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Introduction

Polytopes are the higher dimensional generalization of polygons in the plane and poly-
hedra in three-dimensional space. Their study is rooted in the classical work of Euclid and
since then it has grown into an active area of research of modern mathematics.

Nowadays the theory of polytopes can be considered part of combinatorics and dis-
crete geometry, in fact the main questions concern either the combinatorial properties of
a polytope or its metric and geometric features. Far from being a stand alone branch of
mathematics, a lot of recent progress in the theory stemmed from the developing relation-
ship between commutative algebra (and algebraic geometry) and combinatorics. Pioneering
the dialogue between the two distinct areas is the proof of Richard Stanley of the Upper
Bound Theorem for f -vectors of simplicial spheres [Sta75]. He showed how the combinato-
rial properties of a triangulation ∆ of the sphere can be related to algebraic properties of an
appropriate ring K[∆], he then used commutative algebra techniques to complete the proof
of the theorem. Stanley’s proof relies on a previous result of G. Reisner, stating that under
some topological conditions on ∆ (satisfied when the simplicial complex is a triangulation
of a sphere), K[∆] is a Cohen-Macaulay ring.

Going back to polytopes, in 1971 Peter McMullen conjectured a complete characteriza-
tion of the f -vectors of simplicial polytopes [McM71]. He proposed certain combinatorial
conditions on a sequence of integers g = (g−1, g0, g1, ..., gd), then he conjectured that they
were necessary and sufficient for the existence of a simplicial polytope P with g as its
g-vector. A decade later, the proof of the conjecture was established, marking what is
arguably the single most important result in the modern theory of polytopes.

Billera and Lee proved the sufficiency of the conditions via an ingenious construction
[BL81]: from the combinatorial properties of the sequence g, they used a particular order on
monomials to choose a collection of facets from the cyclic polytope such that their boundary
had the desired combinatorics. From there they constructed a simplicial polytope having
the same face numbers. (See [Bil14] for a simple presentation).

In the same year, Stanley proved the necessity of the conditions on the g-vector by using
techniques from algebraic geometry [Sta80]. In particular, he applied the Hard Lefschetz
Theorem to the cohomology ring of the toric variety associated to a simplicial polytope
with rational coordinates.
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ii INTRODUCTION

The cohomology of such a toric variety forms a graded algebra that is zero in odd degrees,
is generated in degree 2 and has as even Betti numbers the h-numbers of P . The Hard
Lefschetz Theorem gives a class ω its cohomology ring in degree 2 such that multiplication
by ω induces an isomorphism between the component in degree k with the component in
degree 2d−k, for all k up to half the dimension. Therefore, the quotient of the cohomology
ring by the ideal ⟨ω⟩ is a graded algebra with Hilbert series (in even degrees) the g-vector of
P ; due to a result of Macaulay, this implies the numerical conditions McMullen conjectured.

McMullen, perhaps dissatisfied with Stanley’s "not that polytopal" proof, demonstrated
the necessity of the conditions on the g-vector with more elementary methods [McM89;
McM93]. In a way, his approach mirrors that of Stanley: he translated and proved estab-
lished results on the cohomology of toric varieties within a more combinatorial framework
he developed: the polytope algebra.

In this thesis, we focus on the work of McMullen on the polytope algebra, with particular
emphasis on the key results he used in the combinatorial proof of the g-Theorem. In the
first chapter, we give a concise introduction to the study of convex polytopes: after the
first definitions and results, we briefly talk about the face lattice and polarity, and then we
prove the equations of Dehn and Sommerville for the h-vector of a simple polytope. We
introduce the cyclic polytope, and in the end we give the precise statement for both the
Upper Bound Theorem for convex polytopes and the g-Theorem.

The second chapter is dedicated to the study of the polytope algebra Π. We show that,
in all but a single trivial aspect, it is a graded commutative algebra over Q. The key element
in the proof is the ingenious definition of the logarithm of a polytope, which encodes the
polytope in a particularly well-behaved way from an algebraic point of view. Then we find
a family of group homomorphisms that separates Π, these correspond to taking volumes of
lower dimensional faces in different directions. We find some syzygies between them, that
will later used in the definition of weights on a polytope.

Lastly, in Chapter 3, we study the subalgebra Π(P ) associated to a simple polytope P :
we show that this algebra is generated by polytopes strongly isomorphic to P , in particular
by the open cone of all their logarithms. Then we introduce the notion of a weight on a
polytope, and use it to compute the Hilbert series of Π(P ), showing that this equals the
h-polynomial of P . We end the thesis by showing how the Upper Bound Theorem for
polytopes can be deduced as a corollary of our results on Π(P ), echoing Stanley’s approach
for the more general statement about triangulated spheres.
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Chapter 1

Polytopes

In this first chapter we recall the main definitions and results about convex polytopes.
The goal is not to give a complete overview of the theory, but rather to introduce the
vocabulary we need for the later chapters and to explore some elementary examples.
In this first chapter of the exposition, our main reference is [Zie94], the reader is referred
there to see proofs and many details we omitted.

Remark. We shall generally consider V to be a real finite-dimensional vector space of di-
mension d. Although most of what we say is applicable to vector spaces over any ordered
field F, this chapter will not explore these generalizations. In the following chapters, we
will make only occasionally reference to polytopes in a vector space not defined over the
reals, mostly dealing with some differences when restricting to a d-vector space over the
rationals.

1.1 Preliminaries

Let V denote a real vector space of dimension d, equipped with the euclidean topology.

Definition 1.1. Let S be a subset of V , we respectively say that S is:

• convex if for every pair x, y ∈ S and λ ∈ [0, 1] we have λx+ (1− λ)y ∈ S;

• a cone if it is convex and if for x ∈ S and t ≥ 0 also tx is in S;

• a hyperplane if there exists ψ ∈ V ∗ non zero and a ∈ R such that S = {x ∈ V |
ψ(x) = a};

• a halfspace if there exists ψ and a as above such that S = {x ∈ V | ψ(x) ≤ a};

• an affine subspace if it is an intersection of hyperplanes;

• a polyhedron if it is a finite intersection of halfspaces.
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2 1. Polytopes

Definition 1.2. Let S be a subset of V , we call convex hull of S, and write conv(S), the
intersection of all convex sets containing S.
Similarly the affine hull of S aff(S) is the intersection of all affine subspaces containing S.
With simple computations one can prove that

conv(S) =
{ n∑
i=1

λisi |
n∑
i=1

λi = 1, λi ≥ 0, si ∈ S
}
,

aff(S) =
{ n∑
i=1

λisi |
n∑
i=1

λi = 1, si ∈ S
}
.

Definition 1.3. We say that two subsets S,R ⊂ V are parallel to each other if the affine
hull of either of one can be translated into the affine hull of the other.

Definition 1.4. The dimension of an affine subspace is the dimension of its parallel vector
subspace (passing through the origin).

Definition 1.5. A polytope in V is the convex hull of a finite set S. The dimension of
a polytope P is the dimension of its affine hull, if that dimension is k we say that P is a
k-polytope (we set dim(∅) := −1 by definition).

Example 1.6. Here are some elementary examples of polytopes we are going to encouter
in the next sections.

• Let V = R3, denoting by ei = (δ1i, δ2i, δ3i) the standard basis vectors, consider
S = {e1, e2, e3}. The convex hull of S is triangle, the vectors in S form the set of its
vertices.

• Generalizing the previous example, the standard simplex of dimension d − 1 is the
polytope ∆d−1 = conv({e1, ..., ed}) lying in Rd. Again, observe that the standard
simplex is not full dimensional, in fact it lies in the affine hyperplane where the sum
of the coordinates equals 1.

• The cube Cd of dimension d is the convex hull of the 2d vectors in Rd with all coordi-
nates +1 or −1. Note that we can obtain the cube also as a bounded polyhedron by
intersecting the halfspaces {v ∈ Rd | vi ≤ 1} and {v ∈ Rd | vi ≥ −1}, for i = 1, ..., d.

• The crosspolytope of dimension d is the convex hull of the vectors +e1,−e1,+e2,−e2, ...,−ed.
In 3-dimensional euclidean space this is the well-known regular octahedron.
Again, observe that the crosspolytope coincides with the set {v ∈ Rd |

∑
|vi| ≤ 1}

that can easily be obtained as an intersection of halfspaces.

Theorem 1. A subset P of V is a polytope if and only if it is a bounded polyhedron.
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The proof is definitely longer than one may expect, therefore we refer to [Zie94] for it.

Corollary 1.7. The image under an affine map of a polytope is a polytope.
The intersection of a polytope with an affine subspace is a polytope.

Proof. A hyperplane is the intersection of two halfspaces, so the intersection of a polytope
P with an affine subspace is the intersection between a bounded polyhedron with finitely
many halfspaces.
Since it holds for linear maps and for translations, for an affine map we have Φ(tx + (1 −
t)y) = tΦ(x) + (1− t)Φ(y), thus if P = conv(S), Φ(P ) = conv(Φ(S)).

Remark. In the process of defining a polytope P as the convex hull of a finite set, we
may have some redundant data. A set S satisfying P = conv(S) minimal with respect to
inclusion is said a set of vertices of P .
Similarly, in describing P as a bounded polyhedron we may have more inequalities than
needed.

Definition 1.8. Let ψ be an element of V ∗ and b be a real number, we say that the
inequality ψ ≤ b is valid for a polytope P if P is contained in its set of solutions.

Definition 1.9 (Face). Let P be a polytope in V , a face F of P is a set of the form
P ∩ {ψ = b}, where ψ ≤ b is a valid inequality for P . If b is minimal such that ψ ≤ b is
valid for P , then the face P ∩ {ψ = b} is precisely Pψ (see in the next page).

By considering the inequalities {0 ≤ 1} and {0 ≤ 0} we always have both the empty
face ∅ and the whole polytope P as faces of P . Furthermore, the faces of P are obtained
by intersecting it with hyperplanes, so from Theorem 1 each face of a polytope is still a
polytope.

Proposition 1.10. The vertices of a polytope are its zero dimensional faces.

Proposition 1.11. If F and G are faces of a polytope P , then F ∩G is also a face of P .
The faces of F are precisely those of P that lie in F .

As a consequence we have that P has only finitely many faces of each dimension.

Example 1.12. The faces of ∆d are straightforward to compute: for each non empty subset
of the vertices I ⊆ {e1, ..., ed+1} of size k + 1 consider the functional ψI(x) =

∑
i∈I xi; the

face identified by the valid inequality {ψI ≤ 1} is a k-simplex and I is its set of vertices.
The number of faces of dimension k of a simplex is

(
d+1
k+1

)
, as any choice of k + 1 vertices

defines a unique k-face.

Example 1.13. The cube Cd has 2d faces of dimension d, obtained by the inequalities
{±vi ≤ 1}, and of course it has 2d vertices. A face of dimension d − k can be obtained as
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follows: for any choice of a set of indices I = {i1, ..., ik} ⊆ {1, ..., d} and vector δ ∈ {1,−1}k,
consider the functional ψ(v) = δ1vi1 + ... + δkvik . This is maximized by those vectors of
Cd where the coordinates indexed by elements in I satisfy vij = δj , and the other d − k

coordinates are free to vary in [−1, 1]. We deduce that Cd has 2k
(
d
k

)
faces of dimension

d− k.

Definition 1.14. If P is a non empty polytope, its supporting function h(P, · ) : V ∗ −→ R
is defined by:

h(P,ψ) := max
x∈P

ψ(x).

Since polytopes are compact subsets of V the definition is well posed. We write

Pψ := {x ∈ P | ψ(x) = h(P,ψ)}

to indicate the face of P in direction ψ. We call the map P 7→ Pψ the face map.

Remark. If V is equipped with a positive definite symmetric bilinear form, we can define
h(P, u) := max⟨x, u⟩, where u ∈ V and x ranges over P .
In that case we call the hyperplane {x ∈ V | ⟨x, u⟩ = h(P, u)} the supporting hyperplane of
P with outer normal vector u, the intersection between this hyperplane and P is Pu.
A k-frame is and ordered k-tuple of orthonormal vectors U = (u1, ..., uk). If U is a k-frame,
we define recursively

PU := (Pu1)(u2,...,uk).

Definition 1.15. If P and Q are polytopes, we can use them to build new examples of
polytopes in a controlled way. In particular we can construct:

• the pyramid over P : first embed V in V ⊕ R and then we define pyr(P ):= conv(P ∪
(0, 1));

• the Minkowski sum P +Q as {x+ y ∈ V | x ∈ P, y ∈ Q};

• the product P × Q as {(x, y) ∈ V ⊕W | x ∈ P, y ∈ Q}; this time P and Q are not
required to lie in the same vector space.

In the next sections we especially make use of the Minkowski sum, therefore, we state
some facts about it that we may need to use. We redirect to [Grü03, §15] for a complete
overview.

Proposition 1.16. If Q and R are polytopes, respectively with vertices q1, ..., qn and r1, ..., rm,
then:

Q+R = conv({qi + rj | i = 1, ..., n, j = 1, ...,m});

h(Q+ λR, ·) = h(Q, ·) + λh(R, ·) for λ ≥ 0;

(Q+R)ψ = Qψ +Rψ for each non zero vector ψ.
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1.2 The face lattice

The faces of a polytope, naturally ordered by inclusion, form a bounded poset (the
maximal and minimal element are respectively P itself and the empty face). Before stating
the precise result, we need to introduce some necessary terminology for partially ordered
sets.

