
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea in Fisica

Machine Learning for Quantum Error
Mitigation on NISQ devices

Relatore:

Prof. Daniele Bonacorsi

Correlatori:

Dott. Simone Gasperini
Dott. Marco Lorusso

Presentata da:

Marco Vassallo

Anno Accademico 2023/2024

Abstract

Il Quantum Error Mitigation (QEM) è un insieme di tecniche utilizzate
per ridurre l’impatto del rumore nel calcolo quantistico senza la neces-
sità di implementare specifici protocolli per una completa rimozione
degli errori, come avviene invece nel caso del Quantum Error Correction
(QEC). Questo approccio mira a migliorare le prestazioni degli algo-
ritmi mitigando gli effetti indesiderati del rumore che caratterizzano i
computer quantistici odierni, appartenenti alla cosidetta classe Noisy
Intermediate-Scale Quantum (NISQ).

Nel contesto del calcolo quantistico gate-based, questa tesi intro-
duce un innovativo approccio al QEM basato su tecniche di Machine
Learning (ML). In particolare, viene proposta una semplice rete neu-
rale classica (architettura dell’autoencoder) in grado di imparare uno
specifico modello di rumore dai dati forniti. Dopo una prima fase, che
prevede la preparazione di un dataset eseguendo la simulazione di diversi
circuiti quantistici, la rete neurale viene allenata per l’identificazione
e mitigazione degli effetti del rumore quantistico sull’istogramma mis-
urato. L’efficacia del modello è poi validata calcolando una metrica
per confrontare ogni coppia di istogrammi rumoroso e mitigato con la
corrispondente distribuzione di probabilità ideale.

I promettenti risultati ottenuti aprono nuove prospettive per ap-
plicazioni del QEM in contesti sperimentali anche più avanzati, con-
tribuendo alla crescita e alla maturazione della computazione quantis-
tica.

iii

Contents

Introduction 1

1 Quantum Computing 3
1.1 Quantum information theory . 3

1.1.1 Single-qubit state . 3
1.1.2 Multi-qubit state . 5
1.1.3 Entanglement . 6
1.1.4 Projective-Valued Measurement 7

1.2 Gate-based quantum computing . 8
1.2.1 Quantum gates . 8
1.2.2 Clifford Group . 11
1.2.3 NISQ devices . 12
1.2.4 Qiskit framework . 13

2 Machine Learning 15
2.1 Introduction to Machine Learning 15

2.1.1 Learning paradigms . 15
2.1.2 Gradient-based optimization 16
2.1.3 Supervised learning . 18
2.1.4 Training, validation, and testing 19

2.2 Artificial neural networks . 20
2.2.1 Multi-Layer Perceptron . 21
2.2.2 Autoencoder architecture . 22
2.2.3 TensorFlow framework . 23

3 Autoencoder for Error Mitigation 25
3.1 Data preparation . 25

3.1.1 Circuits generation . 26
3.1.2 Clifford ideal simulation . 27
3.1.3 Noisy simulation . 27

3.2 Model definition . 29
3.3 Data analysis . 30
3.4 Possible applications . 33

Conclusion 35

v

Bibliography 37

A Noisy circuit simulation in Qiskit 41

B Circuit optimization in Pennylane 43

C Denoising Autoencoder in Keras 45

vi

Introduction

Quantum computing stands at the frontier of technological advancement, promis-
ing computational power far surpassing classical systems. However, this potential
is hindered by the inherent susceptibility of quantum systems to errors, stemming
from decoherence and imperfections in hardware. Traditional methods such as
Quantum Error Correction (QEC) mitigate errors by encoding quantum informa-
tion redundantly, but they come at a high cost in terms of hardware resources.
In contrast, Quantum Error Mitigation (QEM) seeks to mitigate errors directly
within the measured results, presenting a more hardware-efficient alternative that
has gained traction in recent experimental demonstrations.

This thesis introduces an innovative approach to QEM using machine learning
techniques, specifically targeting the reduction of noise within quasi-probability dis-
tributions rather than focusing solely on correcting expected values. By harnessing
the power of machine learning, we aim to transform noisy quantum distributions
into states that closely resemble their ideal counterparts. This methodology not only
addresses the practical challenges of error mitigation in quantum computing but
also opens new avenues for applying QEM in advanced experimental and practical
contexts.

In this study, we employ real-world quantum circuits as our initial dataset,
incorporating both benchmarking circuits and simulations involving five qubits.
Subsequently, we generate ideal circuits from Gaussian distributions, which serve
as targets for our optimization algorithm. Central to our approach is the imple-
mentation of an autoencoder neural network with 13 layers, trained on a dataset
comprising 4500 entries of noisy distributions paired with their corresponding ideal
distributions, simulated using a custom noise model developed in Qiskit.

The efficacy of our approach is validated through Wasserstein distance, a compre-
hensive metric used for comparing distributions, which demonstrated the alignment
between denoised data and the expected ideal distributions.

Overall, this thesis not only contributes to the theoretical understanding of
Quantum Error Mitigation but also provides practical insights and methodologies
that can significantly enhance the reliability and performance of quantum computing
technologies in diverse application scenarios. By leveraging machine learning
techniques, we pave the way for the broader integration of QEM in quantum
computing research and development, ultimately advancing the maturity and
applicability of quantum technologies in the coming years.

1

Chapter 1

Quantum Computing

1.1 Quantum information theory

Quantum information theory is a scientific field that combines quantum mechan-
ics and information theory. It focuses on how quantum systems can be used to
store, process, and transmit information. It extends classical information theory by
incorporating the principles of quantum mechanics, which allows for new and more
powerful methods of computation and communication [1]. In quantum mechanics,
a physical system is usually represented by a probabilistic wave function in an
Hilbert space. Dirac bra-ket notation can be employed to represent a quantum
state as a vector of complex amplitudes, denoted as |ψ⟩. This representation allows
for the encoding of all the information associated with the quantum state. The
exclusive features of quantum-mechanical systems, such as superposition and en-
tanglement, can be exploited to theoretically solve certain classes of problems that
would be impossible or too energy- and time-consuming for a classical computer.
Some examples are the so called Shor’s algorithm [2] for the large integer numbers
factorization problem (exponentially complex for classical computing) or Grover’s
algorithm [3], which provide a theoretical quadratic speedup for searching problem
in an unstructured database.

This relatively new field of research holds promise to completely change the study
of many subjects like computational chemistry, machine learning and materials
science, where complex simulations and optimizations are essential.

We are now going to provide a brief survey of all the basic concepts needed to
understand quantum computing and its applications, starting with the fundamentals
of quantum mechanics and the mathematical definition of the qubit, fundamental
unit of quantum information.

1.1.1 Single-qubit state

A qubit is defined as a mathematical object used to describe a two-level quantum
system. Its state |ψ⟩ is a unit-norm complex vector that can be written as a linear

3

combination of the |0⟩ and |1⟩ basis vectors:

|ψ⟩ =
(
α
β

)
= α |0⟩+ β |1⟩ (1.1)

where α and β are complex coefficients such that |α|2 + |β|2 = 1, and |0⟩ and |1⟩
are the two orthonormal vectors constituting the so called computational basis and
spanning the whole single-qubit Hilbert space H:

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
H = span{|0⟩ , |1⟩} (1.2)

Analogously, we can define another basis denoted by the symbols |+⟩ (plus state)
and |−⟩ (minus state) defined as:

|+⟩ = |0⟩+ |1⟩√
2

|−⟩ = |0⟩ − |1⟩√
2

(1.3)

This expression of a state in a linear combination of the basis, is the so-called
superposition of multiple states that potentially leads to quantum advantage with
respect to classical computation[4]. This is because, while operating on the quantum
state to solve a given problem, we are effectively evolving over all the states
represented by the superposition.

To have a deeper comprehension of the qubit, it is possible to utilise the Bloch
sphere that provides a geometrical representation of a single-qubit state. On the
Bloch sphere, the state vector |ψ⟩, can be written as:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ (1.4)

where θ and ϕ are respectively the polar angle and the azimuthal angle defining the
position in spherical coordinates. Any point on the surface of the sphere represents
a valid unit-norm pure state of the qubit. The north pole of the sphere (θ = 0)
corresponds to the state |0⟩; the south pole (θ = π) corresponds to the state |1⟩.
All the equal superpositions states between |0⟩ and |1⟩ lie on the equatorial plane
(θ = π/2) , but they all have a different relative phases ϕ. In this representation
the global phase of the state is omitted since it cancels out during normalization
when measurement occurs. This means that the Bloch sphere encapsulates all the
essential physical information about a qubit state. Figure 1.1 illustrates the Bloch
sphere and the position of a general state vector |ψ⟩.

4

Figure 1.1: Representation of a general state vector |ψ⟩ on the Bloch sphere.

1.1.2 Multi-qubit state

As an example for a multi-qubit state, consider the most simple case of two
Hilbert spaces HA and HB, corresponding to systems A and B. The space H of the
composite system is the tensor product of the individual spaces, i.e. H = HA⊗HB.
If systems A and B are prepared in states |ψ⟩A and |ψ⟩B respectively, then the
state vector |ψ⟩ = |ψ⟩A ⊗ |ψ⟩B represents the state of the composite system [4].

With this formalism, we establish the basis of the two-qubits Hilbert space by
combining the individual bases of each system. For instance, if each system’s basis
comprises |0⟩ and |1⟩, then the basis for the composite system includes all possible
combinations of tensor products of these states:

{|a⟩A ⊗ |b⟩B | a, b ∈ {0, 1}} |a⟩ ⊗ |b⟩ = |ab⟩ (1.5)

The general state of the composite system can then be expressed as:

|ψ⟩ = (αA |0⟩+ βA |1⟩)⊗ (αB |0⟩+ βB |1⟩)
= αAαB |00⟩+ αAβB |01⟩+ βAαB |10⟩+ βAβB |11⟩

(1.6)

In quantum computing, we categorize all possible states as either pure or mixed.
When we have full knowledge of the quantum state, then it is defined a pure
state, which can be always represented as a state vector |ψ⟩, written as a linear
combinations of tensor products of other state vectors.

