Guglielmo Marconi”

Master’s Degree in

Automation Engineering

Development of a sequential learning
and control scheme for a quadrotor

altitude model

Supervisor Defended by

Prof. Giuseppe Notarstefano Simone Cenerini

Co-supervisors

Ing. Janani Venkatasubramanian
Dr. Simone Baroncini
Prof. Dr.-Ing. Frank Allgöwer

Graduation session IV - July/2024

Academic Year 2023/2024

Abstract

The contribution of this thesis lies in the field of system identification techniques,

which require estimating the parameters of a dynamical system from data collected

during experiments. This is essential in many fields of engineering since, in real-

life experiments, the perfect knowledge of the coefficients related to the equations

describing the dynamics of the system is not always available. Specifically, this

thesis investigates a recent system identification technique in the presence of non-

stochastic energy-bounded disturbances, to obtain a desired error bound on the

estimated parameters. The first objective of this thesis lies in developing a Software

In the Loop (SIL) simulator to test this technique based on optimization problems,

on a quadrotor model. This SIL simulator is based on an existing simulator (RotorS

developed by ETH Zurich) running on ROS infrastructure, adapted to collaborate

with MATLAB where the optimization techniques are implemented. Moreover,

the quadrotor model is derived, and a pre-stabilizing controller is implemented

to conduct the desired experiments without accounting for the unstable nature of

the quadrotor. Finally, the techniques to generate the targeted exploration signal

for the system identification are implemented and tested only on the altitude

model of the quadrotor. The results of the simulation show that the exploration

signal generated by the optimization techniques is able to reduce the uncertainty

of the model and achieve the desired accuracy. This thesis is a first step toward

implementing a robust control strategy based on the desired uncertainty obtained

from the system identification techniques known in the literature as dual control.

Acknowledgements

The results presented in this thesis are the outcome of my activity at the Institute

for Systems Theory and Automatic Control (IST) at the University of Stuttgart.

There are numerous people who supported me and to whom I would like to express

my gratitude.

First of all, I would like to express my special thanks to my academic supervisor

Prof. Giuseppe Notarstefano and co-supervisor Dr. Simone Baroncini for their

important support and guidance. Furthermore, I am grateful to the people who

have supported me during the development of this thesis in Stuttgart. First of all

Ing. Janani Venkatasubramanian for the guidance throughout the whole project.

Moreover, I am grateful to Prof. Dr.-Ing. Frank Allgöwer for having hosted me at

IST, giving me the possibility of working in his institute during the last months.

This has allowed me to gain great experience in a different country, as well as to

experience the world of dynamical systems control.

Finally, I would like to thank family and friends for supporting me with love all

these years. Their support was more than important, it has been fundamental.

They inspired me, encouraged me, and helped me follow my way.

July 2024

Simone

Contents

Introduction 8

Motivations . 8

Literature . 8

Contributions . 9

Organization . 9

1 Technical Preliminaries 11

1.1 Quadrotor Model . 11

1.1.1 Rotor Working Principle . 11

1.1.2 Dynamic Equations . 13

1.1.3 Control Structure . 15

1.2 Simulation Environment . 16

1.2.1 Robotics Operating System (ROS) 16

1.2.2 Gazebo . 16

1.2.3 RotorS . 18

1.2.4 Software In The Loop Simulator 19

1.3 System Identification Technique . 23

1.3.1 Problem statement . 23

1.3.2 Targeted exploration input 24

1.3.3 Algorithm . 25

2 Methodology 28

2.1 Problem formulation . 28

2.2 Design of a prestabilizing controller 28

2.3 Altitude model setup . 30

2.4 Exploration technique implementation 31

2.4.1 Initial definition . 32

2.4.2 Exploration Input Generation 37

2.4.3 Exploration Phase . 38

2.4.4 System Identification . 39

3 Simulation Results 40

3.1 SIL Simulator Analysis . 40

3.2 Results of the Experiment . 40

3.2.1 Disturbance Energy . 41

3.2.2 Objective of the Exploration 42

3.3 Comparison with a Different Exploration Signal 44

3.3.1 Generation of Normally Distributed Random Exploration

Signal . 44

3.3.2 Exploration Phase . 45

3.3.3 System Identification . 46

3.3.4 Comparison of the Results 46

Conclusion 48

Bibliography 51

Introduction

Motivations

The modeling of a dynamical system is fundamental in many fields of engineering,

especially in control theory. Accurate models are important to understand and

predict the behavior of a system. In particular, in the automatic control field,

they are used to properly design a regulator to drive the system toward desired

performances. In real-life experiments, the perfect knowledge of the coefficients

related to the equations describing the dynamics of the system is not always avail-

able. Especially when the dynamic equations of the system are simplified to have

linear relations between variables, the new coefficients, even if representing some

known constants, are modified to account for some nonlinear effects that are not

described by the linearized model. For this reason, the scope of this thesis is to im-

plement an existing method [1] for system identification and test it on a quadrotor

model. This technique ensures a desired error bound on the estimated parameters

given a sufficient condition on the exploration signal and without stochastic as-

sumptions on the disturbance acting on the system. This uncertainty bound makes

it possible to design a robust control goal. Additionally, this targeted exploration

technique does not excite the system arbitrarily but rather in such a way that the

information gathered is useful for achieving the goal. In real-world applications,

this is essential for not compromising the safety and reliability of the system.

In general, the linearized dynamics of a quadrotor model are described by six dif-

ferential equations representing the evolution of the position and the orientation of

the quadrotor in space. For the sake of simplicity, the model is reduced where the

system identification techniques are applied, testing it only on the altitude model,

describing the motion of the quadcopter with respect to the vertical direction.

Literature

The study of multi-rotor helicopters has experienced remarkable development over

the last decade and has been applied in military and commercial fields [2], [3]. Due

to the unstable nature of the quadrotor, various techniques of pre-stabilization and

control have been widely studied [4]–[7].

To test and study these techniques, several simulation environments have been

INTRODUCTION 9

developed [8]–[10], where it is possible to study the behavior of the quadrotor and

simulate it with high accuracy. Even in simulation, it is necessary to identify

the coefficients that are correlated to the dynamic equations used to study the

evolution of the quadrotor involved in simulation. Several techniques of system

identification exist depending on how the model is represented and how the data

are collected. In the presence of energy-constrained noise, a historical study is [11],

which is used in [1] to design a targeted exploration strategy. In particular, this

targeted exploration input is designed such that the consequent reduction of the

model uncertainty can ensure a desired accuracy and the achievement of a desired

control goal, as studied in [12]–[17]. This technique is known in the literature as

dual control, and a direct use of [1] is present in [16].

Contributions

The main contributions of this thesis lie in the analysis and implementation of the

system identification method [1] on an altitude model of a quadrotor. To achieve

this result, the necessary infrastructure to perform the tests was developed, in-

cluding the simulation environment, control framework, and optimization strategy

needed to achieve the targeted exploration signal.

The linear dynamical model describing the evolution of the quadrotor during hov-

ering conditions has been developed, and the control framework has been imple-

mented to stabilize the attitude dynamics of the system, thereby enabling the

exploration tests on the altitude dynamics. A Software In the Loop (SIL) sim-

ulator has been realized to execute the optimization techniques in [1] without

constraints on execution time. Starting from an existing simulator (RotorS, devel-

oped by ETH Zurich) running on the ROS infrastructure, it has been adapted to

collaborate as a SIL simulator with MATLAB, where the optimization techniques

are implemented. One of the adaptations involves a dynamic estimator that allows

the SIL controller to evaluate the dynamic evolution of the quadrotor for an almost

fixed discrete time. Finally, once the optimal exploration signal is generated, it

is tested, and the results analyzed, demonstrating the achievement of the desired

accuracy. A comparison with another exploration signal, generated by a Gaussian

stochastic process, has been performed at the end, providing further insights into

the effectiveness of the approach.

Organization

This section provides the reader with a guide to the organization of the thesis,

showing where the previously mentioned themes are located.

In Chapter 1, the technical preliminaries are presented. The quadrotor model

is described, and its control structure is derived. The simulation environment is

INTRODUCTION 10

explained, starting from the explanation of the existing RotorS simulator to how

it is adapted to perform as an SIL simulator. Finally, the system identification

technique [1] is presented.

In Chapter 2, the methodology is presented. The problem formulation is described

based on the explanations achieved in the previous chapter. The altitude model

setup is presented, and the design of a stabilizing controller for the attitude dy-

namics is performed. Finally, the exploration strategy explained at the end of

Chapter 1 is implemented and tested.

In Chapter 3, the results of the simulation are presented, analyzing the achievement

of the objectives explained at the beginning of Chapter 2. Finally, a comparison

between different exploration signals is presented.

Chapter 1

Technical Preliminaries

The aim of this chapter is to provide the reader with the necessary background

required to properly understand the following chapters of this thesis. First, the

quadrotor model is presented, followed by a detailed description of the simula-

tion setup, mainly focused on the interconnection between MATLAB and Gazebo

tools. Finally, the necessary mathematical background (strongly inspired by [1])

is presented and explained.

1.1 Quadrotor Model

In this section, the quadrotor dynamical model and the linearized equations around

a specific equilibrium point are presented. At the end, the general control structure

adopted for the quadrotor will also be described (for further details see [4]–[7], [18]).

The multi-rotor helicopter is a special kind of Unmanned Aerial Vehicle (UAV)

which has experienced remarkable development over the last decade. The most

commonly used and studied multi-rotor helicopter is the quadcopter, also known

as a quadrotor. This family of UAVs has been widely applied in both military

and commercial fields. Quadrotor helicopters have hovering and vertical takeoff

and landing (VTOL) capabilities, which are also characteristics of conventional

helicopters. However, the quadrotor is an under-actuated system with six degrees

of freedom (three translational and three rotational) but only four independent

inputs (the rotational speed of each propeller). This results in a very strong

coupling between rotational and translational dynamics. In what follows, the

rotor working principle is described in detail.

1.1.1 Rotor Working Principle

As highlighted before, the quadrotor utilizes four rotors as direct power for flight.

These rotors have the same structure and are placed in a symmetric configuration,

as can be seen in Figure 1.1. The propellers rotate in clockwise and counterclock-

wise directions in pairs; the two propellers on the same axis (opposite each other)

rotate in the same direction, while the other two rotate in the opposite direction.

Technical Preliminaries 12

Figure 1.1: The structure of a quadrotor [19, Figure 1]

This configuration allows the quadrotor to control the yaw (ψ) angle (rotation

around the z-axis) produced by the drag force of the propellers. As seen in Figure

1.1, the reaction torques are caused by the propeller’s rotation, and their directions

are exactly opposite to the rotor’s rotation directions.

