
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Bachelor Degree in Physics

A New Trackster Linking Algorithm Based
on Graph Theory for Reconstruction in

HGCAL at the CMS Experiment

Supervisor:

Prof. Francesco Giacomini

Co-Supervisors:

Dr. Felice Pantaleo, CERN
Dr. Wahid Redjeb, CERN

Submitted by:

Camilla Lazzati

Academic Year 2023/2024

“ [. . .] Sempre devi avere in mente Itaca -
raggiungerla sia il pensiero costante.

Ma non precipitare il tuo viaggio:
fa che duri a lungo, per anni, e che da vecchio

tu metta piede sull’isola, ricco
dei tesori accumulati per strada,

senza aspettarti ricchezze da Itaca.

Itaca ti ha donato il bel viaggio
senza di lei mai ti saresti messo

in cammino: nulla ha da darti più.

E se la trovi povera, Itaca non t’ha illuso
Fatto ormai savio, già tu avrai capito

cosa Itaca vuole significare.”

Konstantinos Kavafis, Iθακη

A chi mi vuole bene

Abstract

Al termine del Run-3, il Large Hadron Collider verrà sottoposto ad una fase di ag-
giornamento secondo il progetto HL-LHC (High-Luminosity Large Hadron Collider) che
prevede un aumento della luminosità di un fattore 7.5 rispetto a quella del Run-1. Ciò
rappresenta una sfida sia per i rivelatori, sia per gli algoritmi di ricostruzione, a causa
del forte aumento del numero di collisioni simultanee (pileup) e di dati da processare.
La collaborazione CMS (Compact Muon Solenoid) ha pertanto progettato lo High Gra-
nularity Calorimeter (HGCAL), un nuovo calorimetro ad alta granularità che sostituirà
quello attuale. Un nuovo framework per la ricostruzione di HGCAL, The Iterative Clu-
stering Framework (TICL), è in fase di sviluppo. La struttura modulare di TICL prevede
diverse fasi, tra cui il linking, che ha il compito di unire cluster tridimensionali di energia,
detti tracksters, originati dalla stessa particella primaria. Questa tesi esplora un possi-
bile approccio per effettuare il linking basato sulla teoria dei grafi e, in particolare, su
un algoritmo detto di Leiden. L’algoritmo è stato implementato in C++ e integrato nel
software di CMS. Le prestazioni dell’algoritmo, in termini di qualità della ricostruzione,
sono state valutate tramite eventi simulati. L’algoritmo presenta una buona prestazione
sia nel caso di singola particella sia nel caso di particelle vicine, riuscendo a distingue-
re le due particelle anche in caso di sovrapposizione. Tuttavia, mostra una tendenza a
collegare troppo poco i trackster. Al momento l’algoritmo non include al suo interno
le informazioni fisiche provenienti dai sensori: si ritiene che, con la loro introduzione,
si potrà avere un maggiore controllo sul linking ed un significativo miglioramento nella
qualità della ricostruzione.

Contents

1 Introduction 4
1.1 The Standard Model . 4
1.2 The LHC and the HL-LHC Project . 5
1.3 Thesis Structure . 9

2 CMS: The Compact Muon Solenoid 11
2.1 CMS Detector . 11

2.1.1 Tracker . 11
2.1.2 Calorimeters . 12
2.1.3 Muon Chambers . 13

2.2 The CMS Coordinate System . 13
2.3 CMS HL-LHC Upgrade . 14

2.3.1 HGCAL: the High Granularity Calorimeter 15

3 Event Reconstruction in CMS 17
3.1 Online and Offline Reconstruction . 17
3.2 Reconstruction in HGCAL . 18

3.2.1 TICL: The Iterative Clustering Framework 18

4 Graph Theory and Community Detection Algorithms 23
4.1 Basic definitions . 23

4.1.1 Types of Graphs . 24
4.2 Community Detection Algorithms . 25

4.2.1 Modularity . 26
4.2.2 Louvain Algorithm . 26
4.2.3 Leiden Algorithm . 28

5 Implementing Leiden Algorithm for the Linking Phase 32
5.1 Graph Construction and Implementation 32
5.2 Leiden Algorithm Implementation and Outputs 33

6 Simulation and Results 34
6.1 CMS Simulation Software . 34
6.2 Response Plots . 35
6.3 Results . 36

6.3.1 Considerations . 39

7 Conclusions and Future Work 40

Acknowledgements 42

Bibliography 45

List of Figures

1.1 Standard model of elementary particles 5
1.2 CERN accelerator complex . 6
1.3 Higher luminosity in a more focused beam 7
1.4 200 PU particle collision event . 9

2.1 The CMS detector concentric layers . 12
2.2 The CMS detector coordinate system . 14
2.3 Schematic cross section and layers’ structure of HGCAL 15

3.1 Particle showers in HGCAL . 19
3.2 The main steps in the TICL framework 20

4.1 Planar representation of two graphs . 24
4.2 Representation of a graph with a community structure 25
4.3 Illustration of the Louvain algorithm . 28
4.4 Example of how the Louvain algorithm may yield a disconnected community 29
4.5 Illustration of the Leiden algorithm . 30

6.1 Response plot obtained for a single pion 37
6.2 Response plot obtained for two pions with possibility of overlapping . . . 38

Chapter 1

Introduction

1.1 The Standard Model

The Standard Model (SM) is a theory that encompasses the understanding of modern
particle physics, describing elementary particles and the fundamental interactions that
govern them.

Elementary particles are divided into bosons and fermions according to an intrinsic
property called spin: particles with integer spin are bosons, while those with half-integer
spin are fermions. In the SM there are twelve fermions and five bosons.

Bosons are the mediators of the interactions, i.e. an interaction between particles can
be viewed as the exchange of a boson. Each boson is responsible for a specific interaction:
the electromagnetic one is carried by the photon, the strong nuclear one by the gluons,
and the weak nuclear one by the W and Z bosons. Each interaction has an associated
charge that particles must have in order to participate in that interaction: electric charge
for the electromagnetic one, color charge for the strong one, and weak charge for the weak
one. The Higgs boson is the last particle in the Standard Model to have been discovered
and it is responsible for the mechanism through which particles acquire mass. It is the
only known elementary particle with spin 0. At the present moment the gravitational
interaction is not incorporated within the Standard Model.

Fermions are the particles that make up matter. They are categorized into three
distinct generations, i.e. groups of particles that exhibit similar behaviors but differ in
mass. Each generation comprises two leptons and two quarks, the main difference being
that quarks have a color charge, whereas leptons do not. For each of these particles, there
exists a corresponding antiparticle with opposite charges. All the elementary particles
comprised in the SM are summarised in Figure 1.1 [1].

The SM is a well-tested physics theory, it has successfully explained most experi-
mental results and precisely predicted a wide range of phenomena. The Large Hadron
Collider, which is the world’s largest and most powerful particle accelerator, hosts exper-

4

CHAPTER 1 1.2. THE LHC AND THE HL-LHC PROJECT

Figure 1.1: Standard model of elementary particles. Brown loops indicate which bosons
(red) couple to which fermions (purple and green). Original by Wikimedia Commons,
CC-BY-SA 3.0 [2].

iments that are among the main contributors of producing experimental confirmations
of the SM. For instance, the predicted existence of the Higgs boson was confirmed by
the observations made in 2012 by two detectors at the LHC. However, there are still im-
portant aspects left unexplained, such as gravity, dark matter, the asymmetry between
matter and antimatter and the great difference in mass among the three generations.
The experiments held at LHC play a key role in providing new information to answer
these questions and in further testing the SM.

1.2 The LHC and the HL-LHC Project

Research at CERN (Conseil Européen pour la Recherche Nucléaire) focuses on studying
the fundamental components of matter and the ways they interact. In order to carry
out this research, CERN employs an accelerator complex, consisting of machines that
accelerate particles to increasingly higher energies [3]. Each machine boosts the energy
of a beam of particles before injecting it into the next one in the sequence, which starts
from Linac4 (Linear accelerator 4) and ends with the LHC (Large Hadron Collider), as
shown in Figure 1.2.

The LHC is a particle accelerator consisting of a 27-kilometre ring located in an
underground tunnel in proximity to Geneva. The LHC accelerates protons in both

5

CHAPTER 1 1.2. THE LHC AND THE HL-LHC PROJECT

Figure 1.2: CERN accelerator complex. CC-BY CERN [4].

clockwise and anticlockwise directions and these beams are brought into collision in-
side four different detectors: ATLAS (A Toroidal LHC Apparatus) [5], CMS (Compact
Muon Solenoid) [6], ALICE (A Large Ion Collider Experiment) [7], and LHCb (LHC-
beauty) [8], all represented in Figure 1.2. The proton beams are structured in bunches,
with each bunch containing around 1011 protons. From the proton-proton collision sec-
ondary particles are originated and spread in all possible directions. Alongside a wide
array of low-energy, ordinary particles, heavier, undiscovered particles can also be pro-
duced. These massive particles cannot be observed directly: almost immediately they
decay into lighter particles, which in turn also decay. The four detectors built around the
collision points are needed to count, track, and characterize all the particles produced so
as to provide the physical information necessary to reconstruct the event.