However, a quantum system can also exist in a mixed state, namely a classical
mixture of several pure states |ψi⟩, each with a corresponding probability pi [5].
This happens, for instance, when we don’t have a full knowledge of the quantum
state and the usual Dirac formalism is not enough to encode all the information. In
fact, to fully represent a mixed state, we have to introduce the concept of density
matrix ρ, a more powerful mathematical tool defined as:

ρ =
∑
i

pi|ψi⟩⟨ψi| (1.7)

5

In general, ρ is a unit-trace (tr(ρ) = 1) and hermitian (ρ = ρ†) matrix. Moreover,
the purity of the quantum state is defined as tr(ρ2) ≤ 1. For a pure state |ψ⟩, the
density matrix is simply ρ = |ψ⟩ ⟨ψ| and indeed we have:

tr(ρ2) = tr(|ψ⟩ ⟨ψ|ψ⟩ ⟨ψ|) = tr(|ψ⟩ ⟨ψ|) = tr(ρ) = 1 (1.8)

since ⟨ψ|ψ⟩ = 1 by definition of unit-norm state vector. For a mixed state ρ, the
purity turns out to be always smaller than 1, in particular we have:

tr(ρ2) = tr

(∑
i,j

pipj|ψi⟩⟨ψi|ψj⟩⟨ψj|

)
= tr

(∑
i

p2i |ψi⟩⟨ψi|

)
=
∑
i

p2i < 1 (1.9)

since ⟨ψi|ψj⟩ = δij and pi ∈ [0, 1] are probabilities summing up to 1.

The density matrix formalism is crucial for quantifying noise sources like imperfect
gates, decoherence from environmental interactions, and measurement errors. It
allows researchers to simulate and analyze noisy quantum circuits, providing insights
into how noise disrupts phase relationships and computational outcomes. Using
detailed measurements and analysis enabled by the density matrix, scientists can
study and possibly mitigate noise effects, optimizing algorithms for improved
reliability of quantum computations [6].

1.1.3 Entanglement

Quantum entanglement is a phenomenon in quantum mechanics where the states
of two or more systems (e.g. qubits) become correlated in such a way that the
state of each individual system cannot be described independently of the state of
the others, even when they are separated by large distances. Entanglement plays a
crucial role in various quantum information and quantum computing applications,
enabling phenomena such as quantum teleportation.

As an example, let’s consider again the most simple case of a two-qubits state,
living in the composite Hilbert space H = HA ⊗ HB, and defined by |ψ⟩ =
|ψ⟩A ⊗ |ψ⟩B. This composite state is called entangled if it cannot be written as a
product of states of individual qubits. A well-known example of an entangled state
is the Bell state:

|Φ+⟩ = |00⟩+ |11⟩√
2

(1.10)

Consider measuring the state of one qubits in |Φ+⟩. If we measure qubit A and
find it in state |0⟩, the state of qubit B also collapses to |0⟩ with 100% probability.
Similarly, if qubit A is found in |1⟩, qubit B collapses to |1⟩, as well. This strong
correlation holds regardless of the distance between the qubits, illustrating the
non-local nature of entanglement.

Moreover, a state is termed maximally entangled if its quantum correlations are
maximal and cannot be further enhanced. This concept is pivotal for instance in
quantum communication protocols, where maximizing entanglement is often desired
for achieving robust and reliable quantum operations. Bell states represent the

6

most used maximally entangled states for a two-qubit system. There are actually
three more Bell states:

|Φ−⟩ = |00⟩ − |11⟩√
2

|Ψ+⟩ = |01⟩+ |10⟩√
2

|Ψ−⟩ = |01⟩ − |10⟩√
2

(1.11)

They form a basis for the composite Hilbert space HA ⊗HB, which is the reason
for their importance in quantum computation, communication, and fundamental
tests of quantum mechanics.

1.1.4 Projective-Valued Measurement

In quantum computing, a Projective-Valued Measurement (PVM) is a funda-
mental technique used to extract information about the state of a quantum system.
Given a pure quantum state |ψ⟩, if we want to measure a physical observable,
represented by a Hermitian operator O defined in the Hilbert space H, a PVM
provides a simple method to carry out this measurement effectively [4].

The core concept of a PVM involves projecting the state vector |ψ⟩ onto the
eigenstates {|ϕi⟩ | O|ϕi⟩ = λi|ϕi⟩} of the observable operator. Since O is Hermitian,
the spectral theorem assures that the eigenstates |ϕi⟩ form an orthonormal basis
of H and that all the eigenvalues λi are real numbers. This also means that any
quantum state |ψ⟩ ∈ H can be expressed as a linear combination:

|ψ⟩ =
∑
i

ci|ϕi⟩ (1.12)

where ci = ⟨ϕi|ψ⟩ are complex coefficients. To perform a measurement using a
PVM, each eigenstate |ϕi⟩ is associated with a projection operator Pi = |ϕi⟩⟨ϕi|.
The probability pi of observing the measurement outcome λi ∈ R corresponding to
|ϕi⟩ is computed as:

pi = ⟨ψ|Pi|ψ⟩ =
∑
j

c∗j⟨ϕj|ϕi⟩⟨ϕi|ψ⟩ =
∑
j

c∗jci⟨ϕj|ϕi⟩ = |ci|2 (1.13)

since ⟨ϕj|ϕi⟩ = ⟨ϕi|ϕj⟩ = δij by definition of orthonormal basis. Upon conducting
the measurement, the quantum state |ψ⟩ collapses to the eigenstate |ϕi⟩ with
probability pi.

The expectation value ⟨O⟩ of the given observable can be obtained from repeated
measurements on identical copies of the quantum state |ψ⟩ and it is computed as:

⟨O⟩ = ⟨ψ|O|ψ⟩ =
∑
i

ci⟨ψ|O|ϕi⟩ =
∑
i

ci⟨ψ|λi|ϕi⟩ =
∑
i

|ci|2λi =
∑
i

piλi (1.14)

by the definition of eigenstates |ϕi⟩ with eigenvales λi, and the previous equation
for probabilities pi = |ci|2.

7

1.2 Gate-based quantum computing

The two main types of implementation of quantum computing are quantum
annealing and gate-based Quantum Computing (QC). Annealing is a technique
which uses the adiabatic theorem (which says that, if the evolution of the system is
fairly small, the system will stay in the ground state) to transition from a initial
ground state of a trivial Hamiltonian to a final state of an Hamiltonian whose
ground state is the solution to our problem. The approach of gate-based quantum
computing is instead made by operating unitary transformations to a series of qubits
which encode the problem solution. The main difference is that annealing is used for
optimization problems while gate-based is more versatile and can be implemented
in various ways. Lastly, since we are in NISQ (Noisy Intermediate-Scale Quantum
computing) regime for QC, the gate-based approach is more sensitive to the noise
and decoherence, hence it needs a lot of error correction and error mitigation.

The introduction we provided about quantum information theory and its basic
principles is quite general and applicable to the study of any system composed of
qubits. Next, we will focus on the type of quantum computing that interests us:
gate-based QC.

1.2.1 Quantum gates

Quantum computing hinges on the principle of reversible operations, a funda-
mental requirement rooted in quantum mechanics. Unlike classical computing,
where irreversible operations are common, quantum computations must preserve
information to uphold coherence and respect to quantum conservation laws.

Thus unitary gates are the only used implementation in quantum computation,
because they enforce reversibility and preserve the norm of quantum states. It
guarantees that quantum algorithms can manipulate quantum states accurately
and reliably, utilizing phenomena such as superposition and entanglement.

Here are some of the fundamental single-qubit gates used in quantum computing:

• X Gate: Also known as the NOT gate, represented by the matrix:

X =

(
0 1
1 0

)
(1.15)

It flips the probabilities of the basis states |0⟩ and |1⟩.

• Y Gate: Represented by the matrix:

Y =

(
0 −i
i 0

)
(1.16)

It performs a rotation around the y-axis in the Bloch sphere, mapping |0⟩ to
i |1⟩ and |1⟩ to −i |0⟩.

• Z Gate: Represented by the matrix:

Z =

(
1 0
0 −1

)
(1.17)

8

It introduces a phase shift of π (180 degrees) to the |1⟩ state.

• Hadamard (H) Gate: Changes the basis from |0⟩ , |1⟩ to |+⟩ , |−⟩ and is
represented by:

H =
1√
2

(
1 1
1 −1

)
(1.18)

Applying the Hadamard gate twice results in the identity operator.

• S Gate: The phase gate represented by:

S =

(
1 0
0 i

)
(1.19)

It introduces a phase shift of π
2
(90 degrees) to the |1⟩ state, it is then

equivalent to
√
Z.

• T Gate: Represents a phase gate with:

T =

(
1 0
0 eiπ/4

)
(1.20)

It introduces a phase shift of π
4
(45 degrees) to the |1⟩ state, it is then

equivalent to
√
S.

These gates exemplify how quantum computations leverage unitary transforma-
tions to manipulate quantum information while preserving coherence.

Additionally, the general form of a single-qubit gate U can be expressed as:

U = eiα
(

cos θ
2

−eiϕ sin θ
2

e−iϕ sin θ
2

ei(α+ϕ) cos θ
2

)
, (1.21)

where α is a global phase, θ is the rotation angle around an axis in the Bloch sphere,
ϕ determines the relative phase, and U is unitary, ensuring the conservation of
quantum state probabilities.

