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Introduction

The purpose of this thesis is to establish existance results for weak solutions of a large class

of degenerate McKean-Vlasov equations with rough coefficients by expanding upon techniques

developed by A. Yu. Veretennikov in [11].

A McKean-Vlasov equation (MKV) is an object of the form

dXt = B(t,Xt, µXt)dt+ Σ(t,Xt, µXt)dWt, X0 ∼ µ0, (1)

where W is a d-dimensional Wiener Process, µXt is the law of the process X at time t, µ0 is an

element of P2(RN) which is the space of the measures on RN with finite second moment and the

stochastic processes B,Σ are defined over the spaces B : Ω × [0, T ] × RN × P2(RN) → RN and

Σ : Ω× [0, T ]× RN × P2(RN) → RN×d.

Historically Vlasov’s idea, proposed originally in 1938 and present in the reprinted paper [12],

called mean field interaction in mathematical psysics and in stochastic analysis, estimates that in

a large system of many particles subject to long-range interaction forces between the particles the

interaction of a particle on the others may be replaced by an averaged field. That is the case for

example in electron gas or more in general ionized particles. Later M. Kac [3] proposed equations

of the form (1) as a model for Vlasov’s kinetic equation in plasma. Then it was McKean [6] that

started a systematic study of equations of this type.

MKV equations also due to their historical origin are very effective to describe multi-agent

systems and degenerate MKV equations are of particular interest since they naturally arise in

mechanical systems subject to stochastical forces or noise, indeed that is studied in [2] for turbolent

flows as an alternative approach to the more classical study of the Navier-Stokes equations.

It is a classical result that under Lipschitz conditions for the coefficients by the fixed point

theorem we can find a pathwise unique strong solution to the equation. The problem arises when

the coefficients are rough, in this case usually an hypothesis of non degeneracy of the diffusion

coefficient is taken as in [7] but to work with degenerate coefficients that is obviously out of the

question, thus the alternative assumption taken is that the covariance matrix ΣΣ∗ is a block

diagonal matrix, in particular the chosen class of equations will be of the formdX0,t = B0(t,Xt, µXt)dt,

dX1,t = B1(t,Xt, µXt)dt+ Σ1(t,Xt, µXt)dWt,
X0 ∼ µ0,

i



ii INTRODUCTION

where Xt = (X0,t, X1,t) ∈ RN−d × Rd and Σ1 non degenerate. A particularly interesting example

that is encompassed by our framework is the following MKV-Langevin-type equation:dX0,t = X1,t,

dX1,t = B1(t,Xt, µXt)dt+ Σ1(t,Xt, µXt)dWt.

Classically the Langevin model describes via its solution Xt the dynamics of a system of d particles

with position X0,t and velocity X1,t at time t. The case with measurable coefficients is primarily

driven by applications in control problems. In finance, SDEs of this type describe path-dependent

contingent claims, such as Asian options or some local stochastic volatility model [9].

The thesis is organized as follows: in the first chapter notations and theorems that will be used

in the following chapters are stated but the proof is omitted since the proofs are quite convoluted

and outside the scope of the thesis. In the second chapter classical results for MKV equations

are derived (for example existance results for Lipschitz coefficients) using classical results from

Stochastic Calculus. Lastly in the third chapter, which amounts to the most part of the thesis,

the main theorem is derived.

This last result was firstly established by Veretennikov [11] by building upon its previous paper

[7] but with more strict assumptions, specifically requiring the coefficients to be bounded and the

diffusion matrix Σ to be symmetric while here these hypothesis are dropped and the coefficients

are only needed to be of sublinear growth. The main tools used in this proof are Krylov’s bounds

[4], Skorokhod’s lemma to obtain weak convergence [10] and Nisio’s approach to SDEs in [8] and

[7].
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Chapter 1

Preliminary Notions

Definition 1.1. In this thesis we will need a couple of interesting process spaces:

• M2 is the space of processes Yt progressively measurable w.r.t a filtration Ft such that the

norm ||Y ||M2 := E
[∫ T

0
|Ys|2ds

] 1
2
is finite.

• S2 is the space of progressively measurable continuous processes Yt such that the norm

||Y ||S2 := E [supt |Yt|2]
1
2 is finite. It is possible to prove that (S2, || · ||S2) is a Banach space.

Definition 1.2 (Solution of an SDE). Given a probability space Ω. Given an SDE with coeffi-

cients b : Ω×[0, T ]×RN → RN and σ : Ω×[0, T ]×RN → RN×d, a filtration Ft and a d-dimensional

Wiener process Wt with respect to the filtration. The N-dimensional process X = (Xt)t∈[t0,T ] de-

fined over Ω is a solution if

1. X is adapted and continuous, which means that Xt ∈ mFt, ∀t ∈ [t0, T ].

2. almost certainly we have

Xt = Xt0 +

∫ t

t0

bs(Xs)ds+

∫ t

t0

σs(Xs)dWs, t ∈ [t0, T ].

And we may write X ∈ SDE(b, σ,W,Ft).

We say that X is a strong solution to the SDE if given (Ft,Wt) and a random variable

Z ∈ mFt0 we have that the process X is a solution to the SDE, almost certainly Xt0 = Z and,

crucially, X is adapted to the completed filtration generated by W and Z, that is FW,Z
t .

Definition 1.3 (Uniqueness of the solution of an SDE). Given an SDE with coefficients b

and σ we have uniqueness:

• in strong sense, if X, Y ∈ SDE(b, σ,W,Ft) and Xt0 = Yt0 almost certainly implies that X

and Y are pathwise equal.
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2 1. Preliminary Notions

• in weak sense (or in law), if X ∈ SDE(b, σ,W,Ft), Y ∈ SDE(b, σ, B,Gt) and Xt0 = Yt0

in law implies that (X,W ) = (Y,B) in law.

Definition 1.4 (Explosion time). Given a probability space Ω, an SDE with coefficients b :

Ω × [0, T ] × RN → RN and σ : Ω × [0, T ] × RN → RN×d, a filtration Ft and a d-dimensional

Wiener process Wt with respect to the filtration. If X ∈ SDE(b, σ,W,Ft) up to time

τn = inf(t ∈ [0, T ], s.t. |Xt| > n)

for all n ∈ N. We may define

τ = limn→∞τn

the explosion time for the process X.

A solution for an SDE is called explosive if P (τ < T ) > 0.

Definition 1.5 (Wasserstein measure). Let E be a complete, separable metric space with Borel

σ-algebra B. Let Pr(E) be the set of all Borel measures over (E,B) with finite rth moments. Let

µ, ν ∈ Pr(E). We define the Wasserstein r-distance W
(r)
E : Pr(E)× Pr(E) → R+ as

W
(r)
E (µ, ν) = inf

γ∈P(E×E)

(∫
E×E

d(x, y)rγ(dx, dy)

) 1
r

,

where γ is a joint distribution over E × E with marginals µ,ν.

It is possible to prove ([1]) that P2(E) with the Wasserstein 2-distance is complete and separable.



Chapter 2

Preliminary Results

In this chapter we will build the tools necessary to tackle the main theorem for the next chapter.

Let’s start with this widely known estimates.

Lemma 2.1. Let bt(x) and σt(x) be stochastic processes defined over Ω×[0, T ]×RN such that their

growth is sublinear in x uniformly in the other variables, explicitly |bt(x)| + |σt(x)| ≤ M(1 + |x|).
Let q ≥ 1, X0 ∈ L2q(Ω) and, if it exists, Xt be the solution of

Xt = X0 +

∫ t

0

bs(Xs)ds+

∫ t

0

σs(Xs)dWs, t ∈ [0, T ].

Then these inequalities are true:

• supt,s∈[0,T ]

|t−s|≤h
E [|Xt −Xs|2q] ≤ C · hq.

• E
[
supt∈[0,T ] |Xt|2q

]
≤ C (1 + E [|X0|2q]).

Where the constant C only depends on q, T and M .

Proof. Let’s start from the first inequality and apply a small variation of Lemma 2.5.2 of [4] where

instead of considering processes that start at time 0 with value 0 we consider the starting time s

still with value 0.

Thus,

E
[
|Xt −Xs|2q

]
≤
(
1

ϵ

∫ t

s

eλ(t−r)M2dr + 2(2q − 1)

∫ t

s

eλ(t−r)M2dr

)q

≤ C · |t− s|q.

Where ϵ > 0 and λ = 4qM + ϵ. Now we conclude by passing to the sup|t−s|≤h.

The second inequality is a classical result, we will still provide the proof for completeness’ sake.

3



4 2. Preliminary Results

By using the inequality (
∑n

i=1 xi)
p ≤ np−1

∑n
i=1 x

p
i we observe that

E

[
sup
s∈[0,t]

|Xs|2q
]
≤ 32q−1

(
E
[
|X0|2q

]
+ E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

br(Xr)dr

∣∣∣∣2q
]
+ E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

σr(Xr)dWr

∣∣∣∣2q
])

Holder+Doob

≤ 32q−1

(
E
[
|X0|2q

]
+ E

[
sup
s∈[0,t]

s2q−1

∫ s

0

|br(Xr)|2qdr

]
+ CE

[∫ t

0

|σr(Xr)|2qdr
])

≤ 32q−1

(
E
[
|X0|2q

]
+M2q(2T )2q−1E

[∫ t

0

1 + |Xr|2qdr
]
+ CM2q22q−1E

[∫ t

0

1 + |Xr|2qdr
])

≤ CM,T,q

(
1 + E

[
|X0|2q

]
+

∫ t

0

E

[
sup
s∈[0,r]

|Xs|2q
]
dr

)
.

This means that Gronwall’s lemma may be used. Thus

E

[
sup

s∈[0,T ]

|Xs|2q
]
≤ CM,T,q

(
1 + E

[
|X0|2q

])
.

For the main theorem we will use the so called Krylov bounds, these are usually presented for

bounded coefficients but can be extended for locally bounded coefficients uniformly in time. This

is a very deep result derived by the study of parabolic PDEs, thus they may only be applied in

the non degenerate case.

Lemma 2.2 (Lemma 3 of [7]). Let Zt be a non-explosive strong Markov process in Rd satisfying

dZt = b(t, Zt)dt+ σ(t, Zt)dWt, Z0 = Z0,

where b(t, z) : [0, T ] × Rd → Rd and σ(t, z) : [0, T ] × Rd → Rd×d are measurable non-random

functions, σ uniformly non-degenerate:

∃ν > 0, inf
s,z

inf
|λ|=1

λ⊤σ(s, z)λ ≥ ν > 0,

and both bounded locally in z uniformly in t:

sup
|z|≤R

sup
t
(|b(t, z)|+ |σ(t, z)|) <∞, ∀R > 0.

Let D ⊆ BR for some R > 0 be a bounded domain in Rd. Then for any p ≥ d there exists a

constant N that only depends on p, R, d, the ellipticity constant of σσ∗ and the local upper bounds

of b and σ on BR such that for any g : Rd → R and f : R+ × Rd → R measurable functions

vanishing outside of D

E
[∫ T

0

|g(Zt)|dt
]
≤ N ||g||Lp(D) (2.1)

E
[∫ T

0

|f(t, Zt)|dt
]
≤ N ||f ||Lp+1([0,T ]×D). (2.2)
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Remark 2.3. We can observe that the hypothesis for non-explosive processes is needed to have

something meaningful in the estimates. Indeed if it weren’t the case with positive probability the

process will diverge in finite time which would mean that it couldn’t be considered up to time T .

This would make the integral ill-posed.

Proof. Since (2.1) is a special case of (2.2) we just prove the latter. Let D′ be a bounded domain

such that D̄ ⊆ D′ ⊆ BR+1. Without loss of generality d(D, (D′)c) > 0. We now define these two

sequences of stopping times:

τ 0 = 0, T 1 = inf(t ≥ τ 0 : Zt /∈ D̄′),

τ k = inf(t ≥ T k : Zt ∈ D), T k+1 = inf(t ≥ τ k : Zt /∈ D̄′) k ≥ 1.

