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Abstract

In this thesis we study the detectability at colliders of long-lived particles (LLP)
which, at the early stages of the Universe, dominate its energy density and decay
injecting entropy in the thermal bath, thus diluting early Universe relics. Such
periods of early matter domination are predicted in many models, and allow for
example to obtain thermal dark matter heavier than 100 TeV. We compute the
dilution factor induced by a generic LLP as a function of its decay length and mass.
Then we apply our results to the well known dark photon model. After re-deriving
known dark photon properties, we demonstrate that forthcoming LLP detectors
such as CODEX-b, ANUBIS and MATHUSLA (ordered from realised in the next
few years to maybe realizable in the future) could test the parameter space where
a dark photon, produced from heavier dark matter annihilations, induces a period
of early matter domination with sizeable dilution of pre-existing relics.
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1 Introduction

From the end of reheating after inflation down to a temperarture of T = few eV cor-
responding to a time of t = 1012 s (radiation-matter equality) in the history of our
Universe, the Standard Model (SM) predicts that the energy budget of the Universe is
dominated by radiation (see for example subsection 2.4.6 and section 2.5 in [1]). However,
the SM fails in explaining several observational and experimental results (dark matter,
neutrino oscillations, baryon asymmetry...), requiring the existence of physics beyond
the SM (BSM) that could alter radiation domination at temperatures larger than an eV.

Dark Matter (DM), an unknown form of matter that dominates the gravitational
behaviour of visible matter1 (matter that can interact with light) in galaxies (galaxy
rotation curves with the very ground breaking article of Rubin et al. [3]), in galaxy
clusters (coma cluster, Zwicky [4] or the bullet cluster, e.g. Clowe et al. [5]) and that is
a very plausible responsible of the Large Scale Structure (LSS) of our Universe (Cold Dark
Matter and LSS simulations, see section 1.3.2 of [2] and Cosmic Microwave Background
acoustic peaks2, see section 1.3.3 of [2]), is thought to constitute around the 25% of
matter content of the Universe leaving only a 5% to baryonic matter (see section 2.4 of
[1] and [6] for a historical review of Dark Matter).

In the 2000s a very reasonable candidate for DM were the WIMPs (Weakly Inter-
acting Massive Particles) with masses MDM between the GeV and TeV range, and an
interaction strength α with the SM of the same order of the Weak one. These particles
are in equilibrium with the SM bath in the early Universe and explain in a natural way
today’s DM abundance via the thermal freeze-out mechanism. Any particle in equi-
librium with the SM bath is said to ‘freeze-out’ from it when the rate of its number
changing interactions, Γ = n⟨σv⟩ with n its number density and ⟨σv⟩ its averaged an-
nihilation cross-section times relative velocity, falls below the Hubble rate with which
the Universe expands, H =

√
ρ/3/MPl with ρ the total energy density of the Universe

and MPl ≃ 2.4 × 1018 GeV the reduced Planck mass. The present number density of
neutrinos is for example set via thermal freeze-out, which happens when they are rela-
tivistic in the early Universe. If a particle instead freezes out while it is non-relativistic,
one can show (see e.g. section 4.1.2 of [2]) that it reproduces the measured DM relic
abundance if ⟨σv⟩ ≃ 3× 10−26cm3/s ≃ 1/(20 TeV)2, where in the last equality we have
used natural units ℏ = c = 1. That value is almost independent of the particle mass.

1It is non-interacting, meaning the interactions among DM particles or with SM content are negligible
(except for gravitational interaction, that DM certainly possesses). In addition, to explain the Large
Scale Structure of the Universe it must be non-relativistic (CDM) at the radiation-matter equality in
order to cluster first and form later the large structure of the Universe (see section 1.3 of [2] for a
complete description of DM at cosmological scales).

2The position of the acoustic peaks in the CMB depend on the DM density and their amplitude on
the relative amount of DM w.r.t. ordinary matter. So the precise measurement of these peaks by the
Planck collaboration and the consistence with the ΛCDM cosmological model represents the strongest
evidence of DM.

3



For a WIMP one has ⟨σv⟩ ≈ α2/M2
DM, implying that if one demands it to constitute

DM then a weak coupling implies a mass MDM roughly at the weak scale. Since physics
BSM was predicted at the weak scale independently by natural solutions of the hierarchy
problem, this coincidence was dubbed as “WIMP miracle”, see e.g. [7] for a review of
supersymmetry and WIMPs. The Large Hadron Collider (LHC) however has found no
evidence for the natural BSM physics that should have solved the hierarchy problem,
see e.g. [8], weakening the theory motivation for WIMPs as DM. In addition direct and
indirect DM detection experiments, built to find WIMPs, have so far not discovered any.
While the search is still in progress and WIMPs are not excluded as a DM candidate,
the theory community has shifted its attention to other ranges of DM mass.

The energy above a TeV is still not in trouble with experiments and thus it is easier
to accommodate hidden sectors (also called dark sectors) 3 at such higher energies. With
the advent of new experiments (e.g. new colliders such as the Future Circular Collider
[9]) we will have the opportunity to explore nature at much higher ranges. At scales
larger than tens of TeV, however, thermal DM would violate S-matrix’s unitarity i.e.
SS† ̸= 1 for heavy thermal DM. The unitary bound on the DM mass was first noted and
computed by Kim Griest and Marc Kaminkowsky back in 1990 [10], recent calculations
(see e.g. [11]) imply that DM should be lighter than about 100 TeV. This bound is
obtained by combining unitarity (imposed by SS† = 1) of non-relativistic cross section
partial waves with a simple non-relativistic freeze-out scenario i.e. before freeze-out; the
energy budget of the Universe is dominated by radiation, DM and SM are in chemical
equilibrium and DM abundance is mainly controlled by 2-2 interactions. The condition
SS† = 1 translates in an upper limit on σv upon partial wave expansion, as one can see
in figure 1. Still, the unitary bound can be increased if one of the assumptions is not
satisfied, as we will see next, opening the door to heavy thermal DM.

As said before, the SM predicts a radiation dominated Universe at its early stage,
but with new particle content this could not be the case. Triggered by the existence of
a new particle (for example a possible mediator between the dark sector and SM, see
e.g. section 2 of [12]), much before the matter-radiation equality for temperatures T > 5
MeV 4, there could have been what is called an Early Matter Domination (EMD) epoch
(see [14]) that would violate the unitarity bound assumption of a radiation dominated
Universe. The actual DM abundance, if we suppose thermal CDM, is predicted to depend
inversely on the thermal average ⟨σv⟩ (again, see e.g. section 4.1.2 of [2]) i.e. ΩDM ∝ 1

⟨σv⟩ .
As is described in section 2, an EMD epoch can be traduced into a sizeable injection
into the SM entropy and a dilution of the DM yield YDM = nDM

sSM
meaning the actual DM

3A hidden sector is thought of as a group of gauge symmetries and fields that is connected only
by gravity, or by gravity and weakly by some new force, with the observable sector that contains SM
particles.

