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Abstract

Le maree solide sono veri e propri sollevamenti e abbassamenti della superficie di un
corpo planetario, causati dall’azione delle forze gravitazionali esercitate da corpi es-
terni. Tali deformazioni, in aggiunta alla variazione di potenziale che ne consegue, sono
parametrizzate da tre coefficienti adimensionali chiamati numeri di Love, che descrivono
la suscettibilita del corpo planetario alla deformazione mareale e dipendono direttamente
dalle caratteristiche fisiche di quest’ultimo. In questa tesi ¢ presentato lo studio delle
maree solide delle lune di Urano, corpi planetari di estremo interesse per diverse mis-
sioni spaziali programmate per il prossimo futuro. Tali corpi sono descritti attraverso un
modello planetario elastico, omogeneo, incomprimibile, e di forma sferica. Dopo aver pre-
sentato le proprieta fisiche di ogni luna, attraverso un’analisi grafica e numerica stimiamo
i loro numeri di Love e i relativi spostamenti della superficie all’equatore e ai poli delle
stesse. Per le lune piu piccole e vicine a Urano otteniamo numeri di Love relativamente
piccoli ma spostamenti della superficie notevoli mentre per le lune piu grandi troviamo
valori maggiori per i numeri di Love, simili a quelli di modelli differenziati della nostra
Luna, e valori minori per gli spostamenti della superficie; le lune piu distanti, nonostante
abbiano numeri di Love dello stesso ordine di grandezza delle lune vicine, sono cosi dis-
tanti dal pianeta da presentare valori di spostamento superficiale trascurabili. Vengono
infine proposti alcuni miglioramenti al modello planetario presentato in questa tesi che,
alla conoscenza del relatore e dell’autore, ¢ il primo lavoro ad avere come obiettivo la
stima comparativa e sistematica dei numeri di Love e delle ampiezze di deformazione
superficiale di tutte le lune di Urano.



Abstract

Body tides are lifting and lowering phenomena of the solid surface of a planetary body,
caused by the action of the gravitational forces exerted by external bodies. Such de-
formations, in addition to the perturbation of the gravitational potential of the body
that follows, are parameterized by three dimensionless coefficients called Love numbers,
that describe the susceptibility of the planetary body to tidal deformations and depend
directly on the physical properties of this latter. In this dissertation we present the study
of the body tides of the moons of Uranus, planetary bodies that are extremely interesting
for many space missions scheduled for the near future. We describe these satellites using
an elastic, homogeneous and incompressible planetary model, in spherical shape approx-
imation. After presenting the physical properties of each moon, through a graphical and
numerical analysis we evaluate their Love numbers and the relative surface displacements
at their equator and poles. For the smallest moons that are near to Uranus, we obtain
relatively small Love numbers and great surface displacements while for the major moons
we obtain greater values of Love numbers, similar to the ones of differentiated models of
our Moon, and smaller values of surface displacements; for the outer moons, despite they
have Love numbers values of the same order of magnitude of the inner smallest ones,
they are so far from Uranus that their values of surface displacements are negligible. In
the end, we propose some improvement scenarios for the model we have presented in
this dissertation, that, to the knowledge of the supervisor and the author, is the first
work having the comparative aim of systematically evaluating Love numbers and surface
displacements of all the moons of Uranus.
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1 Introduction

The knowledge of our Solar System, crucial to understand the dynamics of formation
and evolution of our planet and beyond, is not as advanced as one might think today,
especially regarding its outer regions. The only space mission capable of obtaining obser-
vational data about the planetary systems of Uranus and Neptune, the farthest planets
from the Sun, was NASA Voyager 2 in 1986: after exploring Jupiter and Saturn, its
journey was extended to an orbit that facilitated its approach to the “ice giants”, those
extremely large planets, i. e. Uranus and Neptune, predominantly composed of water,
ammonia and methane, generally called “ices” in Astrophysics (they are heavier species
than hydrogen and helium - “gases” - but lighter than silicon and iron - “rocks” and
“metals”).

Thanks to the advancement in observation capabilities of extra-solar planetary systems,
it has been understood that ice giants are a widespread planetary type in the Universe.
Therefore, the interest of scientific community in them has steadily increased, becoming
one of the main investigation priorities of space agencies like NASA and ESA.

In this regard, NASA Uranus Orbiter and Probe space mission, scheduled for launch in
the 2030s, has gained great importance in the current research landscape: its objective
is to investigate as many parameters as possible concerning the internal structure and
dynamics of Uranus and its natural satellites (composition and distribution of mass, at-
mosphere, etc.) through the deployment of an orbiter and many atmospheric probes on
the planet. A study like this is not only important to obtain an in-depth analysis of the
ice giant itself, but also to confirm the presence of liquid water on its moons, already
theorized by various planetary models based on observational data.

The desired approach for the theoretical and experimental preparation of this mission is
the transversality of investigation, as also highlighted in the Uranus Flagship 2023 con-
ference (see https://www.hou.usra.edu/meetings /uranusflagship2023/): synergy between
astronomers, astrophysicists and geophysicists is considered fundamental to reach all the
objectives of Uranus Orbiter and Probe mission, both for those of technical realization
of the orbiters and for those of the mission itself.

The aim of the following dissertation is the evaluation of one of the most important
properties of planetary dynamics: the deformative response of the moons of Uranus
caused by the tidal forces exerted by the planet, through the evaluation of their tidal
Love numbers. In Section 2 I introduce the considered planetary bodies, with their clas-
sification and physical properties, and the model we have used. In Section 3 I review
the basic physical theory of solid tides. In Section 4 I show the analytical methods that
we have used to evaluate Love numbers, whose values are reported and discussed in Sec-
tion 5. Finally, I summarize the conclusions in Section 6, also suggesting other possible
approaches to improve the evaluation of Love numbers.



2 Natural satellites of Uranus

2.1 Classification

The satellite system of Uranus consists of 27 main moons, whose names come from
William Shakespeare’s plays: the largest moons were observed for the first time by W.
Herschel in 1787, who discovered the planet itself six years before, and W. Lassell in 1851
while most of the smaller ones were discovered through the images of NASA Voyager
2 space mission in 1986 [Smith et al., 1986] and observations in the ensuing decades.
Astronomical observations of Uranus still reserve new discoveries of small celestial bodies
orbiting the ice giant [CarnegieScience, 2024].

