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Abstract

In cosmology, accurately determining the parameters of a given model is essential

for properly inferring the evolution of the universe and explaining its observable

characteristics. The ΛCDM (Λ-cold dark matter) model, widely considered in

cosmology, predicts the existence of three fundamental components: matter (com-

prising both dark and baryonic matter), radiation, and the cosmological constant

(Λ). Each of these components contributes to the total density of the universe.

To quantify these contributions, we usually use density parameters.

In this thesis, our aim has been to test the efficiency of a particular method

for determining the matter density parameter, called the Alcock-Paczyński (AP)

test. We took advantage of the geometric anisotropies inherent in the two-point

correlation function of different simulated cosmic tracers, which emerged from

the assumption of a wrong cosmology when calculating the comoving distances.

We employed a particular method to conduct the AP test while modeling the

anisotropic distortions involving a Boltzmann solver.
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Introduction

Modern cosmology, which is the study of the largest degrees of freedom of the

universe, began with a remarkable paper published by Albert Einstein in 1917 [24].

From its formulation up until today, cosmology has undergone a rapid evolution,

culminating in the development of the so-called standard cosmological model,

which is supported by the main observational evidence available today [7][37].

In the context of this model, we know that the universe has three main com-

ponents: matter, radiation, and the cosmological constant. These components,

particularly their densities, are associated with the so-called cosmological param-

eters. Only through a precise determination of these parameters is it possible to

understand the global evolution of the universe and explain its characteristics,

such as its expansion and large-scale structure.

In this thesis work, we studied the efficiency of a particular method for esti-

mating the matter density parameter, ΩM , known as the Alcock-Paczyński (AP)

test [9]. This method was initially tested with the correlation function measured

on simulated catalogues of galaxies, active galactic nuclei (AGN), and galaxy

clusters, provided by a large hydrodynamic cosmological simulation, called Mag-

neticum [22]. The method is based on the assumption of homogeneity and isotropy

of the universe on large scales, i.e. the cosmological principle. We searched for the

so-called geometric distortions in the two-point correlation function, which mea-

sures the excess or deficit probability of finding two objects separated by a certain

comoving distance compared to a random distribution. For this type of analysis,

it is convenient to decompose the distances into perpendicular and parallel compo-

nents to the line of sight; thus, we measured a bidimensional correlation function.

In the case of perfect isotropy, the iso-correlation curve of the bidimensional func-

tion should have a circular form. However, assuming an incorrect cosmological

model deforms the distances differently along the two directions, introducing geo-

metric distortions. In real observations, the bidimensional correlation function is

also affected by dynamic distortions due to the peculiar velocities of objects, which

are not accounted for in distance measurements. By modeling these distortions,
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it is possible to obtain constraints on the dynamics and geometry of the Universe.

The main advantage of this method is the fact that it is only dependent on the

assumption of isotropy of the correlation function. This assumption is directly

linked to the cosmological principle, which underlies all the equation systems of

modern cosmology.

In this thesis work, we applied the AP test to different catalogues extracted

from the Magneticum simulation, using the same method utilized in [44]. We

studied how the method’s efficiency in discriminating the correct value of ΩM de-

pends on the type of tracer used, the redshift of the observation, and the modelling

of dynamic distortions.

In the first chapter, the main notions of the standard cosmological model will

be introduced to describe the dynamics of the universe and its characterizing pa-

rameters. The second chapter will briefly discuss the theory that explains the

origin and subsequent evolution of cosmic structures. It will also introduce the

concept of clustering, which describes the spatial properties of structures due to

gravitational interaction. From there, we will transition to the definition of the

two-point correlation function. The third chapter will be dedicated to introduc-

ing the vast theme of numerical simulations. It will also describe the principal

characteristics of the catalogs utilized and the Magneticum simulation. In the

fourth chapter, the different types of distortions that can modify the form of the

bidimensional correlation function will be discussed. Then, the procedures lead-

ing to the AP test will be shown, with a focus on two approaches to performing

the method. In the fifth chapter, it will be shown in detail how the AP test has

been implemented numerically to analyze the catalogues described in the third

chapter. In the sixth chapter, the results of our analysis will be shown. The final

chapter will discuss the main results and present future perspectives regarding the

method used.



Chapter 1

From the FLRW metric to the

Friedmann models

The scope of this chapter is to provide a general overview of cosmology, a phys-

ical theory that was long considered a philosophical speculation. The object of

cosmology is the study of the universe as a whole. It deals with describing the

origin and evolution of the universe, focusing on the analysis of cosmic structures.

We will describe the properties, laws, and important phenomena inherent to a

four-dimensional universe, with a special focus on the parameters that define a

cosmological model.

For the demonstrations and the calculus of the main results we refer to the text-

book Gravitation and Cosmology: Principles and Applications of the General The-

ory of Relativity of Steven Weinberg [58].

1.1 Principles of cosmology

In physics, it is common to introduce principles to understand certain observables.

These principles often leverage symmetry to simplify the analysis by reducing the

number of degrees of freedom to be considered. Cosmology is no exception, and

its first principle is the so-called

Cosmological principle (CP): “In the Universe, there are no preferred posi-

tions or directions. The Universe, on large scales, is to be considered homogeneous

and isotropic”.

Einstein introduced this principle to establish a relativistic theoretical foun-
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dation for cosmology. The CP may also be taken as a working assumption upon

which explicit models of the universe are built and verified a posteriori.

1.1.1 Friedman-Lemâıtre-Robertson-Walker metric

The first step towards constructing a cosmological model involves establishing a

metric for the Universe to measure distances between two distinct points in space-

time (events). The objective is to utilize the most general metric that embodies

the CP. The distance ds between two points is described by:

ds2 = gαβdx
αdxβ = g00dt

2 + 2g0idx
idt+ gijdx

idxj , (1.1)

where the first term represents the time part, the second the mixed term, and

the third the spatial part. The metric is defined by the components of gαβ of the

corresponding metric tensor that describes the geometry of space-time. If space

is to be homogeneous and isotropic according to the CP, it must be possible to

define a proper time such that, the three-dimensional metric can be expressed as:

dl2 = gijdx
idxj , (1.2)

at every point in time. In a scenario where there are no preferred positions or

directions, the mixed terms should be null, implying that the components g0i of

the metric must be zeros. Consequently, the general form of the metric will be:

ds2 = −dt2 + gijdx
idxj = −dt2 + dl2 . (1.3)

Now we want a general form for the spatial term dl2, which does not necessarily

represent only a flat space. The conventional sphere, also called the 2-sphere, is a

homogeneous and isotropic 2d space with finite volume and no boundaries. The

analogous for the 3d space is called 3-sphere, from its equation one can obtain the

correspondent expression for dl:

Unit 3-sphere: dl2 =
dr2

1− r2
+ r2(dθ2 + sin2 θdϕ2) , (1.4)

where r ∈ [0, 1]. The metric of a larger sphere is simply obtained by multiplying
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the components of the metric tensor by a positive constant a2. That is

3-sphere: dl2 = a2
[

dr2

1− r2
+ r2(dθ2 + sin2 θdϕ2)

]
. (1.5)

The quantity a is called the radius.

One way to visualize the conventional 2-sphere is by drawing two equal discs

(the northern and southern hemispheres) glued by their common boundary (the

equator: a circle). Similarly, one way to visualize a 3-sphere is to imagine two equal

balls (the northern and southern hemispheres) glued by their common boundary

(the equator: a 2-sphere), Figure 1.1. The 3-sphere is a homogeneous isotropic

space with constant positive curvature. A homogeneous isotropic space with zero

curvature is, of course, Euclidean space. There is also a homogeneous isotropic

space with constant negative curvature: a three-dimensional hyperboloid. Re-

peating similar steps as above gives:

3-hyperboloid: dl2 = a2
[

dr2

1 + r2
+ r2(dθ2 + sin2 θdϕ2)

]
. (1.6)

The metric

3d homogeneous space: dl2 = a2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (1.7)

where k can take the value 1 (sphere), -1 (hyperboloid), or 0 (Euclidean space),

can be shown to be the most general homogeneous isotropic 3d metric. Knowing

this we can now define a metric that embodies the CP, the FLRW (Friedman-

Lemâıtre-Robertson-Walker):

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
≡ −dt2 + a(t)2dσ2 , (1.8)

where the origin r = 0 is totally arbitrary, t is the proper time of so-called comov-

ing observer moving along with the homogeneous and isotropic cosmic fluid (the

idealized representation of galaxies) at constant r, θ, and ϕ. We shall also call

{t, r, θ, ϕ} comoving coordinates

a(t) (cosmic) scale factor

k = 0,±1 curvature constant.

(1.9)
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Figure 1.1: A 3-sphere is obtained by gluing two balls by the boundary (a 2-sphere).

Observations indicate that the distance between galaxies increases over time,

while their typical size remains constant. This suggests that the Universe is ex-

panding, with distant galaxies moving away from us at increasing speeds. Using

the differential geometric language, the universe can be seen as four-dimensional

manifold whose three-manifold spatial foliation (submanifold family) is homo-

geneous and isotropy. Localized sources predominantly influence local lengths

whereas the distance between sources increases due to the expanding scale factor.

1.1.2 The Hubble-Lemâıtre law

In cosmology, it is necessary to define another kind of distance besides the proper

distance: the comoving distance. Let us consider two objects aligned along the

line of sight of the observer, such that dθ = dΦ = 0. The physical spatial distance

between the two, considering the spatial hypersurface with dt = 0, is called proper

distance dpr(t) and it is given by

dpr =

∫ r

0

a(t)dr′√
1− kr′2

, (1.10)

where t is the time measured by comoving clocks. Since a is not proportional to

r we can write

dpr = a(t)F (r) , (1.11)

where F (r) is a function of the radius that describes the spatial part of the FLRW

metric and it assumes different values for the different values of k. As one can see

dpr is a quantity that depends also on time. It is defined comoving distance the

dpr computed at t0 (t0 ≡ 0)

dC = dpr(t0) = a(t0)F (r) = a0F (r) , (1.12)
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where we usually put by definition a0 = 1. The relation between proper distance

and comoving distance is given by

dpr = dC
a(t)

a0
. (1.13)

Now we can derivate the Eq. 1.11 as a function of time to find the radial velocity

at a given point:

vR =
d(dpr)

dt
=

d

dt
[a(t)F (r)] =

da(t)

dt
F (r) + a(t)

dF (r)

dt
= ȧ(t)F (r) + a(t)Ḟ (r) .

(1.14)

But since Ḟ := dF
dt

= 0 and F (r) = dpr/a(t) we have

vR =
ȧ(t)

a(t)
dpr = H(t)dpr . (1.15)

This equation is the famous Hubble-Lemâıtre law where we have defined the

Hubble constant:

H(t) =
ȧ(t)

a(t)
, (1.16)

even if it would be better to call it the Hubble parameter since it depends on time.

1.1.3 Cosmological redshift

The cosmological redshift, z, is defined as follows:

z :=
λobs − λem

λem

=
∆λ

λ
, (1.17)

which measures the shift of the emitted spectrum, at the wavelength λem and at

time tem, for a source that moves at a velocity vR from the observer which sees

λobs at time tobs.

Let us consider the FLRW metric in polar coordinates (1.8) with dϕ = dθ = 0:

ds2 = −dt2 + a(t)2
dr2

1− kr2
, (1.18)

and consider a photon, for which ds2 = 0. Then we can write:

dt2

a(t)2
=

dr2

1− kr2
, (1.19)
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and then integrating the square:

∫ t0

tem

dt

a(t)
=

∫ r

0

dr√
1− kr2

:= F (r) . (1.20)

If from the same source, a second photon is emitted after a time δtem, it will

be received by the observer at time t0 + δt0. If the space traveled from the two

photons is equal, we have the following:

∫ t0

tem

dt

a(t)
= F (r) =

∫ t0+δt0

tem+δtem

dt

a(t)
, (1.21)

and integrating

t0
a0

− te
a(t)

=
t0
a0

+
δt0
a0

− te
a(t)

− δte
a(t)

, (1.22)

δt0
a0

=
δte
a(t)

⇒ 1

a0ν0
=

1

a(t)νe
, (1.23)

where ν0 and νe are the observed and the emitted frequencies. We can therefore

obtain:

a0ν0 = a(t)νe ⇒
a0
λ0

=
a(t)

λe

⇒ λ0

λe

=
a0
a(t)

, (1.24)

so λ0 is a measure of how much the scale factor changes from its emission until

its observation. We have that z is an increasing function going back in time

1 + z =
a0
a(t)

. (1.25)

1.1.4 Friedmann equations

Once we have established the FLRW metric, which describes the four-dimensional

geometry of the universe, it is possible to study how the universe evolves on large

scales over time and identify the factors that can influence its evolution.

As the base for all relativistic cosmological models, we have the system given

by the Einstein equations (with c = 1):

Rµν −
1

2
gµνR = 8πGTµν , (1.26)
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where Rµν
1 is il Ricci tensor and R the Ricci scalar. This equation states that

the geometry of spacetime of the Universe, expressed by the tensor metric gµν , is

given by its energetic content, represented by the energy-momentum tensor Tµν .

On one side we have the spatial part of the equation and on the other the energy

part. Once we assume Tµν , we can derive gµν . Since in our case we know the form

of Tµν , we can find the scale factor a(t) and its derivatives. In the Friedmann

models, we assume the FLWR metric, from which one can find Rµν e R , and for

the energy-momentum tensor we assume the universe is filled with a perfect fluid

of matter and energy described by:

Tµν = −pgµν + (p+ ρ)UµUν , (1.27)

where the p is the pressure, ρ the energy density, and Uk the four-velocity.

The system of equations provides 16 equations of which only two are indepen-

dent (assuming CP), the components with the same index are the following:

G00 = 8πGNT00 ⇒ 3

[(
ȧ

a

)2

+
k

a2

]
= 8πGNρ , (1.28)

Gii = 8πGNTii ⇒ 3
ä

a
= −4πGN(ρ+ 3p) . (1.29)

The Eqs. (1.28) and (1.29) are called the first and the second Friedmann equations.

In the second equation both the pressure and the density are present, while in the

first the density and the curvature parameter.

It is interesting to compare the second Friedmann equation (1.29) with what

would be predicted by Newtonian gravity. Consider a point-like particle of massm

located on the surface of a sphere with homogeneous density ρ and radius R = ra.

The radial Newtonian acceleration experienced by this particle would be

R̈ = rä = −GN(4πρ/3)R
3

R2
= −4

3
πGNρra , (1.30)

or

3
ä

a
= −4πGNρ , (1.31)

1The indexes µ and ν go from 0 to 3 while the indexes i and j go from 1 to 3.



1.1. Principles of cosmology 14

which coincides with Eq. (1.29) only for p = 0. In other words, the pressure does

not gravitate according to Newtonian theory but does so according to Einstein’s

theory.

1.1.5 The cosmological constant

The Friedmann equations stem from the combination of general relativity, the CP,

and the assumption of matter distribution resembling a perfect gas. If we look at

the second Friedmann equation (1.29), it is clear that a static universe, i.e. with

ä = ȧ = 0, could exist only with

ρ = −3p . (1.32)

When Einstein developed the theory of general relativity, he obtained the Eq.

(1.26). However, given the above consideration, he proposed a modification. The

introduction of a constant Λ called the cosmological constant, was able to solve

the issue of the negative density or pressure

Rµν −
1

2
gµνR− Λgµν = 8πGTµν . (1.33)

Einstein’s problem was the idea of an expanding Universe (this was before the

effective discovery by Hubble); he believed that the Universe should be static,

and for this reason, he changed his equation.

