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Abstract

The aim of the thesis is to build a baryogenesis model from a First Order Phase
Transitions (FOPTs) below a GeV, producing gravitational waves that could ex-
plain those recently observed by Pulsar Timing Arrays. Baryogenesis models aim
to solve one of the open problems of the Standard Model, namely the asymmetry
between matter and antimatter observed in the Universe. In the last decades,
many new physics models have been proposed to address this question, motivated
by theoretical considerations and experimental opportunities. In particular, in
this work, we consider a baryogenesis mechanism where a fermionic dark matter
candidate and a neutron mix via an effective operator and the baryon asymmetry
is produced at cosmological temperatures of O(10)MeV via resonant oscillations
between neutron and dark matter. This idea can be implemented in a model with
a dark U(1)′ gauge symmetry where the mass of the associated "dark" photon is
generated via a "dark" Higgs mechanism. The main novelty of this work is that
we assume that the potential of the dark Higgs scalar is scale invariant and that its
vacuum expectation value (VEV) is generated by radiative corrections at one-loop,
as in the Coleman-Weinberg model. The VEV enters in the mass mixing term and,
ultimately, in the baryon asymmetry. This effective potential at one loop induces
a supercool FOPT and lead to the generation of Gravitational Waves (GWs). We
find that the parameters of our model yielding to successful baryogenesis could
also explain the recent GWs observation at Pulsar Timing Arrays.
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Chapter 1

Introduction

The Standard Model (SM) of Particle Physics is the current theoretical framework
that describes nature at the smallest scales. Despite its history of successes, which
culminated in the discovery of the Higgs boson in 2012 [1, 2], we know that it is
not a complete theory. Indeed, on top of theoretical issues, such as the hierarchy
problem or the strong CP problem, as of today, several independent experiments
and observations imply that physics beyond the SM (BSM) is needed to explain:

• the neutrino masses

• the baryon asymmetry of the Universe

• the existence of Dark Matter

In this thesis we are mainly concerned with the second open problem, that goes
under the name of matter-antimatter asymmetry problem. The theories that aim
to solve this problem are called theories of baryogenesis.

Initially, the value of the baryon asymmetry was considered as one on the fun-
damental parameters of the Big Bang model, however, this is incompatible with
the inflationary paradigm, which is the only known solution to the horizon and
flatness problems of our cosmological model, see e.g. [3]. However, and moreover,
in 1967, Sakharov pointed out [4] that it was possible to generate a baryon asym-
metry dynamically during the evolution of the Universe, which is more appealing
than fixing an initial parameter, and most importantly is compatible with infla-
tion. Since then, there has been a great effort in formulating possible mechanisms
to generate the baryon asymmetry and, even now, particle theorists come up with
many new models (see e.g. [5, 6] for recent reviews), motivated by either new
theoretical ideas or possible experimental opportunities. We will discuss theories
of baryogenesis in detail in Chapter 2.
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Probing these theories remains a non trivial point since many of the main-
stream baryogenesis invoke new physics above the TeV scale and hence are very
difficult to test. Nevertheless, there are many new paradigms that predict new
physics at low scales. In the next decade, their associated experimental signatures
could show up , for example, in n − n̄ oscillations, flavour observables, searches
for the permanent electric dipole moment, neutrinoless double beta decay, gravita-
tional waves interferometers, underground experiments, as well as next generation
colliders [6].

In particular, Gravitational Waves (GW) offer us a new way to look at the
Universe and, in the recent years, especially after the the first direct detecton of
the Gravitational Wave Signal by the LIGO interferometer in 2015 [7], we had
an impressive development in this field of research, both on the experimental and
the theoretical side. GWs can be produced by many astrophysical objects, but, in
particular, a Stochastic Gravitational Wave Background (SGWB) could be sourced
by Cosmological First Order Phase Transitions (FOPTs). In the SM there are no
FOPTs (see later Section 3.1), but they are predicted in many BSM theories, hence
making the GWs observations a complementary probe for fundamental physics.

The idea of connecting baryogenesis models with FOPTs, and hence, a possible
detectable GW signal has been already extensively studied in literature. Firstly, in
the context of Electroweak Baryogenesis (see Section 2.5.1 for a brief description),
which, in order to work, requires a first order phase transition at the electroweak
scale (T ∼ 100 GeV). In particular realisations of EWBG, the PT can lead to the
generation of a SGWB detectable by the LISA interferometer (For recent devel-
opments, we refer to Ref. [8]). Other non-traditonal baryogenesis mechanics have
been proposed in Refs. [9, 10, 11, 12] where the baryon asymmetry can obtained
via out-of-equilibrium decays of heavy particles that are produced in a FOPT.
Some realizations of these mechanisms are expected to produce a SGWB in future
interferometers, such as LISA, DECIGO and Einstein Telescope. Nevertheless, as
of today, it has never been proposed a testable baryogenesis mechanism that is
testable in one class of running experiments looking for a SGWB, which are par-
ticularly interesting because they recently reported the observation of a SGWB:
the Pulsar Timing Arrays (PTAs) observatories.

What are PTAs? As the name suggests, the main astrophysical object of
interest is a pulsar. A pulsar is a rapidly rotating magnetized neutron star which
emits electromagnetic radiation along the rotating axis, like a lighthouse. The
rotation frequency of the axis is linked to the rotation of the pulsar, which is very
stable because of the conservation of angular momentum. Therefore, the light
pulses arrive in regular intervals and they can be used as clocks (for more details
on timing pulsars and more general aspects on pulsars, see e.g. Ref. [13]). It was
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discovered that millisecond pulsars are very stable in their rotation, with a timing
precision close to atomic clocks [14]. The series of pulses emitted by pulsars are
regularly observed by radio telescopes. We define a pulsar timing residual as the
difference between the expected time of arrival and the observed time of arrival of
light from pulsar. The time of arrival encodes information about the propagation
of radio waves, including interstellar medium effects and spacetime deformation
due to GWs. The effect of GWs is very weak, but one can identify a pattern in the
pulsar residual data from all the pulsars [15]. If a SGWB is indeed present, the
relation between the correlation of two pulsars and their angular separation has a
particular shape, which is known in literature as the Hellings-Downs curve.

In the recent years, PTAs have gained a lot of attention since the collaborations
NANOGrav [16], PPTA [17], EPTA [18] and IPTA [19] have gained evidence for
the existence of a SGWB. A possible astrophysical explanation of the signal is the
production of GWs from the merging of Supermassive Black Hole Binaries (see,
for example, Ref. [20]), but many different explanations that invoke the existence
of New Physics beyond the SM have been proposed, such as cosmological FOPTs
[21], cosmic strings [22], domain walls [23], axion dynamics [24, 25] or large scalar
fluctations (see e.g. Ref. [26]). In particular, for the PTAs frequency range, a
FOPTs has to occur at a scale below the GeV, because of causality constraints
[27].
As we have previously stated, as of today, there is no explanation of the PTAs
signal that is connected with the generation of the baryon asymmetry. Therefore,
the goal of this thesis is to find a baryogenesis model from a FOPTs below a GeV
that could explain the observed PTAs signal.

This thesis is organized as follows. In Chapter 2 we will discuss the matter-
antimatter problem in more detail, describing its experimental evidence and why
the current Standard Cosmological Model and the SM fail to give an explanation
for it. Hence, we will present old and new ideas to solve this problem. In Chapter
3 we will introduce First Order Phase Transitions, giving a brief overview on the
theoretical tools to describe their dynamics. In particular, we will introduce the
parameters that enter in the prediction of the GW spectrum. We will then compute
one of these parameters, namely the nucleation temperature, in two different BSM
scenarios. We will also introduce supercooled phase transitions. In Chapter 4
we will discuss our proposal of baryogenesis from a weakly-coupled supercooled
phase transition below the GeV scale, where the baryon asymmetry is generated
via the resonant oscillations between dark matter and neutrons. In Chapter 5 we
conclude.
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Chapter 2

Baryogenesis: motivations and
models

2.1 Evidence for the Baryon Asymmetry of the
Universe

The existence of antimatter was first predicted by Paul Dirac as a consequence of
the combination between the theory of special relativity and quantum mechanics
[28] and then discovered by Carl Anderson [29]. After its discovery, antimatter
was thought to be an exact mirror of matter [30]; all phenomena that had been
observed in Nature were invariant under the conjugation of parity (P) and charge
(C) as well as time reversal (T) and thus, in principle, there is nothing that prevents
antimatter to form the same "complex" structures that we observe in the Universe,
such as stars, galaxies, etc., and yet there is no sight of them around us. In this
Section, we will explain how we came to the conclusion that we live in a matter
dominated Universe.

To begin with, our Earth is definitely not made of antimatter, as well as many
other planets of our Solar System that we were able to reach with spacecrafts.
The Sun is also made of matter as proven by solar winds. Solar winds provide
a strong argument for the matter-antimatter asymmetry in our Solar System. In
fact, if the planets and satellites were made of antimatter, this outflow of particles
from the Sun could reach their surface (the possible deflection from magnetic fields
around the planets doesn’t ruin this argument since there could be places, such
as the magnetic poles, where the solar wind particles can leak in [31]) and the
annihilation of the solar winds on their surfaces would make them the strongest
γ-ray sources [32].

If we look at other parts of the galaxy, a direct probe comes from the measure-
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ments of antiprotons and protons in cosmic rays, which have been studied by the
PAMELA and FERMI space observatories [30]. It was discovered that the fraction
of protons and antiprotons is consistent with a Universe that is entirely made of
matter and this fraction can be simply explained by pair production in astrophysi-
cal processes [30]. As of today, there is no discovery of heavier antinucleids, which
would indicate the existence of antimatter within our galaxy, as confirmed by the
lack of finding by the Alpha Magnetic Spectrometer (AMS) [33].

Indirect probes of the matter domination in other galaxies come from the ob-
servation of γ rays from annihilation processes, since, through pp̄ annihilations
into pions and the subsequent decay of the π0 into γ rays, we should be able to see
the interface between the matter dominated region and the antimatter dominated
region in the diffuse γ-ray background [30, 34, 35]. If we look at even larger scales,
the X-rays observations from colliding clusters allow us to infer an upper bound on
the fraction of antimatter in galaxy clusters. From the observations of the colliding
clusters that constitute the Bullet Cluster, it was found that, if there are regions
of antimatter in the Universe, they must be separated from regions of matter by
distances of the order of tens of Mpc, i.e. the size of the galaxy cluster itself.

We have a last possibility to discuss. Is the Universe a patchwork of regions that
are strongly dominated by either matter or antimatter? The answer is no because,
if this were the case, the size of these regions would be at least comparable with the
size of the Universe, as probed by the measured cosmic diffuse γ-ray background
[34, 35].

2.2 Measuring the Baryon Asymmetry
We have collected enough evidence that tells us that we live in a Universe that is
matter dominated and therefore we can now concern ourselves with the measure-
ment of this asymmetry.
The baryon asymmetry can be parameterized in different ways. Here we will define
the baryon asymmetry ηB as the difference between the number density of baryons
nb and the number density of anti-baryons nb̄ divided by the number density of
photons nγ, since the end products of annihilation processes are mainly photons.
Hence we obtain:

ηB =
nB − nB̄

nγ

≈ nB

nγ

(2.1)

where the last approximation is consequence of the discussion of the previous sec-
tion, i.e. we have a negligible amount of antimatter in the Universe. Moreover, we
point out that the baryons are mainly protons and 4He after the CMB.
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This way to express the baryon asymmetry is particular convenient since the
baryon number density is not constant during the evolution of the Universe, but
it scales like a−3, where a is the cosmological scale factor.
This parameter can be measured in two independent ways [30].

• Big Bang Nucleosynthesis The Big Bang Nucleosynthesis (BBN) happens
when protons and neutrons combine together, leading to the production of
deuterium (D), helium (3He,4He) and lithium (7Li). BBN starts around 1
MeV, when the neutrinos go out of the equilibrium with the thermal plasma.
At this scale, well understood SM physics come into play, therefore making
BBN a reliable probe of the Early Universe physics. In this case, the only
unknown parameters that enters in BBN is ηB, which the predictions of the
abundances of the light elements produced during BBN will depend on. As-
suming that we are within the standard scenario where the effective number
of neutrino species is Nν = 3 and by fitting the data for the primordial
abundances, the estimate for the baryon-to-photon ratio is [36]:

ηB = (5.931± 0.051)× 10−10 (2.2)

The uncertainties in the result derive from the measurements of the primor-
dial elements, but it is important to notice that ηB is mainly sensitive to the
abundance of D, thus avoiding complications from the the known lithium
problem [37].

• Cosmic Microwave Background The baryon asymmetry has been deter-
mined from the angular power spectrum of temperature fluctuations in the
Cosmic Microwave Background (CMB). The variation in the temperature
were generated by acoustic oscillations of the baryon-photon plasma in the
gravitational potential due to the small inhomogeneities in the Dark Matter
distribution [30]. The dependence of ηB enters in the equation of state of
the plasma and decreasing ηB would lead to larger ratio between the peaks
of the spectrum. Using the results from PLANCK, the estimate for the
baryon-to-photon ratio reads [38]:

ηB = (6.12± 0.04)× 10−10 (2.3)

2.3 The Baryon Asymmetry and Cosmology
In this section we will investigate possible origins for the observed baryon asym-
metry.
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2.3.1 Baryon Asymmetry and Inflation

A first, simple approach to the matter-antimatter problem would be arguing that
the baryon asymmetry is an initial condition of our Universe, however this idea is
in conflict with the now widely accepted inflationary paradigm, which provide an
explanation to the observed flatness, isotropy and homogeneity of the Universe (see
[39] for a recent review on inflaton). In this scenario, during the evolution of the
Early Universe, the energy density is dominated by the vacuum energy of a scalar
field, called the inflation, and the comoving scales grow quasi-exponentially. At
the end of inflation, the Universe is in a cold, low entropy state with a few degrees
of freedom and the the inflaton energy density is then converted into radiation in a
process called reheating. Therefore, at the end of inflation, the Universe does not
contain any matter and it is perfectly baryonic symmetric. If indeed there was an
initial baryon asymmetry, we would have to squeeze the baryons in a small patch,
their energy density would be larger than the one of the inflaton and it would lead
to an estimate of the Hubble parameter that is very different from the one that
we observe in experiments [3, 40].