The main adopted classification of these moons is based on their distance from the planet
and on their following orbital and physical properties:

e Inner moons

Cordelia, Ophelia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind,
Cupid, Belinda, Perdita, Puck, Mab (in order of distance from Uranus).
These orbiting bodies are relatively small and it is assumed that they were formed
from the fragmentation of some pre-existing moon; their orbits are chaotic, self-
perturbing and apparently instable, so in the next millions years possible collisions
are not ruled out [Duncan and Lissauer, 1997]. Their surface composition is pri-
marily composed by ice and other rocky materials [Dumas et al., 2003];

e Major moons

Miranda, Ariel, Umbriel, Titania, Oberon (in order of distance from Uranus).
They are the largest moons of the ice giant, probably formed with the planet itself
or maybe detached from it after a collision event [Mousis, 2004]; their orbits are
almost circular and almost coplanar to the equator of Uranus. They all seem to
have no atmosphere, although some of them have active emission of C'O, from the
surface [Grundy et al., 2003, Cartwright et al., 2015]. On a geological and struc-
tural level, they are the most interesting satellites because they all show evident
geophysical formations on the surface [Plescia, 1987, Croft, 1989, Schenk, 1991,
Grundy et al., 2006] and some of them are possible candidates for hosting oceans
of liquid water under their icy and rocky surfaces [Castillo-Rogez et al., 2023];

e Outer moons (or irregular moons)
Francisco, Caliban, Stephano, Trinculo, Sycorax, Margaret, Prospero,
Setebos, Ferdinand (in order of distance from Uranus).
Due to their differences in mass and dimension, the main hypothesis about their
nature is that these moons were not formed with the planet itself, but they were
caught in orbit afterwards [Sheppard et al., 2005]. Their orbits are very large and
irregular.
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Figure 1: The system of inner and major moons orbiting Uranus, captured by the James
Webb Space Telescope. Sep. 4, 2023. NASA, ESA, CSA, STScl.



Figure 2: Composed image of the major moons of Uranus, compared in size with the
planet (visualized on the left); orbital distances are not in scale. Note that the radius of
our Moon s about twice as large as the one of Oberon. The images of the moons are

taken from the original figures captured by the NASA Voyager 2 mission. Jan. 24, 1986.
NASA/JPL.



2.2 Properties

In the following discussion, every moon is considered as:
e clastic;
e homogeneous, i. e. with uniform mass composition;
e incompressible, 7. e. with constant density;
e in a spherical unperturbed state,

so that the following relation for the density p holds:
M

P = 1 _pa
§7TR3

where R is the radius and M is the mass of the moon.

The surface gravity g is:
GM
9= "> (2)

where G = 6.67 - 107! ]\2'7"32 is the universal gravitational constant.

Physical data of the Uranian satellites are reported in Tables 1, 2 and 3, according
to the classification of Section 2.1. The greatest density values are associated to those
moons that present the most relevant rocky mass components, like the major ones. Den-
sity values assumed to be 1 %5 are associated to moons that mainly present icy mass
components; in fact, observational data showed that these ices are ammonia and carbon

dioxide, as well as water ice [Grundy et al., 2006].
Rotational data of inner and outer moons are not available due to the lack of mea-

surements and observations. For major moons, rotational data are reported in Table 4;
in particular, each angular rotation speed w was evaluated according to:

WZT> (3)

thanks to the fact that these moons are tidally locked, i. e. their orbital period of revolu-
tion 7" around Uranus is equal to that of rotation around their own axis [Smith et al., 1986].

Orbital data of all moons, i. e. their semi-major orbital axis a, are reported in Table 5.



Moon R M p PFr g
(km) (10" kg) (G (o) (107 3)

Cordelia 213  6.08+£0.57 1.57£0.82 1.79 9.20+3.49
Ophelia 23+4  357+£032 070+£043 087 4.5041.97
Bianca 27+2 6384191 0.77+040 090 5.84+261
Cressida 41+2 18394212 0.64+0.17 070 7.30+1.55
Desdemona | 35+4 12.37+4.63 0.69+0.49 090 6.74+4.06
Juliet b53+4 38.71+£891 0.62+0.28 0.90 9.19+3.50
Portia 70+4 116.71+£17.30 0.81+0.26 0.90 15.89+4.17
Rosalind 36+6 17.59+552 090+0.73 0.90 9.05+£5.86

Cupid ~ 9 ~ 0.31 1 - 2.55
Belinda 45+8 24.71+£807 0.65+0.56 090 8.14+5.55

Perdita 15+3 1.41 1 - 4.18
Puck 81+ 2 191 + 64 0.86£0.35 090 19.42 4747

Mab ~ 12 ~ 0.72 1 - 3.34

Table 1: Physical data of inner moons

Radius values R are reported from [Karkoschka, 2001] except for those of Cupid and
Mab, taken from [Showalter and Lissauer, 2006]. Mass values M are reported from
[French et al., 2024] except for those of Puck, taken from [Jacobson, 2023/, and of Cu-
pid, Perdita and Mab, indirectly computed from the density, assumed equal to 1 2.
Density values p are computed according to Eq. (1) and compared with values pp, taken
from [French et al., 2024]. Surface gravity values g are computed according to Eq. (2).
Uncertainties on p and g are evaluated by propagation of uncertainty as discussed in

Appendixz A.




Moon R M p g
(km) (101 kg) (L (1073 =
Miranda 235.8+0.7 6293 £ 300 1.15+0.06  75.49 +4.05
Ariel 578.9+0.6 123310+ 1800 1.5240.04 245.4244.09
Umbriel 584.7T£2.8 128850 £ 2250 1.54£0.05 251.39 £6.80
Titania 788.9 £ 1.8 345500 £5090 1.68£0.03 370.28 +7.14
Oberon 761.4+£26 31104047490 1.68£0.06 357.86+ 11.06

Table 2: Physical data of major moons
Radius values R are reported from [Thomas, 1988]. Mass values M are reported from
[Jacobson, 2023]. Density values p are computed according to Eq. (1). Surface gravity
values g are computed according to Eq. (2). Uncertainties on p and g are evaluated by
propagation of uncertainty as discussed in Appendiz A.