As it is well known in aerodynamics, the lifting force fi and the reaction torque

τi, generated by the ith rotor, are proportional to the square of the rotor angular

velocity:

fi = kfω
2
i

τi = kmω
2
i

(1.1)

where kf and km are the force and torque coefficients, while ωi is the angular

velocity of the i-th rotor. For the hovering of the quadrotor, all the propellers

rotate at the same (hovering) angular velocity to counterbalance the gravitational

acceleration. Thus, the quadrotor performs stationary flight and no forces or

torques move it from its position. The altitude of the quadrotor, representing the

vertical position of the origin of the body-fixed reference system with respect to

the inertial ground-fixed reference system, is governed by the lifting force of the

four rotors, generating a total thrust T . The attitude, defined by the Euler roll

(φ) and pitch (θ) angles obtained by the rotation of the quadrotor about the x

and y axes of the body-fixed reference system, can be determined by the torques

τφ and τθ. Thus, in accordance with Figure 1.1, it can be expressed as

T = f1 + f2 + f3 + f4

τφ = l (−f2 + f4)

τθ = l (−f1 + f3)

τψ = −τ1 + τ2 − τ3 + τ4

(1.2)

where l is the moment arm, namely the distance between the propeller and the

origin of the body reference system. From the sets of equations (1.1) and (1.2),

Technical Preliminaries 13

it is possible to obtain the non-linear matching between the four rotor speeds wi

and the variable U , henceforth referred to as the control input, thus

U :=

T

τφ

τθ

τψ

 =

kf kf kf kf

0 −l · kf 0 l · kf
−l · kf 0 l · kf 0

−km km −km km

︸ ︷︷ ︸

:=K

·

ω2

1

ω2
2

ω2
3

ω2
4

︸ ︷︷ ︸
:= Ω2

(1.3)

where the matrix K is nonsingular as long as l kfkm 6= 0.

1.1.2 Dynamic Equations

The motion of the quadrotor is described by the Newton-Euler equations, which

are a set of Ordinary Differential Equations that describe the translational and

rotational motion of a rigid body. Because of the four inputs and the six degrees

of freedom, the quadrotor is an under-actuated nonlinear system. The rotational

motion is fully actuated by the three torque-components (τφ , τθ , τψ) components

of the control input U and it is independent of the translational motion. The

translational motion, on the contrary, is under-actuated and it is governed by the

total thrust (T) component of the control input U and by the rotational motion.

The following quadrotor motion equations can be obtained using the Newton-

Euler formalism without considering the rotor dynamics during the model defini-

tion [5, Eq.(12)]:

φ̈ =

(
Iy − Iz
Ix

)
θ̇ψ̇ − Jr

Ix
θ̇Ωr +

1

Ix
U2

θ̈ =

(
Iz − Ix
Iy

)
φ̇ψ̇ +

Jr
Iy
φ̇Ωr +

1

Iy
U3

ψ̈ =

(
Ix − Iy
Iz

)
φ̇θ̇ +

1

Iz
U4

ẍ =
U1

m
(cosφ sin θ cosψ + sinφ sinψ)

ÿ =
U1

m
(cosφ sin θ sinψ − sinφ cosψ)

z̈ =
U1

m
(cosφ cos θ)− g

(1.4)

where Ix, Iy, and Iz are the moments of inertia of the quadrotor, characterized by

a diagonal inertia matrix due to the choice of the reference system coincident with

the principal axes of inertia of the quadrotor itself. The second term of the first

and second equations in (1.4) represents the gyroscopic effect caused by the inertia

of the rotors Jr and the relative speed Ωr = ω1 − ω2 + ω3 − ω4. Additionally, m is

the mass of the quadrotor and g is the gravity acceleration.

It is possible to notice that the dynamic equations of the quadrotor are highly

non-linear and strongly coupled. To have a tractable solution from the control

Technical Preliminaries 14

point of view, a linearization around an equilibrium point is performed. To achieve

a simplified mathematical model and decoupled dynamics, some prior assumptions

are made:

Ass 1. The quadrotor is in hovering condition, and this corresponds to the defi-

nition of the desired equilibrium point. By considering small attitude angles and

linear velocity, the following can be assumed:

φ ≈ 0, θ ≈ 0, ẋ ≈ 0, ẏ ≈ 0.

Ass 2. The linear motion along the x-y plane is mutually exclusive with the

linear motion along the z-axis; thus, any non-zero velocity along one requires zero

velocities along the other.

Ass 3. The body frame of the quadrotor is rigid, and the axes of the frame are

the principal axes of inertia.

Ass 4. The center of gravity of the quadrotor coincides with the origin of the body

reference system.

Ass 5. The quadrotor leans towards the direction of the slow-spinning rotor, mak-

ing gyroscopic effects negligible.

Under these assumptions, the linearized dynamical equations around the hov-

ering equilibrium point result in [4, Eq.(13)]:

φ̈ =
1

Ix
U2

θ̈ =
1

Iy
U3

ψ̈ =
1

Iz
U4

ẍ =
1

m
U1(θ) = gθ

ÿ =
1

m
U1(−φ) = −gφ

z̈ =
1

m
U1 − g

(1.5)

Therefore, by defining the state vector as

X =
[
x y z ẋ ẏ ż φ θ ψ φ̇ θ̇ ψ̇

]>
∈ R12,

and the control input as

U =
[
U1 U2 U3 U4

]>
=
[
T τφ τθ τψ

]>
∈ R4.

The state space representation of the linearized dynamical model can be expressed

as

Ẋ = AX +B U − g ê6 ,

Technical Preliminaries 15

with U = K ·Ω2 and where êj is the jth canonical basis vector. No output equation

is present and it is assumed that the states are directly measurable. The state and

input matrices appear as follows:

A =

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 g 0 0 0 0

0 0 0 0 0 0 −g 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

, B =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
1
m

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1
Ix

0 0

0 0 1
Iy

0

0 0 0 1
Iz

.

1.1.3 Control Structure

According to the under-actuated nature of the quadrotor, the control of the trans-

lational motion is coupled with the rotational one. Due to the input matching of

the rotor dynamics (1.3), the linearized dynamic equations result to be partially

decoupled.

Position

Controller

Attitude

Controller

Heading

Controller

Altitude

Controller R
ot

or
s

ve
lo

ci
ty

ca
lc

u
la

ti
on

Quadrotor

dynamic

xref

yref

ψref

zref

θdes

φdes

τθ
τφ

τψ

T

Ω

θ φx y

ψ

z

Figure 1.2: Quadrotor control structure

Therefore, a control structure with inner and outer loops is designed (Figure 1.2).

The inner control loop, named Attitude controller, ensures asymptotic stability

of the attitude dynamics, which is also necessary to satisfy the first assumption

of the linearization. The outer loop, indicated as Position, Heading and Altitude

controller, manages the navigation of the quadrotor by following the given reference

position [xref, yref, zref, ψref]. Finally, these controllers generate the control input

Technical Preliminaries 16

U = [T, τφ, τθ, τψ], which is then converted into the angular rotors velocities Ω =

[ω1, ω2, ω3, ω4] by the non-linear input matching block indicated as Rotors velocity

calculation in Figure 1.2. This conversion is performed using the inverse of the

matching input matrix K−1, which is a non-singular matrix, and the square root

of the velocities.

1.2 Simulation Environment

In this section, the Software In The Loop (SIL) simulator is explained. The Robotic

Operating System (ROS) and its Gazebo physical simulator are briefly described,

together with the correlation of these two components with the RotoS simulator.

At the end of the chapter, it will be presented how this simulator has been adapted

to collaborate with MATLAB and to behave as a SIL simulator [8], [10], [20], [21].

1.2.1 Robotics Operating System (ROS)

Robot Operating System (ROS) is an open-source middleware framework specif-

ically designed for robotics research and development applications [21]. Despite

the name, it is not a real operating system but a collection of libraries, tools, and

conventions that allow robotic developers to share, reuse, and manage applica-

tions. Being a communication and middleware layer, it serves as an important

intermediary layer between the operating system and software applications.

One of the key features of ROS is its modular architecture, which promotes code

reuse and modularity by breaking down robot applications into smaller, reusable

software components called “nodes”. A node is an individual specific and indepen-

dent program written in Python or C++ that executes a specific task or function

within the framework of a more complex application. The nodes can communicate

with each other using a publish-subscribe messaging system, allowing for flexible

and decentralized control architectures. In particular, some nodes can publish

messages to topics (publishers) and other nodes can subscribe to these topics to

receive and process the data (subscribers). Another way for the ROS nodes to

communicate is by using the services. They are specifically used for synchronous

and request-response interactions rather than continuous data exchange, as it was

for the topics. In particular, a node (called client) sends a request to a service

and waits for a response while another node (called server) handles this request,

performs a specific action and sends back a response.

1.2.2 Gazebo

Gazebo is a free, open-source robot simulation environment. The project is run by

Open Robotics, the same group looking after ROS. However, the projects are man-

aged separately and Gazebo is not a “part of” ROS. With Gazebo, a virtual world

Technical Preliminaries 17

can be created and simulated versions of our robots can be loaded into it. Simu-

lated sensors can detect the environment and publish the data to the same ROS

topics as real sensors would, allowing easy testing of algorithms. Then, external

forces can be applied to the simulated actuators of the robot, taking into account

complex physical phenomena like friction. Gazebo uses the Open Dynamics En-

gine as one of its physics engines to simulate the dynamics of rigid body systems.

When Gazebo simulates a physical scenario, it translates the physical properties

and interactions of objects into a set of Ordinary Differential Equations (ODEs).

In the following, a high-level overview of how this process works is presented:

Model Definition: Gazebo models are defined using the Simulation Description

Format (SDF). The SDF file specifies the physical properties of each object, such

as mass, inertia, and friction, as well as their geometric properties and initial

conditions.

Physics Engine Initialization: When a simulation starts, Gazebo initializes

the physics engine based on the specified parameters in the SDF file. For Open

Dynamics Engine, this includes parameters like the solver type, iterations, time

step size, and other constraints.

Equation Setup: The physics engine sets up the ODEs that govern the motion

of each rigid body. This involves defining equations for translational and rotational

motion based on Newton’s laws of motion (in the context of the thesis these are

similar to Equation (1.4)). For each rigid body, the engine calculates forces and

torques resulting from gravity, joint constraints, collisions, and other applied forces

(like Equation (1.2)).