2.3.2 Baryon Asymmetry and BBN

We have come to the conclusion that the baryon asymmetry must be generated
after inflation. Therefore, let us now start with η = 0. Can we explain the observed
baryon asymmetry within the Standard Cosmological Model? The equilibrium
abundance of baryons b and antibaryons b̄ at T ≲ 1 GeV, i.e. in the non-relativistic
regime, is:

nb

nγ

≃ nb̄

nγ

≃
(
mp

T

)3/2

e−
mp
T (2.4)

with mp the mass of the proton. As the temperature decreases, if the annihilation
rate Γann is larger than the expansion rate of the Universe H, the number of nucle-
ons and anti-nucleons decreases. When T ≃ 20 MeV, Γann ≃ H and annihilations
freezes out. Therefore, we obtain from Eq.(2.4):

nb

nγ

≃ nb̄

nγ

≃ 10−18 (2.5)

However, this number is much smaller than the one that is required by the Big Bang
Nucleosynthesis. A possible solution may be introducing new interactions that
separate matter from antimatter when η ∼ 10−10 at temperatures smaller than 38
MeV. However, at this time scale, we can’t explain the asymmetry over the galaxy
scales, because of causality. This scenario is not valid in cosmological models with
an inflationary period, but yet again, if separation occurs after inflation, it is not
clear how causality would lead to the generation of such an asymmetry. Another
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possible solution could be a statistical fluctuation in the baryon and antibaryon
distributions, but it would lead to a value which is again much smaller than the
observed baryon asymmetry [3].

In conclusion, in the standard cosmological model there is no explanation for
such a small value of the baryon asymmetry consistent with nucleosynthesis. A
primordial asymmetry could be put by hand, but it is not a satisfactory solu-
tion since we want to write down a fundamental theory that predicts its value.
Moreover, if we accept the inflationary paradigm, the baryon asymmetry must be
generated some time after the era of inflation and any upper limit on the reheating
temperature constrains the possible mechanisms for baryogenesis.

2.4 The Baryon Asymmetry and the Standard Model

2.4.1 Sakharov conditions

As already anticipated in the Introduction, in 1967, after the discovery of CP
violation in K0 [41], A.D. Sakharov proposed in his seminal paper on baryogenesis
[4] three necessary conditions, known as Sakharov conditions, for the generation of
matter-antimatter asymmetry from a particle physics model:

1. Baryon-number violation Since the Universe is initially baryon symmetric
(B = 0), then there need to be baryon number violating interactions that
lead to a Universe with B ̸= 0.

2. C and CP violation If C and CP were exact symmetries of fundamental
interactions, the reaction rate of production of baryons would be balanced by
the reactions that produce anti-baryons. Hence, a baryon asymmetry can’t
be generated.

3. Departure from thermal equilibrium If all the particles in the Universe
remained in thermal equilibrium, then no preferred direction for time may
be defined and the CPT invariance would prevent the appearance of any
baryon excess, since any reaction would be proceed at the same rate as the
inverse one, making the presence of CP violating interactions irrelevant.

2.4.2 Sakharov conditions in the Standard Model

At this point we my ask ourselves if the SM satisfies the Sakharov conditions. Let’s
look at each one of them in detail.

1. In the SM the baryon number and the lepton numbers, i.e. the three lepton
numbers of each flavour are conserved at tree level. More precisely, each one
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of them is the conserved charge of an accidental global U(1) symmetry, where
by accidental we mean that they happen to be symmetries of the Lagrangian
because of the gauge group which defines the SM, but, if taken separately,
they are anomalous, since they are violated by the triangle anomaly. We
notice that the baryonic and leptonic currents Jµ

B and Jµ
L, at the non per-

turbative level, are not conserved, but they satisfy the following equation
[42]:

∂µJ
µ
B = ∂µJ

µ
L =

nf

32π2
(−g2W a

µνW̃
a,µν + g′2BµνB̃

µν) (2.6)

where g,Wµν , W̃µν and g′, Bµν , B̃µν are the gauge coupling, the field strenght
tensor and the dual field strenght tensor of the the SU(2)L and U(1)Y sym-
metries of the SM, respectively, and nf is the number of fermionic families
(nf = 3).

In the bosonic sector of the Electroweak theory within the SM, there is
an infinite number of field configurations that minimise the static energy
functional of the guage-Higgs fields, which we call vacua. They are physically
equivalent, but they can be distingued by their Chern-Simons number NCS.
The change in the baryon number is related to the dynamics of the gauge
fields:

B(t)−B(0) = nf [NCS(t)−NCS(0)] (2.7)

These are non-perturbative effect, given by the sphaleron, which is a static
(time-dependent) solution to the electroweak field equations. Therefore, a
transition between two different vacua implies a change of the baryon (lep-
ton) number. It was showed that the transition via tunnelling is strongly sup-
presses at zero temperature, however, at high temperatures, the sphaleron
transition are in thermal equilibrium [43]. More precisely:

Γsph =

{
Esp

T
mW

T
T 4 e−

Esp
T T ≲ 130GeV

30α5
w T

4 T ≳ 130GeV
(2.8)

where αW = g2/4π and Esp is the height of the barrier between the two
vacua. Hence, when T ≳ 130GeV, B − L ̸= 0 is conserved and B + L is
violated.
For more details on sphaleron effects, one can read the review [44].

2. C is violated by the weak interactions and CP is violated by the CKM mech-
anism

3. The out-of-equilibrium condition can be satisfied if the SU(2)L×U(1)Y phase
transitions, which is called the Electroweak Phase Transition (EWPT), is of
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the first order, thus requiring that the mass of the Higgs boson must be
smaller than 70 GeV [45, 46, 47]

However, quantitatively, the second and the third Sakharov conditions are not
satisfied because of the measurements of the free parameters of the SM. In fact:

2. It was showed in Ref. [48, 49] that the CP effects are very much below what
is required to solve the baryon asymmetry. A simple way to estimate the
amount of CP-violation is to compute reparemetrisation invariant objects
out of the quark mass matrices [30, 50]. The first CP violating quantity
reads [51]:

Im

[
det[MuM

†
u,MdM

†
d ]

]
≈ −2J m4

tm
4
bm

2
cm

2
s (2.9)

where Mu,d are the mass matrices of up and down-type quarks, mi are the
mass eigenvalues of the quarks of flavour i and J is the Jarlskog invariant,
which is defined as follows:

J = Im[VusVcbV
∗
ubV

∗
cs] (2.10)

with Vij are matrix elements of the CKM matrix. A dimensionless quantity
can be constructed when we divide by a relevant temperature to the 12th

power. If we take T ≈ 130 GeV, at which the baryon asymmetry freezes out,
we obtain the following estimate [50]:

J m4
tm

4
bm

2
cm

2
s

T 12
≈ 10−19 ≪ ηB (2.11)

3. The mass of the Higgs mH is too heavy (mH = 125GeV) for the EWPT to
be of the first order, leading instead to a second-order phase transition or
crossover (see e.g. Ref. [45]). As a consequence, the plasma remains too
close to thermal equilibrium, the interactions between particles are fast and
therefore very effective in suppressing any deviation from equilibrium due to
the expansion of the Universe.

We conclude that the SM, as a quantum field theory, satisfies the Sakharov’s
conditions and thus, in principle, it can provide a possible (and economical) so-
lution to the baryon asymmetry puzzle, however the experimental measurements
show that it fails short quantitatively.

2.5 Baryogenesis: models and experimental tests

2.5.1 Main proposals for baryogenesis

We are now convinced of the fact that we need new physics in order to generate
the baryon asymmetry and, indeed, particle theorists, following Sakharov’s criteria,
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have proposed a plethora of BSM models for baryogenesis. In this section we will
review some of the most popular baryogenesis ideas that have been explored in
the last decades [44, 52].

GUT baryogenesis Historically, the first models of baryogenesis were devel-
oped in the context of Grand Unified Theories (GUT) 1. In GUT models the
gauge groups of the strong, weak and electromagnetic interaction are united in a
single gauge group, leading to a violation of the baryon number already at the
perturbative level, see e.g. Ref. [54]. In these models the baryon asymmetry can
generated from the decay of a heavy particle X with a mass comparable to the
GUT scale MX ∼ 1016 GeV. However, these models suffer from severe problems
(see Ref. [55] for a brief summary), but the main one is due to inflation, since, in
many inflationary models, the reheating temperature is well below the GUT scale.

Electroweak Baryogenesis We have seen in the previous section that in the
Standard Model the EWPT can’t provide a viable baryogenesis mechanism. How-
ever we can make the EWPT of the first order and we can have additional CP
violating contributions by adding new physics ingredients. This class of baryo-
genesis goes under the name of Electroweak Baryogenesis models. These models
are severely constraint by the measurements in the Higgs sector at LHC and by
measurements of the electric dipole moment. However, there are some proposals
that evade these bounds, for example in the context of Composite Higgs scenarios
[56] or by considering time-varying Yukawa couplings [57, 58]. For a review on
Electroweak Baryogenesis, we refer the reader to Ref. [44].

Leptogenesis This mechanism was first proposed by M. Fukugita and T. Yanagida
in Ref. [59]. In this type of models a lepton asymmetry is generated by C, CP and
lepton number violating processes involving a right-handed Majorana neutrino.
The lepton asymmetry is then converted into the baryon asymmetry by sphaleron
processes. Since the original proposal, many variants have been studied. For a
brief review of these models, see Ref. [60].

2.5.2 Low scale baryogenesis

Most of the popular models predict that the baryon asymmetry is produced at very
high temperatures, above or around the weak scale. However, in principle, it is
possible to achieve baryogenesis at much lower scale, around 1-100 MeV. Indeed,
this scenario emerges as a natural consequence in theories where the reheating

1Actually these first attempts were done without any input from Sakharov’s paper, for more
historical details see Ref. [53]
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temperature is preferred at this low scale. For example, this scenario is predicted
in some supersymmetric models (see e.g. Ref. [61, 62, 63]), in models of axion
dark matter, where the low inflation scale implies a suppression of isocurvature
perturbations (see e.g. Ref. [64]) and in models of dynamic relaxation of the weak
scale [65]. The first proposals for low scale baryogenesis mechanism have been
formulated in the 1980s [66, 67], in which, however, the baryon asymmetry actu-
ally gets diluted away by the decays of long lived heavy particles. Additionally,
these models require large CP violations, on which we have severe constraints from
electic dipole moments of particles [5].
Here we want to give a brief summary of a couple of promising low scale baryo-
genesis models that have been proposed in the last decade [5], while in Chapter 4
we will focus on a particular baryogenesis model, proposed in Ref. [68], that relies
on the resonant oscillations between dark matter and neutron and it can produce
the baryon asymmetry at the O(10) MeV scale. This model will be the starting
point for our original proposal on baryogenesis from a supercooled FOPT.

Baryogenesis via Mesino Oscillations In Ref. [69] it was proposed a mecha-
nism for baryogenesis at the 1-200 MeV scale. Starting from an extension of the SM
(for example supersymmetric theories), they considered the particle-antiparticle
oscillations of mesinos, which are bound states of a fermion quark and a scalar
antiquark or viceversa. CP violations in these oscillations is possible and it could
lead to the generation of the baryon asymmetry if there is a scalar quark such
that:

• it lives long enough to hadronize

• it has baryon-number violating decays

• it is produced out of thermal equilibrium in the Early Universe

This model can be experimentally tested by finding evidence for scalar quarks at
LHC.

Mesogenesis In a series of works [70, 71, 72] it was proposed a possible MeV-
scale baryogenesis and dark matter production, which uses the CP violation pro-
cesses of SM mesons, although CP violation contributions can also come from new
physics sources. The generic mechanism proceeds as follows. We have a scalar
field, with mass 10-100 GeV which decays at TR, where TBBN ≲ TR ≲ TQCD, to
qq̄ pairs, which then hadronize in charged or neutral mesons, which then undergo
CP violating processes, such as neutral B0

d,s oscillations or charged meson decays.
Moreover, we consider the existence of a dark sector, which allows us to infer that
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actually the baryon number is never violated thanks to the introduction of a dark
state ψB which carries baryon number B = −1.

We can divide the Mesogenesis models in two sub-classes. In the first one,
an equal and opposite baryon asymmetry between the visible sector and the dark
sector is generated, while in the second one a lepton asymmetry is generated and
the converted to a baryon asymmetry between the two sectors via dark-sector
processes.
This model can be tested in several expemeriments by measuring CP violating
observables at B factories and at LHC, by finding evidence of decays of hadrons
to dark baryons or in peak searches at colliders.

15



Chapter 3

First Order Cosmological Phase
Transitions

3.1 Introduction
As of today, the Standard Model (SM) is the best framework to describe funda-
mental interactions, but both experimental evidence and theoretical arguments
point out that the SM is not the final theory. One of its most studied phenomena
is the nature of the electroweak phase transition and its possible consequences.
Today the electroweak symmetry appears to be broken, however it was observed
that in the Early Universe, at high temperature, the Higgs mass acquires thermal
corrections and the minimum of the Higgs potential sits at the origin such that the
electroweak symmetry is restored [73]. When the Universe expands, it cools down
and then the true minimum is formed, the Higgs gets a vacuum expectation value
and the symmetry gets broken. There is a phase transition from a symmetric to a
broken phase.
In the SM the electroweak phase transition is of second order (or a cross-over)
[45, 46, 47], as well as the QCD phase transition [74]. On the other hand, many
models beyond SM make this transition a first-order phase transition, where the
decay of the false vacuum to the true vacuum happens via bubble nucleation. The
tunnelling between the two vacua doesn’t happen everywhere at the same time,
but we have the formation of bubbles which expand, eventually collide and in the
end the whole space will be in the true vacuum. Once one computes the decay
rate for a specific model, one can obtain the nucleation temperature Tn at which
one bubble is nucleated per horizon in average.
In particular, the goal of this Chapter is to compute the nucleation temperature
in two different scenarios:one is an extension of the Standard Model with a |H|6
operator and the other one involves the existence of a strongly coupled sector that
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gives rise to a light dilaton.