Although we have advanced beyond Einstein’s original ideas, let us develop

the Eq. (1.33) to explore the effects of Λ. Specifically, we can define:

• the effective pressure

p̃ := p− Λ

8πG
= p+ pΛ , (1.34)

where it is added a negative contribution to the pressure that depends on

the cosmological constant (pΛ < 0);

• the effective density

ρ̃ := ρ+
Λ

8πG
= ρ+ ρΛ , (1.35)

where it is added the same negative contribution to the density.
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From these two relations, one can see that |Λ|−1/2 has the dimension of a

length. Now we can rewrite the Eq. (1.33) as follow:

Rµν −
1

2
gµνR− Λgµν = 8πGT̃µν , (1.36)

where we have defined:

T̃µν := Tµν +
Λ

8πG
gµν = −p̃gµν + (p̃+ ρ̃)UµUν . (1.37)

In this form, the Friedmann equations are identical at the case without the cos-

mological constant, but now they depend on p̃ e ρ̃. These equations have a static

solution for

ρ̃ = −3p̃ =
3k

8πGa2
. (1.38)

If we assume a Universe with only “dust”, that is a Universe in which the matter

pressure is equal to zero (p = 0), because it is negligible with respect to the

radiation pressure, we have

p̃ = − Λ

8πG
. (1.39)

Now, from Eq.(1.38), we have

p̃ = − k

8πGa2
, (1.40)

from which

p̃ = − k

8πGa2
= − Λc4

8πG
. (1.41)

Therefore in Einstein’s static Universe:

Λ =
k

a2
, (1.42)

from which the density of a perfect fluid is

ρ = ρ̃− Λ

8πG
=

3k

8πGa2
− k8

πGa2
, (1.43)
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ρ =
k

4πGa2
. (1.44)

Since we have ρ > 0 always, Eq. (1.44) has to be greater than zero, and that

forces us to set k = 1. From these considerations, the Universe appears to be

spherical. Replacing Eq.(1.42) into (1.44), we find that in Einstein’s Universe the

value of the cosmological constant is:

ΛE = 4πGρ . (1.45)

Einstein’s Universe is therefore spherical and it is maintained static (but unstable)

from a value of the cosmological constant that depends on the matter density. It

has a positive curvature and a curvature radius aE = Λ
−1/2
E .

When Hubble discovered that the Universe was expanding, Einstein believed

of had made a big mistake and decided to remove Λ from his equations. But

history has shown that the introduction of the cosmological constant is necessary

and today it is utilized to formalize the energy of the vacuum [51].

Now let us consider a particular cosmological model based on the cosmological

constant, known as the de Sitter model. In this model, the Universe is character-

ized by being empty (p = ρ = 0) and flat (k = 0). Thus:

ρ = ρ̃− Λ

8πG
=

3k

8πGa2
− k8

πGa2
. (1.46)

Substituting these quantities into the first Friedmann equation for Einstein Uni-

verses, we have the following:

ȧ2 + k =
8πG

3
ρ̃a2 , (1.47)

from which

ȧ2 =
8πG

3

Λ

8πG
a2 =

Λ

3
a2 , (1.48)

and then

da

dt
= a

√
Λ

3
⇒ da

a
=

√
Λ

3
dt , (1.49)

log a =

√
Λ

3
t+ A , (1.50)
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a = A exp

(√
Λ

3
t

)
. (1.51)

The expansion in the de Sitter model is exponential. We thus have the following

expression for the Hubble parameter

H =
ȧ

a
=

A exp
(√

Λ
3
t
)√

Λ
3

A exp
(√

Λ
3
t
) ⇒ H =

√
Λ

3
. (1.52)

This equation depends only on constants, making it evident that the Hubble

parameter in a de Sitter Universe is indeed constant.

This model is also used in the context of the inflationary model, where the

expansion is exponential.

1.2 Friedmann models

Now we present the standard cosmological model on which this thesis works.

This model is obtained by solving the Friedmann equations. The Belgian priest

Georges Lemâıtre essentially obtained the same results in 1927 [40], when Hubble’s

discoveries were becoming known to the scientific community. Lemâıtre is often

considered the father of the modern Big Bang theory, although this honor probably

should belong to Friedmann.

Firstly, let us consider a perfect fluid with a certain density, ρ, and a certain

pressure, p. For now, we do not worry about the specific form of the equation of

state relating these two quantities, and we will initially disregard the cosmological

constant. We need to solve the Friedmann equations, which we list here for

convenience along with the adiabatic condition:

ȧ2 + k =
8π

3
Gρa2 , (1.53)

ä = −4π

3
G (ρ+ 3p) a , (1.54)

d
(
ρa3
)
= −3pa2da . (1.55)

These equations enable us to compute the temporal evolution of a(t), ρ(t) and

p(t) if the state equation of the fluid is known.
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Now let us consider a specific moment in time t0, which corresponds to “today”.

In this case H0 = ȧ0. We can also define

ρcrit :=
3H2

8πG
, (1.56)

that we will call critical density; at t0 it will be

ρcrit,0 :=
3H2

0

8πG
. (1.57)

If we now take Eq. (1.53) evaluated today and rewrite it as

ȧ20 = −k +
8πG

3
ρ0

H2
0

H2
0

=

= ȧ20 = −k + ρ0ȧ
2
0

H2
0

ρcrit,0
, (1.58)

we obtain

H2
0

(
1− ρ0

ρcrit,0

)
= − k

a20
. (1.59)

For different values of k we will have

• for k = −1 ⇒ 1− ρ0
ρcrit,0

> 0 ⇒ ρ0 < ρcrit,0 ;

• for k = 0 ⇒ 1− ρ0
ρcrit,0

= 0 ⇒ ρ0 = ρcrit,0 ;

• for k = +1 ⇒ 1− ρ0
ρcrit,0

< 0 ⇒ ρ0 > ρcrit,0 .

Now we introduce the so-called density parameter:

Ω :=
ρ

ρcrit
, (1.60)

and, obviously, Ω0 :=
ρ0

ρcrit,0
. So the above relations became:

• k = −1 ⇒ Ω0 < 1 (hyperbolic universe);

• k = 0 ⇒ Ω0 < 1 (flat universe);

• k = +1 ⇒ Ω0 < 1 (hyperspherical universe).
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To determine Ω0, we need to know ρcrit,0 and therefore H0. The value of H0 is

generally provided, through the inclusion of a dimensionless parameter h, in the

following way:

H0 = h · 100 km s−1Mpc−1 . (1.61)

In the current state of the art, the measured value of H0 is ∼ 70kms−1Mpc−1,

but it is affected by a certain tension (∼ 4σ) between the value inferred from the

cosmic microwave background (CMB) analysis and the one measured in the local

Universe [57][19].

Recalling the definition of the critical density, we can obtain its value today,

which depends on the type of Universe we live in through the dimensionless con-

stant h:

ρcrit,0 = 1.9× 10−29h2 g/cm3[17] . (1.62)

Therefore, to understand the geometry of the Universe, we need to know its density

today. Now let us see what happens if we reintroduce the cosmological constant.

In Section 1.42, we saw that Λ can be treated as a fluid with a peculiar equation

of state, leading to a modification of Einstein’s gravity equation. The Friedmann

equations (1.54) and (1.53) will thus require an additional term. We start with

the second Friedmann equation (1.54), with the terms ρ and p replaced by p̃ and

ρ̃, which becomes:

ä = −4πG

3
a

[
ρ+

Λ

8πG
+ 3

(
p− Λ

8πG

)]
= −4πG

3
a

(
ρ+ 3p− 2Λ

8πG

)
, (1.63)

that we can rewrite as

ä = −4πG

3
a (ρ+ 3p) +

Λa

3
. (1.64)

The first Friedmann equation also includes an additional term:

ȧ2 + k =
8πG

3
a2
(
ρ+

Λ

8πG

)
=

8πG

3
ρa2 +

Λa2

3
, (1.65)

that can be rewritten as follows:

ȧ2 − Λa2

3
− 8πG

3
ρa2 = −k . (1.66)
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If we compute the last expression at t0, remembering the definitionsH0 = (ȧ0/a0 = ȧ0)

and ρcrit,0 = 3H2
0/(8πG), we find

H2
0 −

Λ

3
− 8πG

3
ρ0 = H2

0 −
Λ

3
− ρ0

ρcrit,0
H2

0 =

= −kH2
0

(
1− Λ

3H2
0

− ρ0
ρcrit,0

)
= −k . (1.67)

We now define the total density contribution today given by the cosmological

constant:

ρ0,Λ :=
Λ

8πG
, (1.68)

and the density parameter of the cosmological constant:

Ω0,Λ :=
ρ0,Λ
ρcrit,0

. (1.69)

With the last two expressions, we can write

H2
0 (1− Ω0,Λ − Ω0) = −k , (1.70)

and, defining the total density parameter Ω0,TOT := ΣΩ0,i like the sum of all

contributions to the various components of the Universe (here matter and cosmo-

logical constant), finally we can write the first Friedmann equation as follows:

H2
0 (1− Ω0,TOT ) = −k . (1.71)

Therefore regardless of the presence of the cosmological constant or other com-

ponents contributing to the total density of the Universe, we can discriminate

between different values of curvature k depending on whether Ω0,TOT is less than,

greater than, or equal to 1.

1.2.1 Models with perfect fluid

We have seen how the Friedmann models are based on the approximation of a

perfect fluid, which enters into the equations, as discussed in Section 1.1.4, with
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an energy-momentum tensor given by Eq. (1.27). The perfect fluid approximation

is realistic for the Universe considered on large scales. To treat the fluid as perfect

it suffices that the mean free path of the constituent particles of the fluid is much

smaller than the physical scales of interest. This form of the matter-energy tensor

is also required for the theory to be compatible with the CP: anisotropic pressures

are not allowed. To ivestigate further cosmological solutions, it is necessary to

explore the relationship between pressure , p, and energy density, ρ, which requires

specifying an equation of state, p = p(ρ). In many cases of physical interest, we

assume the general law:

p = wρ , (1.72)

where w is a constant constrained inside the interval 0 ≤ w < 1, called the

Zel’dovich interval. The reason why the value w = 1 is not accepted is the

following. Consider the definition of the speed of sound:

cs =

(
∂p

∂ρ

)1/2

S

=
√
w ; (1.73)

if w = 1, the sound speed would be equal to the speed of light, which is obviously

not physically permissible. On the other hand, if w < 0, we would have an

imaginary sound speed.

In any case, the constant will assume different values depending on the com-

ponent being considered. In the case of ordinary matter, where from the general

relation p = nkBT assuming all particles are protons, we have

pM =
ρM
mp

kBT =
kBT

mpc2
ρMc2 , (1.74)

where ρm is the matter density, kBT is the average thermal energy of the parti-

cles, and mpc
2 is the rest mass energy. However, for a non-relativistic ideal gas

kBTmpc
2, and therefore the contribution to the total pressure of matter can be

approximated by

pM ≈ 0 . (1.75)

This is equivalent to saying that w = 0. Matter of this type is called dust. There-

fore, it is a good approximation to consider non-relativistic matter as negligible

in its contribution to pressure.
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In the case of a non-degenerate fluid of ultrarelativistic particles in equilibrium,

the equation of state is of the form

pr =
1

3
ρr . (1.76)

A fluid with an equation of state of the form given by Eq. (1.76) is usually called

a radiative fluid, even though it can describe relativistic particles of any type.

From Eq. (1.73), the speed of sound in a dust fluid is cs = 0, while for a radiative

fluid cs =
1√
3
.

Let us now consider w as constant in time, and in particular for ordinary

matter w ≈ 0. Now we consider the adiabatic condition given by Eq. (1.55) and

replace the pressure using Eq. (1.72), through a series of computations we can

obtain as follows:

ρ ∝ a−3(1+w) . (1.77)

The adiabatic condition describes how the density varies in function of the scale

parameter for a certain value of w.

From the above relation and Eq. (1.25), we can obtain the relations of the

dust density and the radiation density as a function of the redshift:

ρM = ρ0,M

(a0
a

)3
= ρ0,M(1 + z)3 , (1.78)

ρR = ρ0,R

(a0
a

)4
= ρ0,R(1 + z)4 . (1.79)

For what concerns the cosmological constant, w = −1 and this enables us to

evaluate the contribution of Λ on the total density:

ρΛ = ρ0,Λ

(a0
a

)0
= ρ0,Λ . (1.80)

We have found how the density contribution changes for the different components

of the universe as function of redshift. We can thus estimate the values of the

density of different componenets today:

• ρTOT ≈ ρ0,crit ⇒ Ω0,TOT ≈ 1;
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Figure 1.2: Main cosmological eras and trends of the density of universe components. Image

taken from the University of Oregon website [48]

• ρ0,R = 10−34 g/cm3 ⇒ Ω0,R = 10−5;

• ρ0,M = 0.3ρ0,crit ⇒ Ω0,M = 0.3;

• ρ0,Λ = 0.7ρ0,crit ⇒ Ω0,Λ ≈ 0.7.

Figure 1.2 shows the density of the different components as function of time.

We can divide the Universe’s history into different eras defined by the density

contribution that dominates over the other. It follows that we can simplify our

equations by considering only the dominant contribution in each era.

The passage from one regime to another is defined by some specific values of the

redshift in which we have the equivalence between two contributions. Specifically,

we have the following:

Matter-radiation equivalence:

ρ0,M (1 + zeq)
3 ≡ ρ0,R (1 + zeq)

4

⇒ 1 + zeq =
ρ0,M
ρ0,R

≈ 104 ⇒ zeq ≈ 104 . (1.81)

Matter-Λ equivalence:

ρ0,Λ ≡ ρ0,M (1 + zeq)
3

⇒ 1 + zeq =

(
ρ0,Λ
ρ0,M

)1/3

≈ 1.7 ⇒ zeq ≈ 0.7 . (1.82)
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1.2.2 The Big Bang in a Friedmann Universe

Let us rearrange the first Friedmann equation (1.53) to express it in terms of Ω,

which is a more descriptive value of the universe’s composition. Considering the

expression at t0 we can write:

ȧ20 −
8πG

3
ρ0 = H2

0 −
8πG

3
ρ0 = H2

0

(
1− ρ0

ρ0,crit

)
= −k . (1.83)

From the above sequence of equalities, we can extract the two following relations

ȧ2 − 8πG

3
ρ0a

2 = −k , (1.84)

−k = H2
0

(
1− ρ0

ρ0,crit

)
, (1.85)

that we can combine in the following;

ȧ2 = H2
0

(
1− ρ0

ρ0,crit

)
+

ρ0a
−3(1+w)

ρ0,crit
a2H2

0 , (1.86)

where we have replaced the density using Eq. (1.77) in the form

ρ = ρ0a
−3(1+w) . (1.87)

Now using the definition of Ω0 the above equation became:

ȧ2 = H2
0

[
1− Ω0 + Ω0a

−(1+3w)
]

, (1.88)

or equivalently

H2(t) =

(
H0

a

)2 [
1− Ω0 + Ω0a

−(1+3w)
]

. (1.89)

Eq. (1.89) gives us the value of the Hubble parameter as a function of time in a

universe with only one component. To consider more components we just need

to replace Ω0 with
∑

i Ωwi
. The relation can be given also as a function of the

redshift, so in its more general form it becomes:

H2(z) = H2
0 (1 + z)2

[
1−

∑
i

Ω0,wi
+
∑
i

Ω0,wi
(1 + z)1+3wi

]
. (1.90)
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Each fluid component has its parameter of state value wi, and thus its value of the

density parameter Ω0,wi
. Sometimes to shorten the Eq. (1.90), it is also written

as H2(z) = H2
0E

2(z), where E2(z) = (1 + z)2[...]. Using the known Universe

components today, Eq. (1.90) can be written in its extended version as follows:

H2(z) = H2
0 (1 + z)2[(1− Ω0,M − Ω0,R − Ω0,Λ)+

+Ω0,M(1 + z) + Ω0,R(1 + z)2 + Ω0,Λ(1 + z)−2] , (1.91)

where the quantity (1− Ω0,M − Ω0,R − Ω0,Λ) tells us how much the total energy,

Ω0,tot, differs from the value 1, that is 1 − Ω0,tot is a measure of the Universe

curvature. At z = 0 usually we can neglect the radiation contribution but we

can’t do the same at high z (early time, Fig.(1.2)).