We may now define

Ẑk
t = Zτk +

∫ t

τk
1(s<Tk+1)b(s, Zs)ds+

∫ t

τk
(1(s<Tk+1)σ(s, Zs) + 1(s≥Tk+1))dWs, k ≥ 0,

for t ≥ τ k. We may notice that for any k ≥ 0 the processes Ẑk
t are Ito processes with the same

coefficients as Zt in τ k ≤ t ≤ T k+1. Since they also start from the same random variable Zτk

at time τ k so they must be equal on that interval. We can now observe that for any k ≥ 0 on

the interval [T k, τ k] the process Zt is outside D and so f(t, Zt) must be equal to 0. By using the

theorem 2.2.4 of [4] (Krylov’s Bounds for bounded coefficients) we get for any p ≥ d,

E
[∫ T

0

|f(s, Zs)|ds
]
=

∞∑
k=0

E

[∫ Tk+1∧T

τk∧T
|f(s, Zs)|ds

]
=

∞∑
k=0

E

[
1(τk≤T )

∫ Tk+1∧T

τk∧T
|f(s, Zs)|ds

]

≤
∞∑
k=0

E

[
1(τk≤T )

∫ Tk+1∧T

τk
|f(s, Zs)|ds

]
≤

∞∑
k=0

E

[
1(τk≤T )

∫ Tk+1

τk
|f(s, Zs)|ds

]

≤
∞∑
k=0

E

[
1(τk≤T )E

[∫ Tk+1

τk
|f(s, Zs)|ds

∣∣∣∣∣Fτk

]]
≤ N ||f ||Lp+1([0,T ]×Rd)

∞∑
k=0

P(τ k ≤ T ).

Lastly we can notice that P(τ k ≤ T ) ≤ P(T k ≤ T ). A strong Markov process with positive

probability to exit in any finite amount of time from the bounded domain D′ due to the non

degeneracy of σσ∗ and the boundedness of the coefficients on D̄′ will admit exponential bounds of

the form

P(T k ≤ T ) ≤ Cqk−1.

For some C <∞ and q < 1. But since f vanishes outside D we will obtain the final bound:

E
[∫ T

0

|f(s, Zs)|ds
]
≤ N ||f ||Lp+1([0,T ]×Rd)

∞∑
k=0

P(τ k ≤ T ) ≤ CN ||f ||Lp+1([0,T ]×D).



6 2. Preliminary Results

Definition 2.4. A McKean-Vlasov stochastic differential equation is an SDE of the type

dXt = Bt(ω,Xt, µXt)dt+ Σt(ω,Xt, µXt)dWt, X0 ∼ µ0, t ∈ [0, T ]

where B : [0, T ] × Ω × RN × P2(RN) → RN and Σ : [0, T ] × Ω × RN × P2(RN) → RN×d are

measurable, Wt d-dimensional Wiener process , µXt the law of Xt and µ0 an element of P2(RN),

the space of all measures on RN with finite second momentum, equipped with the 2-distance of

Wasserstein and Ω a probability space.

This means that a MKV SDE has the coefficients that not only depend on the current time and

the current state of the solution but also on the current law of the solution.

Theorem 2.5. We consider the McKean-Vlasov stochastic differential equation

dXt = Bt(ω,Xt, µXt)dt+ Σt(ω,Xt, µXt)dWt, X0 = µ0, t ∈ [0, T ]

where:

• B and Σ are progressively measurable, that is

B|
[0,t]×Ω×RN×P2

,Σ|
[0,t]×Ω×RN×P2

∈ mB⊗Ft ⊗ BRN ⊗ BP2 , ∀t ∈ [0, T ]

• µ0 ∈ L2(Ω,RN)

• E
[(∫ T

0
|Bt(·, 0, δ0)| dt

)2]
, E

[(∫ T

0
|Σt(·, 0, δ0)| dt

)2]
<∞

• ∃L > 0 such that almost certantly for t ∈ [0, T ] and for ω ∈ Ω, ∀ x, x′ ∈ RN , ∀ µ, µ′ ∈ P2(RN)

|Bt(ω, x, µ)−Bt(ω, x
′, µ′)|+ |Σt(ω, x, µ)− Σt(ω, x

′, µ′)| ≤ L(̇|x− x′|+W (2)(µ, µ′)). (2.3)

then exists a unique (pathwise) process X in S2([0, T ],RN), strong solution of the SDE.

Remark 2.6. This is the equivalent to the result for classical SDEs where the Lipschitz property

and sublinear growth is enough to prove strong well posedness. Effectively the hypotheses are the

same up to translating them to the space P2(RN).

Proof. Since it doesn’t affect the outcome of the proof we won’t write explicitly the dependence

in ω of B,Σ. Let’s consider the operator J : S2 → S2 such that

J(Y )t = µ0 +

∫ t

0

Bs(Ys, µYs)ds+

∫ t

0

Σs(Ys, µYs)dWs.

Firstly we will prove that the integrals are well-posed. We may notice that if Y ∈ S2 then it is

continuous; and also

W (2)(µYt , µYs)
2 ≤

∫
R2N

|x− y|2µ(Yt,Ys)(dx, dy) = E
[
|Yt − Ys|2

] t→s→ 0
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by the dominated convergence theorem since it’s evident that ||Yt||L2 ≤ ||Y ||S2 . This means that

both Bs(y, µ) and Σs(y, µ) are continuous functions since they are lipschitz and we have continuity

of the Wasserstein measure. Since they are also adapted this means that they are progressively

measurable.

By definition of the 2-distance of Wasserstein

E
[∫ T

0

W (2)(µs, νs)
2ds

]
=

∫ T

0

W (2)(µs, νs)
2ds ≤

∫ T

0

∫
RN

∫
RN

|x− y|2µs(dx)νs(dy)ds

≤ 2

∫ T

0

∫
RN

∫
RN

|x|2 + |y|2µs(dx)νs(dy)ds

≤ 2

∫ T

0

∫
RN

|x|2µs(dx)ds+ 2

∫ T

0

∫
RN

|y|2νs(dy)ds.

(2.4)

And with this and the Lipschitz property we can prove that

E
[∫ T

0

|Σs(Ys, µYs)|2ds
]
≤ 2E

[∫ T

0

|Σs(Ys, µYs)− Σs(0, δ0)|2
]
+ 2E

[∫ T

0

|Σs(0, δ0)|2
]

≤ 4L2E
[∫ T

0

|Ys|2 +W (2)(µYs , δ0)
2ds

]
+ 2E

[∫ T

0

|Σs(0, δ0)|2
]

≤ 4L2||Y ||M2 + 8L2||Y ||M2 + 2E
[∫ T

0

|Σs(0, δ0)|2
]
.

We may notice that S2 ↪→M2. Thus since Y ∈ S2 we have

E
[∫ T

0

|Σs(Ys, µYs)|2ds
]
≤ C||Y ||S2 + 2E

[∫ T

0

|Σs(0, δ0)|2
]
<∞.

This proves that Σs(Ys, µYs) ∈ M2. It is well known that stochastic integrals of M2 processes

are continuous martingales of summable square. In similar ways we can prove that the Lebesgue

integrand is measurable and so the Lebesgue integral is continuous. For these reasons J(Y )t is a

continuous and adapted process. Now we have to prove that E
[
supt∈[0,T ] |J(Y )t|2

]
<∞.

sup
t∈[0,T ]

|J(Y )t|2 = sup
t∈[0,T ]

∣∣∣∣µ0 +

∫ t

0

Bs(Ys, µYs)ds+

∫ t

0

Σs(Ys, µYs)dWs

∣∣∣∣2
≤ 3|µ0|2 + 3 sup

t∈[0,T ]

∣∣∣∣∫ t

0

Bs(Ys, µYs)ds

∣∣∣∣2 + 3 sup
t∈[0,T ]

∣∣∣∣∫ t

0

Σs(Ys, µYs)dWs

∣∣∣∣2 .
Consequently

E

[
sup

t∈[0,T ]

|J(Y )t|2
]
≤ 3E

[
|µ0|2

]
+ 3E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

Bs(Ys, µYs)ds

∣∣∣∣2
]

+ 3E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

Σs(Ys, µYs)dWs

∣∣∣∣2
]
.
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By applying Holder’s and Doob’s inequalities respectively on the Lebesgue integral and on the

stochastic one we get

E

[
sup

t∈[0,T ]

|J(Y )t|2
]
≤ 3E

[
|µ0|2

]
+ 3E

[
sup

t∈[0,T ]

∫ t

0

ds

∫ t

0

|Bs(Ys, µYs)|2ds

]

+ 12E
[∫ T

0

|Σs(Ys, µYs)|2ds
]
.

We now apply Lipschitz’s property by adding and subtracting in the integrals respectively Bs(0, δ0)

and Σs(0, δ0):

E

[
sup

t∈[0,T ]

|J(Y )t|2
]
≤ 3E

[
|µ0|2

]
+ 6TL2E

[∫ T

0

(
|Ys|+W (2)(µYs , δ0)

)2
ds

]
+ 24L2E

[∫ T

0

(
|Ys|+W (2)(µYs , δ0)

)2
ds

]
+ 6TE

[∫ T

0

|Bs(0, δ0)|2
]

+ 24E
[∫ T

0

|Σs(0, δ0)|2
]
.

(2.5)

By hypothesis the terms containing Bs(0, δ0) and Σs(0, δ0) are bounded. Since we proved (2.4) we

notice that

E
[∫ T

0

(
|Ys|+W (2)(µYs , δ0)

)2
ds

]
≤ 2E

[∫ T

0

|Ys|2 +W (2)(µYs , δ0)
2ds

]
≤ 2E

[∫ T

0

|Ys|2ds
]
+ 2

∫ T

0

∫
Rd

|x|2µYs(dx)ds+ 0 = 4E
[∫ T

0

|Ys|2ds
]
.

Now, since S2 ↪→M2 and Y ∈ S2, we obtain

E
[∫ T

0

(
|Ys|+W (2)(µYs , δ0)

)2
ds

]
≤ 4E

[∫ T

0

|Ys|2ds
]
≤ C · E

[
sup

t∈[0,T ]

|Yt|2
]
<∞,

which guarantees the well posedness of J since we bounded (2.5).

Let’s now prove that the operator J is a contraction if the interval [0, T ] is small. Let Y and

Ỹ be elements of S2 such that Y0 = Ỹ0 = µ0; then,

||J(Y )− J(Ỹ )||2S2 =

E

[
sup

t∈[0,T ]

∣∣∣∣µ0 − µ0 +

∫ t

0

Bs(Ys, µYs)−Bs(Ỹs, µỸs
)ds+

∫ t

0

Σs(Ys, µYs)− Σs(Ỹs, µỸs
)dWs

∣∣∣∣2
]
.
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We apply again first Holder’s and Doob’s inequalities and then Lischitz’s property

≤ 3TE
[∫ T

0

|Bs(Ys, µYs)−Bs(Ỹs, µỸs
)|2ds

]
+ 12E

[∫ T

0

|Σs(Ys, µYs)− Σs(Ỹs, µỸs
)|2ds

]
≤ 3TL2E

[∫ T

0

(
|Ys − Ỹs|+W (2)(µYs , µỸs

)
)2

ds

]
+ 12L2E

[∫ T

0

(
|Ys − Ỹs|+W (2)(µYs , µỸs

)
)2

ds

]
.

Which means that the following is true:

||J(Y )− J(Ỹ )||2S2 ≤ 6L2(T + 4)E
[∫ T

0

|Ys − Ỹs|2 +W (2)(µYs , µỸs
)2ds

]
.

By applying the definition of the 2-distance of Wasserstein

||J(Y )− J(Ỹ )||2S2 ≤ CE
[∫ T

0

|Ys − Ỹs|2ds
]
+ C

∫ T

0

∫
R2N

|x− y|2µ(Ys,Yt)(dx, dy)ds

≤ CE
[∫ T

0

|Ys − Ỹs|2ds
]
+ CE

[∫ T

0

|Ys − Ỹs|2ds
]
.

But S2 is embedded into M2, therefore

||J(Y )− J(Ỹ )||2S2 ≤ CE
[∫ T

0

|Ys − Ỹs|2ds
]
≤ C̃E

[
sup

t∈[0,T ]

|Yt − Ỹt|2
]
= C̃||Y − Ỹ ||2S2 ,

where C̃ = 12L2(T + 4)T , thus it will be less than 1 if T is very small. If that’s the case by the

fixed-point theorem there will be a unique strong solution of the SDE.

In particular exists an ϵ > 0 such that if T < ϵ, then the above is true. Therefore exists k ∈ N
such that T

k
< ϵ; we now define tj = j · T

k
, j = 0 · · · k.

Since |tj − tj−1| < ϵ we can construct inductively and uniquely the solutions X(j) defined over

[tj−1, tj] with initial value X
(j−1)
tj−1

. Indeed all the hypotheses of the theorem are verified since

X(j−1) ∈ S2. Thus we define

Xt = µ01{0}(t) +
k∑

j=1

X
(j)
t 1]tj−1,tj ](t), t ∈ [0, T ].

It’s easy to prove inductively that X is the solution of the original SDE in S2([0, T ],RN).
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Chapter 3

Degenerate MKV SDEs

In this chapther we will consider a particular case of MKV SDE with a degenerate covariance

matrix, this makes necessary the use of finer techniques to find interesting results. Let’s consider

dXt = B(t,Xt, µXt)dt+ Σ(t,Xt, µXt)dW
x
t , X0 = X̌0 (3.1)

in the ”true” form of the equation, where

B(t, x, µ) =

∫
b(t, x, y)µ(dy), Σ(t, x, µ) =

∫
σ(t, x, y)µ(dy).