4In order to be consistent with Big Bang Nucleosynthesis this EMD epoch must have happened from
Big Bang to t ∼ 0.03 s or T ∼ 5 MeV in the history of our Universe (bounds computed in [13]) and so
we talk about EMD for temperatures T > 5 MeV.
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abundance depends also on a new factor, ΩDM ∝ 1
⟨σv⟩

sbeforeSM

safterSM

. If the injection is important

(safterSM > sbeforeSM ) then the thermal average of the cross section times the relative velocity
of the DM particles, ⟨σv⟩, has to decrease to obtain the actual DM abundance. In that
case the unitary bound could be increased and heavy thermal DM could be conceived.
See figure 1 for a sketch of this situation.

Figure 1: Change in the unitary bound on the DM mass when EMD is realised. It
is represented, in logaritmic scale, the cross section times the relative velocity of DM
particles vs the DM mass. The red line is the frontier between the unitarity zone and
the unitarity violation zone; for values of ⟨σv⟩ higher than the unitarity line, violation
of unitarity forbids thermal CDM, for lower values unitarity is statisfied. The line has
negative slope because the unitarity bound depends inversely on the mass as one can see
e.g. in Griest and Kaminkowsky’s result [10]. The blue line represents the value of ⟨σv⟩
to obtain the actual DM abundance via non-relativistic thermal freeze-out and in light
orange are represented the new required ⟨σv⟩ and the new unitary bound when EMD is
realised.

On the other hand, an EMD epoch would be also important for primordial Grav-
itational Waves (GWs). These GWs are hypothetically produced during inflation, by
cosmic strings and/or by a strong first-order phase transition (see sections on GW in
[15] for a complete review of these production mechanisms). As new GWs detectors
are coming such as the Einstein Telescope, LISA or Cosmic Explorer, an ancient rem-
nant (Stochastic Gravitational Waves Background, SGWB), arriving from a much more
younger Universe than the well-known CMB signal, could be unveiled in the next up-
coming years. However, if the production of these GWs happened before an EMD, then
the entropy injection would decrease the actual energy density of these GWs. That
would mean less chance to see primordial GWs. Nevertheless, if detectors have enough
sensitivity to detect them, as the dilution would have happened for a determined GWs’
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frequency, a “step” would appear in their frequency and we could learn that dilution
happened and at what temperature.

An EMD and the decay into SM radiation of the particles that trigger it can induce
a siezable injection to the SM entropy and therefore a dilution of the yield (Yx = nx

sSM
)

of any pre-existing specie in general (see subsection 2.3 in [12] or [14]). it is important
to remark that the particle that induce EMD is unstable and no longer around in the
Universe today, so it cannot be the DM. The two main requirements that this new
particle must fulfill in order to cause a sizeable dilution, as described in the introduction
of [16], are:

1. It mustn’t be in equilibrium with the thermal bath when decaying while having a
large number density (e.g. a particle that decouples while relativistic).

2. It has to be non-relativistic when it decays.

If the particle decouples while non-relativistic its yield is exponentially suppressed in
x = mV /TFO and it is difficult for it to dominate the energy density of the Universe.
In the case of a particle that is relativistic when decaying we have that the injection of
entropy only depends on the yield of the particle when it froze out making it difficult to
induce a sizeable entropy injection (see appendix A in [12] for a detailed explanation of
these points).

To ensure a sizeable dilution of relic in the early Universe, a particle should have a
decay length of a meter or larger (if it is not a very heavy particle), as we will prove
in section 2.3. Therefore it is natural to ask whether searches for Long-Lived Particles
(LLPs) at colliders could directly test an EMD epoch. However, the SM-LLP couplings
necessary to decouple the particle while relativistic give a low decay rate so that their
production at the lab is often negligible, as it has been the case of the dark photon (DP),
for example. Nevertheless, improving and searching for new ways to find LLP at colliders
(experiments CODEX-b [17], ANUBIS [18] or MATHUSLA [19]) can make this problem
avoidable (we study this case in section 4).

In this thesis we will re derive the dilution factor via the Simultaneous Decay Approx-
imation in section 2.1 and via numerical integration in section 2.2 to finally correlate it
with the decaying particle decay length and mass in section 2.3. Then we will introduce
the dark photon minimal model and the Higgs mixed sector in section 3 to prove that
a sizeable Higgs to two dark photons decay is possible. Finally, with the latter, we will
have the sufficient theoretical support to prove in section 4 that upcoming dectectors
CODEX-b [17], ANUBIS [18] and MATHUSLA [19] could test the parameter space of a
dark photon that would have induced a period of early matter domination with sizeable
dilution of pre-existing relics.
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2 Dilution factor derivation

The dilution factor is normally defined as the ratio between the SM entropy density
before and after the diluting particle, we will call “V ”, decays:

DSM =
safterSM

sbeforeSM

(1)

The easiest approach to compute it is the one of the Simultaneous Decay Approxima-
tion (SDA) where one supposes that the decay of all V particles occurs in an infinitesimal
time at Universe’s time t = τV = Γ−1

V . As we will show explicitly, this approximation
allows to achieve a result for the dilution factor with the correct parametrical depen-
dence. However, its physical meaning should not be taken seriously. Indeed, the SDA
leads to the conclusion that the temperature of the Universe increases as entropy does so
(because of the entropy injection due to V ’s decay). In reality what happens is that at
an early time during the EMD epoch the temperature of the Universe starts decreasing
as a Universe dominated by matter (decreasing faster than the radiation dominated Uni-
verse) but when particles start to decay and entropy is injected the temperature starts
to decrease slower than the radiation dominated case until all V particles have decayed
(see figure 2 of [12]). Then the Universe recovers the radiation dominated behaviour and
its corresponding temperature as if no matter domination had occurred (as far as tem-
perature is concerned) meaning the decay of V particles does not heat up the Universe
(a result first obtained by Robert J. Scherrer and Michael S. Turner in 1985 [14]).

A more accurate equation for the dilution factor is obtained numerically integrating
Friedmann equation and entropy and energy density expressions (see subsection 2.2 for
more details). The expression for the dilution factor we will use for our results is the
following:

DSM ≃

(
1 + 0.77 (gdecSM)1/3

(
mV fV√
ΓVMPl

)4/3
)3/4

(2)

Which is the same used in [12] and [16]. In this expression, gdecSM is the SM degrees of
freedom at t = 1/ΓV = τV (V refers to the decaying particle), of course, ΓV is the decay
rate, τV is the particle’s lifetime and mV is the particle’s mass. On the other hand, fV
represents the ratio between the number density of V particles and SM’s entropy density
(the yield) at freeze-out time i.e.

fV =
nFO
V

sFO
SM

(3)

and MPl = 1/
√
8πG ≃ 2.4×1018 GeV. Equation (2) turns out to give really good results

for the dilution factor giving an error lower than 10% w.r.t. the full integrated solution
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in the relevant zone for our work at (mV , τV ) and (mA′ , ε) 5 parameter spaces (see figure
11 on appendix A of [12]).

In this section we will aboard the analytical Simultaneous Decay Approximation and
a numerical integration obtaining equation (2).

2.1 Analytical derivation (Simultaneous Decay Approximation)

As we suppose a simultaneous decay of all V particles in this approximation, we don’t
need to integrate the Friedmann equation. Just with the entropies and energy densities of
the Standard Model + V particle before and after the decay we can obtain an expression
for the dilution factor of Eq. (1).