Event reconstruction is the process of interpreting the signals produced in a de-
tector to determine which original particles passed through it and their characteristics.

ATLAS and CMS are general-purpose detectors, covering the widest possible range
of physics at the LHC, from precision measurements of the Higgs boson to searches for
new physics beyond the Standard Model. ALICE studies the properties of quark–gluon
plasma, a state of matter where quarks and gluons are no longer confined inside hadrons.
LHCb focuses on the study of the asymmetry between matter and antimatter.

Two key parameters of an accelerator are beam energy and luminosity. Beam

6

CHAPTER 1 1.2. THE LHC AND THE HL-LHC PROJECT

Figure 1.3: The same number of particles are bunched in the beams above and below.
The more focused the beam is (below), the higher the number of collisions with particles
in the other beam. CC-BY ATLAS Experiment © CERN.

energy determines the energy of the collision in the center of mass reference frame,
which in turn establishes the maximum mass that a particle produced by that collision
can have. Luminosity L is defined as the proportionality factor between the number of
collisions per second dN/dt and the cross section σ [9]:

dN

dt
= L · σ (1.1)

and its unit of measure is thus cm−2s−1. The luminosity in the LHC is determined
completely from the colliding beam properties. For bunched beams with Gaussian density
distribution, it can be expressed as [9]:

L = f
NbN1N2

4πσxσy

(1.2)

whereN1 andN2 are the number of particles in the bunches 1 and 2, respectively, Nb is the
number of bunches, f is the revolution frequency, σx and σy are the standard deviations
of the Gaussian density profiles ρx(x) and ρy(y), with x and y Cartesian coordinates
such that the z axis is along the beam direction. In order to increase luminosity, one has
thus to act on these beam parameters, for example by focusing the beam more tightly
so as to diminish the standard deviations σx and σy, as shown in Figure 1.3. The cross
section σ is characteristic of a process. Integrated luminosity is defined as:

Lint =

∫ T

0

L (t′) dt′ (1.3)

The typical unit of integrated luminosity is the inverse femtobarn1 fb−1. Very rare
processes have a very low cross section. In order to observe them, a high luminosity is
therefore necessary.

1One barn equals 10−24cm2.

7

CHAPTER 1 1.2. THE LHC AND THE HL-LHC PROJECT

Pileup (PU) indicates the number of simultaneous collisions during a bunch crossing.
The average pileup is defined as:

⟨PU⟩ = Lσ
Nbf

(1.4)

Most of these collisions are “soft” or “peripheral” interactions that do not contribute to
the search for new physics. In contrast, a relatively small fraction of all collisions are
“hard” collisions that produce high transverse momentum2 particles [10]. Each detec-
tor is equipped with a trigger system, which selects only the potentially interesting
collisions that will then undergo complete reconstruction.

The LHC is currently in Run-3, a new period of data taking began in July 2022 and
it is operating at the maximum collision energy of 13.6 TeV. For Run-3, the average
pileup is 64 PU and the peak luminosity is approximately 2× 1034 cm−2s−1 [11].

After the conclusion of Run-3, which is projected for 2025, the LHC and its associ-
ated detectors will undergo a massive upgrade for the High Luminosity LHC (HL-LHC)
project [12]. The HL-LHC project aims to reach a peak luminosity of 7.5× 1034cm−2s−1

and an integrated luminosity of 250 fb−1 per year, enabling the goal of reaching 3000 fb−1

twelve years after the upgrade. This integrated luminosity is about ten times the one
reached by LHC in its first twelve years of lifetime, since 2011 when Run-1 began [13].
The HL-LHC is predicted to be operational from 2029 and it will allow researchers to
test more accurately the Standard Model thanks to the increased volume of data. For
instance, HL-LHC will produce at least 15 million Higgs bosons per year, compared to
around 3 million from the LHC in 2017, allowing to obtain more precise measurements
of the particle [14]. Additionally, it might lead to the observation of new, rare phenom-
ena. However, it will also pose several challenges to the four detectors by creating a
high-pileup environment. In fact, HL-LHC is expected to reach the value of 200 PU (see
Figure 1.4). Reconstruction in a high PU environment is a difficult task which requires
sophisticated algorithms. Additionally, as the data to process will increase drastically,
substantial increase in computing requirements, both at the online and offline level, will
be required.

Each of the four detectors will undergo hardware upgrades to prepare for the HL-
LHC phase. In particular, the CMS detector will replace its current endcap calorimeters
with a High-Granularity Calorimeter (HGCAL). In addition to having greater radiation
tolerance, HGCAL will have unprecedentedly high granularity to capture fine details of
particle showers. Reconstruction in HGCAL will be a particularly challenging task as,
due to the high granularity, the reconstruction algorithm will have approximately 105

energy deposits as its input.
It is thus clear that the hardware upgrade carried out for HL-LHC needs to be ac-

companied by a software update to handle the increased complexity and higher PU. In
particular, researchers from the CMS Collaboration are developing a new reconstruction

2Transverse momentum is the component of particle momentum orthogonal to the beam direction.

8

CHAPTER 1 1.3. THESIS STRUCTURE

Figure 1.4: Image produced by the CMS Fireworks software, showing the simulation of
a 200 PU particle collision event. The tracks are highlighted in green and the energetic
showers are shown in blue.

framework for HGCAL.This new framework will need to satisfy the following require-
ments:

• High computational performance due to the large amount of data to be pro-
cessed both online and offline

• High quality reconstruction in a high PU environment, to improve the
physics capabilities and reach of the CMS collaboration

• Performance scaling slowly with the number of inputs in order to prevent
a timing or memory explosion in high-occupancy environments.

Starting from this context, the present thesis explores the possibility of using graph
theory to perform reconstruction in HGCAL, in particular by implementing a new al-
gorithm for the linking3 step using a community detection algorithm called the Leiden
algorithm4.

1.3 Thesis Structure

In Chapter 2, the structure of the CMS detector is presented, alongside the upgrades
foreseen by the HL-LHC project. In Chapter 3, the framework under development for
reconstruction in HGCAL is described, with a specific focus on the linking step, object

3See Chapter 3.
4See Chapter 4.

9

CHAPTER 1 1.3. THESIS STRUCTURE

of the thesis work. In Chapter 4 the basics of graph theory and the Leiden algorithm
are illustrated. Chapter 5 explains the implementation of the Leiden algorithm within
the CMS Software. In Chapter 6, the response plots resulting from the simulations are
shown. Lastly, Chapter 7 summarizes the outcomes of this thesis and outlines further
research work that can be carried out to continue the present one.

10

Chapter 2

CMS: The Compact Muon Solenoid

2.1 CMS Detector

The CMS (Compact Muon Solenoid) detector is a general-purpose detector placed in
one of the four interaction points at the LHC. It is compact compared to the ATLAS
one, which is about 1.5 times the diameter of CMS and 2 times as long, but is only half
the weight of CMS. The term muon is due to its excellent detection of muons, which are
important signatures of interesting physics as they can essentially only come from the
decay of heavy and thus possibly interesting particles. Lastly, it is called solenoid because
it contains a big solenoid magnet taking the form of a cylindrical coil of superconducting
cable that generates a field of 4T [15].

The CMS detector is nested cylindrically along the beam axis and consists of several
sub-detectors, which are shown in Figure 2.1. CMS is built symmetrically around the
interaction point (IP), where proton-proton collisions occur. The main sub-detectors
will be briefly described in the following paragraphs, starting from the sub-detector
closest to the IP going outwards.

2.1.1 Tracker

The closest sub-detector to the IP is the tracker, comprised of multiple concentric layers
of silicon sensors. Charged particles ionize the semiconductor when passing through it,
which produces electric signals, called hits, in the sensors. From the hits, the position
is measured and from these measurements the trajectory, referred to as track, is re-
constructed. Since charged particles are subject to the solenoid’s magnetic field, their
trajectory reveals the particle’s charge, depending on the bending direction. The tracker
is also extremely important for the accurate measurement of the particle momentum,
obtained from the curvature of the trajectory.

11

CHAPTER 2 2.1. CMS DETECTOR

Figure 2.1: The CMS detector concentric layers. CC-BY CERN.

2.1.2 Calorimeters

The subsequent sub-detector layers are the calorimeters, which measure the energy of
particles by entirely halting them and absorbing their full energy. They are therefore
able to detect neutral particles too, unlike the tracker. However, when high-energy
particles interact with the dense calorimeter material, they create lower-energy secondary
particles, which in turn create more particles, producing a cascade effect referred to as
particle shower. There are two types of calorimeters in CMS: ECAL (Electronic
Calorimeter) and HCAL (Hadronic calorimeter).