Where x ∈ RN , y ∈ RN , b : [0, T ] × RN × RN → RN , σ : [0, T ] × RN × RN → RN×d, W x

d-dimensional Wiener process, X̌0 random variable in RN and d ≤ N .

We will use a lot the following lemma that can be seen as a probabilistic version of Ascoli-

Arzelà’s theorem:

Lemma 3.1 (Skorokhod). Suppose that the N-dimensional processes Xn
t , with t ∈ [0, T ] and

n ∈ N, are defined on some probability space, possibly different from one another. Assume that for

any ϵ > 0 we have

lim
c→∞

sup
n

sup
t∈[0,T ]

P (|Xn
t | > c) = 0

lim
h→0+

sup
n

sup
t,s∈[0,T ]

|t−s|≤h

P (|Xn
t −Xn

s | > ϵ) = 0.

Then, it is possibile to choose a subsequence n′, a probability space and random processes X̃n′
t , X̃t

defined over that probability space such that X̃n′
= Xn′

in law and X̃n′
t

P→ X̃t, ∀t ∈ [0, T ].

In particular the probability space is [0, 1] with the Borel σ-algebra and the Lebesgue measure.

Proof. This formulation is in [4] as theorem 2.6.2 but the proof is in [10] as theorem 1.6

Corollary 3.2. Under the hypotheses of Lemma 3.1 we also have that X̃n′ d→ X̃

11



12 3. Degenerate MKV SDEs

Proof. To prove weak convergence of the processes we just need to prove weak convergence of the

finite dimensional processes. Fix t1, ..., tn ∈ [0, T ]. We know that convergence in probability of the

components of a random variable implies convergence in probability of the whole random variable,

thus by Skorokhod’s Lemma

(X̃n′

t1
, ..., X̃n′

tn )
P→ (X̃t1 , ..., X̃tn),

which implies weak convergence of the finite dimensional processes.

Remark 3.3. In the next theorem we will prove the existance of the weak solutions of a more general

class of SDEs than the ones in (3.1). Indeed we will consider the case where the coefficients are in

the form

ϕ(t, x,Σ(t, x, µ)) = ϕ(t, x, ⟨σ(t, x, ·), µ⟩) = ϕ

(
t, x,

∫
σ(t, x, y)µ(dy)

)
. (3.2)

This is pretty useful for applications.

Theorem 3.4 (based on Veretennikov [11]). Consider the SDE of McKean-Vlasov in true form

defined in (3.1) with the extra terms given by (3.2).

It is convenient to split in the SDE the degenerate and the diffusive parts. For x ∈ RN we use

the notation x = (x0, x1) ∈ RN−d × Rd and call x0 and x1 the degenerate and the non-degenerate

components respectively. We also set Xt = (X0,t, X1,t). Thus the SDE becomesdX0,t = ψ0(t,Xt, B(t,Xt, µXt))dt

dX1,t = ψ1(t,Xt, B(t,Xt, µXt))dt+ ϕ1(t,Xt,Σ1(t,Xt, µXt))dW
x
t , X0 = X̌0,

where B, Σ1 are defined as in

Σ1(t,Xt, µXt) = E [σ1(t, x,Xt)]|x=Xt
=

∫
RN

σ1(t,Xt, x)µXt(dx).

Under the hypotheses

• E[|X̌0|4] <∞.

• The matrix σ is in the block form

σ =

(
0

σ1

)
where 0 is a N − d × d block with null entries and σ1 is a d × d uniformly non degenerate

matrix, that means

∃ν > 0, inf
s,z,ζ

inf
|λ|=1

λ⊤σ1(s, z, ζ)λ ≥ ν > 0.

• b and σ of sub-linear growth in x and y uniformly in t, this means

|b(t, x, y)|+ |σ(t, x, y)| ≤ C(1 + |x|+ |y|), ∀t, x, y ∈ [0, T ]× RN × RN .
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• b(t, x0, x1, y0, y1) and σ1(t, x0, x1, y0, y1) continuous with respect to (x0, y0) uniformly in (t, x1, y1)

with modulus of continuity ρ(·), that means that the coefficients are continuous in the degen-

erate variables uniformly with respect to time and the non-degenerate variables.

and the hypotheses upon ϕ1, ψ

• ϕ1 and ψ of sub-linear growth in x, B or Σ respectively, uniformly in t, this means

|ψ(t, x, B)| ≤ C(1 + |x|+ |B|), ∀t ∈ [0, T ], ∀x ∈ RN , ∀B ∈ RN ,

|ϕ1(t, x,Σ)| ≤ C(1 + |x|+ |Σ|), ∀t ∈ [0, T ], ∀x ∈ RN , ∀Σ ∈ Rd×d.

• ϕ1 and ψ Lipschitz, in particular

∃C > 0 s.t. ∀s, t ∈ [0, T ], ∀x, y ∈ RN , ∀B,B′ ∈ RN , ∀Σ,Σ′ ∈ Rd×d

|ψ(t, x, B)− ψ(s, y, B′)| ≤ C(|t− s|+ |x− y|+ |B −B′|),

|ϕ1(t, x,Σ)− ϕ1(s, y,Σ
′)| ≤ C(|t− s|+ |x− y|+ |Σ− Σ′|).

• ϕ1 is a function that maps any space of uniformly definite positive matrices into another

space of uniformly definite positive matrices, namely exists a function π : R+ → R+ such

that given

Sν :=

{
Σ ∈ Rd×d inf

|λ|=1
λ⊤Σλ ≥ ν

}
,

then, uniformly in x ∈ RN and t ∈ [0, T ],

ϕ1(t, x,Sν) ⊆ Sπ(ν),

in other terms

ϕ1([0, T ],RN ,Sν) ⊆ Sπ(ν).

exists a weak solution to the SDE.

Remark 3.5. The hypothesis of L4 summability upon the initial datum X̌0 is very strong, and

indeed it could be lessened to just be L2+ϵ summability. Since this doesn’t need any particular

modification of the proof for simplicity’s sake we tackle the L4 case, but it actually works for L2+ϵ.

Remark 3.6. Under these hypotheses B and Σ are of sublinear growth uniformly in t with the

same constant as b and σ. Indeed

|B(t, x, µ)| ≤
∫
RN

|b(t, x, y)|µ(dy) ≤ C

∫
RN

(1 + |x|+ |y|)µ(dy) ≤ C(1 + |x|+ E [|Y |]),

where Y is a random variable whose law is µ. Analogously for Σ.
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Proof. The proof is quite involved, so for clarity’s sake we will split it up in different steps:

1) We will start by constructing a variation of b and σ1 in order to work with functions that

converge over compact sets to b and σ1 in some sense and such that they are uniformly continuous

over some variables. Let Ψn(x) be such that

Ψn(x) =

x, if |x| ≤ n

n x
|x| , otherwise.

(3.3)

By construction Ψn is a continuous function that maps the whole space onto the ball of radius n.

With a slight abuse of notation we will apply Ψn both over Rd and over RN−d. We will now define

bn(t, x, y) = b(t,Ψn(x0),Ψn(x1),Ψn(y0),Ψn(y1)) ∗ Φn(t, x, y),

σn
1 (t, x, y) = σ1(t,Ψn(x0),Ψn(x1),Ψn(y0),Ψn(y1)) ∗ Φn(t, x, y),

where Φn are the standard mollifiers1 of radius 1
n
. We may observe that since the image of Ψn

is bounded and the functions are of sublinear growth in x we have that the functions that get

mollified in the definition of bn and σn
1 are L∞. We will now prove that the mollification of an L∞

function is globally Lipschitz. Indeed given f ∈ L∞ and ϕn a mollifier

|f ∗ ϕn(x)− f ∗ ϕn(y)|
MeanValueThm

= | ▽ (f ∗ ϕn)(z) · (x− y)|

≤ || ▽ (f ∗ ϕn)||L∞|x− y|
Holder

≤ ||f ||L∞|| ▽ ϕn||L1 |x− y|. (3.4)

It is easy to prove that bn and σn
1 are still of sublinear growth (actually they are bounded) but

most importantly the constant of sublinear growth is uniform in n:

|bn(t, x, y)| = |b(t,Ψn(x0),Ψn(x1),Ψn(y0),Ψn(y1)) ∗ Φn(t, x, y)|

≤
∫
|t−s|∨|x−x′|∨|y−y′|<1/n

|b(s,Ψn(x
′
0),Ψn(x

′
1),Ψn(y

′
0),Ψn(y

′
1))|Φn(t− s, x− x′, y − y′)dsdx′dy′

≤
∫
C(1 + |(Ψn(x

′
0),Ψn(x

′
1))|+ |(Ψn(y

′
0),Ψn(y

′
1))|)Φ̌n(s, x

′, y′)dsdx′dy′

≤
∫
C(1 + |x′|+ |y′|)Φ̌n(s, x

′, y′)dsdx′dy′

≤ C

(
1 + |x|+ 1

n
+ |y|+ 1

n

)∫
Φ̌n(s, x

′, y′)dsdx′dy′

≤ C(3 + |x|+ |y|) ≤ C̃(1 + |x|+ |y|),

where Φ̃n(s, x
′, y′) = Φn(t − s, x − x′, y − y′)|1(|t−s|∨|x−x′|∨|y−y′|<1/n); more in general the mollifier

of a function of sublinear growth is a function of sublinear growth and if the mollifiers are chosen

with radius 1/n the sublinear growth constant is uniform over n. Thus this also works for σn
1 .

1b and σ1 are not defined over R in t, therefore we must extend them in such a way to make convolutions with

them: b will have value 0 outside [0, T ] and σ will be equal to the identity matrix (this way it will preserve the

uniform nondegeneracy property).
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We will now prove that bn admits ρ̃ as modulus of continuity in (x0, y0) uniformly in (t, x1, y1),

the proof for σn
1 is analogous. It is easy to see that if a function admits a modulus of continuity

then the mollification will admit the same modulus of continuity, we can then observe that

|b0(t,Ψn(x0),Ψn(x1),Ψn(y0),Ψn(y1))− b0(t,Ψn(x
′
0),Ψn(x1),Ψn(y

′
0),Ψn(y1))|

≤ ρ (|(Ψn(x0),Ψn(x1),Ψn(y0),Ψn(y1))− (Ψn(x
′
0),Ψn(x1),Ψn(y

′
0),Ψn(y1))|)

≤ ρ(|(x0, y0)− (x′0, y
′
0)|).

This means that the same modulus of continuity ρ works for b, σ1, b
n and σn

1 and is uniform in n.

It is also evident that σn
1 is still uniformly positive definite.

One could also observe that in the definition of bn and σn
1 the function to be mollified coincides

with b and σ1 respectively over [0, T ]×Qn, where

Qn =
{
(x0, x1, y0, y1) ∈ R2N , |x0| ∨ |x1| ∨ |y0| ∨ |y1| ≤ n

}
.

2) By applying the theorem 2.5 we show that for any n ∈ N exists Xn
t solution of the mollified

SDE.

The hypotheses are indeed verified: by considering

Bn(t, x, µ) = ψ(t, x,

∫
bn(t, x, y)µ(dy)), Σn(t, x, µ) = ϕ(t, x,

∫
σn(t, x, y)µ(dy))

it is known that if bn and σn are measurable and integrable with respect to µ, then
∫
bnµ and∫

σnµ are measurable. Then since ϕ, ψ are continuous we have Bn and Σn measurable. Also we

observe that if thats the case they will be continuous thanks to the mollification step and adapted.

For this reason Bn and Σn are progressively measurable.

Due to Jensen’s inequality we have E[X̌2
0 ] < ∞. Since bn and σn are bounded and ϕ, ψ of

sublinear growth we get

E

[(∫ T

0

|Bn(t, 0, δ0)|dt
)2
]
≤ E

[(∫ T

0

C(1 + |bn(t, 0, 0)|dt
)2
]
≤ C2

n · T 2 <∞

and analogously Σn. Lastly

|Bn(t, x, µ)−Bn(t, x′, µ′)| =
∣∣∣∣ψ(t, x,∫ bn(t, x, y)µ(dy)

)
− ψ

(
t, x′,

∫
bn(t, x′, y′)µ′(dy′)

)∣∣∣∣ ,
by the Lipschitz condition upon ψ we have

≤ C

(
|x− x′|+

∣∣∣∣∫ bn(t, x, y)µ(dy)−
∫
bn(t, x′, y′)µ′(dy′)

∣∣∣∣)
If we just consider the difference of the integrals and take γ a joint distribution with marginals µ
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and µ′: ∣∣∣∣∫ bn(t, x, y)µ(dy)−
∫
bn(t, x′, y′)µ′(dy′)

∣∣∣∣
=

∣∣∣∣∫ ∫ bn(t, x, y)γ(dy, dy′)−
∫ ∫

bn(t, x′, y′)γ(dy, dy′)

∣∣∣∣
≤
∫ ∫

|bn(t, x, y)− bn(t, x′, y′)| γ(dy, dy′)

MeanV alueThm
=

∫ ∫
|▽bn|L∞ · |(x− x′, y − y′)| γ(dy, dy′)

(3.4)

≤ Cn · || ▽ Φn||L1

∫ ∫
|x− x′|+ |y − y′|γ(dy, dy′)

= C̃n

(
|x− x′|+

∫ ∫
|y − y′|γ(dy, dy′)

)
Jensen

≤ C̃n

(
|x− x′|+

(∫ ∫
|y − y′|2γ(dy, dy′)

) 1
2

)
.

