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Abstract

Since the early 2000s, the study of the Large Scale Structure (LSS) of the Universe
has become central to cosmology, revealing insights into its expansion and structural
evolution. The European Space Agency (ESA) Euclid mission promises to significantly
advance this field by delivering the most extensive and precise galaxy map to date in
optical and infrared bands, extending the current ones by measuring tens of millions
of redshifts. To fully leverage Euclid ’s data for galaxy clustering analyses, two key
advancements are required.

Firstly, capturing the complete cosmological signal necessitates moving beyond tra-
ditional statistics, like the two-point correlation function (2PCF). In particular, the
three-point correlation function (3PCF) is essential for understanding deviations from
Gaussian behaviors in the density field. Secondly, achieving extreme precision in cosmo-
logical measurements, as anticipated for Euclid, demands rigorous control of systematic
effects. A major challenge here is the precise estimation of redshifts. At the expected
level of signal-to-noise ratio (SNR) in Euclid spectra, errors in redshift determinations
due to noise or spectral line mismatches (noise and line interlopers) can degrade the
2PCF and 3PCF signals.

In this study, we assess for the first time the impact of interlopers in the measure-
ment of cosmological parameters with the 3PCF. To do that, we derive and test a new
expression for the 3PCF estimator that effectively disentangles the cosmological signal
from systematic errors. We successfully implement and test new classes and functions in
the CosmoBolognaLib (CBL) C++ libraries to measure the cross-correlation signal from
interlopers for both the 2PCF and 3PCF. Additionally, we assess the impact of redshift
interlopers on the 2PCF and 3PCF signals using a galaxy sample from the Euclid official
simulations (Flagship2), where ad-hoc interlopers have been inserted based on Euclid
predictions. Our analysis highlights the importance of interlopers’ cross-correlations in
recovering accurate 2PCF and 3PCF signals using our newly derived estimators. Further-
more, we model the 2PCF and 3PCF signals considering another large set of Euclid -like
simulations (EuclidLargeMocks from the PINOCCHIO simulations), comparing pure
samples (without systematics) to those contaminated by interlopers.

Our findings indicate that redshift interlopers significantly bias the 2PCF and 3PCF
signals, lowering them by more than 30%, with peaks around 70%. Furthermore, we find
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that cross-correlation signals are crucial in recovering the full 2PCF signal, particularly
at low redshifts. Regarding cosmological parameter constraints, we observe that the
linear growth factor, f σ8, for catalogues affected by interloper contamination is reduced
by more than 25%. Additionally, modeling both 2PCF and 3PCF reveals that the linear
bias parameter, b1, is damped by 20-30% for the contaminated sample.

This work represents the first step in a full self-consistent treatment of realistic data
considering in detail systematic effects as expected from the Euclid mission, demonstrat-
ing that addressing interloper contamination biases is essential. Future studies should
focus on developing effective mitigation strategies.
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Introduction

The main goal of cosmology is to understand the nature of the LSS and the history
of the evolution of the Universe. This can be achieved, among many other methods,
through three main approaches: Cosmic Microwave Background (CMB) studies, weak
lensing (particularly using cosmic shear), and clustering. The Euclid mission’s two main
probes for studying the geometry of the universe are weak lensing and clustering. In this
work, I will focus on the latter, which involves studying and understanding the matter
distribution in the Universe across cosmic time.

To retrieve information on the LSS, useful statistical tools such as the n-point correla-
tion functions are employed. These functions quantify the excess or deficit of probability
of finding N galaxies in a given N-point configuration in our Universe compared to a
Universe where galaxies are randomly distributed (hence without any clustering). The
inflationary theory predicts a primordial almost Gaussian matter density field, and the
properties of any Gaussian field can be fully studied with two-point statistics, specifi-
cally the 2PCF or its Fourier transform, the power spectrum (PS). However, during the
evolution of the universe, non-linear effects due to small-scale gravity alter the initial
field, leading to the development of non-Gaussian features. These features cannot be
constrained with two-point statistics and require higher-order moments of the matter
distribution. The 3PCF, along with its Fourier transform, the bispectrum (BS), is the
simplest statistical tool to probe non-Gaussianity.

The first step in performing statistical analysis with the tracers’ distribution is to
precisely measure their positions. This can introduce various measurement uncertain-
ties, particularly for the redshift coordinate. Besides the effects of the peculiar velocities
of the tracers (RSD) and the assumption of a fiducial cosmology for computing comoving
distances (AP effect), which have been extensively studied over the last decade, system-
atic errors can also occur. These errors, known as redshift interlopers, are galaxies whose
redshifts are incorrectly estimated due to emission line mismatches. Redshift interlopers
will be the main focus of our study. Their presence in surveys affects the measurement
of correlation function signals, thus biasing the constraints on cosmological parameters
derived from their modeling. Our main objectives are the following.

Firstly, we aim to derive an expression for a 3PCF estimator capable of disentangling
the signal of the interlopers and their cross-correlations from that of the pure galaxies.
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While this work has already begun for the 2PCF (e.g. Risso et al., in prep.), its extension
to three-point statistics is still missing.

We also plan to implement new classes and functions in the CBL (Marulli et al., 2015
[1]), a comprehensive set of free software C++/Python libraries designed for cosmological
calculations. These new implementations will successfully use the estimators for the
cross-correlations of the 2PCF and 3PCF. As we will discuss, these estimators are crucial
for studying the redshift systematics effects on clustering.

Furthermore, we aim to constrain the impact of redshift interlopers on both 2PCF
and 3PCF signals by comparing measurements from pure catalogues of galaxies with
those affected by interloper contamination. We also intend to quantify the importance
of estimating the cross-signals of the redshift interlopers in recovering the total signal of
the 2PCF and 3PCF.

Finally, we will study the impact of interloper contamination on constraining cosmo-
logical parameters through modeling both 2PCF and 3PCF. We will quantify the bias
that systematic uncertainties introduce in the estimation of extensively used parameters
such as the linear growth factor, f σ8, and the linear bias, b1.

The work is organized as follows:

• In Chapter 1 we present an introduction on basic cosmological notions upon which
the concordance model of cosmology is built, needed to understand the purposes
and methodology of our study.

• In Chapter 2 we give an overview on clustering, one of the two main probes of the
Euclid mission and the field of cosmology on which we focus in our work. We will
concentrate in particular on the definition of the PS, 2PCF, BS and 3PCF.

• In Chapter 3, we describe the methods used for the measurement and the modelling
of the statistical tools introduced in the previous Chapter, focusing on the ones
used in this study. We also propose a new estimator for the cross-correlations of
the 3PCF.

• In Chapter 4 we present and test our newly developed classes and functions to
exploit the cross-correlation estimators described in the previous Chapter.

• In Chapter 5 we describe the Flaghip2 (FS2) catalogue and we present our re-
sults on the impact of the redshift interlopers’ self and cross-correlations on the
measurement of the 2PCF and 3PCF.

• In Chapter 6 we describe the EuclidLargeMocks catalogues and we show our work
on the effect of the redshift interlopers on cosmological parameters constraints,
estimated through the modelling of both 2PCF and 3PCF.

• Eventually, in Chapter 7 we discuss our results and possible future developments
of this work.
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Chapter 1

Fundamentals of Cosmology

During the last century our conception of the Universe has changed radically: for ex-
ample only one hundred years ago we strongly believed that the latter was composed
exclusively by our galaxy. Nowadays, we think to have a pretty reliable vision on the
Universe’s evolution and composition, though there is still plenty of shadows and unan-
swered questions. The goal of this first Chapter is to describe our knowledge on the
life stages of the Universe from the last scattering surface1 until today, giving a brief
overview of what we know and what we do not understand yet. The model on which the
scientific community agrees for describing the evolution of the Universe is the Strandard
Model of Cosmology also known as ΛCDM, where Λ is the cosmological constant and
CDM stands for cold dark matter, which are believed to be the two most important com-
ponents of our Universe. Despite it still has some weak points and open questions, for
example on the nature of its main components, the ΛCDM model successfully describes
the evolution of the cosmos and it is the best guess we have for explaining the history of
everything.

In this first Chapter, we will begin with giving a brief overview on the instrument
used for studying the evolution of the Universe: the theory of General Relativity (GR).
After that, we will talk about the main fundamental concepts of cosmology, such as the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, the content of the Universe and
the Friedmann equations. Then we will present the ΛCDM model and its main compo-
nents. Eventually, we will talk about the growth of the cosmic structures starting from
small perturbations in the homogeneous density field that was the primordial Universe.

1It is very difficult to have any direct information from before the last scattering surface, as at that
time the Universe was optically thick and the photons produced could not travel freely to us without
reacting with other particles.
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1.1 General Relativity and the field equations

With the theory of GR (1915), German physicist Albert Einstein worked out a general
framework of which the physics of that time, the Newtonian physics, is only a particular
case, putting down the foundations for the development of the fields of astrophysics and
cosmology. Until 1915 Newtonian Physics was the only available gravitational theory,
which however failed to explain the cases in which the ratio between the mass and the
radius of the studied system in geometrized units (c = G = 1) is not negligible. Even
though this condition was verified for the majority of the studied systems (terrestrial
physics or even whithin the Solar System, with slight exceptions, such as e.g. the preces-
sion of the perihelion of Mercury), this is not the case for more extreme scenarios that
were not even on the table before the 20th century, where either the radius is very small
(e.g. in very compact objects like neutron stars or balck holes) or the mass is very large.
The latter situation happens in cosmology, for at cosmological scales the mass contained
within large volumes of Universe can be much greater than their radii. This can be easily
seen assuming that the mass contained in a volume of Universe of radius R and mean
density ρ̄ is:

M(R) =
4

3
πρ̄R3. (1.1)

Assuming a ρ̄ = 10−26kg/m3 in Eq.(1.1), we have M ≳ R for R ≳ 6Gpc, hence at
cosmological scales.

The main strength of GR is its background independence: this means that it does not
rely on a fixed spacetime background in its formulation. The theory is indeed formulated
using a covariant formalism, that makes it independent of the chosen coordinate system
and suitable for describing any kind of Universe. In order to treat the topic, some
considerations about that formalism have to be made.

From now on we will use the Einstein summation convention. Let us consider a point
P in an n-dimensional manifold M , and an n-dimensional vector space Σ tangent to M
in P . For describing the position of P we can use the local Cartesian coordinates in Σ,
X i

P with i = 1, ..., n. Now, we can switch to arbitrary coordinates xµ
P using the Jacobian

eiµ, which is defined in this way:

eiµ =
∂X i

P (x
µ)

∂xµ

∣∣∣∣
xµ=xµ

p

. (1.2)

This is also called the frame field and relates our set of arbitrary coordinates to the
local Cartesian coordinates in any point of the manifold. In this way we can exploit the
Cartesian concept of distance ds between two points xµ and xµ + dxµ:

ds2 = δijdX
idXj, (1.3)

which using Eq.(2.47), becomes:

ds2 = δije
i
µ(x)e

j
ν(x)dx

µdxν . (1.4)
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If we define the metric tensor as:

gµν(x) = δije
i
µ(x)e

j
ν(x), (1.5)

then Eq.(1.4) can be rewritten as:

ds2 = gµν(x)dx
µdxν . (1.6)

The metric tensor is a symmetric, rank (0,2) tensor field which specifies the local ge-
ometric structure of the manifold at each point. Thanks to these instruments, we are
now able to define lengths and angles on the manifold (the Universe), and it can be
demonstrated that the geodesics equations are:

ẍµ + Γµ
αβẋ

αẋβ = 0, (1.7)

where Γµ
αβ are the Christoffel symbols, defined as:

Γµ
αβ =

1

2
gµν(∂αgνβ + ∂βgαν − ∂νgβα). (1.8)

Furthermore, also the derivatives have to be generalized for an n-dimensional manifold
with generic geometry. The covariant derivative of a vector vν (ν = 1, ..., n) is defined
as follows:

∇µv
ν = ∂µv

ν + Γα
µνv

α. (1.9)

In the case of a flat, Euclidean space (Γα
µν = 0), the covariant derivative coincides with

the partial one. Therefore, the Christoffel symbols can be seen as the correction to the
derivative in the general case of a non-Euclidean metric, for they encode information
about how tangent spaces are connected as one moves along a curve on the manifold.
Eventually, defining the Riemann tensor as:

Rα
βµν = ∂µΓ

α
βν − ∂νΓ

α
βµ + Γα

µρΓ
ρ
βν − Γα

νρΓ
ρ
βµ, (1.10)

it can be demonstrated that:

∇µ∇νv
α −∇ν∇µv

α = Rα
βµν . (1.11)

It is clear that if Rα
βµν = 0 in a region of the manifold, that region is flat.

GR suggests that the Universe is a four-dimensional manifold that can be generally
described using three spatial coordinates (e.g. x, y and z if we want to use the Cartesian
ones) and a temporal one (i.e. t). The geometry of this manifold (gµν and its derivates)
depends on the mass and energy contained in it, following the field equations:

Rµν −
1

2
Rgµν = 8πGTµν , (1.12)
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where gµν is the metric tensor, which describes the geometry of the manifold, Rµν and
R are respectively the Ricci tensor and the Ricci scalar:

Rµν = Rρ
µνρ, (1.13)

R = gµνRµν , (1.14)

which are contractions of the Riemann tensor, therefore derivates of the metric tensor,
given the Eqs. (1.10) and (1.8). Tµν is the energy-momentum tensor, which describes the
distribution of mass and energy within the manifold and G is the gravitational constant
(G ∼ 6.67 × 10−11m3kg−1s−2). Gravitation can be described using Eq.(1.12) in the
following way: the distribution of matter and energy (Tµν) curves the geometry of the
manifold, modifying gµν and its derivates Rµν and R. The metric tensor affects the
geodesics, as we can see in Eq.(1.7), thus a test particle’s trajectory in absence of external
forces. In practice, what is usually called gravitational force becomes the geometry of the
spacetime manifold itself, which is determined by how matter and energy are distributed
on it (Tµν), and determines the trajectories of the bodies on it by means of its own
structure.

1.1.1 Cosmology through General Relativity

Cosmology is that field of Physics that studies the Universe at its largest scale. During the
last century this sentence completely changed its meaning: we went from believing that
our galaxy was the only one in the whole cosmos to knowing that the Universe contains
trillions of galaxies and not only it is expanding, but it is also accelerating its expansion.
The first major milestone in the history of cosmology was Edwin Hubble’s discovery in
1929: all the galaxies are receding from us with a velocity which is proportional to their
distance. This can be summarized in the Hubble-Lemâıtre law:

v = H0d, (1.15)

where v is the recession velocity, d is the distance of the galaxy and H0 is the Hubble
constant. This discovery forced the scientists of the time to embrace expanding models
and abandon the static Universe, of which also Einstein was a firm believer, as the best
and most logical explanation for all the galaxies to recede from us is that the spacetime
manifold is in fact expanding, and dragging the matter along with itself. Modern cos-
mology is founded on the assumption that the Universe at large scales is homogeneous
and isotropic: this is called cosmological principle or assumption of mediocrity, since it
states the ordinariness of our position in the Universe. In terms of GR, this means that
the spacetime manifold can be sliced into foliations of constant time which are perfectly
homogeneous and isotropic, thus the Universe at its largest scales is a time-evolving
uniform distribution of matter. Assuming the cosmological principle, one can derive the
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metric tensor gµν for a homogeneous and isotropic Universe, the FLRW metric tensor,
which using polar comoving coordinates can be written as:

gµν =


−c2 0 0 0

0 a2

1−kr2
0 0

0 0 a2r2 0
0 0 0 a2r2 sin2(θ)

 , (1.16)

thus, the line element is:

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (1.17)

where a is the scale factor and k is the curvature constant.
In this particular set of coordinates, the scale factor multiplies only the spatial part

of the metric, thus it can be identified as the factor that encodes information about the
expansion of the spatial part of the Universe as a function of the cosmic time. Studying
the cosmos at its largest scale, one can consider a as the only degree of freedom of the
system Universe: simplifying, cosmology is the study of the scale factor as a function
of the cosmic time. The curvature constant k determines the geometry of the spatial
hypersurfaces of the spacetime manifold and it can be k = 0,±1. In the case of k = 0,
the spatial part of the metric is flat, for k = 1 it is a closed 3-sphere and for k = −1 it is
an open 3-hyperboloid. Its value, as we will see in Section 1.3, depends on the content of
the Universe, and observations are constistent with a spatially flat Universe, thus with
k = 0.

Using Eq.(1.17) and defining the proper distance dpr as the distance between two
points when dt = 0, by choosing the right reference frame so that dθ = dϕ = 0, we can
write:

dpr = a(t)

∫ r

0

dr′√
1− kr′2

= a(t)χ(r), (1.18)

where the value of the integral χ(r) depends on the value of k. In addition to the
proper distance, we can define the comoving distance dc: a distance measured at the
current time. It only takes a rescaling of the scale factor:

dc =
a0
a(t)

dpr(t), (1.19)

where a0 is the scale factor at the current time. For simplicity, we usually set a0 = 1.
The proper velocity of a particle can be found by simply deriving Eq.(1.18):

vpr(t) = ȧχ+ aχ̇ = vr + vpec, (1.20)

where the second term on the right hand side is the peculiar velocity of the particle vpec,
and the first one is what we call the recession velocity vr, meaning the velocity with
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which every particle recedes from each other as a result of the expansion of the Universe.
As a matter of fact, consistent with what Hubble discovered almost 100 years ago, all
space points in the Universe are receding from each other, and their velocity, defining
the Hubble parameter as H ≡ ȧ/a, can be rewritten as:

vr(t) = ȧχ = H(t)dpr(t). (1.21)

In the local Universe (meaning at present time) the Hubble parameter is also called
the Hubble constant H0 = ȧ0/a0, and Eq.(1.21) becomes the Hubble-Lemâıtre law
(Eq.(1.15)). The value of H0 has been measured several times. For its reference value
we will consider to the measurements by Wang et al. (2017) [2], who used the latest
baryonic acoustic oscillations measurements from the eBOSS survey, finding:

H0 = (67.27± 1.55)km s−1Mpc−1. (1.22)

Due to the expansion of the Universe the observed light emitted from any kind of cosmic
structure appears reddened: all the sources are receding from us, as they are doing for
any other observer in the Universe since, as the cosmological principle states, we are not
in a privileged reference frame. The light they emit is seen by us with a lower frequency
because of their motion with the Hubble flow. This reddening is called redshift, z, and
it is defined as:

z =
λobs − λem

λem

=
∆λ

λ
, (1.23)

where λem is the wavelength of the light emitted by the source, and λobs is the wavelength
of the observed light, after the reddening. Using Eq.(1.17) we can derive a relation
between the scale factor at the emission time and at the observation time (aem and aobs)
and z, for a light particle moving on null geodesics (ds2 = 0):

aobs
aem

= 1 + z, (1.24)

which considering an observer at present time, becomes:

a0
a(t)

= 1 + z. (1.25)

Due to these considerations, the redshift z effectively becomes a quantity with from we
can measure distances, since assuming a cosmology (namely a(t)) the redshift of a source
uniquely depends on its distance from us.

1.2 Content of the Universe: Tµν

As stated in Section 1.1, the geometry of the spacetime manifold depends on the right
hand side of the field equations ((1.12)): the energy-momentum tensor Tµν , which de-
scribes the energy and mass distribution on the manifold. Assuming that the content
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of the Universe is a perfect fluid, which particles’ free path is much smaller than their
physical scale of interaction, the energy-momentum tensor can be written as:

T µν = (ρ+ p)uµuν + pgµν , (1.26)

where ρ is the energy density, p is the pressure and u is the 4-velocity of the fluid element.
Since T µ

ν = gανT
µν (from tensorial formalism) and given the expression for gµν is provided

by Eq.(1.16), using units in which c = ℏ = kB = 1, we can derive that:

T µ
ν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.27)

It can be demonstrated that the covariant derivative of the energy-momentum tensor is
null. This provides us the GR version of the continuity and Euler equations:

∇µT
µ
ν = 0. (1.28)

These four equations (one for each ν = 0, 1, 2, 3), can be simplified in the following way,
assuming isotropy and using Eqs. (1.8) and (1.9) :

∂ρ

∂t
+

ȧ

a
[3ρ+ 3p] = 0, (1.29)

which, integrating, becomes:
ρs(a) ∝ a−3(1+ws). (1.30)

In Eq.(1.30), s indicates a generic component of the Universe, with pressure ps and
density ρs. We have also used the equation of state parameter of the component s, ws,
which is defined as follows:

ws ≡
ps
ρs
. (1.31)

This parameter is different for every component of the Universe, and in general must be
lower than 1, because the sound velocity, defined as:

v2s =

(
∂p

∂ρ

) ∣∣∣∣
S=const

, (1.32)

where S is the entropy, must be smaller than c (which in these units is 1). To obtain
to Eq.(1.30), we assumed that ws does not change in time. As we will see in the next
Sections though, this assumption micht be relaxed. As hinted before, every component
of the Universe has a different value of ws, specifically:
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• Matter has wm = 0. In this case Eq.(1.30) reads ρm ∝ a−3, thus indicating that
the matter energy density scales like a cubic length, due to the expansion of the
volumes in the Universe.

• Radiation has wr = 1/3. In this case Eq.(1.30) reads ρm ∝ a−4, and comparing
it to the matter energy density evolution, we can see that it fades more quickly as
the volumes expand.

• The cosmological constant has wΛ = −1. In this case equation (1.30) reads
ρm ∝ const, thus the energy density of the cosmological constant, which represents
the simplest possible form of dark energy, is constant throughout the Universe
evolution. The nature of this component will be analyzed in Paragraph 1.4.1.

1.3 The Friedmann equations

In this Section we will work on the Einstein equations in the case of a spatially flat,
homogeneous and isotropic Universe, hence assuming a FLRWmetric and k = 0. Starting
from Eq.(1.12) and setting gµν as in Eq.(1.16), we can conveniently rewrite the time-time
and space-space components of the Ricci tensor from Eq.(1.13), using the definition of
the Christoffel symbols (Eq. 1.8):

R00 = −δij
∂

∂t

(
ȧ

a

)
−
(
ȧ

a

)2

δijδij = −3

(
ä

a
− ȧ2

a2

)
− 3

(
ȧ

a

)2

= −3
ä

a
, (1.33)

Rij = δij[2ȧ
2 + aä]. (1.34)

Now, using Eq.(1.14), we can derive the Ricci scalar:

R = gµνRµν = g00R00 + gijRij = −R00 +
1

a2
Rij, (1.35)

which substituting Eqs. (1.33) and (1.34), becomes:

R = 6

[
ä

a
+

(
ȧ

a

)2
]
. (1.36)

Eventually, if we consider respectively the time-time and space-space components of the
Einstein equations:

R00 −
1

2
g00R = 8πGT00, (1.37)

Rij −
1

2
gijR = 8πGTij, (1.38)
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and we substitute the expressions for the Ricci tensors the Ricci scalar, the energy-
momentum tensor and the metric tensor, we obtain the first and second Friedmann
equations, namely:

H2 =
8πG

3
ρ, (1.39)

where we used the definition of the Hubble parameter, and:

ä

a
= −4πG

3
(ρ+ 3p). (1.40)

If we did not make any assumption on the value of k, the derivation of the first Friedmann
equation would have been a bit more complex, and its expression would have become:

H2 =
8πG

3
ρ− k

a2
, (1.41)

which can be rewritten as:

Ω− 1 =
k

H2a2
, (1.42)

where the density parameter Ω is defined as follows:

Ω ≡ 8πG

3H2
ρ =

ρ

ρc
, (1.43)

and the critical energy density ρc, is defined as:

ρc =
3H2

8πG
. (1.44)

The density parameter is the sum of the individual parameters of every component s of
the Universe, as is for the density ρ:

Ω =
∑
s

Ωs, (1.45)

ρ =
∑
s

ρs. (1.46)

It is clear from Eq.(1.42) that:

• if Ω > 1 (ρ > ρc), the right hand side of Eq.(1.42) is positive, thus a rescaling can
be performed so that k = 1: as seen in Section 1.1.1 the space is closed.

