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Sommario

Si studia il limite classico della meccanica quantistica facendo uso di metodi ricavati dalla teoria
degli stati coerenti impiegata in ottica quantistica. Si definiscono stati semiclassici dipendenti
dalla costante di Planck ridotta ℏ e da un punto dello spazio delle fasi classico e si mostra che
i valori medi della posizione e dell’impulso di tali stati, nel limite formale ℏ → 0, riproducono
la dinamica classica secondo modalità che vengono illustrate in dettaglio.



Abstract

The classical limit of quantum mechanics is studied through the techniques deriving from the
theory of coherent states which applies in the field of quantum optics. Semiclassical states,
parameterized by the reduced Planck constant ℏ and by a point in the classical phase space,
are defined and it is shown that the expectation values of position and momentum of these
states behave, in the formal limit ℏ → 0, in accordance with classical dynamics in a way that
is described in detail.
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Introduction

Right off its start, quantum mechanics had to deal with the problem of recovering classical
mechanics in the form of the standard Hamilton-Jacobi theory. At the beginning of the 20th
century, experimental results, together with the realisation of some theoretical inconsistencies,
provided evidence that classical mechanics, which was until that moment regarded as a universal
theory, was not possibly applicable at an atomic scale. The many problematic experiments
performed – such as those of G. I. Taylor (1909), J. Frank and G. L. Hertz (1914), O. Stern and
W. Gerlach (1922) and A. H. Compton (1924) – cast a light on the need for a new model which
could fill the conceptual gaps left behind by classical mechanics in the attempt of explaining
the obtained results. Regarding the theoretical issues, the Rayleigh-Jeans law – first derived by
J. W. S. Rayleigh in the year 1900, who availed himself of the equipartition theorem, which is a
fundamental result of statistical mechanics – is a paradigmatic example of the incompleteness
and of the inconsistency of the classical mechanical model at the time. In the same year, M.
Planck introduced the hypothesis that microscopic particles such as electrons could absorb and
radiate electromagnetic energy only in finite quantities, which he called energy quanta (plural
for energy quantum). From this single hypothesis, Einstein was able to explain the photoelectric
effect, P. Debye, M. Born and T. Von Kármán managed to give a strong theoretical background
to the Dulong-Petit law and Planck himself justified the Nernst theorem. Quantum physics set
in and its formalism was then developed in its more modern form by E. Schroedinger, W. K.
Heisenberg, W. Pauli, P. A. M. Dirac and others.
Classical mechanics was set aside but was not forgotten. Indeed, the epistemological problem
of the possibility of identifying classical mechanics as a limit of quantum mechanics under
specific conditions was always a core question in the understanding of the theory. Schroedinger
himself (1926) more than once (see [4]) insisted on trying to persuade the scientific community
that the similarity between Hamilton’s and Fermat’s principles was something physical before
being a mathematical curiosity. Actually, on this basis, a first link between the classical and
the quantum theory was again provided by Schroedinger, by pointing out that a statistical
ensemble, that is a collection of a large number of copies of a classical particle, behaves as an
undulatory system in some sort of geometrical optical regime. The undulatory system at issue
is the Schroedinger undulatory system, which is found to describe the probabilistic behaviour
of a quantum particle. It is then found that classical mechanics emerges from wave mechanics
under the formal limit ℏ → 0, which mathematically represents the fact that the action of a
classical system is much larger than the action of its quantum equivalent.
With time, other procedures were introduced in order to study the semiclassical limit of the
quantum theory. The WKB approximation is one of these and is perhaps one of the most
widespread techniques in this field. It was developed by G. Wentzel, H. A. Kramers and L.
Brillouin (see [9], [10], [11]) almost simultaneously to the Schroedinger’s publications on wave
mechanics. It essentially consists in writing the wavefunction ψ(x) as

ψ(x) = exp
(
iℏ−1S(x)

)
and then expanding S(x) as a power series of ℏ. The resulting expansion is substituted in the
Schroedinger equation and a solution is searched.
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In this thesis, the classical limit problem is tackled by following an alternative path. In partic-
ular, after a short introductory chapter on Weyl operators, where some technical aspects are
dealt with, coherent states are introduced and their properties are studied in depth. Coher-
ent states turn out to be relevant in the classical limit problem due to the fact that they are
minimum-uncertainty states for position and momentum. In fact, the uncertainties of these
observables in these states saturate the Heisenberg principle, which describes in mathematical
terms the very basic distinction between classical and quantum physics. Then, in the last chap-
ter, it is seen that a generalized version of coherent states, parameterized by the reduced Planck
constant ℏ and by a point in the classical phase space, enjoys really interesting properties when
the formal limit ℏ → 0 is taken. Indeed, in this limit, given a quantum system with a classical
counterpart, having put appropriate smoothness conditions on the classical potential fields, the
expectation values of position and momentum of these states are found to be centred, with very
small uncertainty, on the solutions of the Hamilton equations of the classical system. In other
words, these expectation values evolve in time along classical trajectories.
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Chapter 1

A useful operatorial framework for
quantum mechanics

It is our goal to discuss the properties of a special set of states which will be called coherent
states. To this aim, it is useful to introduce two families of operators which will very often
appear in the discussion that will be carried on in the next chapters. First, in section 1.1,
some basic definitions and fundamental results about the so-called annihilation and creation
operators and about their associated number operator are given in an informal way. The
derivation of the propositions and theorems that are stated in this section will be purposely
omitted, as these facts are very basic in the quantum theory and therefore well-known. A
detailed analysis of the theory of these operators can be found in [6], on which 1.1 is based.
Then, in section 1.2, the focus is set on the Weyl operators, which are introduced in a slightly
more formal fashion. These operators play a key role in the definition of coherent states. For
this reason, their properties are studied in depth and all the results of this section are shown.
For further insight, see chapter 7 of [1], on which 1.2 is based.

1.1 Annihilation and creation operators
To start our review on the annihilation and creation operators, we give two basic definitions.

Definition 1.1.1 (Annihilation and creation operators). An operator â is said to be an anni-
hilation operator if it obeys the following commutation rule with its adjoint operator â+:

[â, â+] = 1̂. (1.1.1)

The adjoint operator â+ is then said to be a creation operator.

Definition 1.1.2 (Number operator). If â is an annihilation operator, the operator

N̂ := â+â. (1.1.2)

is called number operator.

From these two definitions, one easily gets to the following results.

Proposition 1.1.1. The number operator N̂ is Hermitian.

Proposition 1.1.2. If â is an annihilation operator and N̂ is its associated number operator,
the following commutation relations hold:

[N̂ , â] = −â (1.1.3a)

[N̂ , â+] = â+. (1.1.3b)
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The commutation relation (1.1.1) has an important consequence regarding the spectrum of
the number operator. This fact is summarized in the next theorem.

Theorem 1.1.1. Given an annihilation operator â, the spectrum of its associated number op-
erator N̂ corresponds to the set of all natural numbers N. More precisely, given n ∈ N+, the
ket

|n⟩ := â+n|0⟩(n!)−1/2, (1.1.4)

where |0⟩ is the eigenket of N̂ belonging to the 0 eigenvalue of N̂ , is such that

N̂ |n⟩ = |n⟩n. (1.1.5)

Example 1.1.1 (Harmonic oscillator). Consider a harmonic oscillator of mass m and angular
frequency ω. The following operators are defined:

â :=
1

(2mℏω)1/2
(p̂− imωq̂) (1.1.6a)

â+ =
1

(2mℏω)1/2
(p̂+ imωq̂), (1.1.6b)

where q̂ is the position operator and p̂ is the momentum operator of the harmonic oscillator.
Using the canonical commutation relations, it can be shown that these operators satisfy the
commutation relation (1.1.1). These consequently are annihilation and creation operators.
From 1.1.2, the associated number operator has the following expression:

N̂ = â+â =
1

ℏω

(
p̂2

2m
+

1

2
mω2q̂2

)
− 1̂

2
. (1.1.7)

The Hamiltonian operator of the harmonic oscillator can then be cast in the form:

Ĥ =

(
p̂2

2m
+

1

2
mω2q̂2

)
= ℏω

(
N̂ +

1̂

2

)
. (1.1.8)

The computation of the energy eigenvalues wn of Ĥ is then straightforward and from (1.1.5) it
is found that

Ĥ|n⟩ = |n⟩wn (1.1.9)

where
wn = ℏω

(
n+

1

2

)
. (1.1.10)

It can be shown that â and â+ exhibit interesting features when acting upon the kets
(1.1.4). This property earns â and â+, respectively, the name of lowering and raising operators.
Incidentally, it explains the etymology of the terms “annihilation” and “creation”.

Corollary 1.1.1 (Ladder property). Given an annihilation operator â and the eigenkets |n⟩ of
its number operator, one has that

â|0⟩ = 0 (1.1.11a)

â|n⟩ = |n− 1⟩n1/2 (n ∈ N+) (1.1.11b)

â+|n⟩ = |n+ 1⟩(n+ 1)1/2. (1.1.11c)

Basis of the Hilbert space of states H can be built from the eigenkets of N̂ under certain
conditions. In fact, one has the following corollary.
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Corollary 1.1.2. Given an annihilation operator â, if its associated number operator N̂ is
selfadjoint and |0⟩ is normalizable and unique (that is if N̂ is injective), then {|n⟩}n∈N forms a
complete orthonormal set of H:

⟨n′|n⟩ = δn′,n (1.1.12a)

1̂ =
∞∑
n=0

|n⟩⟨n|. (1.1.12b)

This property is extremely relevant in many physical applications. One of them is the
quantum harmonic oscillator.

Example 1.1.2 (Heisenberg set for the harmonic oscillator). The set {|n⟩}n∈N of the harmonic
oscillator forms a complete orthonormal set. Indeed, noticing that N̂ is selfadjoint (an operator
function of selfadjoint operators is a selfadjoint operator) and that |0⟩ is unique (this fact follows
from the spectral structure theorem), its eigenkets constitute a complete orthonormal set and
they form a Heisenberg representation of H through Ĥ.

Proposition 1.1.3. Given an annihilation operator â, its creation operator â+ has no eigen-
states.

Proof. We demonstrate the claim by contradiction. Let’s assume that there is |λ⟩ ∈ H such
that

â+|λ⟩ = |λ⟩λ, λ ∈ C. (1.1.13)

Using (1.1.11b) and (1.1.13), we find

⟨n|â+|λ⟩ = n1/2⟨n− 1|λ⟩ = ⟨n|λ⟩λ for n ∈ N+ (1.1.14)
⟨0|â+|λ⟩ = ⟨0|λ⟩λ = 0. (1.1.15)

Hence, from (1.1.15), one has two possibilities. In the first case, λ = 0, which, through (1.1.14),
leads to ⟨λ|n − 1⟩ = 0, meaning that |λ⟩ = 0. In the second case, ⟨λ|0⟩ = 0. Then, using
n times (1.1.11b) on an arbitrary ⟨n|, one finds ⟨n|â+n|λ⟩ = (n!)1/2⟨0|λ⟩ = 0, but, through
(1.1.13), ⟨n|â+n|λ⟩ = ⟨n|λ⟩λn, meaning that ⟨n|λ⟩ = 0, which implies that |λ⟩ = 0. Thus |λ⟩
cannot be an eigenket of â.

Remark 1.1.1. The previous definitions and results can be generalized by introducing p pairs
of annihilation and creation operators, âi and â+i (i = 1, . . . , p), with the following properties:

[âi, â
+
i ] = δi,j 1̂ (1.1.16a)

[âi, âj] = [â+i , â
+
j ] = 0. (1.1.16b)

The corresponding number operators can then be defined as

N̂i = â+i âi. (1.1.17)

This definition allows one to say that

[N̂i, N̂j] = 0. (1.1.18)
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From the properties of N̂ , these operators are found to be Hermitian and to have a spectrum
consisting of non negative integers. Then, the joint spectrum of the N̂i is formed by all the
p-tuples (n1, . . . , np) of non negative integers. We denote with |0, . . . , 0⟩ the common eigenket
of the N̂i belonging to the joint eigenvalue (0, . . . , 0), that is the ket such that

N̂i|0, . . . , 0⟩ = 0 ∀ i = 0, . . . , p. (1.1.19)

Then, ∀n1, . . . , np non negative integers, the ket

|n1, . . . , np⟩ = â+n1 · · · â+np |0, . . . , 0⟩(n1! · · ·np!)−1/2 (1.1.20)

is found to be the common eigenket of the N̂i belonging to the joint eigenvalue (n1, . . . , np):

N̂i|n1, . . . , np⟩ = |n1, . . . , np⟩ni ∀ i = 0, . . . , p. (1.1.21)

Again, these kets show interesting features when acted upon by âi and â+i :

âi|0, . . . , 0⟩ = 0 (1.1.22a)

âi|n1, . . . , ni, . . . , np⟩ = |n1, . . . , ni − 1, . . . , np⟩n1/2
i (for ni > 0) (1.1.22b)

â+i |n1, . . . , ni, . . . , np⟩ = |n1, . . . , ni + 1, . . . , np⟩(ni + 1)1/2. (1.1.22c)

Equation (1.1.18) states that the N̂i are commuting operators. If, in addition, the N̂i are
selfadjoint and if |0, . . . , 0⟩ is normalizable and unique, then {|n1, . . . , np⟩}ni∈N consitutes an
orthonormal basis of H:

⟨n′
1, . . . , n

′
p|n1, . . . , np⟩ = δn′

1,n1
· · · δn′

p,np (1.1.23a)

1̂ =
∞∑

n1,...,np=0

|n1, . . . , np⟩⟨n1, . . . , np|. (1.1.23b)

1.2 Weyl operators
Weyl operators are fundamental in the construction of the explicit expression of the states we
are wanting to study. We start by stating the definition of such operators and by introducing
some useful results.