3.2 Bubble Nucleation

3.2.1 False Vacuum Decay

In this section we will build the basic toolkit to study bubble nucleation in first
order phase transitions [55].
In 1977 S. Coleman and C. Callan derived the decay rate of the false vacuum [75,
76], later in 1980, A. Linde included finite temperature effects in the computation
[77, 78]. Using these results, the tunneling rate per unit volume is given by:

Γ(T ) ≃ max

[
T 4

(
S3/T

2π

)3/2

exp (−S3/T ), R
−4
0

(
S4

2π

)2

exp (−S4)

]
(3.1)

where R0 is the bubble radius at nucleation, while S3 and S4 are, respectively,
the 3-dimensional and the 4-dimensional Euclidean action of the O(3)- and O(4)-
symmetric tunnelling solutions, which are given by:

S3 = 4π

∫
dr r2

[
1

2
ϕ′(r)2 + V (ϕ(r))

]
(3.2)

S4 = 2π2

∫
dr r3

[
1

2
ϕ′(r)2 + V (ϕ(r))

]
(3.3)

where V (ϕ) is the potential and ϕ(r) is the field configuration which interpolates
between the two asymptotic vacuum.

The O(3) bounces are described by the coordinate r = x⃗ and have d = 3
dimensions, while the O(4) bounces are described by the coordinate r =

√
x⃗2 + t2

and have d = 4 dimensions. Moreover, the former are induced by thermal effects,
while the latter are quantum-induced.

From the extremization of the action we obtain the Euclidean equation of
motion:

ϕ′′(r) +
d− 1

r
ϕ′(r) =

dV

dϕ
(3.4)

with boundary conditions:

ϕ′(0) = 0 lim
r→∞

ϕ(r) = 0 (3.5)

It is useful to interpret this problem as the study of the evolution of a particle
moving in a potential −V (ϕ(r)) with a friction term d−1

r
dϕ
dr

, where r parameterize
the time and ϕ is the position of the particle. The particle starts with zero velocity
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and at r → ∞ stops at ϕ = 0.
It has been proved [75] that there is always a solution to equations (3.4) and
(3.5) by means of an undershoot/overshoot argument. If the initial position of the
particle is too close to the true vacuum, it will have enough energy to move over
the false vacuum with non-zero velocity: we have an overshoot configuration and
the solution will be divergent. Conversely, if the initial position of the particle is
too close to the false vacuum, the particle will not have enough energy to reach the
true vacuum because of the friction term: we have an undershoot configuration
and the solution will be oscillatory. Therefore, by continuity there will be an
intermediate initial position for which the particle rests in the false vacuum and
for which we have our bounce solution.

Analytical solutions of the bounce action: the thick-wall limit

Besides the numerical procedure inspired by the overshoot/undershoot argument,
one can estimate the bounce actions by semi-analytical or analytical expressions.
For the latter, in particular, there are two classes of potentials that give an analyti-
cal estimate for the bounce action: the thin-wall limit and the thick-wall limit [55].

In the thin-wall limit the extrema of the potential are nearly degenerate and
they are separated by a large barrier, while for the thick-wall limit the potential
barrier is small when compared to the potential energy difference.
As anticipated, we will compute the nucleation temperature in the thick-wall limit,
which is known to be a good approximation for the potentials that we are going
to consider. Let us consider the O(3)-symmetric vacuum bubbles [79, 80]. The
potential V has a false vacuum: let’s say that ϕFV = 0 and V (ϕFV ) = 0. The
true minimum is at ϕ = ϕ0. Now let’s consider a bubble of the true vacuum and
radius R inside an exterior of false vacuum. Outside the bubble, the potential is
zero and the ϕ-profile is constant, therefore only the region inside the bubble will
contribute to the action. If ϕ∗ = ϕ(0) is the initial field value, at which the bounce
starts, δϕ = ϕ∗ is the total variation of ϕ inside the bubble wall δR, where the
bubble wall is defined as the region r where ϕ varies. Starting from Eq. (3.2), the
action can be approximated as:

S3 ≃ 2πR2

(
δϕ

δR

)2

δR +
4

3
πR3V̄ (3.6)

where V̄ < 0 is the potential energy averaged in the bubble wall. We will take the
approximation V̄ = V (ϕ∗) − V (0) = V (ϕ∗). If the bubble is thick, one can take
δR = R. We define the critical radius Rc of the bubble by extremizing Eq. (3.6)
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with respect to R:
δS3

δR
= 0 → R2

c =
ϕ2
∗

−2V (ϕ∗)
(3.7)

Then we obtain the action by injecting the critical radius (3.7) in Eq. (3.6). The
result is:

S3 =
4π

3

ϕ3
∗√

−2V (ϕ∗)
(3.8)

Similarly, for the O(4)− bounce solutions, one can obtain the formulas:

S4 =
π2

2

ϕ4
∗

−V (ϕ∗)
, R2

c =
ϕ2
∗

−V (ϕ∗)
(3.9)

3.3 Gravitational Waves from First Order Phase
Transitions: Thermodynamical Parameters

First Order Phase Transitions can produce GWs in different ways and our under-
standing on the generation of the signal relies on hydrodynamic simulations (for
more details, see e.g. the review [81]). We can identify three possible contributions
and stages to the GW signal ΩGW ≡ ρGW/ρcrit, where ρcrit = 3H2/(8πG) is the
critical density:

1. Bubble collision contribution Ωbc bubbles of true vacuum collide and
merge.

2. Sound waves contribution Ωsw after bubble have collided and merged,
the shells of fluid kinetic energy propagate int he plasma as sound waves,
which eventually overlap.

3. Magnetohydrodynamic turbulence Ωtu as the sound waves propagate,
non-linearities in the plasma become important and the fluid shells eventually
develop shocks.

The total power spectrum can be approximated as the sum of the three contribu-
tions above:

ΩGW = Ωbc + Ωsw + Ωtu (3.10)

The key parameters that enter in the prediction of the GW spectrum are four: the
nucleation temperature Tn, the phase transition strength α, the phase transition
rate β and the bubble wall speed vw. These quantities can be computed from
the Lagrangian of the theory, hence the measurement of GW spectrum becomes
another probe of new physics.
In the following, we proceed to define the GW parameters that we have mentioned
above.
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Nucleation Temperature The temperature at which the two minima are de-
generate is called critical temperature Tc and below this temperature the decay of
the false vacuum becomes energetically possible.
The nucleation temperature Tn is defined as the temperature at which one bubble
is nucleated per horizon on average

N(Tn) =

∫ Tc

Tn

dT

T

Γ(T )

H(T )4
= 1 (3.11)

which implies:
Γ(Tn) ≃ H(Tn)

4 (3.12)

The decay rate Γ(T ) is computed in the specific model, whereas the Hubble rate
is given by:

H(T )2 =
1

3M2
pl

(ρrad + ρvac + ρwall) (3.13)

with MPl = 1/
√
8πGN = 2.43 · 1018 GeV and

ρwall ≈ 0 ρrad =
π2g∗
30

T 4 ρvac = ∆V (3.14)

where g∗ is the number of effective relativistic degrees of freedom in the radiation
bath, for example gSM∗ = 106.75 is the value for SM particles at temperatures
higher than the top quark mass and ∆V is the difference between the potential
in the two minima. In Eq. (3.13) we did not include the contribution from the
non-relativistic particles since their energy density is exponentially smaller than
the one of relativistic species, i.e. ρmatter ∝ exp [−(m− µ)/T ].

Phase Transition Strength The strength of the phase transition is given by
the parameter α, which is defined as the the latent heat of the transition divided
by the radiation energy of the Universe:

α =
∆V − T/4

∂∆V
∂T

ρrad
≃ ∆V

ρrad
(3.15)

which is evaluated at the nucleation temperature. It parameterizes the amount of
energy available for the production of Gravitational Waves.

Phase Transition Duration Another important parameter is the transition
rate parameter of the phase transition βH , which can be thought as the inverse
phase transition duration. It can be defined from the bubble nucleation rate as
follows:

β = −dSd

dt

∣∣∣∣
Tnuc

≃ Γ̇

Γ
=⇒ βH ≡ β

Hn

= T
dSd

dT

∣∣∣∣
Tnuc

(3.16)
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where Hn ≡ H(Tnuc) and d = 3, 4, depending on whether the bubble nucleation
happens via O(3) or O(4) tunnelling.

Wall velocity The last parameter is the so-called wall velocity vw, which chareter-
izes the speed at which the bubble is expanding. In order for the bubble to expand,
the pressure inside must be larger than the exterior one and this happens when
∆V < 0. In other words, the vacuum energy difference between the broken and
the symmetric phase accelerates the bubble wall. Entering the broken phase, par-
ticles which are coupled to the scalar field driving the phase transition acquire a
mass, which is proportional to the VEV. Then, the scalar field gradient along the
wall profile induces a retarding friction pressure, due to the interaction with the
particles in the plasma. The terminal velocity of the bubble wall will depend on
the equilibrium between this pressure and the accelerating vacuum pressure [55].
Determining the wall velocity is a non-trivial problem, since it requires an accurate
study of the plasma around the bubble wall. In the literature, different methods
and regimes have been considered. For a pedagogical introduction to the problem
we refer the reader to [55], while for the current state of the art we refer the reader
to Ref. [82].

3.4 Supercool phase transitions
When the vacuum energy dominates the energy density of the Universe, the phase
transition is said to be supercool, i.e.:

α ≫ 1 supercooling (3.17)

Supercool phase transitions are expected when we have potentials which are
flat enough at the origin at zero temperature. These potentials are obtained in
theories with an approximate scale invariance: the Coleman-Weinberg potential in
the weakly-coupled scenario and the light-dilaton potential in the strongly-coupled
scenario. We’ll discuss in more detail the latter one in Sec. 3.6.

Nearly-conformal potentials lead to interesting cosmological consequences be-
cause of the temperature dependence of the tunneling action, which is very different
from other potentials that give a first order phase transition [83]. The nucleation
temperature is determined by the tunnelling point since Tn ∝ ϕR, where we de-
fine ϕR as the release point of our bounce solution. Nearly-conformal potentials
have a maximum at ϕmax and a minimum at ϕmin which are widely separated and
we have ϕR ≳

√
ϕmaxϕmin ≪ ϕmin. Therefore we can have very small Tn com-

pared to the vacuum expectation value ϕmin. However the critical temperature is
Tc ∝ ϕmin. Therefore the nucleation temperature is much smaller than the crit-
ical temperature, and in the regime between the two temperatures, the vacuum
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energy dominates, leading to an additional period of inflation. The amount of
supercooling is estimated by the number of efolds Ne during inflation:

Ne ∼ log
Tc
Tn

(3.18)

Possible cosmological consequences of supercooling are, for example, a large grav-
itational wave spectrum [84], a dilution of any pre-existing relic (such as dark
matter, baryon or other asymmetries, topological defects and gravitational waves
[85, 86, 87]) or effects on the bubble wall velocity[55].

3.5 |H|6 Effective Field Theory

3.5.1 The Effective Potential and its high temperature limit

Let us add in the classical Higgs potential a dimension-six |H|6 operator:

V (H) = m2 |H|2 + λ|H|4 + |H|6

Λ2
(3.19)

where HT = (χ1 + iχ2, φ + iχ3)/
√
2 and Λ is the scale of validity of the model,

that is the energy below which we expect that our Effective Field Theory breaks
down due to the loss of unitarity. Furthermore, one of the first studies [88] on this
class of potential analyzes the constraints on Λ in order to have a successful first
order phase transition. The constraints on Λ depend on the physical mass mh of
the Higgs boson: we have a lower bound on Λ to ensure the existence of the true
minimum at T = 0 and an upper bound on Λ to make sure that the phase transition
is of the first order. For mh = 125GeV, we have 484GeV ≲ Λ ≲ 840GeV. By
expanding the Higgs around its vacuum expectation value (VEV) φ = ϕ + h one
obtains:

Vtree(ϕ) =
m2

2
ϕ2 +

λ

4
ϕ4 +

1

8

ϕ6

Λ2
(3.20)

with
m2 = −m

2
h

2
+

3

4

v4

Λ2
, (3.21)

λ =
1

2

m2
h

v2
− 3

2

v2

Λ2
(3.22)

where v = 246GeV is the VEV of the Higgs field.
On top of the tree level result we need to compute the one-loop corrections.

In the Early Universe, we can’t neglect the interaction with matter and radiation
and we are required to use Thermal Field Theory. The one-loop corrections are
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computed as the sum of all the 1PI diagrams with a single loop and zero exter-
nal momenta. In the computation we have to use the Feynman rules derived in
Thermal Field theory (see the review [89] for further details). In the radiative
corrections we need to consider the contributions of the gauge and Higgs bosons
and of the top quark, whereas the other contributions from the other SM fermions
are negligible. The one-loop corrections at finite temperature in the Landau gauge
(where ghosts decouple) are:

∆V1(ϕ, T ) =
∑

i={h,χ,W,Z,t}

niT

2

+∞∑
n=−∞

∫
d3k⃗

(2π)3
log[⃗k2 + ω2

n +m2
i (ϕ)] (3.23)

where kE(ωn, k⃗) is the Euclidean loop 4-momentum, ωn are the Matsubara fre-
quencies in the imaginary time formalism, where ωn = 2nπT for bosons and ωn =
2(n+1)πT for fermions. The number of degrees of freedom are n = {1, 3, 6, 3,−12}.
The masses m2

i (ϕ) in Eq. (3.23) read:

m2
h(ϕ) = m2 + 3λϕ2 +

15

4

ϕ4

Λ2
(3.24)

m2
χ(ϕ) = m2 + λϕ2 +

3

4

ϕ4

Λ2
(3.25)

m2
W (ϕ) =

g22
4
ϕ2 (3.26)

m2
Z(ϕ) =

g21 + g22
4

ϕ2 (3.27)

m2
t (ϕ) =

y2t
2
ϕ2 (3.28)

The one-loop corrections can be decomposed in a temperature independent
term and temperature dependent term. The former piece coincides with T = 0
one-loop corrections in Quantum Field Theory, which were first derived by S.
Coleman and E. Weinberg in 1973 [90]. Upon regularizing the theory with a
cut-off and imposing, via the on-shell renormalization scheme, that the minimum
of the potential corresponds to the Higgs VEV v and that the second derivative
of the potential corresponds to the Higgs mass, in the end the T = 0 one-loop
contributions to the tree level potential are given by:

∆V 0
1 (ϕ) =

∑
i={h,W,Z,t}

ni

64π2

[
m4

i (ϕ)

(
log

m2
i (ϕ)

m2
i (v)

)
+ 2m2

i (v)m
2
i (ϕ)

]
(3.29)
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For the Goldstone bosons, we can’t use Eq. (3.29) since in the true vacuum
their masses are equal zero, i.e. mχ(ϕ = v) = 0, and the potential becomes IR
divergent. In [91] it was pointed out that for the Higgs boson it would be better
to define renormalization conditions which take into account the running of self-
energy from p2 = 0 (where the effective potential is defined) to p2 = m2

h (where the
physical Higgs mass is defined). At the end of the renormalization procedure, one
obtains that the Goldstone contribution to the zero-temperature effective potential
is:

∆V
0,(χ)
1 (ϕ) =

nχ

64π2
m2

χ(ϕ)

(
log

m2
χ(ϕ)

m2
h

− 3

2

)
(3.30)

The finite temperature corrections, which were first computed by L. Dolan and
R. Jackiw [92] in 1973, are given by:

∆V T
1 (ϕ, T ) =

∑
i=h,χ,W,Z,t

niT
4

2π2

∫ ∞

0

dkk2 log

[
1∓ exp−

√
k2 +m2

i (ϕ)/T
2

]
(3.31)

≡
∑

i=bosons

niT
4

2π2
Jb

(
m2

i (ϕ)

T 2

)
+

∑
i=fermions

niT
4

2π2
Jf

(
m2

i (ϕ)

T 2

)
(3.32)

where the minus (plus) sign stands for bosons (fermions). The functions Jb/f , by
Taylor-expanding in the high temperature limit (x ≡ mi(ϕ)

T
→ 0), take the form:

Jb(x) = −π
4

45
+
π2

12
x− π

6
x3/2 − x2

32
log

x

ab
+O

(
x3 log

x3/2

const.