Solver Execution: The Open Dynamics Engine solver iteratively solves these

differential equations at each time step. It computes the next state (positions,

velocities, orientations) of each body by integrating the forces and torques over

time. The solver can use various methods like Euler integration or more complex

iterative solvers, depending on the required accuracy and computational resources.

Constraint Handling : Constraints such as joints and contact forces are incor-

porated into the system of equations. The Open Dynamics Engine handles these

using methods like Lagrange multipliers or penalty methods to ensure that the

constraints are satisfied throughout the simulation.

State Update: After solving the ODEs, the physics engine updates the state

of the simulation world, including the new positions and orientations of all ob-

jects. These updates are then used to render the next frame in Gazebo’s graphical

interface.

This process allows Gazebo to accurately simulate complex interactions be-

tween multiple bodies in real-time, providing a robust platform for testing robotics

algorithms and performing physics-based simulations.

Technical Preliminaries 18

1.2.3 RotorS

Rotor Simulator (RotorS) is a modular Gazebo Micro Aerial Vehicle (MAV) sim-

ulator framework, developed by the Autonomous Systems Lab at ETH Zurich [8].

It enables a quick start to perform research on MAVs, to reduce field testing times

and to separate problems for testing, making debugging easier, and finally reduc-

ing undesired crashes of real MAVs. The simulator is designed in a modular way,

such that different controllers and state estimators can be used interchangeably,

while incorporating new MAVs is reduced to a few steps.

An overview of the main components of the RotorS simulator is shown in Figure

1.3. All components found on real MAVs are simulated by Gazebo plugins and

Figure 1.3: MAV simulator framework [8, Figure 2]. All the black parts are covered by

the RotorS simulator and are available open source, while the real MAV structure can

be compared to the right part.

by the Gazebo physics engine (Open Dynamics Engine). A MAV consists of a

body, a fixed number of rotors (actuators), which can be placed at user-specified

locations, and some sensors attached to the body. Each rotor has motor dynamics

and accounts for the most dominant aerodynamic effects. In order to facilitate

the development of different control strategies, a simple interface is provided. The

control input acts on the desired rotor speeds, while the output is the odometry

of the MAV, which means position, orientation, linear, and angular velocity. To

simulate realistic conditions, a noise model for the applied sensors is implemented,

which motivates the presence of a state estimation block. The estimation is crucial

for real MAVs and it is used to obtain information about the state of the MAV

Technical Preliminaries 19

at a high rate. In the simulation, this part can be replaced by a generic (ideal)

odometry sensor directly provided by a Gazebo plugin. It mimics any generic

on-board or off-board tracking system such as a Global Position System (GPS) or

Vicon, respectively.

Regarding the Gazebo block, to compute the forces and moments that are

acting on the MAV, the forces and moments are split into the respective forces

and moments acting on each rotor, and the gravitational force acting on the Center

of the Gravity (CoG) of the MAV. The forces and the moments acting on the rotors

are computed locally by RotorS just for the propellers, then they are sent to Open

Dynamics Engine within the rest of the simulation state to compute the dynamics.

RotorS generates the mapping between the rotor dynamics output and input, as

described by Equation (1.1). The rotor dynamics output is the lifting force f and

the reaction torques τ generated by the propeller, while the input is the angular

velocity of the rotor squared ω2. However, RotorS simulates these dynamics with

high accuracy, not only according to (1.1), but also by taking into account the drag

force and the rolling moment originated from the drag of the rotor blade. This

new force and moment are proportional to the angular velocity ω of the propeller

and not to the square of it, as for the other [8, Eq.(4)].

Following the description of the RotorS simulator, the next step is to focus on

some components that have been used for the thesis work. As highlighted before,

in simulation an ideal odometry sensor is used, which is a generic sensor that

provides the odometry of the MAV. It is important to notice that it is placed at

the center of the reference frame of the simulated MAV. Since it is represented as

a link, it must have a certain weight (at least 10−5kg); otherwise, it gets omitted

by the physical engine. This will result in not being able to find the link by the

plugins.

Given the forces and the torques acting on the rotors, it is important to explain

how to generate the structure of the robot describing a generic MAV. The robot

is described using a Unified Robot Description Format (URDF), with a macro

language (Xacro) of Extensible Markup Language (XML), which is used to gener-

ate more readable and often shorter XML code. Internally, Gazebo converts the

URDF files to SDF files that are used by the physical engine.

During the experiments developed in the context of this thesis, the Humming-

bird model quadcopter was used (one of the four MAVs available into RotorS)

with the odometry sensor attached to the CoG.

1.2.4 Software In The Loop Simulator

Given the explanation of the framework of the RotorS simulator, the next step

is to explain how this simulator was adapted to collaborate with MATLAB and

to work as a Software In The Loop (SIL) simulator. During the thesis work, the

necessity of interfacing the RotorS, usually working on ROS, with MATLAB was

Technical Preliminaries 20

required due to the implementation of the optimization algorithm (explained in

Section 1.3) that was performed on MATLAB.

First, it is important to explain what a SIL simulator is. Software In The

Loop is a simulation technique that allows developers to test their software on

a host computer rather than on the target hardware. This allows testing and

validating the software’s functionality, performance, and interaction with other

components in a simulated environment before deployment on the physical system.

In this case, RotorS is used as a simulated environment taking into account only

the Gazebo part of the framework in Figure 1.3, while the MAV Control part

is substituted by the control algorithm implemented in MATLAB. As explained,

the State Estimation part is omitted, using directly the ideal simulated odometry

sensor.

Figure 1.4: Graph of ROS nodes and topics of the SIL simulator

In Figure 1.4, a drawn output of the rqt_graph command of ROS when the SIL

simulator is running is shown. This tool gives an overview of all ROS nodes that

are running, and the topics on which the nodes are communicating. Gazebo is only

shown as one ROS node, but internally all the Gazebo plugins are running, such

as the odometry sensor and individual motors that are mounted on the frame.

The node /matlab_global_node_55148 is the interface with the SIL simulator

running on MATLAB thanks to the Robotics System Toolbox. These two nodes

are subscribed to the topics /hummingbird/odometry_sensor1/odometry and /

hummingbird/command/motor_speed, to exchange sensor data and control input,

respectively. Finally, due to the use of the service of ROS, the MATLAB node is

able to pause and unpause the Gazebo node simulation, in order to guarantee a

constant discrete time step of the simulation while also getting the simulation time.

Since it is a SIL simulation, the MATLAB node has no real-time constraints. Once

the control input is computed and published on the topic /hummingbird/command

/motor_speed, the Gazebo node will run for a controlled discrete time and uses

the topic /hummingbird/gazebo/command/motor_speed to have a constant input

during the simulation. Once the simulation is unpaused by the MATLAB node, the

new state of the system is read from the topic /hummingbird/odometry_sensor1

/odometry.

Time Management

Before presenting the structure of the simulator, it is important to explain how the

time management is handled. As presented before, the simulator (more precisely

the MATLAB node) is able to pause and unpause the Gazebo node performing

Technical Preliminaries 21

the dynamic simulation, by means of a ROS service. The services, within the ROS

infrastructure, require a non-zero and stochastic time (dTROS) to be executed. This

time, added to a control input time (dTctrl) of the SIL simulator, can lead to an

almost constant discrete time step (dTsim) of the simulation.

It is possible to consider dTROS as a noise of the model. Ideally, if it was zero,

the optimal control input u := dTctrl would coincide with the desired discrete time

dTdes. The execution time of the services can be expressed as

dTROS := xnoise
k = xn

k + x̃n
k ,

where xnoise
k is composed of a variable mean value xn

k and a residual part x̃n
k, while

the subscript k represents the discrete time index of the signal. By means of the

services, it is possible to compute the simulation time dTsim := xk. This can be

rewritten as
dTsim = dTROS + dTctrl ,

xk = xn
k + x̃n

k + uk .

By imposing dTsim as dTdes := x?k, the control input uk can be computed as

x?k = xn
k + x̃n

k + uk ,

uk = x?k − xn
k − x̃n

k .

The best estimation of an unknown stochastic signal is its mean value, but in this

case, a weighted mean value has been computed in order to track it in a better

way,

x̂n
k =

1

W

k∑
i=1

λk−ixnoise
i =

1

W

k∑
i=1

λk−i(xi − ui) ,

where

W =
k∑
i=1

λk−i

and λ ∈ (0, 1) is the so called forgetting factor.

Finally, the control input uk can be computed as

uk = x?k − x̂n
k−1 .

The control scheme in Figure 1.5 is used to manage the discrete time of the

simulation. The evolution of the discrete time during a SIL simulation is shown

in Figure 1.6, while the stochastic noise generated by the ROS infrastructure is

shown in Figure 1.7. In that figure, it is also plotted the weighted mean value of

the stochastic noise, used to compute the control input dTctrl. The SIL simulation

has been generated with a desired discrete time dTdes of 0.15s, for a simulation

time of 38s. The estimated dTROS is computed via weighted mean with a forgetting

factor λ of 0.94. The average obtained from the controlled discrete time mean(dT)

signal is equal to 0.14992s.

Technical Preliminaries 22

Dynamical estimator

x̂n
k

/Gazebo

xk = xn
k + x̃n

k + uk

x? uk

xk

−

x̂n
k−1

Figure 1.5: Time management control scheme

Figure 1.6: Evolution of the controlled

discrete time during the SIL simulation.

Figure 1.7: Evolution of the stochastic

noise generated by the ROS infrastructure

during the SIL simulation.

Simulator

Following it is explained how the simulator for the SIL is implemented. First, a

RotorS launch file is created and executed, where the desired MAV (hummingbird)

is loaded into the Gazebo simulator with the desired sensors (odometry). This

can be seen as the Gazebo block of Figure 1.3, since the MAV Control block is

substituted by the MATLAB node.

Next, a MATLAB script performing the following steps is launched:

1. Simulation Setup:

This phase consists of the ROS communications setup. Initially, the MAT-

LAB node is created, then it subscribes to the topics, finally the services

client are generated. After that, the parameters for the simulation, such as

the simulation time and the discrete time step, as well as all the parameters

needed during the simulation, are set.

2. Initialization Phase:

The initial conditions of the MAV (X0, U0), defined during the setup, are

imposed.

3. Simulation Loop:

(a) Read and save sensor data.

Technical Preliminaries 23

(b) PAUSE (Gazebo).

(c) Process sensor data.

(d) Control algorithm:

It consists of the prestabilizable controller, the online system identifica-

tion, and the optimization for the exploration input. This concept will

be explained in the next chapters.

(e) Write actuator data.

