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Abstract

Se ci viene dato un insieme parzialmente ordinato, c’è un modo “naturale”
di associargli una topologia?

Vedremo che preso un poset P si può considerare il suo complesso d’ordine,
un particolare complesso simpliciale la cui realizzazione geometrica sarà lo
spazio topologico a cui pensiamo quando parliamo di topologia di P .

Concentreremo la trattazione sull’omologia e coomologia di complessi sim-
pliciali, trovando anche basi esplicite. Ci aiuterà in questo la nozione di
shellability, che ci permetterà di dire che alcune classi importanti di com-
plessi simpliciali sono omotopicamente equivalenti ad un wedge di sfere.

Introdurremo un modo di etichettare le relazioni tra elementi di un poset,
detto edge-lexicographical labeling (EL-labeling) e dimostreremo che, sotto
certe condizioni, avere un EL-labeling equivale, per il poset, ad essere shellable.
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Introduction

The theory of poset topology establishes a deep connection between com-
binatorics and other branches of mathematics. Just see some of the different
fields which played an important role in the development of the theory:

• commutative algebra (proof of the upper bound conjecture)

• group theory and representation theory (p-subgroups posets and group
actions on the homology of posets)

• combinatorics (Björner’s work on poset shellability and the extension
of the notion of shellability to non-pure complexes, performed with
Wachs, an interesting aspect we will spend some time on)

• topology (in particular the theory of hyperplane arrangements, that we
will introduce)

• complexity theory (evasiveness conjecture)

• knot theory and graph connectivity

So it is clear that poset topology is a very interdisciplinar topic, but what is
it about? We will see that given a poset one can associate a certain simplicial
complex to it, and one regards the topology of the geometric realization of
the complex as the topology of the poset.

We will focus on the property of shellability of a complex, which re-
veals everything about its homotopy type. We will see how simple is the
co(homology) of a shellable complex and, since research in poset topology
is driven by the study of specific examples (both from inside and outside
of combinatorics) we will touch with hand the theory we develop, through
various interesting examples.
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Chapter 1

Basic notions

1.1 Order complexes and face posets

We begin by defining the order complex of a poset and the face poset
of a simplicial complex. These construction enable us to view posets and
simplicial complexes as essentially the same topological object. We will work
all the time with finite posets and simplicial complexes.

Definition 1. An abstract simplicial complex ∆ on a finite vertex set V is

a nonempty collection of subsets of V such that

• v ∈ ∆ for all v ∈ V

• if G ∈ ∆ and F ⊆ G then F ∈ ∆.

The elements of ∆ are called faces (or simplices) of ∆ and the maximal
faces are called facets. We say that a face F has dimension d and write
dimF = d if d = |F | − 1. Faces of dimension d are referred to as d-faces.
The dimension dim∆ of ∆ is defined to be maxF∈∆ dimF . We also allow
the (−1)-dimensional complex {∅}, which we refer to as the empty simplicial
complex. It will be convenient to refer to the empty set ∅ as the degenerate
empty complex and say that it has dimension −2 (even though we don’t
really consider it to be simplicial complex). If all facets of ∆ have the same
dimension then ∆ is said to be pure.

Definition 2. A d-dimensional geometric simplex in Rn is defined to be the

convex hull of d + 1 affinely independent points in Rn called vertices. The
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2 1. Basic notions

convex hull of any subset of the vertices is called a face of the geometric

simplex.

A geometric simplicial complex K in Rn is a nonempty collection of geometric

simplices in Rn such that

• Every face of a simplex in K is in K

• The intersection of any two simplices of K is a face of both of them.

One should ask why we use the adjectives “abstract” and “geometric” for
simplicial complexes. Well, observe that from a geometric simplicial complex
K we can obtain an abstract simplicial complex ∆(K) by letting the faces
of ∆(K) be the vertex sets of the simplices of K. Every abstract simplicial
complex ∆ can be obtained in this way, i.e., there is a geometric simplicial
complex K such that ∆(K) = ∆. Although K is not unique, the underlying
topological space, obtained by taking the union of the simplices of K (under
the Euclidean topology of Rn) is unique up to homeomorphism. We refer to
this space as the geometric realization of ∆ and denote it by ∥∆∥. From now
on we will drop the ∥ ∥ and let ∆ denote an abstract simplicial complex as
well as its geometric realization.