Definition 1.2.1 (Weyl operator). Given an annihilation operator â and given a complex num-
ber γ ∈ C, a Weyl operator is an operator Ŵ (γ) defined as

Ŵ (γ) := exp(γâ+ − γ∗â). (1.2.1)

One immediately has the following result.

Proposition 1.2.1. A Weyl operator is an unitary operator.

We now introduce two propositions which will be helpful to better characterize the Weyl
operators. These results and their consequences will be extensively used in the next chapters.

Proposition 1.2.2. Given two arbitrary operators Â and B̂, if these operators commute with
their commutator, the following identity holds:

exp(Â)B̂ exp(−Â) = B̂ + [Â, B̂]. (1.2.2)
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Proof. It is known that

exp(Â) =
∞∑
k=0

Âk

k!
, (1.2.3)

which, in our case, leads to

exp(Â)B̂ exp(−Â) =
∞∑
k=0

Âk

k!
B̂

∞∑
l=0

(−1)lÂl

l!
(1.2.4)

=
∞∑
k=0

∞∑
l=0

(−1)l

k!l!
ÂkB̂Âl

= B̂ − B̂Â+ ÂB̂ +
∞∑
k=1

∞∑
l=1

(−1)l

k!l!
ÂkB̂Âl.

The last term is the zero operator. Indeed, we consider the following identity,

[Â, [Â, [. . . , [Â︸ ︷︷ ︸
n times

, B̂]] . . .] =
n∑
k=0

(
n

k

)
(−1)kÂn−kB̂Âk, (1.2.5)

and we prove it by induction. For n = 1, one has
1∑

k=0

(
n

k

)
(−1)kÂn−kB̂Âk = ÂB̂ − B̂Â = [Â, B̂]. (1.2.6)

Then, assuming (1.2.5) to hold for n = m, it can be shown to hold for n = m+ 1:

[Â, [Â, [. . . , [Â︸ ︷︷ ︸
m+ 1 times

, B̂]] . . .] = [Â,
m∑
k=0

(
m

k

)
(−1)kÂm−kB̂Âk] (1.2.7)

=
m∑
k=0

(
m

k

)
(−1)kÂm−k+1B̂Âk −

m∑
j=0

(
m

j

)
(−1)kÂm−jB̂Âj−1

=
m∑
k=0

(
m

k

)
(−1)kÂm−k+1B̂Âk +

m+1∑
l=1

(
m

l − 1

)
(−1)lÂm−l+1B̂Âl

= Âm+1B̂ +
m∑
k=1

((
m

k

)
+

(
m

k − 1

))
(−1)kÂm−k+1B̂Âk + (−1)n+1B̂Ân+1

= Âm+1B̂ +
m∑
k=1

(
m+ 1

k

)
(−1)kÂm−k+1B̂Âk + (−1)n+1B̂Ân+1

=
m+1∑
k=0

(
m+ 1

k

)
(−1)kÂm+1−kB̂Âk,

as stated. Since Â commutes with [Â, B̂], (1.2.5) is the zero operator. Considering the partial
sums of the last term in (1.2.4) and reordering indices, it is straightforward to show that this
term is the zero operator.

Proposition 1.2.3 (Instance of the Baker-Campbell-Hausdorff formula). Given two operators
Â and B̂ which commute with their commutator, the following identity is found:

exp(Â+ B̂) = exp

(
−1

2
[Â, B̂]

)
exp(Â) exp(B̂). (1.2.8)
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Proof. This formula is a particular case of the so-called Baker-Campbell-Hausdorff formula. To
show its validity, we start by writing that

exp(B̂) exp(Â) =
(
exp(B̂) exp(Â) exp(−B̂)

)
exp(B̂). (1.2.9)

It can be seen that the sandwich between brackets can be written as(
exp(B̂) exp(Â) exp(−B̂)

)
exp(B̂) = exp

(
exp(B̂)Â exp(−B̂)

)
exp(B̂). (1.2.10)

In fact, by definition of the exponential operator,

exp
(
exp(B̂)Â exp(−B̂)

)
exp(B̂) =

∞∑
k=0

1

k!

(
exp(B̂)Â exp(−B̂)

)k
. (1.2.11)

The j-th term can be written as(
exp(B̂)Â exp(−B̂)

)j
= exp(B̂)Âj exp(−B̂), (1.2.12)

which shows (1.2.10). The expression appearing in the argument of the first exponential of
the right side of (1.2.10) can be cast in the form (1.2.2), as Â and B̂ commute with their
commutator:

exp(B̂) exp(Â) = exp(Â+ [B̂, Â]) exp(B̂). (1.2.13)

It is known that, given two commutative linear operators X̂ and Ŷ ,

exp(X̂) exp(Ŷ ) = exp(X̂ + Ŷ ), (1.2.14)

which implies that, from (1.2.13),

exp(B̂) exp(Â) = exp([B̂, Â]) exp(Â) exp(B̂). (1.2.15)

This identity can be generalized in the following way: given n ∈ N, one has(
exp(B̂) exp(Â)

)n
= exp

(
n(n+ 1)

2
[B̂, Â]

)
exp(nÂ) exp(nB̂). (1.2.16)

Indeed, setting Ĉ = [B̂, Â] for convenience,(
exp(B̂) exp(Â)

)n
= exp(Ĉ) exp(Â) exp(B̂)

(
exp(B̂) exp(Â)

)n−1

= exp(Ĉ) exp(Â) exp(B̂) exp(B̂) exp(Â)
(
exp(B̂) exp(Â)

)n−2

= exp(Ĉ) exp(Â) exp(2B̂) exp(Â)
(
exp(B̂) exp(Â)

)n−2

= exp(Ĉ) exp(Â) exp(2Ĉ) exp(Â) exp(2̂B)
(
exp(B̂) exp(Â)

)n−2

= exp((1 + 2)Ĉ) exp(2Â) exp(2̂B)
(
exp(B̂) exp(Â)

)n−2

. (1.2.17)

We used repeatedly (1.2.15) and we used the fact that Ĉ and Â commute to commute their
exponentials (see (1.2.14)). Then, iterating n− 2 times, we get(

exp(B̂) exp(Â)
)n

= exp

(
n∑
k=1

kĈ

)
exp(nÂ) exp(nB̂), (1.2.18)
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which, using Gauss sum formula, reduces to (1.2.16). Finally, recalling the Lie-Trotter product
formula for two generic linear operators X̂ and Ŷ ,

exp(X̂ + Ŷ ) = lim
n→∞

(
exp(Ŷ /n) exp(X̂/n)

)n
, (1.2.19)

we finally obtain (1.2.8), from (1.2.16),

exp(Â+ B̂) = lim
n→∞

(
exp(B̂/n) exp(Â/n)

)n
(1.2.20)

= lim
n→∞

exp

(
(n+ 1)

2n
[B̂, Â]

)
exp(Â) exp(B̂)

= exp

(
1

2
[B̂, Â]

)
exp(Â) exp(B̂).

The next results are readily obtained from the previous propositions.

Proposition 1.2.4 (Group property). Given γ1, γ2 ∈ C, one has that the following identity
holds:

Ŵ (γ1)Ŵ (γ2) = exp (i Im(γ1γ
∗
2)) Ŵ (γ1 + γ2). (1.2.21)

Proof. This can be easily checked from (1.1.1), (1.2.1) and (1.2.8).

Remark 1.2.1. By introducing a suitable binary operation, this property of the Weyl operators
can be used to turn the set of Weyl operators into a group.

Proposition 1.2.5 (Decomposition of the Weyl operator). Let γ ∈ C be a generic complex
number. Then,

Ŵ (γ) = exp(− |γ|2 /2) exp(γâ+) exp(−γ∗â). (1.2.22)

Proof. Using (1.1.1), (1.2.1) and (1.2.8),

exp(γâ+ − γ∗â) = exp

(
−1

2
[γâ+,−γ∗â]

)
exp(γâ+) exp(−γ∗â), (1.2.23)

which concludes the proof.

Proposition 1.2.6 (Translation property). Let Â be a generic operator and let γ ∈ C be a
generic complex number. If Â and γâ+ − γ∗â commute with their commutator, then

Ŵ (γ)ÂŴ (γ)−1 = Â+ [Â, γ∗â− γâ+]. (1.2.24)
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Proof. This fact is a prompt consequence of (1.2.1) and (1.2.2).

Accordingly, one can express the following important statement.

Proposition 1.2.7. Given an annihilation operator â and γ ∈ C, then

â|γ⟩ = |γ⟩γ, (1.2.25)

where |γ⟩ := Ŵ (γ)|0⟩ and |0⟩ is the eigenstate of the number operator associated to â belonging
to the 0 eigenvalue.

Proof. From (1.1.11a),
Ŵ (γ)â|0⟩ = 0. (1.2.26)

Then, from 1.2.6,

0 = Ŵ (γ)â|0⟩ = Ŵ (γ)âŴ (γ)−1Ŵ (γ)|0⟩
=
(
â+ [â, γ∗â− γâ+]

)
Ŵ (γ)|0⟩

= (â− γ1̂)Ŵ (γ)|0⟩. (1.2.27)

It is possible to show that |γ⟩ has an explicit expression in terms of the |n⟩ kets. This is a
fundamental fact.

Proposition 1.2.8. Given γ ∈ C, the associated |γ⟩ := Ŵ (γ)|0⟩ enjoys the following expansion:

|γ⟩ = exp(− |γ|2 /2)
∞∑
n=0

|n⟩ γn

(n!)1/2
. (1.2.28)

Proof. By (1.1.11a), it is straighforward that

exp(−γ∗â)|0⟩ = |0⟩. (1.2.29)

Then, by (1.2.22) and by the definition of the exponential operator,

|γ⟩ = Ŵ (γ)|0⟩ = exp(− |γ|2 /2) exp(γâ+)|0⟩

= exp(− |γ|2 /2)
∞∑
n=0

â+n|0⟩γ
n

n!
(1.2.30)

Using the definition (1.1.4) of the |n⟩ kets, the claim is proven.
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Proposition 1.2.9. Given p pairs of annihilation and creation operators âi and â+i obeying the
commutation relations (1.1.16) and given γ = (γ1, . . . , γp) ∈ Cp, then the operator defined as

Ŵ (γ) :=

p∏
j=1

exp
(
γj â

+
j − γ∗j â

+
j

)
(1.2.31)

is a Weyl operator.

Proof. By (1.2.14) and (1.1.16), Ŵ (γ) can be cast in the following form:

Ŵ (γ) = exp

(
p∑
j=1

γj â
+
j −

p∑
j=1

γ∗j âj

)
. (1.2.32)

Then, we define γ ∈ R as

γ :=

(
p∑
i=1

|γi|2
)1/2

. (1.2.33)

From (1.1.16), it can be easily checked that[
p∑
l=1

γ∗l âl,

p∑
m=1

γmâ
+
m

]
= γ21̂. (1.2.34)

Hence, the operators

γ∗
0 · â :=

1

γ

p∑
i=1

γ∗i âi (1.2.35a)

γ0 · â+ :=
1

γ

p∑
i=1

γiâ
+
i (1.2.35b)

form a pair of annihilation and creation operators. From (1.2.32), it follows that

Ŵ (γ) = exp
(
γγ0 · â+ − γγ∗

0 · â
)
, (1.2.36)

thus showing the statement.
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Chapter 2

Time evolution and pictures

A short digression on the quantum time evolution theory is made in order to introduce the
concepts and the results which will be used when studying the classical limit of quantum
mechanics in chapter 4. First, we shall take into consideration the evolution operator of a
quantum system in an informal way, presenting and giving for granted the main results of its
theory. Then, we shall proceed with an equally colloquial account on the theory of pictures.
This chapter entirely relies on [6].