We can now introduce multi-qubit gates, starting with the simple case of two-
qubit gates represented by U ∈ SU(4). One of the most fundamental and important
two-qubit gates is the CNOT (controlled-NOT), which flips the state of the second
qubit (b) if and only if the first qubit (a) is in state |1⟩. The CNOT gate acts as fol-
lows: CNOT : |a, b⟩ → |a, a⊕ b⟩. In terms of basis states {|00⟩ , |01⟩ , |10⟩ , |11⟩},
its matrix form is:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.22)

We can now show the implementation to generate the maximally entangled
states as described in equation 1.10 by implementing the Hadamard gate followed
by a CNOT, as shown in Figure 1.2.

9

H

Figure 1.2: H and CNOT gate representation.

Wich translates in the following transformations:

(Ĥ ⊗ Î)(|00⟩) = 1√
2
(|00⟩+ |10⟩) (1.23)

CNOT

(
1√
2
(|00⟩+ |10⟩)

)
=

1√
2
(|00⟩+ |11⟩) (1.24)

Another important two-qubits implementation is the swap gate, Figure 1.3,
which actively interchanges the states of the qubits:

|q1⟩ |q2⟩

|q2⟩ |q1⟩

Figure 1.3: SWAP gate representation.

This can finally be generalised to a Controlled-U (CU), Figure 1.4, with U any
unitary single-qubit gate which get‘s applied to only one qubit as CNOT:

U

Figure 1.4: General two-qubit gate representation.

In quantum computing, the concept of C-U gates extends the idea of controlled
operations, where U represents any single-qubit unitary gate applied similarly to
CNOT. These gates operate within the SU(2n) space, enabling transformations
across n qubits.

It can be demonstrated that any n qubit gate can be decomposed into a finite
number two-qubit gates. An illustrative example of this concept is the Toffoli gate,
often visualized as a controlled-controlled-not gate, Figure 1.5. This gate showcases
how intricate quantum operations can be broken down into simpler, repeatable
units that involve interactions between pairs of qubits:

≡

V V † V

Figure 1.5: Toffoli gate representation (left) and its equivalent circuit (right).

10

with V ≡ (1−i)(I+iX)
2

.

By generalizing to Cn(U) gates, where U denotes a single-qubit unitary gate,
quantum circuits can be constructed using sequences of fundamental two-qubit
gates. This approach builds upon foundational principles, facilitating scalable and
efficient execution of quantum computations.

In classical computing, we can say that AND, OR, NOT gates can be used to
compute any arbitrary classical function, constituting a universal set of gates. Con-
tinuing the analogy with quantum computation, we can state that a set of operators
forms a universal basis if any unitary operation can be arbitrarily approximated by
elements of the set.

E(U, V) ≡ max
|ψ⟩

∥(E − V) |ψ⟩∥ , (1.25)

where E represents a quantum gate or operator, V represents a target unitary
operation that we aim to approximate, and |ψ⟩ is any quantum state vector. The
expression (E − V) |ψ⟩ denotes the difference between the action of E and V on
state |ψ⟩, and ∥ · ∥ denotes the norm.

1.2.2 Clifford Group

An important example of basis gate is the set of Clifford gates. These gates are
fundamental in quantum computing due to their ability to efficiently manipulate
qubits while preserving certain properties. The Clifford gates can be generalized
for the case of n-qubits using the Pauli matrices. The Pauli group for n-qubits,
denoted as Pn, consists of unitary operators of the form eiθπ/2σj1 ⊗ · · · ⊗ σjn , where
θ = 0, 1, 2, 3 and σjk represents one of the Pauli matrices I,X, Y, Z acting on the
k-th qubit.

The Clifford group Cn is explicitly defined as Cn = {V ∈ U2n | VPnV
† = Pn}.

This group consists of all unitary operators V in the 2n × 2n unitary group U2n

that satisfy the condition of normalizing the Pauli group Pn.

Clifford gates are then the elements of the Clifford group and can be generated
using the Hadamard, the Phase, and the CNOT gates [7]. It’s easy to see that
Clifford operations on n qubits form a discrete finite set, hence they cannot provide
universal representation for arbitrary quantum computations. Indeed, Gottesman
and Knill [8, 9] have shown that Clifford gates, along with specific additional
elements such as state preparations in the computational basis and measurements
in the Pauli group, allow for efficient simulation of quantum computations on a
classical computer. This characteristic makes Clifford gates particularly valuable
in quantum computing, enabling the simulation of ideal quantum circuit behavior
efficiently.

In the realm of physical implementations, Clifford gates offer several distinct
advantages. Firstly, they are relatively simple to implement compared to non-
Clifford gates, requiring fewer physical resources and operational complexity. This
simplicity enhances the feasibility of scaling quantum systems, as fewer error-prone
elements are involved in their execution. Secondly, Clifford gates are intrinsically

11

robust against certain types of errors, making them suitable for error correction
schemes such as the surface code. This resilience is critical for maintaining the
fidelity of quantum states over extended periods, essential for performing complex
computations reliably.

Moreover, beyond the Clifford gate set, the addition of T gates enables a universal
approximation capability in quantum computation. The Solovay-Kitaev theorem
[10] elucidates that any single-qubit quantum gate can be approximated with
arbitrary precision using a discrete gate set like {H,T,CNOT}. This theorem
ensures that even very small errors ϵ > 0 can be managed with a sequence of
gates whose length scales as log(1/ϵ). This capability is crucial for constructing
complex quantum circuits on actual quantum hardware, where precise and reliable
gate operations are paramount. The practical application of the Solovay-Kitaev
theorem are vast, as they create a way for the efficient implementation of quantum
algorithms and the realization of quantum computational advantages across various
quantum computing architectures.

1.2.3 NISQ devices

Noisy Intermediate-Scale Quantum (NISQ) technology is a term coined by
John Preskill in 2018 [11] to indicate the modern noise-affected scale of quantum
computers. One of the biggest problem with quantum computing is in fact the noise
generated by unitary operations and the decoherence of the phase. Both get worse
once we increase the number of qubits in our Quantum Processing Unit (QPC).
The state of the art quantum computer, considering the most number of qubits
in the QPC, is the 1121-qubit Condor processor from IBM which is already a big
number of qubits and in 2025 are expected two more quantum computers from IBM
with fully quantum connections between chips that allow the quantum information
to flow between different processors unhindered, enabling truly large-scale quantum
computation. These devices, while not yet capable of achieving fault-tolerant
quantum computation due to current noise levels and limited qubit coherence times,
still potentially promise solving computationally intense problems.

The main problem with quantum computing is, in fact, their susceptibility to
the external factors like changing in temperature, electromagnetic fields, vibrations
and, in general, any kind of perturbation that can change the state of single qubits.

This perturbations usually cause:

• Bit-flip errors: These errors flip the state of a qubit from |0⟩ to |1⟩ or vice
versa.

• Phase-flip errors: These errors change the phase of a qubit, flipping the
sign of the |1⟩ component.

• Depolarizing errors: A combination of bit-flip and phase-flip errors.

The majority of research in quantum computing is, in this particular period,
concentrated on the development of new techniques for error correction and error
mitigation.

12

The first one is focused on resolving problems in the real-time computing part of
the computation. This is achieved by utilising logic qubits (analogous to logic bits
in classical computing), which act in a manner analogous to normal qubits, with
the exception that they are composed of numerous physical ones whose collective
properties define the logic’s state.

The second technique is implemented as a post-analysis of the output generated
by the quantum computer. It frequently employs machine learning, algorithmic
techniques, system modelling of the noise in order to extract the clean data. One
of the principal challenges in this field is the scalability of the technique in relation
to the number of qubits and the complexity of the system.

1.2.4 Qiskit framework

Qiskit (Quantum Information Science Kit) is a Python open-source software
framework for quantum computing developed by IBM. It allows to create and
execute quantum algorithms on IBM Quantum simulators as well as real processors.
Qiskit provides tools for various stages of quantum computing, including designing
circuits, running experiments, and analyzing results. It’s aimed at making quantum
computing accessible for researchers, developers, and educators.

The name "Qiskit" is a general term referring to a collection of software
for executing programs on quantum computers. Most notably among
these software tools is the open-source Qiskit SDK, and the runtime
environment (accessed using Qiskit Runtime) through which you can
execute workloads on IBM® quantum computers. As quantum technology
evolves, so does Qiskit, with new capabilities released every year that
expand this core collection of quantum software.

In addition, many open-source projects are part of the broader Qiskit
ecosystem. These software tools are not part of Qiskit itself, but rather
interface with Qiskit and can provide valuable additional functionality.

The Qiskit SDK (package name qiskit) is an open-source SDK for
working with quantum computers at the level of extended (static,
dynamic, and scheduled) quantum circuits, operators, and primitives.
This library is the core component of Qiskit; it is the largest package
under the Qiskit name with the broadest suite of tools for quantum
computation, and many other components interface with it.

Some of the most useful features of the Qiskit SDK include:

Introduction to Qiskit

The Qiskit SDK

IBM Quantum Documentation Sign in

Figure 1.6: Overview of the Qiskit framework architecture [12].

Qiskit library consists of several main modules, as depicted in Figure 1.6:

• Circuit library: it offers a comprehensive set of tools to create and ma-
nipulate quantum circuits, registers, gates, and instructions, including pa-
rameterized and conditional operations. It also provides a diverse collection
of pre-built quantum algorithms, serving as fundamental building blocks for
more advanced quantum programs;

• Quantum info module: it provides functionalities for precise manipulation
and analysis of quantum states, operators, and channels, enabling exact
quantum evolution of state vectors and density matrices;

• Circuit transpiler: it compiles quantum circuits to run on a specific target
backend, adapting them to device-specific properties and enhancing perfor-
mance through various optimization passes;

13

• Quantum Primitives: it contains foundational components such as the
Sampler (drawing samples from a quantum state) and the Estimator (esti-
mating expectation values of quantum operators) primitives, serving as base
definitions and reference implementations for quantum computation tasks;

• Qiskit Runtime: it is a cloud-based service acting as a client to enable the
remote execution of quantum algorithms on real IBM Quantum devices.