Let us consider now the second Friedmann equation:

ä = −4π

3
G (ρ+ 3p) a = −4π

3
Gρ(1 + 3w)a , (1.92)

where we have used the p = wρ. From the definition of cs, to have cs < c, w must

be in the Zel’dovich interval, that is it has to be always true that (1 + 3w) > 0,

or equivalently ȧ < 0.

The quantity ȧ enters the equations as a squared term so that it could have

either sign. However, observations support H > 0, thus the universe is expanding

with ȧ < 0. From the above, we also know that a(t) has to have negative concavity

and no flex. All this means that a(t) has to intersect the t, thus it must exist an

initial instant in which the Universe began, the so-called Big Bang (Figure 1.3).

Notice that for ρ ∝ a−3(1+w) then lima⇒0 ρ = ∞. Thus when a = 0 the density

of the universe is infinite, and with that also the temperature.

The Big Bang cannot be avoided in a model of the Universe based on the

Friedmann equations, unless we change the definition of w, or rejecting the as-

sumptions of isotropy and homogeneity. However, the Big Bang should not be

considered as a real initial condition, but as a limit of the model, being based

on a classic field theory. Indeed, to model the universe below the Planck time

tp ∼ 10−43sec, the gravitational field is expected to be quantized.
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Figure 1.3: Evolution of the scale parameter a(t) in Friedmann models.

1.2.3 Flat Universe

We will now focus on finding solutions to the Friedmann equations starting from

the simplest case of a flat universe. This model considers a single-component fluid.

In a flat Universe, Ω0 = 1 so the Eq. (1.88) becomes:

ȧ2 = H2
0

[
1− Ω0 + Ω0

(a0
a

)1+3w
]
= H2

0a
−(1+3w) (1.93)

⇒ ȧ = H0a
− 1+3w

2 . (1.94)

We now integrate the above expression:

da

dt
= const · a−

1+3w
2 ⇒ a

1+3w
2 da = const dt (1.95)

from which we obtain

a(t) =

(
t

t0

) 2
3(1+w)

. (1.96)

For w inside the Zel’dovich interval, the expansion never stops. From Eq. (1.25)

the above expression can be inverted to obtain

t = t0(1 + z)−
3(1+w)

2 . (1.97)

It is interesting also to compute how the Hubble parameter changes

H(t) =
ȧ(t)

a(t)
=

[2/3(1 + w)]t[2/3(1+w)]−1 · const
const · t[2/3(1+w)]

=
2

3(1 + w)
t−1 . (1.98)
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General w = 0(EdS) w = 1/3

a(t) =
(

t
t0

) 2
3(1+w)

a(t) ∝ t2/3 a(t) ∝ t1/2

t = t0(1 + z)−
3(1+w)

2 t ∝ (1 + z)−3/2 t ∝ (1 + z)−2

H(t) = 2
3(1+w)

t−1 H(t) = 2
3t

H(t) = 1
2t

t0 =
2

3(1+w)
1
H0

t0 =
2

3H0
t0 =

1
2H0

q = 1+3w
2

q = 1
2

q = 1
2

ρ = 1
6πG(1+w)2

1
t2

ρ = 1
6πG

1
t2

ρ = 3
32πG

1
t2

Table 1.1: The main relationships in the flat models in three primary cases, that

is the general case, pure matter universe, and pure radiation universe.

H(t) is a decreasing function of time, thus the expansion of the Universe slows for

t ⇒ ∞ and increases going towards the Big Bang.

The other fundamental parameter we consider is the deceleration parameter,

which provides a dimensionless measure of the second derivative. From its defini-

tion and the derivatives calculated based on Eq. (1.96), we have

q(t) := − ä(t)a(t)

ȧ2(t)
=

1 + 3w

2
. (1.99)

In an Einstein-de Sitter (EdS) universe, when we have only dust (w = 0), the ex-

pansion decelerates uniformly. Deceleration is a general feature of models derived

from the Friedmann equations, but in the case of EdS there is no time dependence

in the deceleration.

In Table 1, a summary of the main general results of a flat model is provided

along with corresponding relations for two cases of single-component Universes:

the case of a pure matter Universe (w = 0) and the case of a pure radiation

Universe (w = 1/3).

A general property of flat models is that the scale parameter grows indefinitely

with time, with a constant deceleration parameter. Increasing the value of w and

thus increasing the pressure leads to an increase in the deceleration parameter.

Conversely, a negative value of w, indicating behavior similar to that of a cos-

mological constant, corresponds to negative pressure, and results in accelerated

expansion. Finally, we note that in these models, the age of the Universe, t0, is

closely linked to the current value of the Hubble parameter:

t0 =
2

3(1 + w)

1

H0

. (1.100)
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1.2.4 Curved Universes: general proprieties

We will continue to consider a Universe composed of a single-component fluid,

but in this case, we have Ω0 ̸= 1. Let us revisit Eq. (1.88):

(
ȧ

a0

)2

= H2
0 [(1− Ω0) + Ω0a

−(1+3w)] . (1.101)

There will be a regime in which one of the two terms of Eq. (1.101) dominates

over the other and vice versa. This implies that we can find a value a∗ such that

the two terms are equal:

|1− Ω0| = Ω0(a
∗)−(1+3w)

⇒ a∗ =

(
|1− Ω0|

Ω0

)− 1
1+3w

. (1.102)

When a < a∗ we have

Ω0(a
∗)−(1+3w) ≫ 1− Ω0 , (1.103)

and so the second term wins over the first one, so we can write:

ȧ2 = H2
0Ω0a

−(1+3w) , (1.104)

that differs from the flat case only for a factor Ω0. This tells us that the curved

Universes act nearly as flat for a < a∗. The different relations for the quantity of

the Universe will have similar behaviors

H(t) = H0(1 + z)
3(1+w)

2 Ω0 , (1.105)

t = t0(1 + z)−
3(1+w)

2 Ω
−1/2
0 . (1.106)

In this case, the space is significantly curved only when a > a∗, while before this

term it acts like a flat universe. Thus it is a good approximation to ignore the

curvature term in the early Universe (until z ∼ 10). On the other hand, at low z

the sign of Ω is important, and two different scenarios are possible for open and

closed universes.
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1.2.5 Open universes

Models with Ω < 1 are called open models. In these models, the scale parameter,

a(t), grows indefinitely with time, similar to what occurs EdS models.

From Eq. (1.101) we have that ȧ never goes to zero; thus if we assume that the

scale function is positive at a certain time t0, its derivative, ȧ, is always positive.

The second term in (1.101) is negligible for a ≫ a∗ and thus for these universes

we have the following relation:

da

dt
= ȧ = H0 (1− Ω0)

1/2 . (1.107)

Thus the growth of a in an open universe is linear with time. We can also derive

the following relations:

H =
ȧ

a
∝ 1

t
, (1.108)

q = − äa

ȧ2
⇒ 0 , (1.109)

ρ = ρ0a
−3(1+z) ∝ ρ0,crit , (1.110)

we notice that the expansion is free and not decelerated.

1.2.6 Closed Universes

Models with Ω > 1 are called closed models. In this case, there exists a time at

which the first derivative of the scale factor, ȧ, is zero. From Eq. (1.101) with

ȧ = 0, we find the value of a for which the derivative is null, that is the maximum

for the function a(t) is :

(1− Ω0) + Ω0

(
a0
amax

)1+3w

= 0

⇒ amax = a0

(
Ω0

Ω0 − 1

)1/(1+3w)

. (1.111)

At this maximum value of the scale factor we have a minimum density:

ρ (amax) = ρ0(amax)
−3(1+w) = ρ0

(
Ω0 − 1

Ω0

) 3(1+w)
1+3w

. (1.112)
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Figure 1.4: Evolution of the scale parameter a(t) for flat universes, open universes and closed

universes.

Equation (1.101) is quadratic, so after the maximum the curve is symmetric and

decreasing. The close model predicts a second singularity: the universe will close

on itself, in a phenomenon called the Big-Crunch. Finally, it is worth noting that

in a closed model, quantum gravity theories generally predict a Universe that

oscillates between consecutive Big Bangs and Big Crunches.

Figure 1.4 shows the behavior of the scale function a(t) for the three different

cases considered: flat Universe, open Universe, and closed Universe.



Chapter 2

Growth of density perturbations

In this chapter, we will introduce the main concepts and specific notions that serve

as the theoretical basis for the method used in this thesis work. We will briefly

describe the evolutionary process that has led to the formation of gravitational

structures from small perturbations in the primordial density field of the Universe.

Then we will introduce the concept of clustering, with particular attention to the

two-point correlation function.

2.1 Density perturbations

Having described the temporal evolution of the matter density of the Universe

(1.77) and of its scale factor (1.96), we can reconstruct the evolutionary history

of the dominant components and the expansion of spacetime. In particular, we

can identify the time when radiation and matter decoupled, a period when the

Universe was much denser and hotter than it is today. It is astonishing to no-

tice the homogeneity and isotropy of the CMB when we consider two opposite

directions in the sky. In Fig. 2.1 we can see the famous map of the tempera-

ture fluctuations produced by the European Space Agency (ESA) Planck mission

(2013) which shows the almost perfect homogeneity of the CMB. The issue arises

from the fact that regions so far apart in the CMB present nearly the same tem-

perature and other physical properties. Apparently these parts of the Universe

never exchanged information, because they are at distances larger than those that

can be reached from the Big Bang due to the maximum velocity of the signal,

that is c. This is referred to as the horizon problem. For this reason, the standard

cosmological model now includes the so-called inflationary theory [28], which was

developed specifically to explain this issue. The inflationary theory posits that in
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Figure 2.1: The anisotropies of the Cosmic Microwave Background (CMB) as observed by

Planck. It shows tiny temperature fluctuations that correspond to regions of slightly different

densities, representing the seeds of all future structure: the stars and galaxies of today. Imagine

taken by the ESA website [8].

its “initial” phases (until around 10−35s after the Big Bang), the dimension of the

observable Universe was small enough to enable its parts to enter causal contact,

justifying the homogeneity and isotropy we observe today. Then the Universe

entered a very fast (almost exponential) expansion phase called inflation, which

increased its dimensions by a factor between 1025 and 1030. The CMB, which was

generated after the inflationary phase, retains the trace of the initial homogene-

ity despite the cosmological horizons of two distant regions are not overlapping.

Specifically, the cosmological horizon, defined as:

RH = a(t)

∫ t

0

cdt′

a(t′)
, (2.1)

represents the maximum distance a particle can have traveled in the cosmological

time t, thus establishing an observational limit.

Gravitational structures, such as galaxies and galaxy clusters, originate from

the initial inhomogeneities that were generated at the end of the inflationary

phase. In fact, despite the validity of the CP on the largest scales, the CMB

is not perfectly isotropic and presents small temperature perturbations. They

correspond to similarly small disomogeneities in the matter density field, on the

order of ∆ρ̄ ∼ 10−5, where ρ̄ is the average density of the Universe. Under proper

conditions, these fluctuations in the density field can grow in various ways through

gravitational instability, and interact with each other to generate the collapsed

structures surrounding us.
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2.2 Jeans theory

Let us now explore how it is possible to analytically treat the growth of den-

sity perturbations. A simplistic description of this phenomenon is based on the

collapse of a spherical gas cloud in Newtonian mechanics, where its kinetic and

gravitational potential energies are related using the virial theorem. By balancing

these two terms, it is possible to obtain a threshold dimension for the instability

of the structure, known as Jeans instability. The condition of equilibrium is given

by the expression:

1

2
Mv2 =

GNM
2

R
∼ GNMρR2 , (2.2)

where M is the mass of the structure, ρ is the density, R is the cloud radius,

GN is the gravitational constant, and v is the velocity, which is linked to the

temperature. From Eq. (2.2), we can compute the critical radius for instability,

RJ :

RJ = v(2GNρ)
− 1

2 . (2.3)

The gravitational force causes the clouds to collapse with dimensions greater than

RJ . In the more complex cases where we consider the entire Universe, we need to

extend the Jeans theory and consider a uniform medium in which small density

perturbations, dρ, give rise to pressure waves. The relation between pressure and

density can be written as follows:

dP = c2sdρ , (2.4)

where cs is the sound speed in the medium considered. To describe the general

approach of Jeans theory, we will use the simple case of a static Universe. The

line of thought remains the same for non-static cases but requires the necessary

adjustments. First, we consider the system of equations that can handle an unper-

turbed initial state. This system is described by the continuity equation, the Euler

equation of fluid dynamics, the Poisson equation for gravity, and an equation of

state for the pressure, P , as a function of density, ρ, and entropy, (S). If we as-

sume only adiabatic transformations (S = const), we can neglect the dependency
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of P on the entropy. The full set of equations is the following:


∂ρ
∂t

+∇ · (ρv) = 0;
∂v
∂t

+ (v · ∇)v = −∇P
ρ

−∇Φ;

∇2Φ = 4πGNρ;

P = P (ρ, S) = P (ρ),

(2.5)

where in this case Φ is the classical Newtonian potential. Next, we introduce

a linear perturbation, at first order, to the unperturbed solutions (also called

background solutions):


ρ = ρb + δρ;

P = Pb + δP ;

Φ = Φb + δΦ;

v = δv.

(2.6)

These expressions are then inserted into our system (2.5). The goal is to find the

perturbed solutions in Fourier space, which take the form of plane waves, and

from these, obtain a dispersion relation. In our case, we will have:

ω2 = k2c2s − 4πGNρb . (2.7)

The waves generated from the density perturbations are identified by the wave

number k, and they are characterized by a limited (oscillating) amplitude for

ω2 > 0 or an exponential progression for ω2 < 0. As in the case of a gas cloud,

the critical value for instability is given by the limit case ω2 = 0. It is possible to

find the Jeans wave number and the Jeans wavelength, analogous to the critical

radius determined above as follows:

kJ =

√
4πGNρb

c2s
⇒ λJ =

2π

kJ
=

√
πc2s
GNρb

. (2.8)

As before, perturbations with wavelengths greater than λJ will collapse and grow

exponentially.

In the case of an expanding Universe, it is also possible to describe the growth,

or the dissipation, of the density perturbations for the different components of

the cosmic fluid analytically in linear order. However, there are some important
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differences in the approach worth noticing. First of all, it is necessary to take

into consideration the inhibitor effect of the expansion of the Universe on the

development of the fluctuations. We will summarize the main results for the

instability evolution, introducing a variable named density contrast:

δ =
ρ− ρ̄

ρ̄
, (2.9)

where the density ρ is a function of space and time, and ρ̄ is the average density

of the background. We can distinguish two main scenarios:

• outside the cosmological horizon, RH , the matter does not interact directly

thus we can neglect the equation of fluid dynamics. It is accurate to con-

sider only the Friedmann equations (1.28), (1.29). The perturbation will

behave like a closed Universe, overdense and embedded in a flat background

Universe. Equaling the Hubble parameters obtained from the respective

Friedmann equations of the two Universes, we can write the following ex-

pression for the density contrast

δ =
3

8πGN ρ̄a2
. (2.10)

From Eqs. (1.77) and (2.10) we can write:

δ ∼ a(1+3w) . (2.11)

Since the constant w depends on the dominant component of the Universe

at each epoch, we will distinguish the Universe before and after the matter-

radiation equivalence (ρM = ρR). Using Eq. (1.96) for a(t), we have that

before the equivalence, when the radiation is the dominant part, w = 1/3

and δR ∼ t1/2. On the other hand, in the epoch in which matter is the

dominant part, w = 0 and δM ∼ a ∼ t2/3. In both cases, the perturbations

will grow.