2.1 Evolution operator
The Hamiltonian operator of a certain system can sometimes be time-dependent. In this case,
we can suppose that the Schroedinger equation still describes the dynamics of the system:

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩. (2.1.1)

A solution of this equation is unambiguously determined once an initial condition is set. By
linearity, if |ψ1(t)⟩ and |ψ2(t)⟩ are solutions of (2.1.1), unambiguously determined by the re-
spective initial conditions |ψ1(0)⟩ = |ψ10⟩ and |ψ2(0)⟩ = |ψ20⟩, then, given c1, c2 ∈ C, the ket
|ψ(t)⟩ = |ψ1(t)⟩c1+|ψ2(t)⟩c2 is, in turn, a solution of (2.1.1) satisfying |ψ(0)⟩ = |ψ10⟩c1+|ψ20⟩c2.
This fact suggests to represent the time evolution of the state of the system through some linear
operator Û(t, 0) which should act on the initial condition |ψ(0)⟩ in the following way:

|ψ(t)⟩ = Û(t, 0)|ψ(0)⟩. (2.1.2)

Thus, Û(t, 0) takes the system from its initial state to its state at time t in accordance with
(2.1.1). The choice of t = 0 as a starting point for the evolution of the system is quite arbitrary.
Thus, there should be a linear operator Û(t, s) which should act in a more general way on the
states of the system:

|ψ(t)⟩ = Û(t, s)|ψ(s)⟩, (2.1.3)

where t, s are two arbitrary instants of time. (2.1.3) reduces to (2.1.2) when s is set to 0. The
Û(t, s) operator is called evolution operator. Pictorially speaking, the evolution operator has
to guide the state along a suitable trajectory in H which satisfies the Schroedinger equation.
Furthermore, as already remarked, time evolution should be independent from the choice of s.
These observations find mathematical substance in the following equations

iℏ
∂

∂t
Û(t, s) = Ĥ(t)Û(t, s) (2.1.4a)

iℏ
∂

∂s
Û(t, s) = −Û(t, s)Ĥ(s), (2.1.4b)

12



which must be obeyed by Û(t, s) with the initial condition

Û(s, s) = 1̂. (2.1.5)

Equations (2.1.4a) and (2.1.4b), with (2.1.5), follow from (2.1.1) and (2.1.3). To maintain its
probabilistic interpretation, the state of the system must be normalized in each instant of time.
This mathematically translates to the fact that the norm of |ψ(t)⟩ must be preserved in time,
that is to the fact that Û(t, s) must be an unitary operator. The evolution operator must also
obey some sort of composition law which should ensure that evolving the state from a time s
to a certain time u and, then, evolving it from u to t is equivalent to taking the state directly
from s to t. Finally, the operator which makes the state evolve from s to t should be the
inverse of the operator which makes the state evolve from t to s. Luckily, all these physical
requests mathematically follow from the evolution operator equations. In fact, from (2.1.4a)
and (2.1.4b), one has that

Û(t, s)+ = Û(t, s)−1 (2.1.6a)

Û(t, u)Û(u, s) = Û(t, s) (2.1.6b)

Û(t, s) = Û(s, t)−1. (2.1.6c)

We see that solving the evolution operator equations is equivalent to solving the Schroedinger
equation. In a particular case, this can be readily done. Indeed, when Ĥ(t) is actually time-
independent, say Ĥ(t) = Ĥ0, the evolution operator has the following expression:

Û(t, s) = exp
(
−iℏ−1(t− s)Ĥ0

)
, (2.1.7)

which can be easily found to satisfy (2.1.4a) and (2.1.4b) with the initial condition (2.1.5).

2.2 Pictures
Solving the Schroedinger equation or finding an appropriate evolution operator is mostly hard
work. Classical mechanics has taught us how there are certain transformations, which we call
canonical transformations, which can simplify the problem of solving the equations of motion.
The question which arises is whether there are, in quantum mechanics, transformations which
simplify the calculation of the quantities which we are interested in, that is probabilities and
expectation values. Given a certain state |ψ⟩ which a quantum state lies in and given a certain
observable Â, the expectation value ⟨A⟩ of the observable Â in the state |ψ⟩ is computed as

⟨A⟩ = ⟨ψ|Â|ψ⟩ (2.2.1)

and the probability P (κ) that a certain measure of Â produces a value laying in some range κ
is evaluated as

P (κ) =
∫
x(ξ)∈κ

dµ(ξ) |⟨ξ|ψ⟩|2 , (2.2.2)

where x(ξ) are the eigenvalues of Â and |ξ⟩ are the associated eigenkets. The |ξ⟩ kets form an
orthonormal basis for H. For some arbitrary unitary operator T̂ , the quantities ⟨A⟩ and P (κ)
are invariant under the following transformations:

|ψ⟩T = T̂−1|ψ⟩ (2.2.3a)

ÂT = T̂+ÂT̂ . (2.2.3b)
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In fact, through the unitarity of T̂ , it can be easily checked that

|⟨ξ|ψ⟩|2 = | ⟨ξ|ψ⟩T T |2 (2.2.4a)

⟨ψ|Â|ψ⟩ = ⟨ψ|ÂT |ψ⟩T T , (2.2.4b)

that is that ⟨A⟩ and P (κ) are invariant under (2.2.3a) and (2.2.3b). The fact that the funda-
mental quantum physical quantities are preserved by T̂ suggests that, if T̂ was to enjoy similar
properties to those of the evolution operator, one could perform some sort of artificial time
evolution of the state of the system without touching its main quantitative features and, if
possible, simplify their calculation and the Schroedinger equation itself. Hence, chosen some
selfadjoint time-dependent operator K̂(t), we suppose that T̂ (t, s) is a time-dependent unitary
operator obeying to the following equations:

iℏ
∂

∂t
T̂ (t, s) = K̂(t)T̂ (t, s) (2.2.5a)

iℏ
∂

∂s
T̂ (t, s) = −T̂ (t, s)K̂(s) (2.2.5b)

with the following initial condition:
T̂ (s, s) = 1̂. (2.2.6)

Comparing (2.2.5a) with (2.1.4a) and (2.2.5b) with (2.2.5b), we see that the T̂ (t, s) operator
plays the role of an evolution operator for a system whose dynamics are governed by K̂(t),
which plays the role of a Hamiltonian operator. These equations ensure that T̂ (t, s) enjoys
the same properties as the evolution operator itself (see (2.1.6)). For each instant of time,
performing the transformation

|ψ(t)⟩K = T̂ (t, 0)−1|ψ(t)⟩, (2.2.7)

if an equally fit transformation is performed on Â, (2.2.1) and (2.2.2) are preserved and their
calculation could be simplified, as well as the search for a solution of the Schroedinger equation,
which, for the new |ψ(t)⟩K , reads as

iℏ
d

dt
|ψ(t)⟩K = Ĥ(K)(t)|ψ(t)⟩K (2.2.8)

where
Ĥ(K)(t) := T̂ (t, 0)+

(
Ĥ(t)− K̂(t)

)
T̂ (t, 0). (2.2.9)

This can be easily seen by calculating the derivative on the left side of (2.2.8) through (2.1.1),
(2.2.7), (2.2.5a) and (2.2.5b). Once (2.2.8) is solved (an initial condition must be assigned),
|ψ(t)⟩ is retrieved through (2.2.7). We say that (2.2.7) defines a K-picture. A K-picture is then
determined by the choice of K̂(t). Analogously to the standard Schroedinger problem, instead
of solving directly the K-picture Schroedinger equation, one can define an evolution operator
for the K-picture. This operator is defined as the solution Û (K)(t, s) of the following equations:

iℏ
∂

∂t
Û (K)(t, s) = K̂(t)Û (K)(t, s) (2.2.10a)

iℏ
∂

∂s
Û (K)(t, s) = −Û (K)(t, s)K̂(s), (2.2.10b)

with the initial condition
Û (K)(s, s) = 1̂. (2.2.11)
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It can be seen that
Û (K)(t, s) = T̂ (t, 0)+Û(t, s)T̂ (s, 0) (2.2.12)

solves the equations (2.2.10a) and (2.2.10b) with the initial condition (2.2.11). One can define
the K-picture version of a generic selfadjoint time-dependent operator Â(t) as

ÂK(t) := T̂ (t, 0)+Â(t)T̂ (t, 0), (2.2.13)

in order to comply with the conservation of (2.2.1) and (2.2.2). It is found that ÂK(t) obeys
the so-called Heisenberg equation:

iℏ
d

dt
ÂK(t) = −[K̂(K)(t), ÂK(t)] + iℏ

(
d

dt
Â

)
K

(t), (2.2.14)

where
K̂(K)(t) := T̂ (t, 0)+K̂(t)T̂ (t, 0) = K̂K(t) (2.2.15)

is called the Heisenberg Hamiltonian. (2.2.14) is obtained by calculating its left term using
(2.2.13) and (2.2.5a). There are some standard K-pictures. The choice

K̂(t) = 0 (2.2.16)

defines the so-called Schroedinger picture. It follows from (2.2.5a), (2.2.5b) and (2.2.6), that

T̂ (t, s) = 1̂ (2.2.17)

and, from (2.2.7), that
|ψ(t)⟩S = |ψ(t)⟩. (2.2.18)

In consequence of (2.2.17), from (2.2.9), (2.2.12), (2.2.13) and (2.2.15) one has that

Ĥ(S)(t) = Ĥ(t) (2.2.19a)

Û (S)(t, s) = Û(t, s) (2.2.19b)

ÂS(t) = Â(t) (2.2.19c)

K̂(S)(t) = 0. (2.2.19d)

The Schroedinger picture is nothing but the standard form of quantum mechanics. Instead,
the choice

K̂(t) = Ĥ(t) (2.2.20)

defines the so-called Heisenberg picture. From (2.2.5a), (2.2.5b) and (2.2.6), it can be seen that

T̂ (t, s) = Û(t, s), (2.2.21)

where Û(t, s) is the evolution operator of the Schroedinger picture. From (2.2.7) and (2.1.2),
one has that

|ψ(t)⟩H = Û(t, 0)−1|ψ(t)⟩ = |ψ(0)⟩. (2.2.22)

The state of the system is time-independent in the Heisenberg picture. Again, as a consequence
of (2.2.9), (2.2.12), (2.2.13) and (2.2.15), it follows that

Ĥ(H)(t) = 0 (2.2.23a)

Û (H)(t, s) = 1̂ (2.2.23b)

ÂH(t) = Û(t, 0)+Â(t)Û(t, 0) (2.2.23c)

K̂(H)(t) = Û(t, 0)+Ĥ(t)Û(t, 0) = ĤH(t). (2.2.23d)
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If the system is subject to a time-dependent perturbation energy Ŵ (t) and if the unperturbed
Hamiltonian Ĥ0 is time-independent, one can write the perturbed Hamiltonian as

Ĥ(t) = Ĥ0 + Ŵ (t). (2.2.24)

Then, the choice
K̂(t) = Ĥ0 (2.2.25)

defines the so-called Dirac picture. From (2.2.5a), (2.2.5b) and (2.2.6), one has that

T̂ (t, s) = Û0(t, s) = exp
(
−iℏ−1(t− s)Ĥ0

)
. (2.2.26)

By (2.2.7), it follows that
|ψ(t)⟩D = Û0(t, 0)

−1|ψ(t)⟩. (2.2.27)

Finally, following from (2.2.9), (2.2.12), (2.2.13) and (2.2.15) and from the fact that Ĥ0 com-
mutes with Û0(t, s), it is straightforward that

Ĥ(D)(t) = Û0(t, 0)
+Ŵ (t)Û0(t, 0) = ŴD(t) (2.2.28a)

Û (D)(t, s) = Û0(t, 0)
+Û(t, s)Û0(s, 0) (2.2.28b)

ÂD(t) = Û0(t, 0)
+Â(t)Û0(t, 0) (2.2.28c)

K̂(D)(t) = Û0(t, 0)
+Ĥ0Û0(t, 0) = Ĥ0. (2.2.28d)
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Chapter 3

Coherent states

The aim of this chapter is to introduce a class of special states which are called coherent states.
To start with, we show a general form of the Heisenberg principle, which involves a generic
pair of selfadjoint operators rather than just the position and momentum operators. From
there, it will be found that there are some states which saturate the inequality appearing in the
mathematical expression of such principle. These states, under physically loose conditions on
the operators appearing in the generalized Heisenberg principle, are eigenstates of a distinctive
class of annihilation operators. At this point, these states will be defined to be the coherent
states of the system and their properties will be analysed in great detail. Even a general
expression of this states will be found. What follows is based on chapter 7 of [1].

3.1 The Heisenberg principle
The Heisenberg principle is one of the main features of quantum mechanics. It quantitatively
describes the fundamental difference between the macroscopic and microscopic worlds, that is
the phenomenon of interference in the measurement of observables. For this reason, as it will
be shown in this section, studying the Heisenberg principle should provide some clues about
the form of the states which behave in a kind of classical manner. Indeed, classical observable
quantities are defined in each state of the system: there is a one-to-one correspondence between
states and observables, differently from the case of quantum mechanics. So, it seems sensible
to suppose that the quantum states which we are interested in should minimize the uncertainty
associated to the observable quantities of their system, thus minimizing the undefinedness of
their expectation values and mimicking a classical behaviour.
The Heisenberg principle is mostly known in the form

∆qs∆ps ≥
ℏ
2
, (3.1.1)

where ∆qs and ∆ps are the uncertainties associated to the position and momentum operators
in a generic state |s⟩ of the system. However, there is a more general form of this principle
which is established by the geometry of the Hilbert space of states H.

