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Abstract 

 

The Easy Market Company based in Rimini deals with online sale of flights and hotels. Online 

searches generate up to one billion transactions daily. Easy Market is creating a Big Data 

Analytics system with Google technology to extract value from this data. The company aims 

to design and implement a system which is expected to perform both batch and real-time 

analysis to optimize operational processes. 
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1. Introduction 

At the heart of this paper is Easy Market a major player in Italy’s travel arrangements industry 

since the early 2000s, it offers various travelling packages, some of which include hotels, car-

rentals and flights at suitable rate from its suppliers. The advent of massive digitalization has 

made access to booking platforms such as lol.travel, and their competitive low cost flight 

packages easy to purchase, this has led to a boom in tourism and all the activities perform by 

customers/bots before, during and after the booking process has been generating massive 

amount of data that has spark the interest of  Easy Market to use advanced data mining and 

business intelligence techniques in other to tap into this data and gain valuable insights about 

their customers’ behaviour so they can better tailor their services to suit both customers and 

business needs. In this paper I will study big data and it effect on Easy Market’s daily operation 

while attempting to propose a solution that will perform both batch and streaming analytics to 

help solve some of the problems Easy Market is facing in this era of big data. 

 

The activities performed on Easy Market’s system by ordinary customers (b2c), by bots or by 

business (b2b) generates data, and at the core of its system is an optimization problem that is 

too many queries are sent into the system for which results of flights are return and no booking 

is made, eventually leading to a high search low booking (low look-to-book ratio/ conversion 

rate). Easy Market aims to develop a system that will be able to calculate the look-to-book 

ratio, and automatically block unnecessary queries that might not lead to a booking. 

 

Proposal 

The proposal entails two solutions, one has to do with adjusting Easy Market business model 

while the other is developing a technical system. The first proposal is adjusting the business 

model by applying a limit/quota on how many shopping requests can be made for a specific 

route at a particular time, this will help mitigate the costs, but the downside is by putting a limit 

to the number of requests there is risk of losing some sales, so this might not be the most 

optimal solution. Another adjustment that can be made on the business model is by asking users 

to pay for excess usage of Easy Market’s API, this can incentivize all users to be more 

responsible and be aware that they pay more by sending unnecessary queries. This can improve 

the performance of the system and help reduce the costs associated with high look-to-book 

ratios. Pricing models such as Pay-as-you-go, Subscription-based and Transaction-based can 

also be implemented. 
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The second proposal which is technical has to do with the real design of a cloud architecture 

on GCP this solution is just an addition to what Easy Market already has, this involves just 

adding vertex AI workbench and AlloyDB to the suite of products. This solution is discussed 

in detail in chapter 4 in the section “Proposed solution”. A snapshot of another technical 

solution for Hadoop and Spark savvy users which can be implemented using GCP Dataproc, 

can also be found on the appendix introduction, proposal. 

 

The thesis is structured in seven different sections the first chapter which is the introduction, 

contains a high level overview of Easy Market’s optimization problem. The second chapter 

looks at the business model, value proposition, competitive advantages and position in the 

Italian travel industry and worldwide. This chapter also gives an in-depth explanation of the 

optimization problem with a visual representation of the “filter engines,” and a thorough look 

at the underlining logic of these tables. Chapter three covers the literature of big data concepts, 

evolution, characteristics, sources, type and life cycle of big data. This chapter also looks at 

one of the most popular big data technologies Apache Hadoop and it cores components. Apache 

Spark a tool that can be used for various BD tasks including ML. Furthermore, I briefly 

discussed some of  GCP’s products Easy Market is using and the ones mentioned in the 

proposal. Chapter four continues with the computational process, explaining details of the data 

semantics and architecture workflow of the python & SQL program that I wrote to perform the 

ETL and look-to-book-ratio. An estimate of the cost value in euros for performing the 

experimental computation is given in this chapter. Chapter 6 and 7 are references and appendix 

respectively, while in Chapter 5 an average monthly cost and profit of Easy Market form its 

activities in flight bookings. I finally concluded by giving my final thoughts on the project and 

Easy Market competences to further it research and development. 
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2. The flight optimization problem 

Before the explosion of big data Easy Market was doing most of its operations on premises, 

one of the first problem it was trying to solve is filtering the huge number of transactions 

coming daily into its system through automation. By performing filtration, it can select which 

transactions for a particular route should be sent to GDs/suppliers which will cut cost and 

increase server performance. The other problem is the management and storage of the data 

from all these transactions coming into the system, the petabytes of data stored in GCP  

BigQuery. Easy Market strongly believe that by solving these problems, its system will be able 

to process high traffic speed, customer booking experience and reduce infrastructure cost. 

 

2.1 Easy Market Business Model 

The company was born in 1999 as one of the first distributor of holiday packages for travel 

agencies. Innovation is at the core of Easy Market as it strives to provides quality products and 

services to its customers. It operates as a B2B or B2C, some of its products and services 

includes hotels from different places around the world, excursions, flights at negotiated rates, 

car-rental, activities and insurance, group and transfers. These products and services are offered 

through its platform lol.travel and via APIs it sells as a service to other third-party agencies and 

booking platforms such as Skyscanner, viaggiogratis.com etc. According to report on data from 

01-12-23 Skyscanner makes up approximately 53% of searches coming into the system, 

making it one of the largest shares of market count, google makes up approximately 32%, as 

depicted in figure 1. Easy Market is constantly developing it system to keep up with customer 

demands, one of its most recent innovation products is REVOLUTION, a B2B system made 

for agencies. REVOLUTION as the name implies is said to change the game in the travelling 

industry for agencies, with its advance and new easy to use features including graphical user 

interface, simple filters for search refinement, standardized purchasing and more. 

REVOLUTION is free, allows flexible payment methods and provides quick solutions with 

rich robust database of competitive offer prices and commissions (Easy Market, 2024). Beside 

the wonderful services and products Easy Market is offering to its customers, it has also been 

forging partnerships in its industry and beyond. In 2010 it became a member of Hotelbeds a 

major player in the global B2B bed banks whose parent company HBX Group. In academia 

the company partnered with the university of Bologna for research and development in it IT-

sector and scouting for talented young minds to employ through its internship program with 

the department of DISI (Business Intelligence Group) which made this paper possible, and 

https://www.easymarket.travel/it/revolution/
https://www.easymarket.travel/it/revolution/
https://www.easymarket.travel/it/revolution/
https://www.easymarket.travel/it/revolution/
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department of economics & tourism. Easy Market also collaborates with HUWARE a cloud 

consulting company based in Milan, one of its key partners in its digital transformation journey. 

It also takes the time to participate in sustainability activities with Fondazione Cetacea ONLUS 

to save marine life. Other great feature which position Easy Market to compete are most of its 

workforce especially in the marketing department are young graduates with sound minds with 

understand of the travelling industry. As of 24 April 2024, Easy Market boast of having work 

with over +700 flight companies, +1million hotels, +500 car rental companies, +18000 

activities in more than 223 countries and has flown over 800,000 passengers. The figure 2 

below tries to map Easy Market’s business model in a canvas to get a full picture of its value, 

propositions, customer segments & relationships, channel of value creation, key partners, 

resources and activities. 

 

 

 

Figure 1. Market share by search count (self-contribution, 2023) 
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2.2 The optimization problem in-depth 

At the core of the problem is the “PROFILES_ENGINES_AVAILABILITY” a relational table 

sort of database in which the first stage of transaction filtering is done. But before diving deeper 

into the problem it is necessary to give a high level overview of the system from a software 

engineering perspective. The figure 3 shows how the booking process of a flight takes place on 

Easy Market system. Note this paper does not cover the underlining logic of the hotel and car-

rental, so it will be wrong to assume the same logic holds for the other two. Whenever someone 

tries to book a flight let say directly from lol.travel, an API call is made to the system for a 

travelling route and a result is return by the system or not depending on if that destination is 

not in a BLACKLIST/Temporary blocked. The result could be one or many solutions with 

different pricing the customer then choose the most suitable choice based on her preference. In 

the process of making this API call a series of operation processes are performed in the backend 

and my focus here is on the “PROFILES_ENGINES_AVAILABILITY.”  The figure 3 shows 

an example of results return from search performed for the route Bologna – Barcelona. 

 

 

Figure 3. Booking on lol.travel (self-contribution, 2024) 
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The figure 4 shows the underlining logic of the booking process, a concise explanation of this 

diagram is let say a traveller who wants to travel to a certain destination (Bologna-Barcelona) 

comes to lol.travel and enters the departure and arrival airport including other details about the 

journey, when the traveller makes this search on lol.travel a query is made via an application 

programming interface (API), a software program which allows two or more software to talk 

to each other. So, in this scenario the traveller interact with the website (front-end) and the API 

allows the communication to the backend (Easy Market resources), when a query is made the 

request is process by Easy Market system and sent to various airlines and computerized 

network systems known as GDS that enable transactions between travel industry service 

providers in real-time to facilitate the booking process for travel arrangements companies and 

online booking engines. If the query made by the traveller for a particular route is available on 

Easy Market system then it will further the request to it suppliers and GDS, a result is then 

return to the traveller and when a click is made to further the process to a booking Easy Market 

then sell and make profit. Another scenario is Easy Market sells by making it resources 

available to third parties via API, these third parties include small travelling agencies and large 

players in the online travelling arrangements industry such as Skyscanner, Google flights, 

Kayak etc. As seen in the business canvas Easy Market sell API as a service but also offers 

platform as a service for free (REVOLUTION), a B2B system designed exclusively for Travel 

agencies with the aim to simplify travel agents. 

 

 

Figure 4. Easy Market booking system (IT Team & self-contribution, 2023) 
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                                       Figure 5. Filter engines (IT Team, 2023) 

 

Behind the API made to third parties by Easy Market is it backend which is made up of both 

cloud and on-premises resources including storages in the form of a data lake and relational 

database. The first filter which is the PROFILES_ENGINES_AVAILABILITY  is manage on-

premises by Easy Market and serve as the key point of the system performance, because of the 

role it plays in the company’s daily operation (BLACKLISTING and UNBLOCKING). The 

logic behind this filter is, all records in it are ordered in descending order by priority and if two 

or more records are having the same priority the first record which was loaded into the list is 

consider the top. The first record that satisfies all the criteria for selection will be used to 

determine if the GDS is blacklisted or not. 
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The selection criteria are made up of the values store in the columns of the 

PROFILES_ENGINES_AVAILABILITY, they are id_storefront, travel_agency_code, id_se, 

disabled, meta, id_flights_routes_table, priority.  