The energy densities before and after the decay are, respectively,

ρb =

(
π2

30

)
gSM

(
T b
SM

)4
+mV fV

(
2π2

45

)
gSM

(
T b
SM

)3
, (4a)

ρa =

(
π2

30

)
gSM (T a

SM)4 (4b)

where suffix “b” means “before” and suffix “a” means “after”. Using for the time of
the decay tdec ∼ 1/Hdec and Friedmann’s equation (supposing V particles dominate the
energy density before the decay) we obtain another important equality:

ρa = ρb =
3MPl

8πτ 2V
(4c)

Here we have supposed that V particles are non-relativistic before the decay and
tdec ∼ τV . The energy density before the decay, i.e. ρb of Eq. (4a), is constituted by
two contributions: the first one, ρbSM , is the energy density corresponding to the SM
radiation before the decay and the second one, ρbV , is the energy density of the decaying
particle V . We will keep that in mind when making approximations in the following.

On the other hand, we have that the SM entropy density before and after the decay
has the simple form:

sbSM =

(
2π2

45

)
gSM

(
T b
SM

)3
, (5a)

saSM =

(
2π2

45

)
gSM (T a

SM)3 (5b)

In equations (4) and (5) the SM degrees of freedom gSM are evaluated at time tdec ∼
τV = Γ−1

V .

5Parameter space for the Dark Photon model, see 3.1 for a brief review.
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Now, we want to obtain Eq. (1) and using Eqs (5) we arrive straightforwardly to:

DSM =
safterSM

sbeforeSM

=

(
T a
SM

T b
SM

)3

(6)

Here one can conclude (mistakenly, as mentioned before) that the Universe would be
heated up if there’s an entropy injection caused by the particle’s decay. While this is
not the case, as we will show in Sec. 2.2, it still allows to obtain the correct parametrical
dependence for the dilution factor. Carrying on with our derivation, using eqs (4) and
equating (4b) with (4a) one obtains:(

T b
SM

)4
+

4

3
mV fV

(
T b
SM

)3
= (T a

SM)4

then the next follows solving for
(
T a
SM/T b

SM

)3
(
T a
SM

T b
SM

)3

=

(
1 +

4

3
mV fV

1

T b
SM

)3/4

(7)

At this point we can make use of ρbV ≫ ρbSM i.e. V particles dominate before the
decay (there’s an EMD epoch) to obtain T b

SM . Via equations (4a) and (4c) we have:

T b
SM ≈

(
135

16π3

)1/3(
MPl

τV

)2/3
1

g
1/3
SM(mV fV )1/3

(8)

Then substituting in Eq. (7) we arrive finally to the dilution factor expression for
SDA:

DSM ≈

(
1 + 2.06 g

1/3
SM

(
mV fV√
ΓVMPl

)4/3
)3/4

(9)

This is an approximated result for the dilution factor and it has the same parameter
dependence as expression (2), indeed it only differs in the numerical factor which, how-
ever, it is 2.68 times larger than the one present in Eq. (2) (in the SDA the dilution is
significantly larger than the numerical integration case). Expression (9) gives us a good
idea of the behaviour of the dilution factor w.r.t. the particle V ’s free parameters (mass
mV and decay rate ΓV ) that would be what exprimentalists would be able to measure
in colliders.

By making, once again, the matter domination approximation ρbV ≫ ρbSM at the time
of the decay, one obtains the expression (1d) in [14] or expression (25) in [20] 6:

6In reality what one obtains is the numerator (1 in front of expression (25) of [20] was added to make
the comparison with radiation domination case) because what is computed in [20] is the dilution factor
corresponding to the total entropy of the Universe.
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DSM ∼ 1.72 g
1/4
SM

mV fV√
ΓVMPl

(10)

This same expression can be obtained as well using equations (8) and (6) and the
temperature of the SM bath after V decay; T a

SM
7.

2.2 Numerical integration

In this section we will present the procedure carried on in order to arrive to expression (2).
First, we will demonstrate a more general dilution factor expression and the Friedmann’s
equation for the normalised scale factor (defined in Eq. (23)), in presence of SM radiation
and of the V particle that decays into SM radiation (equation (44) at appendix A in
[12] or equation (A5) at appendix of Scherrer and Turner’s article [14]), as Scherrer and
Turner did in [14]. Then, we will show how did we manage to integrate numerically
Friedmann’s equation and what was the criteria followed in order to finally arrive to
Eq. (2).

2.2.1 Obtaining the general dilution factor equation and Friedmann’s equa-
tion à la Scherrer and Turner

We work under the following usual motivated assumptions:

1. At all times the microscopic entropy of the Universe is dominated by relativistic
particles.

2. The decaying particles rapidly thermalise into SM radiation (∆t ≪ H−1).

3. We restrict to Friedmann-Robertson-Walker cosmological models.

The entropy per comoving volume of the Universe can be written as:

S(t) = R(t)3s(t) (11)

where R(t) the scale factor and s(t) is the entropy density. The latter can be expressed
as usual:

s(t) =
ρ+ p

T
=

2π2g∗(T (t))

45
T (t)3 (12)

Here g∗(T (t)) represents the effective degrees of freedom of all particles (which in our
case will consist in the SM at a thermal bath’s temperature T (t)). ρ and p are the energy
density and pressure of particles respectively. To simplify computations we will define

7Easily derived by equating eqs (4b) and (4c).
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a ≡ 2π2g∗(T (t))

45
(13)

From this we can introduce the new particle that decays into SM radiation. To do
so, we define a time t0 much before the decay of V particles, i.e. t0 ≪ 1/ΓV , we suppose
V particles are non-relativistic at this time i.e. T0 ≪ mV and that their abundance is
frozen out, i.e. there is no creation nor annihilation of V particles. These are equivalent
to the two conditions mentioned in the introduction except for the abundant energy
density one that we will use in the next subsection. We can then define

fV ≡
(nV

s

)∣∣∣
T0

(14)

which is the ratio at time t0 between the number density of V particles and s, the entropy
density of the Universe. In other words, fV is the yield of the particle V at T0. Then,
we can write the V particles’ energy density at time t0, of course non-relativistic

ρV 0 ≡ mV fV s(T0) (15)

To see what is the effect of this particle in the entropy we need to know its evolu-
tion. The evolution of V particles can be described by the Boltzmann’s equation of an
exponentially decaying particle:

ρ̇V = −3HρV − ΓV ρV (16)

where the second term of the r.h.s. accounts for the decay effect in the energy density
of V . Eq. (16) is easily solved if multiplied by 1/R(t)3 and making use of the chain rule
1
R3

d(R3ρV )
dt

= ρ̇V + 3 ṘρV
R

:

ρ̇V =
1

R3

d(R3ρV )

dt
−

�
�

��
3
ṘρV
R

= −
�

�
��

3
ṘρV
R

− ΓV ρV

=⇒ d(R3ρV )

dt
= −ΓVR

3ρV (17)

The solution is straightforward and we see ρV evolves like matter with an exponential
damping (as expected):

ρV = ρV 0

(
R(t)