Definition 1.17. Let (X,≤) be a partially ordered set, let x ≤ y be two elements of X,
then the interval between x and y is defined as

[x, y] := {z ∈ X | x ≤ z ≤ y}.

If (X,≤) and (Y,⪯) are two partially ordered sets, an isomorphism between them is a
bijection Φ: X → Y such that a ≤ b if and only if Φ(a) ⪯ Φ(b).
An interval in (X,≤) is said to be boolean if it is isomorphic to a poset of the form (P(I),⊆)

for some finite set I.
A chain in (X,≤) is a subset of X totally ordered with the induced order relation, the
length of a chain is the number of its elements minus 1.
We say that (X,≤) is bounded if it has a unique maximal element 1̂ and a unique minimal
element 0̂. A bounded poset is graded if each maximal chain has the same length. On a
graded poset we define a rank function ρ : X → Z that associates to an element x ∈ X the
length of any maximal chain in [0, x].
A lattice is a bounded poset such that for each pair of elements x, y ∈ X there is a unique
least upper bound x∨ y called the join of x and y, and a unique greatest lower bound x∧ y
called the meet of x and y.

Theorem 2. Let P be a convex polytope, then:

• the faces of P form a graded lattice L(P ), called its face lattice;

• each interval [F,G] is the face lattice of a polytope of dimension ρ(G)− ρ(F )− 1;

• the face lattice L(P ) is atomic, i.e. each element is the join of elements of rank 0;

• the opposite poset L(P )op is also the face lattice of a polytope;

• for each k-face F and k+2-face G that contains F , there are precisely two k+1-faces
H,H ′ containing F and contained in G.

Definition 1.18. We say that two polytopes P and Q are combinatorially isomorphic if
their face lattices are isomorphic.
A combinatorial dual of P is any polytope with face lattice isomorphic to L(P )op.
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From the combinatorial point of view, the face lattice of a polytope encodes all the
interesting information, for example: the incidence relations of the faces, the "shape" of
each face, the number of faces of each dimension, and others. We could restrict ourselves to
the study of such posets, but considering polytopes as rigid metric objects in a real vector
space V gives us more tools to study their combinatorics, and therefore this is the approach
we will adopt.
For example, throughout the thesis we will often distinguish between a square, a rectangle
or a trapezoid; we will generally consider linear and piecewise linear maps and sometimes
orthogonal projections and reflections (in the second chapter a scalar product on V is
introduced).

The face lattice L(P ) of a general polytope can be quite intricate and complex. However,
there are classes of polytopes which face lattices are well-behaved, in the sense that little
data is needed to specify the whole poset.

Definition 1.19. A polytope P is said simplicial if all its facets are simplices.
A polytope of dimension d is said simple if all its vertices lie in precisely d facets.

Remark. When defining a polytope as the convex hull of a finite set S, if the points in S

are chosen with sufficient generality no d+ 1 of them are contained in a single hyperplane.
Consequently, the polytope P = conv(S) is simplicial.

Similarly, if we construct a d-polytope P as a bounded polyhedron, and the inequalities
are chosen generally enough, the hyperplanes affinely spanned by the facets are in general
position. Thus, k of them intersect in a linear subspace of dimension d− k, a vertex lies in
d facets, making P a simple polytope.

A rephrasing we will often use of these observations, is that the only combinatorial type
that is stable under small perturbations of the vertices is that of a simplicial polytope,
and the only one stable under perturbations of the defining inequalities is that of a simple
polytope.

Remark. Since the faces of a simplex are also simplices, the face lattice of a simplicial
polytope is characterized by the property that the interval [∅, F ] is a boolean lattice for
each proper face F .

Proposition 1.20. Let P be a polytope and v a vertex of P identified by the valid inequality
{ψ ≤ b}, let c < b be such that c > ψ(v′) for each other vertex v′ of P . Then

L(P ∩ {ψ = c}) ∼= [v, P ].

With a slight abuse of notation, the polytope P ∩ {ψ = c} is called the vertex figure of P
at v, even though only its combinatorial type is uniquely determined by P and v.
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Remark. The vertex figures of a simple polytope P are d−1-simplices, since they are d−1-
polytopes with only d facets (these correspond to the facets of P containing v). We deduce
that a polytope is simple if and only if for each proper face F the interval [F, P ] is boolean.

The notions of simple and simplicial polytope are dual to each other in a precise way: a
combinatorial dual of a simple polytope is simplicial and vice versa.
Theorem 2 asserts the existence of combinatorial duals, if P is a full dimensional polytope
and has the origin of V in its interior, there is a standard way of constructing a dual.

Definition 1.21. If S is a subset of V , its polar subset is defined as:

S† := {φ ∈ V ∗ | sup
x∈S

φ(x) ≤ 1}.

Theorem 3. [Zie94, §2.3] Let P be a full dimensional polytope in V with the origin in its
interior. Then P † is also a convex polytope of dimension d. Further more

L(P †) ∼= L(P )op.

Example 1.22. Consider the standard cube Cd = [−1, 1]d inside Rd, its polar polytope is

C†
d = {φ ∈ (Rd)∗ | max

x∈Cd

φ(x) ≤ 1} = {
d∑
i

aie
∗
i ∈ (Rd)∗ |

∑
i

|ai| ≤ 1},

which is the regular crosspolytope in the dual vector space. The cube is simple and the
crosspolytope is simplicial, the vertex figures of one correspond to the facets of the latter.

Classifying polytopes up to combinatorial equivalence is a daring project. On that
direction one may look for a weaker invariant: given a polytope P a very naive and intuitive
invariant is the number of k-faces fk(P ).
We can collect all those integers in the f-polynomial f(P, t) :=

∑
fk(P )t

k, its coefficients
form the f-vector f(P ) = (f0(P ), f1(P ), ..., fd−1(P ), fd(P )). In spite of their simple defi-
nition, not much can be said about f -vectors of arbitrary polytopes: already the problem
of characterizing f -vectors of 4-polytopes is open [Zie94, Ex. 8.29].

Exercise. Characterizing f -vectors of 2-polytopes is straightforward. Assuming the Euler
formula v − e + f = 2, prove that in dimension 3 a triple of positive integers (v, e, f)

corresponds to the number of vertices, edges and faces of a 3-polytope if and only if
v − e+ f = 2

2v ≤ f + 4

2f ≤ v + 4.
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Definition 1.23. Let P be a simple polytope, its h-vector is defined by the identity

h(P, t) = f(P, t− 1)

d∑
k=0

hk(P )t
k =

d∑
k=0

fk(P )(t− 1)k.

Notice that the two vectors carry the same amount of information since we can recover the
f -vector by f(P, x) = h(P, x+ 1).

Remark. The h-vector is typically defined for simplicial polytopes. We have chosen to
define it for simple polytopes instead since as Chapter 3 primarily focuses on them. It is
important to note that due to polarity, the study of the combinatorics of simple polytopes
is equivalent to that of simplicial polytopes, therefore every statement about the first can
be appropriately translated into a statement about the latter.

For non simple polytopes Definition 1.23 makes perfectly sense, but while the f -vector
always has an intuitive meaning, that of the h-vector is not very clear in general. When
P is simple, on the other hand, its h-vector does have a nice combinatorial interpretation,
which makes very transparent relations between face numbers otherwise much harder to
spot in the f -vector.

Theorem 4 (Dehn-Sommerville). Let P be a simple d-polytope, then hk = hd−k.

Proof. The idea is to consider the halfspace Ht = {x ∈ V | φ(x) ≤ t} for some general
enough functional φ ∈ V ∗, and count the faces of P that are fully contained in it as t goes
to infinity.

Since P is simple, through each vertex v pass only d edges, the subsets of these edges
are in bijection with the faces of P containing v. When the halfspace Ht passes through v
we count only k of these edges (just those "pointing into Ht"). In doing so we add a single
k-face together with all its faces: in total we count

(
k
r

)
new r-faces for each r ≤ k. In this

case we say that v is a k-vertex with respect to φ, or, interchangeably, a vertex of type k.
The total increment on the f -polynomial is

∑k
r=0

(
k
r

)
tr, the increment of the h-polynomial

is just xk: hk counts the number of k-vertices. We deduce that the number of k-vertices is
independent on φ.
By repeating the same procedure with −φ each k-vertex turns into a d− k-vertex and vice
versa, proving the thesis.

The generality conditions on φ are easily satisfied, in fact if p1, ..., pn are the vertices of
P , those amount to asking that all the finitely many vectors of the form pi − pj do not lie
in the hyperplane corresponding to the kernel of φ.

Example 1.24. We can use this new interpretation of the h-vector to compute it for some
polytopes without having to evaluate and simplify long sums.
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If P is a simple polytope, also the prism P × [0, 1] is simple; to each vertex v of type k of
P we can find an appropriate functional on V ⊕R so that the vertices (v, 0) and (v, 1) are
respectively of type k and k + 1. We deduce that:

h(P × [0, 1], t) = (1 + t)h(P, t).

Generalizing the argument, if v is a k-vertex of P ⊆ V and w is an r-vertex of Q ⊆ W ,
then one can find an appropriate functional1 on V ⊕W such that (v, w) is a k + r-vertex
of P ×Q, yielding the formula:

h(P ×Q, t) = h(P, t)h(Q, t).

If we now decided to "slice off" a vertex from a simple polytope P (a process similar to that
of Proposition 1.20) obtaining a polytope P ′, we can chose φ so that the new d vertices
v1, ..., vd are the first to be counted. If v1 is the 0-vertex of P ′ (v was the 0 vertex of P )
the other d− 1 form the vertices of a d− 2 simplex. Since they are all connected to v1, the
new h-vector is given by:

h(P ′, t) = h(P, t) + t · h(∆d−2, t) = h(P, t) + h(∆d−1, t)− 1.

Going up one dimension, we can cut a whole edge e connecting two vertices v and v′ of P .
This is achieved by finding ψ ∈ V ∗ such that ψ(v) > 0, ψ(v′) > 0 and ψ(w) < 0 for each
other vertex of P , such a ψ exists since the edge connecting v and v′ does not lie in the
convex hull of all the other vertices (for more details look at the Farkas Lemmas [Zie94,
§1.4]). Being P simple, the "edge figure" at e, that is the intersection between P and the
hyperplane {ψ = 0}, is combinatorially isomorphic to the product ∆d−2 × [0, 1]. Via an
argument similar to the one above we see that first we removed a 0-vertex and a 1-vertex,
and then added the vertices of ∆d−2 × [0, 1], obtaining:

h(P ′, t) = h(P, t) + (1 + t)h(∆d−2, t)− (1 + t)

Corollary 1.25. The h-polynomials of the simplex and of the cube are:

h(∆d, t) =

d∑
k=0

tk;

h(Cd, t) =
d∑

k=0

(
d

k

)
tk.

1If φ ∈ V ∗ and ψ ∈W ∗ are the functionals that make v of type k and w of type r, it suffices to consider
φ+Nψ ∈ (V ⊕W )∗ for a constant N ≫ 1.
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1.3 The cyclic polytope

Now we follow an important and interesting construction that can be found in [Zie94]:
we define the cyclic polytope and study some aspects of its combinatorics.
Consider the moment curve

ν : R Rd

t (t, t2, ..., td).

If t1, ..., tn are distinct real numbers, n > d, we denote by Cd(t1, ..., tn) the polytope obtained
as the convex hull of the points ν(t1), ..., ν(tn); the polytopes we obtain in this way are called
cyclic polytopes.

Theorem 5 ([Zie94]). Let n > d be an integer and t1 < t2 < ... < tn real numbers.
The cyclic polytope Cd(t1, ..., tn) is a simplicial d-polytope and its combinatorial type only
depends on d and n. More precisely a set of indices I ⊆ {1, ..., n} of size d determines the
vertices of a facet if and only if for each pair i, j not in I

|{k ∈ I | i < k < j}| ≡ 0 (mod 2).

Proof. First we observe that Cd(t1, ..., tn) is simplicial: if s1, ..., sd+1 ∈ {t1, ..., tn}, the vec-
tors ν(s1), ..., ν(sd+1) cannot lie in any common hyperplane as they are affinely independent,
in fact we have2:

det

(
1 1 . . . 1

ν(s1) ν(s2) . . . ν(sd+1)

)
= det


1 1 . . . 1

s1 s2 . . . sd+1

...
. . .

sd1 sd2 . . . sdd+1

 =
∏
i<j

(sj − si) ̸= 0.

Now let S = {s1, ..., sd} ⊆ {t1, ..., tn}, consider the linear functional of V ∗

ψS(v) = det

(
1 1 . . . 1

v ν(s1) . . . ν(sd)

)
.

This is a non zero functional since ψS(ν(ti)) ̸= 0 for ti /∈ S; it vanishes on ν(s1), ..., ν(sd) so
its kernel is the hyperplane passing through those points. We deduce that ν(s1), ..., ν(sd)
are the vertices of a facet if and only if Cd(t1, ..., tn) is contained in one of the two closed
halfspaces bounded by {ψS = 0}, or equivalently if ψS(ν(ti)) has the same sign for all
ti /∈ S. Observe that ψS ◦ ν(t) is a polynomial in t of degree d which vanishes on s1, ..., sd,
so it has no multiple roots: each time it vanishes it changes sign. We deduce that for i, j
not in S we have sgn ψS ◦ ν(ti) = sgn ψS ◦ ν(tj) if and only if there is an even number of
elements in S between i and j.