 

The id_storefront is an int data type that holds information of the various platforms Easy 

Market is selling, it is made up of both b2b and b2c. Example of some b2b/b2c are shown in 

the business model canvas and some of the ids of these b2b/b2c are: B2B (2 = Revolution, 54 

= BOL), B2C (49 = ViaggioGratis, 54 = LOL) and -1 = A wildcard for all storefronts. 

 

The travel_agency_code is a string data type that holds information of the agencies/metasearch, 

while the id_se represents the ids of the GDSs which the queries will be sent to. Another 

important criterion is the id_flights_routes_table which checks if the route is acceptable, a 

value of -1 means all routes are acceptable value different from -1 it for route is dealt with by 

the next table/second filter which is out of the scope of this thesis scope.   

 

2.3 Architecture of the data flow in Easy Market system 

Easy Market’s data flow architecture has four phases, the process might look like the booking 

system, but figure 4 (booking system) is mostly from a software engineering perspective while 

the data flow diagram is from a cloud architect/ big data engineer perspective. The first phase 

is where data generation takes place, which is from its website lol.travel, Skyscanner, 

metasearch, and other agencies it sells API as a service. In the second phase data is sent to Easy 

Market’s GCP infrastructure, where Pub/Sub is used as a data ingestion tool from the various 

sources and sent BigQuery in its raw form. The on-premises system which contains Easy 

Market’s softwares and engines (relational databases) to process these queries before sending 

them to the suppliers which are third and fourth phase, respectively. In the third phase which is 

on premise engines has three relational databases namely availability, pre-search filter, and 

post-search filter as I explained in the previous section. The availability engine checks whether 

a certain flight route for example let say Milan to Rome is available, the other engines try to 

check for other attributes or information included in the query before it is sent to the suppliers 

and results is given back to Easy Market. The results from suppliers are stored in BigQuery 

and sent to the customer simultaneously with various pricings, and if the customer decide to 

make any booking, the same process applies. 
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Figure 6. Architecture Data flow in Easy Market’s ecosystem (self-contribution, 2024) 

 

2.4 What Easy Market want to optimize 

Scalability to manage the petabytes of data is no longer a problem. However, Easy Market aims 

to develop a unified autonomous system that get data from its various departments (marketing, 

flight operation, IT etc.), perform complex analysis on these petabytes of data in real-time with 

less or no human intervention in term of taking the decision on which route to block or not 

through a series of pipeline based on the engine availability logic. The system should also be 

able to perform other statistical computation such as look-to-book ratio (conversion rate) for 

the various route. The benefit of such system is it will save time and money eventually reducing 

infrastructure, increase look-to-book ratio (conversion rate). 
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3. Literature on Big Data and Google Cloud  

                  Platform Technology                   

In the era of IoT, pervasive computing and massive digitalization it is hard to say that every 

single person with a computing device (mobile, computer, smart fridge, Alexa) is not 

generating or contributing to the explosion of what has been coined Big Data (BD). As of 14th 

March 2024, report from Statista estimated that the ‘total amount of data created, captured, and 

copied and consumed globally is forecast to increase rapidly reaching 64.2 zettabytes in 2020 

and is projected to surpass >180 zettabytes in 2025 (Taylor, 2023) as show in figure 7. 

 

Volume of data/information created, captured, copied, and consumed worldwide from 

2010 to 2020, with forecasts from 2021 to 2025 (in zettabytes)  

 

Figure 7. Volume of data created in zettabytes (Taylor, 2023) 

 

Big data has been on the public limelight for years now and the term has spark interest from 

people in academia and cases such as BD been used by researchers at Oxford university to help 

clinicians detect cancer earlier and treat it better (Oxford research, 2023). Another popular use 

case of BD is the ImageNet database invented by Prof. Fei-Fei nicknamed, ‘The Godmother of 

AI’ (Downey, 2024) because of her contributions to the advancement of Artificial Intelligence. 

The ImageNet database has been used by several researchers in the field of computer vision 
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and deep learning for developing image recognition software. “It is available for free to 

researchers for non-commercial use” (ImageNet, 2021). 

Finance has been one of the most data-intensive industry with investors and other finance 

professionals having to keep up with real-time stock markets insights, customer analytics, risk 

management and fraud detection which are only possible with the development of complex 

machine and deep learning algorithms that learn from massive amounts of data (CFI Team, 

2024). According to Taylor (2024), “the global big data analytics market is expected to see 

significant growth over the coming years, with a forecasted market value of over 650 billion 

dollars by 2029”. The following is shown in figure 8. 

 

Size of the big data analytics market worldwide from 2021 to 2029 (in billion U.S. dollars) 

 

Figure 8. Size of the big data analytics market worldwide (Taylor, 2024, statista.com) 

 

In politics BD has gain notoriety with regards to Cambridge Analytica, a company that offers 

IT services to political parties and businesses who want to change customer or audience 

perceptions and behaviour. Cambridge Analytica engaged in Facebook’s data breach of 

50million profiles (Osborne, 2018).  Figure 9 shows the public interest in BD for the past 

16years. 

 

3.1 What is Big Data 

Big data refers to data that is so large, fast, or complex that it is difficult or impossible to process 

using traditional methods (SAS). Doug Laney in the early 2000s defined BD in three 

dimensions namely, volume, velocity, and variety (Balusamy et al., 2021, p.2). But according 

https://www.statista.com/statistics/1336002/big-data-analytics-market-size/
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to Dr. Enrico Gallinucci, professor of big data at the University of Bologna he sees BD in two 

flavours, that is as a noun: ‘we have big data’ and an adjective: we use big data tools.  

 

Figure 9. Interest for the term Big Data, (Google Trends, 2024) 

 

He further elaborated on BD as a noun using McKinsey’s definition, “BD refers to data sets 

whose size is beyond the ability of typical database software tools to capture, store, manage 

and analyse.” Like Laney’s view of 3Vs about BD, Gallinucci added a fourth-dimension 

veracity which was coined by IBM (Gandomi & Haider, 2015), and pointed out the new Vs 

arising (value, viscosity, virality, and visualization) as shown in the appendix A of the literature 

review section. BD as an adjective becomes more specific that is architecture (lambda, kappa), 

tools (e.g. Apache Spark) and paradigm (e.g. MapReduce), we will explore all these concepts 

in the Hadoop section of BD technology. 

 

Even though there was massive digitalization in the early 2000, BD did not started there, the 

act of gathering and storing large amounts of data dates back to the early 1950s when the first 

commercial mainframe computers were introduced (Lee, 2017). The 1950s saw the 

development of the first data centers and relational database (Tiao, 2024), most data at the time 

were structured to support operational and transactional information system (Lee, 2017). The 

invention of the world wide web (www) by computer scientist Tim Bernes Lee in 1989 (web 

foundation) led to the explosive growth of data and the development of big data and data 

analytics which have evolved through major stages from big data 1.0 to 3.0 (Lee, 2017). Lee 

(2017) describes BD 1.0 during the time of the dot.com bubble and e-commerce in 1994, BD 

2.0 powered by social media and web 2.0 allowed users to create their own content, Big Data 

3.0 includes both 1.0, 2.0 and IoT applications that generate unstructured data (images, audios, 

and videos). 



25 
 

 

The credits of where the term BD came from and when it was first used was given to Dr John 

Mashey a computer scientist who worked at Bell labs from 1973-83 and was an early 

contributor to the UNIX operating system, 20years later he became the VP & chief scientist at 

Silicon Graphics (SGI) from 1992-2000, SGI is producer of special-effects computer graphics 

for Hollywood and video surveillance spy agencies (Lohr, 2013). According to Lohr (2013) in 

an article of the New York Times titled “The Origins of Big Data: An Etymology Detective 

Story”, he reached out to Mr. Mashey about the claim and Dr. Mashey replied, “I was using 

one label for a range of issues, and I wanted the simplest, shortest phrase to convey that the 

boundaries of computing keep advancing”. There was no academic record or journal to prove 

giving in the late 1990’s, one of the presentation slides can be found on USENIX titled “Big 

Data and the Next Wave of Infrastress” (Lohr, 2013). 

 

However, in a 1997 academic conference later published by IEEE titled “Application-

controlled demand paging for out-of-core visualization”, NASA scientists Michael Cox and 

David Ellsworth put forward a problem faced by engineers and scientists in visualizing large 

datasets mostly in ‘Computation Fluid Dynamics (CFD)’ (Morales, 2020). Cox and Ellsworth 

were both from MRJ/NASA Ames Research Center, in their publication gave the first academic 

explanation saying, “data sets are quite large taxing the capacities of the main memory, local 

disk and even remote disk, so they called it the problem of big data” (Balusamy et al., 2021, 

p.2).  At the time the two projected that dataset will surpass one hundred gigabytes but as seen 

in figure 7, Statista forecast that we would reach 181 zettabytes in 2025 which is 28years since 

the term first appeared in academic journals. 

 

Since 1970 when the relational model was first put forward by Edgar F. Codd a former 

computer scientist at IBM, RDMS has been the go to storage medium by most organisations 

but in 2005 people began to realize just how much data users were generating through social 

media platform like Facebook and video streaming e.g YouTube and other services (Tiao, 2024) 

which poses a lot of drawbacks for traditional databases. Balusamy et al. in their book titled 

“Big Data – Concepts, Technology and Architecture” gave the following points as limitations 

faced by traditional database in the era of big data: 

    i. Volume: the exponential increase in data volume, which scales in terabytes and petabytes 

   ii. Cost: to keep up with the volume, increment in RDBMS processors and memory units are 

       made eventually leading to increase in cost. 
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    iii. Format: IoT data such as audio, videos and sensors from computing machinery just 

        caused more problems for RDBMS since they are semi-structured and unstructured. 

   iv. Speed: RDBMS were created for transactional operations and not to capture data coming 

        in at high velocity. 

Volume, velocity and variety mentioned above are what has been called the 3Vs or 

characteristics of BD in  most academic literature, which is discussed in the next section. 

 

Table 1 shows the difference in the attributes of big data and RDBMS (Balusamy, 2021, p.4) 

 

 

As the name implies big data, size has been the first dimension often exaggerated, commodity 

hardware has made storage easier and therefore the steady growth in size is referred by the term 

“volume” in big data technology. The large volume of data generated come in all distinct types, 

be it structured, unstructured, or sometimes even a mix of both, this heterogeneity is the second 

dimension known as “variety.” The third is “velocity” the rate at which all the data generated 

(Balusamy et al., 2021, pp.5-6). 