ECAL

The ECAL fully absorbs electrons and photons and slows down hadrons. It is a ho-
mogeneous detector, i.e. it consists of a singular material which plays the role of both
absorber and detector. In particular, it consists of approximately 76000 lead tungstate
crystals. These crystals scintillate, i.e. produce light, when particles pass through them.
The light produced is detected by photodetectors positioned onto the back of each crys-
tal and converted into an electrical signal for analysis. The ECAL consists of the barrel
section and two endcaps, as well as a pre-shower system in front of each endcap.

12

CHAPTER 2 2.2. THE CMS COORDINATE SYSTEM

HCAL

The HCAL measures the energy of hadrons. It is a heterogeneous detector, made up of
alternating passive absorbing steel layers with active plastic scintillators layers. When
particles pass through the active layer, the scintillators emit blue-violet light, in pro-
portion to the particle’s energy. The HCAL consists of the barrel and the two endcaps,
located inside the superconducting solenoid, and the forward hadronic calorimeter ex-
tended beyond the magnet. Muons and neutrinos pass through both calorimeters.

2.1.3 Muon Chambers

After the calorimeters, there are the muon chambers, which are able to detect muons.
The muon system is comprised of four distinct gaseous ionization detectors, whose func-
tioning relies on the ionization of gas atoms by the passage of a charged particle [16].
Neutrinos escape CMS undetected, but their presence can be inferred by momentum
conservation in the transverse plane. The negative sum of the transverse momenta of
all the reconstructed particles, known as missing transverse momentum (MET), is in
fact interpreted as the total transverse momentum of neutrinos or other hypothetical
non-interacting particles.

2.2 The CMS Coordinate System

CMS employs two main coordinate systems, which are shown in Figure 2.2. The right-
handed Cartesian coordinate system adopted by convention at CMS has the origin cen-
tered at the collision point, the x-axis pointing radially inward toward the center of the
LHC, the y-axis pointing vertically upward and the z-axis is along the beam direction,
pointing towards the Jura mountains. As an alternative coordinate system, CMS also
utilizes spherical coordinates. The azimuthal angle ϕ is measured from the positive x-
axis in the xy plane, while the polar angle θ is measured from the z-axis. The transverse
momentum pT of a particle can therefore be written as:

pT =
√

p2x + p2y = p · sin θ (2.1)

where p is the module of the momentum [16]. In collider physics, instead of the polar
angle θ, it is preferred to use the pseudorapidity η. This quantity is Lorentz invariant
for massless particles and it is defined as:

η = − ln

(
tan

θ

2

)
(2.2)

Pseudorapidity varies therefore from 0 at θ = π/2 to ∞ at θ = 0.

13

CHAPTER 2 2.3. CMS HL-LHC UPGRADE

Figure 2.2: The CMS detector Cartesian and spherical coordinate systems. IP stands
for interaction point. Programmed in TikZ by Izaak Neutelings [17].

The spatial separation between two particles ∆R can be expressed in terms of the
azimuthal angle and pseudorapidity as:

∆R =
√
(∆η)2 + (∆ϕ)2. (2.3)

2.3 CMS HL-LHC Upgrade

The CMS Experiment is introducing several innovations to prepare for the challenges
posed by the HL-LHC project [18]:

1. Handle the high radiation environment:

• Replacement of the tracker and endcap calorimeter systems.

• Major electronics updates of the barrel calorimeters and muon detectors.

2. Handle the high PU environment:

• Improved granularity wherever possible, e.g. for the barrel and endcap calorime-
ters.

• Introduction of a new precision timing detector called the Minimum Ionizing
Particle (MIP) Timing Detector (MTD), placed in front of the barrel and end-
cap calorimeters. Time compatibility can be used as an additional information
to improve particle reconstruction.

3. Handle the high luminosity:

14

CHAPTER 2 2.3. CMS HL-LHC UPGRADE

Figure 2.3: Schematic view of one HGCAL endcap slice (on the right), a representative
hadronic calorimeter layer (top left), and electromagnetic calorimeter layer (bottom left).
Silicon sensors are represented as yellow and green hexagonal cells, while scintillators as
red mesh. CC-BY [19].

• A complete overhaul of the Trigger and DAQ systems1 to deal with the in-
creased data stream.

The endcap calorimeters will be replaced by a High-Granularity Calorimeter (HGCAL),
which was designed by keeping in mind the challenges of high radiation tolerance and
unprecedented pileup. As the focus of the present work is the reconstruction in HGCAL,
a more detailed description of this sub-detector is provided in the following section.

2.3.1 HGCAL: the High Granularity Calorimeter

Two HGCAL endcaps will be mounted on both sides of the CMS detector, covering the
forward region in the direction of the incident beams, where most interactions happen,
in the range 1.5 < η < 3.0. Each endcap will be divided in two compartments: an
electromagnetic one called CE-E and a hadronic one called CE-H, which are shown in
Figure 2.3.

The CE-E comprises 26 active hexagonal silicon layers interleaved with Cu, CuW and
Pb absorbers. Each active layer is divided into 8-inch hexagonal sensors. CE-H has 7

1See Chapter 3.

15

CHAPTER 2 2.3. CMS HL-LHC UPGRADE

full silicon layers and then 14 hybrid layers of scintillators and silicon sensors, where the
silicon part becomes progressively smaller going outwards. Silicon and plastic are both
radiation-tolerant materials. In total, HGCAL has around 6.5 million detector channels,
which justifies the high granularity in its name [20].

16

Chapter 3

Event Reconstruction in CMS

3.1 Online and Offline Reconstruction

The overall collection of software in CMS is referred to as CMS Software (CMSSW).
This software contains the reconstruction modules which perform online and offline re-
construction.

Both online and offline event reconstruction in CMS are based on the Particle Flow
(PF) algorithm, which uses the information from all sub-detector systems to identify
and reconstruct the comprehensive list of final-state particles (photons, electrons, muons,
charged and neutral hadrons). The final global event interpretation takes the particle-
flow elements within individual sub-detectors, including tracks and calorimeter clusters,
as inputs. The tracks and clusters are then connected through a linking process [21].

Online Reconstruction Saving and analysing all the events generated at CMS is not
possible because 40 million collisions take place every second. However, only a few of
these collisions are considered physically interesting. Thus, a two-level trigger system
has been introduced to select only significant events [22]. The trigger system plays a
crucial role for the experiment, as it has to select which events to keep very quickly,
but also carefully: if an event is discarded by the trigger, the data relative to it are lost
forever. The first level trigger is called Level 1 Trigger (L1T) and the second one High
Level Trigger (HLT).

The L1T is a fast, hardware-based trigger that reduces the data flow from 40 MHz
to 100 kHz.

The HLT is a software-based trigger, after which the data rate is lowered to 7.5 kHz.
The HLT performs a more accurate reconstruction compared to the L1T: it applies event
reconstruction algorithms, similar to those used offline, but with a faster processing time
and a lower reconstruction quality. Then, on the reconstructed objects, a set of filters
called Trigger Paths is applied to select only the potentially interesting events.

17

CHAPTER 3 3.2. RECONSTRUCTION IN HGCAL

Offline Reconstruction The events selected by the trigger are destined to long-term
storage and offline analysis. The offline reconstruction is subject to less restrictive time
constraints than the online one. However, even after the two trigger steps, the number
of events to be analysed remains substantial. It is therefore important to have a high
computational performance for the offline reconstruction as well. The following section
will focus in more depth on the reconstruction in HGCAL, as this constitutes the context
for the work carried out in the thesis.

3.2 Reconstruction in HGCAL

When a particle interacts with the calorimeter layers a shower of secondary particles is
produced. Reconstruction in HGCAL in the high PU environment of the HL-LHC run
is a difficult task due to the overlapping of particle showers, as can be seen in Figure 3.1,
and to the high granularity which inherently brings higher computational demands. In
order to tackle the HGCAL reconstruction task, a reconstruction framework, called The
Iterative Clustering Framework (TICL), is currently under development [23].

3.2.1 TICL: The Iterative Clustering Framework

When a particle showers, the deposited energy is collected by the sensors on the layers
that the shower traverses. Energy deposition in the detector is reconstructed by the
local reconstruction, building the so-called hits, identified by the spatial coordinates,
their energy, and the time assignment provided by HGCAL. These five-dimensional data
points are called recHits. TICL takes the recHits as inputs and outputs a list of particle
candidates, alongside their identification probabilities and kinematic properties [23]. The
core steps of the framework are represented in Figure 3.2.

2D Pattern recognition: CLUE

TICL starts from the calibrated recHits and first clusters them within their respective
detector layers using an energy-density-based algorithm known as CLUE, which stands
for Clustering of Energy. CLUE takes as its input the n recHits and returns as its
output k clusters, reducing the problem complexity by an order of magnitude. CLUE
addresses one of the main challenges of HGCAL, i.e. the fact that the large number of
channels results in an escalation of the computing load when clustering hits. CLUE is
fully parallelizable and optimized for high occupancy scenarios. The CLUE algorithm
aims to cluster points by detecting continuous high-density regions and consists of the
following steps [24]:

a) each sensor cell on a layer is taken as a 2D point with an associated weight equal
to its energy deposit value.