• Inside the cosmological horizon, it is necessary to approach the problem in

a different way. Specifically, we have to consider the Eq. (2.5) in comoving

coordinates. The main consequence is that, before the equivalence, in a rela-

tivistic fluid the speed of sound is c/
√
3. Therefore we obtain a Jeans length

greater than RH that corresponds to having no growth of the perturbations:
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the pressure travels too fast to permit the collapse of the fluctuations. Sim-

ilarly, before the equivalence, the fast expansion of the Universe restricts

also the growth of dark matter perturbations. After the equivalence, when

matter became dominant, the development of dark matter perturbations

with wavelengths greater than λJ follows a trend similar to that found out-

side the cosmological horizon. The baryons, however, remain coupled to the

radiation due to electromagnetic interactions (Thompson scattering) until

the decoupling epoch. After decoupling, the baryon perturbations find the

potential wells created by dark matter and, influenced by gravitational at-

traction, begin to grow in a similar manner (δbar ≃ δDM).

The dark matter is observable only through gravitational effects. It represents

the main component (nearly 85%) of the matter density of the Universe and, as

we have seen, provides the structures inside which the large-scale baryonic matter

evolves until today.

In the context of determining how dark matter influences baryonic structures,

we need to introduce two different models: one based on the assumption of hot

dark matter (HDM) and another on cold dark matter (CDM). The mass of the

dark matter particles determines when they decouple from the radiation. HDM

is composed of less massive particles that remain relativistic after decoupling,

while CDM consists of more massive particles that become non-relativistic before

decoupling. Starting from the definition of the Jeans wavelength we can introduce

a corresponding Jeans mass beyond which the perturbations can grow:

λ ∼ v
√
ρ
⇒ MJ ∼ ρλ3

J ∼ ρv3

ρ3/2
. (2.12)

Different velocities result in different Jeans masses; with dissipative phenomena

for dark matter, this determines a critical mass above which collapse can occur.

If the perturbation has a corresponding Jeans mass below this critical mass, the

density wave will be canceled. During the dark matter decoupling and radiation-

matter equivalence, we observe the maximum value for the Jeans mass. In the

model with HDM, this value corresponds to around 1016M⊙ while in the model

with CDM corresponds to 105−6M⊙. These values tell us how today structures

have formed, and the assumption of one model rather than the other completely

changes the history of large-scale perturbations. In the case of HDM, only the most

massive density perturbations can collapse, which then fragment to form smaller

structures; this dark matter halo formation process is called top-down. On the
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other hand, with CDM, the collapse of small fluctuations is also possible, so we

expect that large structures are formed by the association of smaller structures,

in a bottom-up process.

2.3 Correlation function

We have examined in the above section how and under what conditions primor-

dial density fluctuations can grow and evolve. Now, we consider how we can

extract cosmological information from the statistical properties of the large-scale

density perturbations. Matter clustering refers to the statistical spatial proper-

ties of structures, that gather in groups of various sizes. This phenomenon can be

studied from various perspectives. In particular, we are interested in analyzing

the clustering through the two-point correlation function, 2PCF.

Let us again consider the density contrast defined in Eq. (2.9). According to

Bayes theorem, the probability of having a density perturbation δ1 in a comoving

volume dV1, at a certain comoving distance r from another perturbation δ2 in a

volume dV2, is

dP12 ≡ dP (1|2) = dP (1)dP (2|1) . (2.13)

If the density distribution was completely random, that is the objects were dis-

tribuited homogeneously, we would have

dP12 = ρ̄2dV1dV2 . (2.14)

Since the perturbations grow due to gravitational interactions that drive their dy-

namics, it is necessary to introduce a factor that accounts for how the distribution

deviates from a random one. This can be parameterized by a 2PCF, ξ(r), which

modifies the above probability as follows:

dP12 = ρ̄2dV1dV2[1 + ξ(r)] . (2.15)

The terms in Eq. (2.15) can be linked to the Bayes theorem as follows:

ρ̄dV1 = dP (1) , (2.16)

ρ̄[1 + ξ(r)]dV2 = dP (2|1) . (2.17)
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Thus, by definition, ξ(r) is equal to 0 when the distribution is random at each r,

so that we can regain Eq. (2.14).

Therefore, the correlation function of the density field represents the prob-

ability excess or deficiency, compared to a random distribution, of finding two

perturbations at a certain distance. An explicit definition of ξ(r) is the following:

ξ(r) =
⟨ρ(x)ρ(x+ r)⟩ − ρ̄2

ρ̄2

=
⟨[ρ(x)− ρ̄][ρ(x+ r)− ρ̄⟩

ρ̄2

= ⟨δ(x)δ(x+ r)⟩ , (2.18)

where the operator ⟨⟩ indicates the spatial average on all the considered volume.

We can notice also how the correlation function is proportional to δ2.

2.3.1 Tracers of the density field

Until now, we have considered the correlation function of the continuous density

field of matter, a quantity that is not easy to observe directly. It is therefore

necessary to use some assumptions that enable us to utilize astrophysical objects

as tracers for the total density distribution of matter. We have seen in the pre-

vious section how the baryon density perturbations grow differently from those

of dark matter. After decoupling with radiation, baryonic matter collapses into

the potential wells already formed by dark matter. The formation of structures,

like galaxies, happens inside these potential wells not only because of gravity but

also due to various astrophysical processes (such as, e.g., radiative cooling, colli-

sional cooling, etc.). Thus observable astrophysical objects do not directly trace

the continuous density distribution of matter; nevertheless, a link exists between

them.

In general, the density contrast, δobj, of any class of object is a function of the

total density contrast, δM :

δobj = f(δM) . (2.19)

The function f , which links the two density contrasts, must account for all the

astrophysical processes that lead to the formation of structures starting from the
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initial density perturbations and can depend on any physical characteristic of the

objects. In the first approximation, we can assume that f is a linear function of

the matter density field, and introduce the bias factor b as follows:

δobj = bδM , (2.20)

where b provides the level of clustering of a given class of objects. In particular,

when b > 1, the objects are more clustered than the underlying matter distribu-

tion. It can be derived the following relation:

b =

√
ξobj
ξM

. (2.21)

On intermediate scales, around 10− 50 Mpc h−1, the 2PCF can be described by

a power law of the following kind:

ξ(r) =

(
r

R0

)−γ

, (2.22)

where R0 is the scale radius, also called the correlation length, at which ξ(R0) = 1.

The values of R0 and of the slope γ vary depending on the properties of the selected

class of objects and the redshift [18]. In Figs.2.2 and 2.3 we can see how the slope

γ, while showing evolution with redshift, is substantially constant with the stellar

mass of the galaxies and the absolute magnitude, γ ≈ 1.8 [46]. On the other

hand, the correlation length shows a clear dependency on the stellar mass and the

absolute magnitude, which increases also with the redshift.

2.3.2 Correlation function estimator

To estimate the 2PCF of a discrete distribution of tracers, we shall compare the

number of object pairs with the number of pairs in a random catalogue with the

same selection effects as in the tracer catalogue. The simplest estimator of the

2PCF is the so-called Peebles-Hauser estimator, also called the natural estimator

[49]:

ξ(r) =
NRR

NDD

DD(r)

RR(r)
− 1 , (2.23)
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Figure 2.2: The clustering parameters of the Vimos Public Extragalactic Redshift Survey

(VIPERS) galaxy catalogue. The blue points are galaxies measured in the redshift interval

[0.5, 0.7], the red points in the interval [0.7, 0.9], and the green points in the interval [0.9, 1.1].

Figure taken from [46].

Figure 2.3: Similar results to those reported in Fig. 2.2, but as a function of the B-band absolute

magnitude. Figure taken from [46].
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where DD(r) is the number of object pairs at a comoving distance r, RR(r) is the

number of pairs of the random catalogue, and NDD

NRR
is the fraction between the

number of couples of the two catalogues.

This estimator is particularly sensible to fluctuation given the discrete nature

of the distributions ([35], [38]) and thus it does not provide an optimal choice for

measuring the 2PCF. It is indeed more efficient to use e.g. the estimator proposed

by Landy-Szalay [39] (LS estimator), which also includes the cross-pairs DR(r)

between the tracer and random catalogues:

ξLS(r) = 1 +
NRRDD(r)

NDDRR(r)
− 2

NRRDR(r)

NDRRR(r)
. (2.24)

This estimator is less affected by the fluctuations due to the discrete nature of

the catalogues, which introduce only second-order terms. Its variance is almost

completely Poissonian, at small scales relative to the volume of the catalogue,

and thus depends only on the square root of the number of pairs in the separation

bins,
√
DD(r). In our thesis work, we exclusively used the LS estimator for the

two-point correlation function, using a fast C++ algorithm, which will be described

in Chapter 5.
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Chapter 3

The Magneticum cosmological

simulation

The primary goal of numerical simulations is to solve problems that cannot be

addressed analytically. For dynamical simulations, where we study a system of

gravitationally interacting particles, the process involves discretizing the density

field that determines the gravitational potential and computing the forces acting

on each mass element at discrete time intervals. The finer the discretization of the

density field and the time intervals, the more accurate the simulation. However,

increasing the mass resolution to represent the actual density field better, or

improving the temporal resolution, impacts the computational time significantly.

In this chapter, we will introduce the fundamentals of numerical simulations

in the Newtonian regime and explore the different approaches used to implement

equations for gravity in dynamical simulations and hydrodynamics in hydrody-

namic simulations. Following this introduction, we will describe the Magneticum

cosmological hydrodynamic simulation and the main characteristics of the cata-

logues extracted from it. These are the catalogues on which the AP test has been

performed in this thesis work.

3.1 N-body simulations

By modelling the gravitational potential generated by a discrete distribution of

simulated particles, it is possible to update the position and velocity of each

particle at each time interval while measuring the total force acting on it. This

operation can be performed in different ways, depending on the desired resolution

and computing time.
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In this section, we will briefly analyse the motion equations of a generic cos-

mological simulation, and then describe the principal methods used to implement

a code for N-body simulations.

3.1.1 Equations of motion

In Newtonian dynamics, the motion of a particle of unitary mass is given by

r̈ = −∇Φ , (3.1)

where r is the particle position, r̈ its acceleration and Φ is the gravitational po-

tential given by the Poisson equation:

∇2Φ = 4πGρ(t, r) , (3.2)

where ρ(t, r) is the matter density that generates the gravitational field. Gen-

eralizing for a possible expanding space and using for convenience the comoving

coordinates, x, the equations that describe the position and velocity at each point

become: {
ẍ+ 2 ȧẋ

a
= −∇Φ

a2
;

∇2Φ = 4π[ρ(t,x)− ρ] = 3H0Ω0δ
2a

;
(3.3)

where a is the scale factor and H0 is the Hubble constant defined in Chapter 1,

while ρ is the average density.

These equations must be integrated for each particle at each time interval, with

the positions and velocities at a general time t1 that become the initial conditions

for the integration to a time t2 > t1.

3.1.2 Primary implementations for N-body simulations

Particle-particle

The most direct way to implement a code that integrates Eq. (3.3) is called

the particle-particle (PP ) method. This involves computing the force acting on

each particle at each time interval, ∆t, as the sum of every contribution from

all other particles. At each time interval, all the force contributions are summed

for all the N(N − 1)/2 particle pairs, and the motion equations are integrated to

compute the new velocities and positions for each particle. When the time counter

is updated, all the forces are reset to zero, and the previous process is iterated.
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It is necessary to note that the gravitational force at a small distance tends to

infinity, and this can create numerical problems. Therefore, avoiding interaction

on small scales is opportune because they require a very high temporal resolution

to be accurately represented. Thus a softening parameter, ϵ, is introduced in the

computation of the acting force between a pair of particles at a distance r. The

force takes the following form:

F (r) ∼ 1

(r2 + ϵ2)
. (3.4)

The main problem with the PP method is the fact that at each time step, it is

necessary to compute N(N − 1)/2 ∼ N2 forces. This makes the computing time

proportional to the square of the particle number. The PP approach is generally

applied only to the systems with a small number of particles.

Particle-mesh

Suppose we introduce a spatial grid in which each cell mediates the density

field of the contained particles. In that case, it is possible to reduce the needed

time to compute the gravitational potential generated by each particle. Using a

grid means mediating the density locally and thus the gravitational potential.

This method called particle-mesh (PM), is generally implemented by moving

into the Fourier space. The approach significantly reduces the computational time,

which, in the first approximation, becomes proportional to N +M3logM3 ≪ N2,

where N is the number of simulated particles and M the number of nodes in the

grid.

Even though the PM method is advantageous in terms of computational time

compared to the PP method, it leads to a significant loss of resolution due to the

averaging of the gravitational potential over the cells, especially at small scales.

Particle-particle-particle-mesh

A third approach in this type of analysis is represented by the hybrid method

called particle-particle-particle-mesh (P 3M) introduced by Hockney in the 1971

[31]. If we define the critic radius rc, the acting force on every particle can be

broken down as follows:

F = Fr<rc + Fr>rc , (3.5)

in which Fr<rc represents the contribution to the total force given by the par-

ticles near the particle considered. This contribution is computed with the PP

method, which ensures a good resolution at a short range. If we define Nrc as the
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number of particles contained in the sphere of radius rc, the contribution to the

computational time of this part of the method is proportional to NNrc < N2.

On the other hand, Fr>rc represents the contribution to the force caused by

particles far away, which is modelled as an average density field. Thus, at these

scales a grid is used, and a PM method. As we have seen in the previous section,

this approach significantly saves time but results in less accuracy in representing

the long-distance force. The computational time for this contribution is the same

as observed for the PM method.

We now make two considerations on the P 3M . The first is the fact that we need

to define a critical distance rc which identifies the scale within the PP method

can be used. Choosing a critical distance that is too large results in the method

resembling a pure PP approach, thereby increasing the calculational time. Using

a critical distance that is too short instead makes the method similar to a pure

PM approach, worsening the resolution. Furthermore, it is not trivial having

Fshort(rc) = Flong(rc). Hockey and Eastwood [23] have shown how it is possible to

make the force (and its derivates) continuous at rc through adequate filtering.

The second consideration is about the gravitational attraction between par-

ticles. As clustering increases, so does the number of pairs within the critical

radius. Consequently, at each time step, the computational time grows, making

the P 3M method less efficient over time.

In a purely cosmological context, another problem arises. For distances within

the critical radius, the P 3M operates exactly like the PP method, thus the soften-

ing parameter, ϵ, is used to limit the interactions on very small scales. The latter

could cause significant deflections in the particles’ motions, making it difficult to

track their dynamics accurately. We can think of the ϵ parameter as a physical

dimension of the particles, below which gravitational interactions do not occur. In

cosmological simulations, the particles do not represent specific physical entities

(such as galaxies), but just mass elements. Determining an appropriate value for

ϵ is not straightforward; therefore, it is necessary to set a value for ϵ based on the

stability of the utilized codes.