)
(3.33)

Jf (x) =
7π4

360
− π2

24
x− x2

32
log

x

af
+O

(
x3 log

x3/2

const.

)
(3.34)

with log ab ≃ 5.4076 and log af ≃ 2.6350.
This one-loop result can’t still be truthfully considered complete, due to the pres-
ence of higher loop corrections of the same order and whose leading contribution
is given by the so called daisy diagrams. They are N ring diagrams, where N − 1
loops are attached to a main one. The daisy diagrams only need to be resummed
in the IR-limit of vanishing momenta running in the petals. One can prove that
resumming the daisy diagrams amounts to shift the masses of the bosons [93]:

m2
b(ϕ) → m2

b(ϕ) + Πb(T ) (3.35)

where Πb(T ) is the self-energy of the bosonic field b in the IR limit, ω = p⃗ = 0, also
known as the Debye mass. These diagrams are needed since we have a breakdown
of the perturbative expansion due to IR divergences (i.e. m ≲ T ), hence they are
relevant at high temperature where the particles can be approximated as nearly
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massless. In particular, bosonic fields have a vanishing Matsubara frequency that
will behave as a massless degree of freedom and generate IR-divergences at high-
temperature, while the other non-zero modes ωn act as a mass of order T and they
are negligible. On the other hand, fermionic fields do not have a massless mode,
thus they do not need to be resummed.

Taking into account the above resummation, the daisy corrections to the po-
tential are given by [91]:

∆Vdaisy =
∑

i={h,χ,W,Z}

n̄iT

12π

[
m3

i (ϕ)−
(
m2

i (ϕ) + Πi(T )

)3/2]
(3.36)

where n̄ = {1, 3, 2, 1, 1} and Πi(T ) are the Debye masses for our relevant bosonic
fields. The latter take the form [91]:

Πh,χ(T ) =
T 2

4v2
(m2

h + 2m2
W +m2

Z + 2m2
t )−

3T 2

4

v2

Λ2
(3.37)

ΠW (T ) =
22

3

m2
W

v2
T 2 (3.38)

ΠZ(T ) =
22

3

(m2
Z −m2

W )

v2
T 2 −m2

W (ϕ) (3.39)

Πγ(T ) = m2
W (ϕ) +

22

3

m2
W

v2
T 2 (3.40)

By summing the tree level term (3.20), the one-loop corrections (3.29)-(3.30)
and the daisy diagrams (3.36), we find the total effective potential in the Landau
gauge reads :

Veff (ϕ, T ) =
∑

i={h,W,Z,t}

ni

64π2

[
m4

i (ϕ)

(
log

m2
i (ϕ)

m2
i (v)

)
+ 2m2

i (v)m
2
i (ϕ)

]

+
nχ

64π2
m2

χ(ϕ)

(
log

m2
χ(ϕ)

m2
h

− 3

2

)
+

∑
i=h,χ,W,Z,t

niT
4

2π2

∫ ∞

0

dkk2 log

[
1∓ exp−

√
k2 +m2

i (ϕ)/T
2

]

+
∑

i={h,χ,W,Z}

n̄iT

12π

[
m3

i (ϕ)−
(
m2

i (ϕ) + Πi(T )

)3/2]
(3.41)

However, to simplify the numerical computation, we’ll use the high-temperature
expansion of the effective potential:

Veff (ϕ, T )
T≫v≃ D(T 2 − T 2

0 )ϕ
2 − ETϕ3 +

λ(T )

4
ϕ4 +

1

8

ϕ6

Λ2
(3.42)
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with:
D =

2λv2 + 2m2
W +m2

Z + 2m2
t

8v2
(3.43)

E =
2m3

W +m3
Z

4πv3
(3.44)

T 2
0 =

m2
h − 3/2v4/Λ2 − 8Bv2

4D
(3.45)

B =
3

64π2v4
(2m4

W +m4
Z − 4m4

t ) (3.46)

λ(T ) = λ+

(
T

Λ

)2

− 3

16π2v4

(
2m4

W log
m2

W

ABT 2
+ 2m4

Z log
m2

Z

ABT 2
− 4m4

t log
m2

t

AFT 2

)
(3.47)

where logAB = log ab − 3/2 and logAF = log ab − 3/2. The Eqs. (3.42)-(3.47) are
obtained by substituting Eqs. (3.34)-(3.33) in the finite temperature corrections
Eq. (3.31).

Figure 3.1: Effective Potential in the Landau gauge for the extension of the
Standard Model with a dimension six |H|6 operator with T = 55GeV and
Λ = 500GeV . The plot shows: the potential at tree level, the potential with
T = 0 1-loop corrections, the potential with the full 1-loop and daisy corrections,
the potential in the high temperature limit.
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Figure 3.2: Effective Potential in the Landau gauge for the extension of the
Standard Model with a dimension six |H|6 operator with T = 100GeV and
Λ = 700GeV . The plot shows: the potential at tree level, the potential with
T = 0 1-loop corrections, the potential with the full 1-loop and daisy corrections,
the potential in the high temperature limit.

3.5.2 Numerical Computation and Results

We want to compute the nucleation temperature in the case for O(3) tunneling, by
employing the bounce action S3 in the thick-wall limit. We will compute the initial
field value ϕ∗ using the bounce solution obtained via the undershoot/overshoot al-
gorithm.
The first step is the solution of the differential equation (3.4) with boundary con-
ditions (3.5), whose numerical solution is not straightforward. However we can
turn this boundary value problem into an equivalent Cauchy problem, with initial
conditions:

ϕ(xmin) = a (3.48)

ϕ′(xmin) = 0 (3.49)

where a is the initial value of the field, which we will determine via the shooting
method and thus it is usually called shooting parameter. This shooting parameter
is the ϕ∗ that we have previously introduced. Moreover, we notice that we have
defined our initial conditions in xmin, since in x = 0 we have a singularity. Once
we have the solution of Eq. (3.4) as a function of the parameter a, we will find
the value of the shooting parameter by requiring that the solution will go to zero
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at x → ∞, which is the other boundary condition of our problem. However,in
practice, we will require this condition to be satisfied at a value xmax, namely:

ϕ(xmax) = 0 (3.50)

The computation boils down to a root finding problem, which we choose to solve
via the bisection method. In order to start implementing the algorithm, we have
to decide the interval in which we look for the solution. We choose two values of
the parameter, the lower bound is given by the value of the shooting parameter for
which we expect the solution to undershoot (under) and while the upper bound
gives an overshoot solution (over): we know that the solution will lie between
these two values because of our discussion in Section 3.2.1. Choosing the initial
interval is actually quite even more tricky due to the dependence on Λ and T in
our potential and, ultimately, in the existence of the bounce solution. Therefore
we decide to pick an arbitrary small positive real number as under, for which
we check that the solution undershoots, and a value of over, where the initial
position is given by the value of the field at the true minimum of the potential for
temperatures around slightly above T0 to allow the existence of a bounce solution.

Once we have found our bounce solution, we can compute the corresponding
action in the thick-wall limit using Eq. (3.8) and we evaluate the decay rate and
the Hubble rate using respectively the formulas (3.1) and (3.13). The last step is
to build a numerical function, Tnucl[Λ] using the condition (3.12). We have to
look for the root of this function using again the standard bisection method. The
temperature range where we search for the solution is between O(10)GeV and the
critical temperature. The result is showed in Figure 4.3.
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Figure 3.3: Nucleation temperature for O(3)-symmetrical bounce using the thick
wall formula

We observe that we were able to reproduce the growing profile and order of
magnitude of the nucleation temperature, but we struggled to match perfectly the
temperatures for lower values of the cutoff from other known studies in literature
(see for example [94], where the bounce action is computed numerically). This
result could be due to both our numerical procedure and our approximation for
the potential.

To summarise, we find that the transition is indeed of the first order, but it
can’t be supercooled, since Tnuc ≪ v, for the values of Λ for which the Effective
Field Theory is well defined. In the next section we will discuss anoter new physics
scenario, which gives rise to a supercool phase transition.

3.6 The light-dilaton potential

3.6.1 The dilaton potential

The dilaton potential at T = 0

Let us consider a strongly-coupled sector in the UV where an approximate scale
symmetry holds [95, 96]. When this symmetry gets spontaneously broken, we will
have in the spectrum a pseudo-Nambu Goldstone boson (pNGB), which is called

29



the dilaton. If the dilaton is the lightest state of this nearly-conformal sector,
we can integrate out all the other dynamical fields: the phase transition can be
described in terms of the dilaton VEV only.
Since it is not possible to break the conformal symmetry in a purely spontaneous
way, we break it explicitly by adding the strong sector operator:

ϵOϵ (3.51)

with scaling dimension d = 4 + γϵ ≲ 4 (for the anomalous dimension one has
γϵ ≥ −3 because of the unitarity bound on scalar CFT operator [95]). Provided
|γϵ| ≪ 1 and ϵ at the UV scale is somewhat small too, ϵ only slowly grows when
running towards the IR. The nearly-conformal invariance is then maintained for a
large energy range. However, at some small energy, the contribution of Oϵ becomes
so large that the strong sector condensates and scale invariance is broken, thus
generating the confinement scale f and the dilaton.
The dilaton is defined by its transformation rule

χ(x) −→ λχ(x/λ) (3.52)

under dilatations xµ → xµ/λ. We can parameterise the dilaton as follows [97] :

χ(x) = fe
σ(x)
f (3.53)

where σ(x) transforms non-linearly under dilatations σ(x) −→ σ(λx) + f log λ.
Now let us write down the potential for the model. Because of scale invariance
we can write down a χ4 term, which is either unbounded from below or it yields
a vanishing VEV, with no pNGB in the spectrum. The slightly relevant operator
generates another term in the potential ϵ(χ)χ4. Therefore the dilaton potential at
T = 0 reads:

V T=0
χ (χ) = cχg

2
χχ

4 − ϵ(χ)χ4 (3.54)

where cχ is O(1) constant and gχ ≳ 1 is a typical coupling constant of the strong
sector. Now, the running of the coupling ϵ, with µ as the renormalization scale,

∂ϵ

∂ log µ
≃ γϵϵ (3.55)

leads to a non-zero VEV f for the dilaton:

dV

dχ

∣∣∣∣
χ=f

= 0 → ϵ(χ) =
cχg

2
χ

1 + γϵ/4

(
χ

f

)γϵ

(3.56)

and a mass for the dilaton, whose smallness is linked to the smallness of the
anomalous dimension:

m2
σ =

∂

∂σ2
V (χ(σ))

∣∣∣∣
σ=0

→ γϵ ≃ − 1

cχ

m2
σ

g2χf
2

(3.57)
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Finally, we can write the dilaton potential as:

V T=0
χ (χ) = cχg

2
χχ

4

(
1− 1

1 + γϵ/4

(
χ

f

)γϵ)
(3.58)

From equation (3.57) we notice that the conformal limit |γϵ| ≪ 1 coincides with
the light dilaton limit yχ ≡ mσ

f
≪ 1.

Finally, the vacuum energy in the unbroken phase is given by:

∆V = V (χ = 0)− V (χ = f) ≃
(
mσf

4

)2

(3.59)

Here we have assumed that the Higgs VEV is smaller than the one of the dilaton,
thus neglecting its contribution to the vacuum energy.

An holographic perspective The 4D strongly coupled theory that we have
described above can be mapped into a 5D weakly-coupled theory with AdS5 metric
via the AdS-CFT correspondence [98]. The dual 5D theory predicts non-canonical
kinetic terms:

LK =
Z2

2
∂µχ∂

µχ (3.60)

We can introduce a canonically normalised compensator field χ′ ≡ Zχ and σ′ ≡
χ−Zf to obtain canonical kinetic terms. This rescaling will lead to the potential:

V T=0
χ′ (χ′) =

cχ
Z4
g2χχ

′4
(
1− 1

1 + γϵ/4

(
χ′

Zf

)γϵ)
(3.61)

However, in this thesis, we will study only the Z = 1 case.
Now let us consider a theory with a warped extra dimension [99] as the 5D dual
of our 4D conformal field theory. Using holography arguments to relate the two
theories, one can derive that the coupling constant of the strong sector is [65, 100]:

gχ =
4π

N
(3.62)

This relation is true for a glueball-like dilaton [101].