 

Volume: The major sources of BD are social media, online banking, point of sales (POS) 

transactions, GPS, and vehicles sensors. BD volume measure from terabytes to zettabytes 

(1024 GB = 1 terabyte; 1024 TB =  1 petabyte; 1024 PB = 1 exabyte; 1024 EB = 1 zettabyte; 

1024 ZB = 1 yottabyte) (Balusamy et al.,pp-5-6). BD systems store data in a distributed 

computing by replicating across multiple nodes, in commodity hardware (Achari, 2015, p.2). 

 

Velocity: Big data velocity entails both the speed at which data is generated and analysed. 

Massive data arrive so fast posing difficulties in capturing and analysing. IN 2009 Yahoo 

created a record-breaking result by sorting petabyte of data in just 16.25 hours, and 62 seconds 

for terabyte (Achari, 2015, p.3). 
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Variety: big data support all three types of data, structured, semi-structured, and unstructured. 

RDBMS and excel spreadsheets are examples of structured data which are mostly in tabular 

form, XML and JSON are semi-structured, because they contain tags to organize fields within 

the data and do not fit the formal data model associated with traditional database ( Balusamy 

et al., 2021, p.6) 

 

                   

                  Figure 10. 3Vs of big data (Balusamy et al., 2021, p.5) 

 

The huge growth of data from various sources is due to the digitalization of anything and 

everything in the globe (Balusamy et al., 2021, p.7), e-payment technology such as fintech, 

blockchain, social media, email, and most recently user generated data by interacting with AI 

applications e.g. ChatGPT (DOMO, 2023). Sensor data which is data from accelerometer 

installed in mobile, medical, and vehicles to sense the vibrations and other movements 

contribute to large volume of big data. Other sources include black box data generated by 

planes often record flight activities and performance (Balusamy et al., 2021, p.7). Medical 

record take from patient is also contributing to big data and most of these records are stored 

and shared by medical professionals  to advance the field of medicine as in the case of Oxford 

research cancer big data. The example above is not an exhaustive list of all the dataset 

contributing to the big data that comes in distinct types which is discussed in the next section. 

 

In our connected and tech driven world both machines and humans generated data every single 

minute. Human-generated data refers to data generated because of people interacting with 

machines examples of these are emails, documents, and social media posts (Balusamy et al., 
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2021, pp.8-11). Computer applications, sensors, disaster warning systems and satellite data are 

common examples of machine-generated data with no active human intervention, as shown in 

figure 11. The data can be structured, unstructured, or semi-structured in format. 

 

 

Figure 11. Human and machine-generated data (Balusamy et al., 2021, p.9) 

 

Structured Data: data stored in relational databases and other spreadsheet applications in 

tabular format with rows and columns are called structured data. These datasets can be 

processed and queried using specific identifiers refer to as primary key. Sales, employees’ 

details table with specific tuple identifiers as key are example of structured data. 

 

Unstructured Data: According to Hambert (2021) in an article for MIT SLOAN titled 

“Tapping the power of unstructured data”, the author mentioned that unstructured data (images, 

audio, videos, emails, etc) make up 80-90% of big data and there is a huge potential for 

companies to gain competitive advantage once they tape on it. Unstructured data are mostly 

stored in binary or text files, and do not conform to the traditional relational model. 

 

Semi-structured Data: JSON, XML and other markup languages also do not conform to 

traditional relational model, the data is normally organized through tags or nested in curly 

braces. There are several benefits of semi-structured data, it is portable and storable compared 

to unstructured data but can be challenging to query if prior knowledge of the dataset is 

unknown. Most NoSQL databases example MongoDB can store semi-structure data. Figure 12 

shows a simple example of a semi-structured data. 
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Figure 12. Html code (self-contribution) 

 

Big data is not just about size and speed, there is more to it. Data goes through various stage 

known as the big data life cycle. According to Professor Elisa Bertino et al. (2011) at Purdue 

university in their paper titled “Challenges and Opportunities with Big Data”  listed the 

following stages as the life cycle of BD from it acquisition to consumption by final users. The 

process (acquisition, extraction, integration, analysis, interpretation, and decision-making) is 

shown in figure 13. The following stages of the BD lifecycle as layout are explained below: 

 

                 

                Figure 13. Big Data lifecycle (Gallinucci, p.19) 

 

Acquisition: This is often the first step in the BD lifecycle and consist of sub-processes such 

as selection, filtering, compression, and metadata collection. The selection process has to do 

with mostly not only choosing which sources of data to be considered but also which data is 

valuable for analysis, before filtering & compression can be done. Another important thing 

about this stage of the BD lifecycle is collecting information about the data itself normally 

referred to as metadata. 
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Extraction: After the acquisition of the data, processes such as transformation, normalization 

cleaning and error handling can be performed. Transformation and normalization are often the 

process of expressing data in a structured form suitable for analysis, while handling inaccurate, 

biased opinion and obsolete data has to do with cleaning and error handling. 

 

Integration: This stage has to do with bringing data from multiple sources, discovering he 

relationship between the datasets, entity resolution, conflict management and standardization. 

 

Analysis: The analysis of data is one of the most interesting parts of any data project, activities 

such as exploration, analytics and delivery are performed. In the exploratory phase statistical 

techniques and data visualization tools are used to uncover hidden characteristics and patterns 

of the dataset. Other analytical techniques include diagnostics, predictive and prescriptive are 

normally performed for in-depth insight useful for advanced modelling e.g. BI star schema and 

machine learning. The various types of data analysis put forward by Gartner are shown in the 

appendix E of the literature review section. 

 

Interpretation: Extracting valuable knowledge from big data is more difficult than collecting 

and storing it, so caution must be taken before final conclusions can be made. Expertise such 

as domain knowledge and data lineage are of high importance in this stage because an accepted 

standard in one field of study/context is considered low for another. An example is the R-

squared, a 0.5 threshold in social science is considered good, while 0.7 and above is considered 

high level in finance (Fernando et al., 2023). All assumptions must be tested using 

artificial/synthetic or sub-sample of the dataset to verify expectations, discover hidden patterns 

and correlations. 

 

Decision: Data ready for business and other use normally requires strong managerial skills in 

the decision making process. The business strategy evolves based on previous knowledge and 

the impact are verified on the new data, then feedback is provided for continuous improvement 

(Gallinucci, 2023, p.19). Retailers such as Wal-Mart is using big data to know which two or 

more products together can lead to improve sales (Jeble et al., 2018). Data from aircraft black-

box can be used to anticipating natural disaster an example is the Cesena flooding in 2023 when 

everyone got a high alert warning about the flood. More examples of big data in making 

decisions can be found in the appendix F of the literature review section. 
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3.2 Big Data Technology 

No big data paper is complete without discussing the underlining technologies which has led 

to the success in the advancement of research in various field of academia, an example is 

Baranowski et al. (2019) at CERN IT using “Hadoop Platform and Ecosystem for High Energy 

Physics” a substitute of workload that are hard to scale with traditional database. Another use 

case of BD technologies is for-profit making companies such as Nokia “Nokia: Using Big Data 

to Bridge the Virtual & Physical Worlds” by analysing terabyte of data using Cloudera’s 

distribution including Apache Hadoop. Many technologies are now arising to manage the 

massive data generated every single minute. According to Shiva Achari author of “Hadoop 

Essentials” expert in big data and former employee of Oracle, Teradata and AWS, mentioned 

that technologies that can solve BD problem should use distributed computing system, massive 

parallel processing (MPP), NoSQL and Analytical database as shown in figure 14. But the most 

popular one so far has been Hadoop, which is briefly discussed in the next section but for in-

depth knowledge on every core component of Hadoop ecosystem readers are strongly 

encouraged to check the documentation on Apache Hadoop’s official website THE APACHE 

SOFTWARE FOUNDATION. 

                           

                           Figure 14. Big Data architectural strategy (Achari, 2015, p.4) 

 

Apache Hadoop is an open-source software framework written in Java programming language, 

it can be used for storage and large-scale processing of datasets with streaming access on 

clusters of commodity hardware. Hadoop was created by Doug Cutting and Mike Cafarella in 

2005, it was originally developed to support distribution of the “Nutch Search Engine Project.” 

Hadoop was named after Doug’s son’s toy elephant, Hadoop. All the modules in Hadoop are 

designed with the fundamental assumption that hardware fails, or a component of the hardware 

can fail at some point in time. Hadoop was originally derived from Google’s MapReduce and 
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file system and has evolved ever since its inception (Natasha Balac, Ph.D., 2024). 

 

The Hadoop 1.0 architecture is made up of two layers, the storage layers which is HDFS and 

computational layer previously MapReduce. HDFS is designed to store large amount of data 

on commodity hardware, it is also suitable for datasets with streaming access pattern and not 

for application with low latency access data. HDFS architecture consist of the NameNode and 

DataNode, it adopts the master/slave architecture where one machine acts as the master and the 

others the slaves. It was originally developed for resilience, scalability, portability and 

application, locality. The NameNode stores metadata about all the files in the system and knows 

which DataNodes to query upon request by a client for a particular information. Block creation, 

replication and deletion are also performed by DataNodes upon instructions from the 

NameNode. The figure 15 shows the architecture of HDFS. 

 

                      

                                            Figure 15. HDFS Architecture by ASF                                                                  

 

MapReduce is a programming paradigm for processing data in batch, which was inspired by 

functional programming’s map and reduce functions (databricks, 2024). It is dependable, fault 

tolerant, and highly scalable. Divide-and-conquer is its main principle when processing any 

data format. MapReduce job splits data into chunks, map tasks process data chunks, framework 

sorts of map output, reduce tasks use sorted map data as input. Even though MapReduce was 

so successful in Hadoop 1.0, there were still some limitations posed by various computational 

activities. It was not designed to process smaller datasets, the metadata of large chunks of 

smaller datasets cannot be stored in the NameNode due to memory space wastage. One of the 

greatest problems in Hadoop 1.0 is that NameNode can serve as a single point of failure, when 
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the NameNode goes down the cluster becomes unavailable making the whole process 

inefficient. Reduce phase of a MapReduce job cannot start until the map task is complete. Two 

other points mentioned by Mahidhar Tatineni, Ph.D. leader of San Diego Supercomputer 

Center (SDSC) are iterative data exploration and processing. An example of a simple 

MapReduce program of “wordcount” is shown is appendix G of the literature review. 