14

Chapter 2

Machine Learning

2.1 Introduction to Machine Learning

Machine Learning (ML for short) is a field of computer science that develops
algorithms capable of self-improving through experience. In other words, ”Machine
learning is the field of study that gives computers the ability to learn without being
explicitly programmed” (Arthur Samuel, 1959) [13].

In recent years, this kind of programming has spread across various fields thanks
to the increased volume of data available for training, better computing power, and
improvements in training algorithms. Machine learning is often developed in data
science for its ability to analyze large datasets and extract information that would
otherwise be inaccessible [14, 15, 16].

The problems one encounters in the development of ML algorithms usually
involve the training process. There is a substantial amount of theory behind
choosing the right type of ML implementation, the kind of optimization process,
dataset preparation, and the libraries and APIs to use. In this section, we will
provide a general overview of all these topics, with particular attention to those
relevant to the purpose of this thesis.

2.1.1 Learning paradigms

The name Machine learning is actually used for a large set of different types
of algorithm. In particular we can enclose them in four categories depending on
whether or not, and to what extent, they need human supervision during training:

1. Supervised learning: this type of algorithm learns from labeled data, meaning
each input data point is paired with an output label that represents the
correct answer[17]. The algorithm’s goal is to learn a mapping from inputs to
outputs that can be applied to new, unseen data. Common tasks in supervised
learning include:

• Classification: assigning input data into predefined categories or classes;

• Regression: predicting a continuous output value based on input data.

15

2. Unsupervised Learning: in this approach, the training dataset is unlabeled,
and the algorithm attempts to identify patterns and structures in the input
data, finding connections and relationships within it. Some application are:

• Clustering: grouping data points into clusters based on their similarities;

• Anomaly Detection: identifying outliers or unusual data points;

• Dimensionality Reduction: reducing the number of features in the data
while preserving the information the data represent.

3. Semi-supervised learning: This approach combines labeled and unlabeled data,
typically with a larger portion being unlabeled. It involves an unsupervised
algorithm, or a stack of unsupervised algorithms, which is fine-tuned with
supervised learning [18, 19]. Common methods include:

• Self-training: the algorithm generates pseudo-labels using the labeled
data and then proceeds to train on those.

• Co-training: two classifiers are trained on labeled data and enhance each
other’s predictions through iterative retraining.

• Graph-based self-training: uses graph-based label propagation to label
all data with an accuracy coefficient.

4. Reinforcement learning: which is fundamentally different since we use a
system, called agent, that can ”observe” the environment and perform action
which cause a penalty/reward system to find the optimal policy for the task,
by maximising the rewards. This type of learning is often used in robotics,
for example in learning how to walk or how to play games.

2.1.2 Gradient-based optimization

We discussed various types of learning algorithms without delving into how they
actually ”learn”. This can be implemented by evaluating some kind of function
that represents how well our model completes the tasks and varying the function
parameters in order to find the optimal ones.

A general implementation is made considering a function y⃗ = f(x⃗, θ⃗), where θ⃗
represents a series of parameters, whose value we want to be close to the truth label
value associated to the input ytruth = g(x). To achieve this, we define a loss function

J(θ⃗) that we want to minimize to enhance our model (for supervised regression it
usually is the mean squared error or MSE). One widely used method to optimize
these parameters involves Gradient Descent (GD), initialized randomly with a

vector of random parameters θ⃗ [17, 20]. This approach hinges on computing the
gradient of the loss function relative to the parameters, which guides adjustments
to θ⃗ in a direction that minimizes J . Through iterative refinement, we progressively
approach a minimum of the loss function.

In this approach, for which a graphical implementation is shown in Figure 2.1,
we can consider the directional derivative with versor û of the function J(θ⃗ + αû)

16

with respect to α in α = 0
∂

∂α
J(θ⃗ + αû). (2.1)

To minimize J , with this step-iteration method, we want to find the fastest
decreasing direction for J :

min
u, u⊤u=1

u⊤∇θJ(θ⃗)

= min
u, u⊤u=1

∥u∥2∥∇θJ(θ⃗)∥2 cosϕ
(2.2)

with ϕ the angle between û and the gradient. And to calculate the next vector:

θ⃗′ = θ⃗ − λ∇θ⃗J(θ⃗) (2.3)

where λ is a hyper-parameter that controls the step length of parameter variations.

Figure 2.1: Visualization of a function landscape explored by Gradient Descent
[21].

We can now show an implementation using MSE and h(x⃗) as the true labeled
value:

J(θ⃗) =
1

2N

N∑
i=1

(hθ(x
(i))− y(i))2 (2.4)

then

θj = θj − λ
∂

∂θj
J(θ⃗)

∂

∂θj
J(θ⃗) =

∂

∂θj

[
1

2N

N∑
i=1

(hθ(x
(i))− y(i))2

]
(2.5)

Iterating this algorithm allows us to converge to a minimum, not necessarily a global
minimum, of the loss function and thus to an optimal set of parameters. Even
though we cannot be sure we reached a global minimum, we still are able to utilize

17

this procedure as long as the cost function is small enough, as shown in Figure
2.2. We can still make better model by implementing methods like stochastic GD,
considering the momentum of the gradient, hyper-parameters tuning and utilizing
some instances of the dataset to select the best performing ones for validation and
testing.

Figure 2.2: Global and local minima.

2.1.3 Supervised learning

As anticipated supervised machine learning is a technique based on the training
of our model with labeled data. The aim of the algorithm is then to understand
and emulate the labeling process used in the dataset and to generalize to new
unseen data [16]. This approach is mainly used in regression, where the output to
reconstruct is a continuous one, and classification where the model has to predict
on a discrete set of values. These tasks find applications in many fields of science
such as medical diagnosis, image recognition, financial forecasting, data science and
many more, and they are mostly implemented as:

• Linear regression: it consists in studying the data assuming a true form of a
straight line, often trained with GD and RMSE for the loss function. The
aim is simply to compute a weighted sum, plus a constant for the inputs.

• Support Vector Machines: SVMs are powerful implementations of ML capable
of linear and nonlinear classification and regression. Used for complex but
medium-sized datasets, they consist of the identification of linear decision
boundaries (lines that separate the data with different labels).

• Decision Trees: DTs are versatile models, used for classification and regression,
characterized by a series of ”questions” in the decision nodes, consisting of
testing the data for a particular property until reaching a leaf node which is
going to be the final label for the data.

• Artificial Neural Networks: ANNs encompass various architectures with
developed with supervised learning , such as Feed-Forward Neural Networks

18

(FFNNs), Convolutional Neural Networks (CNNs), and Recurrent Neural
Networks (RNNs). These models differ in structure and application: FFNNs
have data flowing in one direction, CNNs are optimized for visual recognition
with a filter mechanism, and RNNs handle sequential data and can process
inputs of arbitrary lengths. Some other details about ANNs will be discussed
in Section 2.2.

2.1.4 Training, validation, and testing

When training a machine learning program, our goal is to minimize loss and so
maximize the accuracy of our algorithm. However, this process primarily evaluates
how well our algorithm performs on the data it has been trained on and not how it
generalise to new data.

Figure 2.3: Training procedure with training, validation and test sets.

To effectively select the best parameters and hypotheses on the training set and
to mitigate overfitting — where the model memorizes noise and specific dataset
characteristics rather than learning underlying patterns — we must evaluate its
performance on new, independent data [17, 14], as shown inFigure 2.3.
One of the most used solution is to split our training data into three different part:
the training, the validation and the test set:

• the first one is used in the actual learning algorithm to find the best parameters
and minimise the loss function;

• the validation set is crucial for tuning hyperparameters, which directly influ-
ence the training process and ultimately the performance of the final model,
helping us select the best-performing algorithm;

• the test set remains unseen until the final evaluation phase, providing an
unbiased evaluation of the model’s performance after it has been tuned and
validated on the best-performing algorithms.

19

2.2 Artificial neural networks

Artificial Neural Networks (ANNs) are a particular set of ML algorithms that
try to mimic the functioning of the brain. This attempt at emulating real neurons
is made by creating a closed set of deeply interconnected processing units that, as
a whole, exhibit some features of real neural networks[17, 22].

Figure 2.4: Threshold Logic Unit (TLU) representation.

One of the first and simplest forms of ANNs is the Threshold Logic Unit (TLU),
shown in Figure 2.4, which acts like a simple linear binary classifier by taking
numeric inputs with associated weights and outputs a step function based on their
sum. Using TLUs, we can create a perceptron by adding a bias neuron to the input,
which always outputs one, and connecting the inputs to a layer of TLUs. The bias
neuron is practically used to shift the activation function of TLUs in different ways,
depending on the associated weight and data, enhancing the learning process.

To train a perceptron, we take inspiration from real neural networks. When two
neurons in our brain interact with each other, their connection gets stronger, which
is akin to ”training” the neurons. For a perceptron, we want to strengthen the
connections that would have made the correct prediction on the input data. We do
this by changing the values of the weights as described in general gradient-based
optimization 2.5.

However, this type of implementation is limited to linear decision boundaries.
With just a single TLU, we cannot even learn slightly more complex functions, like
for instance the XOR (exclusive-OR). This is due to the fact that the classification is
made with a straight line decision boundary and gives a binary result. Nevertheless,
we can attempt to stack many perceptrons to create a Multi-Layer Perceptron
(MLP) and to chose an optimal activation function in order to be able to analyze
more complex data.