Hierarchical tree

We introduce here the numerical method called hierarchical tree (HT ), as in

the PM3 method, also in this case, the acting forces on each particle are computed

in different ways depending on the distance: the force generated by close particles

is computed by direct sum, like in the PP method, while for the long interactions

are computed in this case using the multipole expansion of the potential.
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At each time step, a hierarchical tree of pseudo-particles is defined. The sim-

ulated volume is divided into cells, each of which is iteratively subdivided into

sub-cells, until each cell contains at most one particle.

The interaction between a given particle and a group of distant particles can be

approximated by considering the interaction between the particle and a pseudo-

particle located at the center of mass of the group. The potential of this pseudo-

particle can be computed as the sum of his multipole expansion, truncated at a

certain order. For each pseudo-particle, we compute the ratio between its size

and its distance from the considered particle. If this value is less than a certain

fixed parameter θ, the internal structure of the pseudo-particle is negligible, and a

multipole expansion can approximate its potential. In the other case, if the ratio

is greater than θ, we must consider a sub-cell and repeat the operation.

In this way, the dependency of the computational time on the number of

particles decreases from N2 of the PP method to N logN .

3.2 Hydrodynamic simulations

So far we have described methods that enable us to simulate a physical system

in which the only force is gravity. This can be sufficient if we want to study the

dynamic of a non-collisional system, like the interactions of galaxies and clusters

of galaxies on large scales. Every information on the hydrodynamic state of the

simulation particles is neglected.

To add hydrodynamics, we need to consider the physics of baryonic gas in

addition to gravity. This involves associating each particle with its state functions.

If v is the velocity of every fluid element, P the pressure, and ρ the density, we

need to add and integrate the Euler equation into the motion equation at each

time step:

∂v

∂t
+ (v×∇)v = −∇P

ρ
−∇Φ , (3.6)

together with the continuity equation, that assuming homogeneity and isotropy

(∇P = ∇ρ = 0) becomes:

∂ρ

∂t
+

(
ρ+

P

c2

)
∇v = 0 . (3.7)
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Finally, we need the state equation:

P = P (ρ, S) . (3.8)

The above equations must be solved at each time step, along with the gravity

equations. There are at least two approaches to incorporating gas physics into

N-body simulations.

Eulerian approch

For this approach, we consider a grid of points to solve the equations of the

fluid in question. Hydrodynamic interactions are short-range, so integrating the

equations within each cell requires only the boundary conditions from the adjacent

grid points. The spatial resolution of this type of code can be enhanced by either

refining the grid or using a dynamic grid that automatically adjusts to different

density zones. In cosmology, it is crucial to improve the grid resolution as well as

the mass resolution of dark matter particles [10]. This approach is particularly

efficient in describing shock and discontinuity and can also be adapted to include

other phenomena, as for example the magnetohydrodynamics [55].

This method thus utilizes a grid that mediates the hydrodynamic properties

of the fluid. It aligns well with previous approaches that use a grid (such as PM)

to handle the gravitational potential.

Lagrangian approch

An alternative approach, called Lagrangian, is the one that uses the so-called

smooth particle hydrodynamics (SPH). The characteristics of the thermody-

namic fluid, like pressure and temperature, can be found at each point by appro-

priately mediating the simulation particles. We use the word “smoothed” because

we transition from a discrete distribution of particles to a fluid with continuous

properties through coarse-graining. For this reason, the method is not indicated

to treat shocks and discontinuity. The approach pairs well with methods that

model the gravitational potential directly, such as the PP method. It is impor-

tant to note that we require a particular level of accuracy in selecting spatial and

mass resolutions, especially in the case of self-gravitating fluids [12].

3.2.1 Astrophysical phenomena

In hydrodynamic simulations, whether Eulerian or Lagrangian, it is possible to

consider additional gas physics phenomena beyond those previously discussed.

These phenomena often involve mechanisms that act on scales smaller than the
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simulation resolution and require a so-called sub-grid analysis to be implemented.

The main phenomena to include in an astrophysical simulation are the following.

• Star formation and feedback. Star formation is a key element in dis-

tinguishing among the types of objects that populate the simulation. How-

ever, tracking individual gas clouds that lead to star formation phenomena

requires high mass resolution. Thus, it is necessary to model the star forma-

tion mechanism through prior assumptions. A similar approach is valid for

the accretion mechanisms of black holes, which involve regions not resolved

either spatially or in terms of mass.

Additionally, feedback mechanisms, such as those resulting from supernova

explosions or AGN activity, originate in regions that are not spatially re-

solved. These mechanisms must be implemented using analytical or semi-

analytical models.

• Chemical evolution. Chemical evolution has significant local and global

effects, such as on the radiative cooling rate and consequently on star forma-

tion. However, because chemical enrichment results from complex processes

on small scales, it is necessary to assume an enrichment model.

• Radiative transfer. Radiative transfer is a non-local effect and thus it is

generally spatially resolved. However, introducing a model for the origin of

the radiation field is complicated because it usually comes from unresolved

luminous sources. Typically, two types of radiation fields are implemented

in simulations: a homogeneous field (such as the CMB) or a field generated

by some objects within the simulation.

3.3 Magneticum

In this thesis work, we have performed the AP test using different catalogues

extracted from a large hydrodynamic cosmological simulation, called Magneticum

[22]. The simulation is based on the P-GADGET3 code [53] that implements the

dynamics through a hybrid method between the HT and PM , with the addition

of the fluid hydrodynamic with the SPH. The simulation covers a large comoving

volume, with periodic boundary conditions, initially filled with an equal number

of particles of baryonic matter and CDM. Particle masses satisfy the following
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Figure 3.1: The picture shows a visualization of BOX1 from the Magneticum Pathfinder simula-

tion set. The view spans a total size of 1300 Mpc h−1. The gas filling the space between the

galaxies is visualized (color-coded according to its temperature from cold/brown to hot/light

blue) along with the galaxies and stars forming in the simulation (colored in white).

Volume [(M p c)3h−3] Nparticle mb [M⊙h
−1] mdm [M⊙h

−1]

8963 2× 15263 1.3× 1010 2, 6× 109

Table 3.1: In the table are reported the main information about the BOX1 of the

Magneticum simulation.

relation:

mb

mdm

=
Ωb

Ωdm

. (3.9)

In this way, are taken into account the different abundance of the two components.

There are different realizations of the Magneticum simulation, with different mass

resolutions and volumes. For this thesis work, we have utilized the catalogues

extracted at different redshifts from the realization called BOX1. The considered

redshifts are [0.20, 0.52, 0.72, 1.00, 1.50, 2.00]. In Fig. 3.1 we can see a snapshot

at z ∼ 0.2 of the Magneticum simulation. The volume and the mass resolution of

BOX1 are reported in Table 3.1, while additional details on the simulation can

be found in [45].

The cosmological model of the simulation is the ΛCDM with matter density

parameter ΩM = 0.272, baryonic density Ωb = 0.0456, ΩΛ = 1 − ΩM and H0 =

70.4 km s−1Mpc−1 [36]. This set of cosmological parameters characterized what

we will call the “true cosmology” in the AP test.

Radiative cooling, continuous reheating from an ultraviolet background and

stellar formation with the associated feedback processes (based on a not-resolved
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multiphase model of the interstellar medium) are implemented in the Magneticum

simulation through analytic prescriptions.

The radiative cooling rate is obtained following the same approach presented in

[59], where both the CMB and an ultraviolet and X-ray background from galaxies

and quasars are considered [29]. The contribution to the radiative cooling of the

tracked elements is pre-computed using the code CLOUDY [26], an algorithm for

computing photoionization in an optically thin gas in photoionization equilibrium.

In the multiphase model for star formation, the interstellar medium is treated

as a two-phase medium where the clouds of cold gas are formed by cooling and

are embedded in a hot gas, assuming pressure equilibrium [54]. Groups of bary-

onic mass elements that are sufficiently massive have an associated rate of star

formation. Consequently, star particles are formed with a mass distribution that

follows the initial mass function model by Chabrier [15]. It is also assumed that

the 10% of the more massive stars explode as a type II supernova. The energy

released (1051 erg) is assumed to form galactic winds, with mass loss proportional

to the star formation rate.

The simulation also includes a treatment for the growth of black holes and

AGN feedback, also implemented with sub-resolution models. The black holes

are sink particles of initial mass 10 M⊙, hosted in the more massive object. They

can grow in mass through gas accretion following the Bondi-Hoyle-Lyttleton ap-

proximation [14] [13] [32]:

ṀBH ∼ 4πG2
NM

2
BHρ

(c2s + v2)3/2
, (3.10)

where ρ and cs are the density and the sound speed of the interstellar medium

around the black hole, while v is the black hole’s speed with respect to the sur-

rounding gas. The self-gravitating haloes of CDm are identified with an algorithm

called friends-of-friends (FOF) [33], [50]. This algorithm identifies virialized groups

of at least 32 CDM particles, separated by a distance less than 0.16 l, where l

is the average separation between the particles [21]. At this point, it is possible

to identify overdense and self-gravitating sub-structures within each CDM halo.

The identification of such structures is implemented through a modified version

of the SUBFIND algorithm, which also considers the baryonic matter particles [21].

Both these steps are performed at each time snapshot of the simulation.

Once the dark matter halo and the sub-structures they contain are identified,

each structure is associated with physical properties derived from the fluid dy-

namics of the baryonic mass particles that compose it. Based on these properties,
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it is possible to determine the type of object each structure represents, whether

it be a galaxy, an AGN, or a cluster of galaxies.

Structures with a sufficient stellar formation rate are associated with particle

stars and identified as galaxies. Each galaxy is assigned a stellar mass, a star

formation rate, and an absolute magnitude in different bands, in addition to their

velocity and position. This allows for the sub-sampling of the galactic population

to analyse the characteristics of specific classes of objects.

The AGNs are a particular sub-sample of galaxies. The more massive galaxies

(total stellar mass of roughly 1010 M⊙h
−1) host a black hole with an initial mass

of 105 M⊙H
−1, that can grow through gas accretion or merging. From the ac-

cretion rate (normalized to the Eddington accretion rate), the emitted bolometric

luminosity is computed as follows:

Lbol = 0.1ṀBHc
2 . (3.11)

For a more complete description of the AGN sample in theMagneticum simulation

see [30].

Mass elements of both dark and baryonic matter contained in the virialized

halo, identified through the use of the FOF algorithm, are recognized as galaxy

clusters. The cluster positions are computed from the central particle positions of

the identified group, while the cluster velocities are the average velocities of the

systems. Moreover, for each cluster, measurements of the mass and temperature

within a certain virial radius R500 are available. This radius is defined as the

scale at which the density is 500 times greater than the critical density of the uni-

verse. Finally, an estimation of the X-ray luminosity given by the bremsstrahlung

emission is also provided for each cluster.

The potential advantage of performing the AP test on a catalogue of galaxy

clusters is the greater ease with which it is possible to model the dynamical dis-

tortions.

Table 3.2 reports the main characteristics of the used catalogues. Specifically

for each tracer, the number of objects of the catalogues at different redshifts are

reported. For galaxies, the average value of the stellar mass (M⊙), the absolute

magnitude in the G band (G), and the star formation rate (SFR) are reported.

For the AGN the average values of the black hole mass (MBH), of the bolometric

luminosity (Lbol), and of the accretion rate normalized to the Eddington accretion
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Galaxies

Nobj [10
6] M⊙ [1010M⊙h

−1] G SFR [M⊙h
−1yr−1]

z = 0.20 3.24 8.9 -21.48 16.24

z = 0.52 2.87 7.6 -21.19 21.72

z = 0.72 2.60 6.8 -21.04 25.78

z = 1.00 2.18 5.7 -20.87 32.77

z = 1.50 1.64 4.4 -20.57 42.35

z = 2.00 1.12 3.3 -20.27 48.33

AGNs

Nobj [10
5] MBH [108M⊙h

−1] Lbol [10
45ergs−1] f

z = 0.20 9.5 6.0 0.59 0.03

z = 0.52 6.9 6.7 1.13 0.05

z = 0.72 5.6 6.9 1.26 0.06

z = 1.00 3.6 8.2 2.80 0.10

z = 1.50 2.0 8.9 9.26 0.21

z = 2.00 0.9 8.1 16.34 0.25

Galaxy clusters

Nobj [10
5] M500 [10

12M⊙h
−1] T 500[Kev] L500 [10

42ergs−1]

z = 0.20 5.3 8.3 0.239 6.11

z = 0.52 4.8 7.2 0.240 7.76

z = 0.72 4.3 6.5 0.227 9.52

z = 1.00 3.5 5.5 0.226 10.80

z = 1.50 2.4 4.4 0.203 13.14

z = 2.00 1.4 3.4 0.170 14.33

Table 3.2: The average characteristics of the analysed catalogues, for the different

tracers and redshifts.
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rate are reported. The last reported parameter is defined as follows:

f ≡ MBH/M edd, (3.12)

where MBH is the average mass accretion rate of the black hole and M edd is

the Eddington rate at which the emitted luminosity produces enough radiation

pressure to balance the gravitational attraction, thereby halting stop the accretion

onto the black hole. Finally, for the galaxy clusters the average value of mass,

temperature, and luminosity in the X-ray band at virial radius (M500, T 500, L500)

are reported.



Chapter 4

The Alcock-Paczyński test

Until now, we have discussed the 2PCF as dependent solely on the distance be-

tween two objects, without considering the directions with respect to the line of

sight along which they are separated. The most direct measurement of the galaxy

density field comes from galaxy redshift surveys, where both the angular posi-

tions and redshifts (a measure of radial distance) are recorded. This provides a

3D position for each galaxy, enabling the measurement of their three-dimensional

statistics, such as the 2PCF. What we have just said for galaxies is also valid for

other generic astrophysical tracers.

However, interpreting the 2PCF measured from redshift surveys presents sev-

eral challenges. First, as noted in Section 2.3.1, there is the issue of bias: the

clustering of tracers differs from that of matter. Second, tracer redshifts include

not only the cosmological redshift, which depends on their distance, but also a

Doppler shift due to their peculiar velocities. A tracer’s redshift would indicate

its distance accurately only if the tracer was stationary relative to the expanding

background space. Since instead tracers are not stationary, their peculiar velocities

affect the observed redshift through the Doppler effect. Consequently, an accurate

redshift measurement does not directly translate into an unambiguous measure-

ment of radial distance. Additionally, tracer velocities are correlated with matter

density, leading to modifications in galaxy statistics known as redshift-space dis-

tortions (RSDs). A third significant issue is the impact of incorrect assumptions

about the cosmological model used to compute distances, the so-called geometric

distortions. Through the AP test, we will explore how this issue can be leveraged

as a resource to infer constraints on cosmological parameters.

To study these effects, it is more effective to use the bidimensional form of the

2PCF, breaking ξ(r) down into components along the directions perpendicular
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and parallel to the line of sight. We therefore introduce ξ2D(r⊥, r||), where r⊥ and

r|| are, respectively, the separations of two objects perpendicular and parallel to

the line of sight.

Given the CP, there are no preferred directions in the measurement of ξ(r),

so the signal must be isotropic. Based on this principle and in the absence of

distortions, the bidimensional correlation function can be simply written as:

ξ2D(r⊥, r||) = ξ
(√

r2⊥ + r2||

)
. (4.1)

4.1 Distortion of the bidimensional 2PCF

4.1.1 The redshift-space distortions

The Hubble-Lemâıtre law, Eq. (1.15), describes a linear relationship between the

speed of recession of astronomical objects (and consequently their redshift) and

their positions. However, as previously mentioned, the proper motions of these

objects generate a Doppler effect that is added to the cosmological redshift as

follows:

zobs = zH +
v||
c
(1 + zH) , (4.2)

where zH is the redshift contribution from the Hubble flow, with an additional

term accounting for the object’s velocity along the line of sight.