R0

)−3

e−Γt (18)

Now, the effect of this decaying (and the rapidity of thermalisation of V particles) is
traduced into an increase of heat per comoving volume, dQ > 0, equivalent to the energy
added per comoving volume; −d(R3ρV ). The latter traduces into:
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dQ = ΓV ρVR
3dt (19)

Now using the thermodynamic definition of entropy (notice that we use here the
comoving entropy density), dS = dQ

T
, we can obtain a diferential equation for the entropy:

Ṡ =
ΓV ρVR

3

T
= a1/3ΓVR

4ρV S
−1/3 (20)

where in the last equality we have used equations (11) and (12) and solved for T . The
above equation is a first order equation and can be solved via formal integration:

∫ S(t)

S0

S1/3dS = ΓV

∫ t

t0

a1/3R4ρV dt

Integrating
========⇒
and using (18)

3

4
S(t)4/3 − 3

4
S
4/3
0 = ΓV ρV 0R

4
0

∫ t

t0

a1/3R(t′)e−ΓV t′dt′

=⇒ S(t)4/3 = S
4/3
0 +

4

3
ρV 0R

4
0

∫ t

t0

a1/3
(
R(t′)

R0

)
e−ΓV t′dΓV t

′

Then, using equation (15), a0 ≡ a(T = T0) and S
4/3
0 = T 4

0 R
4
0 a

4/3
0 we have

ρV 0R
4
0

S
4/3
0

=

fV mV

a
1/3
0 T0

and the above equation takes the form:

S4/3 = S
4/3
0

[
1 +

4

3

(
fVmV

a
1/3
0 T0

)∫ t

t0

a1/3
(
R(t′)

R0

)
e−ΓV t′dΓV t

′

]
(21)

From this equation we can obtain the dilution factor but we will do some modifications
before arriving to the final dilution factor equation. The term that succeeds the unity
factor in Eq. (21) tells us what is the effect of the decaying particle in the comoving
entropy of the Universe; it contains all the information about V that plays a role in the
injection of entropy to the Universe.

At this point, what we ignore is the behaviour of R(t) but we know that the scale
factor is governed by the Friedmann’s equation and so to solve Eq. (21) we will first need
to solve: (

Ṙ

R

)2

=
8πG

3
(ρV + ρr + ρ0) , (22)

where ρr is the energy density corresponding to the radiation and ρ0 is the effective
energy density besides relativistic particles in thermal equilibrium and V particles (see
paragraph below eq (14) in [14]). However, in the following we will restrict ourselves
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to the case, realised in many models, where only ρV and ρr (i.e. V particles and SM
radiation) are taken into account.

To this point, the relevant equations are:
ρV = ρV 0

(
R(t)
R0

)−3

e−Γt

S4/3 = S
4/3
0

[
1 + 4

3
fV mV

a
1/3
0 T0

∫ t

t0
a1/3

(
R(t′)
R0

)
e−ΓV t′dΓV t

′
]

(
˙R(t)

R(t)

)2
= 8πG

3
(ρV + ρr)

For the sake of simplification we introduce the adimensional variable x = ΓV t and
define the normalised scale factor as

z(x) ≡ R(x)

R0

. (23)

We also make the following definitions 8

rV ≡ ρV
ρV 0

, rr ≡
ρr
ρV 0

, x0 ≡ ΓV

√
3

8πGρV 0

= ΓV

√
3M2

Pl

ρV 0

(24)

where in the last equation we used MPl ≡ 1/
√
8πG. Then, the system of equations

ends up being as follows 9:
rV (x) = e−x

z(x)3

S(x)4/3 = S
4/3
0

[
1 + 4

3
fV mV

a
1/3
0 T0

∫ x

x0
a1/3z(x′)e−x′

dx′
]

z(x)′

z(x)
= 1

x0
[(rV + rr)]

1/2

(25)

Now, the factor between square brackets in second equation of eqs (25) represents the
dilution factor (to the 3/4) evaluated at infinity (because we want to compute the dilution
factor of the entropy after the decay) and we only have to work on the Friedmann’s
equation (third one) at this point, to obtain the two equations we want to acquire.

rr is defined in Eq. (24) and we need the radiation energy density that can be ex-
pressed as (from statistical mechanics):

ρr =
3

4
aT 4 (26)

8We can make the last definition because x0 = ΓV t0 ≪ 1 i.e. we can ignore the prefactor (2/3 for a
matter dominated Universe or 1/2 for a radiation dominated one) and suppose t0 ∼ H−1

0 . Also we use
ρV 0 ≫ ρr0 an assumption that will also be used in the numerical integration.

9The apostrophe ′ stands for d
dx and d

dt = ΓV
d
dx
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so, again using eqs (11) and (12) and solving for T, we arrive to:

ρr =
3

4

S4/3

a1/3R4
(27)

At this point it is straightforward to get a useful expression for ρr by substituting
the second equation of eqs (25)

ρr(x) =
ρr0
z(x)4

+
S
4/3
0

R4
0 a

1/3

fVmV

a
1/3
0 T0

R4
0

R(x)4

∫ x

x0

a1/3z(x′)e−x′
dx′

Using (15)
============⇒
and fV mV

a
1/3
0 T0

=
ρV 0R

4
0

S
4/3
0

ρr(x) =
ρr0
z(x)4

+
ρV 0

a1/3
1

z(x)4

∫ x

x0

a1/3z(x′)e−x′
dx′ (28)

Then, substituting in the third equation of eqs (25) we finally obtain a general dilution
factor expression and the Friedmann’s equation for the normalised scale factor:

z(x)′

z(x)
=

1

x0

[
e−x

z(x)3
+

1

g
1/3
SM(x)z(x)4

∫ x

x0

g
1/3
SM(x′)z(x′)e−x′

dx′ +
1

z(x)4
ρr0
ρV 0

]1/2
(29)

DSM =

(
1 +

4

3

fVmV

g
1/3
SM(x0)T0

∫ ∞

x0

g
1/3
SM(x′)z(x′)e−x′

dx′

)4/3

(30)

Here gSM(x) represents the SM degrees of freedom of those particles that are in
thermal equilibrium at x = ΓV t (as V particles are not in thermal equilibrium we can
write g∗ = gSM). In the case of a Universe made out of additional particle content such
as a Universe with Dark Sector, our computation would be the one corresponding to
injection to the SM entropy only and Eq. (30) would be the SM dilution factor (see [12]
for more details). That is why we wrote the suffix SM for the dilution factor. Notice, once
again, that the dilution factor is the second equation of eqs (25) evaluated at infinity. It
can be confusing because it might seem the entropy doesn’t depend on x but it does via
the upper limit of the integral.

2.2.2 Numerical integration of Friedmann’s equation and realising the dilu-
tion factor expression

We focus now on the computation of the numerical factor in Eq. (2). At this point is
where EMD is realised. The condition is written as ρV 0 ≫ ρr0 in terms of the energy
densities.