• if Ω < 1 (ρ < ρc), the right hand side of Eq.(1.42) is negative, thus a rescaling can
be performed so that k = −1: as seen in Section 1.1.1 the space is open.
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• if Ω = 1 (ρ = ρc), the right hand side of Eq.(1.42) is null, thus k = 0: as seen in
Section 1.1.1 the space is flat.

Thus, the critical density is that value that if exceeded, it means that the Universe con-
tains enough energy density contrasting the expansion for its geometry to be closed. As
we have hinted before, all the studies conducted so far show that the space is approxi-
mately flat, i.e. k is statistically consistent with 0, thus the total density parameter of
our Universe appears consistent with 1. This fact might appear very unlikely: this is
called the flatness problem, and one of its possible solutions is provided by the theory of
inflation.

It is interesting to point out that the condition of an expanding space depends on
the gauge. This is in fact the way we see the Universe if we are a fiducial observer using
comoving coordinates, which is a very specific point of view. In general, the spacetime
manifold is curved by the distribution of matter and energy on it, and if we put ourselves
in a comoving reference frame (in which naturally we are not) this curvature appears as
an expansion a(t) of the space component: this allows us to treat the Universe in a simil-
Newtonian way, even though we should always keep in mind that Newtonian dynamics
is not accurate enough at cosmological scales.

1.4 The ΛCDM Model

The Λ-cold dark matter (ΛCDM) model, also called the concordance cosmological model,
describes the composition and the evolution of the Universe. It provides a theoretical
framework that matches a wide range of cosmological observations, making it a corner-
stone of modern cosmology. Estimating the cosmological parameters, such as the ones
considered in this thesis, allow us to constrain the model.

The term ΛCDM comes from what are known to be the two main components of the
Universe: the cosmologcal constant Λ and the cold dark matter. The first is responsable
for the Universe accelerated expansion and the second one refers to non-baryonic and non-
relativistic matter, which is not collisional and does not interact electromagnetically, thus
cannot be seen in observations. Besides these two main components, there is radiation
(γ) which comprises all possible relativistic species, and baryons (b). Each component
has its own energy density, thus its density parameter, that contributes to the total
density parameter following Eq.(1.45). Generally, CDM and baryons are referred to as
matter (m), so that Ωm = ΩCDM + Ωb.

As mentioned before, observations suggest that:

Ωtot = Ωγ + Ωm + ΩΛ ∼ 1, (1.47)

and the contributions of each component are [3]:

• Ωγ ∼ 10−5
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• ΩCDM ∼ 0.26

• Ωb ∼ 0.05

• Ωγ ∼ 0.69

Assuming these values for the density parameters, we can rewrite (1.30) considering
that every component has its own energy density evolution:

ρs(a) = Ωsρca
−3(1+ws), (1.48)

which shape and normalization depend, respectively, on the equation of state parameter
of the component, ws, and on its density parameter, Ωs. Inserting Eq.(1.48) for every
component in the Friedmann equations, we can derive the evolution of the homogeneous
Universe.

1.4.1 Dark energy and the cosmological constant

One of the most discussed components of the ΛCDM model is certainly the cosmological
constant Λ. It is often described as mysterious, or a ”substance about which we have
almost no knowledge at all” [4]. On the other hand, other physicists have a different
opinion, considering the cosmological constant not mysterious at all (see in particular
Bianchi & Rovelli, 2010 [5]). As pointed out by Bianchi & Rovelli 2010 [5], talking about
a mysterious substance to denote dark energy is misleading, as it could be like saying that
the centrifugal force that pushes out from a merry-go-round is the effect of a mysterious
substance. Simply, gravity works in this way: it pushes together at small scales and pulls
apart at large scales. In this Paragraph, we summarize what we know and what is yet
to be known on the nature of this mysterious (or not!) component of the Universe.

The cosmological constant has been introduced by Einstein in 1917 [6], as an ad hoc
constant to favour the solutions of a static Universe, rather than an expanding. So, the
Einstein Eqs. (1.12) became:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (1.49)

What was born as a repulsive term inserted ad hoc by Einstein to make a matter-
dominated Universe static, ended up to be one of the pillars of the standard model
of cosmology. As a matter of fact, the cosmological constant perfectly accurately the
accelerated expansion of the Universe, allowing the sum of all the Ωs terms to be equal
to 1 (consistent with the flat, k = 0 scenario of observations). Furthermore, this term
can be interpreted in two different ways:

• if placed on the left-hand side of Eq.(1.49), it is a repulsive gravity term,i.e. it is
part of the geometric structure of the spacetime manifold itself;
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• if placed on the right-hand side of Eq.(1.49) it can be seen as a source energy term.

In both cases, it is the simplest form of what is called dark energy ; it has wΛ = −1 and
ρΛ(a) = const, as seen in Section 1.3.

Over the years, the quest for finding out the true nature of dark energy has been
addressed by several groups of scientists.

Constraining the dark energy equation of state parameter is one of the main goals of
the next-generation missions, such as the ESA Euclid mission, started in July 2023 [7].
Detecting wΛ(a) ̸= −1 at any redshift would mean that dark energy is not a constant,
but rather a dynamical field [7].

1.5 Growth of structures

As we have seen, the Universe is homogeneous and isotropic if considered at its largest
scales. However, if we zoom in and take a closer look at the cosmic web, we find out that
at smaller scales the matter distribution is very far from being homogeneous (and we
should be thankful for that, otherwise we wouldn’t exist). During the first stages of the
Universe’s life, matter dishomogeneities were slight fluctations of the density field ρ(x),
which can conveniently described with the corresponding overdensity field δ(x), defined
as follows:

δ(x) =
ρ(x)− ρ̄

ρ̄
, (1.50)

where ρ̄ is the mean density of the Universe. The amplitude of these fluctuations at the
time of the last scattering surface can be derived from the oscillations in temperature
observed in the CBM:

δT

T
∼ 10−5. (1.51)

The origin of overdensities’ distribution is believed to be stochastic, thus their distribu-
tion can be described by a Gaussian function centered at zero:

p(δ)dδ ∝ exp

(
− δ2

2σ2

)
, (1.52)

where p(δ) is the probability of having an overdensity δ, and σ is the variance of the
Gaussian field. While the Universe kept on expanding, these tiny overdensities, either
got erased by the expansion or grew thanks to the attractive nature of gravity at small
scales, depending on their size. The Jeans theory provides an analytic explanation of
the dynamics at small scales of linear density perturbations, and it will be summarized
in the next Paragraph.
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1.5.1 Jeans theory in an expanding Universe

Let us consider a homogeneous, isotropic and expanding Universe, filled with a perfect
fluid with matter density ρ(x, t). Using a simple Newtonian approach, the behaviour of
such fluid is described by the following set of equations:

∂ρ
∂t

+∇(ρv) = 0
∂v
∂t

+ (v · ∇)v = −1
ρ
∇p−∇Φ

∇2Φ = 4πGρ

p = p(ρ, S) = p(ρ)
dS

dt
= 0

, (1.53)

where v is the velocity vector of a fluid element, Φ is the gravitational potential and S
is the entropy. The first equation of the system (1.53) is the continuity equation, the
second one is the Euler equation, the third one is the Poisson equation, the fourth is the
equation of state and the fifth is the adiabatic condition. The latter is assumed since
observations suggest that the vast majority of density fluctuation is in fact adiabatic.
Now, remembering what we have explained in Paragraph 1.1.1, the velocity of a fluid
element is the sum of the Hubble flow and its proper velocity:

v = Hr + vp. (1.54)

If we assume to know the exact solutions for the background in an expanding Universe
(assuming a null proper velocity of the background), which can be written as:

ρ = ρB = const

p = pB = const

v = Hr

Φ = ΦB = const

, (1.55)

and we introduce minor perturbations, the perturbed solutions become:
ρ = ρB + δρ

p = pB + δp

v = Hr + δv

Φ = ΦB + δΦ

, (1.56)

where δρ, δp, δv, δΦ ≪ 1. Neglecting all the terms beyond the linear ones, inserting the
solutions of system (1.56) in system (1.53) and converting from the density field ρ(x, t)
to the overdensity field δ(x, t), if we then transform to Fourier space and search for plane
waves as solutions, we obtain the following dispersion relation:

δ̈k + 2Hδ̇k + δk[k
2v2s − 4πGρB] = 0, (1.57)
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where k = 2π
λ

is the wavenumber of a perturbation of scale λ and vs ≡
√
∂p/∂ρ is the

sound velocity. Solving Eq.(1.57), we can find the time evolution of the overdensities
δk(t) for every component of the Universe, and in particular whether they are vanishing,
remaining constant or growing, thus favouring the formation of structures. The second
term of Eq.(1.57) depends on the assumed cosmology: it is a friction term that grows with
H = ȧ/a, which as we have described is a proxy of the expansion rate of the Universe,
that is the large-scale ”repulsive nature” of gravity. The higher is the expansion rate,
the more the overdensities struggle to grow. Another term that counters the formation
of structure is the δkk

2v2s one, as it accounts for the characteristic velocity field of the
considered fluid. On the other hand, the −δk4πGρB term describes the small-scale
”attractive nature” of gravity, which favours the formation of structures.

Considering the evolution of the dark matter densty field, ρb, in an Einstein-de Sitter
(EdS) cosmology (that is Ωm = 1, which provides a fairly good approximation in the
matter-domination era), substituting vs with the velocity dispersion (since dark matter
is assumed to be non-collisional) and defining the Jeans scale λJ as:

λJ =
2vs
5

√
6π

GρB
, (1.58)

we obtain the following possible solutions:

• if the scale of the perturbation is λ < λJ , then the solutions we have δ(t) ∝ tiα. In
this case the solutions are oscillating and the overdensities are not growing.

• if the scale of the perturbations is λ > λJ , then the solutions will be the super-
position of δ+(t) ∝ t2/3 and δ−(t) ∝ t−1. In the second case the overdensities are
reducing, while in the first one they are growing.

This means that if the scale of the perturbation is large enough, this one will grow and
bring to structure formation.

Dropping the assumption of an EdS Universe, it can be demonstrated that the grow-
ing solution becomes:

δ+(t) = H(t)

∫
dt

a2H2(t)
. (1.59)

This integral does not have an analytic solution. An approximated parametric solution
is the following:

f ≡ d log δ+
d log a

= Ωγ
m +

ΩΛ

70

(
1 +

1

2
Ωm,0

)
, (1.60)

where f is the linear growth rate and Ωm,0 is the value of the matter density parameter
at the present day. As Eq.(1.60) shows, the growth rate is strongly dependent on the
amount of matter in the Universe:

• if Ωm = 1 (EdS), then f = 1 and δ+ ∝ a,
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• if Ωm > 1, then f > 1, thus the density perturbations grow faster than in the EdS,

• if Ωm < 1, then f < 1, thus the density perturbations grow slower thn in the EdS.

It is interesting to point out that f has only a second order dependence on ΩΛ, meaning
that the cosmological constant does not play a fundamental role in the growth of density
fluctuations. Furthermore, the value of the exponent of Ωm, γ = 0.55, is a direct predic-
tion of GR, meaning that its measurement is of utmost importance in validating GR at
cosmological scales: this is also one of the main goals of the Euclid space mission [7].
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Chapter 2

Clustering

As seen in Section 1.5, the initial distribution of the overdensity field δ(x) is a Gaussian
one with null mean (for we are talking about fluctuations) and variance σ. Then, the
field starts its evolution that leads to the formation of the today’s cosmic web. For
studying the statistical properties of δ(x), it is useful to write it as a sum of waves in
Fourier space:

δ(x) =
1

(2π)3

∫
δ̂(k) exp(ik · x)d3k, (2.1)

while δ(k) can be written by Fourier transforming Eq.(2.1), as:

δ(k) =

∫
δ(x) exp(ik · x)d3x, (2.2)

where δ(x) is adimensional, while δ(k) has the dimension of the reciprocal of a volume.

It is also useful to define the 3-dimenisonal Dirac delta δ
(3)
D as:

δ
(3)
D ≡ 1

(2π)3

∫
exp(ik · x)d3x, (2.3)

which action is: ∫
F (z′)δ

(3)
D (z − z′)d3z′ = F (z). (2.4)

In the next Sections we will analyze the statistical properties of the overdensity field of
the Universe. For describing a Gaussian field with null mean we only need the variance,
which we will discuss in the next Section. Furthermore, we will see what happens when
the distribution becomes non-Gaussian.
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2.1 Two-point correlation function and power spec-

trum

One of the most important statistical tools used to investigate the Universe is the two-
point correlation function (2PCF) ξ(r), defined as follows:

ξ(r) ≡ ⟨δ(x)δ(x+ r)⟩ , (2.5)

where δ(x) is the overdensity field at a point x of the Universe and δ(x + r) is the
overdensity field at a point which is at a comoving distance r from x. This quantity,
related to the variance of the density field, simply self-correlates the overdensity field in
two points at a distance r from each other. Passing from configuration space to Fourier
space, we can define another quantity which is strictly bonded to the variance of the
density field, the power spectrum (PS) P (k):

⟨δ(k)δ(k′)⟩ ≡ (2π)3P (k)δ
(3)
D (k + k′). (2.6)

A relation between these two quantities can be found substituting Eq.(2.1) into Eq.(2.5):

ξ(r) =
1

(2π)6

∫
d3k

∫
d3k′ ⟨δ(k)δ(k′)⟩ exp(ik(x+ r)) exp(ik′x), (2.7)

and sequently, using Eq.(2.6) and the definition of the Dirac delta (Eq. 2.3), we can
derive:

ξ(r) =
1

(2π)3

∫
d3kP (k) exp(ikr), (2.8)

that shows that the power spectrum is the Fourier transform of the 2PCF and vice-versa.
From Eq.(2.6) we can deduce that:

P (k) ∝ ⟨δ(k)δ(k′)⟩ ∝
〈
|δ2(k)|

〉
, (2.9)

where the relation between the power spectrum and the variance of the overdensity field
stands out clearly. P (k) is actually a power spectrum density, since it can be seen from
Eq.(2.8) that it is a density in a Fourier volume, and it encodes the information about the
significance of perturbations of a given scale k on the total energy distribution: a high
value of the PS for high values of k means high energy at small scales, and vice-versa.
Moreover, k is three-dimensional. This means that it represents all the combinations of
(k1, k2, k3) for which k =

√
k2
1 + k2

2 + k2
3. Considering the complex conjugate of δ(k),

δ∗(k) = δ(−k), the definition of the power spectrum can be rewritten in the following
way, taking k′ = −k:

⟨δ(k)δ(−k)⟩ = ⟨δ(k)δ∗(k)⟩ =
〈
|δ2k|

〉
= (2π)3P (k)δ

(3)
D (0), (2.10)
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where δ
(3)
D (0) can be written from Eq.(2.3) as follows:

δ
(3)
D (0) =

1

(2π)3

∫
d3x =

V∞

(2π)3
, (2.11)

where V∞ =
∫
d3x is the volume of the Universe, which we use as an implicit normaliza-

tion of δ. Thus, we can write: 〈∣∣δ2k∣∣〉 = V∞P (k), (2.12)

in which the density nature of the power spectrum appears evident. Now, since the
overdensity distribution has null mean:

P (δ) =
1√
2πσ2

exp

(
− δ2

2σ2

)
, (2.13)

its variance can be written as:
σ2 ≡

〈
δ2(x)

〉
. (2.14)

By applying the ergodic hypothesis, we can divide the Universe into independent regions
large enough to be fair samples, and we can get σ2 with a double average: the statistical
average over all the regions’ volumes of the spatial average of the quadratic value of δ in
each region, namely:

σ2 =
1

V∞

∫ ∞

−∞

〈
δ2(x)

〉
dx. (2.15)

Now, by applying the Parseval theorem:∫ ∞

−∞
f(x)g∗(x)dnx =

1

(2π)n

∫ ∞

−∞
dkf̂(k)ĝ∗(k), (2.16)

on Eq.(2.15), we can derive this expression for the punctual variance:

σ2 =
1

(2π)3

∫ ∞

−∞
P (k)d3k, (2.17)

which shows the exact relation between the variance of the overdensity field and the
power spectrum.

2.1.1 From the tracers to the density distribution

As we have just seen in the last Paragraph, the matter power spectrum is directly related
to the variance of the matter overdensity field. The latter can be inferred from the mass
(M) fluctuations in a given comoving volume V :

δM(x, V ) =
M(x, V )− M̄(V )

M̄(V )
, (2.18)
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where M̄(V ) is the mean mass. This quantity is related to the overdensity field in this
way:

δ(x, V ) =
δM(x, V )

V
, (2.19)

and it is dependent on the considered volume, as this represents the scale with which we
are filtering ρ(x). The fluctuations of the mass field are computed as the convolution of
the overdensity field with a filter function W (x, R), which averages over a given radius
R:

δM(x) = δ(x) ∗W (x, R). (2.20)

The mass variance σM can be obtained in the same way as the punctual variance, using
δM(x) instead of δ(x) in Eq.(2.15), which leads to the following relation, since the
convolutions become multiplications in Fourier space:

σ2
M =

1

(2π)3

∫ ∞

−∞
P (k)Ŵ 2

k (k,R)d3k, (2.21)

where Ŵk(k,R) is the Fourier transform of the filter function. The mass within a given
comoving volume of the Universe can be estimated by counting the tracers of the mass
distribution contained in it. We can define as tracers all visible cosmic structures, such
as galaxies, galaxy clusters and cosmic voids. By counting the number of tracers, Nt,
contained in a given volume of the Universe, we can define the tracers overdensity field,
δt(x, V ), as:

δt(x, V ) =
Nt(x, V )− N̄t(V )

N̄t(V )
, (2.22)

where N̄t(V ) is the mean number of tracers contained in the volume V .
The simplest model to describe the relation between the distribution of the tracers

and the distribution of the underlying mass, is the following:

δt(x, V ) = B · δM(x, V ), (2.23)

where B is called the bias factor, which relates the overdensities of tracers to those of
mass at linear order. The value of B depends on the mass and redshift of the dark matter
halo hosting the selected tracers (Tinker et al., 2010 [8]). While the halo bias can be
directly predicted in a given cosmological model, the halo-tracer connection is harder to
predict, as it depends on baryonic physics (see for example Katz et al., 1999 [9] and Cen
and Ostriker, 2000 [10]). For this reason, the tracers bias parameter must be determined
from observations. In the literature several parametrizations to model the bias have been
proposed. An extensively used one is the model proposed by Fry & Gaztañaga, 1993
[11], which is a Taylor expansion of δg in δ:

δt(x) =
∑
n=0

bn
n!
δn(x). (2.24)
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The simplest possible approximation can be obtained from Eq.(2.24) by truncating the
expansion at the first order:

δt(x) = b1δ(x), (2.25)

where b1 is the linear bias parameter.
We can now define the tracers’ power spectrum, Pt(k), and the mass power spec-

trum PM(k) (given Eq. 2.12) by elevating to the power of two both of the members of
Eq.(2.23):

Pt(k) = B2 · PM(k). (2.26)

The higher is the mass, the more correlated are the peaks in the overdensities, and
vice-versa: this is the reason why for example the bias factor of galaxy clusters is higher
than the one of the galaxies. In the same way, the higher is the redshift, the more
correlated are the high-mass structures, thus the bias factor is higher at higher redshifts.

2.1.2 Two-point correlation function of tracers

Let us consider a Universe filled with discrete tracers. In the following, we will call them
galaxies for simplicity, though the treatment can be generalized to any kind of extra-
galactic tracers. If thier mean number density is n̄, then the probability of finding one
galaxy in an infinitesimal comoving volume dV1 and ta second galaxy in the infinitesimal
comoving volume dV2 at a distance r from dV1, if the distribution of the galaxies in the
Universe was completely randomic, is:

dP12 = n̄2dV1dV2. (2.27)

However this is not the case of our Universe, where instead clustering occurred. The
above probability in this case can be written as follows:

dP12 = n̄2dV1dV2[1 + ξ(r)], (2.28)

where ξ(r) is the 2PCF at a distance r between dV1 and dV2. In this way, ξ(r) can be
seen as the excess or defect of the probability of finding two glaxies at a distance r in our
Universe relative to the same probability if the distribution was completely randomic.
In particular:

• if ξ(r) = 0, the probability of finding two galaxies at a distance r is the same as in
a randomic Universe;

• if ξ(r) > 0, the probability of finding two galaxies at a distance r is our Universe is
higher than in a random distribution. The objects are correlated, and the higher
is ξ(r), the more the par separation in r ± δr between pairs of galaxies is likely;

• if ξ(r) < 0, the probability of finding two galaxies at a distance r is our Universe
is lower than in a random distribution. Thus the objects are anti-correlated.
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Furthermore, since the probability must be dP12 ≥ 0, we deduce that:

ξ(r) ≥ −1 (2.29)

for every separation r. As an example Figure 2.5 shows the 2PCF of luminous red
galaxies from the sloan digital sky survey (SDSS). As it can be seen, he 2PCF decreases
for increasing separations and eventually becomes negative. At intermediate scales, the
2PCF can be described by a negative power law, ξ(r) ∝ r−γ. This has a simple expla-
nation: matter tends to cluster together because of the attractive nature of small-scale
gravity, thus is way easier to find a galaxy close to another one than at a large distance
from it.

2.2 Three-point correlation function and bispectrum

The standard inflationary theory predicts Gaussian initial conditions for the overdensity
field δ(x), thus the primordial matter distribution is fully determined by its first and
second moments (i.e. mean and standard deviation). Moreover, the mean of δ(x) is
null, since the latter is defined as an overdensity field (see Eq. 1.50), that means that
it is fully determined by its 2PCF (or power spectrum), connected to the variance as
shown in Section 2.1. However, during the growth of structurs nonlinear gravitational
instabilities induce non-Gaussian signatures in the mass distribution [12]. This non-
Gaussianity affects the LSS statistical properties, and it can be directly probed through
higher-order statistics, starting from the three-point correlation function (3PCF), or its
Fourier transform, the bispectrum (BS). Furthermore, higher-order statistics break the
degeneracy between the bias and σ8, a topic that we will be discussed in Paragraph
2.3.1 [13]. These are the reasons why higher-order moments of the mass distribution are
crucial for the study of LSS, thus for cosmology.