Moon R M p g
(km) (10 kg) (cglg) (1073 =
Francisco ~ 11 ~ 0.56 1 3.07
Caliban ~36 ~ 19.54 1 10.06
Stephano ~16 ~1.72 1 4.47
Trinculo ~9 ~ 0.31 1 2.51
Sycorax ~T5 ~176.71 1 20.95
Margaret ~10 ~0.42 1 2.79
Prospero ~ 25 ~6.54 1 6.98
Setebos ~ 24 ~ 5.79 1 6.71
Ferdinand ~ 10 ~ 0.42 1 2.79

Table 3: Physical data of outer moons
Radius values R are reported from [Sheppard et al., 2005]. Mass values M are computed

indirectly from the density p, assumed equal to 1

puted according to Eq. (2).

cm3”

Surface gravity values g are com-



Moon T w w
(days) (54) (1077 rad)

day
Miranda 1.41 4.44 5.14
Ariel 2.52 2.49 2.89

Umbriel 4.14 1.52 1.75
Titania 8.71 0.72 0.84
Oberon 13.46 0.47 0.54

Table 4: Rotational data of major moons
Period values T' are reported from [NASA, 2024]. Angular rotation speed values w are

computed according to Eq. (3), both in units of % and in units of %l.

Moon a
Moon a (10° km)
(103 km)
Miranda 1.299
Cordelia 49.8 Aricl 1.909
Ophelia 53.8 Umbriel 2.660
Bianca 59.2 Titania 4.363
Cressida 61.8 Oberon 5 834
Desdemona 62.7
Juliet 64.4 Francisco 42.757
Portia 66.1 Caliban 71.670
Rosalind 69.9 Stephano 79.514
Cupid 744 Trinculo 85.026
Belinda 75.3 Sycorax 121.932
Perdita 76.4 Margaret 144.250
Puck 86.0 Prospero 162.210
Mab 97.7 Setebos 175.198
Ferdinand 204.214

Table 5: Orbital data of the moons of Uranus
Semi-magjor orbital axis values a are reported from [NASA, 2024], according to the clas-
sification presented in Sect. 2.1.



3 Theory of tides and Love numbers

To introduce the goals of this dissertation, the dimensionless parameters called Love
numbers, it follows an introduction on Body tides Physics based on [Agnew, 2005] and
[Spada, 2023]. Here, the discussion is contextualized to the case of the moons of Uranus.

3.1 Tidal forces

Consider a spherical, elastic, uniform and non-rotating celestial body of mass M, located
at a certain distance from another mass M, that acts as a “perturbing” mass on every
surface point of the celestial body. In our case, think of M as the mass of a Uranian
moon perturbed by the mass M, of Uranus, as shown in Figure 3, where:

e O is a point mass m on the surface of the moon;
e C is the center of mass of the moon;

e U is the center of mass of the planet (considered as a point mass, due to the large
orbital distance between each moon and Uranus);

e B is the center of mass of the moon-planet system.

In the reference system with origin B and rotating as the moon around the planet with
angular velocity &, we call tidal force F; acting on O the sum of three forces:

1. the gravitational attraction force exerted by the planet ﬁpp;
2. the gravitational attraction force exerted by the moon P_"gjo;
3. the centrifugal force E, ¢, directed outwards ﬁ where H is the projection of O on

the axis of rotation.

It follows that:
ﬁt = ﬁp,O —+ F;O -+ ﬁcf = ﬁp’o -+ ﬁg,o + mw2ﬁ. (4)

Since HO = BO — ﬁ[, with |§>f| < |B®| and BO = BC + C@, and neglecting the

radially directed terms with respect to C (ﬁ v.0 and mw?CO cause a purely uniform radial
uplift, so not a body tide), we have:

F, = Fo o+ mw?BC| (5)
Since C experiences no tidal force, we have:

ﬁt,C = F;p’C + mwQB? =0 = mwQBY = —F;p’c . (6)

10



Figure 3: Graphical representation of the forces acting on a point mass O on the surface
of a moon, with Uranus assumed as the mass point U.

Replacing (6) into Eq. (5), it is possible to express the tidal force as:

—

E:ﬁp,O_Fp,Ca (7)

showing that the tidal force acting on a point O on the surface of the moon is due to the
difference in gravitational attraction exerted by the planet on point O compared to that
exerted on the center of mass C of the moon.

3.2 Tide rising potential

e —
Renaming @ =7, CU =7, and OU = ¢, with magnitudes r, r, and g respectively, and
using the definition of gravitational force in Eq. (7), we have:

-~ GMmnmqg GMmr, 7 T
Ft = 2ng _ 2pm,r_p = GMpm (% — T—g) R (8)
P q T, Tp q T
so that, by Newton’s second law, we can define the tidal acceleration in O as:
F, q
ap=—=GM,[ = —-2). 9
5o (-9 o

In particular, the tidal acceleration can be expressed as the gradient of an appropriate
potential, referred to as tide rising potential:

1 7o 1
Qt:GMp<——%——) . (10)
q Tp Tp



Indeed, noting that 7, = ¢+ 7 = const. and ¢ = ¢g, where ¢ is a unit vector, it follows

that:
(s Tp

v,

I
)
=

= a. (11)

The tide rising potential can also be written as a series of Legendre polynomials in the
variable cos o, where « is the angle between 7" and 7, . e. the colatitude referred to U,
as follows.