2Recall that v1, ..., vk are affinely independent if and only if the columns of

(
1 . . . 1

v1 . . . vk

)
are linearly independent.
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Remark. In the proof we have only described the "facet-vertex" incidences, these are suf-
ficient to determine the face lattice since we can easily find the vertices of all faces by
intersecting different facets. So the combinatorial type of Cd(t1, ..., tn) does not depend on
the particular choices of the ti, we will denote its combinatorial type by Cd(n) and call it
the cyclic polytope of dimension d with n vertices.

Proposition 1.26. Each subset I of {1, ..., n} of size at most ⌊d/2⌋ identifies the vertices
of a face of Cd(n).

Proof. Let Cd(n) = Cd(t1, ..., tn), S = {s1, ..., sk} ⊆ {t1, ..., tn} with 2k ≤ n, let ϵ > 0 be
small enough so that for each j = 1, ..., k there is no ti contained in the interval ]sj , sj + ϵ[,
and let M2k+1, ...,Md ≫ tn. Consider the functional

ψ(v) = det

(
1 1 1 . . . 1 1 . . . 1

v ν(s1) ν(s1 + ϵ) . . . ν(sk + ϵ) ν(M2k+1) . . . ν(Md)

)
.

Again ψ(ν(t)) is a polynomial of degree d with simple roots s1, s1+ϵ, ...,Md. By construction
ψ ◦ ν has the same sign on {t1, ..., tn} \ S since each pair ti, tj not in S is separated by an
even number of simple zeros. Without loss of generality we can assume the sign to be
negative, so Cd(t1, ..., tn) ⊆ {ψ ≤ 0} and the points ν(s1), ..., ν(sk) are the vertices of the
face corresponding to the hyperplane {ψ = 0}.

While studying polytopes one may ask how to maximize the number fk(P ). In other
words: fixing the dimension d and the number of vertices n, what is the biggest possible
value of fk(P ) between all d-polytopes with n vertices? Can a single polytope simultane-
ously maximize fk(P ) for all k?

Since each k-face has at least k+1 vertices, we have the obvious upper bound fk(P ) ≤(
n
k+1

)
, and in the previous proposition we showed fk(Cd(n)) =

(
n
k+1

)
for all k = 0, ..., ⌊d/2⌋3.

When trying to answer the questions above, it is sufficient to restrict the attention to
simplicial polytopes:

Lemma 1.27. For each polytope Q with n vertices there exists a simplicial polytope P also
with n vertices, such that fk(Q) ≤ fk(P ) for each k.

The idea is that one can "wobble" slightly the vertices of Q and only increase the number
of faces.
Since Cd(n) is simplicial, a combinatorial dual Cd(n)† will be a simple polytope, the values
of f0(Cd(n)), ..., f⌊d/2⌋(Cd(n)) form the last half of its f -vector (the first half for Cd(n)) and
with the Dehn-Sommerville relations we can compute the entire f -vector.

3In dimension 2 and 3 this simply means that there are n vertices, however in dimension at least 4 one
obtains some highly counter intuitive results by considering the cases k > 0.
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Summarizing, we said that in order to maximize fk(P ) we can restrict the attention to
simplicial polytopes, then we showed in Proposition 1.26 that Cd(n) maximizes fk for all
k ≤ ⌊d/2⌋, and lastly we observed that these values completely determine the f -vector of
Cd(n).
Unfortunately it is false that the linear combinations of the numbers f0, ..., f⌊d/2⌋ yielding the
other half of the f -vector of a simplicial polytope have non-negative coefficients. Therefore
maximizing those numbers does not obviously imply we maximize the whole f -vector.

In 1957 Motzkin made the following conjecture, that has been proved by McMullen in
1970 and since then has been known as the Upper Bound Theorem (for convex polytopes).

Theorem 6 (Upper Bound Theorem). Let P be a d-polytope with n vertices. Then for
each k, P has at most as many k-faces as the cyclic polytope Cd(n):

fk(P ) ≤ fk(Cd(n)).

We postpone the proof of the theorem since it comes as a corollary of our results in
Chapter 3. We end the section by computing the h-vector of Cd(n)†, we follow [Zie94, Ex.

8.20]. The result of the computations will used in the proof of the Upper Bound Theorem
for polytopes.

Lemma 1.28. Let n > d be an integer, then for each k = 0, ..., ⌊d/2⌋

hk(Cd(n)
†) =

(
n− d− 1 + k

k

)
.

Proof. By polarity we have fk(Cd(n)†) = fd−k−1(Cd(n)): if d − k − 1 ≤ ⌊d/2⌋, meaning
k ≥ ⌈d/2⌉ − 1, we have fk(Cd(n)†) =

(
n
d−k
)
.

We know the second half of the f -vector of Cd(n)† so we are able to directly compute the
the second half of its h-vector, this is sufficient thanks to the Dehn-Sommerville equations.
We will show that for k ≥ ⌈d/2⌉ − 1 we have hk(Cd(n)†) =

(
n−k−1
d−k

)
, this can be checked to

be equivalent to the thesis. For a general polytope P we have:

h(P, t) =

d∑
i=0

fi(P )(t− 1)i =

d∑
i=0

fi(P )

i∑
k=0

tk(−1)i−k
(
i

k

)

=
d∑

k=0

tk ·
d∑
i=k

(−1)i−k
(
i

k

)
fi(P );

therefore if P = Cd(n)
† and k ≥ ⌈d/2⌉ − 1:

hk(C) =
d∑
i=k

(−1)i−k
(
i

k

)(
n

d− i

)
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=
d−k∑
j=0

(−1)d−j−k
(
d− j

k

)(
n

j

)
.

We now prove that for all k = 0, ..., d, this last sum equals
(
n− k − 1

d− k

)
.

If k = d both terms trivially equal 1.
If k = 0 we proceed by induction on d:

d∑
j=0

(−1)d−j
(
d− j

0

)(
n

j

)
=

(
n

d

)
−

d−1∑
j=0

(−1)(d−1)−j
(
(d− 1)− j

0

)(
n

j

)

=

(
n

d

)
−
(
n− 1

d− 1

)
=

(
n− 1

d

)
.

Finally, if 0 < k < d we can trace back to a case in dimension d−1 and apply the inductive
hypothesis:(

n− k − 1

d− k

)
=

(
n− k

d− k

)
−
(
n− k − 1

d− k − 1

)
=

(
n− (k − 1)− 1

(d− 1)− (k − 1)

)
−
(
n− k − 1

(d− 1)− k

)
=

d−k∑
j=0

(−1)d−j−k
(
(d− 1)− j

k − 1

)(
n

j

)
+
d−k−1∑
j=0

(−1)d−j−k
(
(d− 1)− j

k

)(
n

j

)

=
d−k−1∑
j=0

(−1)d−j−k
(
d− j

k

)(
n

j

)
+

(
n

d− k

)

=
d−k∑
j=0

(−1)d−j−k
(
d− j

k

)(
n

j

)
.

Completing the computations.

1.4 The g-Theorem

We intend to state the g-Theorem: a characterization of the f -vectors of simple poly-
topes. First we need to give some preliminary notions.

Lemma 1.29. For each pair of integers a, i > 0 there exist unique integers ai > ai−1 >

... > ak ≥ k > 0 such that

a =

(
ai
i

)
+

(
ai−1

i− 1

)
+ ...+

(
ak
k

)
.

Proof. Consider a reverse lexicographic order on the set of subsets of N of size i, that
is {bi, bi−1..., b1} < {ci, ci−1, ..., c1}4 if either bi < ci, or bi = ci and {bi−1, ..., b1} <

4We are assuming that the elements of the sets are already listed in descending order bi > bi−1 > ...
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{ci−1, ..., c1} in the reverse lexicographic order for sets of size i − 1. For example the
first sets of size 3 with this order are (omitting commas and parenthesis)

012 < 013 < 023 < 123 < 014 < 024 < ...

Now consider the set in position a+1 in this ordering, it will be of the form {ai+1, ..., a1+1}
for some integers ai, ..., a1; the subsets strictly smaller in the order can be partitioned into
those with all elements smaller than ai + 1, those containing ai + 1 but with all other
elements smaller that ai−1 + 1, and so on, therefore we have

a =

(
ai
i

)
+

(
ai−1

i− 1

)
+ ...+

(
a1
1

)
;

with the convention
(
k
j

)
= 0 if k < j.

The coefficients ai, ..., a1 are unique since any other set {a′i + 1, ..., a′1 + 1} will come in
a different position in the reverse lexicographic order, therefore corresponding to a different
integer a′.

We call the sum in the previous lemma the i-canonical representation of a. We define also
the i-partial power of a as the sum

a⟨i⟩ =

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

(i− 1) + 1

)
+ ...+

(
ak + 1

k + 1

)
.

Definition 1.30. A sequence of integers (h0, h1, h2, ...) is called an M-sequence if it exists
a graded commutative algebra A =

⊕
i≥0Ai over a field F generated in degree 1 such that

dimFAi = hi.

The following lemma is due to Macaulay, it gives concrete numerical properties character-
izing M -sequences.

Lemma 1.31. A sequence of non-negative integers h = (h0, h1, h2, ...) is an M -sequence if
and only if h0 = 1 and hk+1 ≤ h

⟨k⟩
k for each k ≥ 1.5

See [BH98, Theorem 4.2.10] for a detailed proof and a complete account of the topic.

Recall that the h-vector of a simple polytope is always a palindromic sequence, by
looking at some examples we computed in the previous sections, one can observe another
kind of pattern: the h-vector seems to be a unimodal sequence.

5Originally, the definitions were reversed: M -sequences have been first defined as those sequences of
integers satisfying the numerical conditions of the lemma, and later Macaulay showed the equivalence with
the Hilbert series of graded algebras.
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Definition 1.32. The g-vector (g0(P ), ..., gd+1(P )) of a simple polytope P is defined by
the polynomial relation

g(P, t) = (1− t)h(P, t).

So g0 = h0 = 1, gd+1 = −hd = −1 and gk = hk − hk−1. We can recover the h-vector
from the g-vector by observing that hk =

∑
i≤k gi. The Dehn-Sommerville equations for

the h-vector now take this the form:

gk = −gd−k+1.

Having established all the preliminaries, we can now state the g-Theorem.

Theorem 7. (g-Theorem) For a sequence of integers g = (g0, g1, ..., gd+1) there exists a
simple polytope having g as its g-vector if and only if

• gk = −gd−k+1 for all k,

• the sequence (g0, g1, ..., g⌊d/2⌋) is an M -sequence.

As mentioned in the introduction, half of the theorem was proven by Billera and
Lee [BL81], that established the sufficiency of McMullen’s conditions through a clever
combinatorial-geometric construction. They presented a constructive way to obtain a sim-
plicial polytope with any prescribedM -sequence as its g-vector. The second half was proved
by Stanley [Sta80], by using the Hard Lefschetz Theorem to the cohomology of the projec-
tive toric variety X associated to a polytope equivalent to P with rational coordinates. He
derived a graded algebra generated in degree 1, with the Hilbert function being the g-vector
of P , thereby proving that the g-vector of a simplicial polytope is an M -sequence.

In the next chapters we follow the construction of McMullen of the graded algebra Π(P )

associated to a simple polytope P . This algebra will turn out to have the h-vector of P as
its Hilbert function. In fact, this will be the content the very last theorem of this thesis.
McMullen later proved an analogue of the Hard Lefschetz Theorem for the algebra Π(P ),
providing a proof of the g-Theorem entirely withing the realm of convexity and polytope
theory.

The proof of Stanley, relies on the the fact that the vertices of a simplicial polytope
can be slightly perturbed to have rational coordinates, a condition that may seem artificial
from perspective of a combinatorialist. This innocent detail prevents the proof from being
generalized to non-simplicial polytopes, as in this case there is no toric variety in general
to associate to the polytope (non-simplicial polytopes may not be realizable with rational
coordinates [Zie94, §6.5]). Conversely, McMullen’s proof does not depend on this fact.
Therefore, even though his proof, as originally proposed, only applies to simple polytopes,
it offers hope for finding more general results applicable to arbitrary polytopes.





Chapter 2

The Polytope Algebra

Recall that V is a real vector space of dimension d, we denote by P = P(V ) the set
of all polytopes in V (not necessarily full dimensional). From now on we will suppose a
symmetric positive definite bilinear form ⟨·, ·⟩ is defined on V .
We are following the first parts of [McM89].

Definition 2.1. Let A be an abelian group, a function ϕ : P −→ A is called a valuation if
ϕ(P ∩Q) + ϕ(P ∪Q) = ϕ(P ) + ϕ(Q) whenever P and Q in P are such that also P ∪Q is
in P, we also required that ϕ(∅) = 0.

On the one hand the definition is intuitive: valuations are functions on polytopes that
behave additively if we break the polytope into pieces; on the other hand it is not very prac-
tical to work with. Instead of seeing valuations as functions between a set and an abelian
group satisfying some relations, we prefer to see them as morphisms between appropriate
abelian groups.