Now we shall see how these concepts find place in poset theory. First
of all, recall that poset stands for “partially ordered set”, so we are dealing
with a set in which exists a binary relation which is reflexive, transitive and
antisymmetric. In other words, for certain pairs of elements you can tell if
one is greater than the other (if you could do this for every pair, then the
order would be total.

Definition 3. To every poset P we can associate an abstract simplicial

complex ∆(P ) called the order complex of P . The vertices of ∆(P ) are

the elements of P and the faces of ∆(P ) are the chains (i.e., totally ordered

subsets) of P . (The order complex of the empty poset is the empty simplicial

complex {∅}).

For example, you can see below in Figure 1.1 in the Hasse diagram of a
poset P and its order complex.
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Figure 1.1: The poset P = B̄3, where if an edge connects two nodes it means

that the upper node is greater than the lower node, and its order complex

Definition 4. To every simplicial complex ∆, we can associate a poset P (∆)

called the face poset of ∆, which is defined to be the poset of nonempty faces

ordered by inclusion.

The face lattice L(∆) is P (∆) with a smallest element 0̂ and a largest

element 1̂ attached. See Figure 1.3 (but also Figure 1.2).

If we have a simplicial complex ∆, take its face poset P (∆), and then
take the order complex ∆(P (∆)) we get a simplicial complex known as the
baricentric subdivision of ∆.

The geometric realizations are always homeomorphic: ∆ ∼= ∆(P (∆)).
See Figure 1.2.
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Figure 1.2: A simplicial complex ∆ and its barycentric subdivision: note the

homeomorphism between the two

When we attribute a topological property to a poset, we mean that the
geometric realization of the order complex of the poset has that property.
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Figure 1.3: The face poset of ∆ (the same of Figure 1.2), and the face lattice

L(∆)

For instance, if we say that the poset P has the homotopy type of a wedge of
spheres, we mean that ∥∆(P )∥ has the homotopy type of a wedge of spheres.

Let us review some basic poset terminology. An m-chain of a poset P is a
totally ordered subset c = {x1 < x2 < . . . < xm+1} of P . We say the length
l(c) of c is m. We consider the empty chain to be a (−1)-chain. The length
l(P ) of P is defined to be

l(P ) := max{l(c) : c is a chain of P}.

Thus, l(P ) = dim∆(P ) and l(P (∆)) = dim∆.
A chain of P is said to bemaximal if it is inclusion-wise maximal. Observe

that from this follows that the set M(P ) of maximal chains of P is the set
of facets of ∆(P ). A poset P is said to be pure (or ranked, or graded) if all
maximal chains have the same length. Thus, P is pure if and only if ∆(P ) is
pure. Also a simplicial complex ∆ is pure if and only if its face poset P (∆)
is pure.

For x ≤ y in P , let (x, y) denote the open interval {z ∈ P : x < z < y}
and let [x, y] denote the closed interval {z ∈ P : x ≤ z ≤ y}. Half open
intervals (x, y] and [x, y) are defined similarly.

If P has a unique minimum element, it is conventionally denoted by 0̂ and
refer to it as the bottom element. Analogously, if P has a unique maximum
element, we denote it by 1̂ and call it the top element. Now observe that if
P has a bottom element 0̂ or a top element 1̂ then ∆(P ) is a cone, hence it
is contractible. This is the reason why we usually remove the bottom and
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top elements and study the more interesting topology of the remaining poset.
Define the proper part of a poset P , for which |P | > 1, to be

P̄ := P − {0̂, 1̂}

In the case that |P | = 1 it will be convenient to define ∆(P̄ ) to be the
degenerate empty complex ∅. We will also say ∆((x, x)) = ∅ and l((x, x)) =
−2.

For posets with a bottom element 0̂, the elements that cover 0̂ are called
atoms. For posets with a top element 1̂, the elements that are covered by 1̂
are called coatoms.

A poset P is said to be bounded if it has a top element 1̂ and a bottom
element 0̂. Given a poset P , we define the bounded extension

P̂ := P ∪ {0̂, 1̂}

where new elements 0̂ and 1̂ are adjoined, even if P already has a bottom or
top element.

A poset P is said to be ameet semilattice if every pair of elements x, y ∈ P
has a meet x ∧ y, i.e. an element less than or equal to both x and y that is
greater than all other such elements. A poset P is said to be a join semilattice
if every pair of elements x, y ∈ P has a join x∨y, i.e. a unique element greater
than or equal to both x and y that is less than all other such elements. If P
is both a join semilattice and a meet semilattice then P is said to be a lattice.
It is a basic fact of lattice theory that any finite meet (join) semilattice with
a top (bottom) element is a lattice.