18

CHAPTER 3 3.2. RECONSTRUCTION IN HGCAL

Figure 3.1: Colliding protons at the collision point generate secondary particles that
travel towards the endcaps. When interacting with the calorimeter, these particles pro-
duce showers, which can be very close to each other and even overlap. Image courtesy
of Ziheng Chen, Northwestern University.

b) for each point, the local density ρ is computed using the following definition:

ρi =
∑

j∈Ndc (i)

wjχ (dij)

where Ndc(i) indicates the neighbors of the hit i at the cut-off distance dc, χ (dij)
is the convolutional kernel (either a flat, Gaussian, or exponential function), dij is
the distance between the hits i and j, and wj the weight of the hit j given by its
energy. The kernel plays the role of the weight in the sum and it decreases as dij
increases.

c) for each point, the separation δ, which is the distance to the nearest point with
higher energy density (nearest-higher), is calculated. If a point has no neighbours
with higher density, then δi = +∞.

d) points with density ρ > ρc and large separation δ > δc are promoted to cluster
seeds, while points with density ρ < ρc and large separation δ > δc are demoted to
outliers, where ρc, δc, δo are pre-defined cut-off thresholds.

19

CHAPTER 3 3.2. RECONSTRUCTION IN HGCAL

Figure 3.2: The main steps in the TICL framework. Reconstruction algorithms corre-
spond to the light blue boxes, while input/output objects correspond to the dark blue
ones. Tracks and Timing (yellow blocks) are information provided by other CMS sub-
detectors. TICL starts from recHits and clusters them in layer clusters (LCs) through
the clustering algorithm CLUE [24]. Then, tracksters, i.e. 3D clusters, are produced
by applying CLUE3D [25] to the LCs. Tracksters produced by CLUE3D are usually only
a fraction of the entire shower produced by a particle. This fragmentation is due to
several factors, illustrated in Section 3.2.1. Tracksters thus need to be merged together
through the linking step. From here, individual particle probabilities and properties are
identified and are then fed to the rest of the Particle Flow chain.

e) For each point i, a list of followers is built containing the points which are neither
seeds nor outliers and have the point i as their nearest-higher.

f) Each seed and its followers are iteratively grouped into separate clusters. Outliers
and their descendant followers are excluded from forming clusters: this acts as a
noise rejection by removing low-density deposits.

3D Pattern recognition: CLUE3D

CLUE3D takes as inputs the k layer clusters generated by CLUE and clusters them
together across layers producing m 3D clusters, called tracksters, reducing the prob-
lem complexity by another order of magnitude. The algorithm follows a very similar
procedure to CLUE [23]:

a) for each LC i, the k layers behind and in front of the layer where the LC i is are
considered.

b) the local density ρi is computed by selecting all the LCs in these layers whose
distance from the LC i is lower than a certain threshold ∆ and then summing
their energies multiplied by a kernel function. This kernel function acts as the
weight in the sum, which decreases as the distance between layer i and the other
LC considered increases.

c) for each LC, the separation δ, which is the distance to the nearest-higher, is calcu-
lated. If a point has no neighbours with higher density, then δi = +∞.

d) Based on ρ and δ, the algorithm identifies seeds, followers, and outliers in an
analogous way to CLUE.

20

CHAPTER 3 3.2. RECONSTRUCTION IN HGCAL

e) tracksters are yielded by aggregating seeds and their followers.

We define the raw energy of a trackster as the sum of the energies of all the LCs.
To address inefficiencies in the clustering and mis-calibration, a Convolutional Neural
Network is adopted to correct the final energy of clusters. The CNN input are constructed
by building images starting from the LCs in the trackster, and it outputs the regressed
energy, representing the best energy estimate obtainable for a reconstructed Trackster.
The LCs discarded by CLUE3D as outliers are transformed in individual tracksters,
called Recovery tracksters, containing one LC each.

Linking

Tracksters reconstructed by CLUE3D, in general, represent only a fragment of a larger
shower. This fragmentation is due to several factors [26]:

• Particle shower secondary components: The CLUE3D algorithm tends to
produce aligned showers. However, several processes can cause the formation of
misaligned showers with secondary components. For instance, for electrons, show-
ers initiated by the bremsstrahlung1 can lead to the formation of secondary com-
ponents. The same can happen for photons due to the process of pair production2.
CLUE3D is able to reconstruct the individual electromagnetic components, but
a linking step associating the components from the same initial shower (e.g. the
electron and positron showers for the photon) is required. For hadronic showers,
Minimum Ionizing Particles3 (MIP) may be produced, which results in hadronic
showers being much more spread out than the electromagnetic ones. This leads
CLUE3D to split them into smaller tracksters.

• Showers split at the border between CE-E and CE-H: Hadrons leave part
of their energy in the CE-E and the remaining of it in the CE-H. In this case
CLUE3D often yields two separate tracksters (one in the CE-E and one in the
CE-H) surrounded by small tracksters, especially in the CE-H part.

• Deviating tracks: The compartments of HGCAL have different material compo-
sitions for the absorbers as well as different sensors. If a secondary particle has a
deviating track, this results in different energy densities, causing tracksters to be
split at the boundary between the compartments.

• High PU rejection tuning: CLUE3D has been tuned for high pileup rejection,
which means that the clustering parameters, such as ∆ or ρc, are tight. The

1Emission of electromagnetic radiation caused by the deceleration of a charged particle passing
through the electric field of another particle, typically an atomic nucleus.

2Pair production of a photon indicates the production of an electron and a positron.
3Particles whose mean energy loss rate through matter is close to the minimum.

21

CHAPTER 3 3.2. RECONSTRUCTION IN HGCAL

fragmentation might be reduced by loosening the parameters, but this would also
result in more PU being included in the tracksters, which could not be removed by
any following step.

It is, therefore, necessary to introduce a linking step, which merges together track-
sters belonging to the same particle shower, taking as its input both the CLUE3D track-
sters and the Recovery ones.

The linking phase presents several criticalities, such as [27]:

• Linking tracksters over long distances

• Reconstructing showers with highly irregular shapes

• Overlapping particle merging: in a high PU environment, it is very common to
have distinct particles producing showers that are very close, or even overlapping.
The linking algorithm might, therefore, merge two showers into a single final track-
ster. This mistake has very negative consequences for reconstruction, especially for
a neutral and a charged particle close to each other. The trackster will be in fact
later matched with the track of the charged particle, losing the neutral one.

22

Chapter 4

Graph Theory and Community
Detection Algorithms

4.1 Basic definitions

Graph theory is a branch of discrete mathematics that has become a fundamental tool
in a wide and heterogeneous range of fields, from physics and biology to social sciences
and linguistics [28, 29]. A graph can be formally defined as follows [28]:

A graph G is a pair (V , E) where V is a non-empty finite set of elements called
vertices and E is a finite family of unordered pairs of (not necessarily distinct)
elements of V called edges. We call V the vertex set and E the edge family of
the graph G.

Note that the previous definition allows the existence of multiple edges between the
same pair of endpoints. In fact, the term family indicates a collection of elements, some
of which may occur several times, as opposed to set, in which each element appears only
once. Additionally, edges joining a vertex to itself, the so-called loops, are also allowed,
as the elements in a pair are not necessarily distinct. A graph that does not contain
multiple edges or loops is said to be a simple graph and can be defined as follows [30]:

A simple graph G is a pair (V , E) where V is a non-empty finite set of elements
called vertices, E is a E is a subset of P2(V) whose elements are called edges
and P2(V) is the set of all the 2-element subsets of V .

From the definition, it follows that every simple graph is a graph, but not every graph
is a simple graph.

Two vertices u and v of G are said to be adjacent (to each other) if {u, v} ∈ E. The

23

CHAPTER 4 4.1. BASIC DEFINITIONS

(a) simple graph (b) graph with a multiple edge and a loop

Figure 4.1: Planar representation of two graphs.

vertices u and v are called the endpoints of this edge. If v ∈ V , the neighbours of v
are the vertices of G that are adjacent to v [30]. The degree of a vertex is the number
of edges with that vertex as an endpoint. A walk is a finite sequence (v0, v1, ..., vk) of
vertices (with k ≥ 0) such that {v0, v1}, {v1, v2}, {v2, v3}, . . . , {vk−1, vk} are edges of G.
A path is a walk with no repeating vertices [30]. For two graphs G1 = (V (G1) , E (G1))
and G2 = (V (G2) , E (G2)), where V (G1) and V (G2) are disjoint, the union G1 ∪G2 is
the graph with vertex set V (G1) ∪ V (G2) and edge family E (G1) ∪ E (G2) [28].