Definition 2.2. We denote by Π = Π(V ) the abelian group with generators the classes of
polytopes [P ] for P varying in P, and relations between them generated by the "translation
invariance": for each t in V , [P ] = [P + t]; and the "valuation property": whenever P and
Q are such that P ∪Q is in P, [P ∪ Q] + [P ∩ Q] = [P ]+ [Q]; moreover we impose [∅] = 0.
For the moment Π is just an abelian group, nonetheless we refer to it as the polytope algebra
of V .

From the properties of groups defined by generators and relations we see that:

Proposition 2.3. Let A be an abelian group, a function ϕ : P(V ) −→ A is a translation
invariant valuation if and only if it induces a group homomorphism ϕ : Π(V ) −→ A.

Example 2.4. Some key examples of valuations on polytopes are the following.

• The Lebesgue measure
Lebn : P(Rn) −→ R;

17
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that sends a polytope to its volume.

• The Euler characteristic
χ : P −→ Z;

simply sending each non empty polytope to 1.

• We can combine the Lebesgue measure with a face map and a translation to get a
more elaborate example: first identify Rn−1 with the hyperplane Rn−1 × {0} ⊆ Rn

orthogonal to en, then set

ϕ : P(Rn) −→ R

P 7→ Lebn−1(Pen);

we are supposing that P has been translated in order for Pen to lie in Rn−1 × {0}.

• We can make the assignment P 7→ h(P, · ) from P to the vector space of piecewise
linear functionals on V ∗. One can check that this also is a valuation on P.

On the classes of polytopes we can define the operation [P ] · [Q] = [P +Q] induced by the
Minkowsky sum, and extended on Π by linearity.

Lemma 2.5. If P,Q,R ∈ P are such that P ∪Q ∈ P, then (P+R)∩(Q+R) = (P ∩Q)+R,

and (P +R) ∪ (Q+R) = (P ∪Q) +R.

Proof. Out of the four, the only non straightforward inclusion is (P + R) ∩ (Q + R) ⊆
(P ∩Q) +R. If p ∈ P , q ∈ Q and r, r′ ∈ R satisfy p+ r = q + r′, for every t ∈ [0, 1]

p+ r = t(p+ r) + (1− t)(q + r′) = (tp+ (1− t)q) + (tr + (1− t)r′),

and since P ∪Q and R are convex there is a particular t̃ in [0, 1] giving a point x̃ ∈ P ∩Q
and r̃ ∈ R such that x̃+ r̃ = p+ r.

Proposition 2.6. The group Π with product induced by the Minkowski sum is a commu-
tative ring with unit.

Proof. First we verify that the product does not depend on the representative chosen.
Being the Minkowski sum commutative we have (P + t) +Q = (P +Q) + t. To check the
valuation property let P and Q be such that P ∪Q ∈ P, then

([P ] + [Q]) · [R] = [P +R] + [Q+R] = [(P +R) ∩ (Q+R)] + [(P +R) ∪ (Q+R)] =

= [(P ∩Q) +R] + [(P ∪Q) +R] = ([P ∩Q] + [P ∪Q]) · [R],

where in the third equality we used the previous lemma.
The distributive law holds since we defined the product only on the classes of polytopes
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and extended by linearity; the Minkowski sum is associative so also the induced product
is. [∅+ P ] = [∅] for each P but we have imposed [∅] = 0 from the beginning; the class of a
point [∗] is the unit.

The condition P ∪ Q ∈ P is not always easy to verify. Additionally, when breaking a
polytope into pieces one would like to consider partially open polytopes (i.e. polytopes lack-
ing some faces of certain dimensions) rather than having to account for the corresponding
faces with a minus sign.

Let U denote the set {A\B | A =
⋃
i Pi, B =

⋃
j Qj , Pi, Qj ∈ P} of differences between

finite unions of polytopes. A function ϕ : U → A with values in an abelian group A is a
valuation if for each X,Y ∈ U it satisfies ϕ(X) + ϕ(Y ) = ϕ(X ∪ Y ) + ϕ(X ∩ Y ).

Lemma 2.7. Valuations on P admit a unique extension to valuations on U .

Proof. Let ϕ̃ : U −→ A be a valuation, denote by ϕ its restriction to P, we first want to
show that ϕ̃ is determined by ϕ. Being ϕ̃ a valuation, for each P,Q ∈ P we have

ϕ̃(P ∪Q) = ϕ̃(P ) + ϕ̃(Q)− ϕ̃(P ∩Q) = ϕ(P ) + ϕ(Q)− ϕ(P ∩Q),

and if A \ B ∈ U is a difference between unions of polytopes, in particular B =
⋃
i Pi, we

have ϕ̃(A \ B) = ϕ̃(A) − ϕ̃(
⋃
i(A ∩ Pi)). Thus ϕ̃ is fully determined by its restriction ϕ to

P.
On the other hand for every valuation ϕ on P the function ϕ̃ defined by the computations

above is also a valuation, this can be checked via some tedious calculations.

This means that if X ∈ U we can extend our notation and consider the class [X] as an
element of Π, intending the appropriate set of sums and differences of classes of polytopes.

Remark. Even though we will now talk about classes of elements of U , there is no reason to
expect them to behave like classes of polytopes. For example if X = [a, b[ is a partially open
real segment, one might expect [X] · [X] = [X +X] = [ [2a, 2b[ ], however X = [a, b] \ {b},
and playing with the relations in Π one gets

[X]2 = ([ [0, b− a] ]− 1)2 = [ [0, 2b− 2a] ]− [ [0, b− a] ]− [ [0, b− a] ] + 1 = 0.

Lemma 2.8. If P1, P2, ..., Pr are partially open polytopes that form a partition of a polytope
P and ϕ is a valuation,

ϕ(P ) =

r∑
i=1

ϕ(Pi).

Lemma 2.9. Each polytope admits a triangulation.

Proof. If P is a segment there is nothing to do. Proceeding by induction on the dimension
of P , we can chose a vertex v0 of P , and a triangulation of each facet of P not containing
v0. For each simplex in those triangulations take the cone with vertex v0, what we get is a
triangulation of P .
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Corollary 2.10. Π is generated by the classes of simplices.

Theorem 8. Let V,W be finite dimensional R-vector spaces. Affine maps T : V −→ W

induce ring homomorphisms T : Π(V ) −→ Π(W ) that commute with dilatations.

Proof. We can assume T to be linear since T ′ = T − T (0) induces the same function on Π.
To check that the function T [P ] := [TP ] is well defined we first observe that T [P + t] =

[TP + Tt] = [TP ]. If P ∪Q ∈ P we only get

T ([P ] + [Q]) = [TP ] + [TQ] = [TP ∩ TQ] + [TP ∪ TQ],

to end we need to show that T [P ∩Q] = [TP ∩ TQ].
If x ∈ TP ∩ TQ we have p ∈ P and q ∈ Q such that Tp = Tq = x, so the span of q − p is
contained in kerT . Being P ∪Q convex there is y in the intersection between the segment
[p, q] and P ∩Q, it follows that x = Ty ∈ T (P ∩Q).
From linearity of T follows that T [λP ] = λT [P ] and T [P +Q] = [TP + TQ].

Corollary 2.11. The dilatation by a factor λ ∈ R on V induces a ring endomorphism
∆(λ) on Π.

Remark. Multiplication by scalars in Π does not correspond to a dilatation: consider for
example s the class of a closed real segment, then ∆(2)s = 2s − 2. Furthermore, [12P ] is
simply the class of a polytope, while it is not even clear if writing 1

2 [P ] makes sense (it
would correspond to an element x ∈ Π such that x+ x = [P ]). Moreover, if we just look at
the classes polytopes, dilatations appear to be more related to the product in Π than the
sum: [nP ] = [P + P + ...+ P ] = [P ]n.

Theorem 9. Let U be a k-frame, the map P 7→ [P ]U := [PU ] induces an ring endomorphism
x 7→ xU that commutes with non-negative dilatations.

Proof. Consider the composition P 7→ PU 7→ [PU ], this is a translation invariant valuation
on P: clearly (P + t)u = Pu + t; secondly, if P ∪Q is in P we have two options:

• if the supporting hyperplane to P ∪ Q corresponding to u meets both P and Q we
see that

(P ∪Q)u = Pu ∪Qu and (P ∩Q)u = Pu ∪Qu;

• if on the other hand it meets only one of them, say P , we see that

(P ∪Q)u = Pu and (P ∩Q)u = Qu.

In both cases we have:
[P ∩Q]u + [P ∪Q]u = [P ]u + [Q]u.

Finally recalling from chapter 1 that (P + Q)u = Pu + Qu, and noting that (λP )u = λPu

for non-negative λ we have the thesis.
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Remark. In general we cannot allow negative dilatations since (∆(λ)x)u = ∆(λ)(x−u) for
λ < 0.

Our goal in this chapter is to establish the main algebraic properties of Π, in particular,
there is the following structure theorem:

Theorem 10. Π is almost a graded commutative R-algebra generated in degree 1. More
precisely:

• as abelian groups we have

Π =
d⊕
r=0

Πr;

• multiplication satisfies

Πr ·Πs = Πr+s;

• Π0
∼= Z, and for r ≥ 1 Πr is a real vector space, in particular Πd ∼= R;

• if x, y ∈
d⊕
r=1

Πr, λ ∈ R then (λx)y = x(λy);

• the vector spaces Πr are the eigenspaces of the non-negative dilatations ∆(λ), in par-
ticular if λ ≥ 0 and x ∈ Πr then

∆(λ)x = λrx.

(With the convention 00 := 1).

Remark. In [McM89], the theorem is proved over an arbitrary ordered field. Here, we will
limit our proof to showing that Π is a rational graded algebra, effectively proving the entire
theorem but with scalars restricted to Q. At the end of the chapter we include remarks
concerning multiplication by a real scalar. This is needed because in Chapter 3, we will
rely on the full statement of Theorem 10.

2.1 Rational structure

Let Π0 the subgroup of Π generated by [∗] = 1, we see that Π0
∼= Z since the map

χ : Π −→ Z induced by the Euler characteristic maps [∗] to 1. Denoting by Z1 the subgroup
generated by elements of the form ([P ]− 1) for P ∈ P \ {∅}, we have

Proposition 2.12. Z1 is an ideal of Π and as abelian groups we have

Π = Π0 ⊕ Z1.
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Proof. If x ∈ Π, we can write x =
∑

i αi[Pi] with αi integers. Then x =
∑

i αi+
∑

i αi([Pi]−
1) so the sum is indeed Π. Finally the intersection is empty since Z1 is contained in the
kernel of ∆(0) while ∆(0)1 = 1, it follows also that Z1 coincides with the kernel of ∆(0)

and thus it is an ideal.

Our next goal is to prove that Z1 is a nilpotent ideal, in order to do this, we need to
establish some technical results.
Consider {a1, ..., ak} a set of linearly independent vectors in V , fix a0 ∈ V . Denote by

T (a1, ..., ak) := conv(a0, a0 + a1, ..., a0 + ...+ ak),

s(a1, ..., ak) := [T (a1, ..., ak)]− [T (a1, ..., ak−1)],

respectively a simplex and the class of the partially open simplex obtained by removing
from T the facet opposite to the vertex a0 + ...+ ak. (s(∅) := 1).

Remark. Since [T (a1, ..., ak)] =
∑k

i=o s(a1, ..., ai), we deduce that Π is generated by the
various s(a1, ..., ak), those with k ≥ 1 generate Z1.

Lemma 2.13. Let λ, µ ≥ 0, then

∆(λ+ µ)s(a1, ..., ak) =
k∑
i=0

(∆(λ)s(a1, ..., ai))(∆(µ)s(ai+1, ..., ak)).

Proof. If we translate the class of s(a1, ..., ai) by the vector µa1 + ... + µai we see that
the i-th addendum of the sum corresponds to the class of the partially open polytope
{
∑

j ξjaj | 0 < ξk ≤ ... ≤ ξi+1 ≤ µ < ξi ≤ ... ≤ ξ1 ≤ λ+ µ}.
These sets are disjoint for different i and their union is the set {

∑
j ξjaj | 0 < ξk ≤ ... ≤

ξ1 ≤ λ+ µ}, which class in Π is ∆(λ+ µ)s(a1, ..., ak).

An induction argument yields the following technical result:

Lemma 2.14. Let n ≥ 0, k ≥ 1 be integers, then

∆(n)s(a1, ..., ak) =
k∑
i=1

(
n

k

)
zi;

zi =
∑
J⊆[k]
|J |=i

i∏
r=1

s(aj(r−1)+1, ..., aj(r));

in particular we have
zk = s(a1)s(a2)...s(ak).

Remark. The formula for the zi is quite intimidating, nevertheless it shows that they do
not depend from n and that they all lie in Z1.
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Lemma 2.15. For each x ∈ Π there exist unique y0 ∈ Π0 and y1, ..., yd ∈ Z1 such that for
each integer n ≥ 1

∆(n)x =
d∑
i=0

(
n

i

)
yi.

Proof. The previous lemma yields the existence, for the uniqueness part we see that the
square matrix with entries

(
i
j

)
i, j = 0, ..., d is triangular with all diagonal elements equal

to 1, and thus invertible, so the yi can be calculated by the dilates of x.