We may now pass to the inf over all possible joint distributions γ, putting everthing together

|Bn(t, x, µ)−Bn(t, x′, µ′)| ≤ C
(
|x− x′|+ C̃n

(
|x− x′|+W (2)(µ, µ′)

))
≤ Čn

(
|x− x′|+W (2)(µ, µ′)

)
(3.5)

similarly for Σn. This proves uniform global Lipschitz’s property; the hypotheses of theorem 2.5

are verified, thus exists the unique strong solution Xn ∈ S2([0, T ],RN) for any n ∈ N.
3) From now on with B we will mean the integral of b, analogously with Σ. We will now obtain

some crucial inequalities: by fixing the solution Xn with its law µXn we can construct the new

coefficients

B̂n(t, x) = Bn(t, x, µXn), Σ̂n(t, x) = Σn(t, x, µXn),

thus Xn is a solution to the standard SDE where W x,n is a sequence of Wiener processesdXn
0,t = ψ0(t,X

n
t , B̂

n(t,Xn
t ))dt

dXn
1,t = ψ1(t,X

n
t , B̂

n(t,Xn
t ))dt+ ϕ1(t,X

n
t , Σ̂

n
1 (t,Xt))dW

x,n
t , Xn

0 = X̌0,

where all the hypotheses for classical results for SDE are verified. In particular since X̌0 ∈ L4 we

may use the lemma 2.1 with q = 2. Since the constant of sublinear growth C of B̂n and Σ̂n is

uniform in n the lemma gives a constant CT that does not depend upon n such that:

E

[
sup

t∈[0,T ]

|Xn
t |4
]
≤ CT · (1 + E

[
|X̌0|4

]
),

sup
s,t∈[0,T ]

|s−t|≤h

E
[
|Xn

t −Xn
s |4
]
≤ CT · h2.

(3.6)
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4) In the proof we will need to split up the process and the law of the process, to do that we now

consider, possibly by enlarging the probability space, W y,n a Wiener process that is independent

from W x,n and a distribution µY̌0
equal in law to µX̌0

and independent, since we proved existence

of strong solutions for the mollified SDE by theorem 2.5 we have Y n = (Y n
0 , Y

n
1 ) strong solution

of the SDE with W y,n:dY n
0,t = ψ0(t, Y

n
t , B

n(t, Y n
t , µY n

t
))dt

dY n
1,t = ψ1(t, Y

n
t , B

n(t, Y n
t , µY n

t
))dt+ ϕ1(t, Y

n
t ,Σ

n
1 (t, Y

n
t , µY n

t
))dW y,n

t , t ∈ [0, T ],

where µY n
0
= µY̌0

;

Since Xn and Y n are strong solutions and W x,n, µX̌0
are independent from W y,n, µY̌0

we have that

the pairs (Xn,W x,n) and (Y n,W y,n) are independent.

We can observe that since in theorem 2.5 we also proved strong uniqueness for the solutions,

we have uniqueness in law for the solutions of our mollified SDE: this means that Xn = Y n in law.

Also since Y n is a solution for an SDE we can use the lemma 2.1 to observe that inequalities (3.6)

are true also for Y n.

5) Now we want to copy the processes Xn, Y n,W x,n,W y,n in a probability space where we have

some type of convergence. To do that we are now going to use Lemma 3.1. Indeed we can observe

that:

• Uniformly in n we have

P

(
sup

t∈[0,T ]

|Xn
t | > λ

)
Markov

≤
E
[
supt∈[0,T ] |Xn

t |4
]

λ4

(3.6)

≤ CT · (1 + E[|X̌0|4])
λ4

,

hence it is trivial that

sup
n

sup
t
P (|Xn

t | > λ) ≤ c

λ4
λ→+∞→ 0. (3.7)

These inequalities extend to Y n, W x,n and W y,n.

• Uniformly in n,t,s, where |t− s| ≤ h, we have

P (|Xn
t −Xn

s | > ϵ)
Markov

≤ E[|Xn
t −Xn

s |4]
ϵ4

(3.6)

≤ CT · h2

ϵ4
. (3.8)

Passing to the sup we may notice that

sup
n

sup
t,s∈[0,T ]

|t−s|≤h

P (|Xn
t −Xn

s | > ϵ) ≤ CT · h2

ϵ4
h→0→ 0. (3.9)

These inequalities too extend to Y n, W x,n and W y,n.
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For this reason we can apply Skorokhod’s Lemma that allows us to define a sequence n′, some prob-

ability space and the random processes X̃n′
t , Ỹ n′

t , W̃ x,n′

t and W̃ y,n′

t ; such that they are equivalent

in law to the respective processes Xn′
t , Y n′

t , W x,n′

t , W y,n′

t and such that limit processes exist

(X̃n′

t , Ỹ
n′

t , W̃ x,n′

t , W̃ y,n′

t )
P→ (X̃∞

t , Ỹ
∞
t , W̃ x,∞

t , W̃ y,∞
t ), n′ → ∞, ∀t ∈ [0, T ]. (3.10)

To simplify the notation we will continue to write n rather than n′. Due to the corollary 3.2 we

also have weak convergence of the processes.

Since (Xn,W x,n) and (Y n,W y,n) are independent we have (Ỹ n, W̃ y,n) indipendent from (X̃n, W̃ x,n)

for any n since they are equal in law. Now, for any finite-dimensional distribution of the joint pro-

cess (X̃n, Ỹ n, W̃ x,n, W̃ y,n) we have γnt1,...,tk = µ(Ỹ n
t1,...,tk

,W̃ y,n
t1,...,tk

)⊗µ(X̃n
t1,...,tk

,W̃x,n
t1,...,tk

), due to convegence

in law we can pass to the limit and obtain γ∞t1,...,tk = µ(Ỹ ∞
t1,...,tk

,W̃ y,∞
t1,...,tk

) ⊗ µ(X̃∞
t1,...,tk

,W̃x,∞
t1,...,tk

), which

implies the indipendence of the limit processes, thus (Ỹ ∞, W̃ y,∞) is indipendent from (X̃∞, W̃ x,∞).

The copied processes are equivalent in law respectively to Xn, W x,n, Y n and W y,n. Since for

the original processes we have the inequalities (3.6), these inequalities extend to X̃n, W̃ x,n, Ỹ n

and W̃ y,n:

E

[
sup

t∈[0,T ]

|X̃n
t |4
]
≤ CT · (1 + E

[
|X̌0|4

]
),

sup
s,t∈[0,T ]

|s−t|≤h

E
[
|X̃n

t − X̃n
s |4
]
≤ CT · h2.

(3.11)

Now, thanks to Kolmogorov’s continuity theorem and the inequalities of (3.11), X̃n, W̃ x,n, Ỹ n and

W̃ y,n are continuous.

Since it is a Wiener process the increments ofW x,n are indipendent with respect to the filtration

σ(Xn
s , Y

n
s ,W

x,n
s , s ≤ t), thus if we construct the filtration σ(X̃n

s , Ỹ
n
s , W̃

x,n
s , s ≤ t) the processes

W̃ x,n, Ỹ n
s and X̃n will be obviously adapted to it, but since they are equal in law to Xn, Y n

and W x,n this means that also W̃ x,n has indipendent increments with respect to the filtration

σ(X̃n
s , Ỹ

n
s , W̃

x,n
s , s ≤ t), this means that it is a Wiener process. We may even pass this property

to the completion of the σ-algebra, that we will call F (n)
t , and prove that W̃ x,n will still be a

Wiener process. Analogously seeing as how Xn and Y n are adapted to σ(Xn
s , Y

n
s ,W

x,n
s , s ≤ t),

this property passes first to X̃n, Ỹ n and then to the completion: therefore X̃n and Ỹ n are adapted

to F (n)
t . This proves the well posedness of the stochastical integrals in X̃n, W̃ x,n, Ỹ n.

Now we want to observe that the copied processes are still solutions to an SDE of type (3.1),

this follows from a standard approximation argument. Let [t]m = ⌊2mt⌋
2m

the dyadic approximation

of t. We have

E

[∣∣∣∣X̃n
t − X̃n

0 −
∫ t

0

ψ(s, X̃n
s , B

n(s, X̃n
s , µỸ n

s
))ds−

∫ t

0

ϕ(s, X̃n
s ,Σ

n(s, X̃n
s , µỸ n

s
))dW̃ x,n

s

∣∣∣∣2
]

≤ Em
1 + Em

2 + Em
3 ,
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where

Em
1 := E

[∣∣∣∣X̃n
t − X̃n

0 −
∫ t

0

ψ([s]m, X̃
n
[s]m , B

n([s]m, X̃
n
[s]m , µỸ n

[s]m
))ds

−
∫ t

0

ϕ([s]m, X̃
n
[s]m ,Σ

n([s]m, X̃
n
[s]m , µỸ n

[s]m
))dW̃ x,n

s

∣∣∣∣2
]
,

Em
2 := E

[∣∣∣∣∫ t

0

ψ(s, X̃n
s , B

n(s, X̃n
s , µỸ n

s
))− ψ([s]m, X̃

n
[s]m , B

n([s]m, X̃
n
[s]m , µỸ n

[s]m
))ds

∣∣∣∣2
]
,

Em
3 := E

[∣∣∣∣∫ t

0

ϕ(s, X̃n
s ,Σ

n(s, X̃n
s , µỸ n

s
))− ϕ([s]m, X̃

n
[s]m ,Σ

n([s]m, X̃
n
[s]m , µỸ n

[s]m
))dW̃ x,n

s

∣∣∣∣2
]
.

By the definition of Lebesgue and Stochastic integrals over step functions we have

Em
1 = E[|X̃n

t − X̃n
0 −

∑
k2−m≤t

ψ(k2−m, X̃n
k2−m , Bn(k2−m, X̃n

k2−m , µỸ n
k2−m

))2−m

−
∑

k2−m≤t

ϕ(k2−m, X̃n
k2−m ,Σn(k2−m, X̃n

k2−m , µỸ n
k2−m

))
(
W̃ x,n

(k+1)2−m − W̃ x,n
k2−m

)
|2]

for the equivalence in law of the copied processes and the originals we get

Em
1 = E[|Xn

t − X̌0 −
∑

k2−m≤t

ψ(2k−m, Xn
2k−m , Bn(k2−m, Xn

k2−m , µY n
k2−m

))2−m

−
∑

k2−m≤t

ϕ(2k−m, Xn
2k−m ,Σn(k2−m, Xn

k2−m , µY n
k2−m

))
(
W x,n

(k+1)2−m −W x,n
k2−m

)
|2]

= E[|Xn
t − X̌0 −

∑
k2−m≤t

ψ(2k−m, Xn
2k−m ,

∫
bn(k2−m, Xn

k2−m , y)µY n
k2−m

(dy))2−m

−
∑

k2−m≤t

ϕ(2k−m, Xn
2k−m ,

∫
σn(k2−m, Xn

k2−m , y)µY n
k2−m

(dy))
(
W x,n

(k+1)2−m −W x,n
k2−m

)
|2].

Thus since Xn = Y n in law, the fact that (Xn,W x,n) solves the n-mollified SDE and by the

continuity and boundedness of bn and σn we have Em
1

m→∞→ 0. We also have

lim
m→∞

Em
2 = lim

m→∞
Em

3 = 0

by the standard approximation of the integrals with bounded and continuous coefficients. This

proves that X̃n
t and

X̃n
0 +

∫ t

0

ψ(s, X̃n
s , B

n(s, X̃n
s , µỸ n

s
))ds+

∫ t

0

ϕ(s, X̃n
s ,Σ

n(s, X̃n
s , µỸ n

s
))dW̃ x,n

s

are modifications, but since they are continuous (by Kolmogorov’s continuity theorem) this provesdX̃n
t = ψ(s, X̃n

s , B
n(s, X̃n

s , µỸ n
s
))ds+ ϕ(s, X̃n

s ,Σ
n(s, X̃n

s , µỸ n
s
))dW̃ x,n

s ,

X̃n
0 = X̌0.