One possible way to address RSD is to start from the continuity equation for

matter at late times (z ≲ 10), assuming small distortions in the true positions

of objects and operating in the linear regime. Through a series of steps and

assumptions [20], it is possible to derive an expression for RSD in terms of density

contrast as follows:

δg,RSD(k) = [b+ fµ2
k]δ(k) . (4.3)

In Eq. 4.3, µk is defined as êz · k̂, i.e. the cosine of the angle between the line

of sight and the wavevector k̂ of the Fourier transform of the density contrast.

This equation also introduces the growth factor of density fluctuations, f , and

the tracer bias, b. Firstly, since fµ2
k ≥ 0, the apparent overdensity in redshift

space is larger than in real space, where it would be simply b · δm(k). This can

be noticed from the left side of Fig. (4.1): if equal-density contours are squashed,

then the galaxies are moved close together and hence their density is increased
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around an overdensity. The opposite happens around underdensities. Both effects

act to increase the apparent galaxy density contrast. The second notable feature

of Eq. (4.3) is that only perturbations with wavevectors parallel to the line of

sight are enhanced. A perturbation with k perpendicular to the line of sight,

maintaining a constant density along the line of sight, experiences no RSD. The

physical explanation of this effect is simply given by the fact that the objects

are falling towards the overdense region. The objects closest to us are moving

toward the center of the overdense region and hence away from us, so they appear

farther from us than they actually are. Similarly, objects on the “other side” of

the perturbation are moving towards us, so they appear closer to us than actually

are. The overall effect is to induce an apparent anisotropy in an otherwise circular

overdensity, also referred to as the Kaiser effect [34].

As we move to smaller, nonlinear scales, the nature of the RSD changes. The

velocity is dominated by the object’s random motion within matter overdensities.

This introduces a significant Doppler effect along the line of sight that perturbs

the measurement in a random manner, similar to the impact of uncertainties in the

measurement of the cosmological redshift. These effects are also called “fingers

of God” and on the right side of Fig. (4.1) we can see how they modify the

bidimensional 2PCF.

Both of these effects, on large and small scales, more intensely affect smaller

objects like galaxies, which exhibit stronger proper motions and more intense

coherent motions larger structures. In principle, it is possible to model and remove

the cosmological redshift contamination produced by the velocity along the line

of sight of the considered objects (we will return to this in the next chapter). In

Fig. (4.2), we can see how the RSDs affect the image of the galaxies’ distribution,

with the “fingers of God” effect particularly visible on the left side of the figure.

From now on, we will refer to redshift space (s⊥, s||) as the space in which the

measured redshifts are used to compute comoving distances and thus where the

2PCF shows the RSD. Conversely, we will refer to real space (r⊥, r||) as the space

in which the true comoving distances are used.

4.1.2 Geometric distortions

Once we have corrected for the RSD, we could expect the bidimensional 2PCF

to be perfectly circular in real space. However, this is only true if the cosmo-

logical parameters used to measure distances are correct. Otherwise, geometric

distortions occur, modifying the shape of the isocorrelation curves in both real
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Figure 4.1: RSD, in the linear/large-scale (left) and nonlinear/small-scale variants (right), both

considering the case of central overdensity denoted by the filled circle. The observer is assumed

to be far away below the figure so that the line of sight direction n̂ is vertical. In each case, a

contour of constant density (dashed lines), which is circular in real space, is distorted in redshift

space (solid lines) so that it looks asymmetric. Wide arrows indicate the direction of the velocity

flow, while arrows with dashed lines indicate the displacement due to the line-of-sight velocity.

In the nonlinear case, as the absolute scales are smaller, a point on the “far side” (top) of the

overdensity is mapped onto a point on the opposite side. Imagine taken from Chapter 11 of [20].

Figure 4.2: Galaxies distribution from the Sloan Digital Sky Survey into the redshift space on

the left side and in the real space on the right side. Image taken from [56].
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and redshift space.

Suppose we have successfully modeled and completely removed the RSD, and

we want to measure the distance between two objects in the plane (r⊥, r||). To

measure their separation, we should start from two different observables: the

difference in redshift, ∆z, of the two objects for the separation along the line of

sight, and the angular separation, ∆Θ, for the perpendicular component to the

line of sight. We can then transform these observables into the separations we are

interested in and obtain the following:

r|| =
c

H(z)
∆z, r⊥ = (1 + z)DA(z)∆Θ , (4.4)

where DA is the angular diameter distance defined as:

DA(z) =
1

1 + z

∫ z

0

dz′

H(z′)
. (4.5)

We can immediately notice how the two components of the distance depend dif-

ferently on the Hubble constant (and consequently on the assumed cosmological

model). Modifying the cosmological model introduces different distortions in the

lengths along the two directions. In particular, given two cosmological models

marked by subscripts 1 and 2, we have the following:

r||1 =
H2(z)

H1(z)
r||2 , (4.6)

and

r⊥1 =
DA,1(z)

DA,2(z)
r⊥2 . (4.7)

All this also happens in redshift space, where these distortions are added to the

previously seen RSD. These distortions are also called Alcock-Paczyński (AP)

distortions and are directly connected to the geometry of the universe, enabling

us to perform a test for the determination of cosmological parameters.

4.2 The Alcock-Paczyński test on the bidimen-

tional 2PCF

Let us suppose we are working in real space. The isotropy of the spacetime

ensures that the isocorrelation curves are perfectly circular if we have assumed
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the correct cosmology. As mentioned earlier, there is no reason to assume a

different probability of finding two objects separated by a distance r along the

line of sight compared to two objects separated by r perpendicular to the line of

sight. However, if we assume incorrect cosmological parameters to measure the

distances, we introduce the previously discussed geometric distortions. The space

is deformed differently along the two directions, causing the 2PCF to no longer

be circular.

The isocorrelation curve can be thought of as a standard circle, similar to how

Baryonic Acoustic Oscillations (BAO) and supernovae are considered standard

rulers and candles, respectively. This serves as a test to determine cosmological

parameters. With the AP test, it is possible to identify the correct set of cos-

mological parameters, as these will be the only ones that eliminate the geometric

distortions. Any other choice will modify r|| and r⊥ when transforming from ∆z

and ∆Θ in a different way from one another.

The test can also be applied in redshift space, where it is a bit more complex.

The AP test can be performed on the bidimensional 2PCF by measuring the

2PCF using different cosmologies and identifying the one that does not exhibit

(or exhibits to a lesser extent) the geometrical distortions.

So far, to describe the geometrical distortions, we have only considered the

different dependency on H(z) in r|| and r⊥. Now, let us assume a flat universe

where Ω0,tot = 1. Neglecting the radiation contribution and assuming wΛ = −1,

we can write H(z), making its dependency on Ω0,M more explicit, as follows:

H(z) = H0(1 + z)[Ω0,M(1 + z) + (1− Ω0,M)(1 + z)−2]1/2 . (4.8)

Thus, in this case, assuming a wrong value of the matter density parameter (as-

suming ΩΛ = 1− Ω0,M) introduces geometric distortions. We can therefore mea-

sure the distances and the isocorrelation curves as a function of the only parameter

Ω0,M and observe when the distortions are null.

It is interesting to note that the effect of geometric distortions depends not

only on the assumed cosmological model but also on the observed redshift. In

particular, an increase in geometric distortions is observed at higher redshifts [41].

However, at high redshifts, dynamical distortions also become more significant,

making geometric distortions more visible around z ∼ 1 [11].

In this thesis work, we have performed the AP test on catalogues produced

from the Magneticum cosmological hydrodynamic simulations to assess its effi-

ciency. In a simulation, the cosmological parameters are fixed and known, so the
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test should ideally identify the parameters with which the simulation was con-

structed. Therefore, the results provide an estimation of the effectiveness of the

test and/or the method chosen to implement it.

4.3 The Alcock-Paczyńsky test implementation

There are at least two possible methods to implement the AP test on the 2PCF

of an observed (or simulated) catalougue. In the following sections, we describe

them in detail, illustrating their main advantages and weaknesses.

4.3.1 The standard method

A commonly used method for performing the AP test involves measuring the

2PCF using a single assumed cosmology to convert redshifts into comoving dis-

tances. Analytic models of the 2PCF, including RSD, are then generated for

various test cosmologies. Each model also incorporates the geometric distortions

specific to its test cosmology with respect to the assumed cosmology. The mod-

elled correlation function aligns with the measured one at the assumed cosmology

only when the test cosmology matches the true cosmology, correctly accounting

for the geometric distortions.

The main issue with this method is that it requires assuming an accurate

model, meaning it has to describe the non-linearities, tracer bias and RSD suffi-

ciently accurately. Indeed to construct such a model, it is necessary to compute

a correlation function from the Fourier transform of the non-linear dark matter

correlation function, and assume a model for the bias, which must account for

the specific tracers considered. Moreover, an accurate modelling of RSD is cru-

cial not to introduce biases. On the other hand, the most significant advantage

of this approach is that it only requires measuring the correlation function and

the covariance matrix at the assumed cosmology. This fact allows a considerable

saving of computational time compared to other methods. In Fig. (4.3) we have

summarized what was said through an explanatory graph.

4.3.2 The alternative method

An alternative method, first introduced in [44] and also utilized in [27] and [25],

is as follows. We measure the correlation function of a catalogue of objects for a

set of different cosmologies and then produce a model for each test cosmology. In
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Figure 4.3: Schematic representation of the standard method to implement the AP test.

these models, we include the RSD but not the geometric distortions. The models

are constructed starting from the Fourier transform of the dark matter 2PCF and

assuming a linear bias. To model the RSDs, we used a semi-analytic approach,

fitting the measure to minimize the differences between the model and the mea-

sured 2PCF. Three parameters were allowed to vary freely, one of which is the

bias. The details of this fitting process will be discussed in the next chapter. The

agreement between the measurement and the model is better when the geometric

distortions of the bidimensional 2PCF are low, which occurs when the cosmolog-

ical parameters of the test cosmology are close to the real ones. In fact, since in

this approach the model does not include the geometric distortions, only when

considering the correct cosmology do we achieve consistency with the measured

correlation function—when, by definition, the geometric distortions are null. For

all other cosmologies, the best-fit model does not accurately describe the data, as

the data have non-zero geometric distortions.

This method does not require an accurate modelling of 2PCF, as is needed

in the standard method. Moreover, the model construction can start from the

deprojected procedure [47] or the correlation function of dark matter with the

bias left as a free parameter of the fit. In the case of testing the method with a

simulated catalogue, it is also possible to start simply from the correlation function

measured in real space without assuming a bias.

On the other hand, the principal problem of this method is the computational



63 Chapter 4. The Alcock-Paczyński test

Figure 4.4: Schematic representation of the alternative method to implement the AP test.

time, as it requires measuring the 2PCF for each test cosmology. In Fig. (4.4), we

have summarized the main steps of the method similarly to what we have done

for the standard method.

The main goal of this thesis work, is to validate this alternative method with

simulations. In particular, for the models, we started from the correlation function

of dark matter (obtained using a Boltzmann solver) and left the bias as a free

parameter of the fit. We chose this approach because it can be also applied to a

real catalogue and is simpler to implement compared to the deprojected method.

A detailed description of the code implemented to perform the AP test in this

work is provided in the next chapter.
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Chapter 5

The algorithms

In this chapter, we will provide a detailed explanation of how the AP test has

been implemented. As previously mentioned, this thesis work is based on the

method proposed in [44] and on the thesis works inspired by it, [25] and [27].

We chose to compute the 2PCF for each test cosmology and then create a model

that does not account for the geometric distortions described in Section 4.1.2.

This approach requires some precautions, particularly during the construction of

random catalogues needed for the computation of ξ2D using the LS estimator

defined in Section 2.3.2.

The code used for the AP test implementation extensively utilizes the free

software libraries CosmoBolognaLib [1]. These libraries offer a comprehensive

set, of continuously updated C++/Phyton tools, serving as a robust framework

for cosmological research. The primary goal of the CosmoBolognaLib is to create

a unified workspace for addressing various computational cosmological problems,

from handling large data catalogues to measuring and modelling second-order and

higher-order statistics of the density field. For a detailed explanation of the main

classes and methods in the library, refer to [43].

5.1 Outline of the algorithms

The method used in this work to perform the AP test can be broken down into

several key steps, which will be analyzed in the following sections.

The analysis begins with the acquisition of the simulated object’s comoving

positions, which have to be converted into angular coordinates, R.A. (right ascen-

sions) and Dec. (declinations), along with the redshifts. The redshifts can either

be the cosmological ones or they can include the contribution from the object’s
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proper motion (in redshift space). As described in Chapter 4.1.1, in the former

case we are in real space, while in the latter we are in redshift space. The real

space analysis is only possible with simulations. We consider it here for testing

purpose. The redshift space analysis instead get closer to what we can achieve

with real data. The primary focus of this analysis will be on varying only the

value of ΩM in order to reveal geometric distortions. This parameter has the

most significant impact on the observed effects. However, future analyses could

be extended to include other cosmological parameters.

The following steps are the sequential operations performed, varying the mat-

ter density parameter for each test cosmology:

• Transformation of the angular coordinates back to comoving coordinates;

• Construction of the random catalogue;

• Pair counting and estimation of the 2PCF and associated covariance matrix;

• Best-fit of the 2PCF redshift-space model parameters;

• Computation of a metric function to quantify the model accuracy.

Specifically, for each test cosmology, we measure the 2PCF and obtain the best-fit

model parameters by maximizing a likelihood function L, defined as follows:

L(β, σ12; ΩM) ∝ exp

{
− [ξmeasured(ΩM)− ξmodel(β, σ12; ΩM)]2

δξ2measured

}
, (5.1)

where β and σ12 are the model parameters considered in this work. To maxi-

mize the likelihood function, we simply minimize its exponent, which is equivalent

to minimizing the following function:

χ2(β, σ12; ΩM) =
[ξmeasured(ΩM)− ξmodel(β, σ12; ΩM)]2

δξ2measured

. (5.2)

The best-fit parameters characterize the model that best describes the mea-

sured 2PCF for each test cosmology, despite any geometric distortions present.

Now, we define a function as follows:

F (ΩM) ≡ min
{
χ2(β, σ12)

}
ΩM ,test

= χ2(b, β, σ12)best-fit

∣∣∣∣
ΩM ,test

, (5.3)
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This function represents the set of all chi-squared minima at different test cos-

mologies. If each minimum corresponds to the best model (i.e., the one with

the best-fit parameters) at a given test cosmology, then the minimum of F (ΩM)

represents the model that most accurately describes the measured 2PCF across

all cosmologies. Since the models account only for the dynamical distortions, the

minimum of F (ΩM) identifies the test cosmology in which the geometric distor-

tions in the measurement of the bidimensional 2PCF are null.

Now, let us return to the initial stages of our method to gain a clearer under-

standing of each step in the algorithm.

5.2 Transformation of the angular coordinates

back to comoving coordinates

To measure the correlation function ξ(r⊥, r||), it is necessary to count the pairs of

objects in the catalogue asa function of comoving distances from each other. When

we convert the angular coordinates of each object into comoving coordinates,

assuming a test cosmology geometric distortions can be introduced if the test

cosmology differs from the true one:

(R.A.,Dec, z) −→ (X, Y, Z) . (5.4)

Specifically, each object’s redshift is converted into a comoving distance, dC , ac-

cording to the test cosmology. Then the so-called pseudo-equatorial coordinates

(dC , R.A., Dec) are converted into Cartesian coordinates:


X = dC cos (Dec) cos (R.A.)

Y = dC cos (Dec) sin (R.A.)

Z = dC sin (Dec) .