From Eq. (10), applying the cosine formula to OCU triangle we have:

T T

1
1 1 2 2
—:—<1—21c08a+<1) ) . (13)
q Tp T'p Tp

The term within parentheses is the generating function of the Legendre polynomials of
cos , valid for -~ < 1, in the form:
D

2
q2:r§—27‘p7’c0so¢+r2:r§ (1—21C08a+<1) ) 5 (12)

hence:

_ 1y (—)nPn(cosoz). (14)

Expressing the dot product in Eq. (10) as:

r-Tp . Ty COS ¢

’
3 3 s cos ., (15)
p p p

we can write the tide rising potential as:

Q, = Gi\fp (i (Ti)n Pufeosa) = —cosa - 1) . (16)

P =0 P P

12



Note that the second and third terms within parenthesis are precisely the first two terms
of the series (with opposite signs), so we obtain €); expressed as a series of Legendre
polynomials:

GM, = [ r\"
Q(a) = d Z (—> P,(cos ). (17)
Tp 5 \Tp

Given that r < 7, we can approximate €2; with the first term of the series (as n increases
we have increasingly negligible terms, as it will be shown below), obtaining the tide rising

potential in polynomial form of harmonic degree n = 2:

GM, ?
Q) = b (L) Py(cosa), (18)
Tp  \Tp
where Py(cosa) = %cos2 o — % is the Legendre polynomial of degree n = 2.

To show that this approximation is correct in the case of the moons of Uranus, we
can compute the first two terms of Eq. (17) for the nearest moon, Cordelia, for o = 0°.
Using M, = My, = 8.68-10% kg [Jacobson et al., 1992, r = R from Table 1 and r, = a
from Table 5, we obtain:

e Term with n = 2: ,(0°) = 20.673 k—‘;;
e Term with n = 3: ©,(0°) = 0.009 k_Jg;

thus confirming that the contributions of terms with degrees n > 3 are negligible com-
pared to the first one (n = 2).

3.3 Tidal Love numbers

With the hypothesis of elasticity, the tide rising potential €2, (18) generates a deformation
of the moon in O as a displacement of the surface with vertical (radial) component U
and horizontal (tangential) component V| whose directions are shown in Figure 4.
A. E. H. Love proposed in [Love, 1909] that, for small deformations, the vertical dis-
placement is proportional by a certain factor h to the tide rising potential according
to: Q

U=h—, (19)

)

where ¢ is the mean surface gravity of the moon (constant).
Love also hypothesized that the deformation generated by tide rising potential induces
a variation in the total potential acting on the considered point that, for small deforma-
tions, is proportional by a factor k to €2, itself:

QO =kQ,. (20)

13



Figure 4: Graphical representation of a surface displacement @ induced by 2 on a generic
point O on the surface of the moon. The continuous line represents the surface before the
deformation while the dashed line represents the surface after the deformation; vertical
displacement U is directed like the radial unit vector €, = 7 while horizontal displacement
V' is directed like the tangential one éy.

A similar relation to Eq. (19) was considered afterwards by T. Shida in [Shida, 1912] for
the horizontal displacement, with a proportionality factor I:

V=I L . (21)

g

The dimensionless coefficients h, k and [ are now known as tidal Love numbers or just
Love numbers (vertical, potential and horizontal respectively) and they fully describe
the deformative response to tidal forces exerted on the moon by other perturbing masses
[Munk and MacDonald, 1975, Melchior, 1983]. For a perfectly rigid body, h = k =1 = 0.
Love numbers are also indicated as ho, ko and Iy to highlight the degree 2 of the polyno-
mial tide rising potential which they refer to (if we consider a general tide rising potential
of degree n instead, the notation would be h,,, k, and [,,).

For an elastic, homogeneous and incompressible planetary body, W. Thomson found
in [Thomson, 1863 an analytical relation for all Love numbers as follows:

hy

9 5
14+ =L

2 pgR

h = (22)

where p is the shear modulus (or rigidity) of the moon and hy (ks for k, Iy for 1) is the
fluid Love number, i. e. the Love number associated to a planetary body with the same
radius, density and surface gravity but completely fluid (x = 0).

14



For a spherically symmetric planetary model, h shall be a function in the form:

where R; are the radii of the internal layers, p; are their shear moduli and p; are their
densities. However, for a general spherically symmetric model no analytical solution for
h is known, except for very simple particular cases [Wu and Ni, 1996].

The dimensionless number: I

"R
introduced here for the first time, gives the ratio between the amplitude of elastic and

gravitational forces acting on the planet. Note that if elasticity is more relevant than
gravity, i. e. F'> 1, Eq. (22) becomes:

F (24)

— e~ 01F . (25)

For example, for a relatively large body like the Earth, this approximation is not valid
because gravity and elasticity have a comparable importance and condition F' > 1 is
not met. Indeed, for the Earth, F' ~ 0.2 as first noted by Love in [Love, 1911].

As showed in [Wu and Peltier, 1982], in order to obtain Eq.(22) consider the follow-
ing three equations that fully describe the general problem of an elastic, homogeneous
and compressible body:

o Constitutive law for elastic bodies:
Tij = 2M1€ij + Negr0ij (26)

where 7;; is the stress tensor, ¢;; is the strain tensor, p is the shear modulus, A is
the Lamé constant and d;; is the Kronecker delta;

e Fquation of momentum conservation:

- o 0Ty
=PV = V(- pgr) + 7= =0, (27)

where p is the density, ¢ = €, + Q' is the total perturbative potential and « is the
displacement vector. The first two terms are the forces per unit volume of gravity
and advection while the last term is the force per unit surface of stress;

15



e Poisson equation for gravitational potential:
V3¢ = 4nGp, , (28)
where p; is the density variation due to tidal deformation.
For an incompressible body: p; = 0, and Eq. (28) becomes:
Vi =0. (29)

In the case of an incompressible body, we also use Love’s hypothesis: Vi — 0 and
A — o0 so as that their product is finite:

AV @ — 11, (30)

where II is the mean normal stress.

Thanks to this fact and in addition to the definition of infinitesimal strain tensor:

1 8u1 an
oL , 31
€ij 2 (8.1'] + 81’1) ( )
applying the divergence to Eq. (26) we obtain:
aTij = = = o
a—:VHJr,ququ. (32)
X

Inserting the relation (32) in Eq. (27) we obtain:
— ~ H
—3v2(¢+gﬁ-r——)=0, (33)
7 p

that has solutions that can be expressed as a harmonic decomposition for spherical
simmetry in terms of Legendre polynomials P, (cos #), where 0 is the colatitude referred
to the position of the tide rising body.