(3.12)
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We just proved that (X̃n, W̃ x,n) is a weak solution, since (X̃n, W̃ x,n) and (Ỹ n, W̃ y,n) form a sim-

metry, the same result is valid by exchanging X with Y and W x with W y.

6) Having (3.12) we hope to be able to pass that to the limit to obtaindX̃∞
0,t = ψ0(t, X̃

∞
t , B(t, X̃∞

t , µỸ ∞
t
))dt

dX̃∞
1,t = ψ1(t, X̃

∞
t , B(t, X̃∞

t , µỸ ∞
t
))dt+ ϕ1(t, X̃

∞
t ,Σ1(t, X̃

∞
t , µỸ ∞

t
))dW̃ x,∞

t , X̃∞
0 = X̌0,

(3.13)

which will be possible to do up to a subsequence n′ obtained by applying Skorokhod’s Lemma.

But first to be able to write the limit SDE (3.13) we need the well posedness of the integrals.

We may use the same arguments used in the previous point to prove the well-posedness of the

limit SDE. First things first by using (3.11) we are able to apply Kolmogorov’s continuity the-

orem to have, up to a modification, continuity of all processes. Then due to corollary 3.2 we

have convergence in law of (X̃n, Ỹ n, W̃ x,n) to (X̃∞, Ỹ ∞, W̃ x,∞). This means that with respect

to the completion of the filtration σ(X̃∞
s , Ỹ

∞
s , W̃ x,∞

s , s ≤ t) the limit processes are adapted and

since the property of indipendence of the increments only depends on the law of the process this

means that the process W̃ x,∞ is a Wiener process with respect to the completion of the filtration

σ(X̃∞
s , Ỹ

∞
s , W̃ x,∞

s , s ≤ t). This proves the well-posedness of the limit SDE.

To conclude the only thing that is left to prove is that for every t ∈ [0, T ]∫ t

0

ψ1(s, X̃
n
s , B

n(s, X̃n
s , Ỹ

n
s ))ds

P→
∫ t

0

ψ1(s, X̃
∞
s , B(s, X̃∞

s , Ỹ
∞
s ))ds (3.14)∫ t

0

ϕ1(s, X̃
n
s ,Σ

n
1 (s, X̃

n
s , Ỹ

n
s ))dW̃

x,n
s

P→
∫ t

0

ϕ1(s, X̃
∞
s ,Σ1(s, X̃

∞
s , Ỹ

∞
s ))dW̃ x,∞

s . (3.15)

7) We will now prove that the inequalities (3.11) can be passed to the limit to X̃∞:

• Let’s fix t, s ∈ [0, T ]. Up to a subsequence we know that X̃n
t → X̃∞

t and X̃n
s → X̃∞

s almost

surely. Due to inequalities (3.11) and Fatou’s lemma we know that

E
[
|X̃∞

t − X̃∞
s |4
]
= E

[
lim inf

n
|X̃n

t − X̃n
s |4
] Fatou

≤ lim inf
n

E
[
|X̃n

t − X̃n
s |4
]
≤ C|t− s|2.

By passing to the sup|t−s|≤h we obtain the wanted inequality

sup
|t−s|≤h

E
[
|X̃∞

t − X̃∞
s |4
]
≤ Ch2.

• Wemay considerDN as the dyadics of theN -th degree, that meansDN =
{

k
2N
T s.t. 0 ≤ k ≤ 2N

}
.

Since DN is finite we may find a subsequence nDN such that X̃
n
DN

t → X̃∞
t almost certainly

for any t ∈ DN . By fixing t ∈ DN we have

|X̃n
DN

t |4 ≤ sup
s∈[0,T ]

|X̃n
DN

s |4.
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We may now pass both sides to the lim infn
DN→∞, since the left side converges we have

|X̃∞
t |4 ≤ lim inf

n
DN→∞

sup
s∈[0,T ]

|X̃n
DN

s |4.

But the right hand side is uniform over the choice of t ∈ DN , this means that

sup
t∈DN

|X̃∞
t |4 ≤ lim inf

n
DN→∞

sup
s∈[0,T ]

|X̃n
DN

s |4.

But then by applying Fatou’s lemma and the expected value we get

E
[
sup
t∈DN

|X̃∞
t |4
]
≤ E

[
lim inf
n
DN→∞

sup
s∈[0,T ]

|X̃n
DN

s |4
]

Fatou

≤ lim inf
n
DN→∞

E

[
sup

s∈[0,T ]

|X̃n
DN

s |4
]

(3.11)

≤ lim inf
n
DN→∞

CT

(
1 + E

[
|X̌0|4

])
= CT

(
1 + E

[
|X̌0|4

])
.

We may now observe that
(
supt∈DN |X̃∞

t |4
)
N∈N

is a monotone increasing function, thus we

are able to apply the monotone convergence theorem to prove that

E
[
sup
t∈D

|X̃∞
t |4
]
= lim

N
E
[
sup
t∈DN

|X̃∞
t |4
]
≤ CT

(
1 + E

[
|X̌0|4

])
,

where D = ∪N∈ND
N . Using the previous point and Kolmogorov’s continuity theorem we

have that up to a modification X̃∞ is a continuous process. Thus since D is dense in [0, T ]

we have supt∈[0,T ] |X̃∞
t |4 = supt∈D |X̃∞

t |4 which proves the wanted inequality.

It’s evident by the construction of Ỹ n that this point also works for Ỹ n and Ỹ ∞.

8) We will now proceed with the construction of a very valuable instrument for our proof: the

ϵ-net. Let ϵ and α be two positive fixed constants. By Ascoli-Arzela’s theorem, for any h ∈ N the

space

Cα
h := {ϕ : C([0, T ],RN−d) | |ϕ(t)| ≤ h, |ϕ(t)− ϕ(s)| ≤ h|t− s|α, t, s ∈ [0, T ]}

is totally bounded. Hence, for any ϵ > 0 there exists an ϵ-net that is a finite collection of functions

ϕ
(h)
0 , . . . , ϕ

(h)
κh ∈ Cα

h such that

Cα
h =

κϵ⋃
j=1

Qϵ,h(ϕ
(h)
j ), Qϵ,h(ϕ

(h)
j ) := {ϕ ∈ Cα

h | sup
t∈[0,T ]

|ϕ(t)− ϕ
(h)
j (t)| < ϵ}. (3.16)

The constant κϵ depends only on α, ϵ, T , the dimension N − d and h ∈ N.
Now assume α < 1

2
: due to (3.11) and Kolmogorov’s continuity theorem we have X̃n

· (ω), Ỹ
n
· (ω) ∈

Cα([0, T ],RN) for any ω ∈ Ω and any n ∈ N∪ {∞}2. Moreover by (3.11) and Markov’s inequality

there exists h ∈ N such that

P
((
X̃n

0,· ∈ Cα
h

)
∩
(
Ỹ n
0,· ∈ Cα

h

))
≥ 1− ϵ

2
, n ∈ N ∪ {∞}.

2This works up to infinity by the previous point.
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With h that depends on ϵ but not n. Thus we have

P (Bn,ϵ) = P

(
κϵ⋃

j,k=0

(
X̃n

0,· ∈ Qϵ,h(ϕ
(h)
k )
)
∩
(
Ỹ n
0,· ∈ Qϵ,h(ϕ

(h)
j )
))

≥ 1− ϵ

2
, (3.17)

notice that κϵ depends on ϵ, α, T and the dimension N − d but not on n ∈ N∪ {∞}. This means

that up to a small set of trajectories the trajectories are close to a finite subset of our ϵ-net that

from now on we will call Nκϵ,ϵ.

We may observe that

P

(
sup

t∈[0,T ]

|X̃n
t | ∨ |Ỹ n

t | > M

)
= P

(
sup

t∈[0,T ]

|X̃n
t | ∨ sup

t∈[0,T ]

|Ỹ n
t | > M

)

Markov

≤
E
[(

supt∈[0,T ] |X̃n
t | ∨ supt∈[0,T ] |Ỹ n

t |
)4]

M4
≤

E
[
supt∈[0,T ] |X̃n

t |4
]

M4
+

E
[
supt∈[0,T ] |Ỹ n

t |4
]

M4

(3.11)

≤ 2CT (1 + E[X̌4
0 ])

M4

M→∞→ 0. (3.18)

Thus for any ϵ > 0, exists a Mϵ > 0 uniform in n ∈ N such that P
(
supt∈[0,T ] |X̃n

t | ∨ |Ỹ n
t | > Mϵ

)
≤

ϵ
2
, consequently P

(
supt∈[0,T ] |X̃n

t | ∨ |Ỹ n
t | ≤Mϵ

)
≥ 1− ϵ

2
.

Finally, we introduce the events

Qn,ϵ =

(
sup

t∈[0,T ]

|X̃n
t | ∨ |Ỹ n

t | ≤Mϵ

)
Dn,ϵ = Qn,ϵ ∩ Bn,ϵ, (3.19)

Dk,j
n,ϵ =

(
X̃n

0,· ∈ Qϵ,h(ϕ
(h)
k )
)
∩
(
Ỹ n
0,· ∈ Qϵ,h(ϕ

(h)
j )
)
∩Dn,ϵ, 0 ≤ k, j ≤ κϵ, (3.20)

with Qϵ,h(ϕ) as in (3.16). Then, by (3.16), (3.17) and the fact that since the collection of events

(Dk,j
n,ϵ)k,j is finite we may change a bit the definition to take them pairwise disjoint

Dn,ϵ = ·
⋃

0≤k,j≤κϵ

Dk,j
n,ϵ, n ∈ N ∪ {∞}. (3.21)

We also observe that P(Dn,ϵ) ≥ 1− ϵ.

Lastly, before diving in the proof, given ϕk, ϕj ∈ Nκϵ,ϵ, we define

gn,n0,k,j(s, x1, y1) = bn1 (s, ϕ
k
s , x1, ϕ

j
s, y1)− bn0

1 (s, ϕk
s , x1, ϕ

j
s, y1)

gn,k,j(s, x1, y1) = bn1 (s, ϕ
k
s , x1, ϕ

j
s, y1)− b1(s, ϕ

k
s , x1, ϕ

j
s, y1).

(3.22)
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Let’s continue from (3.14), let n0 ∈ N which will be later fixed:

P

(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n(s, X̃n

s , µỸ n
s
))− ψ(s, X̃∞

s , B(s, X̃∞
s , µỸ ∞

s
))
)
ds

∣∣∣∣ > c

)
≤

I1 ≤ P

(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n(s, X̃n

s , µỸ n
s
))− ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
)
)
)ds

∣∣∣∣ > c

3

)
I2 + P

(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))− ψ(s, X̃∞

s , B
n0(s, X̃∞

s , µỸ ∞
s
))
)
ds

∣∣∣∣ > c

3

)
I3 + P

(∣∣∣∣∫ t

0

(
ψ(s, X̃∞

s , B
n0(s, X̃∞

s , µỸ ∞
s
))− ψ(s, X̃∞

s , B(s, X̃∞
s , µỸ ∞

s
))
)
ds

∣∣∣∣ > c

3

)
,

What we want to do now is ensure that the terms I1,I2 and I3 go to 0 when n goes to infinity as

long as n0 is big enough.

9) Consider now the term I1:

I1 = P

(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n(s, X̃n

s , µỸ n
s
))− ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))
)
ds

∣∣∣∣ > c

3

)
.

Given P ((Dn,ϵ)
c) ≤ ϵ we have

I1 = P

(
(Dn,ϵ)

c ∩
(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n(s, X̃n

s , µỸ n
s
))− ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))
)
ds

∣∣∣∣ > c

3

))
+ P

(
Dn,ϵ ∩

(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n(s, X̃n

s , µỸ n
s
))− ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))
)
ds

∣∣∣∣ > c

3

))
≤ ϵ+ P

(∣∣∣∣∫ t

0

1Dn,ϵ

(
ψ(s, X̃n

s , B
n(s, X̃n

s , µỸ n
s
))− ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))
)
ds

∣∣∣∣ > c

3

)
Markov

≤ ϵ+ CE
[∣∣∣∣∫ t

0

1Dn,ϵ

(
ψ(s, X̃n

s , B
n(s, X̃n

s , µỸ n
s
))− ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))
)
ds

∣∣∣∣]
≤ ϵ+ CE

[∫ t

0

1Dn,ϵ

∣∣∣Bn(s, X̃n
s , µỸ n

s
)−Bn0(s, X̃n

s , µỸ n
s
)
∣∣∣ ds] ,

the last inequality is due to the lipschitzianity of ψ.