Example 1 (The Boolean lattice). Let Bn denote the lattice of subsets of

[n] := {1, 2, . . . , n} ordered by containment, and let B̄n := Bn − {∅, [n]}.
Then

B̄n
∼= Sn−2

because ∆(Bn) is the barycentric subdivision of the boundary of the (n− 1)-

simplex. You can see the case n = 3 in Figure 1.1 a few pages ago.

1.2 Hyperplane and subspace arrangements

A hyperplane arrangement A is a finite collection of (affine) hyperplanes
in some vector space V . We will consider only real hyperplane arrangements
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(V = Rn) here. Real hyperplane arrangements divide Rn into regions. A
remarkable formula for the number of regions was given by Zaslavsky in 1975,
but we will not treat it. However, the formula involves an important basic
notion that interests us, namely the intersection semilattice of a hyperplane
arrangement.

Definition 5. The intersection semilattice L(A) of a hyperplane arrange-

ment A is defined to be the meet semilattice of nonempty intersections of

hyperplanes in A ordered by reverse inclusion.

You can see in Figure 3a hyperplane arrangementin R2 and its intersection
semilattice.

Note that we include the entire space V (seen as the intersection over the
empty set) which is the bottom element 0̂ of L(A). Now observe that L(A)
has a top element if and only if

⋂
A ̸= ∅. Such an arrangement is called

a central arrangement. Hence for central arrangements A, the intersection
semilattice L(A) is actually a lattice.

Example 2 (The (type A) coordinate hyperplane arrangement and the

Boolean lattice Bn). The coordinate hyperplane arrangement is the central

hyperplane arrangement consisting of the coordinate hyperplanes xi = 0 in

Rn. It is easy to see that the intersection lattice of this arrangement is

isomorphic to the subset lattice Bn. Indeed, the intersection

{x ∈ Rn : xi1 = xi2 = · · · = xik = 0},

where 1 ≤ i1 < i2 < . . . < ik ≤ n, corresponds to the subset {i1, i2,. . . , ik}.
This correspondence is an isomorphism from the intersection lattice to Bn.

Example 3 (The type A braid arrangement and the partition lattice Πn).

For 1 ≤ i < j ≤ n, let

Hi,j = {x ∈ Rn : xi = xj}.

The hyperplane arrangement

An−1 := {Hi,j : 1 ≤ i < j ≤ n}

is known as the braid arrangement or the type A Coxeter arrangement. The

intersection lattice L(An−1) is isomorphic to Πn, the lattice of partitions of
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the set [n] ordered by refinement. Indeed, for each partition π ∈ Πn, let lπ

be the linear subspace of Rn consisting of all points (x1, . . . , xn) such that

xi = xj whenever i and j are in the same block of π. The map π → lπ

is a poset isomorphism from Πn to L(An−1). You can see the intersection

between the braid arrangement A2 and the plane {x1 + x2 + x3 = 0} at left

and the partition lattice Π3 in Figure 3.

13
23

12

12/3 13/2 23/1

123

1/2/3

Figure 1.4: A2 (where ij means xi = xj for i, j = 1, 2, 3) and L(A2) = Π3

1.3 Poset homology and cohomology

By (co)homology of a poset, we mean the reduced simplicial (co)homology
of its order complex. We will briefly introduce simplicial homology and co-
homology in terms of chains of the poset.
For each poset P and integer j, define the chain space

Cj(P,k) := k-module freely generated by j-chains of P ,

where k is a field or Z.
The boundary map ∂j : Cj(P ;k) → Cj−1(P ;k) is defined by

∂j(x1 < · · · < xj+1) =

j+1∑
i=1

(−1)i(x1 < · · · < x̂i < · · · < xj+1),

where the hat denotes deletion. Since ∂j−1∂j = 0 we have that Cj(P ;k) is an
algebraic complex. Define the cycle space Zj(P ;k) := ker ∂j and the bound-
ary space Bj(P ;k) := im ∂j+1. The homology of the poset P in dimension j
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is defined by
H̃j(P ;k) := Zj(P ;k)/Bj(P ;k).