The dilaton potential at finite temperature

In the usual 4D QFT perspective, we can compute the thermal corrections to the
potential, which are generated by the particles in the plasma.
When the temperature is well below gχf , the confined phase is the thermody-
namically most favorable phase, whereas in the opposite temperature regime the
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deconfined phase is the most favorable one. For χ = 0, the strong sector is in its
deconfined phase. By dimensional analysis and large N-counting the free energy
in this phase scales as:

FCFT(χ = 0) ≃ −bN2T 4 (3.63)

The constant b depends on the number of degrees of freedom per color in the strong
sector. For definiteness, we will consider N = 4 SU(N) super Yang-Mills (SYM).
Then the result is [102]:

b =
π2

8
(3.64)

It is reasonable to expect that any realistic strong sector has a similar number of
degrees of freedom as N = 4 SU(N) SYM and that the free energy is not much
different from the one we use. Moreover, we are neglecting the degrees of freedom
of the SM particles and of the techni-quarks of the strong sector, thus keeping only
the contribution of the techni-gluons.
When χ ≳ T/gχ the finite temperature corrections are given by the SM thermal
corrections, that can be neglected. In the regime 0 ≲ χ ≲ T/gχ, without a precise
UV description, the exact form of the free energy is not known since the theory
is in the strongly coupled regime. However, in our description we can assume [84,
95] that the dilaton still approximately exists and we add the thermal corrections
from N2 CFT degrees of freedom to its zero temperature potential. The thermal
corrections of the dilaton potential read:

∆V 1−loop
T (χ, T ) =

∑
CFTbosons

nT 4

2π2
Jb

(
m2

CFT

T 2

)
(3.65)

where n is the degeneracy factor of each bosonic state, with mass mCFT = gχχ,
and Jb is defined as in Eq. (3.31). Then we choose the normalization:∑

CFTbosons

n =
45N2

4
(3.66)

in order to recover the free energy in the deconfined phase at χ = 0.
In the end, the finite-temperature effective potential for the dilaton is:

V (χ, T ) = V T=0
χ (χ) + ∆V 1−loop

T (χ, T ) (3.67)

where V T=0
χ (χ) and ∆V 1−loop

T (χ, T ) are defined respectively in Eq.(3.58) and Eq.(3.65).

3.6.2 Bounce action in the thick wall limit and nucleation
temperature

We will compute the nucleation temperature by employing the thick-wall formula
for the O(4)-bounce [55, 96]. First, we write the effective potential (3.67) in the
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following way:

V (χ)− V (0) ≃


m2

eff

2
χ2 − λeff (χ)χ

4 if χ ≲ T/gχ

bN2T 4 − λeff (χ)χ
4 if χ ≳ T/gχ

(3.68)

with:
m2

eff ≡ 15

16
N2g2χT

2 (3.69)

λeff ≡ cχg
2
χ

[
1− 1

1 + γϵ/4

(
χ

f

)γϵ]
≃ |γϵ|cχg2χ log

f

χ
(3.70)

where we have expanded λeff in the conformal limit γϵ → 0. The first line of
Eq. (4.34) is obtained by expanding Jb(m

2
CFT/T

2) in Eq. (3.65) in the high
temperature limit using Eq. (3.33), while the second line is obtained by considering
the low-temperature limit Jb(x) ∼

x→∞
0. We plug Eq. (4.34) into Eq. (3.9),

obtaining the following expression for the O(4)-bounce action:

S4 ≃


c∗

π2

2
Min
χ∗

χ4
∗

−(m2
effχ

2
∗/2−λeffχ4

∗)
if χ∗ ≲ T/gχ

c∗
π2

2
Min
χ∗

χ4
∗

−(bN2T 4−λeffχ4
∗)

if χ∗ ≳ T/gχ

(3.71)

Here c∗ is a coefficient which we fit on the numerical solution. We set:

c∗ ≃ 2 (3.72)

We minimize the expression (3.71) with respect to χ∗. For χ∗ ≳ T/gχ, we obtain
χ∗ = 0, which is not a viable bounce solution. On the other hand, for χ∗ ≲ T/gχ,
the minimization of the action yields:

S4 = c∗
π2

2

1

λ∗
(3.73)

where:
χ∗ =

T

Tc
f (3.74)

λ∗ ≡ λeff (χ∗) = |γϵ|cχg2χ log
f

χ∗
(3.75)

and Tc is the critical temperature, at which the two minima of the free energy are
equal:

bN2T 4
c =

m2
σf

2

16
=⇒ Tc =

(
m2

σf
2

16bN2

)1/4

=

( |γϵ|cχg2χ
4bN2

)1/4

f (3.76)
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Using the condition (3.12), we find that the nucleation temperature is a solution
of:

S4(Tnucl) ≃ 4 ln
R−1

0

H(Tnucl)
+

1

2
ln
S4

2π
(3.77)

where R0 is the bubble radius from the thick-wall approximation. Using Eq.(3.9)
we obtain:

R0 =

(
f/mσ√
bN log Tc

T

)1/2

T−1 ∼ T−1 (3.78)

The Hubble parameter reads:

H2(T ) = H2
Λ +H2

rad =
m2

σf
2/16

3M2
pl

+
π2g∗T

4

90M2
pl

, g∗ = 106.75 +
45N2

4
(3.79)

Notice that in the definition of Hrad the expression of ∆V is given by Eq. (3.59)
and we have added the degrees of freedom of the strong sector Eq. (3.66) to the
ones of the SM particles, for temperatures above the electroweak scale.

We can rewrite the bounce action previously obtained in Eq. (3.73) as:

S4 =
A

log Tc/T
(3.80)

where:
A = c∗

π2

2

1

|γϵ|cχg2χ
= c∗2π

2 f
2

m2
σ

(3.81)

By substituting Eq.(3.80) into Eq. (3.77) and considering H ≈ HΛ, the nucleation
temperature is given by:

Tnuc =
√
HΛTc

(
2π

S4

)1/16

exp

(
1

2

√
−A+

(
ln

Tc
HΛ

+
1

8
ln
S4

2π

))
(3.82)

By neglecting the S4/2π terms, we conclude that there is no nucleation temperature
when [103]:

A ≳ ln
Tc
HΛ

(3.83)

and that the minimal nucleation temperature is:

Tmin
nuc ≃

√
HΛTc ≃ 0.1

(
mσ

f

)3/4(
f

Mpl

)1/2

f (3.84)
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Figure 3.4: O(4) bounce action computed with the thick-wall formula

3.6.3 Numerical Computation and Results

To compute the nucleation temperature we will use the formulas of the previous
section. We define:

y =
mσ

f
(3.85)

We rewrite all the equations in the previous section in terms of the variable y.
Then we can find the root Tnuc of Eq. (3.82) by means of a bisection algorithm.
Now we have to choose the interval in a different way to take into account the
exponential behaviour of our formula for the nucleation temperature. Namely, we
choose the minimal nucleation temperature as the minimum of the interval, while
the maximum will be 10 times the minimum. However, in order for the bisection
method to work, we have to ensure that our function has opposite signs when
it is evaluated at the extrema of our interval: when the function is evaluated in
the lower extremum, its sign is always negative, whereas the sign in the other
extremum has to be checked case by case. Therefore, we increase the maximum
by a factor of 10 until the function becomes positive. Moreover we require our
algorithm to work only when the square root in Eq.(3.82) is actually positive.
We perform our computation by considering N = 3 and using two different values
for the confinement scale f .
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Figure 3.5: Nucleation temperature using the thick-wall formula for O(4) bounce
solutions.

We immediately see that the nucleation temperature gets exponentially sup-
pressed as the dilaton mass gets smaller, thus leading to a large amount of super-
cooling.

3.7 Summary on nucleation temperatures of PTs
In this Chapther we have computed the nucleation temperature for two different
extensions of the Standard Model, one with a dimension 6 operator |H|6 and the
other with a light dilaton potential, obtained from a strongly coupled sector. In
particular, in both cases, we computed the bounce action using the thick-wall
formula.
By computing the nucleation temperature, we have actually seen how we can
obtain first order phase transitions by extending the Standard Model. We stress
that the two different models give rise to different phenomenology, since in the
strongly-coupled scenario with the dilaton we have a supercool phase transition.
We could have expected that our dimension-6 Effective Field Theory does not
lead to a supercool phase transition because the effective potential in the high
temperature limit Eq. (3.42) has a polynomial form. In general, polynomial
potentials, differently from nearly-conformal potentials, have a maximum and a
minimum of the same order and the tunnelling point ϕR is of the same order of
the value of the field at the minimum of the potential. Therefore, by recalling our
discussion in Section 3.4, we can’t expect the same hierarchy between the critical
temperature and the nucleation temperature, which characterizes supercooling.
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On the numerical side, our computation can improved in several ways. Both for
the computation of the shooting parameter and for the nucleation temperature, we
have adopted the bisection method, however it is known that in the literature there
are root finding methods which are more accurate, such as the secant method.
Another improvement concerns the stability of our bounce solution in our first
computation, which depends on our initial choice of xmin and xmax, i.e. we don’t
have control on how our solution varies when we change these initial parameters.
Going beyond the thick-wall approximation, it would be interesting to apply the
shooting method prescribed in Appendix 6 of [104], where the boundary conditions
are improved by a Taylor expansion of the solution.
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Chapter 4

Baryogenesis and Gravitational
Waves from Dark Matter-Neutron
Oscillations

4.1 Introduction
If the signal detected by the PTAs is generated by a First Order Phase Transitions,
then the transition must occur below the GeV scale [27]. Therefore, our goal is to
look for a mechanism that produces the baryon asymmetry at this scale.
A possible low-scale baryogenesis mechanism was proposed in Ref. [68] by Torsten
Bringmann, James Cline and Jonathan Cornell. Their proposal belongs to the
class of baryogenesis scenarios that go under the name of darkogenesis. These
models attempt to link the baryon asymmetry to the existence of dark matter,
motivated by the so called coincidence problem. The coincidence problem is the
observation that the energy density of baryons is only 5 times smaller than the
energy density of Dark Matter (DM), i.e. [105]:

ΩCDM

ΩB

≃ 0.26

0.049
∼ 5 (4.1)

This coincidence suggests that there might be a mechanisms that generates an
asymmetry in both the visible and the dark sector, so DM would also be asym-
metric (see e.g. Ref. [106]). If that mechanism generates similar asymmetries,
then the coincidence of Eq. (4.1) further suggests that DM might have a mass at
the GeV scale. These asymmetries can be simultaneously generated in a cogenesis
scenario or they can be transferred in different ways, which fall mainly into two
categories: (dark) electroweak sphalerons and higher-dimensional or renormaliz-
able operators.
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In the darkogenesis model of Ref. [68], that is the starting point of this Chapter,
one of these operators connect the neutron with the DM particles, that from now
on we will call χ, with the neutron:

O6 =
χudd

Λ2
(4.2)

where Λ is the mediator mass scale. Below the QCD confinement scale (around 100
MeV), we obtain the unique relevant operator that could mix χ with the neutron
n:

Lmix = −δm n̄χ+ h.c. (4.3)

where δm is the mass mixing term. The existence of this operator, and thus
the mixing between the nuetron and DM, has been suggested as a possible solu-
tion [107] to the neutron lifetime anomaly, namely the discrepancy between the
measurement of the neutron lifetime from bottle measurements and beam mea-
surements [108].

In Ref. [68] it was pointed out that it is possible to generate the baryon
asymmetry at low temperatures around 30 MeV via oscillations between χ and n
that are resonantly enhanced by finite-temperature effects. Therefore, we have a
new asymmetry transfer mechanism between the dark and the visible sectors. We
will illustrate this idea in a dark sector with a U(1)′ gauge symmetry.

4.2 Generation of the baryon asymmetry

4.2.1 The model

In Ref. [109], it was proposed a simple model that could address the discrepancy
between the neutron lifetime measured from trapped neutrons versus those decay-
ing in flight by opening up a new decay channel n→ χA′, where χ is a dark Dirac
fermion, which can constitute a dark matter candidate, and A′ is a dark photon.
The low-energy effective Lagrangian is given by:

Leff = χ̄(iD −mχ)χ+ n̄(i∂ −mn + µnσ
µνFµν)n− 1

4
F ′
µνF

′µν

−1

2
m2

A′A
′µA′

µ − δmn̄χ− ϵ

2
FµνF

µν + h.c.
(4.4)

where Dµ = ∂µ − ig′A′
µ is the covariant derivative, with g′ the gauge coupling,

µn is the neutron magnetic moment and F ′µν is the field strength tensor for the
dark U(1)′ gauge interaction. We point out that χ is assumed to be a Dirac fermion
since if χ is a Majorana fermion then, in UV models, it is not stable beacuse it
would generically lead to dinucleon decays such as 16O(pp) →14 Cπ+π− [110].
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In Ref. [68], it was pointed out that the same model can also provide a low-scale
realization of baryogenesis, if suitably augmented with dark fermions and radiation
in order to be consistent with cosmological bounds. However, as stressed by the
same authors, using the much simpler original version of the model, presented in
Eq. (4.4), it is possible to explain the baryon asymmetry, giving up, however, the
possibility to explain the neutron lifetime anomaly.

Experimental constraints on the Kinetic Mixing Parameter In Eq. (4.4),
the last term kinetically mixes the photon of QED with the dark photon associ-
ated to the U(1)′ gauge symmetry. The mixing parameter ϵ is, in principle, a free
parameter of the theory since the above mixing term is a gauge invariant, renor-
malizable operator [111]. Here we summarise the constraints on ϵ for the masses
of our interests.
An upper bound comes from direct detection experiments measuring the scattering
interactions of DM off protons, with cross section:

σχ,P =
4α(g′ϵ)2µ2

pχ

m4
A′

(4.5)

where µpχ is the reduced mass of χ and the proton. The CRESST-III experiments
sets the limit g′ϵ ≲ 1.2 × 10−7 [112]. More constraining limits come from beam
dump experiments, where dark photons can be produced via bremsstrahlung when
a high-intensity beam of particles in sent on a fixed target and they are detected
via the leptons they decay into. The experiments at Orsay and E137 at SLAC
[113] limit ϵ ≳ 1.5× 10−5 or ϵ ≲ 4.2× 10−8 [114]. Moreover, further constraints on
the kinetic mixing come from the observation of the neutrino flux from supernova
1987A, which sets ϵ ≳ 4.7× 10−8 or ϵ ≲ 3.2× 10−10 [115].

Decoupling SM-Dark Sector It will be useful for later to give an estimate
for the chemical decoupling condition of the kinetic mixing operator from the
Standard Model interactions. The kinetic mixing term can be diagonalised by a
field redefinition of the form:

Aµ → Aµ − ϵAµ′
=⇒ eAµJ

µ
EM → eAµJ

µ
EM − ϵeA′

µJ
µ
EM (4.6)

where e is the usual QED electric charge and Jµ
EM is the electromagnetic current.