 

 

Figure 16. MapReduce Architecture 

 

Hadoop 2.0 was developed to solve the existing problem of single point of failure, by having 

two NameNodes running on the same cluster when the active NameNode fails the 

standby/secondary NameNode acts. One of Hadoop 2.0 greatest feature is the YARN 

architecture that splits the responsibilities of JobTracker into a global ResourceManager and 

per-application ApplicationMaster. Resource management is taken care by the 

ResourceManager while job scheduling and monitoring is done by the ApplicationMaster. 

YARN’s core components are: ResourceManager, ApplicationMaster and NodeMaster. YARN 

supports most of the frameworks in the Hadoop 2.0 ecosystem, but Spark can also run directly 

on HDFS without YARN (Tatineni M. Ph.D., 2024). 
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Figure 17. Hadoop architecture comparison 1.0 and 2.0 (hortonswork) 

 

Even though YARN has managed to eliminate the master-slave architecture bottlenecks 

(single-point-of-failure), researchers from KTH Royal Institute of Technology pointed out that 

there are still some opportunities for optimizations Hadoop/MapReduce which are group in 

three main categories: performance issues, programming model extensions and usability 

enhancements (Kalavri et al., 2013, p.2). 

 

Since the thesis is centred around designing a system that performs both batch and streaming 

analytics it is important that I dedicate this section to explaining about BD architecture that has 

been proposed and their drawbacks before looking at Hadoop components that was developed 

to handle such data processing. According to Microsoft (2024) BD architecture are designed to 

handle the ingestion, processing and analysis of data that is too large or complex for traditional 

database systems, and the threshold at which organizations called dataset big is based on their 

existing capabilities and tools (technology) to store and process all the incoming dataset. The 

NIST architecture is one of the most referenced architectures in BD. Its system comprised of 

various components that make up the infrastructure integration layer and information or data 

transformation flow (Demchenko, 2017, p.32). 

Demchenko et. al (2017) described the following components that are involved in BD 

production, processing, delivery and consuming. The Data Provider which produces/supplies 

data related to specific process or even, Data Consumer utilize the processed/ready-to-use data. 

BD Application Provider consist of all services related to the analysis and transformation, BD 

Framework Provider is mostly about the infrastructure and its components while System 

Orchestrator is a separately defined functional role that may include both internal workflow of 



35 
 

the Big Data Application Provider and external workflow of the Big Data value added services. 

The logical component of BD are data sources, data storage, batch processing, real-time 

message ingestion, stream processing, machine learning, analytical data store analysis & 

reporting, and orchestration. Apache Hadoop support all the following and can be integrated 

with most cloud vendor such as google, amazon etc. 

 

             

            Figure 18. NIST Big Data Reference Architecture (Demchenko et. al., 2017, p.9) 

 

 

Figure 19. Components of a big data architecture by Microsoft 

 

Data sources: In the previous section “Where does Big Data come from,” we explore the 
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various sources of data, and in two modes namely real-time mode and batch mode (Yaseen & 

Obaid, 2020, p.3). 

 

Data storage: data ingested from various sources in batch and/or real-time are stored in a 

distributed file system such as HDFS, NoSQL or RDBMS.  

 

Batch processing: this data processing is mostly suitable for application with terabytes or 

petabytes of data where response time is not particularly important (Balusamy et al., 2021, 

p.88). In batch series of jobs are logically connected and executed sequentially or sometime 

even parallel, meaning the output of individual jobs put together can give a final output 

(Balusamy et al., 2021, p.88). Hadoop MapReduce was developed purposely for such job/task. 

An example of batch processing is shown below. 

 

 

Figure 20. Batch processing (Balusamy et al., 2021, p.88) 

 

Real-time message ingestion: message/data ingestion is normally stored by streaming 

buffering tools/message queuing semantics like Azure Event Hubs, Kafka, Pub/Sub, before 

they are sent to streaming tools, for further process or Lakehouse for storage and other purpose. 

 

Stream processing: real-time messages received are processed by filtering, aggregating before 

written in an output sink. Apache Flink, Storm and Spark, GCP (Pub/Sub, Datastream, 

Dataflow) are all great tools for handling data with streaming access pattern. An example of 

real-time processing is shown in figure 21. 

 

Analytical data store: Analytical data store can be queried using data analysis tools. Data is 

sometimes well prepared and already in a structured format. It can be a Kimball-style relational 

data warehouse (Microsoft, 2024). Examples of analytical store are Apache HBase, Hive and 

GCP (BigQuery). 
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               Figure 21. Real-time processing (Balusamy et al., 2021, p.89) 

 

Analysis and reporting: the end goal of most big data solution is to empower users to analyse 

the data. Data modelling layer included in the architecture for multi-dimensional OLAP cube 

and support of self-service BI tools for visualization such as Excel. 

 

Orchestration: it is extremely useful to automate repeated task, in a workflow. The process of 

data transformation and movement from multiple sources and sinks before they are loaded into 

an analytical data store or push of results to a dashboard can be orchestrated with Apache Oozie 

and Sqoop, GCP (Cloud Composer) and Azure Data Factory. 

 

Two of the most popular data processing architecture over the year are the lambda and kappa. 

1) The lambda architecture was proposed in 2015 by Nathan Marz to address the problem of 

batch and real-time analytics. Data processing in a lambda system flow through two paths: 

        A batch layer also known as the cold path, stores all incoming data in it raw form before  

        performing any batch process and stores the result as a batch view in the serving layer.  

        Data in the batch layer are more accurate but less timely. 

        The speed layer or hot path is designed for more timely data (low latency), data flowing 

        through this path is analyse in real time but there is a potential of less accuracy.  

        However, results from both paths can be access at the analytics client application where  

        they converge, as shown in figure 22. This architecture is good for fraudulent claims 

        system and rapid clients feedback (Kalipe et al., 2019 ,p.3) 

 

There are great benefits of the lambda architecture, it is a fault tolerant, scalable and serverless 

system, no server software installation or update and maintenance is required in it management 

and in the result of a system crash all historical data are managed by the batch layer (snowflake, 

2024). There are great benefits  of lambda architecture but according to snowflake (2024) some 

of its drawbacks are logic duplication that is maintaining separate code bases for batch and 

https://www.snowflake.com/guides/lambda-architecture/#:~:text=Lambda%20architecture%20is%20used%20to,batch%20and%20speed%20layers%20simultaneously.
https://www.snowflake.com/guides/lambda-architecture/#:~:text=Lambda%20architecture%20is%20used%20to,batch%20and%20speed%20layers%20simultaneously.
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streaming layers, batch processing inefficiencies and complexity. These drawbacks gave rise 

to the Kappa architecture proposed in 2014 by Jay Kreps on a blog post titled “Questioning the 

Lambda Architecture”. 

 

                

                 Figure 22. Lambda architecture (Tejada, 2024, Microsoft.com) 

 

2) The Kappa architecture has the same goals as lambda architecture, but the difference lies in 

the data flow. Data in Kappa flow through a simple path, using a stream processing (Tejada, 

2024, Microsoft.com). Since Kappa architecture focuses on speed layer, it is suitable for real-

time monitoring of fraud detection and IoT data processing etc. Kalipe et al., 2019 ,p.4) 

 

                   

                 Figure 23. Kappa architecture (Tejada, 2024, Microsoft.com) 

 

Kappa architecture has been adopted by companies like LinkedIn and Uber. However, some of 

its drawbacks are it is impossible to perform transactional operations, also streams with long 

Time to live (TTL) are not supported by native cloud services (Kalipe & Behera, 2019 ,p.4). 

Other limitations put forward by Roshan Naik (2019) at Uber Engineering Meetup in a 

presentation titled “Kappa+ Architecture using Apache Flink” are high cost of storing data in 

https://learn.microsoft.com/en-us/azure/architecture/databases/guide/big-data-architectures
https://learn.microsoft.com/en-us/azure/architecture/databases/guide/big-data-architectures
https://learn.microsoft.com/en-us/azure/architecture/databases/guide/big-data-architectures
https://www.youtube.com/watch?v=4qSlsYogALo
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Kafka compared to HDFS, are infeasibility of data retention beyond few days. Other BD 

architecture are Microservices and IoT (Kalipe & Behera, 2019, pp.4-7). 

 

The main pillars of Hadoop are HDFS, YARN and MapReduce. Other tools can be grouped 

into the four different layers, the data storage which consist of HDFS and HBASE, data 

processing is made up of YARN and MapReduce, the data access consist of (HIVE, Pig, 

Mahout, Avro, SQOOP) and finally the data management layer (Oozie, Chukwa, Flume, 

Zookeeper). APACHE STORM and Spark and streaming tools which are part of Hadoop 

ecosystem but not core component. Apache Tez can serve as an alternative to Hadoop 

MapReduce, it allows the creation of complex direct acyclic graph (DAG) of task for data 

processing (Amazon aws, 2024). In the next section a brief overview of Apache Spark is given 

since it is gaining popularity. Figure 24 gives a high-level overview of Hadoop’s ecosystem. 

 

 

 

                 Figure 24. Hadoop ecosystem (Balusamy et al., 2021, p.113) 
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3.3 Apache Spark 

Apache Spark was developed at UC Berkeley’s AMPLab in 2009 (IBM, 2009) as a research 

project focused on data-intensive application domains and is now managed by the ASF 

(Amazon aws, 2024). Spark is designed for streaming data analytics, graph analytics, fast 

interactive queries, and machine learning (Achari, 2015, p.152). Spark is compared an 

alternative to MapReduce but not a total replacement, and one of its key features is it run 100 

times faster than MapReduce when running in-memory by using RDDs (Veith & Assuncao, 

2018, p.1), and 10 times faster when running on disk (Achari, 2015, p.152). Spark was written 

in Scala, which makes Scala the most suitable language for doing big data analytics, but the 

framework includes APIs that support multiple programming languages such as Java, Python, 

SQL and R, making it popular among data professionals (analyst, scientist and engineers). 

Spark’s core computing engine can distribute task across cluster, schedules and monitor the 

process in real-time. It can do cluster management through “standalone scheduler,” Apache 

YARN, or Apache Mesos (Veith & Assuncao, 2018, p.1). Figure 25 shows Spark’s core 

framework. 

 

           

           Figure 25. The Apache Spark Stack (Veith & Assuncao, 2018, p.2) 

 

An overview of Spark’s core framework is explained below for in-depth knowledge on each 

component, check the official ASF documentation Apache spark. 