The expression for n-order correlation functions, or poly-spectra, can be obtained
generalizing Eqs. (2.5) and (2.6). Specifically, the n-point correlation function ξN is
defined as:

ξN(x1, ...,xN) = ⟨δ(x1)...δ(xN)⟩c ⟨δ(x1)...δ(xN)⟩+

−
∑

S∈P ({x1,...,xN})

∏
si∈S

ξ#si(xsi(1), ...,xsi(#si)).
(2.30)

Here the subscript c stands for connected, and means that all the connected moments of
possible partitions (i.e. ways of dividing a set into nonoverlapping, non-empty subsets
such that every element in the set is included in exactly one subset) have been subtracted
from the moment, thus it depends only on N-point statistics. The sum is made over the
proper partitions P ({x1, ...,xN}) of {x1, ...,xN} (namely every partition but the set
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itself), and si is a subset of {x1, ...,xN} contained in the partition S. Moving to Fourier
space, the poly-spectra PN is defined as:

⟨δ(k1)...δ(kN)⟩c = (2π)NPN(k1, ...,kN)δ
(N)
D (k1 + ...+ kN). (2.31)

The most simple statistics beyond second order is the three-point statistics, thus the
case of N = 3. The connected 3PCF, ζ(r12, r13, r23), is defined as:

ζ(r12, r13, r23) ≡ ⟨δ(r1)δ(r2)δ(r2)⟩ , (2.32)

where r12 = |r1−r2|, r13 = |r1−r3| and r23 = |r2−r3|. Similarly the BS, B(k1,k2,k3),
is:

⟨δ(k1)δ(k2)δ(k3)⟩c = (2π)3B(k1,k2,k3)δ
(3)
D (k1 + k2 + k3). (2.33)

The BS is the Fourier transform of the 3PCF and vice-versa, just as the PS and the
2PCF. Following the same arguments as in Paragraph 2.1.2, the probability of finding
three galaxies within three comoving volumes elements dV1, dV2 and dV3, centered at
the positions r1, r2 and r3 is:

dP123 = n̄3dV1dV2dV3[1 + ξ3(r12, r13, r23)], (2.34)

where ξ3(r12, r13, r23) represents the excess or defect of the probability of finding three
galaxies in a given triangular configuration (r1, r2, r3) in our Universe (with clustering)
relative to the one of finding them in the same triangular configuration in a completely
randomic Universe. The function ξ3 is not only influenced by three-point statistics, since
the probability of finding a given triangular configuration also depends on the probability
of finding two galaxies at a given distance from each other (which is the 2PCF). Indeed
we have the following:

ξ3(r12, r13, r23) = ξ(r12) + ξ(r13) + ξ(r23) + ζ(r12, r13, r23), (2.35)

where ξ(rij) is the2PCF of galaxies at positions r12 = |r1 − r2|. The term in equation
(2.35) that depends on three-point statistics is ζ(r12, r13, r23), the connected 3PCF. This
can be better visualized in Figure 2.1: ξ3 (in Fourier space in the figure) is the sum of the
singlets component (which is null since the mean of δ(x) is null), the pairs components
(the three 2PCF of the triangle’s sides) and the triplet term, which is the connected
3PCF.

Furthermore, it can be demonstrated that in hierarchical scenarios (in which struc-
tures formed through the constant merging of smaller structures) the connected 3PCF,
ζ, is proportional to ξ2 [15]. Thus we can define a new quantity called the reduced 3PCF,
Q [16], as follows:

Q(r12, r13, r23) ≡
ζ(r12, r13, r23)

ξ(r12)ξ(r13) + ξ(r12)ξ(r23) + ξ(r23)ξ(r13)
, (2.36)
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Figure 2.1: Graphic representation of ξ3(r12, r13, r23). The first term is the singlets com-
ponent (null), then we have the pair components ξ(r12)+ξ(r13)+ξ(r23). Eventually there
is the connected 3PCF ζ(r12, r13, r23). Image of Bernardeau et al., 2002 [14].

which in some cases can be easier to deal with than the connected 3PCF, as it is charac-
terized by a smaller variation as a function of scales, and its modelling does not depend
on the σ8 parameter, but only on the bias [17].

The modelling of the 3PCF is harder relative to the 2PCF case. Moreover, while the
2PCF is easily representable (see e.g. Figure 2.5), since it depends only on comoving
distances between objects pairs, the 3PCF depends on all triangular configurations, that
can be also parametrized in different ways. The most common one consists of fixing the
length of two sides of the triangles (thus the distance between two tracers) and computing
the 3PCF as a function of the third side’s length (e.g. Jing et al., 1995 [18], Gaztañaga
& Scoccimarro, 2005 [19]). A different choice, proposed by Maŕın, 2011 [20], consists of
fixing two sides of the triangles as follows:

r12

r13 = u · r12,
(2.37)

where u is a constant factor. The third one can be expressed as a function of the angle,
θ, between the first two sides:

r23 ≡ r12 ·
√
1 + u2 − 2 · u · cos θ. (2.38)

Another way of parametrizing the 3PCF is by fixing all the sides of the triangles (usually
in an equilateral configuration) and varying the scales with the same proportions between
the sides (e.g. Wang et al., 2004 [21]).

The 3PCF with fixed sides and free angle parametrization is displayed in Figure 2.2.
The signal is higher at angles around 0, π, and has a minimum for angles around π/2.
This means that given the position of two galaxies it is more probable to find a third
one along the line that connects them. This is because matter tends to distribute in
filaments.

The 3PCF is a relatively new statistical tool in clustering, mainly because its pre-
cise determination requires a large sample of tracers (see Section 3.3). However, the
technological development of the last years allowed researchers to measure the 3PCF
and exploit all the benefits that come from its modelling, such as probing primordial
non-Gaussianities and breaking degeneracies between cosmological parameters. In 2009
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Figure 2.2: The connected 3PCF in the fixed sides (r12, r13 = 40 and 100h−1Mpc) and
free angle (θ) parametrization. The continuous red, dashed yellow and dotted green lines
represent models with Ωm = 0.25, 0.3, 0.35, respectively. The arrows indicate the BAO
peaks. Image from Moresco et al. 2021 [17].

the first BAO peak detection in the 3PCF has been recorded (Gaztañaga et al., 2009
[22]) in galaxy clustering, while in 2021 it was detected for the first time also in cluster
clustering (Moresco et al., 2021 [17]).

2.3 Clustering distortions

Direct measurement of the tracer’s density field can be prformed with redshift surveys,
that allow us to reconstruct the 3D maps of the tracer samples. From the latter it
is possible to measure the n-point correlation functions and polyspectra of the tracers.
In fact, these measured statistics are not the matter ones, because of the tracer bias
(Eq. 2.26). Morover, the tracer positions cannot be inferred directly from the redshifts.
This is due to three effects: geometric distortions, dynamic distortions and systematic
uncertainties on redshift measurements. The former, i.e. geometric distortions, can occur
because of a possibly wrong assumption of the fiducial cosmology when converting the
redshifts into comoving distances. On the other hand, neglecting the peculiar velocities
of the galaxies which affect the redshift coordinate via the Doppler effect introduce
a different kind of clustering distortions, called dynamic, or redshift space distortions
(RSD). Finally, the tracer maps can be distorted due to systematic redshift errors, which
we will refer to in this thesis as redshift interlopers. The observed positions of galaxies
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are said to be in redshift space, while their intrinsic positions are in real space. In this
Section we will summarize the main properties of these clustering distortions and the
way they can be exploited to infer cosmological constraints. The following treatment is
mainly based on Modern Cosmology by Dodelson & Schmidt [23].

Let us consider a galaxy survey, which maps galaxy spatial distributions by measuring
their observed positions:

xobs(z, θ, ϕ) = χ(z)n̂(θ, ϕ), (2.39)

where n̂(θ, ϕ) = xobs/|xobs| is the unit vector which identifies the 2D position of the
galaxy in the sky plane, and χ(z) is the comoving distance of the tracer (Eq. 1.19). The
latter is retireved by measuring the redshift of the galaxy and assuming a cosmology,
thus a scale factor, a(t), and a relation between z and χ, as described in Section 1.1.1.
In an actual survey, the fiducial cosmology is not necessarely the unknown true one. We
can parametrize the difference with the following relation:

χfid(z) = χ(z) + δχ(z). (2.40)

Furthermore, the measured redshift of the galaxies can be written as follows, seglecting
redshift uncertainties and further subdominant relativistic effects:

1 + z =
1

aem
[1 + u∥], (2.41)

which is a generalization of Eq.(1.24) by adding the peculiar galaxy velocity along the
line of sight, u∥ = ug · n̂ (and setting a0 = 1). Assuming that the galaxy peculiar
velocities are equal, on average, to the matter ones (ug = um), which is accurate on
sufficiently large scales (see Section 12.6 of [23]), and neglecting second order effects, we
can express the total error on the positions as:

∆x = δχ(z) +
1

aH
u∥(x), (2.42)

where the first term on the right hand side is due to the assumption of a wrong fiducial
cosmology, while the second term is due to the peculiar velocities of the galaxy along the
line of sight. Eq.(2.42) yields:

xobs = x+

(
δχ(z) +

1

aH
u∥(x)

)
n̂, (2.43)

where the total position error is multiplied by n̂ since it affects only the component
parallel to the line of sight, while the sky plane components are not modified. While
these distortions make it more difficult to infer the matter distribution from the observed
tracer one, on the other hand they contain plenty of cosmological information, that we
will now explain how to extract.
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Let us consider an observation in which a certain number of galaxies, with number
density ng,obs, is detected in a givern volume, Vobs. Given Eq.(2.42), so the observed
volume and number density are different from the real ones, V and ng. Since the number
of galaxies is the same in real space and redshift space, we have:

ng,obs(xobs)d
3xobs = ng(x)d

3x. (2.44)

The comoving 3D volume elements are:

d3x = x2dxdΩ,

d3xobs = x2
obsdxobsdΩ,

(2.45)

where dΩ is the angular volume element. Since the latter are the same for the real and
the observed volumes, we can write Eq.(??) as:

ng,obs(xobs) = ng(x)J, (2.46)

where the Jacobian, J , is defined as follows:

J ≡
∣∣∣∣ d3x

d3xobs

∣∣∣∣ = ∣∣∣∣ dx

dxobs

∣∣∣∣ x2

x2
obs

. (2.47)

In the following, we will discard all the nonlinear terms. Assuming that the galaxies are
all in a fairly narrow redshift slice around z̄, and defining δH(z) = H(z) −Hfid(z), we
can demonstrate that (see Paragraph 11.1.1 of [23]):

J ∼ J̄

(
1− 1

aH

∂

∂x
u∥

)
, (2.48)

where the constant J̄ is:

J̄ = 1− 2
δχ(z̄)

χ̄
+H−1(z̄)δH(z̄). (2.49)

Knowing that the number densities in real and redshift space coordinates are:

ng = n̄g(1 + δg),

ng,obs = n̄g(1 + δg,obs),
(2.50)

and given Eq.(2.46), we can write:

1 + δg,obs(xobs) = J̄

[
1 + δg(x[xobs]−

1

aH

∂

∂x
u∥(x[xobs])

]
. (2.51)
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2.3.1 Dynamic distortions

We now have all the ingredients to quanitify the effects of RSD on the power spectrum
(thus on the 2PCF). Tracers’ velocities are not random, but depend on the matter
density field itself. From RSD we can measure the rate at which structure grows at linear
order f (Eq. 1.60). The effect is shown in Figure 2.3, where the large-scale scenario is
represented in the left panel, while the nonlinear effect at small scales is represented
in the right panel. At large (linear) scales, the overdense region appears squashed in
redshift space, since the matter (thus the tracers) are gravitationally attracted by the
center of the region, and thus moving towards it. Hence, the galaxies closer to us move
away from us (enhancing the observed redshift) while the galaxies further away from us
move towards us (reducing the observed redshift): circular overdensities in real space
become elliptical in redshift space, and due to this squashig we expect the clustering to
be stronger. At small (nonlinear) scales, the displacements of tracer pairs are tipically
larger than the distance separating them. As shown in the right panel of Figure 2.3, the
effect is an elongation along the line of sight of the contour of constant density, together
with a swap of the true and observed positions.

Figure 2.3: The effect of linear (left panel) and nonlinear (right panel) RSD on the
contours of constant density. The contours in real space are indicated with dashed lines,
while the ones in redshift space, thus the observed ones, are indicated with continuous
lines. Image of Modern Cosmology, by Dodelson & Schmidt [23].

We consider here only linear RSD. In Fourier, space the matter peculiar velocity is
related to the growth factor by the Boltzmann equation [23]:

um(k, η) = aHf
ik

k2
δ(k, η), (2.52)
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where η is the conformal time. Assuming the linear bias relation given by Eq.(2.25)
, in the distant-observer approximation and considering Eq.(2.51) with J̄ = 1 (thus
neglecting for mow the effects of a wrong assumed cosmology), it can be demonstrated
that:

δg,RSD(k) = b1δm(k)− if

∫
d3x exp(−ik · x) ∂

∂x

[∫
d3k′

(2π)3
exp(ik′ · x)δm(k′)

k′

k′2 · êz
]
,

(2.53)
which, by integration, becomes:

δg,RSD(k) = [b1 + fµ2
k]δm(k), (2.54)

where µk = êz · k̂, that is the cosine of the angle between the line of sight and the
wavevector k̂. Eq.(2.54) quantifies what is shown in the left panel of Figure 2.3: RSD
cause an enhancement of the overdensities (since fµ2

k is always positive) and exists only
for perturbations with k parallel to the line of sight (thus with µk ̸= 0). In real space,
the overdensities would simply be δg(k) = b1δm(k). Eq.(2.54) can be translated into a
relation between the real space and redshift space power spectra:

Pg,RSD(k, µk, z̄) = Pm(k, z̄)[b1 + fµ2
k]

2 + PN , (2.55)

where PN is a noise term due to the discrete nature of the tracers, which is assumed
to be constant. The measured power spectrum Pg,RSD(k, µk, z̄) varies both with k and
µk, and this allows us to disentangle the two contributions of the linear bias, b1, and
the linear growth rate, f , that is usually done by performing a multipole decomposition
with respect to µk. This means that both the galaxy linear bias and the growth factor
could be measured. However, we do not know the exact value of the amplitude of the
matter power spectrum Pm(k, z̄), which is generally parametrized as the amplitude of the
linear power spectrum on the scale of 8h−1Mpc. Thus, by measuring the galaxy power
spectrum we can in fact constrain the two parameter combinations f σ8 and b1 σ8. As we
will see, the degeneracy between f (and b1) and σ8 can be broken by using higher-order
statistics.

2.3.2 Geometric distortions and baryonic acoustic oscillations

Let us now describe the effects of assuming a wrong cosmology when converting red-
shift into comoving coordinates, the so-called Alcock and Paczynski (AP), or geometric
distortiona. As we have mentioned before, we do not know the exact value of the scale
factor at all times, a(t), thus the distance-redshift relation that we use to assign the co-
ordinates along the line of sight is affected by a systematic, dependent on the cosmology.
The effects of this error are displayed in Figure 2.4. The displacement of the tracers by
an amount δχ(z) is, at first order, a rigid translation. However, the difference between
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Figure 2.4: The effect of the assumption of a wrong cosmology (AP distortion) on the
contours of constant density. The contours in real space are indicated with a dashed line,
while the ones in redshift space, thus the observed ones, are indicated with a continuous
line. Image of Modern Cosmology, by Dodelson & Schmidt [23].

the true and assumed expansion history is actually redshift dependent, thus a circular
contour of constant density in real space, becomes an ellipse in redshift space.

Using the flat-sky approximation and calling θ the 2D position coordinate on the
sphere, we can choose the origin in a redshift slice around z̄ such that:

xobs = 0 ⇐⇒ θ = 0, z = z̄. (2.56)

The observed coordinates can thus be expressed in this way:

(x1
obs, x

2
obs) = χfid(z)× (θ1, θ2),

x3
obs(z) = χfid(z)− χfid(z̄) ∼

1

Hfid(z̄)
(z − z̄),

(2.57)

where (x1
obs, x

2
obs) are the transverse coordinates and x3

obs is the line-of-sight coordinate
of the assigned position. In Eq.(2.57) we have used the linear order expansion in (z− z̄)
under the assumption of a narrow redshift slice and dχ/dz = 1/H. On the other hand,
the true transverse coordinates of the objects are:

(x1, x2) = χ(z)× (θ1, θ2), (2.58)

which combined with Eq.(2.57) becomes:

(x1, x2) =

[
1− δχ(z)

χfid(z)

]
(x1

obs, x
2
obs). (2.59)
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Similarly, the true line-of-sight component is:

x3(z) ∼ 1

H(z̄)
(z − z̄) =

Hfid(z̄)

H(z̄)
x3
obs, (2.60)

which, defining δH(z) = H(z)−Hfid(z), becomes:

x3(z) =

[
1− δH(z̄)

H(z̄)

]
x3
obs. (2.61)

If we define α⊥ and α∥ as:

α⊥ =
δχ

χfid

∣∣∣∣
z̄

,

α∥ =
δH

Hfid

∣∣∣∣
z̄

,

(2.62)

the relation between the true and observed coordinates can be written as:

x(xobs) =
(
[1− α⊥]x

1
obs, [1− α⊥]x

2
obs, [1− α∥]x

3
obs

)
. (2.63)

The measurement of α⊥ and α∥ allows us to infer, respectively, the comoving distance
and the Hubble rate, since Eq.(2.62) can be rewritten as:

χ(z̄) = χfid(z̄)[1 + α⊥],

H(z̄) = Hfid(z̄)[1 + α∥].
(2.64)

Now, the question is: how can α⊥ and α∥ be extracted from the measured galaxy power
spectrum Pg,obs? Let us start again from Eq.(2.53), from which we have already computed
the effect of RSD. This time we include the factor J̄ . Defining in the Fourier space k[kobs]
as:

k[xobs] =
(
[1 + α⊥]k

1
obs, [1 + α⊥]k

2
obs, [1 + α∥]k

3
obs

)
, (2.65)

it can be demonstrated that the relation between the observed galaxy and true matter
overdensities is encoded in a simple rescaling of the wavevector:

δg,obs(kobs) = [b1 + fµ2
k]δm(k)

∣∣∣∣
k=([1+α⊥]k1obs,[1+α⊥]k2obs,[1+α∥]k

3
obs)

, (2.66)

where we have included also the factor due to RSD. It follows that the redshift space
power spectrum is:

Pg,obs(kobs, z̄) =
(
Pm(k, z̄)[b1 + fµ2

k]
2
) ∣∣∣∣

k=([1+α⊥]k1obs,[1+α⊥]k2obs,[1+α∥]k
3
obs)

+ PN . (2.67)
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The fact that the observed power spectrum is exactly the same as the true one but for a
simple rescaling is due to the fact that the number of galaxies within a given volume is
independent of the used coordinates. Eq.(2.67) contains both the effect of the RSD due
to peculiar velocities and the one of a wrong cosmology assumption.

The values of α⊥ and α∥ can be inferred from the measurements of the power spectrum
using the barionic acoustic oscillations (BAO), which is an oscillatory modulation in
the power spectrum, roughly of the form cos(krs), where rs is the sound horizon at
recombination (∼ 105h−1Mpc). This scale was imprinted in the spatial distribution of
the baryonic component of the Universe at the time of recombination, and since baryons
and dark matter are coupled by gravity it was transferred to the total matter power
spectrum at later times. The BAO feature in the 2PCF is displayed in Figure 2.5 and
consists of a peak around rs, denoting a preference of the sound horizon at recombination
as a recurrent pair galaxy semparation. The comoving scale ks ∼ π/rs is well determined
by the CMB, thus measuring the BAO scale kobs[ks] in the observed PS allows us to
measure the Jacobian between one set of coordinates and the other, and from which α⊥
and α∥. This implies that the BAO feature provides a measurement of χ(z̄) and H(z̄)
through Eq.(2.64).

2.4 Redshift interlopers

Other than RSD and the AP effect, observed redhsifts can be affected by measurement
errors e.g. systematic errors, also called redshift interlopers. The new generation of LSS
surveys, such as the one performed by the Euclid mission, is going deeper and wider in
order to find more galaxies and collect better statistics. However, for doing this, they
will acquire spectra with relatively low signal-to-noise ratio (SNR) with respect to the
ones collected in previous spectroscopic surveys, e.g. in the Sloan Digital Sky Survey
(SDSS), and this can lead to less accuracy due to systematic errors on the redshifts.
In particular, Euclid will determine the redshift of the sources using mainly the single
emission line Hα and. Given the expected SNR we expect a significant number of
spurious determinations due to line mismatches, the so-called redshift interlopers. As
we have seen in Section 1.1.1, the expansion of the Universe causes the emission lines
of almost all extragalactic tracers to appear redshifted. This redshift grows with the
distance of the source, making it a fundamental quantity for determining the distance of
the tracers. However, if only one line of a spectrum is available, and if it is mistaken for
another, then a wrong distance is inferred.

The result is that a fraction of the galaxies in a given redshift range actually belongs
to other redshift ranges (which one depends on the wavelengths of the mistaken lines)
and introduces a spurious systematic effect in the clustering statistics. The interlopers
can be of various kinds, though we can divide them in two main groups:

• The line interlopers are the tracers for which the target line is mistaken for
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Figure 2.5: 2PCF ξ(s) of a sample of luminous red galaxies (LRGs) from the Sloan
Digital Sky Survey (SDSS). The green, red and blue lines represent model predictions with
Ωmh

2 = 0.12, 0.13, 0.14, respectively. The purple line represents a model with Ωb = 0.
The BAO peak around 100h−1Mpc is visible for every model but the last one (since there
are no baryons). Image of Eisenstein et al., 2005 [24].

another emission line. For example in the Euclid survey, the target line Hα is
expected to be possibly mistaken with the [OIII] or [SIII] lines. This kind of
interlopers spoils the statistics of a redshift bin, contaminating it with the statistical
properties of other cosmological times. This might cause an enhancement in the
clustering signal if the interlopers belong to a lower redshift bin, or a decrease of
the signal if they belong to a higher redshift bin.

• The noise interlopers are the tracers for which the target line is mistaken for a
noise line: they are very common in surveys which SNR is relatively low. Their
clustering signal is a noise signal, since there is no relation between the wavelength
of the picked line and the target one. Thus their effect is basically a damping of
the signal.

The n-point correlation functions and the polyspectra are obviously affected by the
presence of interlopers. The study of this effect on both the 2PCF and 3PCF is the
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main objective of this work. While RSD and the AP effect are already understood, as
we have seen in the previous Sections, the interlopers’ effect is a less studied issue, as it
is highly accentuated in large and dense surveys with relatively low SNR due to the use
of a single emission line for the estimation of the redshift, as in particular in the Euclid
survey case. This enhances the performance from the point of view of the depth and
completeness of the survey, but it has its drawbacks, such as interloper contamination.

The effect of the interlopers on the 2PCF and 3PCF can be dramatic, as they can shift
and broaden the BAO peak (see Massara et al. 2021 [25]), other than affecting RSDs.
These distortions might strongly bias the constraints on the cosmological parameters. A
study conducted by Pullen et al. 2015 [26] using the COSMOS Mock Catalog (CMC),
demonstrated that a 0.15 − 0.3% interloper fraction could bias the growth factor by
more than 10%. The effect of the redshift interlopers must be studied both on the
measurement and the modelling of the correlation functions, in order to understand the
way this systematic error affects the cosmological parameter constraints, and if this effect
can be mitigated (see Pullen et al. 2015 [26], Addison et al. 2019 [27] and Grasshorn
Gebhardst et al. 2019 [28]). The aim of this work is to perform this kind of study,
analyzing the effect of the cross-correlations brought by interloper contamination on the
computation of both the 2PCF and 3PCF, to understand if the effect on the modelling is a
simple rescaling of the bias factor or something that needs more sophisticated modelling.
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Chapter 3

Measurement and modelling of the
two- and three-point correlation
functions

In the last Chapter, we presented the statistical tools we will use for this work, namely the
2PCF, PS, 3PCF, and BS. In this Chapter, we will discuss the application of these tools
for our purposes, beginning with the measurement and modeling of the 2PCF and PS,
and concluding with the 3PCF and BS. We will review the most common methods used
for their measurement and modeling in the literature and introduce new computational
methods tailored to our primary objective: understanding the effect of redshift interlopers
on these statistics.