The coboundary map δj : Cj(P ;k) → Cj+1(P ;k) is defined by

⟨δj(α), β⟩ = ⟨α, ∂j+1(β)⟩

where α ∈ Cj(P ;k), β ∈ Cj+1(P ;k) and ⟨·, ·⟩ is the bilinear form on⊕
j≥−1Cj(P ;k) for which the chains of P form an orthonormal basis. This

is equivalent to saying

δj(x1 < · · · < xj) =

j+1∑
i=1

(−1)i
∑

x∈(xi−1,xi)

(x1 < · · · < xi−1 < x < xi < · · · < xj),

for all chains x1 < · · · < xj, where x0 is the bottom element of P̂ and xj+1

is the top element of P̂ . Define the cocycle space to be Zj(P ;k) := ker δj
and the coboundary space to be Bj(P ;k) := im δj−1. The cohomology of the
poset P in dimension j is defined to be

H̃j(P ;k) := Zj(P ;k)/Bj(P ;k).



Chapter 2

Shellability and EL-shellability

2.1 Shellability of simplicial complexes

Shellability is a combinatorial property of simplicial and more general
cell complexes, with strong topological and algebraic consequences. Imagine
having in front of you all the facets of a simplicial complex ∆. If you were
asked to build ∆ you could begin choosing a certain facet. Then you may
pick up another facet and, along a codimension-one face, you could try to
attach it to the first one. When you try to fit in the third facet, you could
make it touch one or both the preceding facets, again along codimension-one
faces. Well, if you are able (and lucky enough) to repeat the process until
there are no facets left, you will have more or less found a shelling of ∆.

Definition 6. A simplicial complex ∆ is said to be shellable if there ex-

ists a linear ordering of its facets F1, F2, ..., Ft such that the subcomplex

(
⋃k−1

i=1 ⟨Fi⟩) ∩ ⟨Fk⟩ is pure and (dimFk − 1)-dimensional for all k = 2, . . . , t,

where ⟨F ⟩ denotes the subcomplex generated by F . Such an ordering of the

facets it is called a shelling.

Let us see an example.

Figure 2.1: A shellable and a non-shellable complex

9



10 2. Shellability and EL-shellability

Example 4. In Figure 2.1 you can see a shellable complex on the left and a

non-shellable complex on the right. In particular, observe that in in the first

case whe can choose as F1 the vertical segment, and as F2 the isolated point.

In this way we only have to check the dimension of the intersection between

⟨F1⟩ and F2, but dim(⟨F1⟩ ∩ F2) = dim ∅ = −1 = dimF2 − 1. In the second

example, it does not matter how we enumerate the facets, we will have, at

the first check, dim(⟨F1⟩ ∩ ⟨F1⟩) = dim ∅ = −1 ̸= dim(⟨F1⟩)− 1 = 2− 1.

The topology of a shellable complex is very nice and straightforward, as
shown by the following:

Theorem 1 (Björner and Wachs [4]). A shellable simplicial complex has the

homotopy type of a wedge of spheres (in varying dimensions), where for each

i, the number of i-spheres is the number of i-facets whose entire boundary

is contained in the union of the earlier facets. Such facets are usually called

homology facets.

Before seeing the details, we give the idea for the proof.
Let ∆ be a shellable simplicial complex. We first observe that any shelling

of ∆ can be rearranged to produce a shelling in which the homology facets
come last. So ∆ has a shelling F1, F2, . . . , Fk where F1, ..., Fj are not homol-
ogy facets and Fj+1, ..., Fk are, where 1 ≤ j ≤ k. The basic idea of the proof
is that as we attach the first j facets, we construct a contractible simplicial
complex at each step. Each of the homology facets creates a sphere since the
entire boundary of the facet can be contracted to a point.

The approach we will be adopting in order to proof this result is inspired
by [4] (Björner and Wachs).

The following is a useful restatement of the definition of shellability:

Lemma 1. An order F1, F2, ..., Ft of the facets of ∆ is a shelling if and only

if for every i and k with 1 ≤ i < k ≤ t there is a j with 1 ≤ j < k and an

x ∈ Fk such that Fi ∩ Fk ⊆ Fj ∩ Fk = Fk − {x}.