 

Spark SQL: a high level wrapper that transforms SQL queries into Spark jobs to produce 

desired results. It can work with variety of files such as JSON, Parquet, Hive tables, Datasets 

and DataFrames (Achari, 2015, p.154). 

 

GraphX: designed for solving complex graph problems through graph-based algorithms and  

https://spark.apache.org/
https://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes
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integrates with graph databases. It built on the abstraction that extends RDD for graphs and 

graphs-parallel computation (IBM, 2024). Some of its applications are PageRank, Label 

propagation, and triangle count. 

 

Mlib: a scalable machine learning library that works on top of Spark. It contains functionality 

such as learning algorithms for regression, classification, clustering and recommendation based 

collaborative filtering, and featurisation including selection, feature extraction, transformation 

and dimensionality reduction (Veith & Assuncao, 2018, p.4) 

 

Spark Streaming: Spark’s streaming library enables scalable, fault-tolerant, high throughput 

processing of streaming data in real time. It can be well integrated with Mlib and GraphX to 

process their algorithms in streaming data. It is compatible with various streaming ingestion 

technologies such as Kafka, Flume, HDFS/S3, Kinesis and Twitter (Achari, 2015, p.154). The 

ingested streaming data is break into small batches and stored as an internal dataset (RDD) for 

processing, as shown in figure 26. 

 

 

Figure 26. Streaming, batches of input data (Achari, 2015, p.154) 

 

Big Data and Cloud are two of the evolving paradigm driving the revolution in various field of 

computing, while BD promotes the development of e-commerce, e-finance, telematics, smart 

cities and more, cloud computing has change the ways of storing, accessing, and manipulating 

the data by adopting new concepts of storage and moving computing and data closer through 

data locality (Balusamy et al., 2021, pp.93-95). According to Mell & Grance from NIST (2011), 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access 

to shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction.” Cloud computing has made storing and 

analysing BD cheaper and more cost-effective for organizations in terms of operation and 
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maintenance of in house or on-premises infrastructures, but there are drawbacks in terms of 

privacy and security (Balusamy et al., 2021, pp.93-95). Some major cloud service providers 

are Amazon, Microsoft, Google, Oracle and so on. This paper only focuses on Google Cloud. 

Cloud computing is classified into three types based on infrastructure (Balusamy et al., 2021, 

pp.93-95), they are public, private and hybrid. But Mell & Grance (2011) added a fourth type 

called “community cloud”. The public cloud is a service provided by third-party vendors over 

the internet (Balusamy et al., 2021, pp.93-95). It is open to use by the public on a pay-as-you-

go model which significantly reduces the cost, since the cloud provider manages the 

maintenance of both hardware and software in their data centers. Examples of activities on a 

public cloud are saving documents to google drive. Private cloud or corporate cloud is meant 

only for the exclusive use by a single organization, controlling and maintaining its own 

datacentre, there is data security, but limitations associated with traditional IT environments. 

Private cloud can also be externally hosted with full guarantee of privacy. Hybrid cloud is a 

combination of public and private clouds, it has at least one public and one private cloud 

therefore resources are managed both in-house and external sources. Community cloud 

defined by NIST as a service “provisioned exclusively by a specific community of consumers 

from organizations that have shared concerns. It can be operated by one or more organizations 

in the community.” 

 

Mell & Grance (2011) there are three different cloud service  models namely software as a 

service SaaS, platform as a Service, and infrastructure as a service (IaaS), other cloud services 

arising are function as a service (FaaS) and anything as a Service (XaaS). 

 

IaaS: in this model infrastructure such as servers, network, virtualization and storage are 

provided and managed the cloud provided and made available to the consumer through an API 

(RedHat, 2022). IaaS provides IT departments and developers with the highest level of 

flexibility and management control over your IT resources like what they are familiar with 

(aws, 2024). 

 

PaaS: in PaaS remove the hassle of having to manage the underlying infrastructure (hardware 

and operating systems) allowing user to focus on deployment and management of application 

running on top of provided infrastructure (aws, 2024), it is primarily for developers and 

programmers (RedHat, 2024). 
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Figure 27. Service-oriented architecture (Balusamy et. al., 2021, p.96)      

  

SaaS: this model is mostly referring to as end-user software application, it provides consumer 

with a complete product, nor worries about maintaining the underlying infrastructure (aws, 

2024) or installation of application locally on individual user’s computer (RedHat, 2024). 

 

3.4 Google Cloud Platform (GCP) 

GCP is a suite of cloud computing services that provides a series of modular cloud services 

including data storage, computing, data analytics, AI and machine learning (wikipedia, 2024). 

Google cloud is scalable, reliable and cost-effective with data centers around the globe, making 

it easier to locate resources closer to clients and reduced latency (Google cloud, 2024). The 

suite of application that I used are Pub/Sub, BigQuery, Vertex AI, and Colab research which is 

an independent online jupyter notebook that can be integrated with GCP. Other GCP products 

that I have included are Dataflow, DataProc, Data Fusion, AlloyDB and cloud composer, which 

are useful in designing and automating any batch or streaming analytics system on GCP.  

 

Figure 28. Easy Market GCP ecosystem (self-contribution, 2024) 

Below are Google’s own very definition of Pub/Sub, BigQuery, Colab, Vertex AI, Dataflow, 

DataProc, Data Fusion and cloud composer on Google Cloud Tech YouTube channel.  

 

https://en.wikipedia.org/wiki/Google_Cloud_Platform
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Pub/Sub: According to Google Cloud (2024) Pub/Sub is an asynchronous messaging service 

with latencies of about 100 milliseconds that helps your tools to send, receive, and filter events 

or data streams. It has a durable message storage scalable in-order message delivery 

consistently high availability and performance at any scale. It runs on any Google cloud in the 

world. Pub/Sub does not need to be provisioned because it scales global data delivery auto 

magically from zero to millions of messages per second. Pub/Sub can be set up between 

services and applications by defining a topic/s and then subscriptions which allow services to 

receive the messages published on those topics, making one-to-many communications gets 

much simpler enabling the spread of batch image analysis over multiple workers or send logs 

from your security system to archiving, processing, and analytics services or stream data into 

BigQuery or Dataflow for intelligent processing. Pub/Sub is said to be very handy for 

notification when something bad happens example system failure or service downtime. Other 

than streaming analytics pub/sub can be a middleware for integration of simple communication 

medium for modern microservices. In big data analytics Pub/Sub is often integrated with GCP 

orchestration tool like Composer, and Application integration (iPaaS) which provides trigger 

to start integrations. Pub/Sub is GCP’s Kafka. At the time of the internship Easy Market uses 

Pub/Sub to ingest data into BigQuery from its website (lol.travel) and third-party customers to 

which it delivers API as a service. 

 

BigQuery: A major part of my time was spent doing analysis with BigQuery and Colab 

research. BigQuery is an enterprise data warehouse designed for ingestion, storage, analysis 

and visualization of data with ease. Data can be uploaded to BigQuery in batch or by streaming 

data directly, enabling real-time insights. It is a fully managed data warehouse, eliminating the 

burden of having to take care of the infrastructure, while focusing on analysing up to petabyte 

scale of data. It supports standard SQL dialect that is ANSI compliant, with a nice Cloud 

Console UI for interacting with data and running complex analysis. It also supports API 

libraries like pandas-gbq with python which you can use to pull data, perform complex 

wrangling and analysis, then load back to BigQuery  a process which data engineer called ETL. 

It is quite easy to integrate BI tools for turning complex data into compelling stories. The 

pricing model is quite simple customers pay for data storage, streaming inserts, and querying 

data, while loading and exporting data are free of charge. Storage costs are based on the amount 

of data stored, and you can decide to pay for queries or a flat rate for dedicated resources. At 

the time of the writing, Easy Market is spending an average monthly cost of 200euros for 
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storage and 750euros for query as said by the Dr. Manuele Bastianelli head of IT department. 

BigQuery can also be used for training and deploying ML models with ease as it provides 

features for novice by using their preexisting SQL skills. Another important feature is analysing 

geographic data through GIS for critical business decisions that revolves around location. 

 

Colab Research: a cloud-based platform specifically designed for machine learning research 

and education. It provides a jupyter notebook environment that you access directly from your 

web browser, eliminating the need for local setup. The key features are free access to computing 

resources, including GPUs and TPUs, collaboration, pre-installed libraries. It can be integrated 

with most GCP suite products making it suitable for enterprise deployment (Bard AI, 2024). 

The data exploratory phase of Easy Market was done using Colab.  

 

Vertex AI: an end-to-end platform that helps both developers and data scientist accelerate the 

delivery of ML models and applications to production. It enables more people to innovate with 

ML with low code tools and advanced capabilities for custom development on fully managed 

infrastructure. It has all the features in Colab Research and can be used as an alternative for 

jupyter notebook on GCP. It gives access to task specific APIs and AutoML foundation models 

from Google Research, and a variety of third-party models. After initial development of the 

code on Colab Research, Vertex AI workbench was used for deployment. 

 

Dataflow: a unified programming model, serverless fast, and cost-effective data-processing 

service for stream and batch data which removes operational overhead by automating the 

infrastructure provisioning, and auto-scaling as your data grows. The process of dataflow is 

easy, data can be read from a source like Pub/Sub, transform and written back into a sink. 

There’s portability with processing pipeline created using open-source Apache Beam libraries 

in the developers’ language of choice and applying it as dataflow job. It offers Cloud Console 

UI, APIs, prebuilt or custom templates, SQL statements to develop pipelines right from 

BigQuery UI, notebooks. All data running through pipelines are well encrypted. 

 

AlloyDB: a fully manged PostgreSQL-compatible database service offered by Google Cloud. 

Some of it key features are high availability, high performance and scalability and security. 

DataProc: a managed service for any OSS jobs that support big data processing including ETL 

and machine learning. DataProc provides support for the most popular open-source software 
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(Hadoop, Spark, Flink, Jupyter, Presto, Pig, Hive). On-premises data cluster can be migrated 

using DataProc to maximize efficiency and enable scale or use it with Cloud AI Notebook or 

BigQuery to build and end-to-end data science environment. It can auto-scale cluster in just 90 

seconds, with management of creation and monitoring and job orchestration. 

 

Data Fusion: A fully managed point-and-click enterprise data integration and ingestion tool, 

which help customers build data marts, data warehouses and data lakes fast. It provides users 

a code-free environment to deploy ETL/ELT data pipelines. It is powered by CDAP OSP. 

 

Cloud Composer: A fully managed workflow orchestration service built on Apache Airflow. 