In particular, both @ and ¢ can be decomposed as:

ir,0) = > {Un(r)Pn(cos 0)é + Vn(T)%PH(COS 0)é| (34)
¢(r,0) = Y én(r)Palcos 6), (35)

where U, (r) and V,,(r) are the harmonic coefficients of the vertical and horizontal com-
ponents of the displacement, €, = 7 and ¢y are the unit radial and tangential vectors and
¢n(r) is the harmonic component of the perturbative potential.

16



As shown in [Wu and Peltier, 1982], inserting these solutions into Eq. (29) and Eq. (33)
we reach a set of ordinary differential equations for U, (r), ¢,(r) and V,(r) that, solved
and compared to their general definitions of degree n:

R UAG)
Un(r) = hn =2 (36)
Q(r) = kn 2, (r) (37)
_ )
Valr) = b= (38)

where Q! is the tide rising potential €2; of harmonic degree n, allow us to obtain the

relation (22) for ho, ko and [y in the special case of a homogeneous and incompressible
model.

17



4 Methods

With fixed radius R, Love numbers are function of only p and p, as through inserting
the relations (2) and (1) into Eq. (22) we obtain:

hy
o7
8 Gmp?R?

h:

(39)

For their evaluation, we used the Wolfram Mathematica [Wolfram Research Inc, 2024]
software to obtain a 3D plot of (39) in p and p variables, for fixed values of R for each
moon in Tables 1, 2 and 3.
Fluid Love numbers values hy, ks and [; for elastic and incompressible spherical planets
are taken from [Wu and Peltier, 1982]:
5 3 5

hf:§; kf:i; lf:Z (40)
The values used to plot the range of density p, variable for each moon, are taken from
uncertainties ranges of Tables 1, 2 and 3.
The plotting range of shear modulus p is obtained considering as mean values those re-
ported in [Hammond, 2020] and [Hay et al., 2022|, approximately around 3.3 — 3.5 GPa
(estimated values for Jupiter’s moons Europa and Ganymede, planetary bodies formed
by the same mixed materials of ice and rocks of the moons of Uranus).

As an example of Love numbers evaluation for inner, major and outer moons, Figures
5, 6 and 7 show the plots of h, k and [ for the moons Cordelia, Umbriel and Francisco,
respectively. The Wolfram Mathematica codes that we used for the evaluations are re-
ported in Appendix B, followed by some short comments and indications of possible
improvements.

As expected from (39), Love numbers values increase with increasing values of density
and decrease with increasing values of shear modulus.
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h CORDELIA

0.00008
f(u, ©) 0.00006
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0.00000
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I{p,
v mo.oum1
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Figure 5: Plot of Cordelia’s Love numbers. Density range p is taken from Table 1 and
reported in units of %. Shear modulus range v is reported in units of Pa.
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h UMBRIEL

4.0x10°
k UMBRIEL

0.014
0.012

I, p)o.010
0.008

4.0x10°

Figure 6: Plot of Umbriel’s Love numbers. Density range p is taken from Table 2 and
reported in units of %. Shear modulus range 1 is reported in units of Pa.
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h FRANCISCO
1500

4.0x10°

k FRANCISCO
1500

k(u, p)4x1078

2x1078

4.0x10°
| FRANCISCO
1500

4.0x10°

Figure 7: Plot of Francisco’s Love numbers. Density range p is taken from Table 3 and
reported in units of %. Shear modulus range v is reported in units of Pa.
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5 Results

5.1 Love numbers evaluation

It is possible to extrapolate from the previous plots the values of h, k and [ using the
most appropriate values of density and shear modulus for each moon. Love numbers
evaluated for the Uranian satellites are reported in Tables 6, 7 and 8 and k is plotted in
Figures 8, 9 and 10 for a graphic comparison; A and [ have the same plot as k£ due to
similar (39) relation, up to different constants h; and lf, so they are not reported.

Love numbers of major moons are compared in Table 7 to Love numbers of two elastic
homogeneous incompressible Earth models, computed by (39) assuming two different
values of mean shear modulus:

® Rpgrn = 6371 km;
® pgarth = 5.515 Z25;
e [i; = 146 GPa [Zhang, 1992];
e [iy = 117.66 G Pa [Poulsen, 2009];
and to those of an elastic homogeneous incompressible Moon model, assuming:
® Ryroon = 1737 km;
® Diioon = 3.344 %5 [Zhang, 1992];

cms3

® [irioon = 66.8 GPa [Zhang and Shen, 1988];

The largest Love numbers values we obtain are those of the major moons, especially
Titania and Oberon, that are also the greatest moons in terms of both radius and mass.
While their Love numbers are not comparable with the values that we obtain for the
two models of Earth, they are instead comparable to those of the homogeneous model
of Moon, a fact that suggests a similarity in their tidal response even though their
dimensions and assumed composition are different.

For inner and outer moons, the order of magnitude of their Love numbers is 107¢-107?,
that clearly indicates a small tidal response. The only satellites of this type that have
greater Love numbers are Puck (for inner moons) and Sycorax (for outer moons), with
order of magnitude of 1074
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Moon h k l
(1073)  (1073)  (1073)

Cordelia 0.02351 0.01410 0.01175
Ophelia 0.00561 0.00336 0.00280
Bianca 0.00935 0.00561 0.00467
Cressida 0.01489 0.00893 0.00744
Desdemona | 0.01261 0.00757 0.00631
Juliet 0.02335 0.01401 0.01167
Portia 0.06952 0.04171 0.03476
Rosalind 0.02270 0.01362 0.01135
Cupid 0.00175 0.00105 0.00088
Belinda 0.01850 0.01110 0.00925
Perdita 0.00487 0.00292 0.00243
Puck 0.10493 0.06296 0.05247
Mab 0.00311 0.00187 0.00156

Table 6: Love numbers of inner moons
Love numbers of inner moons were obtained using the density of each moon from Table
1 and the average shear modulus i = 3.4 G Pa.

k (107-3)

0.050

0.010

0.005—

0001/ L

Cordelia  Ophelia Bianca  Cressida Desdemona Juliet Portia Rosalind Cupid Belinda Perdita Puck Mab

Figure 8: Graphical comparison of potential Love number k for inner moons, plotted in
logarithmic scale.
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Moon ‘ h k l

Miranda 0.00159 0.00095 0.00079

Ariel 0.01663 0.00998 0.00832
Umbriel 0.01741 0.01045 0.00871
Titania 0.03742 0.02245 0.01871
Oberon 0.03489 0.02093 0.01744

Earth [f1] | 0.58953 0.35372 0.29477
Earth [f] | 0.49789 0.29873 0.24894
Moon 0.03659 0.02196 0.01830

Table 7: Love numbers of major moons

Love numbers of major moons were obtained using the density of each moon from Table
2 and the average shear modulus i = 3.4GPa. They are compared to Love numbers
obtained for incompressible homogeneous Earth and Moon models.