(5.5)

Assuming an incorrect cosmology distorts all distances and, consequently, the

shape of the catalogue. It is important to note that these distortions must be

taken into account when constructing the random catalogue.
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5.3 Construction of the random catalogue

To measure the 2PCF at each test cosmology, we need to construct a random

catalogue that matches the geometry of the catalogue. The measurement of the

2PCF is more accurate with a larger Nran/Nobj ratio, where Nran is the number

of objects in the random catalogue and Nobj the number of objects in the analised

catalogue. However, given that the computational time for the AP test considered

in this work is primarily dominated by the time needed for pair counting, we have

chosen to use random catalogues with Nran = 3×Nobj .

As previously mentioned, modifying the test cosmology changes the shape of

the catalogue. Therefore, it is necessary to deform the random catalogue in the

same way. This is achieved using a specific function of the CosmoBolognaLib.

A random catalogue constructed assuming the real cosmology, and thus cubic in

this case, becomes warped when assuming a wrong test cosmology for coordinate

transformation. To ensure that the geometric distortions are consistent in both the

real and random catalogues the same coordinate transformations are performed

on the random catalogue.

This step is crucial for the correct computation of the 2PCF. Indeed, if the

geometric selection of the random is not accurate the mixed term of the Landy-

Szalay estimator introduces a spurious effect that alters the form of the 2PCF.

5.4 Pair counting and estimation of the 2PCF

and associated covariance matrix

Once we have constructed both the catalogue and its associated random catalogue

in comoving coordinates, in a specific test cosmology, we can proceed by measuring

the pair counts. As discussed in Section 2.3.2, we have chosen the LS estimator

for measuring 2PCF. This estimator requires the computation of DD(r), RR(r),

and DR(r) pairs, where DD(r) represents the pairs of objects from the simulated

catalogue, RR(r) is the pairs from the random catalogue, and DR(r) represents

the mixed pairs. This operation is the most time-consuming part of the entire

process: the computational time for the simplest possible algorithm that counts

pairs in a given catalogue of objects is proportional to N2, where N is the number

of objects in the catalogue. However, as discussed in Ch.3, there are various
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methods to reduce the time needed to count object pairs 1.

In particular, the method used for pair computation in this work is called

CHAIN MESH, which can significantly reduce computational time under certain con-

ditions. Specifically, the catalogue is divided into a grid of arbitrary fineness, with

the indexes of the objects in each cell recorded. A maximum distance, rmax, is

chosen within which pairs are counted. For each object in a cell Ci, only the

objects in cells Cj such that d(Ci, Cj) ≲ rmax, where d(Ci, Cj) is the distance be-

tween the two cells, are considered. This method excludes all objects separated by

distances greater than the maximum separation considered, thereby significantly

reducing the computation time required 2. Similarly, a minimum distance, rmin,

can be defined to exclude all objects contained in cells where d(Ci, Cj) ≲ rmin.

This exclusion further reduces computation time.

In this thesis, the maximum separation between objects is set to 50 Mpc h−1,

and the minimum separation is set to 3 Mpc h−1. These limits help us to reduce

the computational time, and to avoid those scales where the correlation function

is difficult to model due to the strong influence of the fingers of God effect, or due

to large measurement uncertainties caused by cosmic variance. Once all pairs are

identified, the 2PCF can be computed using the LS estimator (Eq. 2.24).

5.4.1 Error on the 2PCF measure

The errors on the 2PCF are assumed to be Poissonian, thus the propagated errors

on the LS estimator can be computed as follows:

δξ =

√√√√(N1

√
DD

RR

)2

+

(
N2

√
DR

RR

)2

+

(
N1DD−N2DR

RR1.5

)2

, (5.6)

where

N1 =
nR(nR − 1)

nD(nD − 1)
, N2 =

nR(nR − 1)

nRnD

. (5.7)

DD, RR and DR are the un-normalised numbers of data-data, random-random

and data-random pairs, respectively. nD and nR are the total number of data and

random objects.

1The problem of pair counting for measuring the 2PCF is numerically identical to calculating

the mutual gravitational attraction of a set of objects.
2This approach is used in the CosmoBolognaLib libraries into function count pairs of the

class TwoPointCorrelation.
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5.5 Best-fit of the 2PCF redshift-space model

parameters

The next step is to compute a model for the 2PCF of the tracers starting from the

dark matter 2PCF, ξDM , and including the tracer bias and dynamic distortions.

In this analysis, ξDM is obtained by applying the Fourier inverse transform to the

matter power spectrum, which is provided by the code CAMB (Code for Anisotropies

in the Microwave Background [2]) which can be used within the CosmoBolognaLib.

5.5.1 Dynamic distortions modelling

In this work we will use the so-called dispersion model to describe the dynamic

distortions parameters, β and σ12. At sufficiently large scales, where the influence

of the fingers of God effect is negligible, the correlation function can be expressed

as a function of the first three even multiples, as follows [47]:

ξlin(s⊥, s||) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) , (5.8)

where Pi(µ) are the Legendre polynomials of order i, and s ≡
√

s2⊥ + s2|| and

µ ≡ s||
s
.

Specifically, the multipoles of ξ are given by:

ξ0(s) =

(
1 +

2

3
β +

1

5
β2

)
b2ξDM(r) , (5.9)

ξ2(s) =

(
4

5
β +

4

7
β2

)[
b2ξDM(r)− b2ξDM(r)

]
, (5.10)

ξ4(s) =
8

35
β2

[
b2ξDM(r) +

5

2
b2ξDM(r)− 7

2
ξDM(r)

]
, (5.11)

where

ξDM(r) ≡ 3

r3

∫ r

0

ξDM(r′)r′2dr′ , (5.12)

ξDM(r) ≡ 5

r5

∫ r

0

ξDM(r′)r′4dr′ . (5.13)
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The parameter β is defined as:

β =
f(z)

b(z)
, (5.14)

where b is the linear bias of the tracers and f(z) is the linear growth rate.

At small scales, specifically when r is less than about 5 Mpc h−1 for galaxies

[45], it is necessary to account for the fingers of God effect in the model construc-

tion. The model in Eq. (5.8) can be convolved with the velocity distribution of

the objects, f(v), as follows:

ξ(s⊥, s||) =

∫ ∞

−∞
f(v)ξlin

[
s⊥, s|| −

v(1 + z)

H(z)

]
dv . (5.15)

In this thesis work, we considered the following velocity distribution function:

f(v) =
1

σ12

√
2
exp

(
−
√
2|v|
σ12

)
. (5.16)

The parameter σ12 represents the random velocity dispersion of the object pairs,

which causes the fingers of God effect.

5.5.2 Another perspective in the construction of the model:

the deprojection procedure

As discussed, we use the theoretical dark matter correlation function to construct

the model for the tracer 2PCF. There are in fact two other possible approaches.

One is to use the tracer 2PCF measured directly in real space, at the real cosmol-

ogy. This is feasible only when analysing simulated catalogues, where the peculiar

velocities of the objects and their bias are known a prior.

On the other hand, in real observations, dynamical distortions always affect the

data, but it is still possible to measure the correlation function in real space using

the so-called deprojection procedure. The approach involves a two-step projection

procedure. First, the observed redshift-space bidimensional correlation function

(the only one available in real observations) is projected along s||:

w⊥(r⊥) = 2

∫ ∞

0

ds′ξ(s⊥, s
′
||) = 2

∫ ∞

r⊥

yξ(y)dy√
y2 − r2⊥

. (5.17)
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Then, the real-space correlation function can be estimated from the Abel integral

[52]:

ξ(r) = − 1

r⊥

∫ ∞

r

dr′⊥
dwr⊥/dr

′
⊥√

r′⊥
2 − r2

dr′⊥ . (5.18)

It is important to note that in this way, we obtain the tracers’ correlation function

directly, without having to introduce an additional dependency on the bias in the

model.

5.5.3 Modelling the dynamic distortions

Once the model for the 2PCF is constructed, we can explore the parameter space

to find the best-fit values for b, β, and σ12 for a given test cosmology. We do this

by minimizing the following chi-squared function:

χ2(b, β, σ12; ΩM) =
∑
s⊥,s||

[ξ(s⊥, s||)− ξmodel(s⊥, s||; b, β, σ12)]
2

(δξ)2

∣∣∣∣
ΩM

, (5.19)

where δξ is the error on the measured correlation function, computed as described

in Section 5.4. From the minimum of the χ2 function, we obtain the values

(b, β, σ12)best-fit, which are the best parameters to describe the dynamical distor-

tions of the 2PCF at a given test cosmology.

In real space, by definition, there are no dynamical distortions. This can be

obtained by setting in the dispersion model β = 0 and avoiding the convolution

given by Eq. (5.15). Constructing a model in real space following this approach

is equivalent to having ξmodel(r⊥, r||) = b2ξDM(
√
r2⊥ + r2||).

5.6 Computation of a metric function to quan-

tify the model accuracy

After obtaining the best-fit parameters, we can investigate in which test cosmology

the effect of geometric distortions is weaker. The cosmology with the smallest

value of χ2, with β and σ12 fixed at their best-fit values, is the one that best

matches the measured data.

It is important to note that the function χ2 used in this method is not a

standard χ2 function because both the measured and modeled 2PCF depend on
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the test cosmologies. Therefore, it is not possible to associate a confidence region

to the ΩM constraints by simply considering differences in the reduced χ2 values.

Instead, to complete the analysis, we search for the minimum of the following

function:

Fred(ΩM) =

χ2(b, β, σ12)best-fit

∣∣∣∣
ΩM ,test

Np

, (5.20)

where Np is the number of bins in the chosen fitting range. Using Eq. (5.3) or

Eq. (5.20) as a metric for model accuracy yields the same results. We opted for

the latter due to its more intuitive scale.

Despite potential inaccuracies in modeling the dynamical distortions and the

partial degeneracy between dynamic and geometric distortions, it is still possible

to identify the correct value of ΩM , as we will show in the next Chapter.
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Chapter 6

The results

In this final chapter, we present the main results obtained in this thesis work.

These results are derived by performing the AP test on the simulated catalogues

described in Chapter 3, using the algorithms outlined in Chapter 5. As we will

show, the precision of the method depends on the number of objects contained in

the catalogues. We remind the reader that the true value of the ΩM parameter,

that is the ΩM value of the Magneticum simulation from which the catalogues

were extracted, is ΩM = 0.272. Therefore, we expect to find the minimum of the

Fred(ΩM) function corresponding to this value.

6.1 Galaxy catalogues

The AP test was firstly applied to galaxy catalogues from BOX1 of the Magneticum

simulation, both in real space and redshift space. The ΩM values considered

for the test are [0.1, 0.15, 0.2, 0.22, 0.24, 0.26, 0.272, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.90].

The 2PCFs are measured in the range [3, 50] Mpc h−1. Excluding scales below

3 Mpc h−1 reduces the influence of the fingers of God, which are approximately

accounted for in the model through the parameter σ12.

We will present the results in real space first, followed by those in redshift

space.

6.1.1 Real space

In real space, by definition, there are no dynamic distortions, and at the true

cosmology the isocorrelation curves of the bidimensional 2PCF are circles.

Figures 6.1 and 6.2 show the isocorrelation curves obtained from the bidi-

mensional 2PCF and the respective models at various redshifts, with the true
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cosmology case (ΩM = 0.272) shown in the central columns. For comparison,

the other columns show the results at the extremes of the test cosmology interval

considered (ΩM = 0.1 and ΩM = 0.9). The geometric distortions are noticeable

and, as discussed in 4, they increase with redshift. We observe both a stretching

along the line of sight for low ΩM values and a shrinking along the line of sight

for high ΩM values.

In Fig. 6.3, we report the functions Fred(ΩM) at various redshifts, which

quantify the comparison between the measured 2PCFs and their respective mod-

els. The narrower the Fred(ΩM) curve, the more accurately ΩM can be identified.

A narrow curve signifies that, even for values close to the ΩM corresponding to the

minimum, the agreement between the measurement and the model is still bad,

thereby making the geometric distortions more apparent. A more quantitative

approach could be achieved by estimating the uncertainties in the measurement

of the minimum of the function. In the future, this could be accomplished by de-

termining the confidence region through the scatter among different independent

measurements of the same type, but obtained from different mock catalogues.

The functions Fred(ΩM) show the expected form, with a minimum that becomes

clearer at higher redshifts due to the increased geometric distortions. The values

of ΩM corresponding to the minimum of the Fred(ΩM) curves are reported in Table

6.1.

The measurements at different redshifts have been considered independent and

combined by summing the individual Fred(ΩM) values to obtain a more accurate

estimate of ΩM . Figure 6.4 shows this sum. This approach enhances the identi-

fication of the true ΩM , as the curve becomes narrower. Therefore, we conclude

that, despite having only a small number of independent catalogues, the accu-

racy of the test improves when applied to multiple catalogues, even at different

redshifts.
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Figure 6.1: Isocorrelation contours at levels ξ(r⊥, r||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the galaxy

catalogues in real space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the galaxy catalogue at z = 0.20, the central panels at z = 0.52, and the lower

panels at z = 0.72.
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Figure 6.2: Isocorrelation contours at levels ξ(r⊥, r||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the galaxy

catalogues in real space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the galaxy catalogue at z = 1.00, the central panels at z = 1.50, and the lower

panels at z = 2.00.
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Figure 6.3: The function Fred(ΩM ), defined in Chapter 5, is shown as a function of ΩM . The

points represent the function evaluated at each test cosmology (i.e. at each test ΩM ), while the

black line is derived from a polynomial fit of these points. The red vertical line indicates the

true ΩM of the Magneticumsimulation. The red crosses mark the minimum of the polynomial

fit. These values for different redshifts are reported in Table 6.1. Each subplot represents the

same analysis but at different redshifts ([0.20, 0.52, 0.72, 1.00, 1.50, 2.00]).
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Figure 6.4: The total Fred(ΩM ) obtained by summing all of its values obtained from the galaxy

catalogues at different redshifts, for each test cosmology. The symbols of the plot are the same

as in Fig. 6.3.

6.1.2 Redshift space

In redshift space, it is necessary to account for dynamical distortions using the

method described in Chapter 5. Figures 6.5 and 6.6 show the isocorrelation curves,

following the scheme of the previous section. We observe the marginal influence of

the fingers of God effect and, at larger scales, the more pronounced Kaiser effect.

In this case, the amplitude of the geometric distortions increases with redshift

and is very small at z = 0.20. Considering the number of objects and the influence

of the dynamical distortions, the best results are obtained at intermediate red-

shifts. In Fig. 6.7 the Fred(ΩM) function is shown at different redshifts. As for the

real space case, we have considered the six measure of Fred(ΩM) as independent.

We have thus obtained
∑

z Fred(ΩM) and then plotted in Fig. 6.8.

Table 6.1 reports the values of ΩM corresponding to the minimum of the

Fred(ΩM) functions. These values represent the cosmology with the least geometric

distortions and are thus identified by the test as the true ΩM parameter. The

table includes results for galaxies in both real space and redshift space at different

redshifts.

In real space, we observe that higher redshifts, which produce more prominent

geometric distortions, lead to a better determination of the true ΩM value. In

redshift space, the best signal is around z = 1; for z > 1, the effects of dynamical

distortions dominate over geometric distortions, making their identification more

challenging.



81 Chapter 6. The results

z 0.20 0.52 0.72 1.00 1.50 2.00
∑

z

Real space ΩM 0.261 0.307 0.288 0.277 0.278 0.270 0.282

Redshift space ΩM 0.288 0.264 0.252 0.250 0.234 0.293 0.252

Table 6.1: Values of ΩM correspondent to the minimum of the polynomial fits of

the different Fred(ΩM) functions analyzed.