3.1 Measurement of the two-point correlation func-

tion

In Section 2.1, we defined the 2PCF. Let us now discuss the methods for its measurement
from surveys, focusing on the approach used in this thesis. As stated in Eq.(2.28),
ξ(r) can be seen as the excess or defect of the probability of finding two galaxies at a
comoving distance r in our Universe relative to the same probability if the distribution
were completely randomic. The measurement of ξ(r) can be performed by counting the
pairs of tracers in the survey at a given comoving distance r, referred to as pairs from
the data catalogue. To estimate the 2PCF, the number of these pairs must be compared
with the number of the ones at a comoving distance r in a random sample, known as
the random catalogue. The latter must match the data catalogue in all selection aspects
(i.e. geometry, i.e. sky coverage and depth, and number density of tracers with respect
to the redshift, n(z)). On the other hand it must not be affected by clustering. Morover,
the random sample should be much denser than the data sample (up to 50-60 times), in
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order to minimize the Poissonian variance. The ratio between the number of tracers in
the random and data catalogues is called the random-data ratio, DR, defined as follows:

DR =
NR

ND

. (3.1)

The simplest method to measure the 2PCF from the data-data and random-random
pairs, denoted as DD(r) and RR(r) respectively, was proposed by Peebles & Hauser
(1974) [29]. Known as the natural estimator for its straightforwardness, its expression
directly follows from Eq.(2.28), and can be written as:

ξ̂N(r) =
NR(NR − 1)

ND(ND − 1)

DD(r)

RR(r)
− 1, (3.2)

where ND and NR denote the number of tracers in the data and random catalogues,
respectively. In Eq.(3.2), the prefactor of the ratio of the data-data and random-random
pairs, DD(r)/RR(r), is the normalization by the possible combinations of pairs in the
entire data and random catalogues. Several other estimators have been proposed in the
literature (e.g. Davis & Peebles 1983 [30] and Hamilton 1993 [31]). This work employs
the Landy & Szalay (1993) [32] estimator (hereafter LS), which is the most commonly
used due to its near-minimal (hence Poissonian) variance [33]. The LS estimator is given
by:

ξ̂LS(r) = 1 +
NR(NR − 1)

ND(ND − 1)

DD(r)

RR(r)
− 2

NR(NR − 1)

NDNR

DR(r)

RR(r)
, (3.3)

where the data-random cross-pairs DR(r) are also included. These latter are pairs in
which one galaxy is from the data catalogue and the other is from the random catalogue.

The 2PCF can be written as follows using a Legendre expansion:

ξ(µ, r) =
∑
l

ξl(r)Pl(µ), (3.4)

where Pl(µ) are the Legendre polynomials, µ is the cosine of the angle between the
comoving distance of a pair of galaxies, r, and the line of sight. The multipoles of the
2PCF, ξl(r), are defined as follows:

ξl(r) =
2l + 1

2

∫ +1

−1

ξ(µ, r)Pl(r) dµ. (3.5)

By substituting Eq.(3.3) into Eq.(3.5), we obtain the integrated LS estimator of the
multipoles of the 2PCF:

ξ̂intl (r) =
2l + 1

2

∫ +1

−1

(
1 +

NR(NR − 1)

ND(ND − 1)

DD(µ, r)

RR(µ, r)
− 2

NR(NR − 1)

NDNR

DR(µ, r)

RR(µ, r)

)
Pl(r) dµ.

(3.6)
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Assuming that RR(µ, r) ∼ RR(r), Eq.(3.6) simplifies to:

ξ̂dirl (r) =
2l + 1

2RR(r)

[
RRl(r) +

NR(NR − 1)

ND(ND − 1)
DDl(r)− 2

NR(NR − 1)

NDNR

DRl(r)

]
, (3.7)

where RRl, RDl, and DDl are the number of pairs weighted by Pl(µ). Eq.(3.7) provides
the expression for the direct LS estimator of the multipoles of the 2PCF, ξ̂dirl (r), which
will be extensively used in this work.

3.1.1 Cross-correlations of the two-point correlation function

In order to study the effect of the redshift interlopers on the 2PCF, it is necessary to
disentangle the contributions to the signal coming from the different kinds of tracers:
the interlopers and the pure galaxies (i.e. those for which the measurement of the
redshift is performed using the correct position of the emission lines). This can be done
by dividing the total data catalogue into mutually exclusive sub-catalogues of different
kinds of tracers, each with its own random catalogue, built using the same n(z) as that of
the corresponding data. While the method for the construction of such catalogues will be
discussed in Chapter 5, here we will focus on the computation and the disentanglement
of the signals of the 2PCF from a generic catalogue that can be divided in n mutually
exclusive sub-catalogues.

Let us consider a data catalogue, Dtot, and its random catalogue, Rtot. The former
can be divided into n mutually exclusive data sub-catalogues, Di (with i = 1, ..., n). To
each data sub-catalogue we associate a random sub-catalogue, Ri. The data and random
sub-catalogues must be constructed such that:

Dtot =
∑
i

Di,

Rtot =
∑
i

Ri.
(3.8)

We assume the random-data ratio, DR, to be the same for each i-th sub-sample. In
order to derive an expression that explicits the disentangled signals of the different sub-
catalogues, we start from the general expression for an n-point estimator, proposed by
Szapudi & Szalay (1993) [34], which can be expressed as:

ξ̂n =
(D −R)n

Rn
, (3.9)

Using n = 2 in Eq.(3.9) the LS estimator for the 2PCF (Eq. 3.3) can be easily de-
rived. In the case of the 2PCF from n sub-catalogues, the signal can be of two kinds:
auto-correlation and cross-correlation. In the following, for brevity, we will refer to the
normalized pairs simply as DD, RR, and DR. The auto-correlations are the signals that
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come from pairs of tracers of the same sub-catalogue, and their expression can be easily
recovered from Eq.(3.9) as follows:

ξ̂i(r) =
(Di −Ri)

2

R2
i

=
DiDi(r)− 2DiRi(r) +RiRi(r)

RiRi(r)
, (3.10)

where DiDi, RiRi, and DiRi are respectively the normalized auto data-data, random-
random, and data-random pairs of the i-th catalogue. Eqs. (3.10) and (3.3) are exactly
the same. Thus, the auto-correlation of the i-th catalogue is merely its 2PCF as if it
were the only available data sample. On the other hand, the cross-correlation signals are
those that come from mixed pairs, namely the ones in which one tracer comes from the
i-th catalogue and the other a different one, that will be referred to as the j-th catalogue.
Their expression can be derived starting from Eq.(3.9), and it reads:

ξ̂ij(r) =
(Di −Ri)(Dj −Rj)

RiRj

=
DiDj(r)−DiRj(r)−DjRi(r) +RiRj(r)

RiRj(r)
. (3.11)

In the literature, other expressions for the cross-two-point correlation functions are
present, such as the one that uses only one random catalogue, R, which is created
using the galaxy redshift distribution, n(z), of the combination of the data catalogues.
Its expression is the same as the one in Eq.(3.11), using Ri = Rj = R, and it is the
following:

ξ̂ij(r) =
(Di −R)(Dj −R)

RR
=

DiDj(r)−DiR(r)−DjR(r) +RR(r)

RR(r)
. (3.12)

To analyze how the cross and auto-correlation terms contribute to the total signal, we
can derive an expression for the total 2PCF, starting again from Eq.(3.9):

ξ̂tot =
(Dtot −Rtot)

2

R2
tot

, (3.13)

which, substituting with Eq.(3.8), becomes:

ξ̂tot =
(
∑

i Di −
∑

i Ri)
2

RtotRtot

. (3.14)

Performing the algebraic computations and substituting with Eqs. (3.10) and (3.11), we
get:

ξ̂tot(r) =
∑
i

f 2
i

RiRi

RtotRtot

ξ̂i(r) + 2
∑

i ̸=j,i<j

fifj
RiRj

RtotRtot

ξ̂ij(r), (3.15)

with i, j = 1, ..., n. The factors fi are defined as follows:

fi =
NDi

NDtot

. (3.16)
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This expression for the total 2PCF estimator has been already used in the last few years
(e.g. by Risso et al., in prep. and de la Torre et al., in prep.). It is important to stress the
fact that Eq.(3.15) can be derived only by making the assumption of a constant random-
data ratio, DR, for every value of i. Eq.(3.15) provides the general expression for the
total 2PCF of a catalogue that can be divided into n mutually exclusive sub-catalogues.
Please note that using the expression in Eq.(3.12), it is not possible to disentangle the
different contributions coming from the auto and cross-correlation, thus it is not suitable
for our purposes. This approach can be generalized to any type of estimator.

3.2 Modelling of the two-point correlation function

In order to constrain cosmological parameters from the measurements of the 2PCF, a
model for the PS (its Fourier transform) is generally employed. First, we need to define
a model for the bias. Using the expression for the bias parameter proposed by Fry &
Gaztañaga (1993) [11] (Eq. 2.24) truncated at the second order and using also the tidal
bias parameter, bt, the expression for the bias can be written as follows:

δg(x) = b1δ(x) +
b2
2
δ2(x) + bts

2(x), (3.17)

where s2(x) is the square of the tidal field. The latter is defined as s2(x) = sij(x)sij(x),
with sij(x) = ∂i∂jΦ(x) − δijδ(x). Here, Φ(x) is the gravitational potential, related to
the density field by ∇2Φ(x) = δ(x). The tidal bias parameter accounts for nonlocal
effects, in particular it encodes information about the influence of large-scale tidal fields
on the evolution of matter density. This effect is significant even in the case of local
initial conditions (see Catelan et al., 1998 [35]).

Among the several models for the PS proposed in the literature, we utilize the one
suggested by Beutler et al. (2014) [36], which is an extended version of the Taruya-
Nishimichi-Saito (TNS) model, proposed by Taruya et al. (2010) [37]. Following the
notation of Beutler et al., we refer to it as the eTNS model (extended-TNS). The PS of
the galaxies in the eTNS model is given by:

Pg(k, µ) = e−(fkµσv)2
[
Pg,δδ(k) + 2fµ2Pg,δθ(k) + f 2µ4Pg,θθ(k)

]
+ A(k, µ) +B(k, µ),

(3.18)

where µ is the cosine of the angle between the wavenumber vector, k, and the line
of sight, f is the growth rate, σv is the one-dimensional velocity dispersion, and θ is
the velocity divergence. The first three terms inside the square brackets of Eq.(3.18)
are an extension of the Kaiser factor (defined by Kaiser, 1987 [38]), and the A and B
terms are corrections due to higher-order correlations between the Kaiser terms and the
velocity fields (the definitions can be found in Taruya et al., 2010 [37]), which occur
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when mapping to redshift space. The negative exponential factor preceding the brackets
is a damping function addressing the fingers-of-God effect. The three power spectra
in Eq.(3.18), Pg,δδ, Pg,θθ, and Pg,δθ, are the auto power spectra of density and velocity
divergence, and their cross power spectrum, respectively. The distinctive feature of the
eTNS model compared to the original TNS model is the inclusion of five galaxy bias
parameters. Considering these bias factors, the expressions for the power spectra can be
written as follows (Beutler et al., 2014 [36]):

Pg,δδ(k) = b21Pδδ(k) + 2b2b1Pb2,δ(k) + 2btb1Pbs2,δ(k)

+ 2n3nlb1σ
2
3(k)Plin(k) + b22Pbss(k) + 2b2btPb2s2(k)

+ b2tPbs22(k) +N,

(3.19)

Pg,δθ = b1Pδθ(k) + b2Pb2,θ(k) + btPbs2,θ(k) + b3nlσ
2
3(k)P (k), (3.20)

where P (k) is the linear matter PS, b1 is the linear bias parameter, b2 is the nonlinear
bias parameter, and bt and b3nl are the tidal and third-order non-local bias parameters,
respectively. The latter are significant for explaining the large-scale PS (Saito et al., 2014
[39]). N is a constant stochasticity term accounting for random or unknown processes
that affect the galaxy distribution. The expressions for the other PS present in Eqs.
(3.19) and (3.20) can be found in Beutler et al. (2014) [36]. Since Beutler et al. (2014)
assumes no velocity bias, the auto PS of velocity divergence, Pg,θθ, is simply:

Pg,θθ = Pθθ, (3.21)

3.3 Measurement of the three-point correlation func-

tion

This Section outlines the methods for measuring the 3PCF. For simplicity, we will refer
to the ζ = ζ(r12, r13, θ) parametrization of the connected 3PCF described in Section 2.2,
where r12 and r13 are the fixed sides of the triangular configuration, and θ is the angle
between them. The concept is similar to the measurement of the 2PCF but this time
it involves triplets of tracers instead of pairs. As mentioned in Section 2.2, ζ(r12, r13, θ)
represents the excess or defect of probability of finding three tracers in a given triangular
configuration (r12, r13, θ) in our Universe relative to the one of finding them in same
configuration if the distribution were completely random.

The classical method for the measurement of the 3PCF involves counting the triplets
in the data catalogue and comparing them with those in the random catalogue, analo-
gously to the 2PCF approach. The most commonly used estimator for the 3PCF is the
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one proposed by Szapudi & Szalay (1998) (hereafter, SS estimator) [34], which can be
expressed as follows:

ζ̂(r12, r13, θ) =
DDD(r12, r13, θ)− 3DDR(r12, r13, θ) + 3DRR(r12, r13, θ)−RRR(r12, r13, θ)

RRR(r12, r13, θ)
,

(3.22)
The SS estimator corresponds to Eq.(3.9) for n = 3. Here,DDD(r12, r13, θ),DDR(r12, r13, θ),
DRR(r12, r13, θ), and RRR(r12, r13, θ) are the normalized counts of data-data-data, data-
data-random, data-random-random, and random-random-random triplets, respectively.
For brevity, these will be referred to as DDD, DDR, DRR, and RRR. Their normal-
izations are the following:

NormDDD = ND(ND − 1)(ND − 2),

NormDDR = ND(ND − 1)NR,

NormDRR = NDNR(NR − 1),

NormRRR = NR(NR − 1)(NR − 2).

(3.23)

Even though searching algorithms such as chain-mesh1 can speed up the counting,
this estimator remains computationally expensive. Counting the triplets requires O(N3)
operations, where N is the number of tracers in the catalogue. This is significantly
more than the O(N2) operations needed for counting pairs in the 2PCF, particularly for
random catalogues, which can be up to 50 times denser than the data ones. To address
this, Slepian & Eisenstein (2015a) [40] proposed a new method for measuring the 3PCF
based on Spherical Harmonic Decomposition (SHD), referred to as SE15.

The classical algorithm for computing the 3PCF scales with the number of possible
triangles in a survey. To measure the 3PCF up to a scale Rmax, the number of possible
triangles in the catalog is N(nVRmax)

2, where N is the number of galaxies, n is the number
density, and VRmax is the volume of the sphere with radius Rmax. SE15 decomposes the
connected 3PCF into multipoles, following Szapudi’s (2004) [41] proposal:

ζ(r12, r13, µ) =
∑

ζℓ(r12, r13)Pℓ(µ), (3.24)

where µ = cos θ and Pℓ(µ) are the Legendre Polynomials. The quantity to be computed
is now the radially binned ζℓ. Instead of computing the angle between every possible
pair of galaxies within VRmax for each tracer, SE15 uses the spherical harmonic addition

1The chain-mesh method is used for counting pairs and triplets of objects within a specified range of
scales. Initially, the catalogue is divided into cubic cells, with the indexes of all objects in each cell stored
in vectors. To locate objects near a given one, the search is limited to the cells within the chosen scale
range, reducing the number of unnecessary counts of objects at larger distances. Thus, the method’s
efficiency mainly depends on the ratio between the scale range of the search area and the maximum
separation between objects in the catalogue. This method is implemented in the CBL (Marulli et al,
2016 [1]).
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Figure 3.1: Visualization of the SE15 method. Galaxies are indicated by black dots.
The algorithm centers on a galaxy (white cross) and computes the spherical harmonic
coefficients aℓm of δ around it, mapping the tracer overdensity field (black circles). The
combination of the aℓm coefficients for all galaxies yields the connected 3PCF. Image of
Slepian & Eisenstein, 2015a [40].

theorem to decompose the Legendre polynomials into factors dependent on a single
angular variable each. It can be shown that the radially binned connected 3PCF can be
expressed as follows:

ˆ̄ζℓ(r12, r13, s) =
1

4π
δ(s)

ℓ∑
m=−ℓ

aℓm(r12, s)a
∗
ℓm(r13, s), (3.25)

where s denotes the position of every possible origin, δ(s) is the overdensity field around
the origin, and aℓm are the SHD coefficients of the tracer overdensity field. The operations
for the computation of the latter scale as nVRmax , thus the total operations required for
computing the multipoles of the connected 3PCF for every galaxy are N(nVRmax). This
method saves a factor of nVRmax in time, making the computational time comparable
to that of the 2PCF. Moreover, since the shape of the connected 3PCF for fixed side
lengths as a function of the angle is expected to be smooth, only a few multipoles (∼ 10)
are needed to recover the angular dependence [40]. A visualization of the algorithm is
shown in Figure 3.1.

3.3.1 Cross-correlations of the three-point correlation function

This Paragraph proposes a new expression for the estimator for the 3PCF, based on
the SS one, which can disentangle the contributions of different sub-catalogues to the
total 3PCF. Each of the n sub-catalogues (as defined by Eq. 3.8) provides galaxies that
contribute to the triplet counts used in the computation of the 3PCF. Consequently,
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each catalogue will contribute a certain number of auto-triplets (triplets of galaxies all
from the same catalogue) and cross-triplets (triplets consisting of galaxies from different
catalogues). The former results in n auto-signals from the n different catalogues, while
different combinations of the latter generate cross-signals. This estimator, similarly to
the one described in Paragraph 3.1.1 for the 2PCF, is crucial for studying the effects of
redshift interlopers on the measurement and modelling of the 3PCF.

We begin by deriving the expressions for the auto and cross-correlation signals using
the general expression for a three-point estimator proposed by Szapudi & Szalay (1993)
[34]:

ζ̂ =
(D −R)3

R3
. (3.26)

For the auto-correlations ζiii, only the i−i−i type of triplets are considered, so Eq.(3.26)
becomes:

ζ̂iii =
(Di −Ri)

3

R3
i

=
DiDiDi − 3DiDiRi + 3DiRiRi −RiRiRi

RiRiRi

, (3.27)

where DiDiDi, DiDiRi, DiRiRi, and RiRiRi are the normalized auto data-data-data,
data-data-random, data-random-random, and random-random-random triplet counts of
the i-th catalogue, respectively.

Next, we address the cross-correlations. For the 3PCF, there are different types of
cross-terms:

• Bi-cross-terms: which arise from triplets where the galaxies come from two dif-
ferent sub-catalogues, such as the i− i− j and i− j − j types of triplets. We refer
to these as ζiij and ζijj.

• Tri-cross-terms: which arise from triplets where the galaxies come from three
different sub-catalogues, such as the i − j − k types of triplets. We refer to these
as ζijk.

For ζiij, Eq.(3.26) can be written as:

ζ̂iij =
(Di −Ri)

2(Dj −Rj)

RiRiRj

,

ζ̂iij =
DiDiDj −DiDiRj − 2DiRiDj + 2DiRiRj +RiRiDj −RiRiRj

RiRiRj

.

(3.28)

Similarly, for ζijj we can write:

ζ̂ijj =
(Di −Ri)(Dj −Rj)

2

RiRjRj

,

ζ̂ijj =
DiDjDj +DiRjRj − 2DiDjRj + 2RiDjRj −RiDjDj −RiRjRj

RiRjRj

.

(3.29)
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Finally, the expression for the tri-cross-terms ζijk is:

ζ̂ijk =
(Di −Ri)(Dj −Rj)(Dk −Rk)

RiRjRk

,

ζ̂ijk =
DiDjDk −DiRjDk −DiDjRk −RiDjDk +RiRjDk +RiDjRk +DiRjRk −RiRjRk

RiRjRk

.

(3.30)

To understand the contribution of each term, we express the estimator of the total
three-point correlation function from Eq.(3.26) as follows:

ζ̂tot =
(Dtot −Rtot)

3

R3
tot

, (3.31)

which, substituting with Eq.(3.8), becomes:

ζ̂tot =
(
∑

i Di −
∑

i Ri)
3

R3
tot

. (3.32)

After performing the algebraic computations and substituting Eqs. (3.27), (3.28), (3.29),
and (3.30) we obtain:

ζ̂tot =
∑
i

f 3
i

RiRiRi

RtotRtotRtot

ζ̂iii + 3

[ ∑
i ̸=j,i<j

(
f 2
i fj

RiRiRj

RtotRtotRtot

ζ̂iij + fif
2
j

RiRjRj

RtotRtotRtot

ζ̂ijj

)]

+ 6
∑

i ̸=j ̸=k,i<j<k

fifjfk
RiRjRk

RtotRtotRtot

ζ̂ijk,

(3.33)

where fi is the ratio of the number of tracers in the i-th sub-catalogue to the total
number of tracers (Eq. 3.16). It is important to highlight that Eq.(3.33) can be derived
only by making the assumption of a constant random-data ratio, DR, for every value of
i. Eq.(3.33) provides the general expression for the composition of the total connected
3PCF of a catalogue divided into n mutually exclusive sub-catalogues. This approach
can be generalized to any type of estimator.

3.4 Modelling of the three point correlation function

Once we measure the 3PCF using the methods described in the previous Section, we must
apply a model for the 3PCF (or the BS) to constrain the cosmological parameters. The
model used in this work is the one proposed by Alessandro Benati (2023) [42] (hereafter
B23), which extends the Scoccimarro et al. (1999) [43] model (hereafter SCF99, following
the notation of [42]) for the BS and revises the Slepian & Eisenstein (2017) [44] model
(hereafter SE17, following the notation of [42]) for the 3PCF.
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3.4.1 Modelling of the bispectrum

As previously mentioned, the B23 model for the BS is an extension of SCF99 that
incorporates the tidal bias parameter bt, whose significance has been discussed in Section
3.2. Following the derivation of SCF99, we define the first- and second-order perturbation
theory (PT) redshift-space kernels Zn for the galaxy density field, supplemented with
the B23 model’s tidal bias term btS2(k1,k2):

Z1(ki) = (b1 + fµ2
i ), (3.34)

Z2(k1,k2) = b1F2(k1,k2) + fµ2G2(k1,k2) +
fµk

2

[
µ1

k1
(b1 + fµ2

2)

+
µ2

k2
(b1 + fµ2

1)

]
+

b2
2
+ btS2(k1,k2),

(3.35)

where µ ≡ k · ẑ/k, k ≡ k1 + . . . + kn, and µi ≡ ki · ẑ/ki. The second-order kernel, S2,
for the tidal tensor, sij, is defined as follows:

S2(k1,k2) =
k1 · k2

k1k2
− 1 = x2 − 1, (3.36)

where x ≡ k1·k2

k1k2
≡ cos θ. The second-order kernels for the real-space density and velocity-

divergence fields, F2 and G2 respectively, are defined as:

F2(k1,k2) =
5

7
+

x

2

(
k1
k2

+
k2
k1

)
+

2x2

7
, (3.37)

G2(k1,k2) =
3

7
+

x

2

(
k1
k2

+
k2
k1

)
+

4x2

7
. (3.38)

We can define the three-level redshift-space BS as follows:

Bs(k1,k2,k3) = 2Z2(k1,k2)Z1(k1)Z1(k2)P (k1)P (k2) + cyc., (3.39)

where ’cyc.’ denotes cyclic permutations of {k1,k2,k3}. Hereafter, we neglect the terms
above fourth-order, and we adopt the galaxy at k1 as the reference frame origin. The
latter is assumed to consistently contribute to the second-order density field. This yields
the pre-cyclic solution, prior to cyclic summation. Upon azimuthal averaging (i.e. over
ϕ), B23 decomposes the BS using Legendre polynomials, and substitutes the PT redshift-
space kernels, Zn, into Eq.(3.39), obtaining the following:

B(ℓ)
s (k1, k2, θ) =P (k1)P (k2)b

4
1

[
F2(k1,k2)D

(ℓ)
SQ1 +G2(k1,k2)D

(ℓ)
SQ2

+(γ + 2γtS2(k1,k2))D
(ℓ)
NLB +D

(ℓ)
FOG

]
+ cyc.,

(3.40)
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where γ = b2/b1, γt = bt/b1, θ is the angle between k1 and k2, and:

D
(0)
SQ1 =

2(15 + 10β + β2 + 2β2x2)

15b1
, (3.41)

D
(0)
SQ2 =2β(35k2

1 + 28βk2
2 + 3β2k2

1 + 35k2
2 + 28βk2

1 + 3β2k2
2 + 70k1k2x

+ 84βk1k2x+ 18β2k1k2x+ 14βk2
1x

2 + 12β2k2
1x

2 + 14βk2
2x

2

+ 12β2k2
2x

2 + 12β2k1k2x
3)/(105k2

3b1),

(3.42)

D
(0)
NLB =

(15 + 10β + β2 + 2β2x2)

15b1
, (3.43)

D
(0)
FOG = β(210k1k2 + 210βk1k2 + 54β2k1k2 + 6β3k1k2 + 105k2

1x

+ 189βk2
1x+ 99β2k2

1x+ 15β3k2
1x+ 105k2

2x+ 189βk2
2x

+ 99β2k2
2x+ 15β3k2

2x+ 168βk1k2x
2 + 216β2k1k2x

2

+ 48β3k1k2x
2 + 36β2k2

1x
3 + 20β3k2

1x
3 + 36β2k2

2x
3

+ 20β3k2
2x

3 + 16β3k1k2x
4)/(315k1k2).