(f) Plot and save variables during simulation time.

(g) Timing management.

(h) START (Gazebo).

(i) Wait (dTctrl).

(j) Read and save control input feedback data.

4. Plot Results

5. Save Simulation Data

Due to the development of the Software In The Loop simulator, the control

algorithm implemented in MATLAB does not need to satisfy the real-time con-

straints, while the MAV is simulated in Gazebo for an almost fixed discrete time.

1.3 System Identification Technique

The aim of this section is to present the paper Towards non-stochastic targeted

exploration [1] in order to provide the necessary background for the following

chapters.

1.3.1 Problem statement

The paper presents a strategy to compute a targeted exploration input for linear

time-invariant systems without stochastic assumptions on the noise (for exam-

ple deterministic model misspecifications). It takes into account classical data-

dependent uncertainty bounds on the least-squares parameter estimates in the

presence of energy-bounded noise, in order to provide a sufficient condition on the

exploration data that ensures a desired error bound on the estimated parameters.

For a tractable solution, using common approximations, a semidefinite program to

compute the optimal sinusoidal input excitation is derived.

Setup

Consider a discrete-time, linear time-invariant system of the following form

xk+1 = Atrxk +Btruk + wk ,

Technical Preliminaries 24

where xk ∈ Rnx is the state, uk ∈ Rnu the input and wk ∈ Rnx the energy-bounded

disturbance. It is assumed that the states are directly measurable.

Since the disturbance wk is energy-bounded, there exists a known constant

γw > 0 such that:
T−1∑
k=0

||wk||2 ≤ γw . (1.6)

For the sake of the explanation, it is important to define what a data-dependent

uncertainty bound is. It is a bound on the least-squares parameter estimates in

the presence of energy-bounded noise. Given observed data

DT = {{x0, u0}, . . . , {xT−1, uT−1}, {xT}}

with dimension (T + 1) ∈ N and the least-squares estimate θ̂T = (ÂT , B̂T) of

the system matrix Atr and Btr and its covariance matrix Pθ, the data-dependent

uncertainty bound is a set of parameters ΘT such that:

ΘT :=
{
θ : (θ − θ̂T)>P−1

θ (θ − θ̂T) ≤ G
}
, (1.7)

where

G :=

(
γw + ||θ̂T ||2P−1

θ
−

T−1∑
k=0

||xk+1||2
)
∈ R . (1.8)

Objective

The objective is to design an exploration input uk that allows estimating the system

matrix Atr and Btr while satisfying the following condition:

(θtr − θ̂T)>Ddes(θtr − θ̂T) ≤ 1 , (1.9)

where

Ddes � 0 ∈ R(nφnx)×(nφnx)

is a desired closeness matrix of θ̂T to θtr, and nφ = nx + nu.

1.3.2 Targeted exploration input

The exploration input sequence takes the form

uk =
L∑
i=1

αi cos(2πfik) k = 0, . . . , T − 1 ,

where T ∈ N is the length of the exploration sequence, L ∈ N is the number

of harmonics, αi ∈ R is the amplitude of the i-th harmonics, and fi ∈ R is

the frequency of the i-th harmonics. The frequencies fi are selected from a set

FT := {0, 1/T, . . . , (T − 1)/T} and are known a priori, thus before the optimiza-

tion problem is solved, while the amplitudes αi are the decision variables of the

optimization problem.

Technical Preliminaries 25

One of the constraints imposed in the optimization problem requires that the

control energy at each time instant does not exceed a constant value γ2
e . This can

be written as
L∑
i=1

||αi||2 ≤ γ2
e ,

with the energy-bound γe ≥ 0 imposed as a cost function and minimized.

The second constraint is necessary to give a sufficient condition on the ex-

ploration data that ensures the desired error bound on the estimated parameter,

satisfying θtr ∈ Θ̂T . It imposes:

P−1
θ � G ·Ddes [1, Eq.(22)]

G · Pθ � D−1
des .

(1.10)

Combining the exploration constraint (1.10) with the uncertainty bound (1.7) the

following result can be obtained:

(θtr − θ̂T)(θtr − θ̂T)> � G · Pθ � D−1
des , (1.11)

which satisfies the objective of the paper (1.9).

This constraint, as well as the previous one, can be expressed as a linear matrix

inequality (LMI) and its proof is provided in [1].

1.3.3 Algorithm

Given the setup and the constraints, a tractable solution to the optimization prob-

lem will be presented together with the explanation of their effects.

Initial definition

• Consider a rough initial estimate of the dynamics θ̂0 = [vec(Â0); vec(B̂0)].

• Specify the exploration length T of the desired exploration input sequence.

The lower is the time horizon, the higher will be the energy of the exploration

signal.

• Select L ∈ N frequencies fi, from the set FT , where i ∈ {1, . . . , L}. The

frequencies are selected in order to cover the bound of the system dynamics,

by previously studying the frequency response of the initial estimation Â0,

B̂0.

• Define an estimate of the energy-bound γw of the disturbance.

A rough estimate can be computed by running a simulation and evaluating

γw =
T−1∑
k=0

||xk+1 − x̂k+1||2 , (1.12)

Technical Preliminaries 26

where
x̂k+1 = Â0x̂k + B̂0uk

= (Atr −∆A0)x̂k + (Btr −∆B0)uk .

This estimate will take into account also the mismatch of the parameters,

which can be computed as

γw =
T−1∑
k=0

||xk+1 − x̂k+1||2

=
T−1∑
k=0

||Atrxk +Btruk + wk − (Atr −∆A0)x̂k − (Btr −∆B0)uk||2

≈
T−1∑
k=0

||wk + (∆A0x̂k + ∆B0uk)||2

≥
T−1∑
k=0

||wk||2 = γw .

In case it is possible to have previous knowledge of the disturbance, it is

possible to use Equation (1.6) directly.

• Select the desired accuracy of the parameters estimation Ddes. A possible

selection could be obtained by studying the initial uncertainty bound D̂0 of

θ̂0 and select Ddes � D̂0.

Initial setup

• Simulating the open-loop initial system (Â0, B̂0) with w = 0 and

u
(i)
k = cos(2πfik)

for i = 1, . . . , L and k = 0, . . . , T − 1 and recording the resulting values in

X̂(i) , Φ̂(i).

• Select an initial candidate amplitude α̃i, i = 1, . . . , L.

Iterative optimization

while amplitude αi are not converged do

1. Compute L1(α̃i), L2(α̃i) [1, Eq.(31)] necessary for a convex relaxation in

order to have the constraint linear in the decision variables αi.

2. Solve the optimization problem as a semidefinite program (SDP) in order to

find the optimal amplitude α?i :

inf γe
αi,γe

s.t. Senergy-bound(γe, Ue) � 0

Sexploration(Φ̂(Ue), Ŷ (Ue), L1(α̃i), L2(α̃i), γw, Ddes) � 0

(1.13)

where Ue = diag(α1, . . . , αL) ∈ RLnu×L

Technical Preliminaries 27

3. Set α̃i = α?i .

end while

Generate exploration input

Once the amplitudes are converged to the optimal values α?i , the exploration input

can be generated as follows:

uk =
L∑
i=1

α?i cos(2πfik) k = 0, . . . , T − 1 . (1.14)

Chapter 2

Methodology

In this chapter, the methodology used in this thesis work to test the system iden-

tification algorithm proposed in [1] is presented. The theoretical methodology is

combined with the SIL simulator and a prestabilizable controller for the quadrotor.

2.1 Problem formulation

The linearized dynamical model of the quadrotor is decoupled, specifically its

evolution in the vertical direction is independent of the evolution of the other

states. This dynamic is referred to as altitude dynamic, and can be described

by the time evolution of the vertical acceleration variable in the Equation (1.5),

resulting in

z̈ =
1

m
U1 − g , (2.1)

where the states are the altitude z and the velocity ż, while the input is the overall

vertical thrust U1 := T .

The objective of this thesis is to identify the parameters of the discrete-time model

describing the quadrotor altitude dynamic (2.1). To achieve this goal, a prestabi-

lizable controller for the attitude dynamic is needed to guarantee the stability of

the system during the identification process and, moreover, to fulfill Assumption

1. Specifically, the technique used to identify the parameters of the quadrotor is

the exploration strategy explained in [1].

2.2 Design of a prestabilizing controller

As explained in Section 1.1, without the use of an attitude controller for the

quadrotor, Assumption 1 is not satisfied and the dynamics is not decoupled, re-

sulting in an unstable quadrotor. For this reason, a prestabilizable controller for

the attitude dynamics has been designed. Due to the SIL simulator, implemented

with the ideal odometry sensor, the feedback signals are all the states, thus the

position and the velocity of all the 6-DoF of a body in space. For the attitude

Methodology 29

controller, given the error signals of the attitude state variables, two Proportional-

Integral (PI) controllers have been implemented: one for controlling τθ and one for

τφ. Specifically, the PI controller is implemented as

τ [k] =
[
Kp
P Kp

I Kv
P Kv

I

]
·

epP [k]

epI [k]

evP [k]

evI [k]

 ,

where the appendix p and v refer to the position and velocity of the attitude state

variables, respectively, while the P and I refer to the proportional and integral

parts of the controller. Moreover, K rappresent the gain of the controller while [k]

is the discrete time index. The integral error can be computed as

eI [k] = eI0 +
t∑
i=1

eP [i] dT .

As shown in Figure 2.1, the position controller has not been implemented, since,

during the simulation, once initialized in the desired position, the only disturbance

acting on the quadrotor is gravity together with the numerical error of the simu-

lator. Moreover, this controller should be carefully designed in order to guarantee

the Assumption 1 (φ ≈ 0, θ ≈ 0, ẋ ≈ 0, ẏ ≈ 0) to be satisfied.

Position

Controller

(θdes = φdes = 0)

Attitude Controller

Theta Controller (PI)

Phi Controller (PI)

Heading

Controller

(PI)

Altitude

Controller

(PI)

R
ot

or
s

ve
lo

ci
ty

ca
lc

u
la

ti
on

Quadrotor

dynamic

xref

yref

ψref

zref

θdes

φdes

τθ
τφ

τψ

T

Ω

θ φx y

ψ

z

Figure 2.1: Quadrotor prestabilizable control structure

In Figure 2.2, the behavior of the Attitude and Heading controllers during a generic

simulation is shown. It is possible to notice that the magnitude of the control signal

(N
m

) is almost null. In fact, once the drone is initialized in the desired position,

the controller has only to compensate for the numerical error generated by the

Methodology 30

Gazebo simulator. However, these controllers are crucial in performing any kind

of simulation, because of the unstable nature of the quadrotor. In Figure 2.3, the

behavior of the Altitude controller during a simulation is shown: the quadrotor is

stabilized at a reference step altitude. It can be noticed from the plot that, once

the transient phase is accomplished and the desired reference altitude is reached,

the control effort results to be exactly equal to mg, thus the gravity disturbance

acting on the system. The UFB
1 signal, present in the figure, is the reconstruction

of the control input. It is computed from the sensor feedback signal of the actual

rotor speeds, which are measured by the rotor sensors. The UFB
1 signal incorporates

the saturation effect of the motor and the possible error that could have occurred

during the simulation. In Figure 2.3, the saturation effects do not occur.