Thus

I1 ≤ ϵ+ CE
[∫ t

0

1Dn,ϵ

∣∣∣Bn(s, X̃n
s , µỸ n

s
)−Bn0(s, X̃n

s , µỸ n
s
)
∣∣∣ ds]

≤ ϵ+ CE
[∫ t

0

1Dn,ϵE
[∣∣∣bn(s, x, Ỹ n

s )− bn0(s, x, Ỹ n
s )
∣∣∣]

|x=X̃n
s

ds

]
≤ ϵ+ C

∫ t

0

E
[
E
[∣∣∣bn(s, x, Ỹ n

s )− bn0(s, x, Ỹ n
s )
∣∣∣]

|x=X̃n
s

]
ds

by applying freezing lemma which may be applied since X̃n and Ỹ n are independent we get

≤ ϵ+ CE
[∫ t

0

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn0(s, X̃n

s , Ỹ
n
s )
∣∣∣ ds]

≤ ϵ+ CE
[(
1Dn,ϵ + 1Dn,ϵ

c

) ∫ t

0

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn0(s, X̃n

s , Ỹ
n
s )
∣∣∣ ds] .
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We proved that b and bn are of sublinear growth in x and y uniformly in t with constant of sublinear

growth uniform in n. Therefore since P (Dn,ϵ
c) ≤ ϵ we get

E
[
1Dn,ϵ

c

∫ t

0

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn0(s, X̃n

s , Ỹ
n
s )
∣∣∣ ds]

≤
∫ t

0

E
[
1Dn,ϵ

cC
(
1 + |X̃n

s |+ |Ỹ n
s |
)]

ds

Holder

≤ C

∫ t

0

P (Dn,ϵ
c)ds+ C

∫ t

0

P (Dn,ϵ
c)

1
2E
[
|X̃n

s |2
] 1

2
ds+ C

∫ t

0

P (Dn,ϵ
c)

1
2E
[
|Ỹ n

s |2
] 1

2
ds

by applying Jensen’s inequality and (3.11) we get

≤ C

∫ t

0

P (Dn,ϵ
c)ds+ C̃

∫ t

0

P (Dn,ϵ
c)

1
2ds

≤ C̄t · (ϵ+ ϵ
1
2 ) ≤ C̄T · (ϵ+ ϵ

1
2 ). (3.23)

We now need to examine the other term; we have (3.21). Consequently

E
[
1Dn,ϵ

∫ t

0

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn0(s, X̃n

s , Ỹ
n
s )
∣∣∣ ds]

=
κϵ∑

k,j=0

E
[
1Dk,j

n,ϵ

∫ t

0

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn0(s, X̃n

s , Ỹ
n
s )
∣∣∣ ds] , (3.24)

Where κϵ is the cardinality of the ϵ-net. Now we will bound all the terms in this way:

E
[
1Dk,j

n,ϵ

∫ t

0

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn0(s, X̃n

s , Ỹ
n
s )
∣∣∣ ds] ≤

≤ E
[
1Dk,j

n,ϵ

∫ t

0

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn(s, ϕk

s , X̃
n
1,s, ϕ

j
s, Ỹ

n
1,s)
∣∣∣ ds]

+ E
[
1Dk,j

n,ϵ

∫ t

0

∣∣∣bn0(s, X̃n
s , Ỹ

n
s )− bn0(s, ϕk

s , X̃
n
1,s, ϕ

j
s, Ỹ

n
1,s)
∣∣∣ ds]

+ E
[
1Dk,j

n,ϵ

∫ t

0

∣∣∣bn(s, ϕk
s , X̃

n
1,s, ϕ

j
s, Ỹ

n
1,s)− bn0(s, ϕk

s , X̃
n
1,s, ϕ

j
s, Ỹ

n
1,s)
∣∣∣ ds] .

But we proved that bn has a modulus of continuity ρ that is uniform in n; if we recall the definition

of Dk,j
n,ϵ since in the expected value there is the term 1Dk,j

n,ϵ
we have

1Dk,j
n,ϵ

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn(s, ϕk

s , X̃
n
1,s, ϕ

j
s, Ỹ

n
1,s)
∣∣∣ ≤ ρ(ϵ)1Dk,j

n,ϵ
.

Thus we can bound the first two terms

E
[
1Dk,j

n,ϵ

∫ t

0

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn0(s, X̃n

s , Ỹ
n
s )
∣∣∣ ds] ≤

≤ C · ρ(ϵ)P
(
Dk,j

n,ϵ

)
+ E

[
1Dk,j

n,ϵ

∫ t

0

∣∣∣bn(s, ϕk
s , X̃

n
1,s, ϕ

j
s, Ỹ

n
1,s)− bn0(s, ϕk

s , X̃
n
1,s, ϕ

j
s, Ỹ

n
1,s)
∣∣∣ ds]

≤ C · ρ(ϵ)P
(
Dk,j

n,ϵ

)
+ E

[
1Dk,j

n,ϵ

∫ t

0

∣∣∣gn,n0,k,j(s, X̃n
1,s, Ỹ

n
1,s)
∣∣∣ ds]

≤ C · ρ(ϵ)P
(
Dk,j

n,ϵ

)
+ E

[
1Dk,j

n,ϵ

∫ t

0

∣∣∣gn,k,j(s, X̃n
1,s, Ỹ

n
1,s)
∣∣∣+ ∣∣∣gn0,k,j(s, X̃n

1,s, Ỹ
n
1,s)
∣∣∣ ds] .
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We may notice that over Dk,j
n,ϵ we have that supt∈[0,T ]|X̃n

t | ∨ |Ỹ n
t | ≤Mϵ. Therefore since

1Dk,j
n,ϵ
1[0,T ]×BMϵ×BMϵ

(s, X̃n
1,s, Ỹ

n
1,s) = 1Dk,j

n,ϵ

we have

≤ C · ρ(ϵ)P
(
Dk,j

n,ϵ

)
+E

[
1Dk,j

n,ϵ

∫ ∞

0

∣∣∣gn,k,j(s, X̃n
1,s, Ỹ

n
1,s)
∣∣∣ · 1[0,T ]×BMϵ×BMϵ

(s, X̃n
1,s, Ỹ

n
1,s)ds

]
+E

[
1Dk,j

n,ϵ

∫ ∞

0

∣∣∣gn0,k,j(s, X̃n
1,s, Ỹ

n
1,s)
∣∣∣ · 1[0,T ]×BMϵ×BMϵ

(s, X̃n
1,s, Ỹ

n
1,s)ds

]
.

Then we can use Krylov’s Bounds from 2.2 to bound from above: indeed all the hypotheses are

verified3 by the fact that in Dk,j
n,ϵ both X̃n

1,· and Ỹ n
1,· are bounded. Here we are able to see why

we put all the effort of creating the ϵ-net: if we didn’t the process X̃n
· would have a degenerate

diffusion coefficient and we could not use this result. Thus

E
[
1Dk,j

n,ϵ

∫ t

0

∣∣∣bn(s, X̃n
s , Ỹ

n
s )− bn0(s, X̃n

s , Ỹ
n
s )
∣∣∣ ds] ≤

≤ C · ρ(ϵ)P
(
Dk,j

n,ϵ

)
+NMϵ

(∫ T

0

∫
|x1|≤Mϵ

∫
|y1|≤Mϵ

|gn,k,j|2d+1dx1dy1ds

) 1
2d+1

+NMϵ

(∫ T

0

∫
|x1|≤Mϵ

∫
|y1|≤Mϵ

|gn0,k,j|2d+1dx1dy1ds

) 1
2d+1

≤ C · ρ(ϵ)P
(
Dk,j

n,ϵ

)
+NMϵ||gn,k,j||L2d+1([0,T ]×BMϵ×BMϵ )

+NMϵ||gn0,k,j||L2d+1([0,T ]×BMϵ×BMϵ )
.

Where NMϵ is independent from n. We can observe that since we fixed previously ϵ we also fixed

Mϵ, this way if n, n0 are big enough in BMϵ we will have that bn coincides with the mollifier of b

of radius 1/n. Thanks to the properties of mollifiers there is convergence over L2d+1
loc of bn to b and

in particular of bn to b; however [0, T ]× BMϵ × BMϵ is compact and there b is bounded, therefore

the L2d+1 norm of g converges to 0 by the definition of g (3.22).

Now putting everything together we have

I1 ≤ ϵ+ C(ϵ+ ϵ
1
2 ) +

κϵ∑
k,j=0

Cρ(ϵ)P
(
Dk,j

n,ϵ

)
κϵ∑

k,j=0

NMϵ||gn,k,j||L2d+1([0,T ]×BMϵ×BMϵ )
+NMϵ||gn0,k,j||L2d+1([0,T ]×BMϵ×BMϵ )

,

since the sets Dk,j
n,ϵ are pairwise disjoint and the convergence of the norms of gn to 0 we have

lim
n,n0

I1 ≤ ϵ+ C(ϵ+ ϵ
1
2 ) + Cρ(ϵ).

This way we just proved that I1
n,n0→∞→ 0 due to the arbitrarity of the choice of ϵ.

3indeed by (3.12) we can construct a standard SDE where the pair X̃n
1,·, Ỹ

n
1,· is a strong solution and thus a

strong Markov process.
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10) We may proceed with I2:

I2 = P

(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))− ψ(s, X̃∞

s , B
n0(s, X̃∞

s , µỸ ∞
s
))
)
ds

∣∣∣∣ > c

3

)
≤ P

(
Dn,ϵ ∩D∞,ϵ ∩

(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))− ψ(s, X̃∞

s , B
n0(s, X̃∞

s , µỸ ∞
s
))
)
ds

∣∣∣∣ > c

3

))
+ P

(
(Dn,ϵ ∩D∞,ϵ)

c ∩
(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))− ψ(s, X̃∞

s , B
n0(s, X̃∞

s , µỸ ∞
s
))
)
ds

∣∣∣∣ > c

3

))
≤ 2ϵ+ P

(
1Dn,ϵ∩D∞,ϵ

∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))− ψ(s, X̃∞

s , B
n0(s, X̃∞

s , µỸ ∞
s
))
)
ds

∣∣∣∣ > c

3

)
We may now apply Markov’s inequality,

≤ 2ϵ+ CE
[
1Dn,ϵ∩D∞,ϵ

∫ t

0

∣∣∣ψ(s, X̃n
s , B

n0(s, X̃n
s , µỸ n

s
))− ψ(s, X̃∞

s , B
n0(s, X̃∞

s , µỸ ∞
s
))
∣∣∣ ds] .

Due to the lipschitzianity of ψ we have

≤ 2ϵ+ CE
[
1Dn,ϵ∩D∞,ϵ

∫ t

0

(
|X̃n

s − X̃∞
s |+

∣∣∣Bn0(s, X̃n
s , µỸ n

s
)−Bn0(s, X̃∞

s , µỸ ∞
s
)
∣∣∣) ds] .

Since over the set Dn,ϵ∩D∞,ϵ the processes are bounded the function 1Dn,ϵ∩D∞,ϵ|X̃∞
s −·| is bounded

and continuous, thus by weak convergence for the expected value and Lebesgue’s dominated con-

vergence for the integral we have

E
[
1Dn,ϵ∩D∞,ϵ

∫ t

0

∣∣∣X̃n
s − X̃∞

s

∣∣∣ ds] n→∞→ 0.