(3.44)

where β = f/b1. D
(ℓ)
SQ1 and D

(ℓ)
SQ2 account for the first- and second-order contributions to

large-scale squashing (Kaiser effect or pancakes-of-God), D
(ℓ)
NLB represents the nonlinear

bias contribution, and D
(ℓ)
FOG accounts for the damping effect due to velocity dispersion

(fingers-of-God). This analysis considers the monopole term exclusively.

3.4.2 Modelling of the three-point correlation function

The SE17 model for the redshift-space 3PCF is derived by transforming the SCF99 model
from Fourier space to configuration space. The B23 update introduces a dependence
on the tidal bias and corrects for a linear bias factor, b1, in the expression of certain
BS multipoles (see Benati, 2023 [42] for the detailed discussion). In the following, for
simplicity, we will refer to the comoving sides of the triangular configurations (r12, r13
and r23) as r1, r2 and r3, respectively. The concept behind SE17 involves leveraging the
Legendre expansion of the 3PCF in redshift space:

ζ(r1, r2, r̂1 · r̂2) =
∑
ℓ

ζℓ(r1, r2)Pℓ(r̂1 · r̂2), (3.45)

where Pℓ are Legendre polynomials and the coefficients ζℓ are given by:

ζℓ(r1, r2) =
2ℓ+ 1

2

∫ 1

−1

dx12Pℓ(x12) [ζpc(r1, r2, x12) + ζpc(r1, r3, x13)

+ζpc(r2, r3, x23)] ,

(3.46)
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where xij represents the cosine of the angle between ri and rj, and ζpc denotes the pre-
cyclic 3PCF. It has been demonstrated (see Benati, 2023 [42] and Slepian & Eisenstein,
2015a [45]) that by expanding the BS monopole using Legendre polynomials, a rela-
tion can be established between the multipoles of the pre-cyclic 3PCF ζpc,ℓ and the BS
multipoles Bs,ℓ. The relation can be written as follows:

ζpc,ℓ(r1, r2) = (−1)ℓ
∫

dk1dk2
k2
1k

2
2

(2π2)2
Bs,ℓ(k1, k2)jℓ(k1r1)jℓ(k2r2), (3.47)

where jℓ is the spherical Bessel function of order ℓ. By expanding all terms in the BS
expression (3.40) into multipole moments and using Eq.(3.47), it has been shown that
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the multipole moments of the line-of-sight averaged 3PCF B23 model can be written as:

ℓ = 0 : ξ
[0]
1 ξ

[0]
2

{
b41

[
2

3
β +

38

45
β2 +

2

5
β3 +

2

25
β4

]

+ b31

[
34

21

(
1 +

47

51
β +

163

425
β2 +

201

2975
β3

)

+ γ

(
1 +

2

3
β +

1

9
β2

)
− 4

3
γt

(
1 +

2

3
β +

7

75
β2

)]}
+ b31β

2 (7 + 3β)κ0(r1, r2)

ℓ = 1 : −
[
ξ
[1+]
1 ξ

[1−]
2 + ξ

[1+]
2 ξ

[1−]
1

]{
b41

[
1

3
β +

3

5
β2 +

67

175
β3 +

3

35
β4

]

+ b31

[
1 + β +

37

75
β2 +

17

175
β3

]}
+ b31β

2 (7 + 3β)κ1(r1, r2)

ℓ = 2 : ξ
[2]
1 ξ

[2]
2

{
b41

[
16

45
β2 +

16

35
β3 +

32

245
β4

]

+ b31

[
8

21

(
1 +

4

3
β +

54

35
β2 +

111

245
β3

)

+
4β2γ

45
+

4

3
γt

(
1 +

2

3
β +

1

21
β2

)]}
+ b31β

2 (7 + 3β)κ2(r1, r2)

ℓ = 3 : −
[
ξ
[3+]
1 ξ

[3−]
2 + ξ

[3+]
2 ξ

[3−]
1

]{
b41

[
8

175
β3 +

8

315
β4

]

+ b31

[
8

75
β2 +

8

175
β3

]}
+ b31β

2 (7 + 3β)κ3(r1, r2)

ℓ = 4 : ξ
[4]
1 ξ

[4]
2

{
128

11025
β4b41 + b31

[
− 32

3675
β2 +

32

8575
β3 +

32

525
β2γt

]}
+ b31β

2 (7 + 3β)κ4(r1, r2)

ℓ ≥ 5 : b31β
2 (7 + 3β)κℓ(r1, r2).

(3.48)

Here, ξ
[n]
i , ξ

[n±]
i , and κℓ are defined in Eqs. (4.37) and (4.39) of Benati (2023) [42].
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Chapter 4

New functions for the cross-terms of
the two- and three-point correlation
functions

All computations in this study were conducted using CBL [1], a comprehensive set of free
software C++/Python libraries designed for cosmological calculations. These libraries
offer a versatile computational framework suitable for the a wide range of cosmological
studies, including the computation and modelling of the 2PCF and 3PCF. The CBL
initially lacked classes and functions necessary for computing the cross-terms of these
correlation functions using the estimators discussed in Sections 3.1.1 and 3.3.1. As
demonstrated earlier, these estimators are pivotal for any future investigations of the
impact of redshift interlopers on the statistical distribution of matter. Therefore, we
have implemented and rigorously tested four new classes and several functions to bridge
this gap. This Chapter presents our contributions, beginning with the computation of the
classic cross-2PCF, followed by discussions on measuring its first three even multipoles.
Eventually, we will present the new functions dedicated to computing the cross-3PCF.

4.1 Cross-two-point correlation function monopole

Initially, we implemented new functions for computing cross correlations of the 2PCF
monopole. The CBL already includes a function for computing a version of the cross-
2PCF monopole, using the following expression (the one of Eq.(3.12)):

ξ̂ij(r) =
(Di −R)(Dj −R)

RR
=

DiDj(r)−DiR(r)−DjR(r) +RR(r)

RR(r)
, (4.1)

which employs two data catalogues, Di and Dj, and a single random catalogue, R. We
will denote this as the single-random method (SR). However, as discussed in Section
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3.1.1, the SR method is inadequate for our objectives since it does not disentangle auto-
and cross-signals. Instead, we require an estimator like the one defined in Eq.(3.11):

ξ̂ij(r) =
(Di −Ri)(Dj −Rj)

RiRj

=
DiDj(r)−DiRj(r)−DjRi(r) +RiRj(r)

RiRj(r)
, (4.2)

where two random catalogues (one for each data, using the same random-data ratio, DR)
are used. We refer to this as the double-random method (DR). The implementation of
the DR cross-2PCF followed a template similar to the existing SR method. The main
differences lie in pair counting and the final estimator formula.

Initially, we implemented a count allPairs two randoms method to tally all pairs in
Eq.(4.2) for each radial bin, utilizing two data catalogues, D1 and D2 (with ND1 and ND2

galaxies respectively), and two random catalogues, R1 and R2 (withNR1 andNR2 galaxies
respectively). Subsequently, additional functions were developed for signal measurement.
The non-normalized counts per redshift bin (D1D2

∗, D1R2
∗, D2R1

∗, and R1R2
∗) must

be normalized in the following way:

D1D2(r) =
D1D2

∗(r)

ND1ND2

,

D1R2(r) =
D1R2

∗(r)

ND1NR2

,

D2R1(r) =
D2R1

∗(r)

ND2NR1

,

R1R2(r) =
R1R2

∗(r)

NR1NR2

.

(4.3)

The apex ∗ denotes the non-normalized number of couples. These normalized pair
counts are then combined as in Eq.(4.2), and ξ̂12 is computed for each radial bin. Even-
tually, each ξ̂12(r) is associated with a Poissonian error, ∆ξ12(r), calculated as follows:

∆ξ212(r) =

(
NR1NR2

ND1ND2

√
D1D2

∗(r)

R1R2
∗(r)

)2

+

(
NR1

ND1

√
D1R2

∗(r)

R1R2
∗(r)

)2

+

(
NR2

ND2

√
D2R1

∗(r)

R1R2
∗(r)

)2

+

[(
NR1NR2

ND1ND2

D1D2
∗(r)− NR1

ND1

D1R2
∗(r)− NR2

ND2

D2R1
∗(r)

)
1√

R1R2
∗(r)

]2
.

(4.4)

The expressions for the Poissonian uncertainties of the estimators have been derived
following the simple formula for the propagation of the uncertainties for a function f(x)
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depending on i uncorrelated variables, xi:

∆f(x)2 =
∑
i

(
∂f

∂xi

∆xi

)2

, (4.5)

where ∆xi is the error associated to the variable xi. In this case, the variables are
the non-normalized number of couples and their associated errors are their Poissonian
uncertainties.

4.1.1 Testing the cross-two-point correlation function monopole

In order to test the new functions, we conducted a direct comparison with existing, well-
tested functions within the CBL. We compared the results of our new functions with the
following two:

• The first function computes the auto-correlation of the 2PCF. It operates on a data
catalogue D with ND tracers and a random catalogue R with NR tracers.

• The second function computes the cross-SR correlation of the 2PCF using the
estimator defined in Eq.(4.1). It operates on two data catalogues D1 and D2 (with
ND1 and ND2 tracers respectively) and one random catalogue R with NR tracers.

For our testing, we utilized tracers only from one data and one random catalogue, thus
setting D1 = D2 = D and R1 = R2 = R. Under this assumption, both estimators for
the cross-correlation (SR and DR, Eqs. (4.1) and (4.2) respectively) reduce to Eq.(3.3),
the estimator for the auto-2PCF. Therefore, the signals from all three functions should
be identical. Regarding the non-normalized pair counts, assuming D1 = D2 = D and
R1 = R2 = R, the rules are as follows:

• The auto-pairs counts, which originate from the same catalogue, should depend
only on the size of the catalogues, in the same way across different estimators.
Since in our case the catalogues are assumed to be identical, for instance the counts
RR∗(r) of the auto-estimator and the cross-SR estimator should be identical.

• The cross-pairs counts, involving tracers from different catalogues, should be dou-
bled compared to auto-pairs from catalogues with equivalent size. This doubling
occurs because cross-pairs are counted over all possible permutations of catalogues
(in this case, 2). For example, the counts R1R2

∗(r) in the cross-DR estimator ac-
count for permutations R1R2 and R2R1, since R1 and R2 are considered different
by the estimator, even though we know them to be identical in this case. Therefore,
R1R2

∗(r) in the cross-DR estimator should be doubled compared to RR∗(r) in the
auto-estimator and cross-SR estimator.
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Figure 4.1: Upper panels: results of the 2PCF monopole test. Measurements from
the CBL test catalogue within a comoving separation range of 20− 130h−1Mpc. The sig-
nals are calculated using the auto-estimator (solid blue line), Cross-SR-estimator (dashed
black line), and Cross-DR-estimator (dotted red line). In order for the test to yield a
positive outcome, the three functions should measure consistent quantities within the er-
ror bars (which represent Poissonian uncertainties). Lower panels: residuals between
the auto-2PCF monopole and Cross-DR-2PCF monopole (left) and between the Cross-
SR-2PCF monopole and Cross-DR-2PCF monopole signals (right). Error bars represent
Poissonian uncertainties.

• The cross-pairs counts should depend only on the size of the catalogues, in the
same way across different estimators. That is since they are counted over the
same number of permutations (2). For example, counts like D1R2

∗(r) (of cross-
DR), D2R1

∗(r) (of cross-DR), D1R
∗(r) (of cross-SR), D2R

∗(r) (of cross-SR), and
DR∗(r) (of auto) should be identical.

The tests were conducted using a test catalogue from the CBL libraries. The latter
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DD D1D2 DR DiR DiRj RR R1R2

Auto-estimator 281 (none) 9643 (none) (none) 95725 (none)
Cross-SR-estimator (none) 562 (none) 9643 (none) 95725 (none)
Cross-DR-estimator (none) 562 (none) (none) 9643 (none) 191450

Table 4.1: Number of pair counts for the first radial bin. The columns represent the kind
of counted pairs, while each row corresponds to a different estimator.

is a box-shaped catalogue containing 1110 galaxies. Its dimensions are 11.5 deg centered
in 0 for both RA and Dec, and ∆z = 0.25 centered in z = 1 for the redshift coordinate.
Even though the number of tracers is too low to have significant statistics, it is still
sufficient for testing purposes, as we only need to demonstrate that the signals of the
different functions are equal, and ensures reasonable computation times. The random
catalogue was constructed using a specific function of the CBL with a random-data
ratio DR = 20. Measurements were performed over a range from rmin = 20h−1Mpc
to rmax = 120h−1Mpc, using 22 linear radial bins of width ∆r = 5h−1Mpc each. The
testing results are summarized in Table 4.1 and Figure 4.1. Table 4.1 shows the number
of each type of pairs for the first radial bin. It is easy to notice that the counts follow
the rules described above. The two cross-pairs D1D2 in the cross-estimators are doubled
compared to the auto-pairs DD, while DR pairs remain identical (all cross-pairs), and
R1R2 in the cross-DR estimator is doubled compared to RR in the auto- and cross-SR
estimators.

The upper panels of Figure 4.1 show that the signals from all three estimators are
identical when D1 = D2 = D and R1 = R2 = R.

This is corroborated by the bottom panels of Figure 4.1, which show the residuals
ξres(ξCross−DR, ξauto) in (left bottom panel) and ξres(ξCross−DR, ξCross−SR) (right bottom
panel). The residual function, ξres(ξi, ξj), is defined as follows:

ξres(ξi, ξj) ≡ ξi − ξj. (4.6)

Both residuals are compatible with zero, as expected. This proves the well functioning
of our new functions. The Poissonian errors of the residuals also behave as expected,
being larger at smaller scales, where the number of counted pairs is lower.

4.2 Cross-two-point correlation function multipoles

Following the work on the monopole of the 2PCF, we implemented three classes and
several functions to compute the first three even multipoles (ℓ = 0, 2, 4, corresponding
to the monopole, quadrupole, and hexadecapole respectively) of the Legendre expansion
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of the estimator for the 2PCF (Eq.(3.6)):

ξ̂intij,ℓ(r) =
2ℓ+ 1

2

∫ +1

−1

(
1 +

D1D2(µ, r)

R1R2(µ, r)
− D1R2(µ, r)

R1R2(µ, r)
− D2R1(µ, r)

R1R2(µ, r)

)
Pℓ(µ) dµ, (4.7)

whereD1D2, D1R2, D2R1, and R1R2 are the same defined in Eq.(4.3). However now they
also depend on µ, the cosine of the angle between the comoving separation, r, and the
line-of-sight. This double dependence requires 2D binning for the measurements in both
comoving separation, r, and µ. The pairs were counted using the count allPairs two randoms
function discussed in the previous Section and were normalized in the same way. As with
the previous computations, we associated a Poissonian error with the measurements of
the multipoles of the 2PCF, following Eq.(4.4).

4.2.1 Testing the cross-two-point correlation function multi-
poles

The testing of these new functions have been conducted in the same manner as described
in the previous Section. The CBL already includes validated functions for computing
the monopole, quadrupole, and hexadecapole of the auto 2PCF multipoles. By assuming
D1 = D2 = D andR1 = R2 = R, the expressions in Eqs. (4.7) and (3.6) become identical.
Consequently, we expect the signals from the auto- and auto-estimators to match if the
measurements are performed with identical catalogues. As for the pair counts, we expect
them to follow the behavior outlined in Paragraph 4.1.1.

The tests have been performed using the same data and random catalogues employed
for testing the cross-2PCF monopole (Paragraph 4.1.1). Also in this case, measure-
ments were conducted over a scale range from rmin = 20h−1Mpc to rmax = 120h−1Mpc,
considering 22 linear radial bins each with a width of ∆r = 5h−1Mpc. The results
of the tests are displayed in Figure 4.2, which upper panels show that the signals for
the three multipoles from the two estimators are identical when D1 = D2 = D and
R1 = R2 = R. This is confirmed by the bottom panels of Figure 4.2, which show the
residuals ξℓ,res(ξℓ,Cross, ξℓ,auto) for ℓ = 0, 2, 4 (monopole, quadrupole and hexadecapole,
respectively). The residuals are consistent with zero within the error bars, as expected.
The Poissonian errors of the residuals behave as expected also in this case, being larger
at smaller scales, where the number of counted pairs is lower.

4.3 Cross-three-point correlation function

The implementation of the cross-3PCF estimator presented the most challenging task
among the three estimators. Our approach for this estimator diverged slightly from the
method used for the cross-2PCF monopole and cross-2PCF multipoles. This time, the
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DD D1D2 DR DiRj RR R1R2

Auto-estimator 13 (none) 471 (none) 4872 (none)
Cross-estimator (none) 26 (none) 471 (none) 9744

Table 4.2: Number of pair counts for the first radial and angular bin. The columns
represent the type of counted pairs, while each row corresponds to a different estimator.

function not only computes the cross-correlation terms of the connected 3PCF but also
includes the auto-correlation ones, allowing a comprehensive computation of all signals
from the whole catalogue with a single function.

Initially, the count allTriplets function was developed to count all types of triplets
(DDD, DDR, DRR, and RRR) in a given triangular configuration (r12, r13, θ). Here
we wanted to generalize the count to every possible catalogue combination described in
Paragraph 3.3.1 (i− i− i, i− i− j, i− j − j, and i− j − k), resulting in the counting
of 56 different kinds of triplets. Subsequently, another function normalizes the triplet
counts for all possible combinations according to Eq.(3.23), that for three-point statistics
becomes:

DiDiDi =
DiDiDi

∗

NDi
(NDi

− 1)(NDi
− 2)

,

DiDiDj =
DiDiDj

∗

NDi
(NDi

− 1)NDj

,

DiDjDj =
DiDjDj

∗

NDi
NDj

(NDj
− 1)

,

DiDjDk =
DiDjDk

∗

NDi
NDj

NDk

,

(4.8)

and similarly for the other combinations of triplets. The function then aggregates these
normalized counts to compute the signals of ζ̂i, ζ̂iij, ζ̂ijj, and ζ̂ijk. As we discussed in
Paragraph 3.3.1, their expression is the following:

ζ̂iii =
DiDiDi − 3DiDiRi + 3DiRiRi −RiRiRi

RiRiRi

, (4.9)

ζ̂ijj =
DiDiDj −DiDiRj − 2DiRiDj + 2DiRiRj +RiRiDj −RiRiRj

RiRiRj

, (4.10)

ζ̂ijj =
DiDjDj +DiRjRj − 2DiDjRj + 2RiDjRj −RiDjDj −RiRjRj

RiRjRj

, (4.11)

ζ̂ijk =
DiDjDk −DiRjDk −DiDjRk −RiDjDk +RiRjDk +RiDjRk +DiRjRk −RiRjRk

RiRjRk

.

(4.12)
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Finally, a Poissonian error is associated with each measurement of the connected
3PCF to account for statistical uncertainties. The latter can be derived from Eq.(4.5)
and can be written as follows for different types of 3PCF:

∆ζ2i =

(
NRi

NRi
NRi

NDi
NDi

NDi

√
DiDiDi

∗

RiRiRi
∗

)2

+

(
3
NRi

NRi

NDi
NDi

√
DiDiRi

∗

RiRiRi
∗

)2

+

(
3
NRi

NDi

√
DiRiRi

∗

RiRiRi
∗

)2

+

[(
NRi

NRi
NRi

NDi
NDi

NDi

DiDiDi
∗ − 3

NRi
NRi

NDi
NDi

DiDiRi
∗ + 3

NRi

NDi

DiRiRi
∗
)
(RiRiRi

∗)−
1
2

]2
,

(4.13)

∆ζ2iij =
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NRi

NRi
NRj

NDi
NDi

NDj

√
DiDiDj
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RiRiRj
∗
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+
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√
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∗
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+
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∗
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+
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NRj
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(4.14)

∆ζ2ijj =
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(4.15)
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∆ζ2ijk =
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(4.16)

4.3.1 Testing the cross-three-point correlation function

To verify the functionality of the functions that count triplets and compute the cross-
3PCF terms, we followed a similar methodology as in the previous Sections. Examining
the expressions for the cross-signals of the connected 3PCF (Eqs. (4.10), (4.11), and
(4.12)) it is straightforward to show that under the assumption Di = Dj = Dk = D and
Ri = Rj = Rk = R, all these expressions reduce to Eq.(4.9), which is the signal of the
auto-3PCF. This implies that all cross-signals computed with our new function, assuming
Di = Dj = Dk = D and Ri = Rj = Rk = R, should match the classic connected 3PCF
computed using the already validated functions of the CBL that employ a single data
and a single random catalogue.

The logic for triplet counts follows the same principles as the pair counts discussed
in Paragraph 4.1.1. Before proceeding with the discussion, it is essential to distinguish
between triplet types and ζ types. The former are defined by the number of different
catalogues from which the triplet components originate. For instance, auto-triplets in-
volve one catalogue (e.g., D1D1D1 or R2R2R2), bi-cross-triplets involve two catalogues
(e.g., D1R2R2 or R1R1R3), and tri-cross-triplets involve three catalogues (e.g., D1D3R2

or D2R2R3). On the other hand, ζ types refer to the contributions to the signals in
Eqs. (4.9), (4.10), (4.11), and (4.12) (ζiii, ζiij, ζijj, and ζijk). Here, we distinguish
sub-catalogues by their labels, (i, j, k), and do not differentiate between data and ran-
dom components from the same catalogue. For example, a tri-cross-triplet D1D2R1

contributes to the bi-cross-ζ ζ112. Generally, auto-triplets only contribute to auto-ζ, bi-
cross-triplets can contribute to both auto-ζ and bi-cross-ζ, while tri-cross-triplets can
contribute to both bi-cross-ζ and tri-cross-ζ. The rules for the triplet counts are the
following:

• If the triplets are of the same kind (auto- , bi-cross- or tri-cross-) their number
depends only on the size of the catalogues, in the same way across different esti-
mators. That is because if catalogues are identical, the number of the counts only
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depends on the possible permutations of the triplet kind (1 for auto-triplets, 3 for
bi-cross-triplets, 6 for tri-cross-triplets).