0.020 -

0.015

0.010+ [ ]

0.005+

0.000

Miranda Ariel Umbriel Titania Oberon

Figure 9: Graphical comparison of potential Love number k for major moons.
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Moon h k l
(1073)  (1073)  (1073)

Francisco 0.00262 0.00157 0.00131
Caliban 0.02803 0.01682 0.01401
Stephano 0.00554 0.00332 0.00277
Trinculo 0.00175 0.00105 0.00088
Sycorax 0.12163 0.07298 0.06082
Margaret 0.00216 0.00130 0.00108
Prospero 0.01352 0.00811 0.00676
Setebos 0.01246 0.00747 0.00623
Ferdinand | 0.00216 0.00130 0.00108

Table 8: Love numbers of outer moons
Love numbers of outer moons were obtained using the density of each moon from Table
3 and the average shear modulus i1 = 3.4 GPa.

k (107-3)
[ ]
0.050 -
0.020 -
[ ]
0.010-
L 'y °
0.005 -
°
0.002}-
®
[ ] [ ]
0.001 - ®
Francisco Caliban Stephano Trinculo Sycorax Margaret Prospero Setebos Ferdinand

Figure 10: Graphical comparison of potential Love number k for outer moons, plotted in
logarithmic scale.
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5.2 Vertical displacements evaluation

It is also possible to evaluate the amplitude of vertical deformations U caused by the
mass of Uranus My, at the surface of each moon as follows.
Inserting (18) into Eq. (19) we obtain:

_hGM,

U —
g 2r,

(1>2 (3cos?a —1) (41)

Tp

where:
o M, = My, = 8.68-10% kg [Jacobson et al., 1992];
e r = R radius of the moon;
e 1, = a semi-major orbital axis.

Using h values for each moon from Tables 6, 7 and 8, we can evaluate the equatorial
vertical displacement U, for o = 0° as:

h GM 2
v, = LMo (5) , (42)

g a a

and the polar vertical displacement Up, for a = 90° as:

hGMy, (R\> U,
= — = — 4
Upol g %2, ( ) 9 ) ( 3)

a

where the — sign means that at the poles the equilibrium surface is displaced downwards.

The evaluated values of U, and U,y are reported in Tables 9, 10 and 11.

For inner moons, due to the dependency of displacements from ¢~ and g=* of Eq. (42)
and Eq. (43), we obtain values of U,, in a range from 0.08 cm up to almost 43 cm; in fact,
for the largest ones we have displacements of a few tens of centimeters, like Portia and
Cupid, that show a remarkable tidal response.

For major moons, even if their Love number h are the largest, we have smaller values of
displacements than those of the inner satellites, due to both greater distance from Uranus
and surface gravity; among these moons, Ariel has the greatest equatorial displacement,
of about 1.89 cm.

A different case is the one of outer moons: they are so far from the planet that the tidal
vertical deformation of their surface, computed with the previous approximations, are of
the order of magnitude of 107 -10~"m, practically negligible.
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Moon U Upo

(em)  (cm)

Cordelia 528 —2.64
Ophelia 2.45 —1.23
Bianca 3.26 —1.63
Cressida 8.41 —4.21
Desdemona | 5.38 —2.69
Juliet 15.47 —-7.74
Portia 4298 —21.49
Rosalind 551  —2.76
Cupid 0.08 —0.04
Belinda 6.24 —3.12
Perdita 034 —-0.17
Puck 32.27 —16.13
Mab 0.08 —0.04

Table 9: Vertical displacements of inner moons

Equatorial and polar vertical displacements of inner moons are obtained using Eq. (42)
and Eq. (43), with radius values R taken from Table 1 and semi-major orbital axis a
taken from Table 5.

Moon Uey Upa
(em)  (em)

Miranda 0.31 —-0.15

Ariel 1.80 —-0.94
Umbriel 0.73 —0.36
Titania 044 —-0.22
Oberon 0.16 —0.08

Table 10: Vertical displacements of major moons

Equatorial and polar vertical displacements of major moons are obtained using Eq. (42)
and Eq. (43), with radius values R taken from Table 2 and semi-major orbital axis a
taken from Table 5.
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Moon Ueq Upal
(1071%m) (107%m)
Francisco 76.48 —38.24
Caliban 0.57 —0.28
Stephano 36.54 —18.27
Trinculo 5.32 —2.66
Sycorax 1042.97 —521.49
Margaret 1.49 —0.75
Prospero 16.42 —8.21
Setebos 11.52 —5.76
Ferdinand 0.53 —0.26

Table 11: Vertical displacements of outer moons

Equatorial and polar vertical displacements of outer moons are obtained using Eq. (42)
and Eq. (43), with radius values R taken from Table 3 and semi-major orbital axis a
taken from Table 5.
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6 Discussion

It is important to recall that the results obtained in the previous Section are based on sim-
plified approximations that however reflect, at least on a first level of study, the physical
properties of the moons of Uranus and allow us to obtain a first, very rough, description
of their tidal response. Nevertheless, reality is more complex and the approximations
used in this dissertation can be improved due to the following observations.