Lemma 2. Let F be a facet of a complex ∆, R ⊆ F , and let ∆′ be the sub-

complex generated by the other facets of ∆. Then the following statements

are equivalent:

1) ⟨F ⟩ −∆′ = [R,F ],
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2) ⟨F ⟩ ∩∆′ =
⋃

x∈R⟨F − {x}⟩,

where [R,F ] = {C | R ⊆ C ⊆ F}.

Proof. ⟨F ⟩ is the disjoint union of [R,F ] and
⋃

x∈R⟨F − {x}⟩.

Definition 7. Given a shelling F1, ..., Ft of ∆, with successively generated

subcomplexes ∆j =
⋃j

i=1⟨Fi⟩, define the restriction of the facet Fk by

R(Fk) = {x ∈ Fk | Fk − {x} ∈ ∆k−1}.

Lemma 3. Let F1, F2, ..., Ft be a shelling of ∆ with restriction map R. Let

Fi1 , Fi2 , ..., Fit be the rearrangement obtained by taking first all facets F

such that R(F ) ̸= F in the induced order, and then all remaining facets in

arbitrary order. Then this rearrangement is also a shelling with the same

restriction map R.

Proof. Follows from the definition of shellability.

Proof of Theorem 1. For some fixed shelling of ∆, let Γ = {facets of F such

that R(F ) = F} and ∆∗ = ∆ − Γ. Then by Lemma 3 the induced order

of the remaining facets is a shelling of ∆∗, whose restriction map is R. Let

Fk be the k-th facet of ∆∗ and set ∆∗
k =

⋃k
i=1⟨Fi⟩. The facet Fk has a free

face in ∆∗
k (i.e. a face contained in no other facet), namely R(Fk). This is a

proper face since R(Fk) ̸= Fk. Thus, removing R(Fk) and all faces containing

it collapses ∆∗
k to ∆∗

k − [R(Fk), Fk] = ∆∗
k−1. It follows that ∆

∗
k−1 and ∆∗

k are

homotopy equivalent (in fact, ∆∗
k−1 is a strong deformation retract of ∆∗

k).

Since ∆∗
1 is a simplex, we conclude that ∆∗ is contractible.

Now we use the fact that passing to the quotient space modulo a contractible

subspace does not alter homotopy type (see for instance [1, Proposition 0.17]).

The space ∆ is obtained from ∆∗ by attaching the cells (simplices) in Γ, each

one along its entire boundary. Thus when ∆∗ is contracted to a point, each

i-cell is deformed into a i-sphere with a distinguished point ∆∗/∆∗.

Observe that outside this point the resulting spheres are topologically

independent, so this is a wedge of spheres with the right dimensions.
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This result is interesting per se, but it also tells everything about the
(co)homology of a shellable complex:

Corollary 1. If ∆ is shellable then for all i,

H̃i(∆;Z) ∼= H̃ i(∆;Z) ∼= Zri (2.1)

where Ri is the number of homology i-facets of ∆.

Homology facets tell us the Betti numbers of ∆; good to know. But there
is more, they induce dual bases for homology and cohomology.

Let us call Γ the set of homology facets. Now let Γj = {F ∈ Γ: |F | = j}.
For each F ∈ Γj define a (j − 1)-cochain σF in terms of its values on the
basis elements A ∈ ∆j−1={(j − 1)− faces of ∆} as follows:

σF (A) =

{
1, A = F

0, A ̸= F

Since F is a facet of ∆ one sees that σF is a cocycle. Hence it determines a
cohomology class [σF ] ∈ H̃j−1(∆,Z).

Theorem 2 (Björner and Wachs [4]). Let Γj be the set of homology facets

of size j induced by a shelling of ∆. Then the classes [σF ], for F ∈ Γj, are a

basis of H̃j−1(∆,Z).

Proof. Let ρ be any cocycle in Cj−1(∆). Consider the cocycle

τ = ρ−
∑
F∈Γj

ρ(F )σF .

We have that τ(F ) = 0 for all F ∈ Γj, so τ is in fact a cocycle in Cj−1(∆∗).

But H̃j−1(∆∗,Z) = 0, since ∆∗ is contractible. Hence τ = δ∆∗(τ ′) for some

τ ′ ∈ Cj−2(∆∗). This implies that δ∆(τ
′) = τ +

∑
F∈Γj

aFσ
F , and hence

[ρ] =
∑

F∈Γj
(ρ(F )− aF )[σ

F ].

We know from before that H̃j−1(∆,Z) is a free abelian group of rank rj and

we have just shown that it is generated by the |Γj| = rj elements [σF ]. Hence,

these elements form a basis.