• The number ratio of different triplet types coming from catalogues with equivalent
size corresponds to the ratio of the number of possible permutations. For example,
the number of bi-cross-triplets is three times that of auto-triplets, and the number
of tri-cross-triplets is twice that of bi-cross-triplets and six times that of auto-
triplets.

The tests in this case were conducted using a catalogue from the Flagship2 simulation:
a full octant of sky with a depth ∆z = 0.01 centered at z = 1. The catalogue contains
337,818 pure galaxies (i.e. excluding redshift interlopers), and the random catalogue
was constructed using a linear interpolation on the distribution in RA, Dec, and z of
the data catalogue, preserving its exact geometry. The random-data ratio used was
DR = 5, sufficient for testing purposes and ensuring reasonable computational times.
The choice of the catalogue for the testing was different with respect to the 2PCF cases
since the 3PCF, being a three-point statistical tool, requires larger samples to provide
significant results. For testing purposes, measurements were conducted using a fixed sides
configuration (r12 = 25h−1Mpc, r13 = 45h−1Mpc) with a radial bin size of 5h−1Mpc
and 20 bins for the angular variable, θ. This configuration ensures rapid calculations
and serves as an effective test for the newly implemented function.

The triplet counts for the first angular bin are displayed in Table 4.3. The counts
follow the expectations, with tri-cross triplet numbers being twice the bi-cross ones, and
bi-cross triplets being three times the auto-triplets from the auto-estimators. Exceptions
are noted for DDR and DRR triplets, which have equal numbers in both auto- and
bi-cross estimators since they remain bi-cross-triplets due to the different catalogues
involved (i.e. D and R).

The signals of the 3PCF are shown in the left panels of Figures 4.3, 4.4, and 4.5. As
expected, the signals are identical for all different estimators (i.e. ζ, ζiii, ζiij, ζijj, and
ζijk, with i, j, k = 1, . . . , 3). This must be true under the assumption Di = Dj = Dk = D
and Ri = Rj = Rk = R. This equality is confirmed by the residual plots in the right
panels of Figures 4.3, 4.4, and 4.5, which show the residual functions ζres(ζi, ζj). All
residuals are consistent with zero, confirming the accuracy of our implementation. The
Poissonian errors of the residuals behave as expected, being larger at smaller scales of
the third side of the triangle (i.e. for θ ∼ 0, π) for which the number of counted triplets
is lower.
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DDD DDR DRR RRR
Auto-ζ (OLD function) 1.17465e+05 1.45038e+06 6.56626e+06 1.09152e+07
Auto-ζ (NEW function) 1.17465e+05 1.45038e+06 6.56626e+06 1.09152e+07

Bi-cross-triplets from bi-cross-ζ 3.52395e+05 1.45038e+06 6.56626e+06 3.27456e+07
Tri-cross-triplets from bi-cross-ζ (none) 2.90076e+06 1.31325e+07 (none)
Tri-cross-triplets from tri-cross-ζ 7.04790e+05 2.90076e+06 1.31325e+07 6.54912e+07

Table 4.3: Triplet counts for the first angular bin. The columns represent the broad
types of triplets: DDD, DDR, DRR, RRR. The rows differentiate between triplet types
(auto-, bi-cross-, and tri-cross-) and ζ types (auto-, bi-cross-, and tri-cross-).
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Figure 4.2: Upper panels: 2PCF monopole (upper left), quadrupole (upper mid) and
hexadecapole (upper right) measured from the CBL test catalogue within a comoving sep-
aration range of 20 − 130h−1Mpc. The signals are calculated using the auto-estimator
(solid blue line) and the cross-estimator (dashed black line). Error bars represent Pois-
sonian uncertainties. Lower panels: residuals of the 2PCF monopole (bottom left),
quadrupole (bottom mid) and hexadecapole (bottom right) between the auto- and cross-
2PCF signals. The latter are computed from the CBL test catalogue within a comoving
separation range of 20− 130h−1Mpc. Error bars represent Poissonian uncertainties.
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(a) (b)

Figure 4.3: Left panel: the connected auto-3PCF, computed using the previously vali-
dated functions of the CBL (red continuous line), and the auto terms of the connected
3PCF, calculated using our newly developed functions, from the catalogues 1, 2 and
3 (black dashed line, blue dotted line and green dash-dotted line, respectively). The
3PCF was measured using the fixed-sides parametrization, with sides r12 = 25h−1Mpc,
r13 = 45h−1Mpc). Right panel: residuals between the three auto signals (from catalogues
1, 2 and 3) and the connected auto-3PCF. They are represented by a black dashed line,
blue dotted line and green dash-dotted line, respectively. Poissonian error bars are applied
to both plots.
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(a) (b)

Figure 4.4: Left panel: the connected auto-3PCF, computed using the previously validated
functions of the CBL (red continuous line), and the bi-cross terms of the connected 3PCF,
calculated using our newly developed functions, between the catalogues 1-2, 1-3 and 2-3
(black dashed line, blue dotted line and green dash-dotted line, respectively). The 3PCF
was measured using the fixed-sides parametrization, with sides r12 = 25h−1Mpc, r13 =
25h−1Mpc). Right panel: residuals between the three bi-cross signals (from catalogues
1-2, 1-3 and 2-3) and the connected auto-3PCF. They are represented by a black dashed
line, blue dotted line and green dash-dotted line, respectively. Poissonian error bars are
applied to both plots.
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(a) (b)

Figure 4.5: Left panel: the connected auto-3PCF, computed using the previously val-
idated functions of the CBL (red continuous line), and the tri-cross term of the con-
nected 3PCF, calculated using our newly developed functions (black dashed line). The
3PCF was measured using the fixed-sides parametrization, with sides r12 = 25h−1Mpc,
r13 = 25h−1Mpc). Right panel: residuals between the two signals presented in the left
panel (black dashed line). Poissonian error bars are applied to both plots.
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Chapter 5

Measurements from the Flagship2
catalogue

In this Chapter, we will present the measurements of the 2PCF and 3PCF from the
Flagship2 data set (details in Section 5.1). This analysis will be the first instance within
this work to investigate the influence of line and noise interlopers on the signals of both
the 2PCF and 3PCF. We will consider the auto- and cross-correlations of these interlopers
and the pure galaxies. The computations were performed using the latest version of the
CBL libraries [1].

5.1 Flagship2 catalogue

Euclid is a ESA mission, lauched in July 2022. In its wide survey, it will cover around
15000 deg2 of sky, measuring positions of galaxies up to redshift z ∼ 2 and beyond.
Euclid will exploit two instruments for the measurements: the Visible Instrument (VIS)
and the Near-Infrared Spectrometer and Photometer (NISP). The former is an imager,
which works at visible wavelengths, while the latter serves both as a photometer (NISP-
p) and spectroscoper (NISP-s). The redshift of the Euclid wide survey will be estimated
through spectroscopy based mainly on the Hα line. Given the wavelength range covered
by the NISP, the Hα line is visible for the galaxies in the redshift range 0.84 < z < 1.98.

The spectroscopic survey is expected to suffer from relatively high interloper con-
tamination, i.e. systematic errors on the estimation of the galaxies’ redshift due to line
mismatch (for a detailed description see Section 2.4). This is due to the low SNR of the
Euclid mission (the limiting SNR is 3.5 for a F (Hα) = 2×10−16 erg s−1cm2 line) and the
reliance, in most cases, on a single emission line to estimate the spectroscopic redshift
of the galaxies (i.e. Hα). This is expected to introduce both noise interlopers and line
interlopers. In our study, we assume the line interlopers to be only OIII and SIII, as
they are the strongest lines expected, after Hα, in the 0.84 < z < 1.98 redshift range.
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Figure 5.1: zmeasured vs. ztrue for the FS2 catalogue. The noise interlopers (purple
dots) have a random distribution, the OIII and SIII interlopers (blue and green dots,
respectively) lie one a line which angular coefficient R depends on the ratio between the
rest-frame wavelength of their line and the Hα line (Eq. 5.2). The pure galaxies (black
dots) lie on the bisector of the I and III quadrant.

Our goal in this Chapter is to study the 2PCF and 3PCF signal of the interlopers,
and to quantify their effect on the 2PCF and 3PCF signals of the whole galaxy sample.
For our purposes, we used a galaxy catalogue from Flagship2 (FS2), the Euclid official
simulation, with manually inserted systematic redshift uncertainties. The catalogue was
constructed within the Observational Systematic Work Package of the Science Working
Group-Galaxy Clustering in Euclid using the following procedure. Two real galaxy
catalogues were employed: COSMOS2020 and Emission Line COSMOS2020 (ELC2020).
COSMOS2020 is a near-infrared selected galaxy catalogue containing 1.7 million galaxies
with precise photometric redshifts (Weaver et al., 2022 [46]), serving as the reference for
the true redshifts. ELC2020 is a catalogue in which emission lines are associated to
COSMOS2020 galaxies, using an empirical but physically-motivated approach to model
the galaxy emission-line fluxes in the COSMOS field (for details see Saito et al. 2020
[47]). Using the Euclid ’s observational features, it simulates the survey and provides the
measured redshifts, thus with possible interloper contamination, and predicts Hα and
OII galaxy number counts. In this way, we can associate both the true and the measured
redshift (ztrue and zmeasured, respectively) to each galaxy of the catalogue. The relation
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Figure 5.2: Redshift distribution in the range 0.9 < z < 1.8 for the total FS2 catalogue
(solid black line) and the four sub-catalogues: pure (red), OIII (blue), SIII (green), and
noise (purple).

between ztrue and zmeasured can be parametrized in this way:

zmeasured = R× (1 + ztrue)− 1, (5.1)

where R is defined as follows:

R ≡ λe,true

λe,measured

=
(1 + zmeasured)

(1 + ztrue)
. (5.2)

Here, λe is the rest-frame wavelength of the picked up line. The R coefficient behaves
differently depending on the galaxy type:

• For pure galaxies, i.e. those whose redshift measurements are reliable since the
line detected by the instrument is the correct one (Hα), λe,true = λe,measured, thus
R = 1.

• For line interlopers, there is a fixed relation between the true rest-frame wavelength
(OIII or SIII) and the measured rest-frame wavelength (Hα). Thus, R = const,
and R ̸= 1.
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Figure 5.3: Comparison of the Right Ascension, Declination, and redshift distributions
(n(RA), n(Dec), and n(z), respectively) of galaxies in the total FS2 catalogue (black
line) and the corresponding random catalogue (red) within the first redshift range (0.1 <
z < 1.1).

• For noise interlopers there is not a fixed relation between the true rest-frame
wavelength (a noise line) and the measured rest-frame wavelength (Hα). Thus, R
has a random value.

As a matter of fact, from Eq.(5.1) it follows that zmeasured = f(ztrue) is the bisector of
the ztrue -zmeasured diagram for pure galaxies, a y = Rx + c line for the line interlopers
and a random distribution in (x, y) for the noise interlopers. Knowing this, we can
discriminate between the pure galaxies and the different kinds of interlopers, and flag
them. Thus, by cross-correlating the two catalogues, it is possible to retrieve the redshift
distribution, n(z), of the interlopers and the systematic uncertainties can be inserted
into the FS2 catalogue with the same distribution. Figure 5.1 shows the zmeasured vs.
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ztrue distribution for the FS2 catalogue galaxies. It is easy to identify the lines on which
pure, OIII and SIII galaxies lie (as discussed before, their angular coefficient is R). The
rest of the galaxies, which are randomly distributed in the plot, are noise interlopers.
The FS2 galaxy catalogue replicates the typical redshift distribution of a Euclid -like
catalogue and includes the expected percentage of interlopers in the Euclid survey, which
is approximately 20% after the selection of the objects. As a matter of fact, if we select
all the objects with magnitude HE < 24 (the ones for which the Euclid survey will
estimate the redshift), the catalogue would be dominated by interloper contamination,
since there is a high percentage of galaxies which do not emit in Hα. In fact the Euclid
requirements for the wide survey are 45% completeness and 80% purity, which will be
reached with selections based on measured parameters such as redshift reliability and
line flux. Thus, the vast majority of the galaxies will be pure, meaning their redshift
measurements are reliable, that is the line detected by the instrument is the correct one
(Hα).

The FS2 catalogue covers a full octant of the sky and includes most galaxies in the
redshift range 0.9 < z < 1.8. It contains the three observational coordinates of each
galaxy in redshift space (right ascension, RA, declination, Dec, and redshift, z) and
a label specifying their type (pure, OIII, SIII, or noise interloper), allowing the total
catalogue to be easily divided into four sub-catalogues with a simple selection. The
redshift distribution, n(z), of the galaxies in the FS2 catalogue and sub-catalogues are
displayed in Figure 5.2. The peculiar shape of the redshift distribution is related to
the fact that the completeness of the survey strongly depends on the redshift. This
is because of the previously discussed selection performed on the galaxies in order to
achieve a 80% purity. For this reason, we observe redshift-dependent distributions for all
types of galaxies except the noise interlopers, for which there is no fixed relation between
the observed and the rest-frame wavelengths. In this work, we divided the FS2 catalogue
into four redshift ranges to study them separately and gather information also on the
evolution of the impact of interlopers with respect to cosmic time. The four ranges are:
0.9 < z < 1.1, 1.1 < z < 1.3, 1.3 < z < 1.5, and 1.5 < z < 1.8. The percentage
composition of each redshift range is displayed in Table 5.1. As shown, the interlopers’
percentages consistently add up to approximately 20%.

To compute the 2PCF and 3PCF, random samples are needed: we built them for the
total FS2 catalogue and for each sub-catalogue in every redshift range, using a constant
distribution in RA and sin(Dec), representing the geometry of a full octant of the sky.
For the redshift distribution n(z) of the random sample, we used a linear interpolator
to match the distribution of the data catalogue. Figure 5.3 compares the RA, Dec, and
z distributions of the total and random samples for the total FS2 catalogue in the first
redshift range. The other 19 random catalogues used in this work (one for each redshift
range of the total catalogue and the four sub-catalogues) have been constructed similarly.

In this case, the composition of the data and random catalogues (Eq. 3.8) can be
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Pure galaxies OIII interlopers SIII interlopers Noise interlopers
0.9 < z < 1.1 81.8% 2.9% 1.5% 13.8%
1.1 < z < 1.3 78.2% 9.7% 3.9% 8.2%
1.3 < z < 1.5 74.5% 7.2% 9.9% 8.4%
1.5 < z < 1.8 83.4% 1.0% 8.6% 7.0%

Table 5.1: Percentage composition of the FS2 catalogue in each redshift range. Rows
show the redshift ranges, while columns distinguish between different sub-catalogues.

expressed as follows:
Dtot = Dp +Do +Ds +Dn,

Rtot = Rp +Ro +Rs +Rn,
(5.3)

where the subscripts p, o, s, and n indicate the pure, OIII interlopers, SIII interlopers,
and noise interloper sub-catalogues, respectively. Considering Eq.(5.3), we can derive
the expression for the composition of the total 2PCF, ξtot, and 3PCF, ζtot (Eqs. 3.15
and 3.33, respectively) in the case of the FS2 catalogue. From Eq.(3.15), we obtain the
following expression for ξtot:

ξtot =f 2
p
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RR
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(5.4)
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Similarly, from Eq.(3.33), we obtain the following expression for ζtot:
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(5.5)

5.2 Two-point correlation function measurements

The composition of the FS2 catalogue allows us to investigate the impact of interlopers
on the results, through the calculation of all terms in Eqs. (5.4) and (5.5). We begin
by measuring the auto-correlations within the sub-catalogues to facilitate the estimation
of the impacts of the cross-terms through residual analysis, i.e. subtracting the auto-
correlation terms from the total signal.

We started from the multipoles of the auto-2PCF (ξp, ξo, ξs, and ξn) and of the
total contaminated catalogue, ξtot, across the four redshift ranges: 0.9 < z < 1.1, 1.1 <
z < 1.3, 1.3 < z < 1.5, and 1.5 < z < 1.8. The measurements were performed using
the direct LS estimator for the multipoles of the 2PCF (Eq. 3.7), within the comoving
separation range 20− 180h−1Mpc, using a linear binning of ∆r = 5h−1Mpc. The used
random-data ratio was DR = 30. The comparison of the monopole, and quadrupole
signals of the 2PCFs is displayed in Figures 5.4 and 5.5.

These initial results align with our expectations. The signal from SIII interlopers is
higher than the pure signal, as mistaking SIII for Hα results in an overestimation of the
tracers’ redshift. This indicates that SIII interlopers actually belong to a lower redshift
bin than pure galaxies, thereby increasing the 2PCF signal (since it resembles the one
of a more evolved universe). Conversely, the auto-signal from OIII interlopers is lower
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Figure 5.4: Comparison between the total 2PCF signals (solid red line) and the auto-
2PCF of pure galaxies (black dashed line), OIII interlopers (blue dash-dotted line), SIII
interlopers (green dotted line), and noise interlopers (purple solid line) within a comoving
separation range of 20 − 180h−1 Mpc. The upper panels show the signal in the first
redshift bin (0.9 < z < 1.1) and the lower panels show the signal in the second redshift bin
(1.1 < z < 1.3). The left panels show the monopole of the 2PCF, ξ0, while the right panels
show the quadrupole of the 2PCF, ξ2. Error bars represent Poissonian uncertainties. The
x-axis is in logarithmic scale.

than the pure signal, resembling that of a higher redshift bin. Noise interlopers show
no significant signal, which is expected because there is no fixed relation between the
wavelength of Hα and noise lines picked up by the instrument. This contrasts with SIII
and OIII interlopers, as the noise population resembles a random one and thus has no
detectable 2PCF signal.

The most notable finding is the overall attenuation of the total signal compared to the
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Figure 5.5: Comparison between the total 2PCF signals (solid red line) and the auto-
2PCF of pure galaxies (black dashed line), OIII interlopers (blue dash-dotted line), SIII
interlopers (green dotted line), and noise interlopers (purple solid line) within a comoving
separation range of 20 − 180h−1 Mpc. The upper panels show the signal in the third
redshift bin (1.3 < z < 1.5) and the lower panels show the signal in the fourth redshift bin
(1.5 < z < 1.8). The left panels show the monopole of the 2PCF, ξ0, while the right panels
show the quadrupole of the 2PCF, ξ2. Error bars represent Poissonian uncertainties. The
x-axis is in logarithmic scale.

pure signal due to contamination by interlopers. Table 5.2 shows the average damping of
the monopole signal due to interloper contamination at small scales (20− 120h−1Mpc)
and large scales (150 − 180h−1Mpc) across the four redshift ranges. The values exceed
25%, touching peaks above 75%. Moreover, we notice that the attenuation is lower in the
fourth redshift range, suggesting that the impact of the interlopers is slightly weakened
above redshift z = 1.5. Summing up, the values suggest that the 2PCF signal is strongly
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Figure 5.6: Residuals of the total 2PCF monopole signal of the FS2 catalogue and the
monopole auto-signals of its sub-catalogues. The residuals are computed using Eq.(5.6).
The ideal residuals (zero) are indicated with a red dashed line. Each panel represents a
different redshift range. Error bars represent Poissonian uncertainties.

affected by interloper contamination in all redshift ranges.
We then wanted to estimate the impact of the cross-signals on the total 2PCF. As

previously mentioned, we did that by performing a residual analysis. Figure 5.6 presents
the residuals of the total 2PCF monopole and the auto-signal monopole of the sub-
catalogues, expressed as:

ξ0,res = ξ0,tot − f 2
p

RpRp

RR
ξ0,p − f 2

o

RoRo

RR
ξ0,o − f 2

s

RsRs

RR
ξ0,s − f 2

n

RnRn

RR
ξ0,n. (5.6)

As shown in the plots, the residuals are not always consistent with zero, indicating
that cross-correlations cannot be ignored when recovering the complete 2PCF signal,
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Average ξ0,p−ξ0,tot
ξ0,p

(small scales) Average ξ0,p−ξ0,tot
ξ0,p

(large scales)

0.9 < z < 1.1 26.2% 78.3%
1.1 < z < 1.3 37.6% 37.4%
1.3 < z < 1.5 39.7% 57.3%
1.5 < z < 1.8 27.8% 25.5%

Table 5.2: Average percentual damping of the 2PCF monopole coming from the total FS2
catalogue, ξ0,tot, with respect to the one coming from the pure sub-catalogue, ξ0,p. The
values are reported for small scales (20− 120h−1Mpc) in the first column and for large
scales (150− 180h−1Mpc) in the second column. Each row refers to a different redshift
range.

particularly at small scales. If we quantify the impact of the residuals on the total 2PCF
signal for all redshift ranges in the comoving separation range 20−120h−1Mpc, we notice
that the importance of cross-correlations fades at higher redshift. As a metter of fact,
the residuals are around 25% of the total signal in the first redshift range, and they lower
to 10% and 5% in the second and third range, respectively. For 1.5 < z < 1.8 the impact
of cross-correlations is almost null: this is also visible in the bottom right panel of Fig.
5.6, where the residuals are consistent with zero. We expect then that higher-redshift
measurements will be less affected by interloper cross-correlations.

The most peculiar behavior is observed in the first redshift range (upper left panel
of Fig. 5.6), which resembles a genuine 2PCF signal. This phenomenon is attributed
to significant contamination by noise interlopers in the first redshift bin. As detailed
in Table 5.1, the fractions of OIII and SIII interlopers in the first redshift range are
low (2.9% and 1.5%, respectively), resulting in very small pre-factors in Eq.(5.6) (of the
order of 10−4), thereby making their contributions to the residuals negligible. The noise
interlopers, as discussed earlier, do not exhibit a signal, making their contribution to
Eq.(5.6) also negligible (ξ0,n ∼ 0). Consequently, the residuals in the first redshift bin
are essentially the difference between the total monopole signal and the rescaled auto-
pure monopole signal, as the only significant terms in the right-hand-side of Eq.(5.6) are
the first two. This results in the pattern observed in the upper left panel of Fig. 5.6.

In summary, to recover the total 2PCF signal, the auto-correlations of the sub-
catalogues are insufficient. It is essential to compute their cross-correlations. This task
will be addressed in the following Section, using the functions discussed in Chapter 4.

5.2.1 Cross-correlations of the two-point correlation function

After analyzing the auto-2PCF, we proceeded with the cross-correlations, quantifying
their role in recovering the total 2PCF signal from the FS2 catalogue. This is particularly
crucial since, as discussed in the last Paragraph, we found that the cross-correlation
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Figure 5.7: Comparison between the total 2PCF monopole signals (solid red line), the
auto-2PCF monopole of pure galaxies (black dashed line), OIII interlopers (blue dash-
dotted line), SIII interlopers (green dotted line), and noise interlopers (purple solid line),
and the cross-2PCF monopole signals within a comoving separation range of 20−180h−1

Mpc. Each panel represents a different redshift range. Error bars represent Poissonian
uncertainties. The x-axis is in logarithmic scale.

can contribute up to 25% of the total signal. Considering computational constraints,
cross-2PCF measurements were conducted in redshift slices of width δz = 0.5, centered
at z = 1.0, 1.2, 1.4, 1.65, within each of the four specified redshift ranges. The same
random and data catalogues used previously were employed, with a specific redshift
coordinate selection applied. For the cross-2PCF measurement, we utilized the cross-SR
estimator for the monopole, as detailed in Section 4.1, ensuring consistent binning with
the auto-correlations. The measurements were taken in the comoving separation range
20−180h−1Mpc, using a binning interval of ∆r = 5h−1Mpc. We adopted a random-data
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Figure 5.8: Complete residuals (Eq. 5.7) of the total 2PCF monopole signal of the FS2
catalogue and the monopole auto-signals of its sub-catalogues. The ideal residuals (zero)
are indicated with a red dashed line. Each panel represents a different redshift range.
Error bars represent Poissonian uncertainties.

ratio of DR = 5. The resulting auto- and cross-2PCF signals for each redshift slice are
displayed in Figure 5.7. The auto-signals exhibit analogous behavior to that described
in the last Paragraph across all redshift ranges, albeit with larger Poissonian errors due
to smaller catalogue sizes. The larger scatter in the SIII and OIII signal in the first
and fourth redshift range, respectively, is due to the shortage of such interlopers in the
corresponding ranges (see Table 5.1).