The relevant process is γ γ′ → e+ e−. If we assume that Tdec ≫ mA′ , then we can
estimate the cross section as:

σv ∼ 2

π2
T 3 (4.7)
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In the above limit, the density of dark photons in the plasma can be estimated
as:

nA′ ≃ 2

π2
T 3 (4.8)

where the factor 2 represents the number of degrees of freedom of the dark photon
in the unbroken phase. The interaction rate Γ is therefore given by:

Γ ∼ nA′σv ∼ 2

π2
T 3nA′σv ∼ 2

π2
T 3 =

ϵ2e4

2π3
T (4.9)

To see if we are in kinetic equilibrium with the Standard Model, we have to compare
Γ with the Hubble rate, which is given by:

H =
T 2g

1/2
∗

MPl

π√
30

(4.10)

where g∗ is the number of degrees of freedom (for the temperatures that we will
later consider g∗ = 10.25) and MPl = 2.4× 1018 GeV. Therefore:

Γ

H
∼ e4ϵ2

2π3
T

MPl

T 2g
1/2
∗

∼ 10−3

πg
1/2
∗

(
ϵ

10−10

)2

10−20 ×2.4×1018
GeV

T
∼ 10−5

g
1/2
∗

GeV

T
(4.11)

If we look at temperatures that are interesting for the PTAs signal, let’s say T ∼ 10
MeV, we have:

Γ

H
(T ∼ 10MeV) ∼ 10−6 GeV

10MeV
∼ 10−4 (4.12)

We learn that, when the dark U(1)′ PT happens, the SM is chemically decoupled
from the Dark Sector.

4.2.2 Baryogenesis: theoretical framework

The oscillations of χ into neutrons is controlled by a 2×2 Hamiltonian in the χ−n
space:

H =

(
∆En +mn δm

δm ∆Eχ +mχ

)
(4.13)

where δm is the mass mixing term in Eq. (4.3), mn and mχ are the masses of the
neutron and of χ, respectively. ∆En is the mass shift of the neutron due to its
elastic scattering on pions and it can be computed in different ways, but the most
reliable technique use dispersion relations, combined with experimental data, as
in Ref. [116, 117]. The results are presented in Fig. 4.1.
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Figure 4.1: Thermal mass shift ∆En from dispersion relations (blue line [117],
red line [116]) and chiral perturbation theory (green line [118]).Figure reproduced
from Ref. [68].

∆Eχ is the mass shift of DM χ due to the elastic scattering of χ on dark
photons. Following the technique of Ref. [119], one obtains [68]:

∆Eχ = g
′2T

2
A′

mχ

= g
′2 ξ

2T 2

mχ

(4.14)

Here we have introduce the ratio of the temperature between the two sectors:

ξ =
TA′

T
(4.15)

We know that ξ < 1 and it is independent of the details of the UV physics, since
the dark and the visible sectors are kinetically decoupled, as shown in Ref. [68].

We find the mixing angle θ by diagonalizing the Hamiltonian (4.13):

tan(2θ) =
2δm

∆m+∆En −∆Eχ

≡ 2 δm

δE
(4.16)

where ∆m ≡ mn −mχ. We define the difference between the eigenvalues:

|δω| =
√
(δE)2 + 4 δm2 (4.17)

To find the efficiency of χ − n oscillations, let’s use first simple quantum me-
chanical arguments. Suppose that we start with a state ψ(t = 0)⟩ = |χ⟩ and we
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evolve it with the Hamiltonian (4.13), leading to:

|ψ(t)⟩ = e−i(ω1+ω2)t/2

[(
cos

δω

2
t− i cos 2θ sin

δω

2
t

)
|χ⟩ − i

(
sin 2θ sin

δω

2
t

)
|n⟩

]
(4.18)

Therefore the probability of oscillating into a neutron is given by:

Pn(t) = sin2 (2θ) sin2 (δω t/2) (4.19)

However we have to consider that the neutrons interact with the pions in the bath,
therefore there might not be enough time to fully oscillate. Therefore, one usually
carries out a time average over the short time scale 1/Γn, where Γn is the rate of
interactions of neutrons on the heat bath of pions:

P̄n = Γn

∫ ∞

0

dt e−ΓntPn(t) =
2δm2

δω2 + Γ2
n

(4.20)

where sin2 2θ = δm2/(δm2 + δE2/4). The rate Γn is given by:

Γn = nπ⟨σnπv⟩ (4.21)

where nπ is the thermal density of pions. The thermal average velocity ⟨v⟩ is
computed as:

⟨v⟩ =

√
8T

(πmπ)
∼= 1.6

T

mπ

(4.22)

The cross section for neutrons to scatter on pions at low energy is [120, 121]:

σnπ = 4πa20
∼=

0.1

m2
π

∼= 2mb (4.23)

where the contributions from the I = 1/2 and 3/2 isospin scattering lenghts are
averaged as σ = 4π(a21/2 + 2a23/2)/3.

Ignoring the elastic scattering rate Γχ of DM on dark photons and scalar, which
is very small, the rate of production of neutrons via oscillations per χ particle, is
given by:

Γosc = P̄nΓn (4.24)

Similarly,the rate of production of χ per neutron must proceed with the same rate,
therefore the number density of χ decreases as:

ṅχ = −Γosc(nχ − nn) (4.25)
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In our model, χ carries baryon number Bχ = +1 and the total baryon number
is conserved, therefore the quantity nχ + nn is conserved. If we define:

f =
nn

nn + nχ

(4.26)

as the fraction of DM converting to neutrons, then:

ḟ = Γosc(1− 2f) (4.27)

which has the solution:

f =
1

2

(
1− exp

(
−2

∫
dtΓosc

))
∼=

1

2

(
1− exp

(
−2

∫
dT

T

ΓnP̄n

H

))
(4.28)

provided that Posc < 1. Here we adopt the following definitions: H = ρrad
1

3Mpl
,Mpl =

2.4× 1018 GeV and g∗ ∼= 10.75. We notice that:

Ωχ

ΩB

∼= 5.3 ⇔ 1− f

f
∼= 5.3 (4.29)

which implies that we need:
f ∼= 0.16 (4.30)

We define the resonance temperature Tr for which δE, which is dependent on the
thermal corrections, is equal to zero, i.e. δE(Tr = 0). At Tr the mixing is maximal,
although the oscillation probability is reduced by the damping from Γn, as in Eq.
(4.20). Now let us look at the integrand of Eq. (4.28). At Tr this quantity will
peak, therefore the baryon number generation will be dominated by the resonant
oscillations between χ and n. An example is presented in Figure 4.2.
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Figure 4.2: The integrand of Eq. (4.28), which represents the efficiency of the DM
conversion into neutrons, versus the photon temperature T , using ∆m = 0.105
MeV and δm = 1.05 × 10−10 MeV. In this case, the resonance temperature is
Tr ≃ 37MeV, for which we have renonant oscillations between χ and n. Figure
taken from [68].

In particular, the efficiency of the baryon asymmetry production, i.e. the inte-
grand in Eq. (4.28), will scale as δm2/Γn.

Boltzmann equations

A more rigorous way to study the relative abundances of χ and n is provided
by the density matrix formalism, as prescribed in Refs. [122, 123]. We define a
2 × 2 matrix, whose diagonal entries represent the number densities nn and nχ,
while the off-diagonal entries correspond to the superposition of quantum states
originated by the oscillations. As it is usually done, we introduce the comoving
densities Y ≡ n/s, where s is the total entropy density of the Universe. We follow
the evolution in terms of the independent, dimensionless variable x ≡ mn/T .
Therefore, we introduce the comoving number density matrix:

Y (x) =

(
Y11(x) Y12(x)
Y21(x) Y22(x)

)
(4.31)

where Y11 ≡ Yn, Y22 ≡ Yχ, Y12 ≡ Y11 + Y22,Y21 ≡ Y11 − Y22.
The evolution equation for the density matrix Y reads:

dY

dx
= − i

Hx
[H, Y ]− Γn

2Hx
[Pn, [Pn, Y ]]− Γχ

2Hx
[Pχ, [Pχ, Y ]] (4.32)
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where Pn,χ are the projectors over the neutron or DM, respectively. On the right
hand side, the first term accounts for oscillations, while the other two for the
scattering processes in the thermal plasma. Eventually one obtains:

dY

dx
= − i

Hx

(
−δmY− −δm δY + δE Y12

δm δY − δE Y21 δmY−

)
− Γn + Γχ

2Hx

(
0 Y12
Y21 0

)
(4.33)

where we have defined δY ≡ Y11−Y22 = Yn−Yχ, Y± = Y12±Y21. In the following,
as we have done before, we will neglect Γχ since it is much smaller than Γn.
We will recast the equations in terms of δY ,Y+ and η ≡ iδmY−:

δY ′ =
2

Hx
η−, (4.34)

η′− =
δm

Hx
(−2δm δY + δE Y+)−

Γn

2Hx
η−, (4.35)

Y ′
+ = − δE

δmHx
η− (4.36)

We integrate this system with initial conditions Y22 = Y ∞
X and Yij = 0 for the

other components. Since Y11 + Y22 is conserved, the fraction of DM that converts
to neutrons is:

f =
Y11
Y ∞
χ

= 1− Y22
Y ∞
χ

(4.37)

4.2.3 Parameter space

We can plot in the δm − ∆m plane the parameter space that reproduces the
correct baryon asymmetry, as in Figure 4.3. As we have noticed before, the baryon
asymmetry will scale as δm2/Γn. If we increase ∆m, the resonance temperature
will increase, and so will Γn, because of the higher density of pions. This implies
that δm must increase with ∆m to keep the baryon asymmetry constant.
Therefore the baryon asymmetry depends mainly on ∆m and δm, with a weak
dependence on the combination g′ξ.
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Figure 4.3: Parameter Space of the model presented in Ref. [68] in the δm−∆m
plane, where δm is the mass mixing term and ∆m = mn−mχ. The black solid lines
give the observed baryon asymmetry for different values of g′ξ. The blue shaded
area is excluded from n → χγ The red (orange) solid lines indicate the values
of δ m to explain the neutron lifetime anomaly, assuming mA′/g′ = 60MeV for
g′ = 0.002(0.001), while the red (orange) dashed lines are obtained using mA′/g′ =
30MeV instead. For more details, see the main text.

The black contours give the correct baryon asymmetry, i.e. Eq (4.30), for
different values of g′ξ using both Eq (4.28) and (4.37). The difference between the
predictions obtained using the two different equations is small, therefore showing
a good agreement between the two different approaches. The blue area is excluded
from the null searches for the decay n → χγ, whose branching ration must be
≲ 0.17 times the 0.9% needed to resolve the lifetime discrepancy [124]. This
implies:

δm ≲ 5× 10−11MeV

(
11MeV

∆m

)1/2

(4.38)

We find that ∆m ≲ 0.2 MeV to generate the correct baryon asymmetry, as can
been easily seen in Figure 4.3.

In Fig. 4.3 there are two different benchmark points, named BM1 (whit ∆m =
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0.105MeV, δm = 1.05 × 10−10MeV) and BM2 (with ∆m = 0.15MeV, δm =
1.12 × 10−10MeV), that reproduces the baryon asymmetry. In the former case,
the values g′ = 0.001 (0.002) are chosen such that the same model, augmented
with new interactions in the dark sector, is able to also solve the neutron lifetime
anomaly. For more details, again we refer the reader to Ref. [109].

4.3 U(1)′ Phase Transition

4.3.1 The UV model

We want to build a UV model that in the low-energy limit reproduces the La-
grangian (4.4), following Ref. [109]. We demand that the mass of the dark photon
originates via the Higgs mechanism, when the complex scalar ϕ gets its VEV. The
terms of the Lagrangian are constrained by the gauge symmetries of the theory.
In order to have renormalizable interaction of χ with the quarks, we introduce
a triplet scale Φ1, which is also charged under U(1)′. Moreover, we introduce a
second triplet scalar Φ2, neutral under U(1)′ which couples to other quarks in the
neutron and we need to introduce a trilinear scalar interaction:

µΦ1,aΦ
∗a
2 ϕ (4.39)

where µ is a constant with unit mass. Finally, to satisfy the SU(2)L symmetry,
the scalar triplets couple only to the right-handed quarks:

λ1d̄
aPLχΦ1,a + λ2ϵ

abcūCa PRdbΦ2,c (4.40)

where λ1 and λ2 are two dimensionless coupling constants. The triplet scalars can
decay into two jets or a jet plus missing energy and then, to satisy LHC constraints
on their detection, their mass should be larger than about a TeV [125]. Therefore
we can integrate them out, obtaining the following effective operator:

λ1λ2µ

m2
Φ1
m2

Φ2

ϕ ϵabc(ūCa PRdb)(χ̄PRdc) (4.41)

When ϕ gets a VEV, the above term fixes the coefficient of the n− χ oscillations:

δm =
λ1λ2β⟨ϕ⟩µ
m2

Φ1
m2

Φ2

∼ 10−10MeV (4.42)

where β = 0.014GeV3 from the lattice matrix element ⟨0|udd|0⟩ [126].
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4.3.2 Scale-invariant potential and phase transition

So far, we have reviewed the model as presented in [68]. We now introduce a
novelty with respect to [68], i.e. we assume that the potential of the scalar ϕ is
classically scale invariant, i.e. without a bare mass term, and that the VEV of ϕ
arises from the radiative corrections, as in the original Coleman-Weinberg model
[90]. Namely, the potential is:

V = λϕ4 (4.43)

We will now compute the one-loop corrections to the potential à la Coleman-
Weinberg, introducing the constant field background ϕc. The full details of the
computation of the Effective Potential are reported in Appendix A.
Since we have integrated the heavy scalar triplets out, they will not contribute to
the calculation and we are left with the contributions from the scalar ϕ and the
gauge boson A′. We write the complex scalar in terms of its real and imaginary
component:

ϕ =
φr + φi + ϕc√

2
(4.44)

The field-dependent masses for the real and imaginary components of ϕ are,
respectively:

m2
r(ϕc) = 3λϕ2

c (4.45)
m2

i (ϕc) = λϕ2
c (4.46)

while for the gauge boson A′ we have:

m2
A′(ϕc) = g′2ϕ2

c (4.47)

In the end, the one-loop effective potential at T = 0, computed using the dimen-
sional regularization and the M̄S renormalization scheme, is:

Veff (ϕc) = λϕ4
c +

1

64π2

[
3mA′(ϕc)

4

(
log

m2
A′(ϕc)

M2
− 5

6

)
+m4

r(ϕc)

(
log

m2
r(ϕc)

M2
− 3

2

)
+m4

i (ϕc)

(
log

m2
i (ϕc)

M2
− 3

2

)] (4.48)

where M in an arbitrary renormalization scale, which has not an effect on the
physics of the model. Indeed, if we change the renormalizaion scale in M → M ′,
we can always redefine the coupling constants and the potential: it is a change in
the parametrization, not in the physics.
Following the method in Ref. [90], since M is arbitrary, we can choose it to be at
the location of the minimum, ⟨ϕ⟩ = v√

2
. Therefore, by imposing that:

V ′(⟨ϕ⟩) = 0 (4.49)
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we find the values of λ for which we have the desired minimum, yielding the
necessary δm for the generation of the baryon asymmetry below the GeV scale, as
shown in Eq. 4.42. In Fig. 4.4 we show, as an example, the plot of the Effective
Potential at one-loop for v = 60MeV and g′ = 0.6.