A graph G can be visually represented by drawing it on the plane. Vertices are
usually represented by an oval (in which we put the name of the vertex) and edges by
a curve that connects the two endpoints. The points’ positions and the curves’ shapes
can be chosen freely, as long as they allow the reader to unambiguously reconstruct the
graph from the picture [30]. Figure 4.1 shows the representation of two graphs, the one
on the left being a simple graph.

4.1.1 Types of Graphs

In this section, the main types of graphs are presented [28, 30]:

• Complete graph: a simple graph in which every two distinct vertices are adjacent.

• Empty graph: a simple graph with no edges.

• connected graph: a graph that cannot be expressed as the union of two graphs.

• Weighted graph: a connected graph in which a non-negative number, called
weight, is assigned to each edge.

• n-th cycle graph: for each n > 1, we define the n-th cycle graph Cn to be the
simple graph ({1, 2, . . . , n}, {{i, i+ 1} | 1 ≤ i < n} ∪ {{n, 1}}).

24

CHAPTER 4 4.2. COMMUNITY DETECTION ALGORITHMS

• Regular graph: a graph in which all vertices have the same degree. Note that a
loop by convention increases the degree by 2.

4.2 Community Detection Algorithms

Graphs representing real systems often display big inhomogeneities. Globally, we see
vertices with a high number of neighbors coexisting with vertices with very few neighbors.
The distribution of edges is also locally inhomogeneous, with high concentrations of edges
within special groups of vertices and low concentrations between these groups. This
characteristic is called community structure. Vertices within the same community
probably share common features and/or have similar roles within the graph [29]. In
Figure 4.2, a graph with a community structure is represented.

Figure 4.2: Representation of a graph with a community structure. Communities are
represented by grey circles. Nodes within a community are densely connected, while
nodes belonging to different communities are only sparsely connected. Original by Wiki-
media Commons, CC-BY-SA 3.0 [31].

Community detection algorithms aim to identify the communities within a
graph. These algorithms produce a partition of the initial graph as their output. A
partition P = {C1, . . . , Cr} is a set of communities in which each community Ci ⊆ V
consists of a set of nodes such that V =

⋃
i Ci and Ci ∩ Cj = ∅ for all i ̸= j.

In the literature, a wide variety of community detection algorithms can be found.
The following sections examine two algorithms relevant to the present work: the Lou-
vain Algorithm and the Leiden Algorithm. The former is one of the most popular
and well-known community detection algorithms, whilst the latter was developed more
recently in an attempt to solve some of Louvain’s criticalities and is the one that has

25

https://commons.wikimedia.org/w/index.php?curid=2241513
https://commons.wikimedia.org/w/index.php?curid=2241513

CHAPTER 4 4.2. COMMUNITY DETECTION ALGORITHMS

been applied to the reconstruction problem in the present study. Both algorithms are
based on the optimization of a quality function called modularity, which measures
the quality of a partition.

4.2.1 Modularity

The modularity of a partition is a scalar value indicating the density of edges within
communities as compared to edges between communities. For weighted graphs, it is
defined as:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ (ci, cj) (4.1)

where Aij is the weight of the edge between i and j, ki =
∑

j Aij is the sum of the

weights of the edges having vertex i as an endpoint, m = 1
2

∑
ij Aij, ci is the community

to which vertex i belongs and δ (ci, cj) is 1 if the two vertices i and j belong to the same
community and 0 otherwise. For unweighted graphs, where the weight is 1 for every
edge, Equation 4.1 can be written as [32]:

Q =
1

2m

∑
c

(
2ec −

K2
c

2m

)
, (4.2)

where ec is the number of edges within community c, Kc is the sum of the degrees of
the nodes in the community c, and m is the total number of edges in the network.
For unweighted graphs the modularity value lies in the range [−1

2
, 1). The modularity

of a graph is 0 for the trivial case in which all vertices are in the same community.
The first term in Equation 4.2 represents the fraction of the edges in the network that
connects vertices within the same community. The second term represents the expected
value of the same quantity in a network with the same community divisions but random
connections between the vertices. Therefore, a positive modularity indicates that the
number of within-community edges is greater than random. In practice, values higher
than 0.7 are rare [33].

4.2.2 Louvain Algorithm

The Louvain Algorithm was proposed in 2008 by Blondel et al. [34] from the University
of Louvain (thus the algorithm’s name). The algorithm is based on the optimization
of the modularity of a partition. Note that the algorithm was originally proposed with
modularity optimization, but it can also be used with other quality functions.

The algorithm, illustrated in Figure 4.3 consists in two steps which are repeated
iteratively [34]:

26

CHAPTER 4 4.2. COMMUNITY DETECTION ALGORITHMS

• Moving nodes: The initial partition is the singleton partition of the graph.
This means that each node is assigned to a different community so that each
community contains a single node. For each node i, its neighbors j are considered,
and the change in modularity resulting from moving i from ci to cj is calculated for
every neighbor j. The node i is moved to the community producing the greatest
change, provided that this change is positive. Nodes are then re-visited sequentially
and repeatedly until no more node movements increasing the quality function are
possible.

• Aggregation: The communities obtained in the first step become the nodes in
the aggregate graph. For a weighted graph, the weights of the edges between the
aggregate nodes are given by the sum of the weights of the edges between nodes
in the two corresponding communities. For an unweighted graph, the number of
edges between two aggregate nodes equals the number of edges between nodes in
the two corresponding communities. Edges between nodes of the same community
become self-loops for this community in the aggregate graph. For a community of
aggregated nodes, the size of the aggregated community is calculated recursively
as the sum of the sizes of the communities that became aggregated nodes.

After completing the second step, the process is repeated for the aggregate graph. The
iteration stops when no further improvements can be made, i.e., after the moving phase,
each community consists of only one node [34].

Badly connected communities

The Louvain algorithm, while having several advantages such as being particularly fast
on large networks compared to other community detection algorithms [34], might pro-
duce arbitrarily badly connected communities and even internally disconnected
ones [35]. A community is defined as badly connected in [35] if, when running the Lei-
den algorithm (see Section 4.2.3) on the sub-network of the nodes belonging to that
community, multiple sub-communities are found. A community is defined as internally
disconnected if one part of that community can reach another part only through a path
going outside the community. Disconnected communities can be seen as the extreme
manifestation of the problem of arbitrarily badly connected communities [35]. Figure 4.4
shows an example of how the Louvain algorithm might produce a disconnected commu-
nity. This problem occurs quite often in practice: for instance, after the first iteration of
the Louvain algorithm, the average percentage of badly connected communities on large
empirical networks ranges from 14% to 23% [35].

27

CHAPTER 4 4.2. COMMUNITY DETECTION ALGORITHMS

Figure 4.3: Illustration of the Louvain algorithm. The algorithm starts from a singleton
partition, represented by the fact that each node has a different color (a), and then
moves nodes to obtain the maximum gain in modularity (b). The communities become
nodes in the aggregation step (c). The process then starts over, with the nodes in the
aggregate graph being moved (d). CC-BY [35].

4.2.3 Leiden Algorithm

An algorithm addressing the issue of badly connected communities was developed in
2019 by Traag et al. [35] from the University of Leiden and was thus called the Leiden
Algorithm. This algorithm is guaranteed to produce communities that are internally
connected and it is faster than the Louvain algorithm. Firstly, the operations performed
by the algorithm will be explained; then, the advantages it provides compared to the
Louvain algorithm will be illustrated.

How the algorithm works

The Leiden algorithm can be divided into three steps:

28

CHAPTER 4 4.2. COMMUNITY DETECTION ALGORITHMS

Figure 4.4: Example of how the Louvain algorithm may yield a disconnected community.
The thickness of an edge is directly proportional to the weight assigned to that edge.
Nodes 0–6 are initially in the same community. Nodes 1–6 have edges only within the
community, while node 0 has many external edges as well (a). When node 0 is considered
for moving, if there are sufficient neighbors of node 0 forming a community in the rest of
the network, node 0 might be moved to this external community (b). Nodes 2, 3, 5 and
6 have only internal connections, and so will remain in the red community. Nodes 1 and
4 now also have external edges, but depending on the weights, they may still remain in
the red community. In this case, a disconnected community is produced. CC-BY [35].

• Fast node move: The initial partition is the singleton partition of the graph. All
the nodes in the network are added to the queue in random order. The node from
the front of the queue is considered, and for every community, including the empty
one, the variation of the quality function happening when the node is moved to that
community is calculated. The node is then moved to the community producing the
maximum increase. If the node has been moved, all the neighbors of the node that
are not in the node’s new community nor in the queue are added to the rear of the
queue. This step continues until the queue becomes empty, and a partition P is
produced as a result.