Remark. Since the matrix with entries the binomial coefficients remains invertible regardless
if its size, in the proof of the lemma we actually proved a slightly stronger result: the only
possible way of extending the sum in the statement is by setting yi = 0 for i > d.

Proposition 2.16. Let P be a non empty polytope, then for k > d

([P ]− 1)k = 0.

Proof.

∆(n)[P ] = [P ]n = (1 + ([P ]− 1))n =
n∑
k=0

(
n

k

)
([P ]− 1)k.

The thesis follows from the previous remark.

We are now almost in position to define on Z1 the structure of Q-vector space, we will
achieve so by showing that for m ∈ Z and y ∈ Z1, equations of the form mz = y admit
a unique solution in Z1. The first step is to realize we have a filtration: denoting Zr the
subgroup generated by r-powers of elements of Z1, we get:

Z1 ⊃ Z2 ⊃ ... ⊃ Zd ⊃ Zd+1 = 0.

Remark. ∆(λ)Zr ⊆ Zr since ∆(λ)([P ]− 1)r = ([λP ]− 1)r. Also recall that for λ ̸= 0, ∆(λ)

is invertible with inverse ∆(λ−1).

Lemma 2.17. For x ∈ Zr and n natural, we have ∆(n)x− nrx ∈ Zr+1.

Proof. It suffices to prove so for the generators. From the proof of the last proposition we
know that ∆(n)[P ] − 1 =

∑
k≥1

(
n
k

)
([P ] − 1)k. Taking the r-th power on both sides and

subtracting nr([P ]− 1)r we get a sum in Zr+1.

Lemma 2.18. The subgroup Z1 is torsion free.

Proof. Let x ∈ Z1 be a torsion element, let n ∈ Z be a non zero integer such that nx = 0.
If x ∈ Zr, then

∆(n)x = ∆(n)x− nrx ∈ Zr+1.

We deduce that x ∈ Zd+1 and so x = 0.
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Lemma 2.19. The subgroup Z1 is divisible.

Proof. Let y ∈ Z1 and m be a non zero integer, if y ∈ Zd, then ∆(m)y −mdy = 0, so

y = m ·∆(1/m)md−1y.

Now suppose Zr+1 is divisible. If y ∈ Zr, then ∆(m)y −mry = x ∈ Zr+1 so x = mz for
some z, then

y = m ·∆(1/m)(z +mr−1y).

Remark. We have established that Z1 is a nilpotent ideal and a divisible torsion-free abelian
group (so a Q-vector space). Therefore, the following definitions make sense since the
multiplication by a rational is well-defined and the sums that appear are actually finite.

Definition 2.20. For z ∈ Z1 we define the logarithm and the exponential by the familiar
power series:

log(1 + z) :=
∑
k>0

(−1)k+1

k
zk;

exp(z) :=
∑
k≥0

zk

k!
.

In particular, for a non empty polytope P we can define log P := log[P ] = log(1+([P ]−1)).

Proposition 2.21. The usual properties of log and exp continue to hold, in particular
if x, y ∈ Π are such that x − 1, y − 1 ∈ Z1 (equivalently ∆(0)x = ∆(0)y = 1), then
exp ◦ log(x) = x and log(xy) = log(x) + log(y).

Notice also that if n,m are positive integers,

∆(n) log[P ] = log[nP ] = log[P ]n = n · log[P ].

We deduce that ∆(1/m) log[P ] is the solution of the equation mz = log[P ]: the logarithms
of polytopes are eigenvectors for non-negative rational dilatations.

Let p := log P and denote by Πr the subgroup of Z1 generated by elements of the form pr.
We are now in position to prove most of Theorem 10 with scalars restricted to being rational.

Theorem 11. Π is almost a graded Q-algebra in the sense of Theorem 10, precisely we
have

Π =

d⊕
k=0

Πk

as abelian groups, and x ∈ Πk if and only if ∆(λ)x = λkx for each λ ≥ 0 rational (with the
convention 00 := 1).



2.2 Volume 25

Proof. First observe that pd+1 = 0, therefore Πr = 0 for r > d.
Being ∆(n) a ring endomorphism, if x ∈ Πr and λ ∈ Q≥0 we see that ∆(λ)x = λrx. By
considering the sum

∆(λ)[P ] = exp(log[λP ]) = exp(λp) =

d∑
r=0

λr
pr

r!

for λ = 1, we see that Π is generated by the Πr. Their sum is direct since Π = Π0 ⊕ Z1,
and for r > 0 the Πr are vector subspaces of Z1 contained in pairwise distinct eigenspaces
for dilatations, so they themselves have trivial intersection.
Being Z1 =

⊕
r>0Πr we deduce that Πr is exactly the eigenspace of ∆(λ) of eigenvalue λr.

If x ∈ Πr, y ∈ Πs and λ ∈ Q≥0, we have ∆(λ)(xy) = ∆(λ)x ·∆(λ)y = λrx ·λsy = λr+sxy ∈
Πr+s. And since pr · ps = pr+s we deduce Πr ·Πs = Πr+s.

Definition 2.22. Let k be a non-negative integer, a valuation ϕ : P −→ A is said to be
homogeneous of degree k if for each integer n ≥ 0 it satisfies ϕ(nP ) = nkϕ(P ).

Corollary 2.23. Each translation invariant valuation ϕ on P admits a unique decomposi-
tion ϕ =

∑d
k=0 ϕk, with ϕk a translation invariant valuation homogeneous of degree k.

Proof. It suffices to consider the restrictions of ϕ to the k-th graded component Πk.

2.2 Volume

We wish to give a more precise description of Πd. To do so, it suffices to look at the
d-components of the semi-open simplices s(a1, ..., ak) introduced in the previous section.
We notice that the coefficient of nd in the expansion of Lemma 2.14 just appears for k = d,
and it is

s(a1, ..., ad)d =
1

d!
s(a1)s(a2)...s(ad).

Observe that s(a1)s(a2)...s(ad) corresponds to the class of the partially open "d-parallelogram"

{ d∑
i=1

ξiai | 0 < ξi ≤ 1
}
.

Of course the order of the ai is irrelevant, thanks to the translation invariance we have
s(ai) = s(−ai), and a simple picture drawing will convince the reader that for i ̸= j and
λ ∈ R

s(ai + λaj)s(aj) = s(ai)s(aj).

From linear algebra we know that if we chose {v1, ..., vd} a basis of V , the above operations
are sufficient to get s(a1)s(a2)...s(ad) = s(µv1)s(v2)...s(vd), where µ is the absolute value
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of the determinant of the tuple (a1, a2, ..., ad) relative to the basis chosen.
Since s((ν + µ)v1) = s(νv1) + s(µv1), the volume map

s(a1)s(a2)...s(ad)
vol7−−→ |det(a1, ..., ad)|,

is a well defined isomorphism of abelian groups between Πd and R.

Corollary 2.24. Let Φ: P −→ R be a non-negative translation invariant valuation, homo-
geneous of degree d, then Φ is a positive multiple of volume.

We recall that we say that two subsets S,R of V are parallel to each other if the affine hull
of either of the two translates into the affine hull of the other.

Remark. For a linear subspace L ⊆ V of dimension k we have the subalgebra Π(L) with its
own volume, by choosing a basis of L we have k-volume for polytopes parallel to L, that
we will denote by volL. In order to choose volume for each subspace with continuity, we
can pick a full dimensional polytope P that contains the origin in its interior (for example
conv(v1, ..., vd,−

∑
i vi) for some basis v1, ..., vd of V ) and then scale volL so that the L-

volume of P ∩ L is 1.
Since k-volume on a subspace is uniquely determined up to scaling, if we want to com-
pare volume between different k-subspaces L and M , there is a unique non-negative scalar
θ(L,M) such that for any polytope P parallel to L

θ(L,M)volL(P ) = volM (πMP ),

where πM is the orthogonal projection onto M .

Remark. We are working over a real vector space V with a scalar product, so it may feel
not natural to consider different volumes in each subspace and then use some scalars to
compare them. For a linear subspace L, one can scale volL so that the intersection of L
with the unit sphere in V has the expected volume, then compare different volumes as
usual, playing with the scalar product and measuring some angles. This approach is valid
and will be used in Chapter 3. However, it is important to note that this method is not
applicable if the vector space does not have a norm. Additionally, if one is working over
an ordered field other that R (for example the rationals) a "uniform" scaling of L-volumes
may not exist.

2.3 Separation

We saw the isomorphism between R and Πd induced by volume, a rephrasing of this is
that we can think of vol as a functional from Π to R that separates Πd (meaning x, y ∈ Πd

have the same volume only if x = y).
We wish to do a similar construction using volume on lower dimensional subspaces.
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Definition 2.25. If U is a frame, we can associate to it the frame functional fU defined
by

fU (x) = volU⊥xU .

If U is a k-frame, we say that fU is a frame functional of type d− k.
Note that f∅ is just volume and if U is any d-frame, fU coincides with ∆(0).

Theorem 12. Frame functionals separate Π.

It is sufficient to show that if x ∈ Π is such that fU (x) = 0 for each frame U , then x = 0.

Remark. If u is a non zero vector, then xu lies in Π(Hu) (where Hu is the hyperplane
orthogonal to u) and for each frame U in the orthogonal of u, fU (xu) = f(u,U)(x) = 0, thus,
imagining an inductive argument in the proof of Theorem 12, we have xu = 0.

We need to set some notations: fix a hyperplane H passing through the origin, a vector w
spanning L = H⊥ and a segment E in L, e := logE = [E] − 1. Let Λ be the subgroup of
Π generated by elements of the form y ·∆(λ)e for λ ∈ R and y ∈ Π(H).

Lemma 2.26. Let H be a hyperplane and L a complementary line, e ∈ Π1(L) and y ∈
Z1(H), then ∆(λ)y · e = y ·∆(λ)e for each λ > 0.

We will not provide a proof for the lemma, that can be found in [McM89, §9].

Lemma 2.27. If x is such that fU (x) = 0 for each frame U , then x ∈ Λ.

Proof. We want to describe the quotient map ρ : Π Π/Λ. Let πH be the orthogonal
projection on H and u be a vector not in H; if Q ∈ P(Hu), we can suppose it has been
translated into the upper halfspace bounded by H (we call "upper one" the one containing
w). The class of Q = conv(Q ∪ πHQ) is determined by Q up to an element in Λ, thus
ρ([Q]) = ρ([Q]). For a polytope P we define it upper and lower boundaries as

P+ = {v ∈ P | ∀µ > 0; v + µw /∈ P},

P− = {v ∈ P | ∀µ > 0; v − µw /∈ P}.

These are elements in U , so there is a unique way of defining the classes [P+] and [P−] (we
again suppose P lies in the upper halfspace). Since

[P ] = [P+]− [P−] + [P−],

we have a decomposition x = x+ − x− + x− for all x ∈ Π. The condition xu = 0 for all u
implies x− = x+ = 0, since both are just sums of xui for some vectors ui. Finally, under
the projection on Π/Λ we have ρ(x−) = ρ(x−) = 0 = ρ(x+), completing the proof of the
lemma.
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Proof of Theorem 12. Every x in the intersection of the kernels of all frame functionals has
the form x = λe + ey with y ∈ Z1(H); if we choose a d − 1-frame U in H, we see that
0 = fU (x) = λvolL(e), so λ = 0.
On the other hand, for each linear subspace M of H we can choose a scaling of M -volume
such that volM (P ) = volM+L(P + E) for each polytope P ∈ P(M). Hence, for a frame U
in H we get 0 = fU (λe+ ey) = 0+ f ′U (y) (where f ′U indicates the induced frame functional
on Π(H)). By the inductive assumption that Theorem 12 holds in Π(H), we conclude that
y = 0.

Corollary 2.28. For each k = 0, 1, ..., d, the frame functionals of type k separate Πk

Proof. A frame functional of type k is a homogeneous valuation of degree k, therefore it
vanishes on Πr for r ̸= k.

We now want to find some non trivial linear relations between frame functionals. For
example, we already observed that for any U,U ′ d-frames fU = fU ′ . Another kind of
relation arises from the analogue of Minkowski’s theorem on facet areas of polytopes.
If U is a k-frame and is v a vector in U⊥, we denote by Lv the span of (U, v).

Theorem 13. For each frame U and vector v ∈ U⊥

∑
w∈U⊥

sgn⟨v, w⟩θ(Lw, Lv)f(U,w) = 0.

Proof. It suffices to check the relation for a polytope P ∈ P(U⊥). The sum actually
becomes a finite sum since all vectors w in the sum not orthogonal to a facet of P account
for a zero addendum. For the remaining vectors we are just summing the areas of the facets
of P orthogonal to them after a projection on Lv (accounting for the orientation with a
sign). We can divide the facets in upper and lower ones by looking at sgn⟨v, u⟩ for the u
that identifies them, we get:∑

w∈U⊥

sgn⟨v, w⟩θ(Lw, Lv)f(U,w)(P ) =
∑

upper

volLv(πLvF )−
∑
lower

volLv(πLvF )

= volLv(πLv(
∑

upper

F ))− volLv(πLv(
∑
lower

F ))

= 0

The last equality follows from observing that the sums of the upper facets and of the lower
facets both project on πLvP .