With the early matter domination condition the third term inside the squared brack-
ets of Eq. (29) is negligible so we are left with only the two first terms. Now, we can
define a new variable we will call y(x) that will help us to absorb the dependence of x0:
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y(x) ≡ x
2/3
0 z(x). (31)

Another definition we can make is the one of the averaged d.o.f. during the decay i.e.

gdecSM ≡

[∫ x

x0
g
1/3
SM(x′)z(x′)e−x′

dx′∫ x

x0
z(x′)e−x′dx′

]3
(32)

The latter is useful to put outside the integral all the d.o.f. information. Also notice
that inside the integral z(x)e−x is maximal when x = 1, essentially one can make the
approximation gdecSM ≈ gSM(x = 1) without producing significant errors in the results (we
will use that in the rest of this thesis).

Then, the Friedmann’s equation adopts a more workable form:

y(x)′

y(x)
=

(
e−x

y(x)3
+

g
dec 1/3
SM

y(x)4gSM(x)1/3

∫ x

x0

y(x′)e−x′
dx′

)1/2

(33)

This differential equation can be transformed into a system of first order differential
equations by defining another function:

P (x) ≡
∫ x

x0

y(x′)e−x′
dx′. (34)

with its derivative taking the form

P (x)′ = y(x)e−x

The system of first order differential equations one obtains is the following:y(x)′ = 1
y(x)

[
y(x)e−x + 1

g(Trad(τV x))1/3
P (x)

]1/2
P (x)′ = y(x)e−x

(35)

Here gSM depends on the particle’s lifetime via the temperature of the thermal bath
of a radiation dominated universe Trad(t = τV x) that determines which SM particle is in
thermal equilibrium and which is not. Notice that we make the assumption of a radiation
dominated universe for our integration. The real temperature of the universe during the
EMD and the later particle’s decay is different, see section 2.2 of [12]. The dependence
on τV means we have a different system of equations for each value. We have performed
the numerical integration for 1000 values of τV and then interpolated the result, still, we
haven’t observed any deviation from the expressions presented in [16] or [12].

The initial conditions for this system are obtained easily from the definition of P (x),
Eq. (34), and from the definition of z(x), Eq. (23), evaluating in x = x0. The initial
conditions for P (x) and y(x) are the following:
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{
P (x0) = 0

y(x0) = x
2/3
0

(36)

On the other hand, we have to substitute the previous definitions of equations (31)
and (32) in the dilution factor equation (30). Using the definition of x0 in eqs (24) and
(15) one arrives to:

DSM

(32)

≃

(
1 +

4

3

fVmV g
dec 1/3
SM

g
1/3
SM(x0)T0

∫ x

x0

z(x′)e−x′
dx′

)4/3

(31)
==⇒ =

(
1 +

4

3

fVmV g
dec 1/3
SM

g
1/3
SM(x0)T0

1

x
2/3
0

∫ x

x0

y(x′)e−x′
dx′

)4/3

(15)
==⇒ =

(
1 +

4

3

ρV 0g
dec 1/3
SM

g
4/3
SM(x0)T 4

0 x
2/3
0

∫ x

x0

y(x′)e−x′
dx′

)4/3

(24) and (15)
========⇒ DSM =

(
1 +

[
4

3

(
2π2

135

) 1
3
∫ ∞

x0

y(x)e−xdx

]
(gdecSM)1/3

(
mV fV√
ΓVMPl

)4/3
) 3

4

.

(37)

This is almost eq (2), we need to compute the integral inside the squared brackets and
then multiply by the numerical factor in front. The value for that integral corresponds to
the value of P (x) at infinity. Infinity can be substituted by x = 10 because the integrand
is damped by an exponential function and at that point practically all V particles have
decayed (i.e. the injection to entropy has finished). Conversely, x0 can be set as 10−3,
as it has to be much smaller than 1 but it cannot be equal to 0.

To obtain the value of P (x = 10), we have integrated numerically via the Python
package “scypi.integrate” the system of differential equations (35) using the initial con-
ditions in Eq. (36). We have done it in the interval 10−3 ≲ x ≲ 10 with a tolerance of
10−8. The code used for this procedure is uploaded in the link provided in appendix A
and the result is the following:

Factor inside square brackets of eq (37)
0.76565048± 0.00000001

The error comes from the tolerance used to integrate the system of equations (35)
and it is only related to the numerical factor in square brackets of equation (37). At
the end one can use 0.77 as the numerical factor in the dilution factor expression (37)
and find that the real dilution factor’s error w.r.t. the complete integration of equation
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(30) (i.e. without the assumption that the particle decays after dominating the energy
budget of the Universe and the approximation that the SM d.o.f. are constant during
the particle’s decay) is lower than 10% in the relevant zone for our work at (mV , τV ) and
(mA′ , ε). As said in the beginning of section 2 this error is computed in appendix A of
[12].

2.3 Dilution factor: correlation with particle’s free parameters

With equation (2) already justified and having explained its context we can now obtain
some results from it. In order to give a general view of the dilution factor’s physics w.r.t.
the decaying particle’s free parameters we have obtained a plot for several values of the
dilution factor in the cτV vs mV plane, see figure 2.

Figure 2: Contour lines of dilution factors in the (mV , cτV ) plane, where mV is the mass
of the decaying particle that injects entropy in the early universe and cτV is its decay
length at rest. Grey area represents the zone forbidden by the BBN limit τV ≲ 0.03 as
computed in [13].

As one can appreciate there’s a feature in all lines for cτV values around 103 −
104 meters. This corresponds to the decreasing of the SM degrees of freedom at QCD
confinement and other minor decouplings. For the values of gSM(T ) we have used table 2
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of [21] that encloses the important changes on gSM(T ). The plotting has been performed
supposing that for t = τV

10 the temperature of the Universe is the same as a Universe
without EMD epoch dominated by radiation with age τV i.e. gdecSM ≈ gSM(Trad(τV ))

where Trad(t) =
10−3GeV

√
2.42s/t

gSM (10−3GeV
√

2.42s/t)

11, we reefer to subsection 2.2 of Cirelli et al. [12]

for an argued justification. Also we have used 0.02 for the yield fV which is the value
obtained for thermal dark matter and a dark photon that decouples while relativistic
(see equation (20) of [20]). We will use the above assumptions and values through the
rest of the work.

Notice that for mass values lower than 3 · 10−1 GeV the dilution factor in the allowed
area becomes lower than 2, i.e. the entropy dilutes but its dilution is not significant.
To obtain sizeable effects the dilution factor would have to be near 2 or greater, this
traduces into a dilutor mass greater than 3 · 10−1 GeV. Notice that this value is for a
freeze-out yield of fV = 0.02 which applies for the dark photon model.

Figure 2 can be useful for experimentalists in search of LLPs at particle colliders. It
will give them an idea of the dilution factor zone this new particle could be in. Also
it is useful to see that dilution can only be reached if the decaying particle is either a
sufficiently long-lived LLP or a very heavy one.

3 Dark Photon and the mixed Higgs sector

In the past decades a great amount of DM candidates and DM mediators, constituting
different dark sectors, have been proposed. One of these candidates is the Dark Photon
(DP). This particle could represent a DM candidate if produced by the “misalignment
mechanism” in the early Universe [22] the same way as axions could have [23] or through
the classical thermal production. However, we focus on a heavier range of massive dark
photons that decay before BBN, whose role could be the one of mediator between DM
and ordinary matter. The DP interacts with SM particles and at the same time with a
hypothetical dark sector opening to us a portal to DM also realising in a natural way
thermal DM (it could mediate the annihilation process of DM into SM particles, the
main process that keeps DM in equilibrium with the thermal bath), see e.g. section 2 of
[20].