To summarise

I2 = P

(∣∣∣∣∫ t

0

(
ψ(s, X̃n

s , B
n0(s, X̃n

s , µỸ n
s
))− ψ(s, X̃∞

s , B
n0(s, X̃∞

s , µỸ ∞
s
))
)
ds

∣∣∣∣ > c

3

)
≤ 2ϵ+ o(1) + CE

[∫ t

0

∣∣∣∣∫ bn0(s, X̃n
s , y)µỸ n

s
(dy)−

∫
bn0(s, X̃∞

s , ȳ)µỸ ∞
s
(dȳ)

∣∣∣∣ ds]
Fubini

≤ 2ϵ+ o(1) + C

∫ t

0

E
[∣∣∣∣∫ bn0(s, X̃n

s , y)µỸ n
s
(dy)−

∫
bn0(s, X̃∞

s , ȳ)µỸ ∞
s
(dȳ)

∣∣∣∣] ds.
Let’s concentrate on the last term: we sum and subtract in the integral

∫
bn0(s, X̃∞

s , y)µỸ n
s
(dy),

fixed δ > 0 we have

≤ C

∫ t

0

E
[∣∣∣∣∫ bn0(s, X̃∞

s , y)µỸ n
s
(dy)−

∫
bn0(s, X̃∞

s , ȳ)µỸ ∞
s
(dȳ)

∣∣∣∣] ds
+ C

∫ t

0

E
[
1|X̃n

s −X̃∞
s |≤δ

∫ ∣∣∣bn0(s, X̃n
s , y)− bn0(s, X̃∞

s , y)
∣∣∣µỸ n

s
(dy)

]
ds

+ C

∫ t

0

E
[
1|X̃n

s −X̃∞
s |>δ

∫ ∣∣∣bn0(s, X̃n
s , y)− bn0(s, X̃∞

s , y)
∣∣∣µỸ n

s
(dy)

]
ds

since bn0 is bounded and since Ỹ n converges weakly to Ỹ ∞ the first integral converges to 0 as

n goes to infinity by dominated and weak convergence. Since bn0 is mollified it is also Lipschitz
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with constant Ln0 which makes us able to control the second integral; in the third integral the

boundedness of bn0 can make us write:

I2 ≤ 2ϵ+ o(1) + 2TLn0δ + 2Cn0

∫ t

0

P
(
|X̃n

s − X̃∞
s | > δ

)
ds,

finally since we know that ∀t ∈ [0, T ] we have convergence in probability of X̃n
t to X̃∞

t this

means that the probability inside the integral goes to 0 as n goes to infinity. Thus by Lebesgue’s

dominated convergence theorem we have

I2 ≤ 2ϵ+ o(1) + 2TLn0δ + 2C

∫ t

0

P
(
|X̃n

s − X̃∞
s | > δ

)
ds

n→∞→ 2ϵ+ 2TLn0δ.

This estimate is uniform over the choice of δ and then4 of ϵ, thus limn→∞ I2 = 0.

11) We still need to prove that I3 goes to 0. The proof will be very similar to the one for I1

with a bit of extra care. Since X̃∞
s , Ỹ

∞
s are independent we can work as in the previous point to

obtain

I3 = P

(∣∣∣∣∫ t

0

(
ψ(s, X̃∞

s , B
n0(s, X̃∞

s , µỸ ∞
s
))− ψ(s, X̃∞

s , B(s, X̃∞
s , µỸ ∞

s
))
)
ds

∣∣∣∣ > c

3

)
≤ ϵ+ CE

[∫ t

0

∣∣∣bn0(s, X̃∞
s , Ỹ

∞
s )− b(s, X̃∞

s , Ỹ
∞
s )
∣∣∣ ds]

≤ ϵ+ CE
[∫ t

0

(
1D∞,ϵ

c + 1D∞,ϵ

) ∣∣∣bn0(s, X̃∞
s , Ỹ

∞
s )− b(s, X̃∞

s , Ỹ
∞
s )
∣∣∣ ds] .

Let’s concentrate on the last term. Analogously to I1 we may follow the same reasoning as (3.23)

since we proved in point (7) that (3.11) extends to the limiting processes. Thus

CE
[∫ t

0

1D∞,ϵ
c

∣∣∣bn0(s, X̃∞
s , Ỹ

∞
s )− b(s, X̃∞

s , Ỹ
∞
s )
∣∣∣ ds] ≤ C̄T · (ϵ+ ϵ

1
2 ).

We may go on by following what was done in (3.24):

I3 ≤ C(ϵ+ ϵ
1
2 ) +

κϵ∑
k,j=0

CE
[∫ t

0

1Dk,j
∞,ϵ

∣∣∣bn0(s, X̃∞
s , Ỹ

∞
s )− b(s, X̃∞

s , Ỹ
∞
s )
∣∣∣ ds] .

Split the remaining term like this:

E
[∫ t

0

1Dk,j
∞,ϵ

∣∣∣bn0(s, X̃∞
s , Ỹ

∞
s )− b(s, X̃∞

s , Ỹ
∞
s )
∣∣∣ ds]

≤ E
[∫ t

0

1Dk,j
∞,ϵ

∣∣∣bn0(s, X̃∞
s , Ỹ

∞
s )− bn0(s, ϕk

s , X̃
∞
1,s, ϕ

j
s, Ỹ

∞
1,s)
∣∣∣ ds]

+E
[∫ t

0

1Dk,j
∞,ϵ

∣∣∣b(s, X̃∞
s , Ỹ

∞
s )− b(s, ϕk

sX̃
∞
1,s, ϕ

j
s, Ỹ

∞
1,s)
∣∣∣ ds]

+E
[∫ t

0

1Dk,j
∞,ϵ

∣∣∣bn0(s, ϕk
s , X̃

∞
1,s, ϕ

j
s, Ỹ

∞
1,s)− b(s, ϕk

s , X̃
∞
1,s, ϕ

j
s, Ỹ

∞
1,s)
∣∣∣ ds] .

4The order is important since Ln0 depends on n0 which must be bigger then Mϵ which depends upon ϵ.



28 3. Degenerate MKV SDEs

We previously noticed that in Dk,j
∞,ϵ we have |X̃∞

0,· − ϕk| < ϵ and |Ỹ ∞
0,· − ϕj| < ϵ; moreover b and bn0

have modulus of continuity ρ:

1Dk,j
∞,ϵ

|bn0(s, X̃∞
s , Ỹ

∞
s )− bn0(s, ϕk

s , Ỹ
∞
s , ϕj

s, η̃
∞
s )| ≤ ρ(ϵ)1Dk,j

∞,ϵ

1Dk,j
∞,ϵ

|b(s, X̃∞
s , Ỹ

∞
s )− b(s, ϕk

s Ỹ
∞
s , ϕj

s, η̃
∞
s )| ≤ ρ(ϵ)1Dk,j

∞,ϵ

Thus we can easily bound the first two terms as in point (9) by using this inequality and the

disjointness of the sets Dk,j
∞,ϵ. We still need to restrain the third term where we would like to use

Krylov’s bounds, however we cannot currently do that since a priori X̃∞
1,· and Ỹ

∞
1,· are not solutions

of SDEs. Shortly we will extend the estimates for X̃n
1,· and Ỹ n

1,· to the limit for n that goes to

infinity. Thanks to Krylov’s Bounds that we used to ensure the limit to 0 of I1 we know that

E
[∫ T

0

∣∣∣g̃n0,k,j(s, X̃n
1,s, Ỹ

n
1,s)
∣∣∣ ds] ≤ NMϵ||g̃n0,k,j||L2d+1([0,T ]×BMϵ×BMϵ )

, (3.25)

We want to prove the same bounds for the limit process, namely for any g ∈ bB non-negative,

vanishing outside of [0, T ]×BMϵ ×BMϵ

E
[∫ T

0

∣∣∣g(s, X̃∞
1,s, Ỹ

∞
1,s)
∣∣∣ ds] ≤ NMϵ||g||L2d+1([0,T ]×BMϵ×BMϵ )

. (3.26)

Firstly we may notice that the bound is pretty direct for continuous functions, indeed if g ∈ bC

by weak convergence of the processes

E
[∫ T

0

∣∣∣g(s, X̃∞
1,s, Ỹ

∞
1,s)
∣∣∣ ds] = lim

n
E
[∫ T

0

∣∣∣g(s, X̃n
1,s, Ỹ

n
1,s)
∣∣∣ ds]

≤ lim
n
NMϵ||g||L2d+1([0,T ]×BMϵ×BMϵ )

= NMϵ||g||L2d+1([0,T ]×BMϵ×BMϵ )
,

since NMϵ is independent of n. Then if g = 1K where K is a compact set there exists a mono-

tonically decreasing sequence of bounded and continuous functions fm ↘ g. This convergence is

pointwise everywhere, thus by Fatou’s Lemma

E
[∫ T

0

∣∣∣g(s, X̃∞
1,s, Ỹ

∞
1,s)
∣∣∣ ds] = E

[∫ T

0

∣∣∣lim
m
fm(s, X̃

∞
1,s, Ỹ

∞
1,s)
∣∣∣ ds]

Fatou

≤ lim inf
m

E
[∫ T

0

∣∣∣fm(s, X̃∞
1,s, Ỹ

∞
1,s)
∣∣∣ ds]

≤ lim inf
m

NMϵ||fm||L2d+1([0,T ]×BMϵ×BMϵ )
≤ NMϵ||g||L2d+1([0,T ]×BMϵ×BMϵ )

.

Now we must notice that if g = 1D where D is a measurable set in [0, T ]×BMϵ ×BMϵ actually

E
[∫ T

0

∣∣∣1D(s, X̃
∞
1,s, Ỹ

∞
1,s)
∣∣∣ ds] = ν(D)

where

ν = L[0,T ] ⊗ µX̃∞
1,s

⊗ µỸ ∞
1,s
,
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since ν is regular (the product of regular measures is regular and both Lebegue and probability

measures are regular) we have that, given a sequence of increasing compact sets Ki such that

Ki ↗ D

ν(D) = lim
i
ν(Ki).

Thus

E
[∫ T

0

∣∣∣1D(s, X̃
∞
1,s, Ỹ

∞
1,s)
∣∣∣ ds] = ν(D) = lim

i
ν(Ki)

≤ lim
i
NMϵ ||1Ki

||L2d+1([0,T ]×BMϵ×BMϵ )
= NMϵ||1D||L2d+1([0,T ]×BMϵ×BMϵ )

.

Then by triangle inequality the result follows for any simple function g =
∑N

i=1 ci1Di
where

Di disjoint measurable sets and ci > 0. Lastly any g ∈ bB non-negative, vanishing outside of

[0, T ]×BMϵ ×BMϵ may be seen as the pointwise everywhere limit of a sequence of simple functions

as before which concludes the proof by monotone convergence

E
[∫ T

0

∣∣∣g(s, X̃∞
1,s, Ỹ

∞
1,s)
∣∣∣ ds] = lim

n
E

[∫ T

0

∣∣∣∣∣
(

Nn∑
i=1

cn,i1Dn,i

)
(s, X̃∞

1,s, Ỹ
∞
1,s)

∣∣∣∣∣ ds
]

≤ lim
n
NMϵ ||

Nn∑
i=1

cn,i1Dn,i
||L2d+1([0,T ]×BMϵ×BMϵ )

≤ NMϵ||g||L2d+1([0,T ]×BMϵ×BMϵ )
.

In this way we have extended Krylov’s Bounds up to the limit.

To conclude we notice that bn0 converges L2d+1
loc to b due to mollifiers’ properties. Therefore

||g̃||L2d+1([0,T ]×BMϵ×BMϵ )
→ 0 which gives us (3.14).

12) Now we just need to ensure (3.15) to close the proof. Effectively we will do the same things

done to the Lebesgue integral; Ito’s isometry and Markov’s inequality will aid us to reduce the gap

between the two tipes of integrals. Let’s start with no further hesitation. We want to prove that

for any c > 0,

lim
n→∞

P

(∣∣∣∣∫ t

0

ϕ1(s, X̃
n
s ,Σ

n
1 (s, X̃

n
s , Ỹ

n
s ))dW̃

x,n
s −

∫ t

0

ϕ1(s, X̃
∞
s ,Σ1(s, X̃

∞
s , Ỹ

∞
s ))dW̃ x,∞

s

∣∣∣∣ > c

)
= 0.

The main problem is pretty clear: we need to work with stochastic integrals with different Wiener

processes. We start by splitting the problem

P

(∣∣∣∣∫ t

0

ϕ1(s, X̃
n
s ,Σ

n
1 (s, X̃

n
s , µỸ n

s
))dW̃ x,n

s −
∫ t

0

ϕ1(s, X̃
∞
s ,Σ1(s, X̃

∞
s , µỸ ∞

s
))dW̃ x,∞

s

∣∣∣∣ > c

)
≤

≤ P

(∣∣∣∣∫ t

0

ϕ1(s, X̃
n
s ,Σ

n
1 (s, X̃

n
s , µỸ n

s
))dW̃ x,n

s −
∫ t

0

ϕ1(s, X̃
n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))dW̃ x,n

s

∣∣∣∣ > c

3

)
+ P

(∣∣∣∣∫ t

0

ϕ1(s, X̃
n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))dW̃ x,n

s −
∫ t

0

ϕ1(s, X̃
∞
s ,Σ

n0
1 (s, X̃∞

s , µỸ ∞
s
))dW̃ x,∞

s

∣∣∣∣ > c

3

)
+ P

(∣∣∣∣∫ t

0

ϕ1(s, X̃
∞
s ,Σ

n0
1 (s, X̃∞

s , µỸ ∞
s
))dW̃ x,∞

s −
∫ t

0

ϕ1(s, X̃
∞
s ,Σ1(s, X̃

∞
s , µỸ ∞

s
))dW̃ x,∞

s

∣∣∣∣ > c

3

)
,
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where n0 is an integer that we will later fix. By applying Markov’s inequality

Markov

≤ CE

[∣∣∣∣∫ t

0

(
ϕ1(s, X̃

n
s ,Σ

n
1 (s, X̃

n
s , µỸ n

s
))− ϕ1(s, X̃

n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))
)
dW̃ x,n

s

∣∣∣∣2
]

+ P

(∣∣∣∣∫ t

0

ϕ1(s, X̃
n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))dW̃ x,n

s −
∫ t

0

ϕ1(s, X̃
∞
s ,Σ

n0
1 (s, X̃∞

s , µỸ ∞
s
))dW̃ x,∞

s

∣∣∣∣ > c

3

)
+ CE

[∣∣∣∣∫ t

0

(
ϕ1(s, X̃

∞
s ,Σ

n0
1 (s, X̃∞

s , µỸ ∞
s
))− ϕ1(s, X̃

∞
s ,Σ1(s, X̃

∞
s , µỸ ∞

s
))
)
dW̃ x,∞

s

∣∣∣∣2
]

Ito′s
Isometry

≤ CE
[∫ t

0

∣∣∣ϕ1(s, X̃
n
s ,Σ

n
1 (s, X̃

n
s , µỸ n

s
))− ϕ1(s, X̃

n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))
∣∣∣2 ds]

+ P

(∣∣∣∣∫ t

0

ϕ1(s, X̃
n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))dW̃ x,n

s −
∫ t

0

ϕ1(s, X̃
∞
s ,Σ

n0
1 (s, X̃∞

s , µỸ ∞
s
))dW̃ x,∞

s

∣∣∣∣ > c

3

)
+ CE

[∫ t

0

∣∣∣ϕ1(s, X̃
∞
s ,Σ

n0
1 (s, X̃∞

s , µỸ ∞
s
))− ϕ1(s, X̃

∞
s ,Σ1(s, X̃

∞
s , µỸ ∞

s
))
∣∣∣2 ds] =: J1 + J2 + J3.