Shellable complexes arise naturally in mathematics. An interesting ex-
ample is the following:
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Theorem 3 (Shareshian [7]). The lattice of subgroups of a finite group G is

shellable if and only if G is solvable.

In order to prove the pure version of this statement, which states that
the lattice of subgroups of a finite group G is pure shellable if and only if G
is supersolvable, Björner ([2]) introduced in the late 70’s a technique called
lexicographic shellability, and this will be our next topic, in the more general
context of nonpure complexes.

2.2 Lexicographic shellability

Definition 8. An edge labeling of a bounded poset P is a map λ : E(P ) → Λ,

where E(P ) is the set of edges of the Hasse diagram of P , i.e., the covering

relations x ⋖ y of P , and Λ is some poset (usually Z with its natural total

order relation).

Definition 9. Given an edge labeling λ : E(P ) → Λ we associate a word

λ(c) = λ(0̂, x1)λ(x1, x2) · · ·λ(xt, 1̂)

with each maximal chain c = (0̂⋖ x1 ⋖ · · ·⋖ xt ⋖ 1̂).

We say that c is increasing if the associated word is strictly increasing.

In other words, c is increasing if λ(c) = λ(0̂, x1) < λ(x1, x2) < · · · < λ(xt, 1̂).

We say that c is decreasing if the associated word λ(c) is weakly increasing.

We are now able to order the maximal chains lexicographically by using
the lexicographic order on the corresponding words.

Note that every edge labeling of P restricts to an edge labeling of any
closed interval [x, y] of P , so we can talk about increasing and decreasing
maximal chains of [x, y], and lexicographic order of maximal chains of [x, y].

Also remember that we are working with bounded posets, so the maximal
chains of P will begin with 1̂ and end with 0̂.

Definition 10. Let P be a bounded poset. An edge-lexicogrphical labeling

(EL-labeling) of P is an edge labeling such that in each closed interval [x, y]

of P there is a unique increasing maximal chain, which lexicographically

precedes all the other maximal chains of [x, y].



14 2. Shellability and EL-shellability

Now comes the interesting part: a bounded poset that admits an EL-
labeling is said to be edge-lexicographic shellable (EL-shellable). There has
to be some connection between EL-labelings and shellability...

Theorem 4 (Björner an Wachs [5]). Let P be a bounded poset with an

EL-labeling. Then the lexicographic order of the maximal chains of P is a

shelling of ∆(P ).

Björner proved this result in the pure case, but we will see the proof for
non-pure posets since there are just a few additional details to pay attention
to.

The proof uses the notion of rooted interval, which is just a pair ([x, y], c)
in P where [x, y] is a closed interval and c is a saturated chain from 1̂ to y.

Proof. We are going to show that any linear ordering of the setM of maximal

chains which extends the lexicographic ordering of the edges is a shelling

order. So assign a linear order, denoted “⋖” to M such that λ(m) <L λ(m′)

implies m ⋖ m′. We have to prove that if k ⋖ m for k,m ∈ M then there

exists an h ∈ M such that h⋖m, (k ∩m) ⊆ (h ∩m) and |h ∩m| = |m| − 1.

Consider two maximal chains in P , k : 1̂ = k0 → k1 → · · · → kr = 0̂

and m : 1̂ = m0 → m1 → · · · → mt = 0̂, and suppose that k ⋖ m. Let d

be the greatest integer such that mi = ki for i = 0, · · · , d, and let g be the

least integer such that d < g and kg = mg. Then g − d ≥ 2 and d < i < g

implies that ki ̸= mi. Now consider the rooted interval, ([mg,md],m0 →
m1 → · · · → md). The chain md → md+1 → · · · → mg cannot be the

unique maximal chain of this interval with increasing labels because, from

the definition of EL-labeling, it would then be λ(m) <L λ(k) contrary to the

assumption that k ⋖m. Consequently, the label λ(m) must have a descent

λe(m) > λe+1(m) for some e with d < e < g. Then in the rooted interval

([me+1,me−1],m0 → m1 → · · · → me−1) the chain me−1 → me → me+1 has a

decreasing label so there is a chain me−1 → xi1 → xi2 → · · · → xir → me+1

whose label comes earlier in the lexicographic order. If we let h : 1̂ = m0 →
m1 → · · · → me−1 → xi1 → xi2 → · · · → xir → me+1 → me+2 → · · · → 0̂

it follows that λ(h) <L λ(m), hence h ⋖ m, and since me cannot be in
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k because d < e < g and by definition of g, the construction shows that

h ∩m = m−me ⊇ k ∩m.
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Chapter 3