20

2.2.1 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is a Feed-Forward Neural Network (FFNN)
made up of a series of fully connected layers of TLUs, as is qualitatively shown in
Figure 2.5. The layers between the input and the outputs are called the hidden
layers, and each one has a bias neuron.

Figure 2.5: Multi-Layer Perceptron (MLP) architecture.

Let’s consider a general MLP with a
(j)
i representing the activation (value passed

forward) of the ith neuron in the jth layer, H(j) representing the weight matrix
(with dimensions depending on the number of layers and neurons per layer) from
layer j − 1 to j, g is the activation function, and N as the number of TLUs of the
j − 1 layer:

a
(j)
i = g

(
N∑
k=1

H
(j)
i,k · a(j−1)

k

)
(2.6)

The output will then be the activation of the final layer of the network. It is now
straightforward to consider the inputs x⃗ as the activation of the first layer:

a⃗(0) = g(H(0)x⃗) (2.7)

This allows us to iterate the substitution and calculate the final output h = H(x);
this process is called forward propagation. Thanks to this process, we can compute
complex operations, where each layer acts like a tensor operation that can be seen
as a geometric transformation of the input data, making the algorithm flexible.

To train MLPs, we use gradient-based optimization. The challenge with this
approach is that our structure is implemented as a FFNN, and performing the
iteration required for this method can be complex and time-consuming. Instead,
we can utilize the fact that every operator used is differentiable, allowing us to
compute the gradient of the operator and apply the chain rule:

∂

∂x
f(g(x)) = f ′(g(x))g′(x) (2.8)

21

The Back-Propagation (BP) is an efficient technique for implementing GD opti-
mization. It begins with a forward- followed by a backward- propagation of the
information trough the layers. In order to compute the gradient of the loss function
relative to each parameter of the model, reverse mode auto-differentiation (automat-
ically computing gradients) is used. Practically it calculates how a small variation in
each parameter affects the final output so it can be changed to the parameter with
the lowest loss function. It is important to choose a proper activation function for
the TLU units when using GD and BP, particularly since we compute the gradient.
It is best to have an activation function that is continuous and differentiable, and
to randomly initialize the weights, in order to break the symmetry and enhance the
training process.

Implementing complex MLP with many layers (called deep NNs) capable of
complex classification and regression tasks can be challenging because of training.
Possible problems linked to the training of deep neural networks are the phenomena
of exploding and vanishing gradients that make the training of lower layers very
harsh. A simple solution has been shown to be the optimal choice of activation
functions, which can affect the first part of training. To further solve it, we can
implement a method called batch normalization, which consists of normalizing and
centering the input of the activation function, then scaling it and shifting it with
just 2 parameters per layer (this way, it is not necessary to standardize the dataset).
It is called batch normalization since we normalize by calculating the means and
variances of inputs divided into mini-batches. This type of implementation has
been shown to avoid the poor solutions one gets using only random initialization
[23].

2.2.2 Autoencoder architecture

A widely-used type of FFNNs is the so-called Autoencoder (AE). This neural
network architecture is characterized by an input and an output layer of the same
size, as well as two symmetric series of hidden layers usually denoted as encoder
and decoder (see Figure 2.6) [24]. The aim of the AE is to compress the input
essential information into a lower-dimensional representation (latent space) and try
to reconstruct it.

Formally, the encoder and the decoder are general parameterized functions such
that:

eθ : S −→ L dϕ : L −→ S (2.9)

where θ and ϕ represents the trainable parameters of the encoding and decoding
functions respectively, S is the input and output space, and L is the low-dimensional
latent space. Training the autoencoder means to search for the optimal set of
parameters to minimize a loss function F which depend on a given distance metric
computed between the input and the output of the AE itself. In particular:

θ, ϕ = argmin
θ,ϕ

(F (|x− dϕ(eθ(x))|)) (2.10)

where x ∈ S is the input vector and dϕ(eθ(x)) = dϕ(z) = x̂ ∈ S is the output, with
z ∈ L denoting the compressed representation in the latent space.

22

Over-training the AE network would lead to x̂ = x but we would have a useless
model that simply outputs a copy of the input. The output of the composite
function is then to be thought of not as an exact reconstruction of x but as a
probabilistic representation centered on x but not matching it exactly. To achieve
this, we exploit the autoencoder bottleneck to produce a compressed and under-
complete representation of the input, thus forcing this latent vector z to encode
only the essential information about x and then trying to reconstruct it.

Figure 2.6: General architecture of an autoencoder neural network.

A Denoising Autoencoder (DAE) is a task-specific type of autoencoder whose
aim is to reconstruct an original input from its noisy version. In this supervised
context, the noisy vector gets labeled with the noiseless data so that a good denoised
output can be obtained from the corrupted input. So, the model is supposed to
learn how to extract the relevant information from the input and filter out the
effects due to noise.

2.2.3 TensorFlow framework

Implementing a machine learning algorithm has become relatively easy thanks
to powerful end-to-end libraries that have been developed in recent years like
TensorFlow and high-level API like Keras [25]. In this section, we briefly present the
TensorFlow framework and introduce the basic concepts underlying its development.

23

Figure 2.7: Simplified scheme of the TensorFlow architecture.

TensorFlow is a powerful tool designed for heavy computation, and in particular,
well-suited and tuned for machine learning algorithms. It is being developed by
the Google Brain team and published as open-source in late 2015 [26, 14]. Its
architecture is implemented as shown in Figure 2.7.

At the lowest level, TF is made with C++ with its operations (or ops) transpar-
ently portable to different kernels for different processing units like CPUs (Control
Processing Units), GPUs (Graphic Processing Units), and TPUs (a particular type
of chip made by Google which is optimized for tensorial calculus). It is based on
graph modeling (data flow graph), which consist in a data structure that defines the
sequence and relationships between operators in a graph, that can be implemented
using:

• Tensors: Tensors represent data as n-dimensional arrays of int32, float32
or string. All tensors in TF are dense (dense, as opposed to sparse tensors
where we store only non zero values, are multi-dimensional arrays where all
element are explicitly stored), in order to facilitate simple implementation
and iteration at the lowest level.

• Operations: An operation takes one or more tensors as input and produces
one or more tensors as output. Each operation has a specified type and may
have compile-time attributes that determine its behavior. Additionally, there
are variable operations that have a mutable state, which is read or written
each time the operation executes.

24

Chapter 3

Autoencoder for Error Mitigation

As anticipated in the subsection 1.2.3, one of the most important objectives
regarding quantum computing research is error correction and, in parallel, error
mitigation. The aim of this thesis is to utilise the concepts described thus far to
implement a functioning autoencoder, thereby enabling error mitigation on a given
quantum computer with a fixed number of qubits. To this end, we will create a
model of a Denoising Autoencoder (DAE) and train it on a dataset comprising
noisy simulations of real-world circuits, each labelled with the corresponding ideal
simulation. In order to enhance the training of the autoencoder, we will apply a
Gaussian form to the output of our circuits using an optimizer that can calculate
the parameters of the gates to shape the output as desired. This process has
been implemented with the objective of establishing a framework within which
the autoencoder can be facilitated in discerning the impact of noise from the ideal
output and to generate a distribution that is plausible in a real-world context.

The objective is to create a machine learning model able to mitigate the noisy
output data of a generic quantum circuit. This model is intended to be a proof of
concept. Indeed, due to resources constraints, we were not able to run the circuit on
real quantum hardware but we used classical simulators including quantum noise
models, which of course are quite inefficient as the size of the quantum system
increases. With a real gate-based quantum computer, this process would be intrinsic
to the device itself, enabling the same kind of study with larger circuits and in a
fully realistic environment.

3.1 Data preparation

To train the DAE, it is necessary to create a sufficiently large dataset. This
dataset was generated as pairs of ideal and noisy probability distributions, repre-
sented as histograms with a number of bins matching the 2n computational basis
states for an n-qubits quantum circuit. In our case we decided to set n = 5, since
our final aim is just to validate the effectiveness of this QEM approach in a simple
case. As previously discussed, the whole dataset should include all the instances
required for training, validating, and testing the DAE model.

25

3.1.1 Circuits generation

We started choosing a few different Parameterized Quantum Circuit (PQC) ar-
chitectures commonly used in quantum machine learning and quantum optimization
problems. To make our study as much realistic as possible, these architectures are
selected from a dataset of commonly used quantum circuits, made available online
for benchmarking purposes [27]. All the circuits have 5 qubits and a varying number
of trainable parameters, large enough to make the PQC sufficiently expressive to
learn the given target probability distributions. For the generation of these target
distributions, represented as 32-bins histograms, we used only data sampled from a
normal G(µ, σ) function, varying µ and σ in a fixed range of allowed values.

Circuit instances are then obtained by assigning different sets of specific values
to the PQCs parameters. These values are computed as the result of a classical
optimization process designed to prepare a particular quantum state |ψi⟩ whose
basis states probabilities match a given random histogram hi previously generated.
This process was performed using Pennylane, an open-source quantum framework
specifically designed for quantum machine learning [28].

Figure 3.1: Overview of the hybrid quantum-classical workflow to train each
Parameterized Quantum Circuit (PQC) and learn any given basis state probability
distribution.

In the following, we give a more detailed explanation about the approach adopted
to train each single quantum circuit in the dataset (see Figure 3.1 for an overview
of the entire workflow).