It helps you create, schedule, monitor and manage workflows. Composer workflows can 

connect data processing and services on GCP, public clouds and on-premises environments. 

Cloud composer enables users to create pipelines workflows using DAGs.  

 

3.5 Running Hadoop and Spark on GCP’s Dataproc 

While Hadoop use to be the go-to for BD problems mostly on premise, cloud vendors like 

Google and Amazon have provide alternative solutions but have not totally abandon Hadoop. 

GCP support running Hadoop in the cloud and has made it quite easy to migrate from on 

premise to the cloud. Technologies such as HBase can be migrated on GCP’s Bigtable, Hadoop 

Jobs and Spark clusters can be run using Dataproc. Some of the benefits include, scaling and 

efficiency, modernize data processing pipeline, managed hardware & configuration, simplified 

version management, and flexible job configuration (Google Cloud, 2024. 
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4. Automating Look-To-Book Computation 

 

One of  Easy Market’s main goal is to increase customer conversion rate by increasing it L2B 

ratio of flights bookings on its website (lol.travel) and third-party website it is powering. 

Lufthansa Group (2020) defined L2b ratio as a figure that shows the percentage of people who 

visit a travel website compared to those who make a purchase. This service can be so costly 

that most companies providing APIs to third-party have laid some restriction on how many 

times an agent can verify the availability of flights in their system because sending too many 

queries at once consumes the server bandwidth, increase cost and response time. For example, 

in 2014 TAP Portugal allows a look-to-book of 400:1 (TAP Portugal, 2014), Hervé Couturier 

Head of R&D Amadeus IT Group also gave an estimate of 1000:1 ratio in a blog titled “Solving 

the challenge of ever increasing flight search volumes” detailing the exponential growth of 

customers searching for airline products that have led to the massive increase in volume of 

shopping transactions that their system has to deal with. Amadeus IT Group with help of GCP 

developed the Amadeus Airline Cloud Availability, “piloted by Lufthansa via GCP IaaS, 

enabling instances of all the revenue management and airline data logic to be deployed in the 

cloud to serve local demand on all continents (Couturier, 2015).” In hotel hospitality industry 

L2B ratio depends on the type of property, for example High-end luxury hotels might have a 

lower L2B because some visitors might just be browsing out of curiosity, not necessarily 

looking to book, while Mid-tier hotels typically have a L2B ratio between 2-7% (Bard AI, 

2024). Report from IATA (2019) after interviewing industry professional identified these 

challenges, which are cost, IT infrastructure and responses time. In the report IATA gave the 

following solutions that have been implemented by industry players:  

    a. Provision of relevant and consistent information to travellers at the right time 

    b. Working with MSEs/OTAs to optimize L2B 

    c. Filtering out robots and limiting the deployment of result-based caches 

    d. Implementing Airline Profiles 

Easy Market is constantly working on it system and providing the best optimal solution to 

customer but some of  it processes are still done manually by it engineers and want to automate 

and save time. So, in this section of the thesis, I will go through a list of processes that I tried 

to develop to perform series of operations in ETL and L2B computation on over 70million rows 

of data ingested to GCP BigQuery daily from their website, travel agencies and other third-

party customers. There was a lot of coding that I will explain in detail, so this section is arranged 
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in the following order: structure of the raw data (semantic), ETL process, computation of 

values, cost of computation, propose solution. 

 

4.1 Structure of the raw data (sematic) 

Data ingested into BigQ from Pub/Sub has no prior analytics, and therefore reach in form. The 

main table which I will be referring to as flight-lake for the purpose of this writing because all 

the data is raw messy and untouched. There is no PII in the table and it consist of  26 main 

fields and nested fields as type “record” in the “gdsSearchConditions.” To put it straight a 

“record” or “struct” is way to represent complex data structures efficiently (Bard AI, 2024). 

The first field is “created” which is a TIMESTAMP that store the exact datetime including 

seconds of when an “itemOperation” is generated. The itemOperation are search, booking and 

price all type String and abbreviated as SRC, BRC, PRC, respectively. SRC= 

searchTransactionId, BRC=bookingTransactionId, PRC=pricingTransactionId holds a crucial 

information about the whole L2b (SRC to BRC) computation. Each itemOperation has a unique 

ID that stores a unique transaction, and duplicate SRC can be found when complex queries are 

performed to see the results sent by various engines available. The storefrontId  is an INTEGER 

data type that holds information about the market type of Easy Market, they are b2b [2 = 

Revolution.travel, 63 = BOL] and b2c [49 = VIAGGIOGRATIS, 54 = LOL], the next field is 

the agencyCode which self-explanatory and STRING in type, the market field stores names of 

various travelling agencies e.g. AMICA, UVET and GEOTRAVEL etc. Some BOOLEAN 

variables are directFlightsOnly, allowTOFares, and offersWithFreeBagsOnly. The 

gdsSearchConditions is of type RECORD storing information from the Global Distribution 

System about serviceEngineId, flights, and solutions or response from the suppliers. This field 

is further nested into sub structures showing the hierarchy of which data is stored and providing 

a comprehensive logic of complex system operation in the cloud. 

 

4.2 Extract Transform Load (ETL) process 

There are two processes in data transformation, ETL which has been around since the 1970s 

and ELT the new norm (Amazon aws, 2024), both can be used for complex analytics and one 

of the main differences is that ETL performs transformation before loading the data into target 

Datawarehouse, lake, table. Other differences and benefits of when to use one instead of the 

other in certain situation are in terms of cost ELT is cheaper compared to ETL because it 

requires fewer systems to be built, which also reduce the cost of maintenance. In terms of speed 

ELT have proven to be faster and uses cloud infrastructure such as processing power and 
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parallelization for real/near-time data transformation, ETL in the other hand slows down the 

system as data size increases. In this paper ETL was adopted because of its suitability for 

experimenting and research purpose. Easy Market uses BigQ as a storage and for performing 

complex analytics with SQL. The ETL system built consist of three phases; the first is  

“extraction” which involves getting the data from BigQ to Vertex AI workbench using python 

and SQL, the second is “transformation” using set of files as dependencies and python scripts 

including over 200 lines of code to perform cleaning, wrangling, and more. The final phase is 

populating the cleaned structured dataset to the ETL warehouse. A high-level overview of the 

ETL process is shown in figure 29. The next section takes a deep dive into the schema of the 

target table(ETL warehouse), python & SQL code for extraction, supporting files and python 

scripts for  “TRANSFORMATION” and load. 

 

 

Figure 29. ETL process (self-contribution, 2024) 

 

The ETL warehouse schema was design as requested by the IT business requirement analysis. 

This involves creating a date dimension with year, month, day all separated in different column. 

Most traditional BI analysis involve modelling a multi-dimensional data model to organize data 

in a data warehouses.  A start schema is one of the most popular multi-dimensional models in 

the BI world and has therefore been adopted for the purpose of this writing. A point to note is 

that Easy Market’s BigQ storage is not relational database and the kind of analytics they are 

performing does not require the use of star schema. So, breaking down columns from the main 
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BigQ table into smaller tables will require joins to query and unnecessary storage due to data 

duplication, which may lead to increment in cost. Another point to mention is that traditional 

BI softwares like excel can only handle 1,048,576 million rows per spreadsheet even though 

power query is an ETL tool for big data and does not have a hard row limit. The ease of 

representing data in one big table like spreadsheet makes performing complex queries and 

analytics faster because of less joins, beside the rows of  data ingested into BigQ each day is 

over 70million, therefore visualizing the look-to-book ratio for each route is cumbersome and 

Easy Market was not interest in seeing dashboards. However, the multidimensional star schema 

model has laid the very foundation of the one big final table is easy to query and perform 

complex analytics with less joins. The model created from the main source table has a fact table 

name flights which stores the information of measures and dimension tables (date/created, 

storefrontId, itemOperation, gdsSearchConditions) which adds description the  to the fact table. 

The created/date dimension allows to perform more effective analysis across different time 

periods, while the itemOperation dimension provides information about the kind of operation 

perform it can be a search, pricing or booking. The other two dimensions gdsSearchCondition 

and storefrontId provides information about the result from the suppliers, and the 

platform/website from which the flight transaction came from it could be a b2b or b2c example 

of storefront are Revolution, LOL, BOL and ViaggioGratis. The figure 30 depicts the model. 

 

 

Figure 30. Flights Star model (self-contribution, 2024) 

The figure 31 shows the practical implementation of the warehouse schema on GCP. 
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Figure 31. ETL warehouse schema (self-contribution, 2024) 

 

After designing the model and the ETL warehouse schema, the next step of  was populating it 

with data, in other to do such operation data needs to be extracted from the main storage which 

in this situation is from BigQ to Vertex AI workbench. The following are the steps in the ETL: 

Step 1. Getting the data 

The extraction process is done with a combination of Python  & SQL, the sql code was written 

in a text file and read by python as normal string then saved in a variable called ‘sql.’ The 

BigQuery API client library google-cloud-bigquery was used to query data into Vertex AI 

workbench (Jupyter notebook) and convert into a data frame, a temporary copy was created 

just in case if there is an error during the computation, the copy will then be used to avoid 

rerunning the sql. The query can be run on  Vertex AI workbench with no authentication 

requirement, however the same does not apply for Colab and local host which requires specific 

authentication requirements such as project name, location where the data is store in the case 

of Easy Market it is europe, users might also be required to use their Gmail to verify their 

access to a specific table in a project. Below is a snapshot of the code snippet of extracting the 

data from BigQ to Vertex AI using Python & Sql. 
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The code snippet is a sql query for a single day in the month of February 2024. 
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The code snippet is a python program to read the sql code from a text file and perform a query 

from BigQ.  

 

 

Step 2. Transformation 

The next phase after importing data into Vertex AI workbench in a pandas dataframe format  is 

to perform the transformation. The transformation code is organised in a module and contains 

four main functions “datedim,” fillMissingCountryDep, fillMissingCountryArr, and wrangle: 

a. datedim 

The “datedim” which is the first function takes a data frame as an input, import pandas and 

splits the ‘created’ column into year, month and day, this is done to perform complex analysis 

and having the ease to select a specific year, month or day overtime a specific time. A 

reindexing is performed to keep the data frame in order with the year, month, day, 

itemOperation and storefrontId as the first five columns followed by the remaining 14 columns. 