10 20 30 40 50 60
ϕ[MeV]

-1000

-500

500

1000

1500

V(ϕ)
Effective Potential at One Loop with v=60 MeV and g'=0.6

Figure 4.4: Effective Potential at One-Loop given by Eq. (4.48)
for v = 60 MeV, g′ = 0.6 and λ computed as prescribed in the main text, using

the condition Eq. (4.49).

After symmetry breaking, the VEV of ϕ gives the dark photon a mass such
that:

v√
2
=
mA′

g′
(4.50)

Constraints on the values of v come from neutron stars: the mixing between n and
χ allows the former to convert in DM, softening the Tolman-Oppenheimer-Volkoff
equations, which determine the structure of neutron stars, such that the possible
maximal mass of a neutron star is lower than the largest observed masses, close
to 2M⊙. A possible solution is given by repulsive self-interactions between DM,
which could arise in our model as Coulombian repulsion since χ is charged under
U(1)′. In Ref. [109] it was computed that it is possible to obtain a 2M⊙ mass
neutron star if:

mA′

g′
≲ 45− 60MeV (4.51)

By direct computation, we find that the generation of the desired VEV depends
critically on the value of g′. If the values of g′ are very small, i.e. g′ ∼ 10−3,
we can’t find real values of λ that generate the required VEV to explain the
baryon asymmetry, therefore excluding the possibility of reproducing the baryon
asymmetry for the values of the line g′ξ = 0 in Figure 4.3. For the same reason,
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the values g′ ∼ O(10), which would place us on the line g′ξ = 1, are not a viable
option.
On the other hand, considering g′ξ = 0.5, hence g′ > 0.5, we are able to find small
values of λ such that the radiative corrections generate the required VEV. The
results are represented in Figure 4.5 for v = 60 MeV.

v=60 MeV

0.6 0.7 0.8 0.9 1.0 1.1
g'

0.0005

0.0010

0.0015

λ

Figure 4.5: Values of λϕ as a function of the gauge coupling g′ that allow the
generation the VEV of the Dark Higgs scalar ⟨ϕ⟩ = v/

√
2 such that we generate

the correct value of the baryon asymmetry. Here we take v = 60MeV

4.4 Gravitational Wave Signal
The formation of a deeper, true minimum of the potential due to the interaction
within the dark sector leads to the decay of the false vacuum, hence a phase tran-
sition occurs. This is the famous Coleman-Weinberg model [90], which provides
a simple weakly-coupled realization of a supercooled phase transition. Therefore,
we can now compute the parameters that characterize the phase transition, as
introduced in Section 3.3: the nucleation temperature Tnuc, the strength of the
phase transition α and the timescale of the phase transition βH . Here we will not
compute the wall velocity vw.

4.4.1 Finite temperature corrections

A potential that leads to a supercool phase transition is flat around the origin
and the finite temperature effects become important [127]. More in general, if
we want to compute the tunnelling potential, we consider the full temperature
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dependent potential, where the finite temperature corrections are given by Eq.
(3.31). However, the problem is actually simpler at small temperatures and we
can avoid computing the correction as in Eq. (3.31), since the dynamics of the
phase transitions can be described using the high temperature expansion, as we
will discuss more in detail later. In our model, we only need to consider the
contribution from the gauge boson, since the contributions from the scalar are
negligible with respect to the gauge boson because of the smallness of the quartic
coupling λ. If the gauge coupling is the only relevant coupling of the model, then,
using Eq. (3.33), we can write the potential at finite temperature as follows :

VT ̸=0(ϕ) = 3
m2

A′

64π2
log

m2
A′

M2
− 3

m
′2
A

64π2
log

(
m2

A′

T 2 ab

)
− 1

4
m3

A′
T

2π2
+

1

8
g′2T 2ϕ2 (4.52)

where the last three terms are the thermal corrections and we have defined mA′ ≡
mA′(ϕ) to simplify the notation. We recall that ab = π2 e3/2−2γE , where γE is the
Euler-Mascheroni constant.
Now let us focus on the logarithmic terms of the above expression. We can simplify
the expression in the following way:

3
m

′2
A

64π2
log

m2
A′

M2
− 3

m
′2
A

64π2
log

(
m2

A′

T 2 ab

)
= −3

m
′2
A

64π2
log

(
M2

T 2 ab

)
(4.53)

We define the energy scale:

B =
M
√
ab

(4.54)

Here we notice that any logarithmic dependence on the field disappeared because of
the cancellation between the logarithmic piece due to radiative corrections and the
logarithmic piece in the high temperature expansion of the thermal functions. This
is a common feature of the potentials that lead to a supercool phase transitions.
We recall that M is an arbitrary renormalization scale, which we decide to set it
to the vacuum expectation value of the field. In the end, we can define:

m2(T ) =
1

4
g′2T 2 (4.55)

δ(T ) =
3

4π
g′3T (4.56)

λ(T ) =
3

8π2
g′4 log

(
T

B

)
(4.57)

and rewrite the potential as follows:

V (ϕ) =
1

2
m2(T )ϕ2 − δ(T )

3
ϕ3 +

λ(T )

4
ϕ4 (4.58)
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The relevant effect of the finite temperature corrections will be to introduce a
quadratic positive curvature for T > 0, turning the local minimum into a local
metastable minimum and ensuring that the transition is of the first order. Let us
explain why it is a good approximation at small T . Let us take the logarithmic
piece of the gauge boson in Eq. (4.48). We can write it in the following way:

log

(
g′ϕ

µ

)
= log

(
g′ϕ

√
ab T

)
+ log

(
T
√
ab

µ

)
= log

(
g′ϕ

√
ab T

)
+ log

(
T

M

)
(4.59)

For very small T , i.e. for large supercooling,the second term log(T/M) becomes
large and it dominates over the other piece. The effective quartic coupling is neg-
ative and proportional to the logarithm, driving the tunnelling process. When the
logarithm is large, the barrier ends at ϕ sufficiently small that the high tempera-
ture expansion is a good approximation, hence Eq. (4.48) is valid for our scopes
[127].

4.4.2 Bounce solution

We are now ready to compute the nucleation temperature. As we have discussed
in Chapter 3, the expression of the tunnelling rate per unit volume Γ depends
on whether the nucleation of the bubbles of true vacuum are induced by thermal
effects or by quantum effects, or, in other words, if the field tunnels via O(3)
or O(4) solutions, respectively. It has been proven in Ref. [128] that, for the
Coleman-Weinberg potential, the tunneling rate is dominated by O(3). For the
computation, we will follow the approach presented in Ref. [128].
We can write the nucleation condition Eq. (3.12) as follows:

Γ(Tnuc) = H4(Tnuc) =⇒
S3

Tnuc
= 4 log

H

Tnuc
(4.60)

where we have considered the approximation:

Γ = T 4 e−S3/T (4.61)

where we have dropped the prefactor (S3/2πT )
3/2, which allows us to derive ana-

lytical results, without significant changes in the results.
The bounce action can be written as a product of a single parameter dimensionless
function S̃d(κ) and a scaling coefficient, which depends on a combination of the
thermal mass, cubic or quartic couplings. To find the expression of the dimension-
less action, we exploit the reparameterization invariance of the the bounce equation
Eq. (3.4). We perform a rescaling of the field and a change of coordinates:

r → Lρ (4.62)
ϕ→ ζφ (4.63)
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In this way we obtain the dimensionless action S̃d and the scalar potential Ṽ :

Sd = ζ2 Ld−2ZϕS̃d (4.64)

V (ϕ) = ζ2 L−2 ZϕṼ (φ) (4.65)

where Zϕ is the wave-function renormalization, which, for the weakly coupled
theories Zϕ ≃ 1, neglecting 1-loop correction to the wave function. Now, the
above reparemeterization allows us to write the potential as a function of single
parameter. If we take:

ζ =
m2(T )

δ(T )
, and L =

1

m(T )
(4.66)

the dimensionless potential derived from Eq. (4.58) reads:

Ṽ (φ, T ) =
1

2
φ2 − 1

3
φ3 +

κ(T )

4
φ4 (4.67)

with:
κ(T ) ≡ λ(T )m2(T )

δ2(T )
(4.68)

where −∞ < κ(T ) < κc, with κc ≡ κ(Tc) = 2/9 and Tc is the critical temperature.
In our case, the expression of κ takes quite a simple form:

κ(T ) =
1

6
log

(
T

B

)
(4.69)

The bounce solution can be deduced for all values of κ by fitting S̃3(κ) using
analytical know solutions for special values of κ.
We can then relate S̃3(κ) with S3(T ) via the relation:

S3(T ) =
m3(T )

δ2(T )
S̃3(κ) (4.70)

by plugging Eq. (4.66) in Eq. (4.64). In the end, we obtain:

S3

T
≃


4π3

27g′3
1

(k−kc)2
B̄3(κ) κ > 0

3π3

g′3

(
1+e−1/

√
|k|

1+ 9
2
|κ|

)
κ < 0

(4.71)

where we have defined:
B̄3(κ) ≡

16

243
B+

3 (κ) (4.72)
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using the fitting function

B+
3 = 1−38.23

(
κ− 2

9

)
+115.26

(
κ− 2

9

)2

+58.07
√
κ

(
κ− 2

9

)2

+229.07κ

(
κ− 2

9

)2

(4.73)
Since we expect the nucleation temperature Tn to be smaller than M , we consider
the case κ < 0. Therefore,in vacuum domination, the nucleation condition Eq.
(4.60) reads:

3π3

g3

(
1 + e−1/

√
|kn|

1 + 9
2
|κn|

)
= 4 log

(
B

HV

)
− 24|κn| (4.74)

where we have defined κn ≡ κ(Tn) = 1/6 log(Tn/B) and HV is the contribution to
the Hubble rate due to the vacuum energy, namely:

H2
V =

∆V0
3M2

pl

(4.75)

where ∆V0 is the the potential energy difference between the two minima at zero
temperature and Mpl = 2.4 × 1018GeV. Using Eq. (4.74), we can compute the
nucleation temperature for the model. Here we want to point out that,in literature,
there are other analytical formulas to compute the nucleation temperature (see e.g.
Ref. [85, 129]), which, however, were derived without considering the cubic term
in the high temperature expansion. Nevertheless, these formualas are valid only
when |kn| ≫ 1, which is a situation that is not realized in our parameter space.

4.5 Results

4.5.1 Computation of the Phase Transition Parameters

We are now ready to compute the parameters of the phase transition.

Nucleation Temperature

We can compute the nucleation temperature using Eq. (4.74). The results of
the nucleation temperature, as a function of the gauge coupling g′, computed for
different values of the VEV are represented in Figure 4.6
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Figure 4.6: Nucleation temperature, as a function of the gauge coupling g′

Here we notice that for not all the values of the gauge coupling of the model
presented in Section 4.3.1 we are able to achieve temperatures of the order of a
O(0.1− 10) MeV. In fact, the formula Eq. 4.74 breaks down above g′ ∼ 0.7 since
the nucleation temperature will reach the value of the critical temperature and we
will not be in vacuum domination, but rather in radiation domination.

Phase transition Strength α

We can compute the phase transition strength, using Eq. (3.15), that we rewrite
here for our model:

α =
∆V0

ρrad(Tnuc)
(4.76)

where:
ρrad(T ) =

π2g∗
30

T 4 (4.77)

with g∗ = 10.25 + 2, where we added two degrees of freedom, that come from the
dark scalar ϕ in the unbroken phase,to the SM degrees of freedom. The results, as
a function of the gauge coupling,are reported in Figure 4.7.
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Figure 4.7: Phase transition strength, as a function of the gauge coupling g′

We see that the strength of the phase transition decreases exponentially with
the gauge coupling.

Phase Transition Rate

The last parameter that we have to compute is the phase transition rate βH . Since
the O(3) tunnelling rate is dominating, the formula will read:

β

Hn

= T
d(S3/T )

dT

∣∣∣∣
Tnuc

(4.78)

The results are reported in Figure 4.8.
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Figure 4.8: Phase transition rate, as a function of the gauge coupling g′

We notice that the duration of the phase transition decreases linearly with the
gauge coupling.

4.5.2 Comparison with the PTAs data

Now that we have computed the thermodynamics parameters of the Phase Transi-
tion in our model, we can ask ourselves if they could be compatible with the GW
signal observed at PTAs. By combining data from two or more PTAs data, the
possibility of a FOPT generating the GW signal has been scrutinized in the last
year, see. e.g. Ref. [130, 131].In particular, a general finding of the analysis in
Ref. [131], is that the phase transition has to be strong or moderately strong, i.e.
α ≳ 0.3 and relatively slow, i.e. β/Hn ≲ 100, in order to be compatible with the
GW signal. The analysis in Ref. [131] is, to our knowledge, the most accurate
analysis so far, since it combines data from three different PTAs collaborations
(NANOGrav, PPTA and EPTA), while previous studies relied only on either one
or two sets of data. Moreover, by means of a frequentist approach to the analysis,
the results don’t depend strongly on prior assumptions on the phase transition
parameters, which was an issue of Bayesian analysis of the signal (see e.g. Ref.
[132]).
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Figure 4.9: Confidence regions (68%, 95%) for a strong FOPT (left panel) and
a FOPT in a dark sector (right panel) from the fits of the PTAs signal in Ref.
[131]. The fits were done by considering the thin-wall and the thick-wall regime
of vacuum tunnelling. The confidence regions for these two regimes are showed
separately in blue and orange, respectively. Figure taken from Ref. [131].

Therefore, our results are compatible with this analysis and offer an interesting
staring point for a more sophisticated analysis of the parameter space of the model.

59



Chapter 5

Conclusions

In this thesis we have proposed a low scale baryogenesis model that relies on a
U(1)′ supercooled phase transition that occurs below the GeV scale in order to
explain the gravitational wave signal observed by pulsar timing arrays.