On shape and structure

The approximation of spherical shape we used is not the better choice for all the moons of
Uranus. In fact, the best shape model of some of the inner satellites is not spherical but
ellipsoidal (as prolate spheroid): some evident examples of this are Ophelia, Cupid and
Mab, as shown in Figure 11, and an evaluation of their three dimensions as a prolate
spheroid has been made by E. Karkoschka in [Karkoschka, 2001]. Despite that, the
hypothesis of homogeneous internal structure is quite reasonable as from their dimensions
and from available physical data they do not seem to have an internal differentiation.

Figure 11: From left to right, Ophelia captured by the Voyager 2 Spacecraft and Cupid
and Mab captured by the Hubble Space Telescope. Jan. 21, 1986; 2003. NASA.

On the other hand, if we consider major moons it is realistic to assume the spherical
shape approximation, as visible in Figure 12, but not the hypothesis of homogeneity.
In fact, due to their physical data, internal differentiation processes are plausible and
many papers already hypothesize this scenario: in [Castillo-Rogez et al., 2023] the au-
thors present a two-layered model for Miranda (rocky core; ice shell) and three-layered
models for Ariel, Umbriel, Titania and Oberon (rocky core; thick ocean; ice shell); for
Titania and Oberon, the presence of a subsurface ocean was already been presented in
[Hussmann et al., 2006]. These models should be considered since the chemical species
confirmed to be on these moons, like ammonia [Grundy et al., 2006], have the property
of lowering the melting point of water, allowing the presence of liquid water oceans. In
addition to it, some of the major moons, like Ariel, present formations on the surface
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that can be related to past cryovolcanism activity, a phenomenon that goes hand-in-hand
with the possible presence of subsurface oceans [Carroll, 2019].

Figure 12: From left to right, Ariel, Titania and Oberon captured by the Voyager 2
Spacecraft. Jan. 24, 1986. NASA/JPL.

In particular, J. Castillo-Rogez et al. have also evaluated the potential Love number
k for the differentiated models that they proposed, reported in Table 12. Comparing
these values to the ones we reported in Table 7, recalled in Table 12, it follows that k for
homogeneous models underestimates k for differentiated models so detecting its value for
each moon in the future is important to understand the level of internal differentiation
of these bodies.

Moon | k (Castillo-Rogez) k (Table 7)

Miranda 0.0019 0.00095
Ariel 0.016 — 0.164 0.00998
Titania 0.24 0.02245

Table 12: Potential Love numbers £ for differentiated models of major moons
Potential Love number k evaluated in [Castillo-Rogez et al., 2023] for three of the major
moons of Uranus, compared with the values we obtained in Table 7. Castillo-Rogez con-
sidered Miranda with a two-layered model (without ocean) and Ariel and Titania with a
three-layered model (with a subsurface ocean).

While if we know the interior of a planetary body then we know its Love numbers, the
knowledge of Love numbers does not allow us to infer exactly its internal structure, not
even for a homogeneous sphere. Nevertheless, as showed in [Zhang, 1992], Love number k
increases with increasing radius of the core: this means that, comparing future-detected
values with computed ones for many models, it will be possible to identify the class of
models that provide the best fit with measured Love numbers, providing some indication
about the size of the core.
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On compressibility

Another hypothesis that can be improved is the one of incompressibility: although our
knowledge about these moons is poor, it is not very realistic to consider them as incom-
pressible because for solid planetary bodies compressibility can be significant.

The most relevant studies that developed this perspective have been carried out by
T.A. Hurford [Hurford and Greenberg, 2002, Hurford, 2005, Hurford et al., 2006]. In
[Hurford and Greenberg, 2002], they considered for Eq. (27) an additional term depend-
ing on the Lamé constant A, that has a finite real value for compressible bodies (for
example, for rocky bodies A ~ p). Repeating the process shown in Section 3.3 with
functions written as Legendre polynomials series, it is possible to reach a relation for
the vertical Love number A through the comparison of the total perturbative potential
¢ with its definition; note that now ¢ has more terms than in the incompressible case.
We have chosen not to report here neither the full discussion on the topic nor the re-
lation for h due to their complexity, but please refer to [Hurford and Greenberg, 2002,
Hurford et al., 2006].
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7 Conclusions

Having previously discussed the physical properties of the satellites, presented the ap-
proximated model we adopted and showed the analysis we carried out, I can now recall
the results obtained in this thesis:

e at first, through the 3D plots in Section 4 we have observed the combined depen-
dence of Love numbers on density and on shear modulus of the bodies they refer
to. These parameters can be modified in order to adapt the model to the most
suitable values for each moon;

e then, we have evaluated the Love numbers for all the moons, obtaining values of
the order of 107%-107° for the small ones and values of the order of 1072-1072
for the major ones. For the former, we have inferred that they have a limited
tidal response despite their composition is mainly based on icy materials. For the
latter, we have shown a similarity in tidal response with a homogeneous model of
our Moon and highlighted that k values for homogeneous models underestimate k
values for differentiated models;

e in the end, we have also computed the values of vertical displacements at the surface
of the moons, caused by the tidal influence of Uranus. For the inner moons, very
close to the planet, we have obtained values in a range from a few centimeters up
to a few tens of centimeters. For the major ones, the maximum value of surface
displacement is 1.89 ¢m, for Ariel. The outer moons have negligible displacements
due to their greater distance from Uranus.

The future detection of Love numbers of these planetary bodies will give us new tools to
investigate their internal differentiation and to understand if the hypothesis of subsurface
oceans for the major satellites are realistic: only through space missions like NASA
Uranus Orbiter and Probe we will be able to discover the possible structure of the moons
of Uranus.

Acknowledgments

I wish to thank Daniele Melini (INGV, Rome) and Anastasia Consorzi (DIFA, Alma
Mater Studiorum - Universita di Bologna) for discussion and encouragement.

This work was partly funded by the Italian Space Agency (ASI) through agreement no.
2024-5-HH.0.

32






Appendix

A. Errors evaluation

Radius R and mass M values, reported in Tables 1 and 2 in Section 2.2, were evaluated
in cited papers through the analysis of the original images captured by NASA Voyager 2
and through later processing. Due to this fact, we can not rule out the possibility that
their computed uncertainties are not independent: therefore, we have chosen to evaluate
uncertainties on p and g values through the propagation of uncertainty as upper limits
and not in quadrature [Taylor, 1997].