Figure 2.2: Control input of the presta-

bilizable controllers’ time evolutions

Figure 2.3: Control input of the Altitude

controller’s time evolutions

2.3 Altitude model setup

The altitude dynamic described by Equation (2.1) is a double integrator time-

invariant linear system with a single input and a constant disturbance due to

gravity. It can be defined in the continuous time state-space representation[
ẋ1

ẋ2

]
=

[
0 1

0 0

]
︸ ︷︷ ︸

:=ACT

[
x1

x2

]
+

[
0
1
m

]
︸︷︷︸
:=BCT

U1 +

[
0

−g

]
︸ ︷︷ ︸
:=WCT

where the state x1 := z is the altitude position and the state x2 := ż is the altitude

velocity. The parameter m is the mass of the quadrotor and g is the gravitational

acceleration.

Given the assumption of constant input during the intervals [k dT, (k + 1) dT]

∀k ∈ N, and the structure of a continuous time double integrator, it is possible to

Methodology 31

evaluate the state update as

X((k + 1) dT) = eA
CT dT ·X(k dT)

+

∫ (k+1) dT

k dT

eA
CT ((k+1) dT−τ)BCTdτ · U1(k dT)

+

∫ (k+1) dT

k dT

eA
CT ((k+1) dT−τ)WCTdτ

where the solution of the integrals are computed as [22][
eA

CT dT
∫ (k+1) dT

k dT
eA

CT ((k+1) dT−τ)BCTdτ

0 I

]
= exp

([
ACT BCT

0 0

]
· dT

)
.

According to the principle of superposition, the same can be applied to the constant

disturbance term WCT, which leads to the discrete-time update,[
x1[k + 1]

x2[k + 1]

]
=

[
1 dT

0 1

][
x1[k]

x2[k]

]
+

[
1
m
· 1

2
dT 2

1
m
· dT

]
U1[k] +

[
−g · 1

2
dT 2

−g · dT

]
,

X[k + 1] = A ·X[k] +B · U [k] +W

(2.2)

where dT is the sampling time and, from now on, when referring to the dynamic

model of altitude, the variable U1 will be represented by U for simplicity in the

explanation.

Starting from the control scheme in Figure 2.1, the altitude controller is modified

by adding a feedforward term (TFF = m̂g) in order to partially compensate for

the constant disturbance of gravity. The term m̂ is the estimated mass of the

quadrotor. The resulting control input is the overall vertical thrust:

U1[k] ≡ T [k] = Teff[k] + TFF

where the effective thrust, Teff, is the thrust force generated by the drone’s motors

minus the estimated gravitational force acting on the drone. This effective thrust

represents the resulting upward force ideally available for vertical acceleration.

The overall control scheme for the altitude dynamic is shown in Figure 2.4. The

control input (Teff) generated by the altitude controller can be computed with the

PI-Controller or by following the exploration signal. The generation of this signal

is explained more in detail in Section 2.4.2. It is important to notice that, as

shown in Figure 2.2, the actions U2 and U3 are almost zero but are necessary to

satisfy Assumption 1 of the linearization and, together with the matching input,

to guarantee a decoupled dynamics.

2.4 Exploration technique implementation

Once the altitude model derivation and the control scheme setup are explained,

this section focuses on the system identification performed according to the tech-

niques explained in [1]. The state space representation of Equation (2.2) highlights

Methodology 32

Altitude Controller

(PI)

(Exploration signal)

FeedForward

(m̂g)

R
ot

or
s

ve
lo

ci
ty

ca
lc

u
la

ti
on

Quadrotor

dynamic

Xref Xe Teff +

TFF

U1 ≡ T

U3 ≡ τθ

U2 ≡ τφ

U4 ≡ τψ

Ω

−

Xm

Figure 2.4: Altitude control scheme

the presence of a disturbance. This disturbance satisfies the assumption for the

exploration strategy, due to its non-stochastic nature and the possibility of calcu-

lating an energy-bound on it over a defined exploration time.

Given the state space representation of the altitude model (2.2) and the true pa-

rameters used by the SIL simulator, it is possible to compute the true quadrotor

altitude dynamic as[
x1[k + 1]

x2[k + 1]

]
=

[
1 dT

0 1

][
x1[k]

x2[k]

]
+

[
1
m
· 1

2
dT 2

1
m
· dT

]
U [k] +

[
−g · 1

2
dT 2

−g · dT

]
,

[
x1[k + 1]

x2[k + 1]

]
=

[
1 0.1

0 1

]
︸ ︷︷ ︸

:=Atr

[
x1[k]

x2[k]

]
+

[
0.0068

0.1370

]
︸ ︷︷ ︸

:=Btr

U [k] +

[
−0.0490

−0.98

]
︸ ︷︷ ︸

:=Wtr

where the parameters are m = 0.73 kg for the mass of the quadrotor, dT = 0.1 s for

the sampling time imposed during the simulations, and g = 9.8 m
s2

for the gravity

term. The goal is to estimate the parameters dT , m, as well as the matrices Atr

and Btr, in order to analyze the performance of the system identification algorithm

proposed in [1]. The feedforward action added to the control architecture is needed

to partially compensate for the disturbance (Wtr) in such a way as to obtain

numerically tractable results for the simulations.

2.4.1 Initial definition

To derive the exploration signal from the optimization algorithm, it is necessary

to set several initial values for the algorithm. This process includes establishing

Methodology 33

the initial estimates of the parameters and their corresponding initial closeness

matrix, defining the desired closeness matrix to be achieved after the exploration,

setting the frequencies of the exploration signal, and determining the associated

exploration time length. Finally, the energy bound of the disturbance after partial

compensation must be computed.

The coefficients of the state space representation (the A and B matrices) are

grouped as follows

θ = vec[A,B] ∈ Rnxnφ

where nφ = (nx + nu).

Initial Estimation

An initial estimation of the parameters must be set in order to run the optimization

algorithm. A potential approach involves computing an initial estimate value of

the parameters (θ̂0) and its initial closeness matrix D0 from observed data. To

ensure repeatable experiments with comparable results, the initial estimate values

have been obtained by selecting d̂T and m̂ from a normal distribution with the

mean equal to the true value

d̂T ∼ N (dT, σ2) ,

m̂ ∼ N (m,σ2)

and the covariance such that the following condition is satisfied

(θtr − θ̂(σ))>D(θtr − θ̂(σ))> = 1 .

Table 2.1 shows the estimates of the parameters for different imposed values of the

closeness matrix D, which is computed as

D = λD · Inφnx .

Starting from the first column on the left of the table, the following are reported:

the coefficient of the imposed value of the D matrix, the parameters obtained

from the normal distribution, the resulting feedforward action from the selected

mass, and the norm of the error. The norm of the error is computed only on

the coefficients of the state space representation containing the parameters to be

estimated (only 3 out of 6) as follows:

‖e‖ =

∥∥∥∥∥∥∥
Atr 1,2 − Â1,2

Btr 1,1 − B̂1,1

Btr 1,2 − B̂1,2

∥∥∥∥∥∥∥ .

For the reported simulation, D = 50 ·Inφnx was selected. Thus, the initial estimate

of the altitude model results in the following state space representation[
x1[k + 1]

x2[k + 1]

]
=

[
1 0.1635

0 1

]
︸ ︷︷ ︸

:= Â0

[
x1[k]

x2[k]

]
+

[
0.0214

0.2617

]
︸ ︷︷ ︸

:= B̂0

Teff[k]

Methodology 34

λD d̂T [s] m̂ [kg] m̂g [N] ‖e‖
1 -0.6432 -0.8596 -8.4241 0.9936

10 0.1411 0.3141 3.0778 0.3158

50 0.1635 0.6247 6.1221 0.1407

100 0.0512 0.2287 2.2408 0.0997

500 0.1430 0.9694 9.4999 0.0444

1000 0.0829 0.5071 4.9696 0.0315

10000 0.0906 0.6779 6.6438 0.0100

1000000 0.0993 0.7281 7.1351 0.0010

∞ 0.1 0.73 7.1541 0

Table 2.1: Initial estimate of the parameters of the altitude dynamical model

with U [k] = Teff[k] + 6.1221︸ ︷︷ ︸
TFF=m̂0·g

. The parameters d̂T 0 and m̂0 are

d̂T 0 = 0.1635 s,

m̂0 = 0.6247 kg.

Initial Closeness Matrix

The inverse of the initial closeness matrix D−1
0 for the initial estimation obtained

earlier is computed as

D−1
0 = (θtr − θ̂0)(θtr − θ̂0)>

which results in:

D−1
0 =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0.0040 0 0.0009 0.0079

0 0 0 0 0 0

0 0 0.0009 0 0.0002 0.0018

0 0 0.0079 0 0.0018 0.0156

.

Due to the fact that three coefficients of the state space representation are ex-

actly known, it results in being singular. However, to execute the optimization

algorithm, it is necessary to compute a positive definite matrix Ddes such that

D−1
des � D−1

0 . For this reason, a new relaxed initial closeness matrix D−1
init needs to

be defined and computed as

D−1
init � D−1

0

D−1
init = λ(D−1

0) · Inφnx

where λ(D−1
0) is the maximum eigenvalue of the D−1

0 matrix, and its inverse will

provide the chosen coefficient for the computation of the initial parameters. This

Methodology 35

results in
λ(D−1

0) = max(Λ(D−1
0)) = 0.0198,

λ(D0) =
1

λ(D−1
0)

= 50.4868 .

The resulting initial closeness matrix is

D−1
init =

0.0198 0 0 0 0 0

0 0.0198 0 0 0 0

0 0 0.0198 0 0 0

0 0 0 0.0198 0 0

0 0 0 0 0.0198 0

0 0 0 0 0 0.0198

This means that a non-perfect estimation of the coefficients known from the physi-

cal description of the model is allowed in the system identification phase. However,

these coefficients are not taken into account for the calculation of the error.