• Refinement: This step produces a refined partition Pref based on the partition
obtained from the previous step. Pref is initially a singleton partition. For each
community C in P , nodes are visited in random order. If the node is in a singleton
community in Pref , the other communities C ′ in Pref which are contained in C
are considered. The node is moved to one of the communities for which the move
produces a positive change in the quality function. Note that in this step nodes
are not merged with the community producing the largest increase: the community
is selected randomly following a probability distribution in which the probability
is higher for communities producing a larger increase in the quality function. In

29

CHAPTER 4 4.2. COMMUNITY DETECTION ALGORITHMS

Figure 4.5: Illustration of the Leiden algorithm. The algorithm starts from a singleton
partition (a). The fast move of nodes is then performed (b), and the partition obtained
is then refined (c). Each community of the refined partition becomes a node in the
aggregate graph network, which maintains the non-refined partition as its initial partition
(d). These steps are then repeated on the aggregated graph (e-f). Note that in f), the
refined partition is equal to the non-refined one. CC-BY [35].

particular, the probability of the community i is calculated as wi/S, where S is a
normalisation constant and wi is the weight defined as:

wi =

{
exp

(
1
θ
∆QP(v 7→ Ci)

)
if ∆QP(v 7→ Ci) ≥ 0

0 otherwise
(4.3)

where ∆QP(v 7→ Ci) is the variation in modularity resulting by moving node v to
community Ci and θ is a parameter indicating the degree of randomness. At the
end of this step, communities in P may be split into several sub-communities in
Pref .

• Aggregation: the communities of Pref become nodes in the aggregate graph.
Note that the partition from which the local move of aggregate nodes starts will
be P .

These steps are illustrated in Figure 4.5.

30

CHAPTER 4 4.2. COMMUNITY DETECTION ALGORITHMS

Advantages

The Leiden algorithm improves the Louvain one in two ways: it is faster and it produces
communities guaranteed to be connected [35].

The algorithm is faster thanks to the introduction of a fast local move phase. Initially,
all nodes are visited once, the same as in the Louvain algorithm. After this, however,
Louvain revisits all the nodes, while Leiden revisits only the nodes whose neighborhoods
have changed.

The other main difference is the introduction in the Leiden algorithm of randomness
instead of greedy move sequences. With greedy move sequences, we indicate that the
moving of nodes to the community produces the largest increase in the quality function.
This is what is done by the Louvain algorithm. During the refinement step, the Leiden
algorithm performs a non-decreasing move sequence, i.e., assigns the node randomly
among the communities that yield a positive increase in the quality function, as described
in the previous paragraph. As demonstrated in [35], reaching some optimal partitions
with a greedy move sequence is not possible, while by using a non-decreasing move
sequence it is always possible to reach the optimal partition. This can be intuitively
explained by the fact that randomness allows the partition space to be explored more
broadly.

Thanks to the randomness embedded in the algorithm, Leiden provides a series of
additional guarantees, for instance [35]:

• γ-connectivity, which ensures that all communities are internally connected.

• subset optimality, which is the strongest guarantee provided. It means that each
subset contained in the community is locally optimally assigned, i.e. moving
it to any other community (including the empty one) would never result in an
increase in the quality function.

31

Chapter 5

Implementing Leiden Algorithm for
the Linking Phase

This chapter aims to illustrate how, in this thesis, graph theory and, in particular,
the Leiden algorithm described in Chapter 4 were applied to perform the linking phase
presented in Chapter 3.

The linking problem consists in finding an assignment in which tracksters coming
from the same particle are connected, while the ones coming from different showers are
kept separate. The key idea of the approach explored in this thesis is that the trackster
linking problem can be viewed as a community detection problem for a graph
in which each trackster is a node.

5.1 Graph Construction and Implementation

In the implementation, a trackster is described by the user-defined type Trackster

containing as data members the coordinates of the trackster’s barycenter and its raw
energy. The function TICLGraphProducer, implemented in CMSSW, creates a graph by
associating each trackster to a node and by creating the initial edges in the following
way:

• The transversal section of HGCAL is divided into tiles, which are represented by
a user-defined type TICLLayerTileT. Tiles are obtained by dividing into bins the
continuous range of values the coordinates η and ϕ can assume.

• Each tile is filled with all the tracksters whose barycenter falls within it.

• For each trackster t, a search window, defined by four bin indexes, indicating the
minimum and maximum bin for η and ϕ, is opened. The dimension of the window
can be regulated through a parameter.

32

CHAPTER 5 5.2. LEIDEN ALGORITHM IMPLEMENTATION AND OUTPUTS

• All the tracksters who belong to a tile in the search window are added to the
neighbors list of the node corresponding to t.

The steps defined above are repeated separately for the two endcaps, distinguished by
the sign of the coordinate η.

In order to build the graph, ad hoc data structures were implemented in C++ into
CMSSW, such as the classes TICLGraph, Community, Elementary. The latter represents
a single trackster and contains the trackster index in the collection. A Node is defined
as an std::variant, i.e. a discriminated union, of an Elementary or a Community.
A Community contains an std::vector<Node>. The choice of using std::variant is
motivated by the intention of making the data structure suitable for the aggregation
step described in Chapter 4.

5.2 Leiden Algorithm Implementation and Outputs

The Leiden algorithm was implemented into CMSSW by following the pseudo-code shown
in [35]. In order to conform to the CMSSW established interface for linking, it produces
as its outputs:

• std::vector<Trackster>: contains the merged tracksters, i.e. objects of type
Trackster which are the output of a function mergeTracksters. This function
receives as input all the tracksters belonging to the same community and creates
a new trackster from the LCs of all the input tracksters. The raw energy of the
merged trackster is the sum of all the raw energies of the input tracksters.

• std::vector<std::vector<TracksterID>>: each element contains the trackster
identification indexes of the input tracksters that were merged together.

33

Chapter 6

Simulation and Results

6.1 CMS Simulation Software

The performance of the linking algorithm was tested by running the algorithm on sim-
ulated events. The simulated events were generated using the CMS Simulation Soft-
ware [36], which in turn employs Pythia8 for hadronization [37] and GEANT4 to simu-
late the interaction of particles with matter [38]. The main parameters of the simulation
are:

• Number of events

• Number of particles for each event.

• Particle ID which identifies the type of particle according to the Monte Carlo
Particle Numbering Scheme [39].

• Energy interval, i.e. the minimum and maximum energy that a particle can
have.

• η interval, i.e. the minimum and maximum value of the η coordinate that a
particle can have, where η indicates the pseudorapidity1.

• Minimum distance at which two different particles can be generated, expressed
adimensionally as a function of η and ϕ, as defined in Chapter 2.

• Overlapping, which, if set to true, allows the showers of two particles to overlap.

From the simulated events, RecoTracksters and SimTracksters are obtained. A
SimTrackster represents the best possible reconstruction that can be made starting from
the 2D Layer clusters as the input. It is a hybrid Monte Carlo Truth information since

1See Chapter 2 for the definition of the coordinate system.

34

CHAPTER 6 6.2. RESPONSE PLOTS

it exploits the true information together with reconstructed objects (Layer Clusters).
A RecoTrackster is a trackster obtained by running CLUE3D on the layer clusters and
subsequently applying the linking algorithm. Regressed energy for RecoTracksters and
raw energy have already been defined in Chapter 3. For SimTracksters, regressed energy
is simply the value of the energy parameter used when generating that simulated event.
The reason why SimTracksters are created is that they convey the (hybrid) truth infor-
mation in the same data format as the RecoTrackster, thus allowing to perform a direct
comparison.

For each event, the SimTrackster is associated to the RecoTrackster which best
matches it. The best match is calculated based on an association score called Sim-To-
Reco [40], which measures the degree of overlap between hits in the detector belonging
to a specific SimTrackster and the corresponding RecoTrackster. As seen in Chapter 3,
hits are clustered into LCs; therefore, in order to calculate the Sim-To-Reco score for
tracksters, one first has to compute the following:

frsi =

∑
h∈i fr

s
h · Eh

Ei

(6.1)

where frsi is the shared energy between each LC i and each SimTrackster s, Eh is the
energy associated to the hit h, frsh is the fraction of the hit energy deposited by the
SimTrackster s and Ei is the total energy of the LC i.

The fraction frsi can go from 0 to 1, where 0 indicates that there is no overlap of
LC i hits with the SimTrackster s. This is then used to compute the Sim-to-Reco score
between the RecoTrackster t and the SimTrackster s:

scores,t =

∑
i∈s min

(
(frti − frsi)

2
, (frsi)

2
)
· E2

i∑
i∈s (fr

s
i)

2 · E2
i

(6.2)

where i indexes the LCs of the SimTrackster s, frti and frsi are the energy fractions of LC
that have been assigned to the RecoTrackster t and to the SimTrackster s, respectively
and

∑
i∈s (fr

s
i)

2 · E2
i represents the square of the total energy of the SimTrackster s. This

score measures how accurately a SimTrackster s is represented by the RecoTrackster t,
with 0 indicating a perfect match and 1 indicating no matching [26].

6.2 Response Plots

Response plots are a useful tool for assessing the quality of the reconstruction performed
by algorithms. If t is the RecoTrackster associated by the best score to the SimTrack-
ster s, the response is calculated as:

r =
Et

Es

(6.3)

35

CHAPTER 6 6.3. RESULTS

where Et is the raw energy of the selected RecoTrackster t and Es is the generated
energy of the Particle s. The raw energy of a final trackster is calculated as the sum of
the raw energies of the original tracksters which have been linked. For a SimTrackster,
r is defined analogously. Response plots are obtained by graphing the number of entries
as a function of the response value r.