As discussed in [Taylor, 1997], if f is a function depending on variables a, b, ..., z so that

f=f(a,b, .., z), the upper limit of uncertainty on the value of f can be evaluated as:
of of ZAN
Af =|=— Ab
/ ’a ' 7 R e e
where Aa, Ab, ..., Az are the uncertainties on a, b, ..., z values.

Considering Eq. (1) where p is a function of radius R and mass M: p = p(R, M),
we have obtained the uncertainty on p as:

‘ AR+ 6M AM ,

where AR is the uncertainty on R and AM is the uncertainty on M.

Explicitly:
1 A
Ap = <3M a +AM ) :
3

4
§7TR R

Considering Eq. (2) where g is a function of radius R and mass M: g = g (R, M), we
have obtained the uncertainty on g as:

A AM .
2o |ga) an+| 20

where AR is the uncertainty on R and AM is the uncertainty on M.

Explicitly:
G AR
A 2M —— + AM
9= R2< R )
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B. Wolfram Mathematica Codes

In order to improve the evaluation of tidal Love numbers we carried out, in this Appendix
we report all the Wolfram Mathematica [Wolfram Research Inc, 2024] codes we used to
obtain the plots showed in Section 4.

For example, it is possible to try different ranges of shear modulus pu, based on different
composition models, or different ranges of density p.

«CORDELIA=

(*» Radius R [m] , Density rho [kg/m”3], Shear modulus mu [kg/m s”2], G [m"3/kg s72]
R =21%1073;
G = 6.67x10" (-11);

kf = 3/2;
hf=5/2;
1f = 5/4;

k[mu_, rho_] i=kf/ (1+ (57/8) » (mu/ (G 7w* (rho”2) « (R*2))));
himu_, rho_] :=hf/ (1 + (57/8) = (mu/ (Gxm* (rho”2) * (R*2))));
1[mu , rho 1 :=1f/ (1 + (57/8) = (mu/ (Gxym+ (rho~2) x (R*2))));

Plot3D[k[mu, rho], {mu, 2+1079, 4 %1079}, {rho, ©.75%x10/3, 2.39 %1073},
AxesLabel - {"u", "p", "k(u, p)"}, PlotLabel - "k CORDELIA"]

Plot3D[h[mu, rho], {mu, 2+1079, 4%x106°9}, {rho, ©.75%x10"3, 2.39%x 1073},
AxesLabel -» {"u", "p", "h(u, p)"}, PlotLabel - "h CORDELIA"]
Plot3D[1[mu, rho], {mu, 2+1079, 4 %1079}, {rho, ©.75%x10/3, 2,39 x10/3},
AxesLabel » {"u", "p", "1(i, p)"}, PlotLabel » "1 CORDELIA"]

Figure 13: Code used to obtain the 3D plot of h, k and | for Cordelia, with its value of
R and its ranges of i and p already inserted.
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(*UMBRIEL *

(#+ Radius R [m] , Density rho [kg/m"3], Shear modulus mu [kg/m s"2], G [m"3/kg s"2]+*
R =584.7x10"3;

G = 6.67x18"(-11);

kf = 3/2;
hf=5/2;
1f = 5/4;

k[mu_, rho_]1 i=kf/ (1+ (57/8) % (mu/ (Gxmw* (rho”2) * (R*2))));
himu , rho 1 :=hf/ (1+ (57/8) % (mu/ (Gxm* (rho”2) x (R*2))));
1(mu _,rho 1 :=1f/ (1 + (57/8) % (mu/ (Gx7mw+* (rho"2) * (R*2))));

Plot3D[k[mu, rho], {mu, 2x16"9, 4x1879}, {rho, 1.49%10"3, 1.59 x16~3},
AxeslLabel » {"u", "p", "k(y, p)"}, PlotLabel » "k UMBRIEL"]
Plot3D[h[mu, rho], {mu, 2x1079, 4%1079}, {rho, 1.49x10"3, 1.59 x 10”3},
AxeslLabel » {"u", "p", "h(u, p)"}, PlotLabel » "h UMBRIEL"]
Plot3D[1[mu, rho], {mu, 2+x1079, 4%1079}, {rho, 1.49+10"3, 1.59x 10”3},
AxeslLabel » {"u", "p", "1(u, p)"}, PlotLabel » "1 UMBRIEL"]

Figure 14: Code used to obtain the 3D plot of h, k and | for Umbriel, with its value of
R and its ranges of i and p already inserted.

* FRANCISCO+
(* Radius R [m] , Density rho [kg/m”3], Shear modulus mu [kg/m s”2], G [m*3/kg s"2]*)
R=11%10"3;
G = 6.67%x10" (-11);

kf = 3/2;
hf=5/2;
1f = 5/4;

k[mu_, rho_] i=kf/ (1+ (57/8) % (mu/ (Gxm* (rho”2) » (R*2))));
hf/ (1+ (57/8) % (mu/ (Gxm* (rho”2) * (R*2))));
1f/ (1+ (57/8) = (mu/ (Gxm= (rho”2) x (R*2))));

h[mu_, rho_] :

1[mu_, rho_] :

Plot3D[k[mu, rho], {mu, 2+1079, 4%x10°9}, {rho, 8.5+1073, 1.5+x10"3},
AxeslLabel » {"u", "p", "k(u, p)"}, PlotLabel - "k FRANCISCO"]

Plot3D[h[mu, rho], {mu, 2+1079, 4%x1079}, {rho, 8.5%1073, 1.5%x10"3},
AxeslLabel » {"u", "p", "h(u, p)"}, PlotLabel - "h FRANCISCO"]

Plot3D[1[mu, rho], {mu, 2+10"9, 4%10°9}, {rho, 8.5+10°3, 1.5%10"3},
AxeslLabel » {"u", "p", "1(u, p)"}, PlotLabel - "1 FRANCISCO"]

Figure 15: Code used to obtain the 3D plot of h, k and | for Francisco, with its value of
R and its ranges of i and p already inserted.
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