Desired Closeness Matrix

The desired closeness matrix Ddes needs to be selected positive definite such that

Ddes � Dinit in order to achieve a better estimation of the parameters. Note that

the greater the value of Ddes, the greater the energy of the exploration signal will

be for the same exploration time length. By analyzing Table 2.1, Ddes = 100 ·Inφnx
was selected. The inverse desired closeness matrix is

D−1
des = 0.01 · I6 .

Frequencies and Exploration Time Length

The other parameters that need to be set up for the optimization algorithm are

the frequencies fi of the exploration signal, and their amount L, from which it is

possible to compute the exploration time length Texp. To define which frequencies

to select, the frequency response of the model needs to be analyzed. For the sake

of the experiment, the frequency response of the true altitude model and not the

one of the initial estimation has been studied. The system shows a low-pass filter

behavior with a cut-off frequency at fc = 0.218 Hz. To achieve a good exploration

of the system, it is necessary to select the frequencies fi in the range of the cut-off

frequency. Following this criteria the frequencies are selected as

fi ∈
{

3

8
· fc,

6

8
· fc, 1 · fc,

10

8
· fc
}
⊂ FT , with i = 1, . . . , L.

Remember that the set of frequencies FT is defined as

FT := {0, 1/T, . . . , (T − 1)/T}.

Methodology 36

From this, it is possible to identify the exploration time as the period of the lowest

non-zero frequency:

Texp =
1

fmin

=

(
1

8
· fc
)−1

≈ 37s.

Moreover, given the imposed sampling time dT = 0.1s of the simulations, the

number of exploration samples of the SIL simulator can be computed as

NTexp =
Texp

dT
= 370 .

Energy-Bound of the Disturbance

As previously pointed out, the non-stochastic disturbance of the altitude dynamical

model is gravity. By using Equation (1.6), the energy of the disturbance W during

the exploration time length can be computed as

γtr
w ≥

NTexp−1∑
k=0

‖W‖2

=

NTexp−1∑
k=0

∥∥∥∥∥
[
−g · 1

2
dT 2

−g · dT

]∥∥∥∥∥
2

= 356.23 .

However, due to the feedforward action tuned with a value of (m̂0 ·g), it is partially

compensated. The following equation represents how the disturbance results after

the partial compensation,

X[k + 1] = A ·X[k] +B · U [k] +W

by substituting

U [k] = Teff[k] + TFF = Teff[k] + (m̂0 · g) ,

it is possible to achive,[
x1[k + 1]

x2[k + 1]

]
=

[
1 dT

0 1

][
x1[k]

x2[k]

]
+

[
1
m
· 1

2
dT 2

1
m
· dT

]
(Teff[k] + (m̂0 · g)) +

[
−g · 1

2
dT 2

−g · dT

]

=

[
1 dT

0 1

][
x1[k]

x2[k]

]
+

[
1
m
· 1

2
dT 2

1
m
· dT

]
Teff[k]

+

[
1
m
· 1

2
dT 2

1
m
· dT

]
(m̂0 · g) +

[
−g · 1

2
dT 2

−g · dT

]

=

[
1 dT

0 1

]
︸ ︷︷ ︸

A

[
x1[k]

x2[k]

]
+

[
1
m
· 1

2
dT 2

1
m
· dT

]
︸ ︷︷ ︸

B

Teff[k] +

[(
m̂0

m
− 1
)
· g · 1

2
dT 2(

m̂0

m
− 1
)
· g · dT

]
︸ ︷︷ ︸

:= W̃

.

It can be noticed that in the case of a perfect estimation of the mass (i.e., m̂0 = m),

the disturbance term W̃ results to be zero and is thus perfectly compensated.

Methodology 37

Once again, by using Equation (1.6), the energy of the partially compensated

disturbance can be calculated as follows:

γw̃ ≥
NTexp−1∑
k=0

‖W̃‖2

=

NTexp−1∑
k=0

∥∥∥∥∥
[(

m̂0

m
− 1
)
· g · 1

2
dT 2(

m̂0

m
− 1
)
· g · dT

]∥∥∥∥∥
2

= 7.41 .

(2.3)

Finally, it is possible to define the disturbance energy-bound for the experiment

as

γw = 20 ≥ γw̃ . (2.4)

The bound selected is increased relative to the exact value of the energy calculated

in Equation (2.3), but it is still significantly lower than the full energy γtr
w com-

puted without partial compensation. This increase in energy accounts for small

disturbances due to factors such as the non-constant sampling time of the SIL sim-

ulator and the less accurate calculation of rotor velocities compared to the RotorS

simulator.

This disturbance energy bound (γw) is used, along with the previously determined

initial values, to compute the optimal exploration signal with the optimization al-

gorithm. Moreover, this value is also necessary to compute the uncertainty bound

of the estimated parameters during the system identification phase.

2.4.2 Exploration Input Generation

Once the initial setup is computed, the semidefinite program 1.13 can be solved

(see Figures 2.5, 2.6, and 2.7). The meta optimization, necessary for the convex

relaxation of the problem, is stopped once the cost function and the descent di-

rection are lower than the defined threshold values. The results obtained from the

Figure 2.5: Cost function (γe) Figure 2.6: Change in amplitude

optimization algorithm are the following optimal amplitudes

α? =
[
0.04 0.94 1.76 −2.62

]>
,

Methodology 38

and the corresponding energy

γe = 3.29 .

Given the results of the optimization problem, it is possible to generate the explo-

ration signal with Equation (1.14):

T exp
eff [k] =

L∑
i=1

α?i sin(2πfi · k dT), with k = 0, . . . , NTexp − 1 .

The obtained exploration signal T exp
eff is shown in Figure 2.8.

Figure 2.7: Normalized optimized ampli-

tude
Figure 2.8: Optimized exploration signal

2.4.3 Exploration Phase

The exploration input U exp
1 , computed as T exp

eff +(m̂0·g), is used to excite the system

and collect the data needed to estimate the coefficients of the altitude model. The

resulting exploration input applied during the simulations can be seen in Figure

2.9.

Figure 2.9: Exploration input

The evolution of the states X = [z, ż]> is reported in Figures 2.10 and 2.11, respec-

tively. As shown in Figure 2.10, during the simulation, there is a constant drift

in the position due to the non-perfect compensation of the constant disturbance

caused by gravity.

Methodology 39

Figure 2.10: Evolution of the altitude Figure 2.11: Evolution of the velocity

2.4.4 System Identification

By collecting the data during the experiment (Figures 2.9, 2.10, and 2.11) and

using only the data generated while the exploration signal is applied, it is possible

to solve the standard least-squares problem to estimate the coefficients of the

altitude model. The exploration signal have been applied only from 6s onwarw

from the beginning of the simulation, since during this initial time slot a PI-

controller has been used to reach a fixed desired position. The estimated state

space representation is[
x1[k + 1]

x2[k + 1]

]
=

[
1 0.09989

−2.605× 10−5 1.001

]
︸ ︷︷ ︸

:= ÂLS
Texp

[
x1[k]

x2[k]

]
+

[
0.002517

0.1363

]
︸ ︷︷ ︸

:= B̂LS
Texp

TFB
eff [k] ,

where TFB
eff is computed as

TFB
eff [k] = UFB

1 [k]− m̂0 · g .

From θ̂LS
Texp

, it is possible to identify the estimated parameters

d̂T Texp = 0.09989 s ,

m̂Texp = 0.7331 kg

and the norm of its representing coefficient error results in

‖eTexp‖ =

∥∥∥∥∥∥∥
Atr 1,2 − ÂTexp 1,2

Btr 1,1 − B̂Texp 1,2

Btr 1,2 − B̂Texp 1,2

∥∥∥∥∥∥∥ = 0.0044 .

This result can be obtained only in simulation by having prior knowledge of the

true parameter values, as it is computed by comparing the actual estimation with

them.

Chapter 3

Simulation Results

In this chapter, the results of the thesis are presented and analyzed. First, some

comments about the SIL simulator used for the experiments are reported. Then,

the results of the experiments are presented, verifying the initial assumptions re-

garding the energy bound of the disturbance and the objective of the system iden-

tification technique presented in [1]. The chapter ends with a comparison with a

different exploration signal, generated by a gaussian stochastic process.

3.1 SIL Simulator Analysis

The SIL simulator was essential for solving “online” the optimization problem

during the simulation, eliminating the need for offline or parallel execution. The

modular structure used for the implementation results to be ideal for employ-

ing multiple controllers, each one for a specific control input. Additionally, the

time management was precise, resulting in an almost constant discrete time inter-

val. However, due to communication between MATLAB and ROS, the minimum

discrete time that can be set is dT = 0.1 s, which corresponds to a controller fre-

quency of 10Hz. This results from the exact discrete time evolution of the state

space representation, making the second-order term (dT 2) not negligible. This is

a limitation that can be improved in future works.

3.2 Results of the Experiment

In this section, the results obtained during the experiments are reported and an-

alyzed. Starting from the verification of the assumed energy bound for the dis-

turbance and sequentially the objective for the system identification technique

presented in [1].

Simulation Results 41

3.2.1 Disturbance Energy

Once data is collected, the energy of the disturbance acting on the system during

the exploration phase can be computed to verify if the disturbance energy bound

(γw) imposed in the optimization problem is satisfied. It is important to add a

new term representing the noise of the simulator acting on the system evolution

in the state space representation (2.2),

X[k + 1] = A ·X[k] +B · U [k] +W +Wsim[k] ,

where W represents the constant disturbance of gravity acting on the system,

while Wsim represents the noise introduced by the SIL simulator, representing the

difference between the simulated and the ideal evolution of Equation (2.1). This

noise accounts for factors such as the non-constant sampling time of the SIL sim-

ulator and the less accurate calculation of rotor velocities compared to the RotorS

simulator or, in a practical case, the noise of the sensors. Note that RotorS uses a

more accurate non-linear model of the propeller dynamics compared to the input

matching model used in the SIL simulator.

As highlighted in the previous chapter, the exploration input is composed of the

exploration signal and a feedforward action to compensate for the constant distur-

bance of gravity,

UFB[k] = TFB
eff [k] + TFF

X[k + 1] = A ·X[k] +B · (TFB
eff [k] + TFF) +W +Wsim[k]

X[k + 1] = A ·X[k] +B · TFB
eff [k] +B · TFF +W︸ ︷︷ ︸

W̃

+Wsim[k] .