Theorem 3.1.1 (Generalized Heisenberg principle). Given a generic state |s⟩ ∈ H and two
arbitrary selfadjoint operators Â and B̂, it can be shown that

1

2

∣∣∣⟨s|[Â, B̂]|s⟩
∣∣∣ ≤ ⟨s|Â2|s⟩1/2⟨s|B̂2|s⟩1/2. (3.1.2)
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Proof. By linearity and by the triangle inequality, one has∣∣∣⟨s|[Â, B̂]|s⟩
∣∣∣ = ∣∣∣⟨s|ÂB̂ − B̂Â|s⟩

∣∣∣ = ∣∣∣⟨s|ÂB̂|s⟩ − ⟨s|B̂Â|s⟩
∣∣∣ ≤ ∣∣∣⟨s|ÂB̂|s⟩

∣∣∣+ ∣∣∣⟨s|B̂Â|s⟩∣∣∣ . (3.1.3)

Without loss of generality, as it will turn out later, we can assume that∣∣∣⟨s|B̂Â|s⟩∣∣∣ ≤ ∣∣∣⟨s|ÂB̂|s⟩
∣∣∣ , (3.1.4)

which implies, by (3.1.3), that ∣∣∣⟨s|[Â, B̂]|s⟩
∣∣∣ ≤ 2

∣∣∣⟨s|ÂB̂|s⟩
∣∣∣ . (3.1.5)

Using the Schwarz inequality and the Hermiticity of Â and B̂, it is easy to find the following
upper bound for (3.1.5):∣∣∣⟨s|ÂB̂|s⟩

∣∣∣ ≤ ∥Â|s⟩∥∥B̂|s⟩∥ = ⟨s|ÂÂ|s⟩1/2⟨s|B̂B̂|s⟩1/2 = ⟨s|Â2|s⟩1/2⟨s|B̂2|s⟩1/2, (3.1.6)

which completes the proof for (3.1.2). This last step highlights how the assumption (3.1.4) is
completely generic and does not spoil the general nature of (3.1.2).

The generalized Heisenberg principle works because of the Schwarz inequality and of the
triangle inequality. Hence, its validity is only due to the geometry induced on H by the bra-ket
product.

Example 3.1.1. As an example of how (3.1.2) works, we can obtain (3.1.1) from it. Let us
define the following operators for a generic state |s⟩ labelled by the letter s:

∆̂ps := p̂− ⟨p⟩s1̂ (3.1.7a)

∆̂qs := q̂ − ⟨q⟩s1̂, (3.1.7b)

where ⟨p⟩s = ⟨s|p̂|s⟩ and ⟨q⟩s = ⟨s|q̂|s⟩. It follows that

∆̂p2s := ∆̂ps∆̂ps = p̂2 − 2⟨p⟩sp̂+ ⟨p⟩2s (3.1.8)

∆̂q2s := ∆̂qs∆̂qs = q̂2 − 2⟨q⟩sq̂ + ⟨q⟩2s, (3.1.9)

that is, by linearity and writing ⟨p2⟩s = ⟨s|p̂2|s⟩ and ⟨q⟩s = ⟨s|q̂2|s⟩,

∆p2s := ⟨s|∆̂p2s|s⟩ = ⟨p2⟩s − 2⟨p⟩s⟨p⟩s + ⟨p⟩2s = ⟨p2⟩s − ⟨p⟩2s (3.1.10)

∆q2s := ⟨s|∆̂q2s |s⟩ = ⟨q2⟩s − 2⟨q⟩s⟨q⟩s + ⟨q⟩2s = ⟨q2⟩s − ⟨q⟩2s. (3.1.11)

By the canonical commutation relations, by (3.1.7) and by (3.1.2), where we set Â = ∆̂qs and
B̂ = ∆̂ps, it follows promptly that

1

2
ℏ =

1

2
|⟨s|[q̂, p̂]|s⟩| = 1

2

∣∣∣⟨s|[∆̂qs, ∆̂ps]|s⟩∣∣∣ ≤ ⟨s|∆̂q2s |s⟩1/2⟨s|∆̂p2s|s⟩1/2. (3.1.12)

This inequality, using (3.1.10) and (3.1.11), translates to (3.1.1).

There are some states which can be safely said to saturate the (3.1.2) inequality. This fact
is made more precise in the following basic statement, where a sufficient condition on |s⟩ is
found for (3.1.2) to become an equality.
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Proposition 3.1.1. Let Â and B̂ be two arbitrary selfadjoint operators and let |s′⟩ ∈ H be a
state satisfying the equation

Â|s′⟩ = −B̂|s′⟩ir, (3.1.13)

where r ∈ R. Then, (3.1.2) becomes an equality.

Proof. With the assumptions made, one has that

⟨s′|Â2|s′⟩1/2 = (ir⟨s′|B̂B̂|s′⟩ir)1/2 = r⟨s′|B̂2|s′⟩1/2, (3.1.14)

that is
⟨s′|Â2|s′⟩1/2⟨s′|B̂2|s′⟩1/2 = r

∣∣∣⟨s′|B̂2|s′⟩
∣∣∣ . (3.1.15)

Moreover, ∣∣∣⟨s′|ÂB̂|s′⟩
∣∣∣ = ∣∣∣ir⟨s′|B̂2|s′⟩

∣∣∣ = r
∣∣∣⟨s′|B̂2|s′⟩

∣∣∣ . (3.1.16)

Finally, being r real,∣∣∣⟨s′|[Â, B̂]|s′⟩
∣∣∣ = ∣∣∣⟨s′|ÂB̂|s′⟩ − ⟨s′|B̂Â|s′⟩

∣∣∣ (3.1.17)

=
∣∣∣⟨s′|B̂2|s′⟩ir + ir⟨s′|B̂2|s′⟩

∣∣∣ = 2r
∣∣∣⟨s′|B̂2|s′⟩

∣∣∣ ,
which concludes the proof.

Remark 3.1.1. If (3.1.13) is satisfied and if

[Â, B̂] = iα1̂, (3.1.18)

with α ∈ R (α and r must have the same sign), one can find an interesting property which will
turn out to be useful later. In fact, dividing (3.1.13) by (2rα)1/2 and rearranging its terms, one
has an eigenket equation

1

(2rα)1/2
(Â+ irB̂)|s′⟩ = 0, (3.1.19)

which can be solved to find the |s′⟩ which saturates the Heisenberg principle. Furthermore,
(Â+irB̂)/(2rα)1/2 is an annihilation operator. This can be easily seen by checking the definition
(1.1.1).

3.2 Coherent states: definition
Having identified a sufficient condition to find minimum-uncertainty states (see (3.1.13)), the
focus is set on the possibility of finding a general expression for these states. A set of purpose-
built states is now going to be introduced in order to solve this problem. The elements of this
set satisfy all the properties which make them fit candidates for being considered as possibly,
under suitable conditions, classically-behaving states. We call these states coherent states.
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Definition 3.2.1 (Coherent states). Let Â and B̂ be two selfadjoint operators satisfying the
commutation relation

[Â, B̂] = iα1̂, (3.2.1)

with α ∈ R and let r ∈ R be a generic real number such that sgn(r) = sgn(α). Let γ ∈ C be
defined by

Re(γ) =
c1

(2rα)1/2
(3.2.2a)

Im(γ) = c2

( r

2α

)1/2
, (3.2.2b)

with c1, c2 ∈ R. Then, we call coherent state the state |γ⟩ defined as

|γ⟩ := Ŵ (γ)|0⟩, (3.2.3)

where Ŵ (γ) is the Weyl operator associated to an annihilation operator of the form

â =
1

(2rα)1/2
(Â+ irB̂) (3.2.4)

and where |0⟩ is the ket belonging to the 0 eigenvalue of the number operator of â.

We will say that the two operators and the annihilation operator appearing in the definition
are the operators and the annihilation operator associated with the coherent state. From the
definition, the main features of the coherent states immediately follow.

Proposition 3.2.1. Coherent states are eigenstates of their associated annihilation operator:

â|γ⟩ = |γ⟩γ. (3.2.5)

Proof. This fact is an immediate consequence of proposition 1.2.7.

Proposition 3.2.2. Coherent states are minimum-uncertainty states with respect to their asso-
ciated operators.

Proof. The uncertainty operators associated with Â and B̂ can be generically defined as:

∆̂A := Â− c11̂ (3.2.6a)

∆̂B := B̂ − c21̂, (3.2.6b)

where c1 and c2 are the constants introduced in definition 3.2.1. Then, (3.2.5) becomes

1

(2rα)1/2
(∆̂A+ ir∆̂B)|γ⟩ = 0, (3.2.7)

that is
∆̂A|γ⟩ = −∆̂B|γ⟩ir. (3.2.8)

From proposition 3.1.1, the statement is shown.
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The fact that we introduced c1 and c2 in the definition of ∆̂A and ∆̂B seems quite an
arbitrary choice. This is not fortuitous. In fact, the following statement holds true.

Proposition 3.2.3. Let |γ⟩ be a coherent state. Let Â and B̂ be its associated operators, with
r, α, c1 and c2 as above. Then,

⟨A⟩γ = c1 (3.2.9a)
⟨B⟩γ = c2 (3.2.9b)

⟨∆A2⟩γ =
rα

2
(3.2.9c)

⟨∆B2⟩γ =
α

2r
, (3.2.9d)

where we defined ⟨X⟩γ := ⟨γ|X̂|γ⟩.

Proof. We start by calculating the expectation values.
Step 1. By definition,

⟨A⟩γ = ⟨γ|Â|γ⟩ = ⟨0|Ŵ (γ)+ÂŴ (γ)|0⟩. (3.2.10)

Our goal is to compute the unitary sandwich Ŵ (γ)+ÂŴ (γ). First, we evaluate the following
expression through (3.2.1), (3.2.4) and (3.2.2a):

[Â, γâ+ − γ∗â] =
γ

(2rα)1/2
[Â, Â− irB̂]− γ∗

(2rα)1/2
[Â, Â+ irB̂]

=
−ir

(2rα)1/2
(γ + γ∗)iα1̂ = (2rα)1/2 Re(γ)1̂

= c11̂. (3.2.11)

By proposition 1.2.6, the unitary sandwich we want to evaluate can be expressed as

Ŵ (γ)+ÂŴ (γ) = Â+ c11̂. (3.2.12)

This leads to
⟨A⟩γ = ⟨0|(Â+ c11̂)|0⟩ = ⟨A⟩0 + c1. (3.2.13)

Using (3.2.4), it can be easily found that

Â =
(rα

2

)1/2
(â+ â+). (3.2.14)

Then, from (1.1.11a), it is straightforward that

⟨A⟩0 = 0, (3.2.15)

showing (3.2.9a). Analogously, it is easy to find that

Ŵ (γ)+B̂Ŵ (γ) = B̂ + c21̂. (3.2.16)

From (3.2.4),

B̂ = −i
( α
2r

)1/2
(â− â+), (3.2.17)
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which leads to
⟨B⟩0 = 0, (3.2.18)

that is (3.2.9b).
Step 2. We now compute the uncertainties. The definitions (3.2.6), have been somehow

justified, since, generically speaking, the operator which gives the uncertainty of a certain
observable for a given state is of the form:

∆̂Xs = X̂ − ⟨X⟩s1̂. (3.2.19)

Then, taking (3.2.6) for granted, it easy to find that

⟨∆A2⟩γ = ⟨A2⟩γ − ⟨A⟩2γ = ⟨A2⟩γ − c21 (3.2.20a)
⟨∆B2⟩γ = ⟨B2⟩γ − ⟨B⟩2γ = ⟨B2⟩γ − c22. (3.2.20b)

Then, to evaluate these expressions, by definition, one has to compute the following unitary
sandwiches:

Ŵ (γ)+Â2Ŵ (γ) (3.2.21a)

Ŵ (γ)+B̂2Ŵ (γ) (3.2.21b)

For instance, we can evaluate (3.2.21a). Since Ŵ (γ) is an unitary operator (see proposition
1.2.1), one has that

Ŵ (γ)+Â2Ŵ (γ) = (Ŵ (γ)+ÂŴ (γ))2. (3.2.22)

Then, by (3.2.12),
Ŵ (γ)+Â2Ŵ (γ) = Â2 + 2c1Â+ c21, (3.2.23)

which, taking into account (3.2.15), leads to

⟨∆A2⟩γ = ⟨A2⟩0. (3.2.24)

Using (1.1.1), (1.1.11a) and (3.2.14), it is easy to find that

⟨A2⟩0 =
rα

2
, (3.2.25)

thus showing (3.2.9c). (3.2.9d) is analogously found.

Remark 3.2.1. The previous result could also be used to show that a coherent state is a
minimum-uncertainty state. Indeed,

⟨∆A2⟩1/2γ ⟨∆B2⟩1/2γ =
α

2
=

1

2
⟨[∆̂A, ∆̂B]⟩γ. (3.2.26)

Finally, a general form for the coherent states can be found. In fact, coherent states can be
expanded in terms of the |n⟩ with well-known expansion coefficients.

Proposition 3.2.4. Let |γ⟩ be a coerent state. Then,

|γ⟩ = exp(− |γ|2 /2)
∞∑
n=0

|n⟩ γn

(n!)1/2
. (3.2.27)
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Proof. The statement readily follows from proposition 1.2.8.