Examples and applications

3.1 The Boolean lattice Bn

There is a very natural EL-labeling of the Boolean lattice Bn; simply
label the covering relation A1 ⋖A2 with the unique element in the singleton
set A2 − A1. The maximal chains correspond to the permutations in Sn.
It is easy to see that each interval has a unique increasing chain that is
lexicographically first. There is only one decreasing chain, which is consistent
with the fact that ∆(Bn) is a sphere.

For each k ≤ n, define the truncated Boolean algebra Bk
n to be the sub-

posets of Bn given by

Bk
n = {A ⊆ [n] : |A| ≥ k}.

Define an edge labeling λ of Bk
n ∪ {0̂} as follows:

λ(A1, A2) =

{
maxA2 if A1 = 0̂ and |A2| = k

a if A2 − A1 = {a}

It easy to check that this is an EL-labeling. The decreasing chains correspond
to permutations with descent set {k, k + 1, · · · , n− 1}.

Recall that in the symmetric group Sn a permutation w = a1a2 . . . an has
descent set D(w) = {i : ai > ai+1}.

Hence dim H̃n−k−1(B̄k
n) equals the number of permutations in Sn with

descent set {k, · · · , n− 1}.

17
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3.2 The partition lattice Πn.

We will now give two different EL-labelings of the partition lattice, due
to Gessel (you can find it in Björner’s work [2]) and Wachs [8] respectively.
If x⋖ y in Πn then y is obtained from x by merging two blocks, say B1 and
B2. For the first edge labeling λ1, let

λ1(x, y) = max{minB1,minB2}

and for the second edge labeling λ2, let

λ2(x, y) = maxB1 ∪B2.

The increasing chain from 0̂ to 1̂ is the same for both labelings; it consists
of partitions with only one nonsingleton block. More precisely, the chain is
given by

0̂⋖ {1, 2}⋖ {1, 2, 3}⋖ · · ·⋖ 1̂,

where we have written only the nonsingleton block of each partition in the
chain.

The decreasing maximal chains for λ1 and λ2 are not the same. If you
look at λ2, for instance, they consist of partitions with only one nonsingleton
block and are of the form

cσ := (0̂⋖ {σ(n), σ(n− 1)}⋖ {σ(n), σ(n− 1), σ(n− 2)}⋖ · · ·

⋖{σ(n), σ(n− 1), σ(n− 2), · · · , σ(1)}),

where σ ∈ Sn and σ(n) = n. We conclude that the homotopy type of Π̄n is
given by

Π̄n ≃
∨

(n−1)!

Sn−3

and that the chains c̄σ, where σ ∈ Sn and σ(n) = n, form a basis for
H̃n−3(Π̄n;Z). We can also describe a nice basis for the homology of Π̄n that
is dual to the decreasing chain basis for λ2. But first we have to define what
does it mean to split a permutation σ ∈ Sn at positions j1 < j2 < · · · < jk
in [n− 1]: it simply means that we form the partition

σ(1)σ(2) · · ·σ(j1)|σ(j1 + 1)σ(j1 + 2) · · · σ(j2)| · · · |

σ(jk + 1)σ(jk + 2) · · ·σ(n)

of [n]. For each σ ∈ Sn, let Πσ be the induced subposet of the partition
lattice Πn consisting of the partitions obtained by splitting the permutations
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σ at any set of positions in [n−1]. Each poset Πσ is isomorphic to the subset
lattice Bn−1. Therefore ∆(Π̄σ) is an (n− 3)-sphere embedded in ∆(Π̄n), and
hence it determines a fundamental cycle ρσ ∈ H̃n−3(Π̄n;Z).

We have the following:

Theorem 5 (Wachs [8]). {ρσ : σ ∈ Sn, σ(n) = n} form a basis for H̃n−3(Π̄n;Z)
dual to the decreasing chain basis {c̄σ : σ ∈ Sn, σ(n) = n} for cohomology.

The homology basis is called the splitting basis.