The energy of the attenuated disturbance W̃ is computed in Equation (2.3) and was

the only possible computation executable a priori. With the data collected during

the exploration, it is now possible to compute the full energy of the disturbances

acting on the system during the exploration phase,

γwexp =

NTexp−1∑
k=0

∥∥∥∥∥X[k + 1]−

([
X[k]

TFB
eff [k]

]
⊗ Inx

)
θtr

∥∥∥∥∥
2

=

NTexp−1∑
k=0

‖X[k + 1]− (A ·X[k] +B · TFB
eff [k])‖2

=

NTexp−1∑
k=0

‖B · TFF +W +Wsim[k]‖2

=

NTexp−1∑
k=0

‖W̃ +Wsim[k]‖2 = 17.87 .

(3.1)

Simulation Results 42

Moreover, it is possible to compute the energy of the noise acting during the

simulation,

γwsim
=

NTexp−1∑
k=0

∥∥∥∥∥X[k + 1]−

([
X[k]

UFB[k]

]
⊗ Inx

)
θtr −W

∥∥∥∥∥
2

=

NTexp−1∑
k=0

‖X[k + 1]− (A ·X[k] +B · UFB[k] +W)‖2

=

NTexp−1∑
k=0

‖Wsim[k]‖2 = 10.62 .

From this result, it can be concluded that the energy bound of the disturbance

γw ≥ γwexp imposed as initial parameter for the optimization problem is satisfied.

Note that these a posteriori calculations are possible only because the true param-

eters are known in the simulation. In Figure 3.1, the evolution of the noise Wsim

Figure 3.1: Noise acting on the state evolution

acting on the state computation is shown. It is possible to notice that the noise

acting on the computation of the position is always increasing due to the increase

in velocity during the experiment as reported in Figure 2.11. This introduces an

error in the computation of the position for the physical engine of Gazebo, due to

the non-constant sampling time of the SIL simulator, which is fundamental in the

integration of the velocity itself.

3.2.2 Objective of the Exploration

The results presented in the System Identification section 2.4.4 after the explo-

ration phase are analyzed here.

To verify the correctness of the solution provided by the optimization algorithm,

it is necessary to check if the constraint (1.10) imposed during the optimization

problem is satisfied, i.e. if the following holds:

G · Pθ � D−1
des .

Simulation Results 43

The left-hand side of the inequality can be interpreted as a closeness matrix,

D−1
bd := G · Pθ, representing a data-dependent bound on the uncertainty of the

estimated parameters in the presence of energy-bounded disturbances. While the

right-hand side represents the desired accuracy to the true parameters imposed at

the beginning of the experiment.

To calculate the closeness matrix D−1
bd , the following matrices need to be defined:

φ[k] = [X[k]>, U [k]>]> ∈ Rnφ ,

Φ = [φ[0], . . . , φ[Texp − 1]] ∈ Rnφ×Texp ,

X
>

= [X[1]>, . . . , X[Texp]>] ∈ R1×Texp·nx .

The components G and Pθ can be calculated as follows,

Pθ = (ΦΦ> ⊗ Inx)−1 ,

G
(1.8)
=
(
γw −X

>
X +X

>
((Φ>(ΦΦ>)−1Φ)⊗ Inx)X

)
,

where the energy bound of the disturbance γw is calculated in Equation (2.4).

The matrix D−1
bd computed in this way is symmetric and positive definite, as is

characteristic of a closeness matrix. Moreover, verifying that (D−1
bd − D−1

des) is

negative semi-definite confirms the initial Equation (1.10).

To provide a comparable result of the quality of the estimation, the inverse of

the maximum eigenvalue of the D−1
bd matrix can be computed, representing the

uncertainty in the direction where it is maximum,

λ(Dbd) =
1

max(Λ(D−1
bd))

= 212.8 ,

which is greater than the imposed desired uncertainty λ(Ddes) = 100.

Once verified, Equation (1.10) provides a sufficient condition to ensure the objec-

tive of [1], reported in Equation (1.9),

(θtr − θ̂T)>Ddes(θtr − θ̂T) ≤ 1 .

Since the true parameters are known in the simulation, it is possible to compute

this directly, resulting in

(θtr − θ̂Texp)>Ddes(θtr − θ̂Texp) = 0.0056 ≤ 1 .

To complete the analysis, by using the true parameter values, it is also possible to

compute the closeness matrix D−1
Texp

as

D−1
Texp

= (θtr − θ̂Texp)(θtr − θ̂Texp)> .

It is important to highlight that the symbol of the inverse in D−1
Texp

does not mean

the inverse of the matrix itself but has been used only for consistency of notation,

Simulation Results 44

since the matrix is not invertible by construction. Now it is possible to compute

the exact maximum uncertainty,

λ(DTexp) =
1

max(Λ(D−1
Texp

))
= 89 768 ,

where max(Λ(D−1
Texp

)) is the only eigenvalue different from zero. Once verified that

(D−1
Texp
−D−1

bd) is negative semi-definite, it is possible to verify Equation (1.11),

D−1
Texp
� D−1

bd � D−1
des � D−1

init .

These results show that the goal (D−1
Texp
� D−1

des) is highly satisfied, as the imposed

constraint (1.10) ensures D−1
bd � D−1

des. Note that, in the case of unknown true

parameters, the only closeness matrix that can be computed is Dbd, which is a

conservative result compared to DTexp .

3.3 Comparison with a Different Exploration Sig-

nal

In this section, the results from an experiment that utilizes a random exploration

signal are reported. For a fair comparison with the designed exploration strategy,

a normally distributed random signal with the same amount of energy as the

targeted exploration signal generated from the optimization algorithm in Section

2.4.2 is used. The objective is to verify if the random exploration signal achieves

the desired accuracy.

3.3.1 Generation of Normally Distributed Random Explo-

ration Signal

The energy of the optimal exploration signal during the exploration time length

Texp is computed as

γ2
sin =

NTexp−1∑
k=0

‖T exp
eff [k]‖2 = 2012N2 . (3.2)

Note that this energy is different from the cost function γe of the optimization

problem, which is the energy bound at each time instant of the exploration signal.

In order to do a comparison, a new exploration signal T rnd
eff is generated, starting

from

xrnd[k] ∼ N (0, 1), with k = 0, . . . , NTexp − 1 ,

it is possible to compute T rnd
eff [k] as

T rnd
eff [k] = xrnd[k] · γsin

γxrnd
, (3.3)

Simulation Results 45

where γxrnd is computed as in Equation (3.2) but with the exploration signal xrnd.

In this way, it can be achived the same energy both for the optimal exploration

signal computed according to the exploration technique of [1], and for the nor-

mally random distributed exploration signal generated in Equation 3.3. The new

exploration signal T rnd
eff is shown in Figure 3.2.

Figure 3.2: Normally random distributed

exploration signal
Figure 3.3: Exploration input

3.3.2 Exploration Phase

The exploration input U rnd
1 , computed as T rnd

eff +(m̂0·g), is used to excite the system

and collect the data needed to estimate the coefficients of the altitude model. The

resulting exploration input applied during the simulations can be seen in Figure

3.3. It is possible to notice that in this case, the tracking of the exploration input

by the rotor is not as accurate as that obtained with the optimal exploration signal

in Figure 2.9.

The evolution of the states X = [z, ż]> is reported in Figures 3.4 and 3.5, respec-

tively. As shown in Figure 3.4, during the simulation, there is a constant drift

Figure 3.4: Evolution of the altitude Figure 3.5: Evolution of the velocity

in the position due to the non-perfect compensation of the constant disturbance

Simulation Results 46

caused by gravity. While in Figure 3.5, it can be seen how the exploration input

is attenuated due to the nature of the system (low-pass filter).

3.3.3 System Identification

By collecting the data during the experiment (Figures 3.3, 3.4, and 3.5) and using

only the data generated while the exploration signal is applied (from 6 s onward), it

is possible to solve the standard least-squares problem to estimate the coefficients

of the altitude model. The estimated state space representation is[
x1[k + 1]

x2[k + 1]

]
=

[
1 0.10003

−2.685× 10−5 1.001

]
︸ ︷︷ ︸

:= ÂLS
rnd

[
x1[k]

x2[k]

]
+

[
0.01219

0.0615

]
︸ ︷︷ ︸

:= B̂LS
rnd

TFB
eff [k]

where TFB
eff is computed as

TFB
eff [k] = UFB

rnd[k]− m̂0 · g .

From θ̂LS
rnd, it is possible to identify the estimated parameters

d̂T rnd = 0.10003 s,

m̂rnd = 1.6266 kg ,

and the norm of its representing coefficient error results in

‖ernd‖ =

∥∥∥∥∥∥∥
Atr 1,2 − Ârnd 1,2

Btr 1,1 − B̂rnd 1,1

Btr 1,2 − B̂rnd 1,2

∥∥∥∥∥∥∥ = 0.0757 .

3.3.4 Comparison of the Results

As computed for the optimal exploration signal, it is possible to verify if the

condition of Equation (1.10) is satisfied,

G · Pθ � D−1
des .

It can be defined the closeness matrix (Drnd
bd)−1 := G · Pθ, computed as explained

in Section 3.2 with the exploration data collected using the normally random

distributed exploration input. The matrix (Drnd
bd)−1 results symmetric but negative

definite, not satisfying the conditions that a closeness matrix should satisfy as in

the case of the optimal exploration signal. However, even if Equation (1.10) is not

verified, it is a sufficient condition and not a necessary one to ensure the objective

of [1], thus this does not imply that the objective is not met. Accordingly, the

following objective results satisfied:

(θtr − θ̂Texp)>Ddes(θtr − θ̂Texp) = 0.5727 ≤ 1 .

Simulation Results 47

To complete the analysis, using the knowledge of the true parameter values, it is

also possible to compute the closeness matrix D−1
Texp

as

D−1
Texp

= (θtr − θ̂Texp)(θtr − θ̂Texp)> ,

where again the inverse notation is used only for consistency of notation. Now it

is possible to compute the exact maximum uncertainty,

λ(DTexp) =
1

max(|Λ(D−1
Texp

)|)
= 174.6 ,

which is greater than the imposed desired uncertainty λ(Ddes) = 100. However, it

is highly reduced compared to the optimal exploration signal.