Example 3.2.1 (Relevant quantities derived from the coherent states of the harmonic oscilla-
tor). To identify the coherent states of the harmonic oscillator of mass m and angular frequency
ω, we have to find two operators of the sort (3.2.1) in order to define a proper annihilation
operator. The position and momentum operators satisfy this request with α = ℏ:

[q̂, p̂] = iℏ1̂. (3.2.28)

We have that r must have the dimensions of a time divided a mass. Then, we set r = 1/(mω).
From (3.2.4), we define

â =
(mω
2ℏ

)1/2(
q̂ +

i

mω
p̂

)
. (3.2.29)

We choose two real numbers q and p and we set c1 = q and c2 = p. From proposition 3.2.3, it
immediately follows that

⟨q⟩γ = q =

(
2ℏ
mω

)1/2

Re(γ) (3.2.30a)

⟨p⟩γ = p = (2ℏmω)1/2 Im(γ) (3.2.30b)

∆qγ =

(
ℏ

2mω

)1/2

(3.2.30c)

∆pγ =

(
ℏmω
2

)1/2

. (3.2.30d)

It follows that
∆qγ∆pγ =

ℏ
2
. (3.2.30e)

Example 3.2.2 (Coherent states of the harmonic oscillator in the Schroedinger representation).
Consider an harmonic oscillator of massm and frequency ω. Then, for x ∈ R in its configuration
space, consider |x⟩, i.e. the eigenket of the position operator q̂ belonging to the x eigenvalue.
For a given n ∈ N, the expression of the normalized wavefunction of the harmonic oscillator
reads as (see [6])

ϕn(x) := ⟨x|n⟩ = (−1)nin

ℓ1/2π1/4(2nn!)1/2
Hn

(x
ℓ

)
exp

(
− x2

2ℓ2

)
, (3.2.31)

where ℓ := (ℏ/mω)1/2 and where Hn(ξ) is the Hermite polynomial of order n. Through (3.2.27)
it is possible to find that, for a given γ ∈ C, the normalized wavefunction of the coherent states
of the harmonic oscillator are

ϕγ(x) := ⟨x|γ⟩ = 1

ℓ1/2π1/4
exp

(
−1

2
(γ∗2 + |γ|2)

)
exp

(
−1

2

(x
ℓ
+ 21/2iγ

)2)
. (3.2.32)

Indeed, combining (3.2.31) and (3.2.27),

⟨x|γ⟩ = 1

ℓ1/2π1/4
exp(−|γ|2/2)

∞∑
n=0

1

n!

(−iγ
21/2

)n
Hn

(x
ℓ

)
exp

(
− x2

2ℓ2

)
. (3.2.33)
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Figure 3.1: Plot of the squared modulus |ϕγ(x)|2 of ϕγ(x), with γ = 1 + i, as a function of x.

Then, expression (3.2.32) is obtained through the exponential generating function (see [8])

exp(2ξt− t2) =
∞∑
n=0

tn

n!
Hn(ξ), (3.2.34)

with ξ = x/ℓ and t = −iγ/21/2. The squared modulus of ϕγ(x) has a Gaussian profile, as shown
in figure 3.1.

Example 3.2.1 is one of the many applications of the fact that quantum systems described
by canonically commuting operators admit coherent states. This is contained in definition 3.2.1.
The coherent states of any system which is the quantum version of a classical system can always
be defined through the operators q̂ and p̂ or through other equivalent canonically commuting
operators. Furthermore, from Dirac’s quantization principle, given two canonically conjugate
phase functions f1 and f2,

{f1, f2} = 1 =⇒ [f̂1, f̂2] = iℏ1̂ +O(ℏ2), (3.2.35)

meaning that f̂1 and f̂2 can, under suitable conditions (O(ℏ2) = 0), possibly satisfy (3.2.1) and
therefore are fit candidates to define the coherent states of the associated quantum system.
This connection between classical systems and coherent states strengthens the idea that the
behaviour of these states should be studied in a semiclassical limit. This will be done in chapter
4 for a more general class of states which contains the set of coherent states. We now move on
to a further characterization of these states.

3.3 Coherent states: general properties
The way coherent states were built allows one to find some other properties of these. For
instance, it can be seen that coherent states form a non-orthogonal set of normalized states.

Proposition 3.3.1. Let |γ⟩ and |γ′⟩ be two coherent states with γ ̸= γ′. Then,

⟨γ|γ⟩ = 1 (3.3.1a)
⟨γ|γ′⟩ = exp(−|γ − γ′|2/2 + i Im(γ∗γ′)) ̸= 0. (3.3.1b)
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Proof. The two relations will be proved in two separate steps.
Step 1. From the definition of |γ⟩, from the fact that Ŵ (γ) is unitary and from the or-

thonormality relations (1.1.12a), we find

⟨γ|γ⟩ = ⟨0|Ŵ (γ)−1Ŵ (γ)⟩0 = ⟨0|0⟩ = 1. (3.3.2)

Step 2. Using the explicit expression (3.2.27) for |γ⟩ and using the orthonormality relations
(1.1.12a) which exist between the eigenkets of the number operator, we find

⟨γ|γ′⟩ = exp(−|γ|2/2− |γ′|2/2)
∞∑
m=0

∞∑
n=0

γ∗m

(m!)1/2
⟨m|n⟩ γ′n

(n!)1/2

= exp(−|γ|2/2− |γ′|2/2)
∞∑
m=0

∞∑
n=0

γ∗m

(m!)1/2
δm,n

γ′n

(n!)1/2

= exp(−|γ|2/2− |γ′|2/2)
∞∑
n=0

(γ∗γ′)n

n!

= exp(−|γ|2/2− |γ′|2/2) exp(γ∗γ′)
= exp(−|γ|2/2− |γ′|2/2 + γ∗γ′). (3.3.3)

Hence,

−|γ|2/2− |γ′|2/2 + γ∗γ′ = −|γ|2/2− |γ′|2/2 + γ∗γ′/2 + γ∗γ′/2 + γγ′∗/2− γγ′∗/2

= −(|γ|2 + |γ′|2 − γγ′∗ − γ∗γ′)/2− (γ∗γ′ − γγ′∗)/2

= −
(
|γ|2 + |γ′|2 − 2Re(γγ′∗)

)
/2 + i Im(γ∗γ′)

= −|γ − γ′|2/2 + i Im(γ∗γ′), (3.3.4)

which concludes the proof.

The following corollary is an immediate consequence of the previous relations.

Corollary 3.3.1. Let |γ⟩ and |γ′⟩ be two coherent states. Then,

0 < |⟨γ|γ′⟩| ≤ 1. (3.3.5)

Given the fact that coherent states are parameterized by a complex number γ, if we choose
γ′ ∈ C close enough to γ in the Euclidean metric sense of this expression, it is natural to wonder
whether we will get a |γ′⟩ close enough to |γ⟩ in the metric induced on H by the bra-ket product
or not. The answer to this question is affirmative. In other words, coherent states display some
sort of continuity.

Proposition 3.3.2. For some fixed γ ∈ C,

∀ ϵ > 0,∃ δ > 0 : ∀ γ′ ∈ C, |γ − γ′| < δ =⇒ ∥|γ⟩ − |γ′⟩∥ < ϵ, (3.3.6)

where | · | is the Euclidean norm on C and ∥ · ∥ is the norm induced on H by the bra-ket product
and where |γ⟩ and |γ′⟩ are coherent states.
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Proof. By Proposition 3.3.1 and the definition of the norm, one gets

∥|γ⟩ − |γ′⟩∥2 = (⟨γ| − ⟨γ′|)(|γ⟩ − |γ′⟩)
= ⟨γ|γ⟩+ ⟨γ′|γ′⟩ − ⟨γ|γ′⟩ − ⟨γ′|γ⟩
= 2 (1− Re(⟨γ|γ′⟩)) . (3.3.7)

By continuity of the bra-ket product,

lim
γ′→γ

Re(⟨γ|γ′⟩) = 1, (3.3.8)

which concludes the proof.

3.4 Overcompleteness of coherent states
For most quantum systems, it is customary to represent H through a complete orthonor-
mal set consisting of eigenkets of selfadjoint operators representing observables of the system.
Therefore, it might seem odd to represent H through an overcomplete set of eigenkets of non-
Hermitian operators, such as the annihilation operator â. The expressions (3.3.1a) and (3.3.1b)
state that G := {|γ⟩}γ∈C consists of non-orthogonal normalized kets. However, it can be shown
(see [12]) that the set

S := {|γ⟩ ∈ G : γ = π1/2(l + im), l,m ∈ Z} ⊂ G (3.4.1)

does constitute a basis for H. This means that the eigenkets of â form an overcomplete rep-
resentation of H. We will not show this result. However, we will show that G is complete.
Indeed, one has the following result.

Proposition 3.4.1. Let G := {|γ⟩}γ∈C be the set of the coherent states of a quantum system.
Then,

1̂ =
1

π

∫
C
d2γ|γ⟩⟨γ| (3.4.2)

holds.

Proof. Showing (3.4.2) is equivalent to showing that, for any |λ⟩, |ψ⟩ ∈ H,

⟨λ|ψ⟩ = 1

π

∫
C
d2γ⟨λ|γ⟩⟨γ|ψ⟩, (3.4.3)

holds. Using (3.2.27), one gets

1

π

∫
C
d2γ⟨λ|γ⟩⟨γ|ψ⟩ = 1

π

∫
d2γ exp(−|γ|2)

∞∑
m=0

∞∑
n=0

⟨λ|m⟩ γmγ∗n

(m!n!)1/2
⟨n|ψ⟩

=
1

π

∫ ∞

0

∫ 2π

0

rdrdθ exp(−r2)
∞∑
m=0

∞∑
n=0

⟨λ|m⟩r
m+n exp(i(m− n)θ)

(m!n!)1/2
⟨n|ψ⟩,

(3.4.4)
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where we changed the integration on C into an integration on the polar plane, setting γ =
r exp(iθ) and d2γ = rdrdθ. Writing that

1

π

∫
C
d2γ⟨λ|γ⟩⟨γ|ψ⟩ = 1

π
lim
R→∞

∫ R

0

∫ 2π

0

rdrdθ exp(−r2)
∞∑
m=0

∞∑
n=0

⟨λ|m⟩r
m+n exp(i(m− n)θ)

(m!n!)1/2
⟨n|ψ⟩

=
1

π
lim
R→∞

IR, (3.4.5)

we can concentrate on IR. IR can be separated into a radial integration and an angular inte-
gration:

IR =
∞∑
m=0

∞∑
n=0

⟨λ|m⟩ 1

(m!n!)1/2
⟨n|ψ⟩

(∫ R

0

drrm+n+1 exp(−r2)
)(∫ 2π

0

dθ exp(i(m− n)θ)

)
=

∞∑
m=0

∞∑
n=0

⟨λ|m⟩ 1

(m!n!)1/2
⟨n|ψ⟩Ir(R;m,n)Iθ. (3.4.6)

It can be easily seen that
Iθ = 2πδm,n, (3.4.7)

which leads to

IR = 2π
∞∑
n=0

⟨λ|n⟩ 1
n!
⟨n|ψ⟩

∫ R

0

drr2n+1 exp(−r2). (3.4.8)

Let’s take a look at the integral in dr. Setting r2 = y and 2rdr = dy, we get∫ R

0

drr2n+1 exp(−r2) = 1

2

∫ R

0

dyyn exp(−y). (3.4.9)

Then, we define

Γn(R) :=
1

2n!

∫ R

0

dyyn exp(−y). (3.4.10)

By the fact that the integrand is non-negative, we have Γn(R) > 0 and that

Γn(R) <
1

n!

∫ ∞

0

dyyn exp(−y) = 1

n!
Γ(n+ 1) = 1, (3.4.11)

where Γ is the gamma function. Then, using (3.4.10), we obtain the following expression for
IR:

IR = 2π
∞∑
n=0

⟨λ|n⟩⟨n|ψ⟩Γn(R). (3.4.12)

Since {|n⟩}n∈N is complete,

⟨λ|ψ⟩ =
∞∑
n=0

⟨λ|n⟩⟨n|ψ⟩ <∞. (3.4.13)

With the fact that 0 < Γn(R) < 1, one has that IR converges too and the limit (3.4.5) can then
be interchanged with the limit which defines the series in n:

1

π

∫
C
d2γ⟨λ|γ⟩⟨γ|ψ⟩ = 2

∞∑
n=0

⟨λ|n⟩⟨n|ψ⟩ lim
R→∞

Γn(R) =
∞∑
n=0

⟨λ|n⟩⟨n|ψ⟩ = ⟨λ|ψ⟩, (3.4.14)
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as, from (3.4.10), it can be easily seen that

lim
R→∞

Γn(R) =
1

2n!
lim
R→∞

∫ R

0

dyyn exp(−y)

=
1

2n!

∫ ∞

0

dyyn exp(−y) = Γ(n+ 1)

2n!
=

1

2
. (3.4.15)

There are some important properties which follow from (3.4.2). In particular, all kets
|ψ⟩ ∈ H now enjoy the following decomposition in terms of coherent states with the complex
coefficients ⟨γ|ψ⟩:

|ψ⟩ = 1

π

∫
C
d2γ|γ⟩⟨γ|ψ⟩. (3.4.16)

The coefficients ⟨γ|ψ⟩ display some interesting properties. In fact, they have an explicit expres-
sion and exhibit boundedness and analyticity (up to a gaussian factor) on C. To begin with,
we give these coefficients a name.