6.3 Results

The algorithm was run on two different types of samples: a single pion and two close
pions with the possibility of overlapping. The pion was chosen as the particle type
because hadron reconstruction is the one who needs the liking step the most. In fact,
hadrons tend to produce very fragmented showers, which makes them very difficult to
reconstruct. For both events, response plots were produced to analyse the algorithm
behaviour.

For each of the two kinds of events, 2000 samples were generated. The chosen values
of the algorithm parameters were γ = 1 and θ = 0.01. The single pion events were
generated using the following values of the parameters:

• Energy interval: [25, 400] GeV

• η interval: [1.7, 2.7]

The response plot obtained from the RecoTracksters is shown as the red line in Figure 6.1.
The SimTrackster response plot and the CLUE3D one are also shown for comparison
purposes. The CLUE3D plot, alongside the Recovery tracksters defined in Chapter 3,
represents the input of the Leiden linking algorithm.

The double-pion events were generated using the following values of the parameters:

• Energy interval: [25, 400] GeV

• η interval: [1.7, 2.7]

• Minimum distance: 30

• Overlapping: true

The response plot obtained from the RecoTracksters is shown as the red line in Figure 6.2,
alongside the SimTrackster and the CLUE3D ones.

36

CHAPTER 6 6.3. RESULTS

Figure 6.1: Response plot obtained for a single pion. The red line represents the response
plot obtained from the RecoTracksters, the black line is the one obtained from the
SimTracksters, and the blue line is the one obtained from CLUE3D without performing
any linking afterwards.

37

CHAPTER 6 6.3. RESULTS

Figure 6.2: Response plot obtained for two pions with possibility of overlapping. The
red line represents the response plot obtained from the RecoTracksters, the black line
the one obtained from the SimTracksters and the blue line is the one obtained from
CLUE3D without performing any linking afterwards.

38

CHAPTER 6 6.3. RESULTS

6.3.1 Considerations

Several observations can be made from the response plots obtained. The CLUE3D plots
confirm the necessity of introducing a linking step, as the response values obtained are
too low. The SimTrackster peak shows the best achievable reconstruction that can be
obtained starting from the Layer Clusters. The response of the SimTrackster is not
centered around 1 because of missing calibration of the detector, leakage of shower out
of the sector, lost energy contribution from the recHits that has not been clustered in the
Layer Clustering step. The RecoTracksters plots reveal the performance of the Leiden
algorithm. In order to assess it, the desired response for a linking algorithm will first be
clarified.

The best possible performance theoretically obtainable is represented by a response r
peaked around 1. However, while linking can certainly improve it, additional steps after
linking will be needed to obtain an ideal response. For instance, a regression performed
by a neural network should be applied to the raw energy at the numerator of r in order
to obtain a better response. Therefore, a reconstruction is considered of high quality
if the resulting response plot presents a peak close to the SimTrackster one. From the
RecoTracksters plot we can see that, by introducing the linking phase using Leiden, a
significant improvement is obtained. In both plots, a peak close to the SimTrackster
one is clearly visible. Additionally, for the double pion plots, the tracksters of the two
particles are not merged, and this is certainly a strength of the algorithm as incorrect
merging is a critical risk of the linking phase. However, both for the single and the double
pion, the plot presents a smaller peak at low response values, below r = 0.2. This shows
that the algorithm is not linking the tracksters enough, in particular the smaller ones, i.e.
the Recovery tracksters defined in Chapter 3. This results in having a non-negligible
number of output tracksters that contain only a small fraction (below 20%) of the total
energy corresponding to the particle.

The fact that Leiden is not linking enough tracksters can be understood considering
that the present implementation does not provide to the algorithm any physical data
coming from the detector sensors and from other reconstruction phases. These include,
for instance, the time associated with each input trackster, the physical distance between
tracksters, the energetic compatibility with and the distance from the reconstructed
tracks (for charged particles). It is, therefore, plausible to assume that, when introducing
the physical information into the algorithm, one will have better control over which
tracksters will be linked, and an improvement in the linking performed by the algorithm
is expected.

39

Chapter 7

Conclusions and Future Work

The HL-LHC project will entail a massive hardware upgrade of the collider and of the
experiments’ detectors. The CMS detector upgrade will include the construction of a
High-Granularity Calorimeter (HGCAL) for its endcaps. This hardware upgrade needs
to be accompanied by a software upgrade, to face the increased data rate and to perform
reconstruction in a high PU environment. One of the key steps necessary to improve
reconstruction is the linking step, performed after the three-dimensional clustering phase.

The present work explored the possibility of using community detection algorithms
from graph theory to perform the linking step. In particular, the Leiden algorithm was
implemented into CMSSW and applied to a graph constructed from the input tracksters.
The performance of the algorithm was then tested by running it on simulated events of
a single pion and of two close pions. The response plots were significantly improved
after applying the Leiden algorithm. Additionally, when applied to the reconstruction of
two close pions, the algorithm succeeded in avoiding merging the two showers. However,
significant improvements can still be made.

First of all, the algorithm tended to perform less linking than necessary, resulting in
the response plots having a smaller peak for r < 0.2. This issue can be addressed by
introducing physical data available from the detector or from other reconstruction steps
into the algorithm. There are two ways in which this can be done:

a) Weighted graph: a weight taking into account the physical compatibility can be
defined and used when building the graph. For instance, the weight of an edge
will be higher if the two tracksters linked have a very small physical distance or
have very similar times associated to them. Then, the Leiden algorithm should be
applied, optimizing modularity for the weighted graph.

b) New quality function: a new quality function taking into account the physical
information can be defined and optimized instead of modularity, which is based
purely on the number of nodes and edges.

40

CHAPTER 7

Furthermore, the quality of the graph given in input to the Leiden algorithm needs
to be assessed. If two tracksters that are supposed to be merged in the simulated event
are not connected in the initial graph, then the Leiden algorithm will not be able to link
them properly.

Additionally, the algorithm relies on the parameters γ and θ, which govern the re-
finement step. For this thesis, the values suggested in [35] have been used. However,
a tuning of the parameters should be performed to obtain the best response possible.
This tuning should be performed in a high PU environment (200 PU), which correctly
reproduces the operating conditions of HGCAL in the HL-LHC upgrade.

Lastly, the computational performance of the algorithm needs to be analyzed. As
seen in Chapter 4, the Leiden algorithm has proven to be faster than other famous
community detection algorithms such as the Louvain. However, a detailed analysis of
its performance within CMSSW should be carried out, and if necessary, strategies to
improve such performance should be experimented with and introduced.

41

Acknowledgements

I would like to thank my supervisor, professor Francesco Giacomini, for making me pas-
sionate about coding through his lessons, for following me actively during my thesis,
providing a lot of insightful observations, and for introducing me to the Patatrack re-
search group. I would also like to thank my co-supervisors from the Patatrack team, Dr.
Felice Pantaleo and Dr. Wahid Redjeb, for their patience, genuine interest and constant
support. I am very grateful for the people I met during this three-year journey through
the Physics Bachelor and the Collegio Superiore, for creating a collaborative and stimu-
lating environment. Lastly, I would like to thank my family, for always doing everything
they can to support me in reaching my goals.

42

Bibliography

[1] CERN. The Standard Model. https://home.cern/science/physics/standard-
model. Accessed: 09/06/2024.

[2] Original by User:Cush.

[3] CERN. CERN’s accelerator complex. https://home.cern/science/accelerators/
accelerator-complex. Accessed: 10/06/2024.

[4] E. Lopienska. The CERN accelerator complex, layout in 2022. General Photo. 2022.
url: https://cds.cern.ch/record/2800984.

[5] The ATLAS Collaboration et al. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: Journal of Instrumentation 3.08 (Aug. 2008), S08003. doi:
10.1088/1748-0221/3/08/S08003.

[6] S. Chatrchyan et al. “The CMS experiment at the CERN LHC. The Compact Muon
Solenoid experiment”. In: JINST 3 (2008). Also published by CERN Geneva in
2010, S08004. doi: 10.1088/1748-0221/3/08/S08004.

[7] K. Aamodt et al. “The ALICE experiment at the CERN LHC”. In: Journal of
Instrumentation 3.8 (2008). issn: 1748-0221. doi: 10.1088/1748-0221/3/08/
S08002.

[8] A. A. Alves Jr. et al. “The LHCb Detector at the LHC”. In: JINST 3 (2008),
S08005. doi: 10.1088/1748-0221/3/08/S08005.

[9] W. Herr and B. Muratori. “Concept of luminosity”. In: CERN Accelerator School
and DESY Zeuthen: Accelerator Physics. Sept. 2003, pp. 361–377.