Conclusion

This thesis has presented the implementation and study of an existing system

identification technique in the presence of an energy-bounded disturbance. To

achieve a system modeled with these characteristics, the study of a quadrotor

dynamic model has been performed, focusing the system identification only on

the altitude dynamics. In order to perform the experiment, a SIL simulator has

been developed, providing the capability to execute the optimization techniques

for the generation of the exploration signal without constraints on the execution

time while simultaneously evaluating the dynamic evolution of the quadrotor for an

almost fixed discrete time. Moreover, to perform the system identification on the

altitude dynamics, a stabilizing controller has been designed and implemented for

the attitude model to satisfy the assumptions of the linearization and decoupling of

the dynamics. The results of the simulation have shown that the exploration signal

generated by the optimization techniques in [1] is able to reduce the uncertainty

of the model and achieve the desired accuracy. Additionally, this result has been

compared with another exploration signal, demonstrating that even if the new

exploration signal has the same amount of energy, it is not able to satisfy the

constraints of the exploration, resulting in lower accuracy.

Future developments of this work can be pursued in different directions. From

the model perspective, system identification can be extended to other dynamics

of the quadrotor, such as the position and the orientation. For the SIL simulator,

a more consistent evolution of the discrete time can be achieved, or a complete

interface with only ROS can be developed, avoiding the use of the MATLAB

environment. Moreover, due to the interface of RotorS, it could be possible to test

this technique in a real environment, like a flight arena, obtaining the odometry of

a real quadrotor using sensors like Vicon. Finally, the techniques of dual control

can be applied starting from the strategy of the exploration implemented, making

it possible to build a robust controller based on the desired uncertainty obtained

from the system identification techniques.

Bibliography

[1] J. Venkatasubramanian, J. Köhler, M. Cannon, and F. Allgöwer, Towards

non-stochastic targeted exploration, 2023. arXiv: 2312.05947 [eess.SY].

[2] K. Peng, G. Cai, B. M. Chen, M. Dong, K. Y. Lum, and T. H. Lee, “De-

sign and implementation of an autonomous flight control law for a uav heli-

copter,” Automatica, vol. 45, no. 10, pp. 2333–2338, 2009, issn: 0005-1098.

doi: 10.1016/j.automatica.2009.06.016. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0005109809003082.

[3] A. Isidori, L. Marconi, and A. Serrani, “Robust nonlinear motion control

of a helicopter,” IEEE Transactions on Automatic Control, vol. 48, no. 3,

pp. 413–426, 2003. doi: 10.1109/TAC.2003.809147.

[4] P. Wang, Z. Man, Z. Cao, J. Zheng, and Y. Zhao, “Dynamics modelling

and linear control of quadcopter,” in 2016 International Conference on Ad-

vanced Mechatronic Systems (ICAMechS), 2016, pp. 498–503. doi: 10.1109/

ICAMechS.2016.7813499.

[5] Z. he and L. Zhao, “A simple attitude control of quadrotor helicopter based

on ziegler-nichols rules for tuning pd parameters,” TheScientificWorldJour-

nal, vol. 2014, p. 280 180, Dec. 2014. doi: 10.1155/2014/280180.

[6] A. Tayebi and S. McGilvray, “Attitude stabilization of a vtol quadrotor

aircraft,” IEEE Transactions on Control Systems Technology, vol. 14, no. 3,

pp. 562–571, 2006. doi: 10.1109/TCST.2006.872519.

[7] B. Erginer and E. Altug, “Modeling and pd control of a quadrotor vtol

vehicle,” in 2007 IEEE Intelligent Vehicles Symposium, 2007, pp. 894–899.

doi: 10.1109/IVS.2007.4290230.

[8] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular

gazebo mav simulator framework,” in Robot Operating System (ROS): The

Complete Reference (Volume 1), A. Koubaa, Ed. Cham: Springer Interna-

tional Publishing, 2016, pp. 595–625. [Online]. Available: https://doi.

org/10.1007/978-3-319-26054-9_23.

[9] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded

open source robotics framework for deeply embedded platforms,” in 2015

IEEE International Conference on Robotics and Automation (ICRA), 2015,

pp. 6235–6240. doi: 10.1109/ICRA.2015.7140074.

https://arxiv.org/abs/2312.05947
https://doi.org/10.1016/j.automatica.2009.06.016
https://www.sciencedirect.com/science/article/pii/S0005109809003082
https://www.sciencedirect.com/science/article/pii/S0005109809003082
https://doi.org/10.1109/TAC.2003.809147
https://doi.org/10.1109/ICAMechS.2016.7813499
https://doi.org/10.1109/ICAMechS.2016.7813499
https://doi.org/10.1155/2014/280180
https://doi.org/10.1109/TCST.2006.872519
https://doi.org/10.1109/IVS.2007.4290230
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1109/ICRA.2015.7140074

BIBLIOGRAPHY 50

[10] G. Silano. (Oct 31, 2018). Crazys, crazyflie simulator - wiki, [Online]. Avail-

able: https://github.com/gsilano/CrazyS/wiki.

[11] E. Fogel, “System identification via membership set constraints with energy

constrained noise,” IEEE Transactions on Automatic Control, vol. 24, no. 5,

pp. 752–758, 1979. doi: 10.1109/TAC.1979.1102164.

[12] X. Bombois, G. Scorletti, M. Gevers, P. V. den Hof, and R. Hildebrand,

“Least costly identification experiment for control,” Automatica, vol. 42,

no. 10, pp. 1651–1662, 2006, issn: 0005-1098. doi: 10.1016/j.automatica.

2006.05.016. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0005109806002238.

[13] M. Barenthin and H. Hjalmarsson, “Identification and control: Joint input

design and H-infinity state feedback with ellipsoidal parametric uncertainty

via lmis,” Automatica, vol. 44, no. 2, pp. 543–551, 2008, issn: 0005-1098.

doi: 10.1016/j.automatica.2007.06.025. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0005109807003421.

[14] C. A. Larsson, A. Ebadat, C. R. Rojas, X. Bombois, and H. Hjalmars-

son, “An application-oriented approach to dual control with excitation for

closed-loop identification,” European Journal of Control, vol. 29, pp. 1–16,

2016, issn: 0947-3580. doi: 10.1016/j.ejcon.2016.03.001. [Online].

Available: https://www.sciencedirect.com/science/article/pii/

S0947358016300024.

[15] M. Ferizbegovic, J. Umenberger, H. Hjalmarsson, and T. B. Schön, “Learning

robust lq-controllers using application oriented exploration,” IEEE Control

Systems Letters, vol. 4, no. 1, pp. 19–24, 2020. doi: 10.1109/LCSYS.2019.

2921512.

[16] J. Venkatasubramanian, J. Köhler, J. Berberich, and F. Allgöwer, Sequen-

tial learning and control: Targeted exploration for robust performance, 2023.

arXiv: 2301.07995 [eess.SY]. [Online]. Available: https://arxiv.org/

abs/2301.07995.

[17] J. Venkatasubramanian, J. Köhler, J. Berberich, and F. Allgower, “Robust

dual control based on gain scheduling,” in 2020 59th IEEE Conference on

Decision and Control (CDC), 2020, pp. 2270–2277. doi: 10.1109/CDC42340.

2020.9304088.

[18] Z. Tahir, W. Tahir, and S. A. Liaqat, State space system modelling of a quad

copter uav, 2019. arXiv: 1908.07401 [cs.RO].

[19] T. Nguyen, I. Prodan, F. Stoican, and L. Lefévre, “Reliable nonlinear control

for quadcopter trajectory tracking through differential flatness,” vol. 50, Jul.

2017. doi: 10.1016/j.ifacol.2017.08.1338.

[20] F. Furrer. (Apr 27, 2017). Rotors simulator - wiki, [Online]. Available: https:

//github.com/ethz-asl/rotors_simulator/wiki.

https://github.com/gsilano/CrazyS/wiki
https://doi.org/10.1109/TAC.1979.1102164
https://doi.org/10.1016/j.automatica.2006.05.016
https://doi.org/10.1016/j.automatica.2006.05.016
https://www.sciencedirect.com/science/article/pii/S0005109806002238
https://www.sciencedirect.com/science/article/pii/S0005109806002238
https://doi.org/10.1016/j.automatica.2007.06.025
https://www.sciencedirect.com/science/article/pii/S0005109807003421
https://www.sciencedirect.com/science/article/pii/S0005109807003421
https://doi.org/10.1016/j.ejcon.2016.03.001
https://www.sciencedirect.com/science/article/pii/S0947358016300024
https://www.sciencedirect.com/science/article/pii/S0947358016300024
https://doi.org/10.1109/LCSYS.2019.2921512
https://doi.org/10.1109/LCSYS.2019.2921512
https://arxiv.org/abs/2301.07995
https://arxiv.org/abs/2301.07995
https://arxiv.org/abs/2301.07995
https://doi.org/10.1109/CDC42340.2020.9304088
https://doi.org/10.1109/CDC42340.2020.9304088
https://arxiv.org/abs/1908.07401
https://doi.org/10.1016/j.ifacol.2017.08.1338
https://github.com/ethz-asl/rotors_simulator/wiki
https://github.com/ethz-asl/rotors_simulator/wiki

BIBLIOGRAPHY 51

[21] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

A. Y. Ng, et al., “Ros: An open-source robot operating system,” in ICRA

workshop on open source software, Kobe, Japan, vol. 3, 2009, p. 5.

[22] M. M. Lund University Department of Automatic Control. (4 February

2020). Sampling of linear systems, [Online]. Available: https://www.control.

lth.se/fileadmin/control/Education/EngineeringProgram/FRTN01/

lectures/L06_slides1.pdf.

https://www.control.lth.se/fileadmin/control/Education/EngineeringProgram/FRTN01/lectures/L06_slides1.pdf
https://www.control.lth.se/fileadmin/control/Education/EngineeringProgram/FRTN01/lectures/L06_slides1.pdf
https://www.control.lth.se/fileadmin/control/Education/EngineeringProgram/FRTN01/lectures/L06_slides1.pdf

	Introduction
	Motivations
	Literature
	Contributions
	Organization

	Technical Preliminaries
	Quadrotor Model
	Rotor Working Principle
	Dynamic Equations
	Control Structure

	Simulation Environment
	Robotics Operating System (ROS)
	Gazebo
	RotorS
	Software In The Loop Simulator

	System Identification Technique
	Problem statement
	Targeted exploration input
	Algorithm

	Methodology
	Problem formulation
	Design of a prestabilizing controller
	Altitude model setup
	Exploration technique implementation
	Initial definition
	Exploration Input Generation
	Exploration Phase
	System Identification

	Simulation Results
	SIL Simulator Analysis
	Results of the Experiment
	Disturbance Energy
	Objective of the Exploration

	Comparison with a Different Exploration Signal
	Generation of Normally Distributed Random Exploration Signal
	Exploration Phase
	System Identification
	Comparison of the Results

	Conclusion
	Bibliography