Let’s start from a circuit initialized in the state |0⟩⊗n (where n is the number of
qubits). First, we apply the unitary Upqc(θ), parameterized by the set of parameters
θ and representing the quantum circuit we want to train. Then, we apply a
second unitary U †

ae(x) implementing the adjoint (or inverse) transformation of the
amplitude embedding routine, used to prepare the state x that encodes the target
probability distribution. The goal is to find the optimal parameters configuration
θ∗ in order to have:

Upqc(θ
∗) = Uae(x) (3.1)

26

Notice that the problem now actually reduces to train the PQC so that the unitary
transformation corresponding to the whole circuit is simply the identity, mapping
the state |0⟩⊗n to itself. A quite robust way to do this in practice is by minimizing
the following cost function:

C = (1− P 2({0}n))1/2 (3.2)

where P 2({0}n) is the square of the probability to measure the bitstring {0}n,
corresponding to the quantum state |0⟩⊗n. The value of this cost function is
bounded in [0, 1] and, in particular, is equal to 0 only in the case where the
probability of sampling {0}n is 1, meaning that we were able to find the optimal
parameters θ∗. The actual code implementation of this optimization procedure is
shown in Appendix B.

3.1.2 Clifford ideal simulation

The Clifford ideal simulation represents a method for accelerating the com-
putation of ideal distributions. Clifford gates constitute a specific class of gates
belonging to the Clifford group, as described in Section 1.2.2. Thanks to their
particular mathematical properties, they are efficient to simulate classically. The
basis of the Clifford group is composed of gates H, S, and CNOT and does not
constitute a universal basis. In order to represent a general circuit, it is necessary
to add the gates T =

√
S and T † to form a universal gate set. The utilisation of

this extended set of gates enables the application of the Solovay-Kitaev.

The extended Clifford group was employed to facilitate the efficient compu-
tation of the ideal distribution of the approximation obtained with the Qiskit
SolovayKitaev transpiler, which identifies the optimal approximation of the passed
circuit for the basis gates set.

Finally, we used the Qiskit Statevector object to exactly compute the final
output state vector according to the unitary evolution defined by the transpiled
quantum circuit. This method allows to get the exact probabilities of each compu-
tational basis state, constituting the target noiseless distributions in our dataset.

3.1.3 Noisy simulation

The initial point of departure for the noisy simulation is the approximated circuit
employed in the ideal simulation. In the absence of access to a real quantum com-
puter, it is imperative to simulate a realistic noise model. The overall choice of these
custom noise model parameters is summarized in Table 3.1 and its implementation
shown in Appendix A.

Qiskit is a comprehensive library for quantum computing that provides the
so-called AerSimulator, which encompasses a variety of quantum circuit simulation
methods. Specifically, we selected the specific IBMQ Sherbrooke device to access
the corresponding coupling map, thereby accurately reflecting the topology of a
real machine in the noisy circuit simulation.

27

Parameter Value

Relaxation time T1 2 ms
Dephasing time T2 1.5 ms
Single-qubit gate time 75 ns
Two-qubits gate time 100 ns
Depolarization probability 1× 10−5

Readout error

[
0.98 0.02
0.02 0.98

]
Coupling map Sherbrooke IBMQ backend

Table 3.1: Summary of the parameters values defining the circuit noise model.

Table 3.1 outlines the parameters of a custom noise model used for the noisy
quantum circuit simulation.

• Relaxation time T1: it measures how long a qubit can maintain its state
(typically the ground state) before losing coherence due to relaxation processes.
A longer T1 time indicates better coherence and lower state decay.

• Dephasing time T2: it measures how long a qubit can retain its phase
coherence without external perturbations causing phase errors. A longer T2
time indicates longer coherence and better resistance to dephasing.

• Gate times: they represent the time required to perform single-qubit and
two-qubit unitary gate operations. Shorter gate times minimize exposure to
environmental noise and reduce the likelihood of errors during quantum gate
operations.

• Depolarization probability: it indicates the likelihood of a qubit becoming
a mixed state due to interactions with the environment. A lower depolarization
probability corresponds to higher qubit fidelity and stability against noise-
induced errors.

• Readout error matrix: it models the error probabilities of different mea-
surement outcomes for each qubit. Higher diagonal values indicate higher
readout accuracy (lower readout errors), while off-diagonal elements represent
misread outcomes.

• Coupling map: The coupling map defines the allowed connections (couplings)
between qubits in a quantum processor. It outlines which qubits can interact
directly with each other via two-qubit gates. The coupling map’s configuration
impacts gate implementation efficiency and error rates, as operations involving
non-neighboring qubits may require additional resources and introduce higher
error probabilities.

These parameters have been tuned to resemble a real IBMQ superconducting device
but at the same to introduce a significant amount of noise to test the effectiveness
of our mitigation technique.

To run both the ideal and noisy quantum circuit simulations, we employed

28

the Qiskit AerSimulator setting a fixed number of shots = 105. This number of
samples (for each quantum circuit run) should be large enough number to properly
approximate the final state probability distribution.

3.2 Model definition

The final component of our error mitigation technique is the autoencoder. The
autoencoder denoiser was trained using the TensorFlow library and Keras, a
high-level API within TensorFlow, was used to define the architecture of the
autoencoder, including the layers, nodes, activation functions, and parameters for
optimal learning.

32

128

256

64

32
16

8
16

32

64

256

128

32

Layer # Nodes # Params

Input 32 0
Dense 128 4224
Dense 256 33024
Dense 64 16448
Dense 32 2080
Dense 16 528
Dense 8 136
Dense 16 144
Dense 32 544
Dense 64 2112
Dense 256 16640
Dense 128 32896
Dense 32 4128

Total # Params: 112,904

Figure 3.2: Schematic representation of the autoencoder (left) and detailed summary
of its fully-connected architecture (right).

Specifically, we implemented an autoencoder framework based on the number
of qubits, the fact that we were working on a binned PDF distribution and the
general form of the introduced noise. The model employs a layered architecture with
LeakyReLU activations, which introduces non-linearity while mitigating vanishing
gradient issues during training. The only parameter needed to define the LeakyReLU,
which controls the slope of the straight line for x⃗ < 0, has been set to 0.2, a value
that is commonly employed in similar implementations. As previously stated in
section 2.2.2, the structure is symmetrical with respect to the latent space layer,
which has a dimension of 8, as can be seen in Figure 3.2. Finally, on the final layer,
the outputs are defined with a SoftMax activation function, which constrains the
data to be contained within the interval [0, 1] and ensures that the total sum is
equal to 1.

The data include a total number of 5000 instances as pairs of noisy-ideal output
probability distributions. The sample was then split into training, validation, and
testing set in proportions of 0.7, 0.2, and 0.1, respectively. The autoencoder was

29

trained over 150 epochs, using a batch size of 64 examples and the ADAM optimizer
[29]. Furthermore, the selection of the loss function is of critical importance in
guiding the learning process towards the effective denoising of the input data.
The model was trained multiple times by using different losses commonly used in
ML: Mean Absolute Error (MAE), Mean Squared Error (MSE), Kullback-Leibler
divergence (KL), and Cross Entropy (CE). For a better robustness in the training
convergence rate, we decided to use the MSE loss function, defined as:

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 (3.3)

where N is the number of bins, ŷi are the ideal probabilities, and yi are the
corresponding denoised quasi-probability computed by the model.

3.3 Data analysis

The proposed model has been able, with a certain precision margin, to restore
and clean the data from the noise generated by the quantum processor as expected.
We are now going to show the data obtained and the respective analysis, giving
the graph for the metric used to analyze the quality of the framework. Lastly we
are going to draw some conclusions and show how this kind of approach can be
implemented.

A first preview of how the autoencoder will perform can be suggested tracking
the train loss history and the validation loss history shown in Figure 3.3.

0 20 40 60 80 100 120 140
Epoch

0.001

0.002

0.003

0.004

0.005

0.006

0.007

M
SE

 lo
ss

Train
Validation

Figure 3.3: Train and validation loss as a function of the training epochs.

The data indicates that the learning curve of the model, both during training and
validation, is declining. This suggests that the model is improving. Additionally,
the nearly flat shape of the final portion of the curve indicates that the model is
converging to a minimum, and so, to an optimal set of parameters.

30

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

Bitstring

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Qu
as

i-p
ro

ba
bi

lit
y

Noisy
Ideal
Denoised

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

Bitstring

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Qu
as

i-p
ro

ba
bi

lit
y

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

Bitstring

0.00

0.05

0.10

0.15

0.20

0.25

Qu
as

i-p
ro

ba
bi

lit
y

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

Bitstring

0.00

0.05

0.10

0.15

0.20

0.25

Qu
as

i-p
ro

ba
bi

lit
y

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

Bitstring

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Qu

as
i-p

ro
ba

bi
lit

y

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

Bitstring

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Qu
as

i-p
ro

ba
bi

lit
y

Figure 3.4: Example histograms showing a comparison between the noisy, ideal,
and denoised final state probability distributions.

We can now show the output of the model compared to the ideal and the noisy
simulations in Figure 3.4 and start to analyze if and how well the autoencoder
matches our expectations.

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

Bitstring

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Qu
as

i-p
ro

ba
bi

lit
y

Noisy
Ideal
Denoised

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

Bitstring

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Qu
as

i-p
ro

ba
bi

lit
y

Noisy
Ideal
Denoised

Figure 3.5: Example of optimal (left) and sub-optimal (right) result for two specific
histograms drawn from the data sample.

It is evident that the denoised data is a better representation of the ideal
distribution than the noisy distribution. While there are minor discrepancies in
the height of the peak centre, the majority of the bin heights are close to the ideal.
Significantly, in most cases the model is able to effectively eliminate the bit-strings
that have non-zero values solely due to the introduced noise. However, in a small
percentage of cases, the approximation of the shape of the denoised distribution
does not align closely with the ideal one. Some representatives of these examples
are shown in Figure 3.5.