In Chapter 2, we have first reviewed the problem of the baryon asymmetry
and explained the current and past baryogenesis theories. In particular, we have
stressed why it is worth to explore low scale baryogenesis models: on the one hand,
they are motivated by theories that predict a low reheating temperature, on the
other hand they could be tested in different experimental facilities in the next
decade.
In Chapter 3 we reviewed Cosmological First Order Phase Transitions, building
the basic toolkit to study them. Moreover, we introduced supercooled phase tran-
sitions. We have provided two explicit realizations of BSM theories that lead to a
FOPTs: an Effective Field Theory with a dimension 6 operator |H|6 (where H is
the SM Higgs doublet) and a theory with a strongly coupled sector, that gives rise
to a light dilaton potential. For these two models we have computed the nucleation
temperature and highlighted the difference between them: the light dilaton poten-
tial leads to a supercooled phase transition, and thus a different phenomenology
with respect to the EFT-induced phase transition.
In Chapter 4 we have presented our original proposal. First we have reviewed the
baryogenesis model presented in Ref. [68]. In the model, we introduce a dark
Dirac χ dark matter candidate and a dark photon A′, which obtains its mass from
a dark U(1)′ Higgs mechanism. We go beyond Ref. [68] by supposing that the
dark Higgs potential is classically scale invariant and that the VEV of the Dark
Higgs, which the baryon asymmetry strongly depends on, gets generated via ra-
diative corrections. This is the famous Coleman-Weinberg model, which gives rise
to a supercooled phase transition. We find that for values of the VEV around or
below ∼ 42 MeV and gauge couplings g′ ≲ 0.7, the phase transition parameters
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(Tnuc, α, βH) could explain the GW signal observed last year by PTAs.

Our analysis can be improved in different ways. A possible improvement and
test of the reliability of the results would be to compute the bounce solution, which
enters in the computation of the parameters of the phase transition, by means of
an original numerical code or existing numerical routines.
Furthermore, in order to constraint the parameter space of the model, it could be
interesting to analyze the impact of the phase transition on BBN and the CMB.
In fact, it is known (e.g. see Refs. [132, 133, 134]) that supercool phase transitions
occuring around or below a few MeV can modify the number of relativistic effective
degrees of freedom Neff , subsequently changing the primordial abundances of light
elements and the power spectra that are measured by the CMB experiments. Our
results in Figure 4.6, show that the nucleation temperature can indeed be around
or below a MeV, therefore a quantitative study of the parameter space satisfying
BBN and CMB constraints could be a further direction of this work.

In conclusion, this work provided a new explanation of PTAs signal, connect-
ing for the first time, the possible GW signal with the generation of the baryon
asymmetry. Furthermore, this work shows how PTAs experiments, and more in
general GWs observations, provide a new way to probe the dynamics of hidden
sectors. In particular, we have provided a new way to test low scale baryogenesis
models.
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Appendix A

The Effective Potential

Here we first review how to compute the effective action and the effective potential
at one loop, following mainly Refs. [104, 135]. Then, we will illustrate the most
important steps for the computation of our model in the main text.

A.1 Theoretical Framework

A.1.1 Effective Action and Effective Potential

Let’s consider the Lagrangian density L(Φ, ∂µΦ), describing the theory of a real
scalar field Φ, which is coupled to an external source J(x):

L → L+ J(x)Φ(x) (A.1)

The generating functional Z[J ] is usually written in terms of a functional W [J ]
as:

Z[J ] = ⟨0|0⟩J ≡ eiW [J ] =

∫
DΦ ei

∫
d4 x[L(Φ,∂µΦ)+JΦ] (A.2)

W [J ] is called the connected generating functional since its derivatives with respect
to iJ at J = 0 give the connected Green’s functions of the theory and it can be
Taylor expandend as follows:

W [J ] =
∑
n

in

n!

∫
d4 x1 . . . d

4 xnG
(n)(x1, . . . , xn)J(x1) . . . J(xn) (A.3)

where G(n) denotes the n- point connected Green’s functions, which are computed
as the sum of all connected Feynman diagrams with n external lines.

Now,consider the functional derivative of W [J ] with respect to J(x):

δ

δJ(x)
W [J ] = i

δ

δJ(x)
logZ = −

∫
DΦ ei

∫
(L+JΦ)Φ(x)∫

DΦ ei
∫
(L+JΦ)

(A.4)
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Then we define the classical field ϕc(x) as:

ϕc(x) ≡
δ

δJ(x)
W [J ] =

⟨0|Φ(x)|0⟩J
⟨0|0⟩J

(A.5)

where the right hand side is the vacuum expectation value in the presence of a
nonzero source J(x).
We introduce the effective action Γ[ϕc] defined as Legendre transformation ofW [J ]:

Γ[ϕc] = W [J ]−
∫

d4 x J(x)ϕc(x) (A.6)

We can expand the effective action as follows:

Γ[ϕc] =
∞∑
n=0

1

n!

∫
dx1 . . . dxn Γ

(n)(x1, . . . , xn)ϕc(x1) . . . ϕc(xn) (A.7)

The coefficients Γ(n) can be shown to correspond to the one-particle irreducible
(1P1) Green’s functions of the theory. Then we compute:

δΓ[ϕc]

δϕc

=

∫
d4y

δW [J ]

δJ(y)

δJ(y)

δϕc(x)
− J(x)−

∫
d4y

δJ(y)

δϕc(x)
ϕc(y) = −J(y) (A.8)

or, equivalenty,
δΓ[ϕc]

δϕc

∣∣∣∣
J=0

= 0 (A.9)

The spontaneuos symmetry breaking takes place when the classical field that min-
imize the effective action is different from zero.
We can compute the effective action by expanding in powers of the external mo-
menta, for which we need to consider the Fourier transforms of the functions
Γ(n)(x1, . . . , xn) (which are the 1P1 Green functions):

Γ(n)(x1, . . . , xn) =

∫
d4p1
(2π4)

. . .
d4pn
(2π4)

ei(p1x1+···+pnxn)

×(2π)4δ(p1 + · · ·+ pn)Γ̃
(n)(p1, . . . , pn)

(A.10)

and expand Γ̃(n) in powers of momenta around pi = 0:

Γ̃(n)(p1, . . . , pn) = Γ̃(n)(0) + . . . (A.11)

Thus, the effective action reads:

Γ[ϕc] =
∞∑
n=0

1

n!

∫
dx1 . . . dxn ϕc(x1) . . . ϕc(xn)

∫
d4p1
(2π4)

. . .
d4pn
(2π4)

ei(p1x1+···+pnxn)

×
∫

d4x e−ix(p1+···+pn)[Γ̃(n)(0) + . . . ] =

∫
d4x

∞∑
n=0

1

n!
Γ̃(n)(0)ϕn

c (x) + . . .

(A.12)
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The first term of the expansion is written as:

−
∫

d4xVeff (ϕc) (A.13)

where we finally define the effective potential :

Veff (ϕc) = −
∞∑
n=0

1

n!
Γ̃(n)(0)ϕn

c (A.14)

The condition that Γ[ϕc] has an extremum is given by:

dVeff (ϕc)

dϕc

= 0 (A.15)

This result tells us that we can find the minimum of the theory, taking into account
quantum corrections, via the minimization of a simple function.

The Background Field Method

Now we review how to compute the Effective Potential using the background field
method. We consider the Lagrangian density for a scalar field Φ:

L(Φ, ∂µΦ) =
1

2
∂µΦ∂

µΦ− V (Φ) (A.16)

where V (Φ) is the tree level potential. We write the scalar field Φ as the sum of a
background field ϕc(x) and η(x) as a dynamical field, accounting for the quantum
fluactuations. The expontent of Eq. (A.2) takes the form:∫

d4x(L+ JΦ) =

∫
d4 x(L[ϕc] + Jϕc) +

∫
d4x η(x)

(
δL
δΦ

+ J

)

+
1

2

∫
d4x d4y η(x)iD−1(ϕc, x− y)η(y) + . . . (A.17)

with

iD−1(ϕc, x− y) =
δ

δΦ(x)

δ

δΦ(y)

∫
d4z[L[Φ] + J(z)Φ(z)]|Φ=ϕc

= [−∂2 − V ′′(ϕc(x))]δ
(4)(x− y)

(A.18)

is the inverse propagator in configuration space evaluated at Φ = ϕc. Here the
functional derivatives of L are evaluated at ϕcl(x). The linear term in η vanishes.

65



We keep only the quadratic term in η (the higher order terms represent perturba-
tive corrections). This term is essentially a Gaussian integral. Therefore we can
solve Eq. (A.2), using the invariance of the path integral measure DΦ = Dη as
follows:

eiW [J ] ≃ ei
∫

d4x[L(ϕc)+J(ϕc)]

∫
Dη exp

(
i

2

∫
d4xd4yη(x)iD−1(ϕc, x− y)η(y)

)
= N ei

∫
d4x[L(ϕc)+J(ϕc)][det iD−1(ϕc, x− y)]−1/2

(A.19)

up to an irrelevant renormalization constant N . By replacing Eq.(A.19) in the
definition of the effective action, Eq. (A.6) , we obtain:

Γ[ϕc] = S[ϕcl] +
i

2
log detD−1(ϕc, x− y) (A.20)

where
S[ϕc] =

∫
d4xL(ϕc, ∂µϕc) (A.21)

The effective potential is obtained by evaluating (A.20) for a space-time indepen-
dent classical field configuration, that here we denote with ϕc:

−V4Veff(ϕc) = −V4V0(ϕc) +
i

2
log detiD−1(ϕc, x− y) (A.22)

with −V4 ≡
∫
d4x ad the space-time volume, that stems from the fact that ϕc

is space-time independent. Moreover, the homogeniety of ϕc allows us to use the
following identity:

log det iD−1(ϕc, x− y) = tr log iD−1(ϕc, x− y) (A.23)

We evaluate the functional trace, denoted by tr, by setting x = y and integrating
over the space-time. This gives:

log det iD−1(ϕc, x− y) = V4 log iD−1(ϕc, 0) = V4

∫
d4 k

(2π)4
log iD̃−1(ϕc, k) (A.24)

where D̃−1(ϕc, k) denotes the four-dimensional Fourier transform of D−1(ϕc, x−y).

For a generic quantum field theory, where have a number n of fields interacting
with Φ, the formula for the one-loop effective potential is given by:

Veff(ϕ) = V0(ϕ) + i
∑
n

ηn

∫
d4 k

(2π)4
Tr log iD̃−1(ϕc, k) (A.25)
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The trace acts on all internal indices,i.e. Lorentz or gauge and therefore we use the
symbol Tr to distinguish it from the functional trace tr. The factor ηn is the power
of the functional determinant from the gaussisan path integral and it is given by:

ηn =

{
−1

2
bosonic fields

+1 fermionic fields
(A.26)

A.1.2 U(1)’ phase transition

Now we are going to compute the one-loop effective potential for our model using
the background field method. The relevant terms in the Lagrangian are:

L = Lϕ + LA′ (A.27)

with:
Lϕ = (Dµϕ)

†(Dµϕ)− λϕϕ
4 (A.28)

LA′ = −1

4
F ′
µνF

′µν (A.29)

where ϕ is the dark Higgs scalar, F ′
µν = ∂µA

′
ν − ∂νA

′
µ is the field strength tensor

of the U(1)′ gauge symmetry, with associated gauge boson A′
µ and the covariant

derivative Dµ = ∂µ − ig′A′
µ. We notice that:

−1

4
(∂µA

′
ν − ∂νA

′
µ)(∂

µA
′ν − ∂νA

′µ) = −1

4
(∂µA

′
ν∂

µA
′ν − ∂µA

′
ν∂

νA
′µ

−∂νA′
µ∂

µA
′ν + ∂νA

′
µ∂

νA
′µ)

(A.30)

which, by integrating by parts, can be rewritten as follows:

LA′ = −1

2
[A

′µ(gµν∂
2 − ∂µ∂ν)A

′ν ] (A.31)

Let the background value of the complex scalar be ϕc. By the assumption of
Poincarè symmetry, ϕc must be a constant. For the same reason, the background
value of the vector field A′

µ must vanish. Then we have:

ϕ =
φr(x) + iφi(x) + ϕc√

2
(A.32)

where φr(x), φi(x) and A′
µ(x) are the fluctuating fields. In the following, the

space-time dependence of the these fields will be implicit. Performing the shift
given by eq. (A.32) and keeping only the quadratic terms, after a straightforward
computation, we obtain:

L(2) =
1

2
A′

µ(g
µν∂2 + g

′2ϕ2
c − ∂µ∂ν)A′

ν +
1

2
φr(−∂2 − 3λϕ2)φr +

1

2
φi(−∂2 − λϕ2)φi

(A.33)
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We immediately read off the expressions of the field dpeendents masses:

m2
A′(ϕ) = g

′2ϕ2
c (A.34)

m2
φi
(ϕ) = λϕ2

c (A.35)

m2
φr
(ϕ) = 3λϕ2

c (A.36)

and, as described in the previous section, the expression of the inverse propagators
in momentum space are given by:

iD̃−1
k = −k2 +m2

k(ϕ) (A.37)

where k = {φi, φr, A} identifies the field. To solve the integral in momentum space
of Eq. (A.25), we work in dimensional regularization with d = 4− 2ϵ. We have to
solve integrals of the form:

− i

2
µ2ϵ

∫
ddk

(2π)d
log [−k2 +m2(ϕ)] (A.38)

where µ is a mass parameter introduced to keep the correct dimension of the
potential 1. This loop integral can evaluated after a Wick rotation (see for example
Ref. [135]),giving the following result:

− i

2
µ2ϵ

∫
ddk

(2π)d
log [−k2 +m2(ϕ)] =

1

4

m2(ϕ)

(4π)2

(
log

m2(ϕ)

µ2
− 3

2
−∆ϵ

)
(A.39)

where we have introduced the modified minimal subtraction (MS) term:

∆ϵ =
1

ϵ
− γE + log 4π (A.40)

with γE is Euler-Mascheroni constant. After the ϵ-expansion and the renormal-
ization in the MS scheme, taking into account the degrees of freedom of each field
nk = {1, 1, 3}, the one-loop contribution to the effective potential reads:

V
(1)
eff (ϕc) =

1

64π2

[
3mA′(ϕc)

4

(
log

m2
A′(ϕc)

M2
− 5

6

)
+m4

r(ϕc)

(
log

m2
r(ϕc)

M2
− 3

2

)
+m4

i (ϕc)

(
log

m2
i (ϕc)

M2
− 3

2

)] (A.41)

1In the main text the scale µ is denoted as M , to distinguish it from the trilinear coupling in
the UV model
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