Definition 3.4.1 (Vector representative function). Let |ψ⟩ ∈ H be an arbitrary state of the
Hilbert space. Then, the complex-valued function ψ(γ) defined as

ψ : C −→ C
γ 7−→ ψ(γ) := ⟨γ|ψ⟩ (3.4.17)

is called the vector representative function of |ψ⟩.

Proposition 3.4.2. Let |ψ⟩ ∈ H be an arbitrary state of the Hilbert space. Then, the vector
representative function ψ(γ) of |ψ⟩ has the following explicit expression:

ψ(γ) := ⟨γ|ψ⟩ = exp(−|γ|2/2)
∞∑
n=0

γ∗n

(n!)1/2
⟨n|ψ⟩. (3.4.18)

Proof. This follows immediately from proposition 3.2.4.

Proposition 3.4.3. Let |ψ⟩ ∈ H be an arbitrary state of the Hilbert space. Then, the vector
representative function ψ(γ) of |ψ⟩ is bounded, continuous and

fψ(γ) := exp(|γ|2/2)ψ(γ) (3.4.19)

is analytic everywhere on C.
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Proof. This proof will be divided in two steps. In the first step, ψ(γ) will be shown to be
bounded and continuous. In the second step, fψ(γ) will be shown to be entire.

Step 1. We need to show that

∃C ∈ R : ∀ γ ∈ C =⇒ |ψ(γ)| ≤ C. (3.4.20)

We start by fixing some γ′ ∈ C. Then, we compute |ψ(γ′)|. Using the Cauchy-Schwarz
inequality and (3.3.1a),

|ψ(γ′)| = |⟨γ′|ψ⟩| ≤ ⟨γ′|γ′⟩1/2⟨ψ|ψ⟩1/2 = ⟨ψ|ψ⟩1/2 = ∥|ψ⟩∥ <∞. (3.4.21)

Hence, this first statement is proven just by choosing C = ∥|ψ⟩∥. We now want to show that,
fixed some γ ∈ C,

∀ ϵ > 0, ∃ δ > 0 : ∀γ′ ∈ C, |γ − γ′| < δ =⇒ |ψ(γ)− ψ(γ′)| < ϵ. (3.4.22)

We start by computing |ψ(γ)−ψ(γ′)|. By the linearity of the bra-ket product, by the Cauchy-
Schwarz inequality,

|ψ(γ)− ψ(γ′)| = |⟨γ|ψ⟩ − ⟨γ′|ψ⟩|
= |(⟨γ| − ⟨γ′|)|ψ⟩|
≤ ∥⟨γ| − ⟨γ′|∥ ∥|ψ⟩∥. (3.4.23)

Hence, by proposition (3.3.2), (3.4.22) follows.
Step 2. By definition (see [7]), a complex-valued function f defined on an open set D ⊆ C is

said to be analytic on D if, ∀ γ0 ∈ D, ∃ ρ(γ0) ∈ R, ρ(γ0) > 0, such that, ∀ γ : |γ − γ0| < ρ(γ0),

∃ a0, . . . , ai, . . . : f(γ) =
∞∑
k=0

ak(γ − γ0)
k. (3.4.24)

A complex-valued function f is said to be entire if it is analytic on D = C. We now proceed
to show that fψ(γ) satisfies this condition. First, by the triangle and the Cauchy-Schwarz
inequalities, we notice that∣∣∣∣∣

∞∑
n=0

γ∗n

(n!)1/2
⟨n|ψ⟩

∣∣∣∣∣ ≤
∞∑
n=0

|γ∗|n
(n!)1/2

|⟨n|ψ⟩| ≤
∞∑
n=0

|γ∗|n
(n!)1/2

⟨n|n⟩1/2⟨ψ|ψ⟩1/2. (3.4.25)

In other words, from (1.1.12a),

exp(|γ|2/2)|ψ(γ)| =
∣∣∣∣∣

∞∑
n=0

γ∗n

(n!)1/2
⟨n|ψ⟩

∣∣∣∣∣ ≤ ∥|ψ⟩∥
∞∑
n=0

|γ∗|n
(n!)1/2

<∞, (3.4.26)

for all γ ∈ C, as can be easily seen by the ratio test for convergence. Then, the series expansion
appearing in

fψ(γ) := exp(|γ|2/2)ψ(γ) =
∞∑
n=0

γ∗n

(n!)1/2
⟨n|ψ⟩ (3.4.27)

is convergent for all γ ∈ C and, set γ0 = 0, fψ(γ) is found to be analytic on C.

Remark 3.4.1. Being ψ(γ) entire up to a a factor exp(−|γ|2/2), it is known from complex
analysis that it is infinitely differentiable in γ. In addition, it is worth pointing out that not
every entire function is a fit candidate for ψ(γ), as (3.4.26) imposes a growth restriction on
ψ(γ).
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That being said, (3.4.16) can be written in terms of the vector representative function of
|ψ⟩:

|ψ⟩ = 1

π

∫
C
d2γ|γ⟩ψ(γ). (3.4.28)

In an analogous fashion, operators too can be expanded in terms of the coherent states. Indeed,
given a generic operator B̂, multiplying on both sides by (3.4.2),

B̂ =
1

π2

∫
C2

d2γ1d
2γ2|γ1⟩⟨γ1|B̂|γ2⟩⟨γ2| =

1

π2

∫
C2

d2γ1d
2γ2|γ1⟩(Bγ2)(γ1)⟨γ2|, (3.4.29)

where (Bγ2) is the vector representative function of B̂|γ2⟩. There are further properties which
the vector representative functions must satisfy.

Proposition 3.4.4 (Integral equation for the representative function). Let |ψ⟩ ∈ H be an
arbitrary state of the Hilbert space. Then, its vector representative function solves the following
integral equation:

ψ(γ) =
1

π

∫
C
d2γ′K(γ, γ′)ψ(γ′), (3.4.30)

where the integral kernel K(γ, γ′) is defined as

K(γ, γ′) := ⟨γ|γ′⟩. (3.4.31)

Proof. The claim is a prompt consequence of (3.4.16) and definition (3.4.1).

Similar integral equations must be fulfilled by the representative functions for operators.
Moreover, The integral kernel (3.4.31) satisfies an idempotence condition and acts like a pro-
jector.

Proposition 3.4.5 (Idempotence condition). Given K(γ, γ′′) := ⟨γ|γ′′⟩, where |γ⟩, |γ′′⟩ ∈ G,
one has that

K(γ, γ′′) =
1

π

∫
C
d2γ′K(γ, γ′)K(γ′, γ′′). (3.4.32)

Proof. This fact results from choosing |ψ⟩ = |γ′′⟩ in (3.4.30).

To conclude this section, it is interesting to point out that the fact thatG is overcomplete has
some bizarre consequences. First, (3.4.2) is not unique. Indeed, one can create infinitely many
decompositions for 1̂ and, consequently, for every ket and operator in the following manner:

1̂ = 1̂1̂ =
1

π2

∫
C2

d2γ1d
2γ2|γ1⟩⟨γ1|γ2⟩⟨γ2| =

1

π2

∫
C2

d2γ1d
2γ2|γ1⟩K(γ1, γ2)⟨γ2|. (3.4.33)

Another consequence of the overcompleteness of G is that there are some sort of linear depen-
dencies between coherent states. For instance, simply by using (3.4.16) with |ψ⟩ = |γ′⟩ ∈ G,
one can express |γ′⟩ in terms of every element of G. A light can be cast on other forms of
dependencies between coherent states.
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Proposition 3.4.6. Let γ ∈ C be a generic complex number and let |γ⟩ ∈ G be its associated
coherent state. Then, given an arbitrary p ∈ N+,∫

C
d2γ|γ⟩γp = 0. (3.4.34)

Proof. We start by writing the polar form of γ, i.e. γ = r exp(iθ), and by using proposition
(3.2.4):

|γ⟩ = |r exp(iθ)⟩ = exp(−r2/2)
∞∑
n=0

|n⟩r
n exp(inθ)

(n!)1/2
. (3.4.35)

Then, we multiply this expression by exp(ipθ) and we integrate this product in θ from 0 to 2π:∫ 2π

0

dθ|r exp(iθ)⟩ exp(ipθ) = exp(−r2/2)
∞∑
n=0

|n⟩ rn

(n!)1/2

∫ 2π

0

dθ exp(i(p+ n)θ) = 0. (3.4.36)

This follows from the fact that p + n ̸= 0 ∀ p (see (3.4.7)). Multiplying (3.4.36) by rpr and
integrating in r from 0 to ∞, relation (3.4.34) is reached.

Despite the fact (see proposition 3.4.6) that sets of infinitely many coherent states are
linearly dependent, it can be shown that, when there is a finite number of them, they are
linearly independent.

Proposition 3.4.7. Let N ∈ N+, with N <∞. Let |γk⟩ ∈ G, with k = 1, . . . , N , be N coherent
states. Then, given N arbitrary complex numers ck ∈ C, with k = 1, . . . , N the following
statement holds true:

N∑
k=0

|γk⟩ck = 0 ⇐⇒ ck = 0 ∀ k = 1, . . . , N. (3.4.37)

Proof. The (⇐=) implication is straightforward. Let’s show (=⇒) by contradiction. We start
by assuming that finite linear combinations of coherent states are in turn coherent states. This
is equivalent to assuming that, in

N∑
k=0

|γk⟩ck = 0 (3.4.38)

there is a least one m ∈ {0, . . . , N} such that cm ̸= 0. Then, rearranging (3.4.38), we obtain

|γm⟩ = −
N∑

k=0, k ̸=m

|γk⟩
ck
cm
, (3.4.39)

Choosen some |γn⟩ with n ∈ {0, . . . , N}, we define |γ⊥⟩ as

|γ⊥⟩ := |γm⟩ − |γn⟩⟨γn|γm⟩ = |γm⟩+ |γn⟩
N∑

k=0, k ̸=m

⟨γn|γk⟩
ck
cm
. (3.4.40)

We assumed that finite linear combinations of coherent states are coherent states. Then, |γ⊥⟩
is a coherent state. It is easy to check that

⟨γn|γ⊥⟩ = 0. (3.4.41)

This, however, contradicts (3.3.1b). The statement is thus shown.
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Chapter 4

Classical particle limit

In the quantum formalism, the experimental fact that, under certain conditions, quantum sys-
tems with a classical analogue display a classical behaviour is not immediately obvious, although
it is something sensible to expect from the theory if it models accurately the phenomenology.
Therefore, a link between Hamiltonian mechanics and quantum theory should exist and, under
fit circumstances, it should be possible to retrieve the dynamics of a classical particle through
the quantum formalism. Classical observables are in one-to-one correspondence with phase
functions, while quantum observables are in one-to-one correspondence with selfadjoint opera-
tors. In a given state, the physically relevant quantities which can be obtained from selfadjoint
operators are their expectation value and their uncertainty: these are significant quantities in
the transition between the two theories. For this reason, the focus should be set on recov-
ering classical equations from the expectation values and the uncertainties of the selfadjoint
operators corresponding to classical observables. The problem essentially boils down to finding
the suitable quantum states in which the computed quantities produce the desired result. The
theory of coherent states which was studied in the previous chapter already suggested in some
way a suitable form for these states.
In this chapter, we start by rephrasing the question in a more formal and precise manner. Then,
ignoring time evolution, we first solve the problem for position and momentum. In the last
section, time evolution is taken into consideration and, again, the problem is solved for position
and momentum, bringing really interesting results. This chapter relies on the introduction of
[3].

4.1 Statement of the problem
Let ν be the number of degrees of freedom of a certain quantum system which has a classical
counterpart. In quantum mechanics, the states of the system are represented by the rays of a
certain Hilbert space H and observable quantities of the system are represented by selfadjoint
operators on H. In classical mechanics, the state of the system is represented by a point in
a 2ν-dimensional space F called phase space. Observable quantities are represented by phase
functions, that is by real functions on F .
One wants to obtain classical observables from the quantum ones. To this goal, given a ℏ-
dependent selfadjoint operator Âℏ and given its classical equivalent phase function a(ζ), with
ζ ∈ F , one must find the states |ℏ, ζ⟩ such that

⟨Aℏ⟩|ℏ,ζ⟩ ℏ→0−−→ a(ζ) (4.1.1a)

⟨∆Aℏ⟩|ℏ,ζ⟩ ℏ→0−−→ 0. (4.1.1b)

Our aim is then to determine the form of the states satisfying (4.1.1).
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Remark 4.1.1. In this context, the symbol ℏ has to be regarded as a parameter that represents
to which degree the quantum system is close to its classical counterpart. Accordingly, taking
the formal limit ℏ → 0 mathematically describes the process of taking the system to its classical
form. This process must not be intended as an actual variation of ℏ, since the reduced Planck
constant is unalterable and its value is measurable and well-known. The limit ℏ → 0 must
rather be regarded as a mathematical way to express the fact that, when the quantum system
approaches its classical analogue, ℏ becomes small compared to the action scale of the system.