In the minimal description, the DP is described only by two free parameters, the
“kinetic mixing” with the SM photon ε and its massmA′ that can arise from two different
mechanisms: Stückelberg mechanism (see Stückelberg articles [24, 25, 26] or [27] for a
review) or dark Higgs mechanism (analogous to the Higgs mechanism, we will explain

10Because we have to evaluate the SM d.o.f. at t = τV , remember that we approximated: gdecSM ≈
gSM (x = 1).

11In reality what we have is a recurrent function because also the particle’s lifetime depends on gdecSM

i.e. gdecSM = g(Trad(cτV (DSM ,mV , g
dec
SM ))). Substituting recurrently we converge to the real value.
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it in section 3.3). The freedom of these two parameters (ε is renormalizable and the
mass comes from renormalizable parameters) make the DP model a possible solution for
a wide range of problems.

The latter comes with the possibility that the DP could have diluted pre-existing
relics. That is because it can fulfill the two main requirements for a particle to dilute
relics, listed in the introduction of this thesis. It has the possibility to have a low
interaction constant and a low decay width (if it only decays into SM content) making
it a LLP (it would be decoupled before it decays) along with the fact that it could
have been produced in abundance at early stages of the Universe (thermal production
via DM annihilation) fulfilling therefore the first requirement. On the other hand (if
sufficiently massive), it could have been non-relativistic when decaying satisfying the
second requirement.

In this section we will introduce the DP model when it gets its mass via the dark
Higgs mechanism. Then, we will derive (trough the Higgs mixing portal) the DP couling
with the SM higgs, hA′A′, that will give us the possibility to prove, in the following
section, that a long-lived Dark Photon that would have diluted pre-existing relics can be
detected by the forthcoming LLP detectors.

3.1 The minimal dark photon model

The dark photon minimal model is a well known extension to the SM of particles where
a new massive (or not, but we will not treat this case) vector boson field that transforms
under a new U(1)A′ symmetry is introduced (first realised by Holdom in the 80’s [28,
29]). This carrier of the new abelian force, we will denote by A′

µ, mixes with the SM
hypercharge U(1)Y via the new free adimensional parameter ε refereed to as the “kinetic
mixing”. This parameter together with the vector boson mass are the two only free
parameters added to the theory. Along with the SM lagrangian the spontaneously broken
(or Stüeckleberg) U(1)A′ lagrangian looks like:

L ⊂ −1

4
âµν â

µν − 1

4
Â′

µνÂ′µν +
1

2

ε

cW
Â′

µν â
µν +

1

2
m2

A′,0Â
′
µÂ′µ (38)

where âµν = ∂µâν − ∂ν âµ and Â′
µν = ∂µÂ′

ν − ∂νÂ′
µ are the field strength of the

hypercharge U(1)Y and the vector boson U(1)′A respectively. mA′,0 is the mass of the DP
after U(1)A′ symmetry breaking but not yet the mass eigenstate and cW is the cosinus
of the Weinberg angle θW .

In order to see clearly the physics of this model one needs to canonically normalise
and diagonalise the kinetic terms in Eq. (38). This can be done by the following fields
redefinitions:
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(
Â′

µ

âµ

)
=


1√

1− ε2

c2
W

0

1
cW
ε

√
1− ε2

c2
W

1

(A′
0,µ

aµ

)
(39)

where the “0” subscript of the vector boson A′ field redefinition means it is still not the
mass eigenstate. If we want to obtain the final mass eigenstate and its corresponding
mass eigenvalue we need first to give mass to the massive SM bosons by spontaneously
breaking the Electro-Weak symmetry (EWSSB) and then, after applying the above field
redefinitions, diagonalise the mass-squared matrix. One can apply the redefinitions in
Eq. (39) at any time but has to keep in mind that the hypercharge vector boson which
combines with SU(2)L vector boson b3µ after EWSSB is the hatted one present in Eq. (38).

The symmetry breaking traduces into a mixing between the SM Z0,µ boson (the

original SM Z boson after EWSSB) and A′
0,µ (which from Eq. (39) is equivalent to Â′

µ

except for a multiplying factor) giving rise to the final mass eigenstates. Introducing

η = ε/(cW
√

1− ε2

c2W
) the mass-squared matrix after EWSSB and fields’ redefinitions

in the massless boson Aµ (carrier of the electromagnetic force), Z0,µ and A′
0,µ basis

(Aµ, Z0,µ, A
′
0,µ) is:

M2
NeutralV ects = m2

Z,0

0 0 0
0 1 −ηsW

0 −ηsW η2s2W +
m2

A′,0
m2

Z,0

 (40)

Here mZ,0 = v
√

g2 + g′2/2 = 91.2 GeV where v = 246 GeV and g (g′) is the constant
couplig of SU(2)L (U(1)Y ). Notice that the mass-squared matrix is the one of the neutral
vector bosons only, that is because only the hypercharge vector boson âµ mixes with A′

and the charged SM bosons W±
µ aren’t composed by it (they are a linear combination

of the SU(2)L vector bosons b1µ and b2µ). Also, as expected, Aµ remains massless as EM
remains unbroken and at the end diagonalising M2

NeutralV ects is equivalent to diagonalise
the (Z0,µ, A

′
0,µ) sub-matrix. However, although the EM vector boson Aµ seems not to

mix in Eq. (40), the truth is that because of the θW mixing, α mixing (below) and after
canonically normalise (i.e. use Eq. (39)) Aµ actually mixes with A′

µ
12. The angle of

mixing is obtained when M2
NeutralV ects is diagonalised and the relation between the fields

before and after the diagonalisation is:(
Zµ

A′
µ

)
=

(
cosα sinα
− sinα cosα

)(
Z0,µ

A′
0,µ

)
(41)

12A0,µ = sW âµ + cW b3µ is the SM photon after EW symmetry breaking. Then, applying Eq. (39) and
diagonalising the mass-squared matrix (i.e. using Eq. (41)) yields A0,µ = ηsW (sinαZµ+cosαA′

µ)+Aµ,
where we have redefined the EM photon as Aµ = sWaµ+ cW b3µ. This yields the normal EM interactions
and new ones proportional to ηsW .
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with an angle of mixing α that follows from the next equation

tanα =
1− η2s2W − δ2 − Sign(1− δ2)

√
4η2s2W + (1− η2s2W − δ2)2

2ηsW
(42)

where δ =
mA′,0
mZ,0

and the convention followed is that for ε → 0 the angle α goes also to

0. On the other hand, the mass eigenvalues are

m2
A′,Z =

mZ,0

2

(
1 + δ2 + η2s2W ± Sign(1− δ2)

√
(1 + δ2 + η2s2W )2 − 4δ2

)
(43)

The mass eigenvalues at order 2 in ε when δ ≪ 1 are

m2
Z ≈ m2

Z,0(1 + ε2 tan2 θW ), m2
A′ ≈ m2

A′,0(1− ε2 tan2 θW ) (44)

Notice that for small values of ε the new masses are practically equal to the masses
before diagonalising. In our results ε is indeed small and the Z boson and the A′

boson mass eigenstates won’t depend on ε for small δ. For other values of δ, ε is small
compared with δ and we approximate that masses still don’t depend on the kinetic
mixing, see equation (43) (in the case of δ = 1 we get straightforward from Eq. (43) that
mZ = mA′ = mZ,0 = mA′,0).