Conversely, the cross-signals do not reveal distinctive features. Their magnitude is
approximately one order of magnitude lower than that of the auto-correlations, com-
parable instead to the auto-noise signal. Notably, these signals indicate a preference
for small comoving separations, characterized by positive correlations at shorter scales.
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This aligns with expectations, as there is no compelling reason for galaxies from different
sub-catalogues to exhibit strong correlations. However, fluctuations in the cross-signals
impact the total 2PCF measurements of the FS2 catalogue, in particular those in which
the pure sample is involved (e.g. ξpn). This is because the value of the cross-correlation
pre-factors of Eq.(5.4) can be much higher than the ones of the auto-correlations. For
example, in the first redshift range f 2

o ∼ 8× 10−4 and fpfo ∼ 2.4× 10−2.
Incorporating also the cross-signals into the residual computations yields expected

outcomes. The residuals of the total 2PCF, including both auto- and cross-correlations,
can be expressed as:

ξ0,res = ξ0,tot − f 2
p

RpRp

RR
ξ0,p − f 2

o

RoRo

RR
ξ0,o − f 2

s

RsRs

RR
ξ0,s − f 2

n

RnRn

RR
ξ0,n

− 2fpfo
RpRo

RR
ξ0,po − 2fpfs

RpRs

RR
ξ0,ps − 2fpfn

RpRn

RR
ξ0,pn

− 2fofs
RoRs

RR
ξ0,os − 2fofn

RoRn

RR
ξ0,on − 2fsfn

RsRn

RR
ξ0,sn.

(5.7)

As shown in Figure 5.8, the residuals consistently approach zero across all four redshift
slices. This means that the cross-signals fully cover the difference between the total signal
and the auto-signals of the sub-catalogues, proving the validity of Eq.(3.15).

5.3 Three-point correlation function measurements

Following our analysis of the 2PCF, we proceeded to examine the 3PCF signals, be-
ginning with the auto-signals as defined in Eq.(5.5), across the four redshift ranges:
0.9 < z < 1.1, 1.1 < z < 1.3, 1.3 < z < 1.5, and 1.5 < z < 1.8. The multipoles of the
auto-3PCFs were measured up to ℓ = 11 for all the fixed side configurations with r12 and
r13 spacing in the range of 15−165h−1Mpc, using a binning interval of ∆r = 10h−1Mpc.
The used random-data ratio was DR = 30. This measurement was carried out using a
CBL function that utilizes the SHD method as proposed by Slepian and Eisenstein (2015)
[40]. Subsequently, the multipoles were combined to reconstruct the signal of the con-
nected 3PCF in the two fixed sides configuration for all side combinations within the
15 − 165h−1Mpc range, using 20 bins for the angular variable. It is important to note
that the CBL does not currently implement a function for computing the errors of the
3PCF multipoles. Therefore, the results presented here are shown without uncertainties.
This issue will be addressed in the next Chapter, where we will estimate the covariance
matrix using mock catalogues.

Figure 5.9 presents a comparison between the all-scales signal derived from the total
F2 catalogue and that from the pure sub-catalogue across the four redshift ranges. In
the plot, the triangle index refers to the number of the triangular configuration, which
is characterized by 20h−1Mpc < r12 < r13 < r23 < 120h−1Mpc, with a radial bin of
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Figure 5.9: Comparison between the total (black dashed line) and pure (red solid line)
signal of the all-scales connected 3PCF. The triangle index refers to the number of the
triangular configuration, which is characterized by 20h−1Mpc < r12 < r13 < r23 <
120h−1Mpc, with a radial bin of ∆r = 10h−1Mpc. The configurations are organized
in increasing order of their side lengths. Each panel represents a different redhsift bin:
0.9 < z < 1.1 (upper left), 1.1 < z < 1.3 (upper right), 1.3 < z < 1.5 (lower left) and
1.5 < z < 1.8 (lower right).

∆r = 10h−1Mpc. The configurations are organized in increasing order of their side
lengths. Furthermore, all triangles with η < 3 are excluded, where η is defined as:

η =
r13 − r12

∆r
. (5.8)

This selection was performed to exclude equilateral and isosceles configurations, which
require a higher number of multipoles to be accurately measured using the SHD method.
We observed that the total all-scales 3PCF signal is weaker compared to the pure one
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Figure 5.10: Comparison between the total (black dashed line) and pure (red solid line)
signal of the connected 3PCF in the fixed sides configuration (r12 = 20Mpc/h and r13 =
40Mpc/h ). Each panel represents a different redhsift bin: 0.9 < z < 1.1 (upper left),
1.1 < z < 1.3 (upper right), 1.3 < z < 1.5 (lower left) and 1.5 < z < 1.8 (lower right).

across all redshift ranges, with an average reduction of 50%, 55%, 55%, and 35%, re-
spectively. This indicates a significant damping effect on the signal by interlopers, with
a slight weakening for z > 1.5.

However, the all-scales 3PCF is not easily interpretable. In order to better visualize
the effect of the interlopers, we will analyze it for a specific triangular configuration.
Figure 5.10 presents a comparison between the connected 3PCF derived from the to-
tal FS2 catalogue and the auto-3PCF of the pure sub-catalogue for the configuration
r12 = 20h−1Mpc and r13 = 40h−1Mpc. This intermediate scale was chosen because
it is optimal for constraining bias parameters—a task addressed in Chapter 6. These
scales are large enough to avoid the inaccuracies in models for r < 10h−1Mpc due to
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Figure 5.11: Comparison between the total (black dashed line), pure (red solid line),
OIII interlopers (blue dash-dotted line), SIII interlopers (green dotted line), and noise
interlopers (purple solid line) signal of the connected 3PCF in the fixed sides configuration
(r12 = 20Mpc/h and r13 = 40Mpc/h ). Each panel represents a different redhsift bin:
0.9 < z < 1.1 (upper left), 1.1 < z < 1.3 (upper right), 1.3 < z < 1.5 (lower left) and
1.5 < z < 1.8 (lower right).

nonlinear dynamics, and sufficiently small to remain unaffected by the BAO model con-
sidered. Furthermore, we wanted to avoid equilateral configurations, for which we would
have needed a much higher number of multipoles for the measurements to be accurate.
Moresco et al. (2021) [17] also adopted a similar choice for the same reasons. The overall
behavior of the 3PCF is similar to that observed in the two-point case: the total signal is
damped due to interloper contamination across all redshift ranges. Table 5.3 shows the
average damping of the connected 3PCF signal due to interloper contamination for small
(0.00 − 0.35), intermediate (0.35 − 0.50) and large (0.55 − 1.00) values of the angular
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Average ζp−ζtot
ζp

(small θ/π) Average ζp−ζtot
ζp

(intermediate θ/π) Average ζp−ζtot
ζp

(large θ/π)

0.9 < z < 1.1 47.6% 45.2% 45.6%
1.1 < z < 1.3 51.6% 35.4% 52.3%
1.3 < z < 1.5 60.6% 50.1% 68.2%
1.5 < z < 1.8 40.1% 38.8% 31.2%

Table 5.3: Average percentual damping of the connected 3PCF coming from the total FS2
catalogue, ζtot, with respect to the one coming from the pure sub-catalogue, ζp. The values
are reported for small (0.00 − 0.35), intermediate (0.35 − 0.50) and large (0.55 − 1.00)
values of the angular variable θ in units of π, in the first, second and third column
respectively. Each row refers to a different redshift range.

variable, θ, in units of π across the four redshift ranges. The values exceed 30%, touching
peaks above 60%, although they remain more or less constant for different scales of θ/π.
Once again, we notice that the attenuation is lower in the fourth redshift range, cor-
roborating the hypothesis that the impact of the interlopers is weakened above redshift
z = 1.5. However, we can conclude that also the 3PCF signal is strongly affected by
interloper contamination in all redshift ranges.

Moreover, since the amplitude of the 3PCF signal is closely related to the bias pa-
rameters, particularly the linear bias b1, based on the results in Table 5.3 we expect an
error in the estimation of the latter when modelling the total 3PCF. This prediction will
be confirmed, as we will show in Chapter 6.

Figure 5.11 illustrates the auto-correlations of the connected 3PCF for the same
configuration, this time including the interlopers’ auto-3PCFs. However, the latter’s
behavior is influenced by the small sample sizes of some interloper categories. Three-
point statistics require large samples to achieve accuracy, which is not the case e.g.
for the catalogues of OIII interlopers in the first and fourth redshift ranges and SIII
interlopers in the first redshift range (see Table 5.1). In general, the auto-correlations of
the interlopers exhibit similar behavior to their two-point counterparts: the SIII signal
is higher than the pure signal, whereas the opposite is true for the OIII signal (for the
same reasons explained in Section 5.2). Moreover, the noise signal is consistently zero,
as expected for a noise population. Since the uncertainties have not been estimated for
these measurements, we will analyze the residuals in the next Paragraph.

5.3.1 Cross-correlations of the three-point correlation function

Following the analysis of the auto-3PCF signals, we moved to the cross-correlation mea-
surements. Due to computational limitations, cross-3PCF measurements were performed
in redshift slices with a width of ∆z = 0.05, centered at z = 1.0, 1.2, 1.4, 1.65, within each
of the four specified redshift intervals. The random and data catalogues were selected
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using the same criteria as in the cross-2PCF analysis.
For the cross-3PCFmeasurements, we employed our new cross-3PCF estimator, as de-

tailed in Section 4.3. For computational time reasons, these measurements were restricted
to the fixed-sides configuration r12 = 20h−1Mpc, r13 = 40h−1Mpc with a bin width of
∆r = 10h−1Mpc, rather than spanning all comoving scales in the range 15−165h−1Mpc.
A random-data ratio of DR = 5 was used. The resulting auto- and cross-3PCF signals for
each redshift slice are presented in Figure 5.12. The auto-signals are similar to that de-
scribed in the preceding Paragraph across all redshift ranges, but with larger Poissonian
errors due to smaller catalogue sizes.

Conversely, the cross-signals lack distinct features. Their behaviour is comparable
to the auto-noise signal. Notably, these signals exhibit a preference for small values
of the angular variable. What we found is consistent with expectations, as there is no
compelling reason for galaxies from different sub-catalogues to exhibit strong correlations.
The fourth redshift bin is characterized by large error bars for all correlations involving
the OIII catalogue, due to the very low percentage of OIII interlopers in this redshift
range (see Table 5.1).

The residuals of the total 3PCF, including both auto- and cross-correlations, can be
expressed as:
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(5.9)

As illustrated in Figure 5.13, the residuals consistently approach zero across all four
redshift slices, thereby validating Eq.(3.33).
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This represents the first measurement within the Euclid collaboration of the impact
of redshift interlopers on the measurement of the 3PCF. It constitutes a pivotal step
towards the accurate utilization of this tool in cosmology.
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Figure 5.12: Comparison between the total connected 3PCF signals (solid red line),
the auto-3PCF of pure galaxies (black dashed line), OIII interlopers (blue dash-dotted
line), SIII interlopers (green dotted line), and noise interlopers (purple solid line), and
all the other cross-3PCF signals in the fixed sides configuration (r12 = 25Mpc/h and
r13 = 45Mpc/h ). Each panel represents a different redshift range. Error bars represent
Poissonian uncertainties.
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Figure 5.13: Residuals of the connected 3PCF signal of the FS2 catalogue and all the sig-
nals coming from the combination of its sub-catalogues (auto-signals and cross-signals).
The residuals are computed using Eq.(5.7). The ideal residuals (zero) are indicated with
a red dashed line. Each panel represents a different redshift range. Error bars represent
Poissonian uncertainties.
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Chapter 6

Measurements and modelling from
the EuclidLargeMocks

Following our analysis of the effects of interloper contamination on the measurement of
the 2PCF and 3PCF, we directed our attention to the final and most compelling aspect
of our study: the impact of interloper contamination on the constraints of cosmolog-
ical parameters derived through the modelling of 2PCF and 3PCF. For this, we used
the EuclidLargeMocks, which will be detailed in the subsequent Section. We will then
present our measurements for both 2PCF and 3PCF, alongside the estimated covariance
matrices, which are essential for accurate modelling. Finally, we will discuss the con-
straints obtained on the cosmological parameters and evaluate the influence of interloper
contamination on these constraints.

6.1 EuclidLargeMocks

The EuclidLargeMocks comprise a set of 1000 mock catalogues generated using simula-
tions performed with PINOCCHIO v5.0. This code exploits the Lagrangian Perturbation
Theory to generate catalogues of cosmological dark matter halos, providing information
on their mass, position, velocity, and merger history (Munari, Monaco et al., 2016 [48]).
Each mock catalogue represents a 30-degree field on the sky plane, with the majority of
galaxies within the redshift range 0.9 < z < 1.8.

For each mock, a corresponding mask-catalogue is available, which introduces redshift
systematic errors using the method employed by de la Torre et al. (in prep.) for the FS2
catalogue, as discussed in the previous Chapter. By combining each mock with its mask,
we can generate interloper-contaminated catalogues where galaxies are flagged by type.
This enables us to process the mocks similarly to the FS2 catalogue, dividing them into
mutually exclusive sub-catalogues of homogeneous galaxy types.

Figure 6.1 presents the total galaxy redshift distribution, n(z), of the first mock and
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Figure 6.1: Redshift distribution in the range 0.9 < z < 1.8 of the total first catalogue
of the ELM (solid black line) and of its four sub-catalogues: pure, OIII, SIII and noise
(red, blue, green and purple, respectively).

its sub-catalogues (for the rest of the mocks the distributions are almost identical). The
similarity to the redshift distributions of FS2 (Figure 5.2) arises from the use of the
same algorithm for inserting systematics, with the peculiar shape of n(z) explained in
Section 5.1. As with the FS2 catalogue, we divided the mocks into four redshift ranges:
0.9 < z < 1.1, 1.1 < z < 1.3, 1.3 < z < 1.5, and 1.5 < z < 1.8. The percentage
composition of each redshift range is detailed in Table 6.1.

Random catalogues for both the total and sub-catalogues were constructed as in the
previous Chapter (Lee et al., in prep. and Risso et al., in prep.). Figure 6.2 compares
the galaxy density distributions of the first mock within the first redshift range to the
corresponding random catalogue.

6.2 Two- and three-point correlation function mea-

surements

To investigate the potential bias in cosmological parameters due to interloper contam-
ination, we first measured the 2PCF and 3PCF signals for the ELM, focusing on both
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Figure 6.2: Comparison of the Right Ascension, Declination, and redshift distributions
(n(RA), n(Dec), and n(z), respectively) of galaxies in the first ELM catalogue (black
line) and the corresponding random catalogue (red) within the first redshift range (0.1 <
z < 1.1).

the total signal and the signal derived from the pure sub-catalogue. Specifically, due to
computational constraints, we measured the first three even multipoles of the 2PCF and
the connected 3PCF for the initial 200 mocks within the redshift ranges 0.9 < z < 1.1
and 1.1 < z < 1.3.

The results of the 2PCF measurements are presented in Figure 6.3. These mea-
surements were obtained from the mocks within a comoving separation range of 0 −
180h−1Mpc, with a linear binning interval of ∆r = 5h−1Mpc. To estimate the multi-
poles of the 2PCF we used a CBL function which exploits the direct LS estimator (Eq.
3.7). A random-data ratio of DR = 25 was used. Figure 6.3 illustrates both the individ-
ual mock signals and the average signal, indicating that the total 2PCF signal is damped
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Pure galaxies OIII interlopers SIII interlopers Noise interlopers
0.9 < z < 1.1 83.1% 3.2% 1.2% 12.5%
1.1 < z < 1.3 77.6% 11.8% 2.9% 7.7%
1.3 < z < 1.5 74.9% 9.4% 7.9% 7.8%
1.5 < z < 1.8 85.0% 1.4% 7.1% 6.5%

Table 6.1: Percentage composition of the first catalogue of the ELM in each redshift range.
Rows show the redshift range, while columns distinguish between different sub-catalogues.

compared to the pure signal across all three multipoles (monopole, ξ0, quadrupole, ξ2,
and hexadecapole, ξ4), corroborating our findings from the FS2 catalogue. The displayed
errors have been derived from the diagonal of the covariance matrix. Furthermore, in
Table 6.2 we provide the average damping of the total 2PCF monopole with respect to
the signal from the pure sub-catalogues (ξ0,p − ξ0,tot)/ξ0,p. The values confirm the study
we carried out using the FS2 catalogue, indicating an attenuation of the signal around
30% at small scales for both redshift ranges. Moreover, also in this case the results
indicate a very strong damping at large scales for the first redshift range (∼ 70%), while
for 1.1 < z < 1.3 the attenuation is almost constant with respect to the scale.

Figure 6.4 provides an example of the 3PCF measurement results. These measure-
ments were conducted using the same technique as for the FS2 catalogue. The auto-3PCF
multipoles were measured up to ℓ = 11 for all fixed side configurations with r12 and r13
spacing in the range of 20 − 130h−1Mpc, with a binning interval of ∆r = 10h−1Mpc,
utilizing the CBL function which exploits the SHD method proposed by Slepian and
Eisenstein (2015) [40]. A random-data ratio of DR = 25 was used. Subsequently, the
multipoles were combined to reconstruct the connected 3PCF signal for two fixed side
configurations within the 20− 130h−1Mpc range, using 20 bins for the angular variable.
Figure 6.4 confirms the results from the FS2 catalogue, showing a damped total signal
relative to the pure signal in the connected 3PCF for the fixed sides r12 = 25h−1Mpc,
r13 = 45h−1Mpc. As with the 2PCF results, the plot displays both the individual mock
signals and the mean signal, with errors derived from the diagonal of the covariance
matrix. Table 6.3 shows the average damping of the connected 3PCF signal of the total
catalogues with respect to the one coming from the pure sub-catalogues, (ζp − ζtot)/ζp.
The values indicate a constant attenuation for low, intermediate and large values of the
angular variable, θ, that exceeds 40% and 50% for the first and second redshift range,
respectively. As the Table shows, the damping is dramatic and its effect on the cosmo-
logical parameter constraints must be investigated. This task will be addressed in the
next Section.
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Figure 6.3: Comparison between the mean total 2PCF signals (solid red line) and the
mean auto-2PCF of pure galaxies (solid black line) of the first 200 ELM, within a co-
moving separation range of 0− 180h−1 Mpc. The upper panels show the first three even
multipoles of the signal (monopole, quadrupole, and hexadecapole from left to right) for
the first redshift bin (0.9 < z < 1.1), and the lower panels show the signal for the second
redshift bin (1.1 < z < 1.3). Error bars are estimated from the diagonal of the covariance
matrix. The less visible lines represent the measurement for each mock total catalogue
(red lines) and pure sub-catalogue (black lines).

6.2.1 Covariance matrices

For the modelling of the 2PCF and 3PCF signals, the uncertainty in the measurements
is required. The latter is quantified by the covariance matrix Cij, defined as follows:

Cij ≡ E [(xi − ⟨xi⟩)(xj − ⟨xj⟩)] , (6.1)
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Figure 6.4: Comparison between the mean total 3PCF signals (solid red line) and the
mean auto-3PCF of pure galaxies (solid black line) of the first 200 ELM, for the fixed-
sides configurations, with sides r12 = 25h−1Mpc, r13 = 45h−1Mpc. The left panel shows
the connected 3PCF for the first redshift bin (0.9 < z < 1.1), and the right panel shows
the signal for the second redshift bin (1.1 < z < 1.3). Error bars are estimated from the
diagonal of the covariance matrix. The less visible lines represent the measurement for
each mock total catalogue (red lines) and pure sub-catalogue (black lines).

where xi and xj are two variables, E(x) represents the expectation value of the variable
x, and ⟨x⟩ denotes the mean value of the variable x. The covariance matrix for our
measurements was computed using a CBL function that employs the following maximum
likelihood estimator [49]:

ĈML
ij =

1

Nm − 1

Nm∑
k=1

(d
(k)
i − d̄i)(d

(k)
j − d̄j), (6.2)

where Nm is the number of mock catalogues, d
(k)
i represents the data in the i-th bin of

the k-th mock catalog, and d̄i is the mean value of the data in the i-th bin, averaged
over all mock catalogues. For better visualization, instead of the covariance matrix, we
present the correlation matrix of our data, defined as follows:

Corrij ≡
Cij√
CiiCjj

. (6.3)
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Average small scale ξ0,p−ξ0,tot
ξ0,p

Average large scale ξ0,p−ξ0,tot
ξ0,p

0.9 < z < 1.1 26.5% 71.1%
1.1 < z < 1.3 36.6% 43.4%

Table 6.2: Average percentual damping of the mean 2PCF monopole signal coming from
the first 200 ELM catalogues, ξ0,tot, with respect to the one coming from the first 200
pure sub-catalogues, ξ0,p. The values are reported for small scales (0 − 120h−1Mpc) in
the first column and for large scales (150−180h−1Mpc) in the second column. Each row
refers to a different redshift range.

Average ζp−ζtot
ζp

(small θ/π) Average ζp−ζtot
ζp

(intermediate θ/π) Average ζp−ζtot
ζp

(large θ/π)

0.9 < z < 1.1 42.1% 44.6% 42.5%
1.1 < z < 1.3 53.4% 53.9% 55.5%

Table 6.3: Average percentual damping of the connected 3PCF in fixed sides configuration
(r12 = 25h−1Mpc, r13 = 45h−1Mpc) coming from the first 200 ELM catalogues, ζtot,
with respect to the one coming from the first 200 pure sub-catalogues, ζp. The values are
reported for small (0.00−0.35), intermediate (0.35−0.50) and large (0.55−1.00) values
of the angular variable θ in units of π, in the first, second and third column respectively.
Each row refers to a different redshift range.

Figure 6.5 displays the correlation matrix of the 2PCF multipole measurements from
the total and pure samples in the first two redshift ranges. The matrix is 108 × 108 in
size, as we have a total of 108 radial bins (36 for each multipole), and it is divided into 9
sub-squares. The three diagonal sub-squares show the correlation between measurements
of the same multipole, while the other six show the cross-correlation between different
multipoles.

Figure 6.6 presents the correlation matrix corresponding to the measurement of the
connected 3PCF in the fixed sides configuration (r12 = 25h−1Mpc, r13 = 45h−1Mpc).
The matrix is 20× 20 in size, as we have a total of 20 angular bins.

6.3 Two- and three-point correlation function mod-

elling

Bayesian analysis is a common method used to constrain cosmological parameters from
measurements. This statistical approach enables probabilistic inference about unknown
quantities based on available data and prior knowledge, exploiting the Bayes theorem.
The latter states, considering two events, A and B, that:
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Figure 6.5: Correlation matrices of the 2PCF multipoles measurements from the first
200 ELM catalogues. The matrices are composed by nine sub-squares. The three diago-
nal sub-blocks correspond to the 2PCF monopole, quadrupole and hexadecapole, respec-
tively in the bottom-left, central and top-right regions. The other sub-blocks represent the
cross-correlation between the different moments. The top panels represent the correla-
tion matrices of the measurements from the pure sub-catalogues (first and second redshift
range from left to right), while the bottom panels represent the correlation matrices of
the measurement from the total ELM catalogues.