We can deal with J1 and J3 just like I1 and I3
5. The problem arises with J2 where the stochastic

integrals have different Wiener processes. To tackle J2 firstly we split it up in easier chunks:

P

(∣∣∣∣∫ t

0

ϕ1(s, X̃
n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))dW̃ x,n

s −
∫ t

0

ϕ1(s, X̃
∞
s ,Σ

n0
1 (s, X̃∞

s , µỸ ∞
s
))dW̃ x,∞

s

∣∣∣∣ > c

3

)
≤

≤ P

(∣∣∣∣∫ t

0

ϕ1(s,Ψm(X̃
n
s ),Σ

n0
1 (s, X̃n

s , µỸ n
s
))dW̃ x,n

s −
∫ t

0

ϕ1(s, X̃
n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))dW̃ x,n

s

∣∣∣∣ > c

3

)

+ P


∣∣∣∣∣∣∣
∫ t

0

ϕ1(s,Ψm(X̃
n
s ),Σ

n0
1 (s, X̃n

s , µỸ n
s
))︸ ︷︷ ︸

fn(s,ω)

dW̃ x,n
s −

∫ t

0

ϕ1(s,Ψm(X̃
∞
s ),Σn0

1 (s, X̃∞
s , µỸ ∞

s
))︸ ︷︷ ︸

f∞(s,ω)

dW̃ x,∞
s

∣∣∣∣∣∣∣ >
c

3


+ P

(∣∣∣∣∫ t

0

ϕ1(s,Ψm(X̃
∞
s ),Σn0

1 (s, X̃∞
s , µỸ ∞

s
))dW̃ x,∞

s −
∫ t

0

ϕ1(s, X̃
∞
s ,Σ

n0
1 (s, X̃∞

s , µỸ ∞
s
))dW̃ x,∞

s

∣∣∣∣ > c

3

)
Ito′s

Isometry

≤ CE
[∫ t

0

∣∣∣ϕ1(s,Ψm(X̃
n
s ),Σ

n0
1 (s, X̃n

s , µỸ n
s
))− ϕ1(s, X̃

n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))
∣∣∣2 ds]

+ P

(∣∣∣∣∫ t

0

fn(s, ω)dW̃ x,n
s −

∫ t

0

f∞(s, ω)dW̃ x,∞
s

∣∣∣∣ > c

3

)
+ CE

[∫ t

0

∣∣∣ϕ1(s,Ψm(X̃
∞
s ),Σn0

1 (s, X̃∞
s , µỸ ∞

s
))− ϕ1(s, X̃

∞
s ,Σ

n0
1 (s, X̃∞

s , µỸ ∞
s
))
∣∣∣2 ds]

=: J2,1 + J2,2 + J2,3.

where Ψm is the function defined in (3.3). It’s easy to control J2,1 and J2,3 via techniques similar

5The interesting thing in the calculations is that at this point we can see why we assume the L4 summability

of the law and not just L2, since at this point we already have a square in the integral during the calculations we

need just a bit more summability, L2+δ would be enough, but for semplicity we decided to write L4.
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to the ones used of I1, since they are bounded the same way we will proceed only with J2,1:

J2,1 = E
[∫ t

0

∣∣∣ϕ1(s,Ψm(X̃
n
s ),Σ

n0
1 (s, X̃n

s , µỸ n
s
))− ϕ1(s, X̃

n
s ,Σ

n0
1 (s, X̃n

s , µỸ n
s
))
∣∣∣2 ds]

Lipschitz

≤ E
[∫ t

0

∣∣∣C|Ψm(X̃
n
s )− X̃n

s |
∣∣∣2 ds]

≤ C

∫ t

0

E
[
1Dn,ϵ|Ψm(X̃

n
s )− X̃n

s |2
]
ds+ C

∫ t

0

E
[
1(Dn,ϵ)c|Ψm(X̃

n
s )− X̃n

s |2
]
ds.

We may observe that fixed ϵ > 0 we get Mϵ > 0 such that P ((Dn,ϵ)
c) < ϵ. Now if we fix m ∈ N

bigger than Mϵ the function Ψm will just be the identity over the ball of radius Mϵ. Thus the first

integral is just 0. In the second integral we apply Holder’s inequality and the fact that the norm

of Ψm(X̃
n
s ) is always less than X̃

n
s to get

≤ 0 + C̃

∫ t

0

P ((Dn,ϵ)
c)

1
2E[|X̃n

s |4]
1
2ds

(3.11)

≤ TC
(
1 + E[|X̌0|4]

) 1
2 ϵ

since the last inequality is uniform over the choice of ϵ the limit of J2,1 for n that goes to infinity

must be 0. Analogous for J2,3.

In J2,2 to ensure convergence in probability we use the version of Skorokhod’s lemma present

in theorem (2.3) of [10]. Indeed if we consider fn and W̃ x,n we have that fn is equibounded since

σn0 is and Ψm bounds X̃n, and is equicontinuous in probability due to Lipschitz’s property of σn0

and ϕ1, indeed

lim
h→0

sup
n

sup
s,t∈[0,T ]

|s−t|≤h

P (|fn(s)− fn(t)| > ϵ) ≤ lim
h→0

sup
n

sup
s,t∈[0,T ]

|s−t|≤h

E [|fn(s)− fn(t)|]
ϵ

≤

(3.5)

≤ lim
h→0

sup
n

sup
s,t∈[0,T ]

|s−t|≤h

Cm,n0

Ln0

ϵ
|t− s|+ Cm,n0

Ln0

ϵ
E
[
|X̃n

s − X̃n
t |
]
+ Cm,n0

Ln0

ϵ
W (2)(µY n

s
, µY n

t
),

but now, due to the definition of the Wasserstein measure as an inf over the set of measures whose

marginals are µY n
s
, µY n

t
in particular it will be smaller than the evaluation with measure µ(Y n

s ,Y n
t ),

which means that

≤ lim
h→0

sup
n

sup
s,t∈[0,T ]

|s−t|≤h

Cm,n0,ϵ|t− s|+ Cm,n0,ϵE
[
|X̃n

s − X̃n
t |
]
+ Cm,n0,ϵ

(∫
|y − ỹ|2µ(Y n

s ,Y n
t )(dy, dỹ)

) 1
2

≤

≤ lim
h→0

sup
n

sup
s,t∈[0,T ]

|s−t|≤h

Cm,n0,ϵ|t− s|+ Cm,n0,ϵE
[
|X̃n

s − X̃n
t |
]
+ Cm,n0,ϵE

[
|Ỹ n

s − Ỹ n
t |2
] 1

2 ≤

≤ lim
h→0

sup
n

sup
s,t∈[0,T ]

|s−t|≤h

Cm,n0,ϵ|t− s|+ Cm,n0,ϵE
[
|X̃n

s − X̃n
t |4
] 1

4
+ Cm,n0,ϵE

[
|Ỹ n

s − Ỹ n
t |4
] 1

4 ≤

(3.11)

≤ lim
h→0

sup
n

sup
s,t∈[0,T ]

|s−t|≤h

C · h+ C̃h
1
2 = 0. (3.27)
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We already know that W̃ x,n
s converges to W̃ x,∞

s for any s in probability. We can now notice that

for any s ∈ [0, T ],

P (|fn(s, ω)− f∞(s, ω)| > c)

≤ P
((

|X̃n
s − X̃∞

s | ≤ δ
)
∩ (|fn(s, ω)− f∞(s, ω)| > c)

)
+ P

((
|X̃n

s − X̃∞
s | > δ

)
∩ (|fn(s, ω)− f∞(s, ω)| > c)

)
≤ P

(
|X̃n

s − X̃∞
s | > δ

)
+ CE

[
1|X̃n

s −X̃∞
s |≤δ

∣∣∣ϕ1

(
s,Ψm(X̃

n
s , )Σ

n0
1 (s, X̃n

s , Ỹ
n
s )
)
− ϕ1

(
s,Ψm(X̃

∞
s ),Σn0

1 (s, X̃∞
s , Ỹ

∞
s )
)∣∣∣]

Lipschitz

≤ P
(
|X̃n

s − X̃∞
s | > δ

)
+ CE

[∣∣∣∣∫ σn0
1 (s, X̃∞

s , y)µỸ n
s
(dy)−

∫
σn0
1 (s, X̃∞

s , ȳ)µỸ ∞
s
(dȳ)

∣∣∣∣]
+ CE

[
1|X̃n

s −X̃∞
s |≤δ

∫ (
|X̃n

s − X̃∞
s |+

∣∣∣σn0
1 (s, X̃n

s , y)− σn0
1 (s, X̃∞

s , y)
∣∣∣)µỸ n

s
(dy)

]
≤ o(1) + (Ln0 + 1)δ + P

(
|X̃n

s − X̃∞
s | > δ

)
n→∞→ (Ln0 + 1)δ,

since we use weak convergence of Ỹ n to Ỹ ∞, lipschitzianity and boundedness of σn0 convergence

in probability of X̃n
s to X̃∞

s and lastly that the norm of Ψm(x)− Ψm(y) is bounded by the norm

of x− y. Since this upper bound is uniform over the choice of δ this means that fn(s, ·) converges
in probability to f∞(s, ·). Lastly we use theorem (2.3) of [10]: the functions fn are uniformly

bounded and uniformly continuous in probability thanks to (3.27), moreover we just proved that

(fn, W̃ x,n)
P→ (f∞, W̃ x,∞); therefore∫ t

0

fn(s, ω)dW̃ x,n
s

P→
∫ t

0

f∞(s, ω)dW̃ x,∞
s .

This ensures that J2 → 0 for n that goes to infinity. This proves (3.15), now if we consider the

SDE we have by passing to the limit up a subsequence that

∀t ∈ [0, T ], ω−a.c.X̃∞
0,t = X̌0,0 +

∫ t

0
ψ0(s, X̃

∞
s , B(s, X̃∞

s , µỸ ∞
s
))ds

X̃∞
1,t = X̌1,0 +

∫ t

0
ψ1(s, X̃

∞
s , B(s, X̃∞

s , µỸ ∞
s
))ds+

∫ t

0
ϕ1(s, X̃

∞
s ,Σ1(s, X̃

∞
s , µỸ ∞

s
))dW̃ x,∞

s .

Or, simply, the two sides are modifications. But one can easily prove the applicability of Kol-

mogorov’s continuity theorem for the two sides; this means that up to a subsequence the two sides

will be continuous modifications. This implies that they are almost surely equal as processes. Thus

almost surely ∀t ∈ [0, T ],X̃∞
0,t = X̌0,0 +

∫ t

0
ψ0(s, X̃

∞
s , B(s, X̃∞

s , µỸ ∞
s
))ds

X̃∞
1,t = X̌1,0 +

∫ t

0
ψ1(s, X̃

∞
s , B(s, X̃∞

s , µỸ ∞
s
))ds+

∫ t

0
ϕ1(s, X̃

∞
s ,Σ1(s, X̃

∞
s , µỸ ∞

s
))dW̃ x,∞

s ,

which concludes the proof.
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