So we know that the SM Z boson and the SM photon actually mix with A′ and how
they mix. This gives rise to interactions between SM particles and A′. The dark photon
is a particle that can decay into SM particles via the hypercharge portal. In fact, through
the (weak) EM interaction between the (Z boson) photon and fermions (Zff̄ and Aff̄),
one gets a new exchange between the dark photon and SM fermions crucial for its total
decay width, see Eq. 45. When calculations are performed the decay width of A′ to Z
and W±

µ are negligible w.r.t. the decay widths of A′ into fermions. Therefore, as we will
need the total decay width, we will only take into account the decays into SM fermions,
see subsection 2.2 of [20].

Now, the A′ff̄ coupling constant, at LO and after all the procedure explained above,
is the following:

L ⊃ gA′ff̄A
′
µfγ

µf̄ ,

gA′ff̄ ≡ e

cW sW

(
− sinα(t3 c2W − Yfs

2
W ) + η cosα sWYf

)
, (45)

where t3 and Yf are the fermions’ weak isospin and hypercharge values respectively.
Of course, e is the usual electromagnetic coupling. A perturbative expansion in ε of
the coupling constant gives a good insight of how the DP interacts with SM fermions
depending on its mass. From [20] we get the perturbative expansion at LO:

gA′ff̄ = εe

(
Qf

1

1− δ2
+

Yf

c2W

δ2

δ2 − 1

)
+O(ε2) (46)
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where Qf is the fermion’s electric charge. It is easy to see that when mA′,0 ≪ mZ,0 the
coupling is photon-like proportional to the fermion’s electric charge (this comes from the
mixing with the EM vector boson of the SM and is the reason why A′ was dubbed as
“dark photon”). On the other hand, for values mA′,0 ≫ mZ,0 (i.e. when U(1)Y is not
broken) the coupling is proportional to the hypercharge. It should be noted that Eq. (46)
is not valid for values of δ ∼ 1 and we will use for our computations Eq. (45), valid in
all the range of δ. Indeed, the explicit form at LO for δ ∼ 1 is “Z-like” i.e.

gA′ff̄

δ∼1≃ εe

cW sW
(t3 c2W − Yfs

2
W ) (47)

that can be obtained using equations (42) and (45).
The decay width into two fermions can be computed at LO as a decay width of a

massive vector boson into two fermions with axial and vectorial couplings:

Γ(A′ → ff̄) =
Nc

24π
mA′

√
1−

4m2
f

m2
A′

[
g2R + g2L −

m2
f

m2
A′
(g2R + g2L − 6gRgL)

]
(48)

where gR,L = gA′fR,Lf̄L,R
, Yf=lR,lL,uR,uL,... = −1,−1/2, 2/3, 1/6, ... and t3f=fR,uL,dL

= 0,−1/2, 1/213.
Of course, mf is the fermion’s mass.

3.2 Decay width estimation

The LO expressions are a good approximation only at low and high masses because
QCD corrections, hadronic resonances and threshold effects are not negligible for masses
in between. Quarks are confined for a center of mass energy (

√
s = mA′) below the bb̄

threshold and we have to take that into account. For our computations we used the
results for the decay length of figure 2 (right) in [30] when ε = 10−2 and for values
ε < 10−2 we extrapolated supposing the decay width is proportional to ε2 as one can
see in Eq. (46). As [30] data does not enclose all the DP mass range we want we used
the LO expressions above to compute the DP decay width out of Curtin et al. [30] data
range that goes from 0.1 GeV to 65 GeV.

We will briefly explain the procedure in [30] used to obtain the DP decay width and
then present our results using LO expressions outside the Curtin et al. [30] mass range.
To do that we need to define the ratio

RA′ =
Γ(A′ → hadrons)

Γ(A′ → µ−µ+)
ε≪1
= RA′(mA′) (49)

If we know this ratio we can obtain the total width of the DP multiplying by the
LO dark photon to two muons decay width, Γ(A′ → µ−µ+), and summing the rest LO

13Here u and d reefers to the upper component and the down one of the SU(2)L duplet respectively.
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expressions (A′ decays into leptons). Keep in mind that this procedure is valid for low
masses because for higher masses (> 5 GeV, we adopted the same criteria as in section
2.2 of [20]) quarks are no longer confined. Now, for energies < 12 GeV as it is described in
[30] the DP coupling is “photon-like” up to corrections order δ2 and they are corrections
that represent less than a 2% of the total coupling. In addition, the experimental ratio

R(s) ≡ σ(e−e+ → hadrons)

σ(e−e+ → µ−µ+)
(50)

is highly dominated by off-shell γ∗ → ff̄ for masses < 12 GeV and it is highly accurate
to use experimental data to obtain RA′(mA′) = R(m2

A′). For higher energies (where
resonances and thresholds start to be less frequent) 3-loop QCD corrections are used in
[30] to compute RA′(mA′) substituting SM couplings between (axial) vector current and
quarks by the couplings of Eq. (45). In figure 3 we present the branching ratios of A′

decays into SM fermions where we highlight the confinement zone (ΛQCD = 350 MeV <
mA′ < 5 GeV) and the range of masses where we used data from [30].

Figure 3: Branching ratios of A′ into SM fermions.

One can see clearly a bump at low and high energies joints between our LO com-
putations and [30] data. We estimated the difference and it represents approximately
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Figure 4: Left: Total decay width of the dark photon supposing it only decays into SM
fermions. Right: Decay length of the dark photon supposing it only decays into SM
fermions. Both, the decay width and the decay length, correspond to a value of ε equal
to 10−2.

a 6% at low and high masses which is consistent with a bad digitalization of Curtin
et al. [30] data (the line width is significantly high enough to yield an error this
size). The total decay width is displayed in figure 4 for the dark photon mass inter-
val: 10−3 GeV < mA′ < 103 GeV. As one can see the bump is hardly appreciated, the
same happens with the dilution lines in figure 12. We will use this result for the rest of
this thesis. Also, it is remarkable to notice that the decay h → A′A′ is possible in this
model but it is highly suppressed by a ε4 factor as it requires both Z’s to mix with A′

in the h → ZZ(∗) decay, see [31]. A sizeable h → A′A′ decay is instead produced by the
Higgs mixing portal and that will be our focus in the next section.