Now we describe the decreasing chain basis for cohomology for the EL-
labeling λ1 and its dual basis for homology. If we have a rooted nonplanar
tree T (which simply means that children of a node are unordered) on node
set [n], by removing any set of edges of T we form a partition of [n] whose
blocks are the node sets of the connected components of the resulting graph.
Let ΠT be the induced subposet of the partition lattice Πn consisting of
partitions obtained by removing edges of T . Note that if T is a linear tree
then ΠT is the same as Πσ, where σ is the permutation obtained by reading
the nodes of the three from the root down. Each poset ΠT is isomorphic to
the subset lattice Bn−1. We let ρT be the fundamental cycle of the spherical
complex ∆(Π̄T ). Let T be an increasing tree on node set [n], i.e., a rooted
nonplanar tree on node set [n] in which each node i is greater than its parent
p(i). We form the chain cT in ΠT , from top down, by removing the edges
{i, p(i)}, one at time, in increasing order of i. One can show that the cT ,
where T is an increasing tree on node set [n], are the decreasing chains of λ1.

Theorem 6. Let Tn be the set of increasing trees on node set [n]. The set

{ρT : T ∈ Tn} forms a basis for H̃n−3(Π̄n;Z) dual to the decreasing chain

basis {c̄T : T ∈ Tn} for cohomology. This homology basis is called the tree

splitting basis.

See Wachs [9] for further details. There is also a geometric interpretation
of the splitting basis, in which the fundamental cycles correspond to bounded
regions in an affine slice of the real braid arrangement, but we will not see
the details of it.

These EL-labelings and their corresponding bases are special cases of
more general constructions. For instance, the first EL-labeling comes from
constructions for geometric lattices, which will be our next and last topic.
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3.3 Geometric lattices

Definition 11. A geometric lattice is a lattice L that is semimodular and

atomic. In other words, for all x, y ∈ L, the join x ∧ y covers y whenever x

covers the meet x ∨ y, and every element of L is the join of atoms.

We have already encountered 2 specific examples: the subset lattice Bn

and the partition lattice Πn; more in general, the intersection lattice L(A) of
any central hyperplane arrangement is a geometric lattice.

Now we shall describe an edge labeling for geometric lattices. Fix an
ordering a1, a2, · · · , ak of the atoms of the geometric lattice L. Then label
each edge x⋖y of the Hasse diagram with the smallest i for which x∧ai = y.

Observe that if we order the atoms of Bn like {1}, {2}, · · · , {n}, then this
labeling coincides with the one given a few pages ago.

Let us focus on the decreasing chains of the geometric lattice EL-labeling
(see Björner’s work [3]). In order to do this, we have to introduce something
from what is called matroid theory.

Definition 12. Let A be a set of atoms in a geometric lattice L. A is

independent if r(
∨

A) = |A|. A circuit is a set of atoms minimally dependent,

which means that every proper subset is independent. A broken circuit is an

independent set of atoms that can be obtained from a circuit by removing

its smallest element (recall that we fixed an ordering of the atoms of L).

A maximal independent set of atoms is called an NBC base if contains
no broken circuits. Observe that there is a natural bijection between NBC
bases of L and decreasing chains of L: an NBC base A = {ai1 , · · · , air}
(where 1 ≤ i1 < i2 < · · · < ir ≤ k corresponds to the maximal chain

cA : = (0̂ < air < air ∨ air−1 < · · · < air ∨ air−1 ∨ · · · ∨ ai1 = 1̂).

One can see that the label sequence of cA is (ir, ir−1, · · · , i1), which is de-
creasing. The map A 7→ cA the bijection from the NBC bases of L to the
decreasing chains of L, so the elements {c̄A : A is an NBC base of L} form a
basis for top cohomology of L.

The dual basis of this one is a basis for the homology (see Björner [3]).
If we have an independent set of atoms A in a geometric lattice and we take
joins, we generate a Boolean algebra LA embedded in the geometric lattice.
Let ρA be the fundamental cycle of L̄A.
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Theorem 7 (Björner [3]). Fix an ordering of the set of atoms of a geometric

lattice L. The set

{ρA : A is an NBC base of L}

is a basis for top homology of L̄, which is dual to the decreasing chain basis

{c̄A : A is an NBC base of L}

for the top cohomology.

We conclude by mentioning that geometric lattices are exactly the lattices
of flat of matroids:

Theorem 8. [6, Theorem 1.7.15] A lattice L is geometric if and only if it is

the lattice of flats of a matroid.
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