31

Finally, for the evaluation of the results, we computed the Wasserstein distance
metric, which is the best choice when comparing one-dimensional probabilities
distributions [30] The Wasserstein metric W1(P,Q) between two probability distri-
butions P and Q on a metric space (X , d), in the case of discrete distributions, is
defined as:

W1(P,Q) = min
γ∈Γ(P,Q)

∑
i,j

d(xi, xj)γi,j, (3.4)

Here, Γ(P,Q) denotes the set of all transportation plans γ where γi,j ≥ 0 for all i, j.
A transportation plan γ specifies how probability mass is transferred from points xi
to xj , with γi,j indicating the amount transported. The constraints

∑
j γi,j = P (xi)

ensure that the total mass transported from xi equals P (xi), and
∑

i γi,j = Q(xj)
ensures that the total mass received at xj equals Q(xj), thereby adhering to the
probabilities P and Q. The term d(xi, xj) represents the distance between points
xi and xj.The total mass transported is to the overall quantity of probability mass
moved between sets of points as defined by a transportation plan.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Wasserstein distance

0.00

0.02

0.04

0.06

0.08

0.10

Fr
eq

ue
nc

y

Median
Ideal vs Noisy
Ideal vs Denoised

Figure 3.6: Comparison of the distributions of the Wasserstein distance between
pairs of ideal-noisy histograms (in blue) and ideal-denoised histograms (in orange).

To further explain, a Cumulative Distribution Function (CDF) is a function
that describes the probability that a random variable takes on a value less than
or equal to a certain value. In our case, we have an empirical histogram instead
of an analytical function. Therefore, the weight W is calculated by binning the
data and summing over all the bins, rather than integrating over the entire range
of possible values. This means that we approximate the integral by considering
discrete intervals (bins) and summing the contributions from each bin instead of
integrating in the x axis.

Therefore, W1(P,Q) measures the minimum average distance required to trans-
port the distribution P to Q, where the average distance is computed based on the
distances d(x, y) and weighted by the transportation plan γ.

32

Figure 3.6 shows the distribution of this metric computed between all the pairs of
ideal-noisy histograms and all the pairs of ideal-denoised histograms in the dataset.

In the case of a perfect matching in a pair of histograms, we would get a
Wasserstein distance equal to 0. Even if this is never the case (our aim is just to
reduce the error mitigating its impact but we can’t have a complete removal as for
QEC), the comparison between the two distributions shows the effectiveness of our
mitigation method, since the peak related to the denoised results is significantly
shifted towards 0 compared to the almost flat distribution of the original noisy data.
In particular, the median value of the two distributions and their corresponding
Confidence Interval (CI) for a 99% Confidence Level (CL) are the following:

Ŵdenoised = 0.0056 with CI(Ŵdenoised) = [0.0053, 0.0060]

Ŵnoisy = 0.0261 with CI(Ŵnoisy) = [0.0251, 0.0271]
(3.5)

This result shows that our mitigation approach was able to reduce the median of
the Wasserstein distance metric by almost an order of magnitude. The confidence
interval on the median has been computed using the statistical bootstrapping
technique [31].

3.4 Possible applications

Implementing an error mitigation approach that adapts to quasi-probability
distributions, as opposed to relying solely on expected value error correction, repre-
sents a forward-looking strategy with potential for advancing quantum computing.
In our implementation, we first trained our model with a fixed number of qubits,
which allowed us to establish a basic framework.

It is important to note that scalability is a crucial factor in the mitigation of
errors, as mentioned previously. In order for these error mitigation strategies to be
applicable to larger quantum systems, which are becoming increasingly complex
and computationally demanding, scalability is necessary. This allows the techniques
to be extended beyond the limits of the original system, providing a robust and
adaptable approach. The approach described above employs a fixed number of
qubits, which precludes the autoencoder from being scaled. However, this does not
imply that the model is not scalable, as the requisite step to increase the number
of qubits is simply to select new scaled circuits. Furthermore, the data set must be
recreated using code. The availability of an actual quantum computer would greatly
simplify training by providing direct access to noisy quantum data, as opposed to
relying on simulated noisy datasets, reducing the required amount of traditional
resources.

The ability to train on real quantum noise data would also further improve the
fidelity of our error mitigation strategies, as real quantum systems exhibit nuances
and characteristics that are difficult to simulate accurately. Therefore, although our
current implementation makes effective use of simulated noisy data, the potential
integration of real quantum data represents a promising avenue for advancing

33

the accuracy and applicability of error mitigation techniques in quasi-probability
distributions.

Important future applications, that derive from the quantum supremacy regime
and the application of quantum computing in real world problems, can be numerous:

• Quantum algorithm: with quantum algorithms increasing in complexity and
depth, they get more affected by noise and need to be validated to ensure
their accuracy and helping in calibration and validation process;

• Quantum Machine Learning: QML process can improve its reliability with
the help of distribution based error mitigation because of its probabilistic
approach in various domains, such as pattern recognition, optimization, and
classification;

• Quantum chemistry simulation: quantum chemistry simulation highly relies
on precision since it is based on accuracy simulation of quantum scale objects.

An advantage of this implementation could finally be the need for only a train
for a single quantum machine. We could then create a dataset for a new computer,
train the autoencoder and then use it to clean all the data generated from the
machine. This approach centered on the computer and not the data can be totally
general instead of having to train a new model for each study made with the
machine.

34

Conclusion

In this thesis, we introduce a new approach to error mitigation in quantum
computing using machine learning techniques. Our focus is on reducing noise
directly within the quasi-probability distribution, rather than solely correcting
expected values. Quantum Error Mitigation (QEM) offers significant advantages in
hardware efficiency compared to traditional Quantum Error Correction (QEC), and
provides a variety of techniques suited to different application scenarios, making it
integral to recent experimental demonstrations of quantum hardware.

Initially, our dataset consisted of real-world circuits involving five qubits designed
for benchmarking and simulations. Subsequently, we generated circuits from ideal
Gaussian distributions, which served as targets for our optimization algorithm
applied to circuit parameters.

We implemented an autoencoder with 13 layers and used mean squared error
(MSE) as the loss function, with the goal of transforming noisy distributions into
distributions closer to their ideal counterparts. Training the autoencoder involved
4500 entries of noisy distributions paired with their corresponding ideal distributions,
generated using a custom noise model defined in Qiskit.

Our results show promising outcomes, effectively reducing errors and producing
distributions that closely approximate the ideal targets. The Wasserstein metric
was used to confirm that the denoised data aligns well with the expected ideal
distribution, demonstrating a clear improvement in quantum computing data
quality.

These encouraging findings pave the way for the implementation of quantum
error mitigation in more sophisticated experimental settings. The demonstrated
reduction of errors and agreement with the ideal distributions may indicate that
QEM techniques could prove instrumental in enhancing the precision and reliability
of quantum computations. It may facilitate the advancement and maturation
of quantum computing technology, enhancing its robustness and applicability in
diverse practical and experimental scenarios. This progress is of critical importance
for the continued development of quantum computing, as it addresses significant
challenges in this field and brings the realisation of its potential closer.

35

Bibliography

[1] Mark M. Wilde. Quantum Information Theory. Cambridge University Press,
Cambridge, UK, 2013.

[2] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

[3] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(STOC), pages 212–219. ACM, 1996.

[4] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information: 10th Anniversary Edition. Cambridge University Press,
Cambridge, UK, 10th anniversary edition edition, 2010.

[5] David Deutsch. Lectures on Quantum Computation. University of New South
Wales, Sydney, Australia, 1997.

[6] John Preskill. Lecture Notes for Physics 219: Quantum Computation. California
Institute of Technology, 1998.

[7] Daniel Grier and Luke Schaeffer. The classification of clifford gates over qubits.
arXiv preprint arXiv:1603.03999, 2016.

[8] Daniel Gottesman. The heisenberg representation of quantum computers.
arXiv preprint quant-ph/9807006, 1998.

[9] Maarten Van den Nest. Classical simulation of quantum computation, the
gottesman-knill theorem, and slightly beyond. Quantum Information & Com-
putation, 10:258–271, 2010.

[10] A. Yu Kitaev. Quantum computations: algorithms and error correction.
Russian Mathematical Surveys, 52(6):1191–1249, 1997.

[11] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, 2018.

[12] Qiskit Development Team. Qiskit: An open-source quantum computing
software development framework, 2024. Accessed: 2024-07-09.

[13] Arthur L Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):210–229, 1959.

37

[14] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, Inc., 2nd edition, 2019.

[15] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[16] Alexander Jung. Machine learning: The basics, 2018.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[18] Xiaojin (Jerry) Zhu. Semi-supervised learning literature survey. Technical
Report TR1530, University of Wisconsin-Madison Department of Computer
Sciences, 2005.

[19] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label
propagation for deep semi-supervised learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5070–
5079. IEEE, 2019.

[20] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[21] Wikipedia contributors. File:3d-gradient-cos.svg. https://en.m.wikipedia.
org/wiki/File:3d-gradient-cos.svg, 2024. Accessed: 2024-06-25.

[22] B. Yegnanarayana. Artificial Neural Networks. Prentice-Hall of India, 1999.

[23] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol,
Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help
deep learning? Journal of Machine Learning Research, 11:625–660, 2010.

[24] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11:3371–3408, 2010.

[25] The TensorFlow Team. What’s coming in tensorflow 2.0. https://blog.

tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html, 2019.
Accessed: 2024-06-25.

[26] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, and Greg S. Corrado et al. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. Software available from tensorflow.org.

[27] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. MQT Bench: Bench-
marking software and design automation tools for quantum computing. Quan-
tum, 2023. MQT Bench is available at https://www.cda.cit.tum.de/

mqtbench/.

[28] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank,
Keri McKiernan, and Nathan Killoran. Pennylane: Automatic differentiation
of hybrid quantum-classical computations, 2018. Version 0.15.0.