Figure 6.5: Isocorrelation contours at levels ξ(s⊥, s||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the galaxy

catalogues in redshift space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the galaxy catalogue at z = 0.20, the central panels at z = 0.52, and the lower

panels at z = 0.72.
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Figure 6.6: Isocorrelation contours at levels ξ(s⊥, s||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the galaxy

catalogues in redshift space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the galaxy catalogue at z = 1.00, the central panels at z = 1.50, and the lower

panels at z = 2.00.
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Figure 6.7: The function Fred(ΩM ), defined in Chapter 5, is shown as a function of ΩM . The

points represent the function evaluated at each test cosmology (i.e. at each test ΩM ), while the

black line is derived from a polynomial fit of these points. The red vertical line indicates the

true ΩM of the Magneticumsimulation. The red crosses mark the minimum of the polynomial

fit. These values for different redshifts are reported in Table 6.1. Each subplot represents the

same analysis but at different redshifts ([0.20, 0.52, 0.72, 1.00, 1.50, 2.00])
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Figure 6.8: The total Fred(ΩM ) obtained by summing all of its values obtained from the galaxy

catalogues at different redshifts, for each test cosmology. The symbols of the plot are the same

as in Fig. 6.7.
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6.2 Cluster catalogues

In this section, we present the results obtained by applying the AP test on the

galaxy cluster catalogues extracted from BOX1 of theMagneticum simulation, both

in real space and redshift space. The total number of objects in each catalogue is

listed in Table 3.2.

6.2.1 Real space

As in the previous section, we present firstly the results obtained in real space.

Figures 6.9 and 6.10 show the isocorrelation curves obtained from the measured

2PCF and the model at various redshifts. Figure 6.11 displays the Fred(ΩM)

functions for the different cases.

Similar to the previous cases, the measurements at different redshifts have

been combined to improve the identification of the true ΩM . This approach has

also yielded a value close to the true cosmology, as shown in Table 6.2 for real

space. The results of these various combinations are presented in Figure 6.12.

We note that the measurements are more affected by errors since clusters are

less numerous than galaxies, resulting in less precise constraints on ΩM . However,

the minimums of the function Fred(ΩM) are correctly positioned, ensuring that

the constraints on ΩM remain accurate.
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Figure 6.9: Isocorrelation contours at levels ξ(r⊥, r||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the cluster

catalogues in real space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the cluster catalogue at z = 0.20, the central panels at z = 0.52, and the lower

panels at z = 0.72.
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Figure 6.10: Isocorrelation contours at levels ξ(r⊥, r||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the cluster

catalogues in real space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the cluster catalogue at z = 1.00, the central panels at z = 1.50, and the lower

panels at z = 2.00.
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Figure 6.11: The function Fred(ΩM ), defined in Chapter 5, is shown as a function of ΩM . The

points represent the function evaluated at each test cosmology (i.e. at each test ΩM ), while the

black line is derived from a polynomial fit of these points. The red vertical line indicates the

true ΩM of the Magneticumsimulation. The red crosses mark the minimum of the polynomial

fit. These values for different redshifts are reported in Table 6.2. Each subplot represents the

same analysis but at different redshifts ([0.20, 0.52, 0.72, 1.00, 1.50, 2.00])
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Figure 6.12: The total Fred(ΩM ) obtained by summing all of its values obtained from the cluster

catalogues at different redshifts, for each test cosmology. The symbols of the plot are the same

as in Fig. 6.11.

6.2.2 Redshift space

Figures 6.13 and 6.14 display the isocorrelation curves in redshift space measured

at different redshifts. It is evident that at z = 0.20, the geometric distortions are

almost negligible. Figure 6.15 shows the Fred(ΩM) function for each redshift. Ad-

ditionally, Figure 6.16 presents the combined Fred(ΩM) functions across different

redshifts in redshift space.

Table 6.2 lists the identified ΩM values for both real space and redshift space,

indicating which values introduce the least geometric distortions in the bidimen-

sional 2PCF functions measured for the cluster catalogues. The column labeled∑
z shows the ΩM measurement obtained by combining the Fred(ΩM) functions

all different redshifts.

z 0.20 0.52 0.72 1.00 1.50 2.00
∑

z

Real space ΩM 0.219 0.331 0.260 0.266 0.289 0.249 0.270

Redshift space ΩM 0.244 0.241 0.225 0.234 0.266 0.245 0.239

Table 6.2: Values of ΩM correspondent to the minimum of the polynomial fits of

the different Fred(ΩM) functions analyzed.
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Figure 6.13: Isocorrelation contours at levels ξ(s⊥, s||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the cluster

catalogues in redshift space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the cluster catalogue at z = 0.20, the central panels at z = 0.52, and the lower

panels at z = 0.72.
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Figure 6.14: Isocorrelation contours at levels ξ(s⊥, s||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the cluster

catalogues in redshift space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the cluster catalogue at z = 1.00, the central panels at z = 1.50, and the lower

panels at z = 2.00.
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Figure 6.15: The function Fred(ΩM ), defined in Chapter 5, is shown as a function of ΩM . The

points represent the function evaluated at each test cosmology (i.e. at each test ΩM ), while the

black line is derived from a polynomial fit of these points. The red vertical line indicates the

true ΩM of the Magneticumsimulation. The red crosses mark the minimum of the polynomial

fit. These values for different redshifts are reported in Table 6.2. Each subplot represents the

same analysis but at different redshifts ([0.20, 0.52, 0.72, 1.00, 1.50, 2.00])
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Figure 6.16: The total Fred(ΩM ) obtained by summing all of its values obtained from the cluster

catalogues at different redshifts, for each test cosmology. The symbols of the plot are the same

as in Fig. 6.15.

6.3 AGN catalogues

Finally, in this section, we present the results obtained through the application

of the AP test on the AGN catalogues extracted from BOX1 of the Magneticum

simulation. Also in this case the analysis has been performed both in real space

and redshift space. The total number of objects contained in each catalogues is

reported in Tab. 3.2.

6.3.1 Real space

In Figures 6.17 and 6.18, we show the isocorrelation curves obtained from the

measured 2PCF and the model at various redshifts in real space. We observe

that the amplitude of the geometric distortions increases with redshift. However,

the small number of objects in the catalogues, especially at high redshift, results

in very noisy measurements. This noise negatively impacts the precision of the

model. This effect is particularly pronounced at z = 2, where the number of

available objects is ten times fewer than in the galaxy catalogue at the same

redshift, this is visible in the lower panel of Figure 6.18.

Figure 6.19 displays the Fred(ΩM) functions for the different cases. The values

that introduce the least geometric distortions are reported in Table 6.3. Despite

the smaller number of available objects, the identification of the true value of ΩM

remains unaffected (at least in real space), being underestimated only for z > 1.
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Similar to the previous cases, the measurements at different redshifts have

been combined to improve the identification of the true ΩM . This approach also

yields a value close to the true cosmology, as shown in Table 6.3 for real space.

The results of these various combinations are presented in Figure 6.20.
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Figure 6.17: Isocorrelation contours at levels ξ(r⊥, r||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the AGNs

catalogues in real space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the AGN catalogue at z = 0.20, the central panels at z = 0.52, and the lower panels

at z = 0.72.
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Figure 6.18: Isocorrelation contours at levels ξ(r⊥, r||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the AGN

catalogues in real space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the AGN catalogue at z = 1.00, the central panels at z = 1.50, and the lower panels

at z = 2.00.
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Figure 6.19: The function Fred(ΩM ), defined in Chapter 5, is shown as a function of ΩM . The

points represent the function evaluated at each test cosmology (i.e. at each test ΩM ), while the

black line is derived from a polynomial fit of these points. The red vertical line indicates the

true ΩM of the Magneticumsimulation. The red crosses mark the minimum of the polynomial

fit. These values for different redshifts are reported in Table 6.3. Each subplot represents the

same analysis but at different redshifts ([0.20, 0.52, 0.72, 1.00, 1.50, 2.00])
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Figure 6.20: The total Fred(ΩM ) obtained by summing all of its values obtained from the galaxy

catalogues at different redshifts, for each test cosmology. The symbols of the plot are the same

as in Fig. 6.19.

6.3.2 Redshift space

As for the previous catalogues, in the redshift space we have to model also the

dynamic distortions. The scale range for the measure is the same used for the

galaxies. In Figures 6.21 and 6.22 we display the isocorrelation curves measured

at different redshifts. As in the previous case the noise in the measure is given by

the small number of objects, especially at high redshift.

Figure 6.23 shows the Fred(ΩM) function for each redshift. At z = 2 we

can see how difficult is to identify a clear minimum between the various test

cosmology. At this redshift the distortions effects are dominated by the dynamical

ones. Additionally, Figure 6.24 presents the combined Fred(ΩM) functions across

different redshifts in redshift space. The plot highlight how in this case the AP

test slightly understimate the true cosmology.

In Table 6.3 we list the identified ΩM values for both real space and redshift

space, indicating which values introduce the least geometric distortions in the

bidimensional 2PCF functions measured for the cluster catalogues. The column

labeled
∑

z shows the ΩM measurement obtained by combining the Fred(ΩM)

functions across various redshifts.
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Figure 6.21: Isocorrelation contours at levels ξ(s⊥, s||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the AGN

catalogues in redshift space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the AGN catalogue at z = 0.20, the central panels at z = 0.52, and the lower panels

at z = 0.72.

z 0.20 0.52 0.72 1.00 1.50 2.00
∑

z

Real space ΩM 0.234 0.285 0.275 0.258 0.229 0.216 0.261

Redshift space ΩM 0.202 0.209 0.211 0.214 0.193 0.179 0.208

Table 6.3: Values of ΩM correspondent to the minimum of the polynomial fits of

the different Fred(ΩM) functions analyzed.
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Figure 6.22: Isocorrelation contours at levels ξ(s⊥, s||) = [0.03, 0.05, 0.1, 0.2, 0.5] for the AGN

catalogues in redshift space. The continuous black line represents the isocorrelation contours of

the measured 2PCF at different test cosmologies: ΩM = 0.10 in the left column, ΩM = 0.272

in the central column, and ΩM = 0.90 in the right column. The dashed red line shows the

isocorrelation contours of the 2PCF obtained from the models. The upper panels present the

analysis for the AGN catalogue at z = 1.00, the central panels at z = 1.50, and the lower panels

at z = 2.00.
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Figure 6.23: The function Fred(ΩM ), defined in Chapter 5, is shown as a function of ΩM . The

points represent the function evaluated at each test cosmology (i.e. at each test ΩM ), while the

black line is derived from a polynomial fit of these points. The red vertical line indicates the

true ΩM of the Magneticumsimulation. The red crosses mark the minimum of the polynomial

fit. These values for different redshifts are reported in Table 6.3. Each subplot represents the

same analysis but at different redshifts ([0.20, 0.52, 0.72, 1.00, 1.50, 2.00])
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Figure 6.24: The total Fred(ΩM ) obtained by summing all of its values obtained from the galaxy

catalogues at different redshifts, for each test cosmology. The symbols of the plot are the same

as in Fig. 6.23.



Chapter 7

Conclusions and future

perspectives

In this thesis, we investigated the effectiveness of the AP test to constrain the mat-

ter density parameter, ΩM , using a specific implementation described in Chapter

5. The results, detailed in Chapter 6, were obtained for various types of simulated

astrophysical tracers (galaxies, clusters of galaxies, and AGNs) at different red-

shifts. The primary objective was to develop a method on simulated catalogues

that could also be applicable to real catalogues in the future. Consequently, we

chose not to use the 2PCF measured in real space as the basis for the models

used in the AP test. Instead, we used the 2PCF obtained through the Fourier

transform of the dark matter 2PCF, a quantity provided by a Boltzmann solver.

The implemented AP test identifies the ΩM parameter closer to the true one

among many test ΩM values. We validate the method on the Magneticum simu-

lation finding accurate results in all of the cases analyzed (Tables 6.1, 6.2, 6.3).

Determining the precision and the accuracy of the test is challenging because we

could not yet assign an error to the values of ΩM obtained. This is due to the

fact that the function Fred(ΩM) used in the exploited method does not follow a

standard χ2 distribution, because of the dependency on ΩM of both the measured

2PCFs and the models.

The main results obtained in this thesis work are the following:

• We measured the bidimensional 2PCFs in both real space and redshift space

for three types of tracers: galaxies, galaxy clusters, and AGNs. For each

tracer, we utilized six catalogues at different redshifts (z = 0.20, 0.52, 0.72,

1, 1.50, 2). As discussed in Chapter 6, the results show that geometric

distortions are appreciable in both real and redshift space.
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• We have validated a particular implementation of the AP test on the pre-

viously discussed data set (Section 3.3). The test succeded in achieving the

goal of constraining the value of the ΩM parameter (Tables 6.1, 6.2 and 6.3).

• We have observed an increase in geometric distortions with redshift. The

best ΩM estimates were obtained at z = 0.72 and z = 1, as also reported in

[11]. This redshift range is indeed the optimal one for exploiting geometric

distortions because at z < 0.72, the effect is still small, while at z > 1 the

effect is countered by the lower number of objects in the catalogues and the

stronger dynamical distortions (in redshift space).

• We have compared the results obtained from different tracers. For both

real space and redshift space, galaxies proved to be the best tracers to con-

strain ΩM . Their Fred(ΩM) functions, shown in Figures 6.3 and 6.7, are the

narrowest around the minimum, indicating the best ΩM constraints. This

advantage is not due to an intrinsic characteristic of galaxies compared to

other tracers, but rather the different number of objects used in the test. As

we anticipated, a key factor in our analysis is the number density of objects

in the catalogues (Tab. 3.2). Using a larger number of objects to measure

the 2PCF improves its precision.

For what concern the future perspectives, we have summed them in the fol-

lowing points:

1. Firstly, the deprojection procedure, which is already implemented in the

CosmoBolognaLib, should be systematically validated on different selected

tracers and potential observational uncertainties, including statistical and

systematic errors on the redshift.

2. The deprojected 2PCF (and also, for testing purposes, the true 2PCF mea-

sured in real space) has to be implemented in the dispersion model within

the CosmoBolognaLib. This integration would allow us to perform a de-

tailed test of the method we will use with real data (using the deprojected

2PCF) with the current results obtained in this thesis.

3. The method shall be tested also on other cosmological parameters, in par-

ticular with the parameters of the dark energy equation of state w0 and wa

[16] [42] and on other cosmological frameworks beyond the ΛCDM model.
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4. The method should also be tested with more realistic mock catalogues in-

cluding all the possible observational effects. In particular, it will be impor-

tant to investigate the impact of redshift uncertainties on the accuracy of

cosmological parameter constraints.

5. Then the method should be applied to a sufficiently large number of different

independent simulated catalogues to estimate the confidence regions on all

the main cosmological parameters, for different selections in volume, tracer

density, and redshift.

6. Finally, this AP test will be applied to real available catalogues (e.g. Baryon

Oscillation Spectroscopic Survey, BOSS [3]) and relative mock catalogues to

estimate the uncertainties on the derived cosmological constraints.

7. It will eventually be interesting to provide forecasts on ongoing future projects

whose data are about to become available (e.g. Euclid [4], LSST [5] and

DESI [6]).



106



Bibliography

[1] url: https://gitlab.com/federicomarulli/CosmoBolognaLib.

[2] url: https://camb.readthedocs.io/en/latest/.

[3] url: https://www.sdss4.org/surveys/boss/.

[4] url: https://www.esa.int/Science_Exploration/Space_Science/

Euclid.

[5] url: https://www.lsst.org/.

[6] url: https://www.desi.lbl.gov/.
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