This order is done according to the IT department’s requirement of how they want to see the 

table so that they can easily query it for results. The data frame with date separated is then sent 

to the stage which is data imputation for filling arrival and departure of missing country.  
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The imputation of missing values in departure and arrival is done with two functions 

fillMissingCountryDep and fillMissingCountryArr. They both have the same underlining 

processing logic, so only one of them will be explained in this paper. 

b. fillMissingCountryDep 

The fillMissingCountryDep function will be the one to consider because whenever someone is 

travelling from one point to another the departure always comes first before the arrival. The 

fillMissingCountryDep function takes in two parameters as inputs, the first parameter is the 

dataframe from the previous stage which is the output of the datedim function and the second 

is the IATA data containing airports and countries. The IATA data has two columns the 

abbreviation of departure airport and country, these columns are then split and converted into 

two separate list called city and country. The python zip function is then used to create a tuple 

of each city and country example ((MIL,IT), (NAP,IT),(ROM,IT) then a dict function is applied 

to create key-value pairs. The next step is a new empty list “newDC” is created to hold the new 

values for both present and missing values imputed. A  for loop is applied to the data frame 

departure airport column to checks the value’s key and if it is equal to ‘NA’  the function 

appends  “NA” because Namibia in the IATA country is represented as “NA.” One thing to 

note is that in most programming languages “NA” is normally refers to as a missing value so 

an escape character can be used to handle such problem. If the key differs from “NA” then 

append the key/country IATA code. The function also uses a brute force approach to fill in 

missing value if an airport  has not been represent in the IATA code, which could be a possibility 

that the airport is out of operation or it is a new airport, the value to impute in  departure country 

column is an arbitrary one “checkDeptairport”, meaning if anyone is using the dataset they can 

find the name of the departure country by using the name of the departure airport. The function 

might not be the best or most optimal code, but the logical process and practical implementation 

worked well in imputing all the missing values and took few seconds to impute all missing 

values for departure and arrival country in over 70million rows of data. The use of python 

dictionary {key: value} data structure to solve such complex task makes the process fast.  

c. fillMissingCountryArr 

The same logic of  imputing the missing departure country holds for arrival country, therefore 

the explanation of the fillMissingCountryArr is the same as fillMissingCountryDep with only 

arrival airports and country to consider.  

d. wrangle 

The last function in the python transformation script is wrangle function which takes the data 

frame from the previous steps and IATA code as inputs, there is a little bit of repetition of the 
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fillMissingCountryDep and fillMissingCountryArr logic this is due to fact of making the code 

robust. However, the difference in the wrangle function is that all missing departure and arrival 

row tuples are subset before an imputation is made. That is set  “checkDeptairport” for missing 

value in departure country and  “checkarrAirport” for missing value in the arrival country. 

Other data wrangling process includes filling “status” column as “OK” whenever the tuple is 

blank for this column. Note in most literatures and data related book a missing value is said to 

be problematic but in Easy Market’s system in some column missing values are ok, this might 

sound contradicting but that is how their design work. Blank or missing values in the 

“reservationCode” means a particular itemOperation does not lead to reservation so the value 

is set to “noRes” short for no reservation, as for “validatingCarrier” it stores all the names and 

codes for a specific airline flight, and all missing values in the “market” column are set to the 

arbitrary string “market” or “REvolution" when storefrontId == 2. Imputing “REvolution" for 

storefrontId == 2 is done to give a higher preference to such market because it is one of the 

most recent innovations of Easy Market. After this sequence of processes are performed the 

final cleaned dataframe is return and written into the ETL warehouse. The figure 32 shows a 

high level overview of  the transformation process. 

 

 

Figure 32. Python transformation script (self-contribution, 2024) 

 

The above diagram summarizes the whole process that is explained above one thing to note is 

that the script is designed to perform computation for a specific day, but adjustments can be 



57 
 

made for the program to be able to perform weekly, monthly, quarterly or annually according 

to how the business dynamics changes overtime. The IATA codes can also be updated directly 

by editing it directly since airport and country code are store in a csv file format with two 

separate columns, respectively. Once the data has gone through all the function the module it 

can be written directly to the ETL warehouse for storing and performing analytics for later use. 

It can also be passed on to another script called the “metrics computation script” for calculating 

the look-to-book ratio and the search-to-price ratio. The process of doing this metrics 

computation is discussed in detail in the next section. 

 

Step 3. Computation of metric values 

The search-to-price and look-to-book are some of the most important ratios in the airline 

industry. The look-to-book (conversion rate) is often more widely discuss because of its 

importance. However, in the computational process and in this paper both are considered.  

While the look-to-book  has to do with the “customer conversion rate” the search-to-price ratio 

shows if there was a pricing for a specific route, and pricing can only be return when a route is 

not in BLACKLIST (temporarily blocked). Like most business Easy Market spend a lot of time 

doing complex analysis to compute it look-to-book ratio for some of it most profitable routes, 

and drills down into its data storage on BigQ for new emerging travelling destinations and 

previously blocked unprofitable ones, this is what makes this section really important. 

 

The computation process can be done in two ways, one by writing a SQL script to query data 

directly from the ETL warehouse which contains cleaned dataframe or passing by cleaned 

dataset from the transformation script to the metrics computation script directly. The second 

process was adopted in the computation process to save time and energy of having to write 

different SQL script that one to query the main storage of raw data the other to ETL warehouse. 

As the cleaned dataset is passed on to the metrics computation scripts series of process are 

perform using NumPy, pandas and datetime module. The first step of these process is a sanity 

check for missing values in the airport columns that is in both departure/ arrival names of cities 

and countries, then a string concatenation is perform on these names to create a new column 

for the airport route called “routeAirport” and country route “routeCountry” example “MIL-

ROM”, “IT-IT  respectively. A “.groupby” function is then applied to a subset of columns 

including “routeAirport” before chaining “.count” pandas’ function to a count of  the number 

of  ‘searchTransactionId,’ ‘pricingTransactionId’, ‘bookingTransactionId’. The result from the 

previous step is then chained with the “.sort_values” to order the dataframe by 
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‘bookingTransactionId’ in descending order. Two new columns df[‘S2P’] and df[‘L2B’] are 

then created from the count of the ‘searchTransactionId’, ‘pricingTransactionId’, 

‘bookingTransactionId’ by applying the “.map(str)” function. The datetime is recomputed to fit 

the exact row and avoid mismatch, lastly the columns are manually reindexed for populating 

into the BigQ metrics table for later analysis.  

A high level overview of the metrics computation process and snapshot of the code snippet: 

 

Figure 33. Metrics computation script (self-contribution, 2024) 

 

code snippet: 
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4.3 Cost of the computation 

The aim of any business is to reduce cost and increase profit, the same applies for Easy Market 

throughout it research and development in the IT department. Decision about how many 

monthly queries to run on BigQ or what GCP product to add to it suite of applications already 

in use is carefully taken. Easy Market already spends a monthly average €950 on BigQ with 

€750 for queries and €200 for storage.  

 

The cost of carryout the computational experiment is €11.28, all scripts were test and ran on 

Colab research Pro. The queries were made directly from the main storage for three days 

performing a computation of over 210million rows of Easy Market flight data. After a 

successful deployment of the code with Colab, GCP vertex AI workbench with a basic free 

plan was used for final deployment on the subset of the main data in the staging area set for 

research and development. 

 

4. 4 Proposed Solution 

The diagram below is my solution for Easy Market to handle it system’s optimization problem.  

 

Figure 34. Cloud Proposal architecture (self-contribution, 2024) 

 

This system will automate the data engineer’s task through series of pipeline. In the design, 

Cloud Pub/sub will be ingesting data from all sources into BigQuery then a series of pipeline 

will be created to pull/store data from BigQuery into Vertex AI where ETL/ELT and metrics 
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computation will be performed, Easy Market should migrate their on-premises tables (filter 

engines) which they are using to filter transactions on the cloud to AlloyDB. All transactions 

which are to be denied will be done on by the (profiles_engines_availability) on AlloyDB 

before they are sent to the gds/suppliers. The last component of this design is cloud composer 

which will perform the orchestration of the whole process. 

 

 

4.5 Average monthly cost of computation: 

The computational  cost is based on information provided by IT manager and the number of 

bookings was derived from the analysis made on bigquery. A monthly average of €200 for 

storage, €750 for queries, €5000 for computation and a “bidding cost” of  ‘X’ because no 

response was given upon the request of this value from the company. Average booking is 200  

a day making €50 from each.  

 

The profit equation will be:  

                                           Average profit = Total revenue – Total cost 

       total cost  = GDS API + Google Cloud Platform (BigQ query and storage) + Bidding Cost 

                  Average total revenue  =  average number of total bookings  x  sale price 

         Average profit = (200x30x50) – (5000+750+200) –  x = ( €294,050 - x ) per month                                          
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5. Conclusion 

 

After studying and doing a lot of research on the problem that Easy Market is trying to solve I 

will say it is very promising if they keep the research and development going since the digital 

space is constantly evolving and with this come a problem of obsoleteness. As you have seen 

in this paper a system that had worked very well in the past, became obsolete with scalability 

issues as people’s travelling habit changes.  The design and implementation or real-time 

analytics systems to handle big data is no easy task, it cost money, time and expertise. The IT 

team hopes to create this analytics system that will automate the computation processes and 

BLACKLISTING, I am not saying this is not possible soon but with such systems comes a 

great responsibility. In early stages of the data exploratory, I found out that the number of 

searches overweight the booking so when developing a system to automate task like 

computation of look-to-book and blocking/unblocking. One should note that there are specific 

route that has more traveller than other and therefore what is the threshold ratio to set to tell 

the system when to block, Easy Market was only blocking out of previous experience and there 

was no threshold ratio. 

 

The other point has to do with human behaviour, mostly people do a lot of searches on various 

platforms to find the fastest/cheapest flight to a specific destination with no intention of buying 

anything. Therefore, modelling human behaviour is not an easy task and travelling taste of 

people  change over time, a destination which will be a hot travelling spot in a certain period 

will not be appetizing in the future. Never mind assumptions are to be tested and if the IT 

department aims to pursue this research further, this paper has laid a foundation and question 

to asked, by showing what is possible like the ETL and metrics computation, what can be done 

in-house or outsourced.  