[10] B. Schmidt. “The High-Luminosity upgrade of the LHC: Physics and Technology
Challenges for the Accelerator and the Experiments”. In: J. Phys. Conf. Ser. 706.2
(2016), p. 022002. doi: 10.1088/1742-6596/706/2/022002.

[11] S. Morović. CMS detector: Run 3 status and plans for Phase-2. 2023. arXiv: 2309.
02256 [hep-ex]. url: https://arxiv.org/abs/2309.02256.

[12] O. Brüning and L. Rossi. The High Luminosity Large Hadron Collider – HL-LHC.
2024. doi: 10.1142/9789811278952_0001.

43

https://home.cern/science/physics/standard-model
https://home.cern/science/physics/standard-model
https://home.cern/science/accelerators/accelerator-complex
https://home.cern/science/accelerators/accelerator-complex
https://cds.cern.ch/record/2800984
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1088/1742-6596/706/2/022002
https://arxiv.org/abs/2309.02256
https://arxiv.org/abs/2309.02256
https://arxiv.org/abs/2309.02256
https://doi.org/10.1142/9789811278952_0001

CHAPTER BIBLIOGRAPHY

[13] O. Brüning and L. Rossi. The High Luminosity Large Hadron Collider. WORLD
SCIENTIFIC, 2015. doi: 10.1142/9581.

[14] CERN. High-Luminosity LHC. https://home.cern/science/accelerators/
high-luminosity-lhc. Accessed: 29/06/2024.

[15] D. Barney. “An overview of the CMS experiment for CERN guides”. 2003. url:
https://cds.cern.ch/record/2629323/files/CMSdocumentforGuides.pdf.

[16] G. L. Bayatian et al. “CMS Physics: Technical Design Report Volume 1: Detector
Performance and Software”. 2006.

[17] I. Neutelings. CMS coordinate system. Accessed: 17/06/2024. 2017.

[18] M. Mannelli. “CMS HL-LHC Upgrade: Selected Highlights”. Presented at the
LHCP 2020 on behalf of the CMS Collaboration. 2020.

[19] L. Portalès. “L1 Triggering on High-Granularity Information at the HL-LHC”. In:
Instruments 6.4 (2022). issn: 2410-390X. doi: 10.3390/instruments6040071.

[20] A.M. Magnan. “HGCAL: a High-Granularity Calorimeter for the endcaps of CMS
at HL-LHC”. In: Journal of Instrumentation 12.01 (Jan. 2017), p. C01042. doi:
10.1088/1748-0221/12/01/C01042.

[21] M. Dordevic. “The CMS Particle Flow Algorithm”. In: EPJ Web of Conferences
191 (2018). Ed. by V.E. Volkova et al., p. 02016. issn: 2100-014X. doi: 10.1051/
epjconf/201819102016.

[22] V. Khachatryan, A. M. Sirunyan, and A. Tumasyan. “The CMS trigger system.”
In: JINST 12.01 (2017), P01020. doi: 10.1088/1748-0221/12/01/P01020. arXiv:
1609.02366.

[23] F. Pantaleo and M. Rovere. “The Iterative Clustering framework for the CMS
HGCAL Reconstruction”. In: Journal of Physics: Conference Series 2438.1 (Feb.
2023), p. 012096. issn: 1742-6588, 1742-6596. doi: 10.1088/1742-6596/2438/1/
012096.

[24] M. Rovere et al. “CLUE: A Fast Parallel Clustering Algorithm for High Granularity
Calorimeters in High-Energy Physics”. In: Frontiers in Big Data 3 (2020). issn:
2624-909X. doi: 10.3389/fdata.2020.591315.

[25] E. Brondolin. “CLUE: a clustering algorithm for current and future experiments”.
In: Journal of Physics: Conference Series 2438.1 (Feb. 2023), p. 012074. doi: 10.
1088/1742-6596/2438/1/012074.

[26] J. Jaroslavceva. “A New Trackster Linking Algorithm Based on Graph Neural Net-
works for the CMS Experiment at the Large Hadron Collider at CERN”. Presented
14 Jul 2023. Prague, Tech. U. url: https://cds.cern.ch/record/2865866.

44

https://doi.org/10.1142/9581
https://home.cern/science/accelerators/high-luminosity-lhc
https://home.cern/science/accelerators/high-luminosity-lhc
https://cds.cern.ch/record/2629323/files/CMSdocumentforGuides.pdf
https://doi.org/10.3390/instruments6040071
https://doi.org/10.1088/1748-0221/12/01/C01042
https://doi.org/10.1051/epjconf/201819102016
https://doi.org/10.1051/epjconf/201819102016
https://doi.org/10.1088/1748-0221/12/01/P01020
https://arxiv.org/abs/1609.02366
https://doi.org/10.1088/1742-6596/2438/1/012096
https://doi.org/10.1088/1742-6596/2438/1/012096
https://doi.org/10.3389/fdata.2020.591315
https://doi.org/10.1088/1742-6596/2438/1/012074
https://doi.org/10.1088/1742-6596/2438/1/012074
https://cds.cern.ch/record/2865866

CHAPTER BIBLIOGRAPHY

[27] A. Nandi. “New Techniques for Reconstruction in the CMS High Granularity
Calorimeter”. Presented 16 Jan 2023. RWTH Aachen U., 2022. url: https://
cds.cern.ch/record/2854616.

[28] R. J. Wilson. Graph Theory. Longman Group Ltd, 1996. isbn: 0-582-24993-7.

[29] S. Fortunato. “Community detection in graphs”. In: Physics Reports 486.3 (Feb.
2010), pp. 75–174. issn: 0370-1573. doi: 10.1016/j.physrep.2009.11.002.

[30] D. Grinberg. An introduction to graph theory. Aug. 2023. doi: 10.48550/arXiv.
2308.04512.

[31] Original by User:Nog33, converted to SVG by User:j ham3.

[32] A. Clauset, M. E. J. Newman, and C. Moore. “Finding community structure in
very large networks”. In: Phys. Rev. E 70 (6 Dec. 2004), p. 066111. doi: 10.1103/
PhysRevE.70.066111.

[33] M. E. J. Newman and M. Girvan. “Finding and evaluating community structure in
networks”. In: Phys. Rev. E 69 (2 Feb. 2004), p. 026113. doi: 10.1103/PhysRevE.
69.026113.

[34] V. D. Blondel et al. “Fast unfolding of communities in large networks”. In: Journal
of Statistical Mechanics: Theory and Experiment 2008.10 (Oct. 2008), P10008.
issn: 1742-5468. doi: 10.1088/1742-5468/2008/10/P10008.

[35] V. A. Traag, L. Waltman, and N. J. van Eck. “From Louvain to Leiden: guarantee-
ing well-connected communities”. In: Scientific Reports 9.1 (Mar. 2019). Publisher:
Nature Publishing Group, p. 5233. issn: 2045-2322. doi: 10.1038/s41598-019-
41695-z.

[36] S. Abdouline et al. “The CMS Simulation Software”. In: Oct. 2006, pp. 1655–1659.
isbn: 978-1-4244-0561-9.

[37] C. Bierlich et al. A comprehensive guide to the physics and usage of PYTHIA 8.3.
2022. arXiv: 2203.11601. url: https://arxiv.org/abs/2203.11601.

[38] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506.3 (2003), pp. 250–303. issn: 0168-9002. doi: https:
//doi.org/10.1016/S0168-9002(03)01368-8.

[39] L. Garren et al. “Monte Carlo particle numbering scheme”. In: European Physical
Journal C 15 (Mar. 2000), pp. 205–206. doi: 10.1007/BF02683426.

[40] L. Cristella. “Validation is automation”. Presented at the CMS HGCAl chat. 2022.

45

https://cds.cern.ch/record/2854616
https://cds.cern.ch/record/2854616
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.48550/arXiv.2308.04512
https://doi.org/10.48550/arXiv.2308.04512
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://arxiv.org/abs/2203.11601
https://arxiv.org/abs/2203.11601
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1007/BF02683426

	Introduction
	The Standard Model
	The LHC and the HL-LHC Project
	Thesis Structure

	CMS: The Compact Muon Solenoid
	CMS Detector
	Tracker
	Calorimeters
	Muon Chambers

	The CMS Coordinate System
	CMS HL-LHC Upgrade
	HGCAL: the High Granularity Calorimeter

	Event Reconstruction in CMS
	Online and Offline Reconstruction
	Reconstruction in HGCAL
	TICL: The Iterative Clustering Framework

	Graph Theory and Community Detection Algorithms
	Basic definitions
	Types of Graphs

	Community Detection Algorithms
	Modularity
	Louvain Algorithm
	Leiden Algorithm

	Implementing Leiden Algorithm for the Linking Phase
	Graph Construction and Implementation
	Leiden Algorithm Implementation and Outputs

	Simulation and Results
	CMS Simulation Software
	Response Plots
	Results
	Considerations

	Conclusions and Future Work
	Acknowledgements
	Bibliography