P (A|B) =
P (B|A)P (A)

P (B)
,
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Figure 6.6: Correlation matrices of the connected 3PCF measurements in the fixed sides
configuration (r12 = 25h−1Mpc, r13 = 45h−1Mpc) from the first 200 ELM catalogues.
The top panels represent the correlation matrices of the measurements from the pure
sub-catalogues (first and second redshift range from left to right), while the bottom panels
represent the correlation matrices of the measurement from the total ELM catalogues.

where P (A|B) is the conditional probability of event A given event B, and P (B|A) is
the conditional probability of event B given event A.

In the context of cosmological parameter estimation, let D denote a set of data
and M(θ) represent a model parameterized by the vector θ. The posterior distribution
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f σ8 b1 σ8 b2 σ8 σv α⊥ α∥

U(0, 2) U(0, 2) U(−2, 2) U(0, 10) U(0, 2) U(0, 2)

Table 6.4: Prior distributions for the parameters used in the ELM 2PCF analysis, where
U(a, b) indicates a uniform distribution between a and b.

P (M(θ)|D) is then defined as the conditional probability of obtaining the model M(θ)
given the data D. Applying the Bayes theorem, we have the following relation:

P (M(θ)|D) =
P (D|M(θ))P (M(θ))

P (D)
,

where P (D|M(θ)), known as the likelihood function L(D|M(θ)), quantifies the probabil-
ity of observing our data set D given the model M(θ). P (M(θ)), or π(M(θ)), is the prior
distribution representing our initial knowledge about model M(θ) before considering the
data. P (D) is the evidence, which can be expressed in the following way:

P (D) =

∫
L(D|M(θ))π(M(θ)) dθ.

Since P (D) is independent of the model parameters θ, it serves as a normalization
constant. Thus, the posterior distribution expression simplifies to:

P (M(θ)|D) ∝ L(D|M(θ))π(M(θ)),

where the evidence P (D) is omitted as it acts only as a scaling factor and does not affect
the relative probabilities of different models M(θ). In this work, we used a multi-variate
Gaussian likelihood, which can be written as:

L =
1

(2π)Nb/2|C|1/2
e−

1
2

∑
ij [di−µi(θ)]C

−1
ij [dj−µj(θ)], (6.4)

where |C| ≡ detCij, di is the data at the i-th bin, and µi(θ) is the model prediction at
the i-th bin. Our objective is to analyze the posterior distributions of the parameters,
which can be retrieved by multiplying the priors for the likelihood written in Eq.(6.4).
We carried out this procedure for both the 2PCF and 3PCF measurements (using the
models described in Chapter 3) from the total ELM catalogues and their pure sub-
catalogues, in the first two redshift ranges. In this way, we could constrain the bias on
the cosmological parametes retrieved by the study of the total samples (which suffers
from interlopers contamination) with respect to the ones retrieved by the study of the
pure samples (i.e. the parameters unaffected by systematic uncertainties).
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Figure 6.7: Multipoles (monopole in blue, quadrupole in red, hexadecapole in green) of
the total (right panels) and pure (left panels) ELM 2PCF in the first (upper panels) and
second (lower panels) redshift range. Circles, squares and triangles represent the data.
The error bars are the square root of the diagonal elements of the covariance matrix.
The solid curves show the best-fit model, while the grey shaded areas represent the 68%
confidence region of the model.

6.3.1 Two-point correlation function modelling

We started our analysis with the 2PCF modeling, fitting the mean signal from the ELM
using the eTNS model, described in Section 3.2. The posterior distribution was sampled
using a Monte Carlo Markov Chain (MCMC) with 64 walkers, with a lenght of 3000. The
model parameters included f σ8, b1 σ8, b2 σ8, σv, α⊥, and α∥, where f denotes the growth
rate of cosmic structures, σ8 represents the amplitude of matter density fluctuations, b1
is the linear bias, b2 is the nonlinear bias, σv is the velocity dispersion, and α⊥ and α∥
are parameters related to the AP effect as defined in Section 2.3.2. All parameters were
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Figure 6.8: 1D and 2D posterior distributions for the free parameters f σ8, b1 σ8, b2 σ8,
σv, α⊥ and α∥ of the eTNS model, obtained from the analysis of the total (in red) and
pure (in green) ELM 2PCF multipoles in the redshift range 0.9 < z < 1.1. The darker
and lighter shades in each box indicate the 68% and 95% confidence regions, respectively.
The dashed black lines represent the theoretical predictions for the parameters.
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Figure 6.9: 1D and 2D posterior distributions for the free parameters f σ8, b1 σ8, b2 σ8,
σv, α⊥ and α∥ of the eTNS model, obtained from the analysis of the total (in red) and
pure (in green) ELM 2PCF multipoles in the redshift range 1.1 < z < 1.3. The darker
and lighter shades in each box indicate the 68% and 95% confidence regions, respectively.
The dashed black lines represent the theoretical predictions for the parameters.
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Model f σ8 b1 σ8 b2 σ8 σv α⊥ α∥
Total sample 0.314± 0.014 0.700+0.024

−0.025 0.28+0.65
−0.64 5.6+1.1

−1.2 0.950± 0.022 1.028+0.030
−0.029

Pure sample 0.426± 0.018 0.837+0.030
−0.032 0.5± 1.2 4.75+0.69

−0.74 0.974± 0.022 1.027+0.029
−0.028

Table 6.5: Best-fit values and 68% confidence region for the free parameters f σ8, b1 σ8,
b2 σ8, σv, α⊥ and α∥ of the eTNS model, obtained from the analysis of the total (first
row) and pure (second row) ELM 2PCF multipoles in the redshift range 0.9 < z < 1.1.

Model f σ8 b1 σ8 b2 σ8 σv α⊥ α∥
Total sample 0.286+0.013

−0.012 0.704+0.021
−0.022 0.32+0.70

−0.67 5.3+1.1
−1.4 0.957± 0.020 1.031± 0.027

Pure sample 0.401+0.016
−0.015 0.888+0.027

−0.028 0.43+1.03
−0.96 4.20+0.65

−0.71 0.973± 0.019 1.027± 0.025

Table 6.6: Best-fit values and 68% confidence region for the free parameters f σ8, b1 σ8,
b2 σ8, σv, α⊥ and α∥ of the eTNS model, obtained from the analysis of the total (first
row) and pure (second row) ELM 2PCF multipoles in the redshift range 1.1 < z < 1.3.

allowed to vary freely with uniform prior distributions, as listed in Table 6.4.
Figure 6.7 displays the data alongside the best-fit model for both the total and pure

samples across two redshift ranges. The fitting range was set between 25− 130h−1Mpc,
within which the model accurately reproduced the monopole of the 2PCF, ξ0. Some
discrepancies can be noted in the total monopole within the first redshift range, although
these occurred outside the fitting range. Additionally, the 68% confidence region error
at small scales was notably broad, attributable to current models’ challenges in handling
nonlinear scales (below ∼ 20h−1Mpc) due to baryonic effects.

Figures 6.8 and 6.9 present the 1D and 2D posterior distributions for the total and
pure fits in the first and second redshift ranges, respectively. The best-fit values and 68%
confidence regions are summarized in Tables 6.5 and 6.6. The posterior distributions of
the total samples exhibited a significant offset compared to the pure samples. Specifi-
cally, f σ8 was attenuated by 26.3% and 28.7% in the first and second redshift ranges,
respectively, while b1 σ8 was reduced by 16.4% and 20.7%. Conversely, σv posteriors
showed an increase in both width and best-fit value by 17.9% and 26.2% in the first and
second redshift ranges, respectively. Interestingly, the b2 σ8 parameter has compatible
best-fit values between the total and pure samples, with the posterior distribution indi-
cating improvement for the total sample. Regarding the AP parameters, the α∥ posterior
distributions appeared unaffected by interloper contamination, whereas α⊥ experienced
a damping of 2.5% and 1.6% in the first and second redshift ranges, respectively.

These findings indicate that interloper contamination significantly impacts the con-
straints on cosmological parameters, particularly f σ8 and b1 σ8. The notable behavior of
b2 σ8 suggests an intriguing feature warranting further investigations. Nonetheless, non-
linear bias is more effectively constrained by 3PCF modelling, which will be discussed in
the subsequent Section.
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b1 b2 bt

U(0, 5) U(−5, 10) U(−2, 5)

Table 6.7: Prior distributions for the parameters used in the ELM 3PCF analysis, where
U(a, b) indicates a uniform distribution between a and b.

6.3.2 Three-point correlation function modelling

We then performed the 3PCF modelling, fitting the mean signal in the fixed sides con-
figuration, with r12 = 25h−1Mpc and r13 = 45h−1Mpc, from the ELM using the B23
model, described in Section 3.4. The posterior distribution was sampled using a MCMC
with 64 walkers, with a length of 8000. The model parameters included b1, b2, and bt,
where b1 denotes the linear bias, b2 represents the nonlinear bias, and bt is the tidal bias.
As previously discussed, the modelling of the BS does not depend on the amplitude of
the matter density fluctuations, σ8. All parameters were allowed to vary freely with
uniform prior distributions, as shown in Table 6.7.

Figure 6.10 displays the data alongside the best-fit model for both the total and pure
samples across the two redshift ranges. The fitting range included all values of the angular
variable, θ, in the interval [0, π]. The model accurately reproduced the connected 3PCF,
with discrepancies observed only at low values of θ. These discrepancies correspond to
small scales for the third side of the triangular configuration, which are influenced by
nonlinear behavior.

Figures 6.11 and 6.12 present the 1D and 2D posterior distributions for the total and
pure fits in the first and second redshift ranges, respectively. The best-fit values and
68% confidence regions are summarized in Tables 6.8 and 6.9. In this case, the linear
bias best-fit value, b1, exhibited attenuation due to interloper contamination in both
redshift ranges, specifically by 20.3% and 24.3%, respectively. However, the posterior
distributions for the nonlinear bias, b2, and tidal bias, bt, did not appear to be strongly
affected by systematic effects.

These results align with those obtained from the 2PCF modelling, particularly re-
garding the best-fit values of b1 and b2. However, we did not observe the same significant
difference in the 68% confidence regions of the nonlinear bias between the total and pure
posteriors. This suggests that the observed feature may be specific to the PS modeling
or may not be visible at these particular scales for the BS.

6.3.3 Towards probes combination

The next step to achieve tighter constraints on the biases of the cosmological parame-
ters due to interloper contamination is to carry out a joint analysis of the 2PCF and
3PCF. By integrating information from both the 2PCF and 3PCF measurements, we
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Model b1 b2 bt
Total sample 1.37+0.18

−0.20 2.1+1.9
−1.3 1.03+0.96

−0.65

Pure sample 1.72+0.18
−0.20 2.0+1.7

−1.2 0.98+0.87
−0.62

Table 6.8: Best-fit values and 68% confidence region for the free parameters b1, b2 and
bt of the B23 model, obtained from the analysis of the total (first row) and pure (second
row) ELM connected 3PCF in the redshift range 0.9 < z < 1.1.

Model b1 b2 bt
Total sample 1.34+0.19

−0.21 2.3+2.1
−1.4 0.86+0.98

−0.64

Pure sample 1.77+0.21
−0.23 2.6+2.1

−1.5 0.96+0.98
−0.70

Table 6.9: Best-fit values and 68% confidence region for the free parameters b1, b2 and
bt of the B23 model, obtained from the analysis of the total (first row) and pure (second
row) ELM connected 3PCF in the redshift range 1.1 < z < 1.3.

can estimate the model parameters more accurately. For example, this approach ex-
ploits the PS model’s ability to constrain the linear bias and the BS model’s strength
in tightening constraints on the nonlinear bias. Figures 6.13, 6.14, 6.15, and 6.16 illus-
trate how constraints on b1 and b2 should improve. These figures compare the b1 and b2
posterior distributions obtained from the 2PCF and 3PCF modeling. For the 2PCF, we
normalized both the linear and nonlinear bias posterior distributions by σ8 to facilitate
comparison with those from the 3PCF statistics. The values for the amplitude of the
matter density fluctuations, σ8, computed using a CBL function with CAMB (Lewis et
al., 2000 [50]), are σ8 = 0.502 for the first redshift range and σ8 = 0.461 for the second
redshift range.

The four plots demonstrate that the posterior distributions are compatible, and their
intersection should be approximately the constraints on b1 and b2 from joint modelling.
The first two plots, which show the results of the pure samples modelling, confirm that
the 2PCF places tighter constraints on b1, whereas the 3PCF more effectively constrains
b2. The last two plots, representing the total sample modelling, confirm the tighter
constraints on b1 by 2PCF, but indicate comparable constraints on b2 by both 2PCF
and 3PCF. This comparable constraining power for b2 in the total samples is due to the
shrinking of the confidence region of the nonlinear bias parameter for samples contam-
inated by redshift interlopers, as discussed in Paragraph 6.3.1. This intriguing feature
warrants further investigations.

In summary, the results reveal a substantial offset between the overlap of the 2D
confidence regions of the total and pure results, primarily due to the bias in the b1
parameter.
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Figure 6.10: Total (right panels) and pure (left panels) ELM 3PCF signal (in black)
in the first (upper panels) and second (lower panels) redshift range. Circles represent
the data. The error bars are the square root of the diagonal elements of the covariance
matrix. The solid curves show the best-fit model, while the grey shaded areas represent
the 68% confidence region of the model.
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Figure 6.11: 1D and 2D posterior distributions for the free parameters b1, b2 and bt of
the B23 model, obtained from the analysis of the total (in orange) and pure (in blue)
ELM connected 3PCF in the redshift range 0.9 < z < 1.1. The darker and lighter shades
in each box indicate the 68% and 95% confidence regions, respectively. The dashed black
lines represent the theoretical predictions for the parameters.
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Figure 6.12: 1D and 2D posterior distributions for the free parameters b1, b2 and bt of
the B23 model, obtained from the analysis of the total (in orange) and pure (in blue)
ELM connected 3PCF in the redshift range 1.1 < z < 1.3. The darker and lighter shades
in each box indicate the 68% and 95% confidence regions, respectively. The dashed black
lines represent the theoretical predictions for the parameters.
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Figure 6.13: 1D and 2D posterior distributions for the parameters b1 and b2 obtained
from the analyses of the pure 2PCF (green) and 3PCF (blue) in the redshift range 0.9 <
z < 1.1. The darker/lighter shades in each box indicate the 68% and 95% confidence
regions, respectively. The dashed black lines represent the theoretical predictions for the
parameters.
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Figure 6.14: 1D and 2D posterior distributions for the parameters b1 and b2 obtained
from the analyses of the pure 2PCF (green) and 3PCF (blue) in the redshift range 1.1 <
z < 1.3. The darker/lighter shades in each box indicate the 68% and 95% confidence
regions, respectively. The dashed black lines represent the theoretical predictions for the
parameters.
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Figure 6.15: 1D and 2D posterior distributions for the parameters b1 and b2 obtained
from the analyses of the total 2PCF (red) and 3PCF (black) in the redshift range 0.9 <
z < 1.1. The darker/lighter shades in each box indicate the 68% and 95% confidence
regions, respectively. The dashed black lines represent the theoretical predictions for the
parameters.

113



Figure 6.16: 1D and 2D posterior distributions for the parameters b1 and b2 obtained
from the analyses of the total 2PCF (red) and 3PCF (black) in the redshift range 1.1 <
z < 1.3. The darker/lighter shades in each box indicate the 68% and 95% confidence
regions, respectively. The dashed black lines represent the theoretical predictions for the
parameters.
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Chapter 7

Conclusions

During the last decades, exponential progress has been registered in the study of LSS,
which brought to the establishment of the ΛCDM model. Despite this, significant ques-
tions still remain open, particularly regarding the inflationary scenario, the nature of
cold dark matter, and the cause of the Universe’s accelerated expansion. Clustering and
the study of LSS are pivotal probes for constraining cosmology, and they will play a
central role in upcoming missions such as ESA’s Euclid.

The Euclid wide survey will cover over 15000 deg2 of the sky, measuring galaxy po-
sitions and estimating their spectroscopic redshifts, primarily using the Hα line. This
mission aims to place unprecedented constraints on the dark energy equation of state
parameter, wΛ, test the validity of GR on cosmological scales (constraining the growth
index parameter γ as discussed in Chapter 1), and constrain the mass of neutrinos and
non-Gaussian initial conditions of the matter density field [7]. However, the low SNR
of redshift measurements, stemmed as a compromise to ensure a deep enaugh survey,
introduces systematic errors which will affect redshift measurements, such as redshift
interlopers. These systematic uncertainties will subsequently impact the results derived
from statistical analysis performed to constrain cosmological parameters, through e.g.
n-point correlation functions and polyspectra.

This study aimed to quantify the impact of redshift interlopers on the measurement
and modeling of the 2PCF and the 3PCF and to initiate the development of mitigation
strategies. Such studies are essential to fully exploit the capabilities of Euclid. This
Chapter summarizes the main findings of our work, and discusses future perspectives.

7.1 Main results

The most important results of this study are the following:

1. Firstly, the derivation of a new estimator for the total 3PCF signal of a catalogue,
which can separate the contributions of the self- and cross-correlations of its n
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mutually exclusive sub-catalogues. The expressions for these correlations are given
as follows (as discussed in Section 3.3.1):

ζ̂tot =
∑
i

f 3
i

RiRiRi

RtotRtotRtot

ζ̂iii + 3

[ ∑
i ̸=j,i<j

(
f 2
i fj

RiRiRj

RtotRtotRtot

ζ̂iij + fif
2
j

RiRjRj

RtotRtotRtot

ζ̂ijj

)]

+ 6
∑

i ̸=j ̸=k,i<j<k

fifjfk
RiRjRk

RtotRtotRtot

ζ̂ijk,

(7.1)

ζ̂iij =
DiDiDj −DiDiRj − 2DiRiDj + 2DiRiRj +RiRiDj −RiRiRj

RiRiRj

, (7.2)

ζ̂ijj =
DiDjDj +DiRjRj − 2DiDjRj + 2RiDjRj −RiDjDj −RiRjRj

RiRjRj

, (7.3)

ζ̂ijk =
DiDjDk−DiRjDk−DiDjRk−RiDjDk+RiRjDk+RiDjRk+DiRjRk−RiRjRk

RiRjRk

(7.4)

where ζ̂tot is the total 3PCF estimator, ζ̂iii, ζ̂iij and ζ̂ijk are the self- bi-cross- and
tri-cross- estimators for the 3PCF, respectively (described in Paragraph 3.3.1).
Moreover, fi is the ratio of the number of tracers in the i-th sub-catalogue to the
total number of tracers (Eq. 3.16) and DDD, DDR, DRR, and RRR are actually
DDD(r12, r13, θ), DDR(r12, r13, θ), DRR(r12, r13, θ), and RRR(r12, r13, θ), which
represent the number of normalized counts of data-data-data, data-data-random,
data-random-random, and random-random-random triplets, respectively, in the
triangular configuration (r12, r13, θ). The pedex i indicates from which catalogue
the tracer comes from. A more detailed description can be found in Paragraph
3.3.1.

2. Subsequently, we implemented a total of four new classes and nineteen new func-
tions in the CBL to measure:

• The monopole of the cross-correlations of the 2PCF with the LS estimator
using two random catalogues and its Poissonian error (Section 4.1).

• The first three even multipoles of the cross-correlations of the 2PCF with the
LS integrated estimator using two random catalogues and their Poissonian
error (Section 4.2).
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• The self- and cross-correlations of the connected 3PCF using our newly pro-
posed estimators and their Poissonian error (Section 4.3).

These functions were thoroughly tested, with details provided in Chapter 4.

3. Upon validating these statistical tools, we employed them to assess the impact
of redshift interlopers on the 2PCF and 3PCF measurements from the FS2 cat-
alogue. The results, summarized in Tables 5.2 and 5.3, indicate that the pure
2PCF monopole signal is attenuated by 25-40% at small and intermediate scales
(20 − 120h−1Mpc), with higher attenuation at larger scales (150 − 180h−1Mpc),
reaching a peak of 78% for the redshift range 0.9 < z < 1.1. At higher redshifts
(1.5 < z < 1.8), the impact of interlopers is lower, with 27.8% and 25.5% damping
at small and large scales, respectively. For the first time, we extended the study to
three-point statistics. As reported in Table 5.3, the damping of the 3PCF signal
is relatively constant for different values of the angular variable θ, assuming values
mostly in the range of 40-60%. Additionally, we notice that the impact is lower at
higher redshifts.

4. Furthermore, a residual analysis validated the expression for the total 2PCF and the
newly derived expression for the total 3PCF signal in terms of the self- and cross-
correlations of n mutually exclusive sub-catalogues (Figures 5.8 and 5.13). The
importance of cross-correlations in retrieving the total 2PCF signal was highlighted,
showing non-negligible contributions except at higher redshifts (z > 1.5). Overall,
we demonstrated that at high redshifts, the impact of interlopers diminishes, both
in damping of the signal and in the significance of cross-correlations.

5. Finally, for the first time we extended the study to the cosmological analysis. We
showed that the interloper contamination significantly biases the constraints on the
main cosmological parameters. From the 2PCF modeling, we found that the growth
factor f σ8, estimated from the contaminated catalogue signals, is attenuated by
25.8% and 28.7% in the 0.9 < z < 1.1 and 1.1 < z < 1.3 ranges, respectively,
compared to the pure galaxy signal, which matches the theoretical predictions.
Additionally, the linear bias parameter b1 σ8 suffers biases of 16.3% and 20.7%
due to interloper contamination. These findings were corroborated by the 3PCF
modeling, which showed an attenuation of 20.1% and 24.6% for the linear bias
parameter.

In summary, this study has demonstrated that interloper contamination significantly
affects both the measurement and modeling of the 2PCF and 3PCF, especially at lower
redshifts, with impacts reaching up to 70% of the measured signal and 30% of the
estimated cosmological parameters. Therefore, it is crucial to continue the research
in this area to develop effective mitigation strategies.
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7.2 Future perspectives

The natural continuation of this study consists of extending the analysis of the impact of
redshift interlopers to the modelling of the 3PCF at all scales (thus using simultaneously
more r12 and r13 combinations to set constraints on the cosmological parameters) and the
joint modelling of 2PCF and 3PCF, as discussed in Paragraph 6.3.3. These approaches
will allow us to place tighter constraints on parameter biases and represent the next step
of our work.

Furthermore, some intriguing features highlighted by our analysis require further
investigations. For example, the peculiar behavior of the b2 σ8 parameter in the modeling
of the 2PCF, which appears to improve the posterior distribution for the contaminated
sample, needs to be addressed in future studies.

Ultimately, the goal of this research is to incorporate the modeling of interlopers into
the likelihood to fully recover the true signal from the total contaminated 2PCF and
3PCF. This is crucial because we have demonstrated that redshift interlopers significantly
impact the posterior distributions of cosmological parameters in both 2PCF and 3PCF
modelling. In this context, our work is fundamental as we developed new tools to study
the 3PCF signal and constrained the importance of cross-correlations in recovering the
total signal.
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[20] Felipe Maŕın. “THE LARGE-SCALE THREE-POINT CORRELATION FUNC-
TION OF SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXIES”. In:
The Astrophysical Journal 737.2 (Aug. 2011), p. 97. doi: 10.1088/0004-637X/
737/2/97. url: https://dx.doi.org/10.1088/0004-637X/737/2/97.

[21] Yu Wang et al. “The three-point correlation function of galaxies: comparing halo
occupation models with observations”. In: Monthly Notices of the Royal Astronom-
ical Society 353.1 (Sept. 2004), pp. 287–300. issn: 0035-8711. doi: 10.1111/j.
1365-2966.2004.08141.x. eprint: https://academic.oup.com/mnras/article-
pdf/353/1/287/18658464/353-1-287.pdf. url: https://doi.org/10.1111/j.
1365-2966.2004.08141.x.
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