38

http://www.deeplearningbook.org
https://en.m.wikipedia.org/wiki/File:3d-gradient-cos.svg
https://en.m.wikipedia.org/wiki/File:3d-gradient-cos.svg
https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html
https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html
https://www.cda.cit.tum.de/mqtbench/
https://www.cda.cit.tum.de/mqtbench/

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[30] L. V. Kantorovich. Mathematical Methods of Organizing and Planning Produc-
tion. Management Science Press, Chicago, 1960.

[31] SciPy. scipy.stats.bootstrap. https://docs.scipy.org/doc/scipy/

reference/generated/scipy.stats.bootstrap.html, n.d. Accessed: July
11, 2024.

39

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html

Appendix A

Noisy circuit simulation in Qiskit

The following code sets up a custom noise model for quantum simulations using
the Qiskit framework. It defines various noise parameters including T1 and T2
times, gate operation times for single and two-qubit gates, and the probability of
depolarizing errors. The depolarizing error probability is set to a very low value,
indicating infrequent errors. Readout error probabilities are specified in a matrix,
detailing the probabilities of incorrect measurement outcomes. The code then
configures a simulator backend to mimic the properties of the IBMQ Sherbrooke
quantum computer. The coupling map, defining the connectivity between qubits
in the backend, is also retrieved to ensure the noise model accurately reflects the
qubit interactions. This setup allows for realistic simulation of quantum circuits
under specified noise conditions.

1 from qiskit.synthesis import generate_basic_approximations

2 from qiskit_aer import AerSimulator

3 from qiskit_ibm_runtime.fake_provider import FakeSherbrooke

4 from qiskit_aer.noise import NoiseModel , depolarizing_error ,

thermal_relaxation_error , ReadoutError

1 # Noise model parameters

2 t1 = 200e4 # T1 relaxation time in nanoseconds

3 t2 = 150e4 # T2 relaxation time in nanoseconds

4 gate_time_single = 75 # Single -qubit gate time in nanoseconds

5 gate_time_two = 100 # Two -qubit gate time in nanoseconds

6

7 # Depolarizing error probability

8 depolarizing_prob = 0.000001

9

10 # Readout error probabilities

11 readout_error_prob = [[0.98 , 0.02] , [0.02 , 0.98]]

12

13 # Create a noise model

14 noise_model = NoiseModel ()

15

16 # Define the gates for which to add errors

17 basis_gates = ["x", "y", "z", "s", "sdg", "h", "t", "tdg"]

18

41

19 # Add depolarizing noise to single qubit gates

20 error_1 = depolarizing_error(depolarizing_prob , 1)

21 noise_model.add_all_qubit_quantum_error(error_1 , basis_gates)

22

23 # Add thermal relaxation noise to single qubit gates

24 thermal_error_single = thermal_relaxation_error(t1 , t2 ,

gate_time_single)

25 noise_model.add_all_qubit_quantum_error(thermal_error_single ,

basis_gates)

26

27 # Add depolarizing noise to two qubit gates

28 error_2 = depolarizing_error(depolarizing_prob , 2)

29 noise_model.add_all_qubit_quantum_error(error_2 , [’cx’])

30

31 # Add thermal relaxation noise to two qubit gates

32 thermal_error_two = thermal_relaxation_error(t1, t2, gate_time_two

).tensor(thermal_relaxation_error(t1, t2, gate_time_two))

33 noise_model.add_all_qubit_quantum_error(thermal_error_two , [’cx’])

34

35 # Add readout error

36 readout_error = ReadoutError(readout_error_prob)

37 noise_model.add_all_qubit_readout_error(readout_error)

38

39 # Set up the backend

40 backend = AerSimulator.from_backend(FakeSherbrooke ())

41 coupling_map = backend.configuration ().coupling_map

Listing A.1: Setting custom noise model parameters and running noisy quantum
circuit simulation using the Qiskit AerSimulator.

42

Appendix B

Circuit optimization in Pennylane

The pqc workflow function implements the main workflow for the optimization of
a parameterized quantum circuit using PennyLane software. The circuit is converted
from Qiskit to PennyLane and decorated using qml.qnode. The optimization process
involves calculating gradients using finite differences and updating the parameters
through iterative steps.

The workflow initializes the parameters randomly and runs the PQC optimiza-
tion for a specified number of training iterations.

1 import pennylane as qml

2 import jax , optax , catalyst

1 # Configuration settings for the simulation

2 opt_iters = 200

3 num_qubits = 5

4 dev = qml.device("lightning.qubit", wires=num_qubits)

5 # Main workflow for parameterized quantum circuit

6 def pqc_workflow(qiskit_pqc , check_training_convergence=True):

7 pennylane_pqc = qml.from_qiskit(qiskit_pqc)

8 opt = optax.adam(learning_rate =0.2)

9

10 @qml.qjit

11 @qml.qnode(device=dev)

12 def circuit(params , psi):

13 pennylane_pqc(params)

14 qml.adjoint(qml.AmplitudeEmbedding(psi , wires=range(

num_qubits)))

15 return qml.probs()

16

17 @qml.qjit

18 def objective_function(params , psi):

19 probs = circuit(params , psi)

20 return jax.numpy.sqrt(1 - probs [0]**2)

21

22 @qml.qjit

23 def update_step(_, args):

24 params , opt_state , psi = args

43

25 grads = catalyst.grad(objective_function , method="fd")(

params , psi)

26 updates , opt_state = opt.update(grads , opt_state)

27 params = optax.apply_updates(params , updates)

28 return params , opt_state , psi

29

30 @qml.qjit

31 def run_optimization(params , psi , num_iters):

32 opt_state = opt.init(params)

33 args = params , opt_state , psi

34 params , opt_state , _ = qml.for_loop(0, num_iters , 1)(

update_step)(args)

35 return params

36

37 params = jax.numpy.array(np.random.rand(qiskit_pqc.

num_parameters))

38 psi = jax.numpy.array(generate_random_psi ())

39 run_optimization(params , psi , 1)

Listing B.1: Definition of the quantum circuits optimization workflow in Pennylane.

44

Appendix C

Denoising Autoencoder in Keras

This section defines a set of custom loss functions and implements a denoising
autoencoder model using TensorFlow. The custom loss functions include Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Kullback-Leibler Divergence (KL), and Cross-Entropy (CE). These func-
tions are stored in a dictionary, allowing them to be easily referenced by name.
The denoising autoencoder model consists of an encoder and a decoder, both
composed of dense layers with LeakyReLU activations. The encoder reduces the
input dimensionality to a latent space, while the decoder reconstructs the input
from this latent representation. The final layer of the autoencoder uses a softmax
activation function to output the reconstructed data. The model is compiled with
a specified optimizer and a custom loss function selected from the dictionary based
on the provided loss name. This structure allows for flexible and efficient denoising
of input data.

1 import tensorflow as tf

2 from tensorflow.keras.layers import Input , Dense , LeakyReLU

3 from tensorflow.keras.models import Model

4 from tensorflow.keras.optimizers import Adam

1 # Setting the optimizer and loss function name

2 optimizer = Adam(learning_rate =5e-4, amsgrad=True)

3 def mse_loss(y_true , y_pred):

4 return tf.reduce_mean(tf.square(y_true - y_pred))

5

6 # Defining the autoencoder model for denoising

7 def denoising_autoencoder(in_out_shape , latent_units , optimizer):

8 # Encoder layers

9 inputs = Input(in_out_shape)

10 x = Dense(units =128, activation=LeakyReLU(alpha =0.2))(inputs)

11 x = Dense(units =256, activation=LeakyReLU(alpha =0.2))(x)

12 x = Dense(units =64, activation=LeakyReLU(alpha =0.2))(x)

13 x = Dense(units =32, activation=LeakyReLU(alpha =0.2))(x)

14 x = Dense(units =16, activation=LeakyReLU(alpha =0.2))(x)

15 x_latent = Dense(latent_units , activation=LeakyReLU(alpha =0.2)

)(x)

16

45

17 # Decoder layers

18 x = Dense(units=16, activation=LeakyReLU(alpha =0.2))(x_latent)

19 x = Dense(units=32, activation=LeakyReLU(alpha =0.2))(x)

20 x = Dense(units=64, activation=LeakyReLU(alpha =0.2))(x)

21 x = Dense(units =256, activation=LeakyReLU(alpha =0.2))(x)

22 x = Dense(units =128, activation=LeakyReLU(alpha =0.2))(x)

23 outputs = Dense(in_out_shape [0], activation="softmax")(x)

24

25 autoencoder = Model(inputs=inputs , outputs=outputs)

26 autoencoder.compile(optimizer=optimizer , loss=mse_loss)

27 return autoencoder

28

29 # Creating the autoencoder for denoising

30 denoiser = denoising_autoencoder(in_out_shape =(32,), latent_units

=8, optimizer=optimizer)

Listing C.1: Definition of the autoencoder architecture and compilation of the
Keras model using the ADAM optimizer and the MSE loss function.

46

	Appendices
	Introduction
	Quantum Computing
	Quantum information theory
	Single-qubit state
	Multi-qubit state
	Entanglement
	Projective-Valued Measurement

	Gate-based quantum computing
	Quantum gates
	Clifford Group
	NISQ devices
	Qiskit framework

	Machine Learning
	Introduction to Machine Learning
	Learning paradigms
	Gradient-based optimization
	Supervised learning
	Training, validation, and testing

	Artificial neural networks
	Multi-Layer Perceptron
	Autoencoder architecture
	TensorFlow framework

	Autoencoder for Error Mitigation
	Data preparation
	Circuits generation
	Clifford ideal simulation
	Noisy simulation

	Model definition
	Data analysis
	Possible applications

	Conclusion
	Bibliography
	Noisy circuit simulation in Qiskit
	Circuit optimization in Pennylane
	Denoising Autoencoder in Keras