4.2 Classical limit of the expectation values of observables

Finding the states |ℏ, ζ⟩ is relatively easy when Âℏ corresponds to the position or momentum
operators. To this end, let q̂1, . . . , q̂ν , p̂1, . . . , p̂ν be 2ν selfadjoint operators obeying the following
commutation relations:

[q̂k, p̂l] = iδk,l1̂ (4.2.1a)
[q̂i, q̂j] = 0 (4.2.1b)
[p̂i, p̂j] = 0, (4.2.1c)

∀ k, l, i, j ∈ {1, . . . , ν}. These operators can be arranged in the vectors operators

q̂ = (q̂1, . . . , q̂ν) (4.2.2a)
p̂ = (p̂1, . . . , p̂ν) . (4.2.2b)

Remark 4.2.1. The operators q̂k and p̂l are position and momentum operators. For a symmetry
argument, the constant ℏ which usually appears in the commutation relation (4.2.1a) is included
inside q̂k and p̂l.

Given two arbitrary elements in Rν , say ξ = (ξ1, . . . , ξν) and π = (π1, . . . , πν), the following
operator can be defined

Ĉ(ξ,π) := exp (i (π · q̂ − ξ · p̂)) , (4.2.3)

where · is a shorthand notation for

π · q̂ :=
ν∑
j=0

πj q̂j, (4.2.4a)

ξ · p̂ :=
ν∑
j=0

ξj p̂j. (4.2.4b)

The Ĉ(ξ,π) operator will be used to build some states which behave as (4.1.1) in the semiclas-
sical limit of ℏ → 0.

Lemma 4.2.1. Ĉ(ξ, π) is a Weyl operator.

Proof. By definition, one has, through the properties of the exponential operator and through
(4.2.1),

Ĉ(ξ,π) := exp (i (π · q̂ − ξ · p̂))

=
ν∏
j=1

exp (i (πj q̂j − ξj p̂j)) . (4.2.5)
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Then, for each pair q̂k, p̂k, the following operators can be defined:

âk :=
1

21/2
(q̂k + ip̂k) (4.2.6)

â+k =
1

21/2
(q̂k − ip̂k) , (4.2.7)

which, through (4.2.1a), are found to be a pair of annihilation and creation operators. Setting

γk :=
1

21/2
(ξk + iπk) , (4.2.8)

(4.2.5) can be written as

Ĉ(ξ,π) =
ν∏
j=1

exp
(
γj â

+
j − γ∗j âj

)
. (4.2.9)

Thus, by proposition 1.2.9, the statement is readily shown.

To deal in more concise terms with the vector operators q̂ and p̂ and with the ν-tuples ξ
and π, the following notation is introduced

ẑ = (q̂ , p̂) (4.2.10a)
ζ = (ξ,π) . (4.2.10b)

From the properties of the Weyl operators, a translation property is found for Ĉ(ζ).

Proposition 4.2.1 (Translation property). Given an arbitrary ζ ∈ R2ν, the identity

Ĉ(ζ)+ẑĈ(ζ) = ẑ + ζ1̂ (4.2.11)

holds true.

Proof. We start by considering one element of the 2ν-tuple ẑ. For instance, let us consider
ẑj = q̂j. Then, by the translation property 1.2.6 of the Weyl operators and by Lemma 4.2.1,

Ĉ(ζ)+q̂jĈ(ζ) = q̂j +

[
q̂j,

ν∑
k=1

γ∗k âk −
ν∑
k=1

γkâ
+
k

]
, (4.2.12)

where âk, â+k and γk are defined as in (4.2.6), (4.2.7) and (4.2.8). Using these definitions and
the commutation relations (4.2.1), one is left with

Ĉ(ζ)+q̂jĈ(ζ) = q̂j − [q̂j, γ
∗
j âj − γj â

+
j ]

= q̂j −
1

2
[q̂j, (ξj − iπj) (q̂j + ip̂j)− (ξj + iπj) (q̂j − ip̂j)]

= q̂j −
1

2
[q̂j, (ξj − iπj) ip̂j + (ξj + iπj) ip̂j]

= q̂j −
1

2

(
−(ξj − iπj)1̂− (ξj + iπj)1̂

)
= q̂j + ξj 1̂. (4.2.13)

Proceeding in the same fashion for a generic ẑj = p̂j and putting the relations found in the
vector notation, (4.2.11) follows.
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To parameterize the theory in function of the classicality degree ℏ, we set

ẑℏ := ℏ1/2ẑ. (4.2.14)

From there, the form of the states |ℏ, ζ⟩ is found by choosing an arbitrary normalized state |Ω⟩
and by setting

|ℏ, ζ⟩ := Ĉ(ℏ−1/2ζ)|Ω⟩. (4.2.15)

Indeed, one has the following result.

Proposition 4.2.2. Given a generic normalized state |Ω⟩ and a generic ζ ∈ R2ν, the expectation
value and the uncertainty of ẑℏ in the state |ℏ, ζ⟩ = Ĉ(ℏ−1/2ζ)|Ω⟩ are given by the following
expressions:

⟨zℏ⟩|ℏ,ζ⟩ = ζ + ℏ1/2⟨z⟩|Ω⟩ (4.2.16a)

⟨∆zℏ⟩|ℏ,ζ⟩ = ℏ1/2⟨∆z⟩|Ω⟩. (4.2.16b)

Proof. The first expression can be easily obtained from (4.2.11), (4.2.14) and by the fact that
|Ω⟩ is normalized:

⟨zℏ⟩|ℏ,ζ⟩ := ⟨Ω|Ĉ(ℏ−1/2ζ)+ẑℏĈ(ℏ−1/2ζ)|Ω⟩ (4.2.17)

= ζ⟨Ω|Ω⟩+ ℏ1/2⟨Ω|ẑ|Ω⟩
= ζ + ℏ1/2⟨z⟩|Ω⟩.

Similarly, using the fact that, for the i-th component of ẑ,

⟨∆zi⟩2|ℏ,ζ⟩ := ⟨z2i ⟩|ℏ,ζ⟩ − ⟨zi⟩2|ℏ,ζ⟩, (4.2.18)

we compute ⟨z2i ⟩|ℏ,ζ⟩ through (4.2.11), (4.2.14) and through the fact that |Ω⟩ is normalized and
that Ĉ(ℏ−1/2ζ) is an unitary operator:

⟨z2i ⟩|ℏ,ζ⟩ = ⟨Ω|
(
Ĉ(ℏ−1/2ζ)+ẑiĈ(ℏ−1/2ζ)

)(
Ĉ(ℏ−1/2ζ)+ẑiĈ(ℏ−1/2ζ)

)
|Ω⟩

= ⟨Ω|
(
ẑi + ℏ−1/2ζi1̂

) (
ẑi + ℏ−1/2ζi1̂

)
|Ω⟩

= ⟨Ω|
(
ẑ2i + ℏ−1ζ2i 1̂ + 2ℏ−1/2ζiẑi

)
|Ω⟩

= ⟨z2i ⟩|Ω⟩ + ℏ−1ζ2i + 2ℏ−1/2ζi⟨zi⟩|Ω⟩. (4.2.19)

On the other hand, for ⟨zi⟩2|ℏ,ζ⟩, it is found from the components of (4.2.16a) that

⟨zi⟩2|ℏ,ζ⟩ =
(
ℏ−1/2ζi + ⟨zi⟩|Ω⟩

)2
= ℏ−1ζ2i + ⟨zi⟩2|Ω⟩ + 2ℏ−1/2ζi⟨zi⟩|Ω⟩. (4.2.20)

Hence, from (4.2.18),

⟨∆zi⟩2|ℏ,ζ⟩ = ⟨∆zi⟩2|Ω⟩. (4.2.21)

Going back to the vector notation and using (4.2.14), (4.2.16b) is found.
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Remark 4.2.2. The choice of |Ω⟩ in (4.2.15) is completely arbitrary. Then, the choice |Ω⟩ =
|0, . . . , 0⟩, where |0, . . . , 0⟩ is the common 0-eigenket of the number operators defined from the
annihilation (4.2.6) and creation (4.2.7) operators, can be made. This, by (3.2.1), defines |ℏ, ζ⟩
as a coherent state.

The previous proposition shows that the states |ℏ, ζ⟩ = Ĉ(ℏ−1/2ζ)|Ω⟩ have the expected
behaviour as ℏ → 0. In fact, in the semiclassical regime, as an immediate consequence of
(4.2.16),

⟨zℏ⟩|ℏ,ζ⟩ ℏ→0−−→ ζ (4.2.22a)

⟨∆zℏ⟩|ℏ,ζ⟩ ℏ→0−−→ 0, (4.2.22b)

which complies with (4.1.1). The search of the form of states having the properties (4.1.1) is
then completed if the time evolution of the system is not taken into consideration.

4.3 Recovery of Hamiltonian mechanics from quantum me-
chanics

To deal with the time evolution of the system, its Hamiltonian operator must be taken into
account. In fact, as our goal is to study the classical limit, we consider solely quantum sys-
tems which have a classical counterpart. This bounds the form of the Hamiltonian operator
to the expression of the classical Hamiltonian phase function. More precisely, the quantum
Hamiltonian operator Ĥℏ must be an operator function of ẑℏ of the form

Ĥℏ = H(ẑℏ), (4.3.1)

where H(ζ) is the classical Hamiltonian phase function, which we assume to be time-independent
and whose general expression reads as

H(ζ) =
1

2
(π − a(ξ))2 + v(ξ). (4.3.2)

The phase functions v(ξ) and a(ξ) are the scalar and vector potential fields of the classical
system. By (2.1.7), the evolution operator of the quantum system is

Ûℏ(t, s) = exp
(
−iℏ−1(t− s)Ĥℏ

)
. (4.3.3)

Using the theory outlined in 2.2, we work on the problem of finding the states satisfying (4.1.1)
in the Heisenberg picture. By (2.2.23c), the vector operator associated to ẑℏ in the Heisenberg
picture is

ẑℏ(t) := Ûℏ(t, s)
+ẑℏÛℏ(t, s). (4.3.4)

Then, we have the following important result.

Proposition 4.3.1. Let ζ(t) be a generic element of R2ν with some kind of time dependence
and with the condition that

ζ(s) = ζ0, (4.3.5)

with ζ0 ∈ R2ν. Then, given a generic normalized state |Ω⟩, in the state |ℏ, ζ0⟩ defined as
(4.2.15) with ζ = ζ0, the expectation value and the uncertainty of ẑℏ(t) read as

⟨zℏ(t)⟩|ℏ,ζ0⟩ = ζ(t) + ⟨Wℏ(t, s)
+zℏWℏ(t, s)⟩|Ω⟩ (4.3.6a)

⟨∆zℏ(t)⟩|ℏ,ζ0⟩ = ⟨Wℏ(t, s)
+(zℏ + ζ(t)− ⟨zℏ(t)⟩|ℏ,ζ0⟩)

2Wℏ(t, s)⟩1/2|Ω⟩ , (4.3.6b)

where
Ŵℏ(t, s) := Ĉ(ℏ−1/2ζ(t))+Ûℏ(t, s)Ĉ(ℏ−1/2ζ0). (4.3.7)
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Remark 4.3.1. By (2.2.22), in the Heisenberg picture,

|ℏ, ζ(t)⟩H = |ℏ, ζ0⟩. (4.3.8)

For this reason, by (2.2.4b), ⟨zℏ(t)⟩|ℏ,ζ0⟩ and ⟨∆zℏ(t)⟩|ℏ,ζ0⟩ are nothing but

⟨zℏ(t)⟩|ℏ,ζ0⟩ = ⟨zℏ⟩|ℏ,ζ(t)⟩ (4.3.9)
⟨∆zℏ(t)⟩|ℏ,ζ0⟩ = ⟨∆zℏ⟩|ℏ,ζ(t)⟩. (4.3.10)

Proof. We start by the calculation of ⟨zℏ(t)⟩|ℏ,ζ0⟩. Then, in the second step, ⟨∆zℏ(t)⟩|ℏ,ζ0⟩ is
computed.

Step 1. By definition of |ℏ, ζ0⟩ and ẑℏ(t),

⟨zℏ(t)⟩|ℏ,ζ0⟩ = ⟨Ω|Ĉ(ℏ−1/2ζ0)
+Ûℏ(t, s)

+ẑℏÛℏ(t, s)Ĉ(ℏ−1/2ζ0)|Ω⟩. (4.3.11)

Using the fact that Ĉ(ℏ−1/2ζ(t)) is an unitary operator,

⟨zℏ(t)⟩|ℏ,ζ0⟩ = ⟨Ω|Ŵℏ(t, s)
+Ĉ(ℏ−1/2ζ(t))+ẑℏĈ(ℏ−1/2ζ(t))Ŵℏ(t, s)|Ω⟩, (4.3.12)

as, from (4.3.7), it is easy to find that

Ŵℏ(t, s)
+ = Ĉ(ℏ−1/2ζ0)

+Ûℏ(t, s)
+Ĉ(ℏ−1/2ζ(t)). (4.3.13)

By (4.2.11) and by the unitarity of the operators appearing in the expression,

⟨zℏ(t)⟩|ℏ,ζ0⟩ = ⟨Ω|Ŵℏ(t, s)
+Ĉ(ℏ−1/2ζ(t))+(ẑℏ + ζ(t))Ĉ(ℏ−1/2ζ(t))Ŵℏ(t, s)|Ω⟩ (4.3.14)

= ζ(t) + ⟨Ω|Ŵℏ(t, s)
+ẑℏŴℏ(t, s)|Ω⟩, (4.3.15)

which proves the first claim.
Step 2. By definition, chosen the j-th component of ẑℏ(t),

⟨∆zℏ,j(t)⟩2|ℏ,ζ0⟩ := ⟨(zℏ,j(t)− ⟨zℏ,j(t)⟩|ℏ,ζ0⟩)
2⟩|ℏ,ζ0⟩. (4.3.16)

Hence, by the fact that Ûℏ(t, s) and Ĉ(ℏ−1/2ζ(t)) are unitary operators and using (4.3.7) and
(4.2.11),

⟨zℏ,j(t)2⟩|ℏ,ζ0⟩ = ⟨Ω|Ŵℏ(t, s)
+Ĉ(ℏ−1/2ζ(t))+(ẑℏ,j − ⟨zℏ,j(t)⟩|ℏ,ζ0⟩1̂)

2Ĉ(ℏ−1/2ζ(t))Ŵℏ(t, s)|Ω⟩
= ⟨Ω|Ŵℏ(t, s)

+(ẑℏ,j + ζj − ⟨zℏ,j(t)⟩|ℏ,ζ0⟩1̂)
2Ŵℏ(t, s)|Ω⟩, (4.3.17)

which, switching to the vector notation, brings to the second claim.