We end the chapter with some remarks concerning results of [McM89] that will be used
in the subsequent chapter but were not proven.
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First of all, we will make use of Theorem 10 in its full statement even though we did
not completed the proof with the scalars in R. A note is needed for the definition of the
multiplication by real scalars.
The idea is to first define the scalar multiplication in Π1 using dilatations, specifically, for
x ∈ Π1 and λ ∈ R we set λ · x = ∆(λ)x if λ ≥ 0, and λ · x = −∆(−λ)x if λ < 0. This
definition is then extended on all graded components by setting λ · x1...xk = (λx1)x2...xk

for monomials, and then extended by linearity.
Verifying that everything is well-defined requires a discrete amount of work, for which we
refer to [McM89].

Recall that affine maps and frames induce morphisms of rings as stated in Theorem 8 and
Theorem 9. We already showed these morphisms commute with non negative dilatations,
so it will follow immediately from Theorem 10 that the two maps are indeed morphism of
R-algebras.

Lemma 2.29. The map T : Π(V ) −→ Π(W ) induced by an affine map T : V −→ W is a
morphism of R-algebras.
The endomorphism of rings induced by the valuation P 7→ [P ]U is an endomorphism of
R-algebras.





Chapter 3

Simple Polytopes

In the previous chapter, we introduced the polytope algebra Π: a graded infinite di-
mensional algebra over R associated to a real vector space V . Now we turn our attention
to a particular subalgebra of Π associated to a fixed polytope P ; we intend to study some
properties of this algebra and to show how these are related to both the combinatorics
and the geometry of P . To ensure the full algebra properties (but blurring some of the
geometric meaning of the objects) we will replace Π0 with Π0 ⊗Z R.

Definition 3.1. If P is a polytope in V , Π(P ) is the subalgebra of Π(V ) generated by the
classes of Minkowski summands of P .
Similarly to Π, using the logarithm we get the grading Π(P ) =

⊕d
k=0Πk(P ).

Remark. If Q is a polytope in V and λ is a non-negative scalar, the class in Π of the
polytope λQ coincides with exp(λq), which is a polynomial in the operations of the algebra
evaluated at [Q]. Therefore in Π(P ) we find the classes of all the non-negative dilates of
the Minkowski summands of P .
Motivated by this, we say that Q is a weak Minkowski summand of P if it is a Minkowski
summand of a non-negative dilate of P .

Our main goal in this final chapter is to compute the Hilbert series of Π(P ) for the case
where P is a simple polytope, and show that it coincides with the h-polynomial of P .
We briefly outline the structure of the chapter. In the first section we give a more practical
description of Π1(P ), in particular, we explicitly construct an isomorphism with a quotient
of Rn (where n indicates the number of facets of P ), that allows us to set some sort
of coordinates on Π1(P ). Next, we introduce the concept of a weight on P ; using this
technical tool together with the new description of the elements of Π1(P ), we are able to
prove that the spaces Πk(P ) and Πd−k(P ) are dual to each other. Lastly, we use weights to
compute the Hilbert series of Π(P ). We end the chapter by computing the algebra Π(P )

for some examples of polytopes and by proving the Upper Bound Theorem for polytopes
as a corollary to the theory developed.

31
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3.1 Strong isomorphism

In order to better understand the algebra Π(P ), first of all we need to improve our
understanding of the Minkowski sum and the Minkowski summands of a polytope. We
have the definition but we have not provided any criterion to concretely check the property.

Definition 3.2. Let P and Q be two polytopes in V , we write Q ⪯ P if dimQu ≤ dimPu

for each non zero vector u. We say that two polytopes P and Q are strongly isomorphic,
and we write P ∼= Q, if they are equivalent with respect to the equivalence relation induced
by ⪯. We denote by P(V, P ) the strong isomorphism class of P in V and by P(V, P )/T its
quotient by the equivalence relation of being a translate of one another.

Lemma 3.3. Strong isomorphism implies combinatorial isomorphism.

Proof. We want to "build up" the face lattice of Q from that of P , we give a sketch of how
that goes. The claim is that the map sending a k-face F of P of the form Pu to the k-face
Qu is a combinatorial isomorphism. It clear that is a bijection between the sets of k-faces,
in particular the vertices, what is less obvious is that it preserves the inclusion relations.
For each i let ui a fixed vector that "identifies" the vertices pi and qi. If pi, pj are connected
by the edge Puij , we have that Quij is an edge of Q; the faces of Puij are pi = Puij+ui and
pj = Puij+uj , so Quij+ui = qi and Quij+uj = qj are the faces of Quij .

With a similar argument we deal with higher dimensional faces: if F = Pu is a k-face
of P with vertices p1, ..., pm, these are identified by the vectors u+ u1, ..., u+ um, so Qu is
the k-face of Q with vertices Qu+u1 = q1, ..., Qu+um = qm.

Lemma 3.4. Let P and Q be two polytopes in V , then Q is a weak Minkowski summand
of P if and only if Q ⪯ P .

Proof. We give just a sketch of the proof, and refer to [Grü03, §15] for a more detailed one.
If Q is a summand of λP , then Qu is a summand of λPu, so dim Qu ≤ dim λPu ≤ dim Pu

since λ ≥ 0. Now suppose Q ⪯ P , suppose also P is full dimensional (otherwise restrict the
attention to aff(P )), we need to construct a polytope R such that Q + R = λP for some
λ ≥ 0. Write P = conv(p1, ..., pn) as the convex hull of its vertices, respectively identified
by the vectors u1, ..., un, calling qi := Qui , we deduce that {q1, ..., qn} is the set of vertices
of Q (potentially with repetitions). If a polytope R as we want it was to exists, certainly
λPu = Qu+Ru, thus, following the earlier notation for the vertices in direction ui, we must
have ri = λpi − qi; set ri = λpi − qi and call R = conv(r1, ..., rn). Recalling the properties
of the Minkowski sum of Chapter 1, we have:

Q+R = conv({qi + rj | i, j = 1, ...n}) ⊇ conv({qi + ri | i = 1, ..., n}) = λP.
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If R is such that ri is the vertex in direction ui1, we have that ⟨qk+ rj , ui⟩ ≤ ⟨qi+ ri, ui⟩ for
each i, and since the ui positively span V we deduce qk + rj ∈ conv({qi + ri | i = 1, ...n}),
yielding the missing inclusion.

To complete the proof we need to choose λ large enough so that all ri are the vertices
respectively in direction ui, equivalently, we need for each i to have:

0 < ⟨ri − rj , ui⟩ = ⟨λ(pi − pj)− (qi − qj), ui⟩ = λ⟨pi − pj , ui⟩ − ⟨qi − qj , ui⟩.

Such a scalar λ exists since ⟨pi − pj , ui⟩ is positive.

Corollary 3.5. Two polytopes P and Q are weak Minkowski summand of each other if and
only if they are strongly isomorphic.

Polytopes strongly isomorphic to each other are characterized by the property of having
the respective facets parallel to each other (and being of the same dimension); they can be
obtained from one another by translating the hyperplanes spanned by the facets. We can
keep track of how much we translate one of the hyperplanes with a scalar in R, thus, if P
is a full dimensional polytope with n facets, its strong isomorphism P(V, P ) class can be
parameterized by a subset of Rn with the euclidean topology.

More precisely, let U = (u1, ..., un) be an ordered tuple of non zero vectors, having no
pair of vectors positive multiples to each other and that positively spans V (for example
the outer normal vectors at the facets of a full dimensional polytope). We denote by P(U)

the family of polytopes obtained by intersecting halfspaces with outer normal vectors in U .
If Q is such a polytope, there exist η1, ..., ηn ∈ R, called support parameters of Q, such that:

Q = {x ∈ V | ⟨x, ui⟩ ≤ ηi, i = 1, ..., n}.

The full dimensional polytopes in P(U) having exactly n facets form a strong isomorphism
equivalence class, moreover, their support parameters are uniquely determined2. Recalling
that the combinatorial type of a simple polytope is stable under small perturbations of the
facet-defining hyperplanes, we deduce that the subset of Rn identified by a simple polytope
P via its strong isomorphism class is open in the euclidean topology.

Lemma 3.6. We can parameterize P(V, P )/T with an open subset of Rn−d.

Proof. Since the vectors ui span V , the linear map V ↪→ Rn given by t 7→ (⟨t, u1⟩, ..., ⟨t, un⟩)
is injective; in particular, its image T = {(⟨t, u1⟩, ..., ⟨t, un⟩) ∈ Rn | t ∈ V } is a d-dimensional
subspace. A translation of Q ∈ P(U) by the vector t ∈ V corresponds to an increment

1For the way we defined R it may very well not be the case.
2On the other hand, if a polytope R ∈ P(U) is lower dimensional or has less than n facets, it may

happen that one of the halfspaces is not necessary in the description of R, therefore the corresponding
support parameter is free to vary in one direction.
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of the support parameters by the vector (⟨t, u1⟩, ..., ⟨t, un⟩) ∈ T . Since the quotient map
Rn −→ Rn/T ∼= Rn−d is linear and surjective, it is open; therefore the image of the open
set that parameterizes P(V, P ) is open too.

Definition 3.7. Denote by K(P ) the subset of Π1(P ) consisting of the logarithms of
polytopes in P(V, P ). Since λ logR + logQ = log(λR + Q), K(P ) forms a cone (without
the origin) in Π1(P ).

Moreover, with a similar argument to that in [McM89, §8], one can show that there
is a natural isomorphism of semigroups between P(V, P )/T with the Minkowski sum3 and
K(P ). This should not come as a surprise since we already know that the sum of two
logarithms is the logarithm of the Minkowski sum, and that the support parameters behave
similarly. Under this isomorphism, the logarithm q of a polytope is identified with the
support parameters (η1, ..., ηn) up to a vector in the subspace we previously called T (we
refer to these coordinates also as generalized support parameters).
This isomorphism, toghether with the previous lemma, imply:

Theorem 14. Let P be a simple polytope of dimension d, then Π1(P ) ∼= Rn−d.

Lemma 3.8. The classes of the polytopes in any neighbourhood N of P in its strong iso-
morphism class generate Π(P ).

Proof. Let Q be a summand of P , the function λ 7→ P + λQ if read in coordinates is a
well defined continuous map from R to Rn, so there exists λ > 0 small enough such that
P ′ = λQ+ P is in N , in that case we have Q = 1

λ exp(p
′ − p).

Recalling that if Q is a summand of P then Qu is a summand of Pu, if F = PU is a face of
P , the face map x 7→ xU is a well defined morphism of algebras from Π(P ) to Π(F ).

Lemma 3.9. Let P be a simple polytope, and F = PU a k-face of P .
Then the face map x 7→ xU is surjective, and if U is a d − k-frame, the restriction of the
face map from Πr(P ) to Πr(F ) is well defined and also surjective, for each r = 0, ..., k.

Proof. Since P is simple, there is a neighborhood of F in its strong isomorphism class that
can be obtained as "U -faces" of polytopes in the strong isomorphism class of P , making
the face map surjective.
Calling ϕ : Π(P ) −→ Πr(F ) the composition of the face map with the projection onto Πr(F ),
we see that ϕ(∆(n)x) = nrϕ(x). It induces a translation invariant valuation homogeneous
of degree r, so is non zero just on Πr(P ). It follows that Πr(P ) surjects via the face map
onto Πr(F ) for each r.

3If we look at the support parameters, this is the sum induced from Rn
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In the remaining part of the section we delve into an interesting linear algebra con-
struction, that was used in [McM93] during the proof of the g-Theorem; its purpose was
to keep track of changes in the combinatorics of P while its facets were being translated.
These results do not play any role in the next sections, so at a first reading they should be
skipped.

Definition 3.10 (Linear Transform). As in the definition of P(U), let U = (u1, ..., un) be
an ordered tuple of non zero vectors, with no pair of vectors positive scalar multiple to each
other and that positively spans V . A linear transform of U is a tuple U = (u1, ..., un) of
vectors in Rn−d, satisfying:

n∑
i=1

ui ⊗R ui = 0.

Remark. More explicitly, a linear transform of U can be obtained by choosing a basis
{α1, ..., αn−d} of the space of linear dependencies of U (i.e. the kernel of the map ei 7→ ui

from Rn to V ), and then putting ui = (α1,i, ..., αn−d,i). A particular linear transform
depends on a choice of a basis, so is defined up to linear equivalence. Observe that the ui
span Rn−d since the αi are linearly independent (the column rank of a rectangular matrix
equals the row rank).

Definition 3.11. Let Q be in P(U) with support parameters (η1, ..., ηn), let U be a linear
transform of U , we call the vector q =

∑
ηiui a representative of Q (relative to U). From

a previous remark, if Q has n facets and is full dimensional it has a unique representative,
if not, it may have multiple representatives.

Lemma 3.12. Let Q be a polytope in P(U) with support parameters (η1, ..., ηn), let U be
a linear transform of U . Then the vector q =

∑
i ηiui is the representative of precisely the

translates of Q.

Proof. We want to understand the kernel of the surjective map π : Rn −→ Rn−d sending
ei 7→ ui; in particular, we claim that the kernel of π is precisely the d-dimensional subspace
T = {(⟨t, u1⟩, ..., ⟨t, un⟩) ∈ Rn | t ∈ V }, that we previously observed to correspond to the
translations of the polytopes in V .