 

My proposal in chapter 1 should serve as a foundation of the utilization of their cloud ecosystem 

but google offers range of products to perform the same task. On average Easy Market will be 

earning €294,050 a month just on flight bookings. The bookings per month is not fixed, on 

seasonal holidays like summer, Christmas and new year people tends to move around more 

increasing the number of searches and bookings. The future of Easy Market is great, and I 

believe with all the resources they have in hand they’ll will reach their goal. 
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7. Appendix – Introduction, Proposal 

A. Apache spark solution for real-time analytics and metrics computation 

 

 

7. Appendix – Literature Review 

A. Big Data: The 8 Vs of Big Data, Enrico Gallinucci: Big Data lecture introduction p.8 
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B. Infographic data never sleeps 11.0, data generate every 1 minute of the day (DOMO, 2023) 

 

 

 

 

C. Types of data analysis          

     

source: objective 
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D. Role of big data in making decisions by Shirish et al., pp.6-7. 

 

Big data source Big data driven insights Actionable 

decisions 

Reference 

Google search for a 

product or brand 

 Customer intention to 

buy a particular product 

  Identify customer 

preference for a particular 

brand 

Predicting demand 

for product 

 

Google search by 

specific key words 

What information citizens 

are looking for or 

concerned about 

Predict spread of flu 

by geography by 

regions 

Mayer-

Schönberger 

& Cukier, 

2013 

Amazon search Customer intention to buy 

a particular product 

Reminder to 

customer next time 

she/he visits the site 

leading to chances 

of sale 

Amazon.com 

website 

Amazon Purchase 

history 

Using association rules 

mined from billions of 

records, identify which 

different products are 

bought by customers 

Product 

recommendation 

(customer who 

bought this also 

bought) 

Amazon.com 

website 

Walmart POS data  Using association rules 

mined from billions of 

records, identify which 

products customers buy 

together (market basket 

analysis)  

 Facing disaster such as 

hurricanes people buy 

some unusual things like 

pop-tarts etc.  

 Store layouts 

redesign to place 

such products 

together 

 

  Inventory 

planning based on 

buying patterns 

prior to disasters 

such as hurricanes 

 Waller & 

Fawcett, 

2013  

Dyché, 2014 
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E. Lambda architecture using Hadoop ecosystem by Jay Kreps 

 

source: Oreilly Radar 

 

Kappa architecture using Hadoop ecosystem by Jay Kreps. 

 

source: Oreilly Radar                               

 

Zeta Architecture: Hexagon is the new circle by Jim Scott 

                                    

                                                          source: Oreilly Radar 

 

  

http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
https://www.oreilly.com/content/zeta-architecture-hexagon-is-the-new-circle/
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Internet of Things (IoT) specialized subset big data solution by Microsoft 

 

source: Microsoft 

 

 

F. Batch processing vs stream processing: A tabular comparison 

 

 source: atlan        

  

 

 

 

https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/big-data
https://atlan.com/batch-processing-vs-stream-processing/#batch-processing-vs-stream-processing-a-tabular-comparison
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G. Spark Streaming Ingestion by Shiva Achari, “Hadoop Essential, 2015, (p.154)” 

 

 

 

 

H. Pricing of the GCP products: 

 (i). Pub/Sub   (ii).  BigQuery  (iii). Colab Research  (iv).  Vertex AI  (v).   Dataflow  (vi). 

DataProc (vii). Data Fusion (viii). Cloud Composer   

 

I. XaaS (anything as a service) by Prof. Matteo Francia (2023) 

 

source: DTM cloud computing lecture slides 

 

https://cloud.google.com/pubsub/pricing
https://cloud.google.com/bigquery/pricing
https://colab.research.google.com/signup
https://cloud.google.com/vertex-ai?hl=en#pricing
https://cloud.google.com/dataflow/pricing
https://cloud.google.com/dataproc/pricing
https://cloud.google.com/data-fusion#pricing
https://cloud.google.com/composer/pricing
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7. Appendix - Automating Look-to-book computation 

 

A. Key differences between: ETL vs ELT 

Differences ETL ELT 

Data compatibility Suitable for structured data Handles all types of data 

Speed Slows system as data size 

increases 

Faster than ETL 

Costs costly Cheaper as compared to ETL 

Security easy to implement More difficult to implement 

 

 

B. Python Transformation script 

# create a year, month, day 

def datedim(df): 

    import pandas as pd 

    # Sort the dataframe by datetime 

    df = df.copy() 

    df['created'] = pd.to_datetime(df['created']) 

    df = df.sort_values(by='created', ascending=True) 

    # date dimension function 

    # Assuming df is your DataFrame and 'created' is the date column 

    # extract year, month, day 

    df["year"] = df['created'].map(lambda x: x.year) 

    df["month"] = df['created'].map(lambda x: x.month) 

    df["day"] = df['created'].map(lambda x: x.day) 

    # columns of the dataframe 

    cols = ['year', 'month', 'day', 'itemOperation', 'storefrontId','agencyCode', 'market', 

'serviceEngineId', 'status', 'searchTransactionId', 'totalNrResults', 'pricingTransactionId', 

'bookingTransactionId', 'reservationCode','pnr', 'validatingCarrier', 'deptAirport', 

'departureCountry', 'arrAirport',] 

    # reindex to get year-month-day 

    df = df.reindex(columns=cols) 

    # return df 
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    return df 

 

 

# This function fills in fillMissingCountryDep values. 

def fillMissingCountryDep(df, airports): 

    """ 

    This function fills in missing values. 

    """ 

    # city country to list 

    city = airports.iloc[:, 0].tolist() 

    country = airports.iloc[:, 1].tolist() 

    # create key value pairs of city-country 

    pair = dict(zip(city, country)) 

    # departure key value pair 

    newDp = [] 

    newDc = [] 

    for dep in df['deptAirport']: 

        if dep in pair: 

            # newDp.append(dep) 

            if pair[dep] == 'NA': 

                newDc.append("NA") 

            else: 

                newDc.append(pair[dep]) 

        else: 

            # newDp.append(dep) 

            newDc.append('checkDeptairport') 

    df["departureCountry"] = newDc 

    return df 

 

# This function fills in fillMissingCountryArr values. 

def fillMissingCountryArr(df, airports): 

    """ 
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    This function fills in missing values. 

    """ 

    # city country to list 

    city = airports.iloc[:, 0].tolist() 

    country = airports.iloc[:, 1].tolist() 

    # create key value pairs of city-country 

    pair = dict(zip(city, country)) 

    # departure key value pair 

    newAp = [] 

    newAc = [] 

    for dep in df['arrAirport']: 

        if dep in pair: 

            # newDp.append(dep) 

            if pair[dep] == 'NA': 

                newAc.append("NA") 

            else: 

                newAc.append(pair[dep]) 

        else: 

            # newDp.append(dep) 

            newAc.append('checkArrairport') 

    df["arrivalCountry"] = newAc 

    return df 

 

# The wrangle function takes in the dataframe and cleans up all missing values 

# replace meaningful names 

def wrangle(df, airports): 

    """ 

    Cleans the dirty dataset 

    """ 

    import pandas as pd 

    # load airport-country pair dataset 

    # replacing the null values 

    df['status'] = df['status'].fillna('OK') 
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    df['pnr'] = df['pnr'].fillna('noPnr') 

    df['reservationCode'] = df['reservationCode'].fillna('noRes') 

    df['validatingCarrier'] = df['validatingCarrier'].fillna('noValCarr') 

    df['totalNrResults'] = df['totalNrResults'].fillna(-1) 

    # market REvolution for storeFrontId == 2 

    df.loc[df['storefrontId'] == 2, 'market'] = 'REvolution' 

    # if market is missing fill as market 

    df['market'] = df['market'].fillna('market') 

    # searchTransactionId, pricingTransactionId, bookingTransactionId 

    df['searchTransactionId'] = df['searchTransactionId'].fillna('PoB') 

    df['pricingTransactionId'] = df['pricingTransactionId'].fillna('SoB') 

    df['bookingTransactionId'] = df['bookingTransactionId'].fillna('SoP') 

    # city country to list 

    city = airports.iloc[:, 0].tolist() 

    country = airports.iloc[:, 1].tolist() 

    # create key value pairs of city-country 

    pair = dict(zip(city, country)) 

    # get index of missing dept and arr countries 

    import numpy as np 

    nullDC = np.array(df[df['departureCountry'].isnull()].index.to_list()) 

    nullAC = np.array(df[df['arrivalCountry'].isnull()].index.to_list()) 

    # replace missing departure country 

    try: 

        for i in nullDC: 

            df.loc[i, 'departureCountry'] = pair[df.loc[i, 'deptAirport']] 

    except KeyError: 

        df.loc[i, 'departureCountry'] = 'checkdeptAirport' 

    # replace missing arrival country 

    try: 

        for e in nullAC: 

            df.loc[e, 'arrivalCountry'] = pair[df.loc[e, 'arrAirport']] 

    except KeyError: 

        df.loc[e, 'arrivalCountry'] = 'checkarrAirport' 
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    # check for replacing values 

    # get index of missing dept and arr countries 

    nullC = np.array(df[df['departureCountry'] == 

                     'checkdeptAirport'].index.to_list()) 

    nullA = np.array( 

        df[df['arrivalCountry'] == 'checkarrAirport'].index.to_list()) 

    # replace missing departure country 

    try: 

        for i in nullC: 

            df.loc[i, 'departureCountry'] = pair[df.loc[i, 'deptAirport']] 

    except KeyError: 

        df.loc[i, 'departureCountry'] = 'checkdeptAirport' 

    # replace missing arrival country 

    try: 

        for e in nullA: 

            df.loc[e, 'arrivalCountry'] = pair[df.loc[e, 'arrAirport']] 

    except KeyError: 

        df.loc[e, 'arrivalCountry'] = 'checkarrAirport' 

 

    # check namibia 

    # fix namibia mising values again 

    namibia = {'WDH': 'NAM', 'WVB': 'NAM', 'ERS': 'NAM', 'LUD': 'NAM'} 

    for k in namibia: 

        df.loc[df['arrAirport'] == k, 'arrivalCountry'] = '\'NA\'' 

        df.loc[df['deptAirport'] == k, 'departureCountry'] = '\'NA\'' 

 

    # explicit datatype conversion 

    cols = df.select_dtypes(include='object').columns.to_list() 

    # numeric coln 

    coln = df._get_numeric_data().columns.to_list() 

    df[cols] = df[cols].astype(str) 

    df[coln] = df[coln].astype('int64') 

    # missing values not previously captured 

    df['arrivalCountry'] = df['arrivalCountry'].replace( 
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        ['None'], 'checkarrAirport') 

    df['departureCountry'] = df['departureCountry'].replace( 

        ['None'], 'checkdeptAirport') 

    # return final dataset 

    return df 
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C. Cloud deployment automation code 
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D. Colab subscription plan by Google 

 

https://colab.research.google.com/signup