We notice that the Ŵℏ(t, s) operator is defined up to phase factors, as a phase factor can
be introduced without compromising the previous result:

Ŵℏ(t, s) → Ŵℏ(t, s) exp(iφ), (4.3.18)

for some φ ∈ R. If H(ζ) is the Hamiltonian function of the classical counterpart of a quantum
system and if ζ(t) is a solution of the canonical equations for H(ζ) with initial condition

ζ(s) = ζ0, (4.3.19)

there is a certain choice of φ which brings interesting results, as it will be shown.
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Proposition 4.3.2. Let H(ζ) and ζ(t) be as above. If the Ŵℏ(t, s) operator is redefined as

Ŵℏ(t, s) := Ĉ(ℏ−1/2ζ(t))+Ûℏ(t, s)Ĉ(ℏ−1/2ζ0) exp(iφℏ(t, s)), (4.3.20)

with the choice

φℏ(t, s) = ℏ−1

∫ t

s

dr

(
H(ζ(r))− 1

2
∇ζH(ζ(r)) · ζ(r)

)
, (4.3.21)

it obeys the following equations with initial condition Ŵℏ(s, s) = 1̂:

iℏ
∂

∂t
Ŵℏ(t, s) = K̂ℏ(t)Ŵℏ(t, s) (4.3.22a)

iℏ
∂

∂s
Ŵℏ(t, s) = −Ŵℏ(t, s)K̂ℏ(s), (4.3.22b)

with
K̂ℏ(r) = H(ẑℏ + ζ(r)1̂)− H(ζ(r)1̂)−∇ζH(ζ(r)) · ẑℏ. (4.3.23)

Proof. The aim of this proof is to formally compute the derivatives appearing on the left hand
of (4.3.22). We start by computing the partial derivative of Ŵℏ(t, s) with respect to t. By
(4.3.7) and the Leibniz product rule,

∂

∂t
Ŵℏ(t, s) =

∂

∂t

(
Ĉ(ℏ−1/2ζ(t))+Ûℏ(t, s) exp(iφℏ(t, s))

)
Ĉ(ℏ−1/2ζ0)

= Ĉ(ℏ−1/2ζ(t))+
(
∂

∂t
Ûℏ(t, s)

)
Ĉ(ℏ−1/2ζ0) exp(iφℏ(t, s))

+

(
∂

∂t
Ĉ(ℏ−1/2ζ(t))+

)
Ûℏ(t, s)Ĉ(ℏ−1/2ζ0) exp(iφℏ(t, s))

+ Ĉ(ℏ−1/2ζ(t))+Ûℏ(t, s)Ĉ(ℏ−1/2ζ0)

(
∂

∂t
exp(iφℏ(t, s))

)
. (4.3.24)

The derivative appearing in the first term can be easily computed from (4.3.3):

∂

∂t
Ûℏ(t, s) = −iℏ−1ĤℏÛℏ(t, s). (4.3.25)

Then, using the fact that Ĉ(ℏ−1/2ζ(t)) is an unitary operator and using (4.3.1), (4.3.7) and
(4.2.11), the first term can be written as

−iℏ−1H(ẑℏ + ζ(t)1̂)Ŵℏ(t, s). (4.3.26)

Through the Baker-Campbell-Hausdorff decomposition (1.2.8), the derivative appearing in the
second term can be computed from (4.2.1), (4.2.3) and by using the Leibniz product rule:

∂

∂t
Ĉ(ℏ−1/2ζ(t))+ =

∂

∂t
exp

(
−iℏ−1/2 (π(t) · q̂ − ξ(t) · p̂)

)
(4.3.27)

=
∂

∂t
exp

(
(2ℏi)−1π(t) · ξ(t)

)
exp

(
−iℏ−1/2π(t) · q̂

)
exp

(
iℏ−1/2ξ(t) · p̂

)
=

(
∂

∂t
exp

(
(2ℏi)−1π(t) · ξ(t)

))
exp

(
−iℏ−1/2π(t) · q̂

)
exp

(
iℏ−1/2ξ(t) · p̂

)
+ exp

(
(2ℏi)−1π(t) · ξ(t)

)( ∂

∂t
exp

(
−iℏ−1/2π(t) · q̂

))
exp

(
iℏ−1/2ξ(t) · p̂

)
+ exp

(
(2ℏi)−1π(t) · ξ(t)

)
exp

(
−iℏ−1/2π(t) · q̂

)( ∂

∂t
exp

(
iℏ−1/2ξ(t) · p̂

))
,
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where it was calculated that

−2−1[−iℏ−1/2π(t) · q̂ , iℏ−1/2ξ(t) · p̂] = (2ℏi)−1π(t) · ξ(t)1̂. (4.3.28)

It follows, using (4.2.14) and the fact that ζ(t) satisfies the canonical equations, that

∂

∂t
Ĉ(ℏ−1/2ζ(t))+ = (2ℏi)−1 (−∇ξH(ζ(t)) · ξ(t) +∇πH(ζ(t)) · π(t)) Ĉ(ℏ−1/2ζ(t))+

+ iℏ−1∇ξH(ζ(t)) · q̂ℏĈ(ℏ−1/2ζ(t))+

+ iℏ−1Ĉ(ℏ−1/2ζ(t))+∇πH(ζ(t)) · p̂ℏ. (4.3.29)

Then, by (4.3.20), using in (4.3.29) the fact that Ĉ(ℏ−1/2ζ(t)) is an unitary operator and the
translation property (4.2.11), it turns out that the second term of (4.3.24) can be written as

iℏ−1∇ζH(ζ(t)) ·
(
ẑℏ +

1

2
ζ(t)1̂

)
Ŵℏ(t, s). (4.3.30)

The derivative appearing in the third term is immediately computed from (4.3.21):

∂

∂t
exp(iφℏ(t, s)) = iℏ−1

(
H(ζ(t))− 1

2
∇ζH(ζ(t)) · ζ(t)

)
exp(iφℏ(t, s)). (4.3.31)

Then, using (4.3.7), the third term can be written as

iℏ−1

(
H(ζ(t))− 1

2
∇ζH(ζ(t)) · ζ(t)

)
Ŵℏ(t, s). (4.3.32)

Assembling the three terms (4.3.26), (4.3.30) and (4.3.32), we get

∂

∂t
Ŵℏ(t, s) = iℏ−1

(
−H(ẑℏ + ζ(t)1̂) +∇ζH(ζ(t)) · ẑℏ + H(ζ(t))1̂

)
Ŵℏ(t, s), (4.3.33)

thus proving (4.3.22a). The computation of the derivative of Ŵℏ(t, s) with respect to s proceeds
in a totally analogous fashion.

This result allows one to express Ŵℏ(t, s) in terms of K̂ℏ(t), by solving formally the pair
of differential equations with the chosen initial condition. This will be helpful to evaluate the
semiclassical limit ℏ → 0. In fact, one has the following result.

Proposition 4.3.3. The couple of differential equations (4.3.22) with the initial condition
Ŵℏ(s, s) = 1̂ is formally solved by

Ŵℏ(t, s) = Texp

(
−iℏ−1

∫ t

s

drK̂ℏ(r)

)
, (4.3.34)

where Texp( · ) denotes the time-ordered exponential.
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Proof. We start by inspecting (4.3.22a) with the initial condition Ŵℏ(s, s) = 1̂. This differential
equation is equivalent to the integral equation

Ŵℏ(t, s) = 1̂− iℏ−1

∫ t

s

drK̂ℏ(r)Ŵℏ(r, s). (4.3.35)

Indeed, from (4.3.22a),

Ŵℏ(t, s)− 1̂ = Ŵℏ(t, s)− Ŵℏ(s, s)

=

∫ t

s

dr
∂

∂r
Ŵℏ(r, s) = −iℏ−1

∫ t

s

drK̂ℏ(r)Ŵℏ(r, s). (4.3.36)

The integral equation (4.3.35) is solved formally by iteration. This brings to the so-called Dyson
series in K̂ℏ(u) for Ŵℏ(t, s):

Ŵℏ(t, s) =
∞∑
n=0

(−iℏ−1)n
∫ t

s

dr1

∫ r1

s

dr2 · · ·
∫ rn−1

s

drnK̂ℏ(r1)K̂ℏ(r2) · · · K̂ℏ(rn). (4.3.37)

By definition of the time-ordered exponential for a generic operator X̂,

Texp

(∫ b

a

duX̂(u)

)
:=

∞∑
n=0

∫ b

a

db1

∫ b1

a

db2 · · ·
∫ bn−1

a

dbnX̂(b1)X̂(b2) · · · X̂(bn), (4.3.38)

the claim is shown. The proof for (4.3.22b) runs in a totally analogous fashion.

This is enough to start inspecting the properties of the states |ℏ, ζ(t)⟩ as ℏ → 0. Indeed,
assuming that the potential fields which appear in (4.3.2) are sufficiently smooth, it can be
shown that, in the semiclassical limit, the expected value and the uncertainty of ẑℏ in these
states display the wanted behaviour (4.1.1). In particular, the expected value of ẑℏ converges to
the classical phase orbit which solves the Hamilton equations for H(ζ), while the uncertainty
of ẑℏ approaches 0. These facts are summarised in the following result.

Theorem 4.3.1. Given a quantum system whose classical counterpart is characterized by the
Hamiltonian function H(ζ),

H(ζ) =
1

2
(π − a(ξ))2 + v(ξ), (4.3.39)

defined on the classical phase space F , with ζ = (ξ,π) ∈ F and where a(ξ) ∈ C∞(F ,Rn) and
v(ξ) ∈ C∞(F ,R). Let ζ(t) be a solution of the Hamilton equations with the initial condition

ζ(s) = ζ0, (4.3.40)

where ζ0 ∈ R2ν. Then,

⟨zℏ⟩|ℏ,ζ(t)⟩ ℏ→0−−→ ζ(t) (4.3.41a)

⟨∆zℏ⟩|ℏ,ζ(t)⟩ ℏ→0−−→ 0. (4.3.41b)

Remark 4.3.2. This result only concerns the semiclassical limit of the expectation values and
the uncertainties of zℏ computed in the states |ℏ, ζ(t)⟩. It does not pertain to the limit ℏ → 0
for the states |ℏ, ζ(t)⟩ themselves. Actually, from their definition (4.2.15), it is clear that these
states do not have a limit for ℏ → 0. This is closely related to the fact that ℏ → 0 is a formal
limit: ℏ may be very small compared to the characteristic action scale of the system, but it is
not zero.
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Sketch of the proof. Only a swift overview of the proof will be provided. For a deeper insight,
see [3]. We start by defining the operator Ĥ2(r) as

Ĥ2(r) :=
1

2
(∇ζ (∇ζH(ζ(r)) · ẑ)) · ẑ. (4.3.42)

Then,
ℏ−1K̂ℏ(r)

ℏ→0−−→ Ĥ2(r). (4.3.43)

Indeed, by the smoothness hypothesis on the potential fields, one has that H(ζ) ∈ C∞(F ,R).
Then, by the Taylor formula (see [2]),

H(ζ + ϵ) = H(ζ) +∇ζH(ζ) · ϵ+ 1

2
(∇ζ (∇ζH(ζ(r)) · ϵ)) · ϵ, (4.3.44)

for ϵ ∈ F such that |ζ − ϵ| ≪ 1. Since functions of operators preserve the relationships existing
between the functions and since this property must hold as well for |ζ − ϵ| ≪ 1, (4.3.43) is
shown. Now, we define Û2(t, s) as

Û2(t, s) := Texp

(
−i
∫ t

s

drĤ2(r)

)
. (4.3.45)

By (4.3.34) and (4.3.43),
Ŵℏ(t, s)

ℏ→0−−→ Û2(t, s). (4.3.46)

In other terms, by (4.3.42), this implies that

[ẑℏ, Ŵℏ(t, s)]
ℏ→0−−→ 0, (4.3.47)

thus proving the claim.
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