Consider the map Bt : Rn×Rn−d −→ Rn−d defined by Bt(v, w) = ⟨t, v⟩w; it is bilinear,
so it factors through the linear map B̃t : Rn ⊗ Rd−n −→ Rn−d. Via direct computation we
have:

B̃t
(∑

i

ui ⊗ ui
)
=
∑
i

⟨t, ui⟩ui = π(⟨t, u1⟩, ..., ⟨t, un⟩),

so the property of the linear transform implies that T is in the kernel of π, by counting
dimensions we conclude that the two coincide.
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Theorem 15. Let P be a full dimensional simple polytope with n facets, let U = (u1, ..., un)

be a tuple of non zero outer normal vectors to the facets of P . Then every linear transform
U of U defines an isomorphism between Π1(P ) and Rn−d.

Proof. The map π considered in the proof of Lemma 3.12 is linear and surjective, thus
open. The set of the representatives of the polytopes in the strong isomorphism class of P
is the image under π of the open cone P(V, P ), therefore it is an open cone too.
Combining the previous results we have a natural isomorphism of semigroups K(P ) ∼=
P(V, P )/T and another one induced by π between P(V, P )/T and its image. Since Rn−d

is the group generated by this last semigroup and Π1(P ) the group generated by K(P ), we
have the thesis.

Remark. If we fix a linear transform U , with the isomorphisms we constructed we can
identify a polytope Q in P(V, P )/T with its logarithm q in K(P ), with its representative q
in π(P(V, P )) and with its vector of generalized support parameters [(η1, ..., ηn)] in an open
cone in Rn/T .

The following theorem shows how to reconstruct the facial structure of Q from its
representative q. We will not prove the theorem, the reader interested on a proof is referred
to [McM73].

Definition 3.13. Let Q be in P(U), we say that a subset S ⊆ U is facial for Q if the
vectors in S identify facets of Q, and if those are precisely the facets containing a face of
Q.
A subset S ⊆ U is said cofacial for Q if q lies in the relative interior of the cone cone(S).

Theorem 16. Let Q be a polytope in P(U), then S ⊆ U is facial for Q if and only if
S ⊆ U = {u | u /∈ S} is cofacial for Q.

Remark. Through its representative q, a polytope Q in P(U) identifies its type cone, ob-
tained by intersecting all the relative interiors of the various cone(S) that contain q. For
the representative r of R to lie in the type cone of Q it is just a rephrasing of saying that
R is strongly isomorphic to Q, we deduce that the type cone of Q is again K(Q).

3.2 Weights

In this section we define weights and use them, together with the results of the previous
section, to prove that Πk(P ) and Πd−k(P ) are dual to each other. Specifically, we employ
weights to exhibit a perfect paring Πk(P )×Πd−k(P ) −→ R.

Definition 3.14. If P is a d-polytope, a k-weight on P is a function ω : Fk(P ) −→ R from
the k-faces of P to R satisfying the Minkowski relations of Theorem 13. This means that
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for each k+1-face G, if L is a subspace of aff(G) of dimension k and v is a vector in aff(G)
orthogonal to L, we require: ∑

F∈Fk(G)

sgn⟨v, w⟩θ(L,F )ω(F ) = 0,

where w is any vector in aff(G) such that F = Gw.
The vector space of k-weights on P is denoted by Ωk(P ), this is a linear subspace of Rfk(P ),
the real vector space with coordinates indexed by k-faces of P .

The definition is more complicated than it should be (recall also the remark of Section
2.2): since we are working over the real numbers we can choose a scaling factor of k-
volume for each subspace such that the intersection with the unit sphere in V has the
expected volume (depending on k). This way for each pair of affine subspaces L and M of
codimension 1, the scaling factors θ(L,M) is just the cosine of the angle between them as
usual (accounting with orientation). This cannot be done over Q, so in this case the scaling
factors θ(L,F ) are needed.
Therefore, the sum in Definition 3.14 takes the following form:∑

F∈Fk(G)

ω(F ) · µF,G = 0;

where µF,G is the vector in aff(G) normal to F of norm 1 pointing outwards.

Example 3.15. Let T be the triangle conv(0, e1, e2) in R2. We call F0, F1 and F2 the
edges opposite respectively to the vertices 0, e1 and e2. As we said, since we are in a real
vector space we consider as scaling factors for 1-volume the "usual ones". A 1-weight on
T is a vector ω = (ω(F0), ω(F1), ω(F2)) in R3 satisfying the Minkowski relations: ω(F0) =√
2 ·ω(F1) and ω(F0) =

√
2 ·ω(F2); therefore the vector space Ω1(T ) can be identified with

the 1-dimensional subspace of R3 spanned by (
√
2, 1, 1).

Now let T ′ be the triangle conv(0, e1, e2) in Q2, call F0, F1 and F2 its edges as before.
First of all we need to define 1-volume in each of the three 1-dimensional vector spaces
parallel to the three edges: to do so, we specify a basis of each of them: in order {e2 −
e1}, {e2} and {e1}. Secondly, we compute the three scaling factors, recall that they are
determined by the condition θ(L,M)volL(P ) = volM (πMP ) for each polytope P in L. By
looking at the volume of the projection of the three edges F0, F1 and F2 onto each others
affine hulls, we obtain: θ(F0, F1) = 1, θ(F0, F2) = 1 and θ(F1, F2) = 0. With elementary
computations one can solve the system arising from the Minkowski relations, finding that
the weight space Ω1(T

′) is identified with the span of (1, 1, 1) in Q3.

Remark. In both of the examples we observe an apparent coincidence: the 1-weights with
positive coordinates are in natural bijection with the cone K of the polytope considered.
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It seems to be that for each positive weight ω, the value ω(F ) on a face is the volume of
the face corresponding to F of a polytope Q ∼= P . Consider Ω1(T ) as an example: for each
positive weight ω ∈ Ω1(T ) consider the triangle T̃ = ω(F1) · T , a scaled of T . The values ω
takes on the edges of T are the lengths of the corresponding edges of T̃ .

Lemma 3.16. There is a natural inclusion Πk(P ) ↪→ Ωk(P ).

Proof. If U is a d − k-frame and F = PU is a k-face, the inclusion is given by the map
sending x ∈ Πk(P ) to the weight ωx ∈ Ωk(P ), defined on each k-face F by ωx(F ) = fU (x).
To check that the definition does not depend on the choice of U , we can assume x to be
the k-component of the class of a polytope Q strongly isomorphic to P , since these form
a set of generators of Πk(P ). In this case fU ([Q]k) = fU ([Q]) = volF (F ′), where F ′ is the
face of Q corresponding to F and volF indicates k-volume for polytopes parallel to F .
The map is linear, Theorem 13 assures us it is well defined, and Theorem 12 implies the
map is injective.

Remark. If F = PU is any r-face of P and k ≤ r, we have the restriction map Ωk(P ) −→
Ωk(F ) sending ω 7→ ω|F , the weight relations follow from those of ω.

Lemma 3.17. Let U be a d − r-frame and F = PU an r-face, for each k = 0, ..., r the
diagram

Πk(P ) Πk(F )

Ωk(P ) Ωk(F )

xU

ω|F

is commutative.

Proof. It is sufficient to check the lemma for the k-components [Q]k of the classes of poly-
topes strongly isomorphic to P . If G is a k-face of F , both Q and QU have the same face
k-face G′, their corresponding weights evaluated on G both equal the k-volume of G′.

Remark. A methodical way to compute the volume of a d-polytope Q is to translate it
so that the origin is in its interior, each facet F now defines a pyramid pointed at the
origin. The volume of P is then the sum of the volumes of these pyramids. The volume
of such a pyramid is (up to a constant) the d − 1-volume of the facet F multiplied by the
corresponding support parameter.

We can define on Ω(P ) =
⊕

k Ωk(P ) a structure of Π(P )-module using the previous
simple observation. Since Π(P ) is generated in degree 1, it is sufficient to define a linear
action of Π1(P ) on Ω(P ), in particular, we define a hybrid multiplication Π1(P )×Ωk(P ) −→
Ωk+1(P ).
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Let y ∈ Π1(P ) correspond to the vector (η1, ..., ηn) of generalized support parameters, let
F1, ..., Fn be the facets of P . If ω ∈ Ωd−1(P ), we define4 the d-weight y · ω by:

yω(P ) :=

n∑
i=1

ηi ω(Fi).

The definition does not depend on the particular choice of (η1, ..., ηn) since
∑

i⟨t, ui⟩ω(Fi) =
⟨t,
∑

i ω(Fi)ui⟩ = 0; furthermore, on d-weights there are no Minkowski relations to be
satisfied.
Now we define the action of Π1(P ) over Ωk(P ), we do so in the only possible way so that
the restriction map Ωk(P ) −→ Ωk(F ) is a morphism of Π(P )-modules.
It is tautological that a weight on P is determined by its value on the faces of P , this means
that the local information is all that is needed to specify it: if U is a d− k − 1-frame, and
G = PU is a k + 1-face of P , we define the k + 1-weight y · ω at the face G by:

yω(G) := yUω
∣∣
G
(G).

Explicitly we have that yω(G) =
∑

F∈Fk(G) ηF,G ω(F ), where F varies across all k faces of G
and ηF,G is the generalized support parameter of yU at the facet5 F , thought inside aff(G).
The Minkowski relations continue to hold, as shown by the computations in [McM93].
Instead of repeating them here, we prefer to show an example.

Example 3.18. Let P = conv(−2e1, 2e1, e2+e1, e2−e1) be a trapezoid in R2, we denote by
F1 the upper edge, and then proceed with F2, F3 and F4 in anticlockwise order. The triangle
S = conv(−2e1, 2e1, 2e2) is a weak Minkowski summand of P (Lemma 3.4), so its logarithm
s is an element of Π1(P ), it corresponds to the vector of generalized support parameters
(2, 0, 0, 2

√
2) (we translated S so that its lower left vertex is in the origin). Consider the

1-weight on P ω = (ω(F1), ω(F2), ω(F3), ω(F4)) = (0, 1,
√
2, 1), then sω(P ) = 2

√
2.

Now consider the 0-weight ω′ with value constant −1 on each vertex (up to scalar, these
are the only 0-weights on a polytope), to compute the values of the 1-weight sω′ we need
to determine the new support parameters. For example, the facets of F1 = Pe2 are the
intersection of F1 respectively with F4 and F2, they are just the two vertices e2 + e1 and
e2−e1 (we order them in anticlockwise order). In this case Se2 is just a point, so its support
parameters (in aff(F1)) are just (0, 0), therefore sω′(F1) = 0.
Now consider F2 = Pe2−e1 , denote by v1 and v2 the unit normal vectors in aff(F2) respec-
tively at the two facets e2−e1 and −2e1, this time Se2−e1 is a segment, with support param-
eters ηv1,F2 = 2

√
2 relative to v1 and ηv2,F2 = 0 relative to v2, therefore sω′(F2) = −2

√
2.

4We will only deal with the case of V a vector space over R, with "uniform" choices of volume as we
described previously. The general case of a vector space over an ordered field involves more scaling factors
to make sure volumes in different subspaces interact in the appropriate way.

5F is a facet of G.
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Via similar computations one should get sω′(F3) = −4 and sω′(F4) = −2
√
2. It is easy to

see that sω′ is indeed a 1-weight since −sω′ is the image of the logarithm of S under the
inclusion Π1(P ) ↪→ Ω1(P ).

Proposition 3.19. 6 Let 0 ≤ k < d, if ω ∈ Ωk(P ) is a non zero weight, it exists y ∈ Π1(P )

such that yω is a non zero k + 1-weight.

Proof. If ω is a non zero d−1-weight, let F be a facet of P such that ω(F ) ̸= 0, without loss
of generality we can suppose that F is the facet relative to the vector u1. It is sufficient to
choose y as the vector of generalized support parameters (1, 0, ..., 0), by direct calculations
we have yω(P ) = ω(F ) ̸= 0.

If ω is a non zero k-weight, let F be a k-face of P on which ω(F ) ̸= 0, let G = Pu

be a facet of P containing F . Then ω|G is a non zero k-weight on G, which is a lower
dimensional polytope. By inductive hypothesis on the dimension there is z ∈ Π1(G) such
that zω|G is non zero in Ωk+1(G). Since P is simple, the face map Π1(P ) → Π1(G) is
surjective, so z = xu for some x ∈ Π1(P ). It follows that (xω)|G = x|Gω|G ̸= 0, therefore
also the k + 1 weight xω is non zero.

Theorem 17. For P a simple polytope, the embedding Πk(P ) ↪→ Ωk(P ) is an isomorphism
of vector spaces.

Proof. For a fixed x ∈ Πd−k(P ), the map ω 7→ xω(P ) is linear from Ωk(P ) to R. It follows
that we have a linear map from Πd−k(P ) to Ωk(P )

∗, the previous proposition implies this
last map is surjective. A simple dimension counting shows

dimΠk(P ) ≤ dimΩk(P ) ≤ dimΠd−k(P ) ≤ dimΩd−k(P ) ≤ dimΠk(P ).

Remark. For P an arbitrary polytope, the theorem is false. For example, if P is simplicial
of dimension d, its 2-faces are triangles so it has no non trivial summands [Grü03, §15]:
Πk(P ) are all of dimension 1. On the other hand, regardless of the combinatorics of P
being full dimensional with n facets implies dimΩd−1(P ) = n− d.

From the previous results, it straightforwardly follows that:

Corollary 3.20. The bilinear map

Πk(P )×Πd−k(P ) R

(x, y) xωy(P )

is a perfect paring.
6Compare this proposition with [McM89, Theorem 11].
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3.3 Hilbert series

We now have the necessary tools to compute the Hilbert series of Π(P ). In particular,
we are going show that it corresponds to the h-polynomial of P . In light of this fact, the
Dehn-Sommerville equations for h(P, t) are just a shadow of the duality between the spaces
Πk(P ) and Πd−k(P ).

Theorem 18. Let P be a simple d-polytope with n facets, then dim Πk(P ) = hk(P ).

We start in the same set up of the proof of the Dehn-Sommerville equations (Theorem
4). Recall that φ is a functional in V ∗ and we are moving the hyperplane Ht = {x ∈ V |
φ(x) ≤ t} by gradually increasing the value of t; φ is generic with respect to the vertices
of P , meaning φ(v) ̸= φ(v′) for each pair of distinct vertices v, v′. Recall that a vertex v is
said of type r relative to φ if for t = φ(v), precisely r of the edges passing through v are
contained in Ht.
We will show that the dimension of Ωk(P ) coincides with the number of vertices of type k
relative to φ.
Since it will be heavily used in the proof, we also recall that two subsets of V are said
parallel if the affine hull of either of the two can be translated into the affine hull of the
other.

Proof. The plan is to gradually define a k-weight ω ∈ Ωk(P ) as we move the halfspace
Ht = {x ∈ V | φ(x) ≤ t} through P , paying attention to what happens we add new
vertices; there are 3 possibilities we need to consider: the vertex we are adding can be
either of type r < k, of type k or of type r > k.
In the first option we do not have any new k-face, so there is nothing to say about ω. If
we instead add a vertex of type k, there is a single new k-face F and no new k + 1-faces,
therefore we can freely assign the value of ω at F as there are no Minkowski relations to be
satisfied. Lastly, for vertices of type r > k we claim that the weight relations on the new
k + 1-faces completely determine the value of ω on the k-faces we have added.

If G is one of the new k+ 1-faces, together with G we add its k+ 1 k-faces F1, ..., Fk+1

containing the new vertex v. The k+1 vectors in aff(G) normal to F1, ..., Fk+1 are linearly
independent, the Minkowski relations on G imply that the values ω takes on F1, ..., Fk+1

are uniquely determined by the values of ω we previously chose on the other k-faces of G.
Therefore, we do not have any freedom on the values of ω on the new k-faces when adding
a vertex of type r > k: each new k+1-face determines the value of ω on the new k-faces it
contains. What is not clear, is whether or not the value of ω on such k-faces is independent
from the particular k + 1-face we compute it from.

If r = k +m, each k-face F lies in precisely m distinct new k + 1-faces, from Theorem
2, each pair of them identifies a unique k + 2-face containing F , so checking the result for
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r = k + 2 is sufficient. If we restricting the attention to the affine hull of the k + 2-face we
have chosen, this face becomes a full dimensional polytope, therefore we can suppose we
are assigning a d− 2 weight ω on a simple d-polytope P , that we have already assigned its
value on all the faces that do not contain a fixed vertex v and the weight relations are all
satisfied when necessary.

Let F be a d− 2-face of P containing v, F contains precisely d− 2 of the edges through
v, the two facets G1, G2 containing F respectively contain the remaining two edges l1 and
l2. Let L be the affine plane spanned by the two edges l1 and l2, then choose an orientation
of L; this gives a notion of "up" and "down" in all the facets of P not parallel to L. In
fact, by considering the intersection between L+ t, a general translate of L intersecting P ,
and P itself, we get an oriented polygon with the edges corresponding to some facets of P ,
these edges are oriented segments in the affine hulls of the respective facets.

Let G be a facet of P not parallel to L, proceding similarly to the proof of Theorem
13, we divide its d − 2-faces into upper, lower and vertical, according to the direction of
their outer normal vectors in aff(G) relative to the oriented segment G ∩ (L + t). A face
is an upper face if its outer normal vectors point "up", similarly, we say that it is a lower
face if its outer normal vectors point "down"; the face is said vertical if it is parallel to the
oriented segment G∩ (L+ t). Observe that G1 and G2 are the only facets at v not parallel
to L and F is an upper face in one facet and a lower face in the other one.

Now if we project orthogonally on the d − 2-dimensional linear space L⊥, the weight
relations precisely say that that for each facet G:∑

F ′ lower

θ(F ′, L⊥)ω(F ′) =
∑

F ′ upper

θ(F ′, L⊥)ω(F ′).

By summing over all the facets of P we observe that most things cancel out: if a d− 2-face
intersects non trivially a translate of L, it accounts for a zero addendum (it does not project
on a full dimensional polytope in L⊥). Even though ω might take different values at those
faces containing v if computed as upper or lower faces, we can still cancel out those that
not containing v, as each d− 2-face F ′ not parallel to L appears once as an upper face and
once as a lower face.
We observed in the previous paragraph that all those faces but F are not full dimensional
if projected on L⊥, therefore do not influence the sum. Every other term canceled out
leaving just ωlower(F ) = ωupper(F ), we deduce the assignment ω(F ) does not depend on the
k + 1-face we compute it from, completing the proof of the theorem.

Remark. Throughout the proof we showed that to a generic functional φ ∈ V ∗ we can
associate a basis of Ωk(P ) indexed by the set of k-vertices of P : the weight ωv takes the
value 1 on the k-face F relative to the k-vertex v and 0 on all the other k-faces associated
to k-vertices.



3.3 Hilbert series 43

Definition 3.21. To each φ ∈ V ∗ general enough, the corresponding basis of Πk(P ) is
called the section basis relative to φ.

We now intend to compute a few examples of such algebras to get a feel of how they
look like, and see in practice the properties we observed so far.

Example 3.22. Let us first consider P = ∆d the standard d-simplex (we think of it as
being full dimensional in the affine hyperplane in Rd+1 where coordinates add to 1). The
computations are straightforward: we know that Π(∆d) is generated in degree 1 and from
Theorem 14 the dimension of Π1(∆d) = (d+1)−d = 1; the dimension of Π(∆d) =

∑
hk =

f0(∆d) = d+ 1. We have

Π(∆d) ∼=
R[x]
(xd+1)

.

Example 3.23. Now let P = Cd be the standard d-cube Cd, for a better notation consider
the d-cube [0, 1]d, which is strongly isomorphic to Cd and therefore identifies the same
subalgebra of Π. The algebra Π(Cd) is generated by the d-dimensional Π1(Cd), with basis
the logarithms q1, ..., qd of the edges Q1 = [0, e1], ..., Qd = [0, ed], they are 1-dimensional
polytopes so q2i = 0. We deduce there is a surjective algebra morphism

R[x1, ..., xd]
(x21, ..., x

2
d)

−→ Π(Cd)

sending xi 7→ qi, both algebras have dimension 2d, therefore the map is an isomorphism
of algebras. Under this isomorphism the square-free monomial xi1 ...xik corresponds to
qi1 ...qik = k! [Q]k, the k-component (up to a constant) of the cube Q = [0, ei1 ] × [0, ei2 ] ×
...× [0, eik ].

Example 3.24. Let v1, ..., vd be linearly independent vectors in Rd. Consider the non
degenerate d-parallelogram P = conv

(
{
∑

i∈I vi | I ⊆ [d]}
)
. The linear map T : Rd → Rd

sending vi 7→ ei induces an automorphism of Π(Rd) that restricts to an isomorphism be-
tween Π(P ) with Π(Cd), that we just computed.

Example 3.25. Recalling that the h-vector counts the number of k-vertices relative to a
general linear functional, we deduce that for a prism P × [0, 1] we have h(P × [0, 1], t) =

(1 + t)h(P, t) (this gives an elegant way of computing h(Cd, t)). Inspired by this simple
relation we intend to compute the algebra Π(P × [0, 1]) in terms of Π(P ).

If φ ∈ V ∗ gives us the section basis {ω1, ..., ωr} for Πk(P ), by "tilting up" φ enough
we can get ψ ∈ (V ⊕ R)∗ such that for each vertex v of P of type k the vertices (v, 0)

and (v, 1) are respectively of type k and k + 1. The corresponding section basis we get is
{ω1, ..., ωr, ω

′
1, ..., ω

′
r}, where ω′ indicates the section weight associated to the vertex "over"

that of ω.
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Calling s the logarithm of the class of the segment [0, 1] in Π(V ⊕R), with little computations
one observes that sωi = ω′

i, therefore having

Π(P × [0, 1]) ∼= Π(P )⊗R
R[t]
(t2)

.

Example 3.26. Let Q be the pentagon in R2 with vertices given by the columns of the

matrix

(
0 0 2 2 3

−1 1 −1 1 0

)
, and order its facets (edges) F1, ..., F5 starting from the bottom

one and proceeding in anticlockwise order. Consider the functional of (R2)∗ corresponding
to the row vector u = (2, 1), the corresponding section basis of Π1(Q) is given by the weights

ωA = (0,
√
2/2,

√
2/2, 0, 1),

ωB = (1,−
√
2/2,

√
2/2, 0, 0),

ωC = (0,
√
2/2,−

√
2/2, 1, 0).

Consider now the change of coordinates:

ω1 = ωA + ωB = (1, 0,
√
2, 0, 1);

ω2 = ωA + ωC = (0,
√
2, 0, 1, 1);

ω3 = ωB + ωC = (1, 0, 0, 1, 0).

Calling T1 and T2 respectively the logarithms of the two triangles with vertices respectively
{0, e1, e2} and {0, e1,−e2} and S the segment between 0 and e1, denoting then by t1, t2

and s their logarithms, we observe that ω1 = ωt1 , ω2 = ωt2 and ω3 = ωs. We deduce that
{t1, t2, s} is a basis of Π1(Q). To compute whole algebra Π(Q), we can now look at volumes
of the various Minkowski sums of the elements of the basis. We recall that the sum of the
logarithms is the logarithm of the Minkowski sum of the polytopes, and that Π2(Q) can be
identified with R via the map induced by volume. With easy computations of the volumes
of some polygons, we get:

s2 = 0;

t21 − t22 = 0;

2t22 + t21 = (t2 + s)2 = t22 + 2st2;

2t21 + t22 = (t1 + s)2 = t21 + 2st1.

If we call J the ideal of R[x, y, z] generated by the polynomials z2, x2− y2, x2−xz, y2− yz,
the relations above are sufficient to get the isomorphism

Π(Q) ∼=
R[x, y, z]

J
.
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Recall from Chapter 1 the following theorem.

Theorem 19 (Upper Bound Theorem). If P is a d-polytope with n vertices, for each integer
k it has at most as many k-faces as the cyclic polytope Cd(n):

fk(P ) ≤ fk(Cd(n)).

Remark. We now see how the Upper Bound Theorem for polytopes follows smoothly from
the results of this chapter. It is worth noting that this is not the most direct or fastest
approach; for example, in [Zie94, §8] is presented the original proof of McMullen, that
uses little more that the definition of h-vectors. Nonetheless, the following approach in
intriguing as it exemplifies a connection between algebra and combinatorics. One might
describe the following as a simplified version of Stanley’s proof of the Upper Bound Theorem
for simplicial spheres [Sta75].

Proof. Follows immediately from Theorem 18 that the h-vector of a simple polytope is an
M -sequence, from their characterization of Lemma 1.31 we have some upper bounds on the
possible h-vectors of simple polytopes: hk+1(P ) ≤ h

⟨k⟩
k (P ) for each k ≥ 1. We want to end

up with a simplicial polytope with n vertices so we start with a simple polytope with n

facets, in this case we know that h1(P ) = n− d =
(
n−d
1

)
, therefore the bound on h2(P ) is

h2(P ) ≤ h1(P )
⟨1⟩ =

(
n− d+ 1

2

)
Similarly we get

h3(P ) ≤ h2(P )
⟨2⟩ ≤

((
n− d+ 1

2

)
+

(
0

1

))⟨2⟩
=

(
n− d+ 2

3

)
,

and with an induction argument we have

hk(P ) ≤
(
n− d− 1 + k

k

)
.

These bounds are interesting only up to k = ⌊d/2⌋ since the h-vector of a simple polytope
is a palindromic sequence. From our computations in Lemma 1.28, we see that a dual of the
cyclic polytope Cd(n) reaches the bound on all the coordinates of the h-vector, therefore
for any simple d-polytope P with n facets and any integer k ≤ d, hk(P ) ≤ hk(Cd(n)

†).
In conclusion, observe that the numbers fk(P ) are obtained as linear combinations with
positive coefficients of the numbers hk(P ), since f(P, t) = h(P, t + 1), therefore an upper
bound on the h-vector immediately yields an upper bound on the f -vector. By polarity
we deduce that for convex d-polytopes with n vertices, the cyclic polytope with n vertices
maximizes all the components of the f -vector .
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