3.3 Mixed Higgs sector

A massive dark photon can be obtained via two well-known mechanisms: the Stückelberg
mechanism and the dark Higgs mechanism. In this section we will explain how the latter
mechanism together with the mixing between the SM Higgs and the dark Higgs could
give rise to a decay of the SM Higgs into two dark photons. This decay can form part of
the invisible Higgs BR and can be measured in the upcoming LLPs detectors providing
new information on the dark photon’s parameter space (mA′ , ε). That will be our focus
in the next section.
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The minimal potential describing this theory is the following:

V (H,S) = −µ2|H|2 + λ|H|4 − µ2
S|S|2 + λS|S|4 + κ|S|2|H|2 (51)

where S is the new dark Higgs singlet with U(1)A′ charge qS, H is the higgs SM SU(2)L
doublet and κ the new mixing parameter between the SM Higgs and the dark Higgs
boson. The rest of constants are added as usual to make the terms have the good
dimension14.

The way dark photon obtains its mass through the dark Higgs mechanism is realised
easily. The dark Higgs kinetic term takes the form

DµS(D
µS)∗ = (∂µ + igA′qSA

′
µ)S(∂

µ − igA′qSA
′µ)S∗ (52)

where gA′ is the U(1)A′ coupling constant. If the dark Higgs has a non-zero vacuum
value i.e. U(1)A′ can be broken and ⟨S⟩ = vS/

√
2, infinitesimal fluctuations around it

will provide the dark photon a mass equal to

v2S
2
g2A′q2SA

′
µA

′µ ⇒ mA′,0 = gA′qSvS (53)

as one can infer from Eq. (52). This is exactly the same mass that appeared in the
dark photon minimal model lagrangian (Eq. (38)).

When the SM Higgs also have a non-zero vacuum value i.e. SU(2)L can also be

broken and ⟨H⟩ =
(

0
v√
2

)
one can express µ and µS constants in terms of λ, λS, v, vS

and κ

µ2 = λv2 +
1

2
κv2S, µ2

S = λSv
2
S +

1

2
κv2 (54)

As ⟨S⟩ ≠ 0 and ⟨H⟩ ≠ 0 we can have both symmetries, U(1)A′ and SU(2)L, sponta-
neously broken. In order to have our desired SM Higgs to dark photons decay this needs
to happen.

Our objective is to find the mass eigenstates and eigenvalues after the breakings since
these are the physical states and values at lab energies. To do that, as the Higgs mecha-
nism demands, we consider small fluctuations h0 and s0 around the vacuum minimums
of both Higgs fields i.e.

H =

(
0

h0+v√
2

)
, S =

s0 + vS√
2

(55)

14µ and µS have mass dimension 1, on the other hand λ, λS and κ are dimensionless constants.
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which substituted in Eq. (51) yields without developing terms

V (H,S) = −(λv2 +
1

2
κv2S)

(
h0 + v√

2

)2

+ λ

(
h0 + v√

2

)4

− (λSv
2
S +

1

2
κv2)

(
s0 + v√

2

)2

+ λS

(
s0 + v√

2

)4

+ κ

(
s0 + v√

2

)2(
h0 + v√

2

)2

(56)

here we have used also equations (54). From the expression above we can obtain the
mass terms among which (because of the mixing) there will be non-diagonal terms

O(h2
0) +O(s20) +O(h0s0) = −(��λv2 +

�
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�1

2
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2
+
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2
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2
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2
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2
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2
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2
Ss

2
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κv
s20
4
+

�
�

��
κvS

h2
0

4
+ κvSvh0s0

= λv2h2
0 + λSv

2
Ss

2
0 + κvSvh0s0

=
1

2
(h0, s0)M2

h0s0

(
h0

s0

)
and the squared-matrix M2

h0s0
is therefore

M2
h0s0

=

(
2λv2 κvSv
κvSv 2λSv

2
S

)
(57)

The presence of non-diagonal elements means h0 and s0 mix and that, when diago-
nalising M2

h0s0
, the mass eigenstates will be related to h0 and s0 via a 2D rotation with

an angle θh. This is written in matrix language as(
h
s

)
=

(
cos θh − sin θh
sin θh cos θh

)(
h0

s0

)
(58)

The angle satisfies the following equation:

tan θh =
λv2 − λSv

2
S − Sign(λv2 − λSv

2
S)
√

(λv2 − λSv2S)
2 + κ2v2Sv

2

κvSv
(59)

and we will have that the mass eigenstates take the form

m2
h,s = v2λ+ v2SλS ± Sign(λv2 − λSv

2
S)
√

(λv2 − λSv2S)
2 + κ2v2Sv

2 (60)
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So because of the mixing term in Eq. (51) we see that the SM and dark Higgses in
fact mix. This entails new interactions, all particles which interplay with the SM Higgs
also interplay with the dark Higgs and vice versa. These new exchanges are controlled
by the new parameter θh.

Among them there’s the interaction between s0 and A′ 15 (which one can obtain
from the dark Higgs kinetic term in Eq. (52) after U(1)A′ symmetry breaking). This
interaction yields a new exchange between the SM Higgs and dark photons because of
the H and S mixing (s0 = − sin θhh + cos θhs in the eigenstates’ basis) that brings the
possibility of a SM Higgs decay into two dark photons. The vertex is (using eqs (52) and
(55)):

L����SU(2)L,���U(1)A′ ⊂ −m2
A′

vS
sin θhhA

′
µA

′µ (61)

For a small mixing parameter κ ≪ 1 the exchange will be also proportional to it.
Indeed

tan θh ≈ sin θh ≈
λv2 − λSv

2
S − (λv2 − λSv

2
S)
(
1 +

κ2v2v2S
(λv2−λSv

2
S)

2

)
κvSv

=
κ

2

vSv

λSv2S − λv2
(62)

So from Eq. (61) and the approximation above we finally obtain

κ
1

2

(
m2

A′v

λv2 − λSv2S

)
hA′

µA
′µ κ≪1≃ κ

(
m2

A′v

m2
h −m2

s

)
hA′

µA
′µ (63)

This means the coupling between the SM Higgs and the dark photon is

ghA′A′ ≡ κ

(
m2

A′v

m2
h −m2

s

)
(64)

for small κ. Note that we have used ms ≈ λSv
2
S and mh ≈ λv2, we can do this

for κ ≪ 1 (see equation (60)). We can now compute the LO decay width of the SM
Higgs into two dark photons using the well established SM decay of Higgs into two W
bosons substituting the SM coupling by Eq. (64) and the W boson mass by the dark
photon mass mA′ (see equation (2.68) of [32] using that the coupling hW+W− is gmW

and GF√
2
= g2

8m2
W
)

Γ(h → A′A′) =
1

64π

k′2v2

mh

√
1− 4m2

A′

m2
h

(
1− 4

m2
A′

m2
h

+ 12
m4

A′

m4
h

)
(65)

15The vertex is g2A′q2SvSs0A
′
µA

′µ.
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Figure 5: The branching ratio of the SM Higgs decay into two dark photon is represented
as a function of κ′ defined in Eq. (66). The different lines are computed for dark photon’s
mass values within the upcoming detectors’ range (see subsection 4.2.2 for the particular
mass values used for each detector). 10 GeV line is depicted in green to avoid confusions
with the 0.5 GeV line. The Horizontal lines are the BR used to represent the detectors’
sensitivities in the dark photon parameter space (see results in section 4).

where

κ′ ≡ κm2
h

m2
h −m2

s

(66)

We have therefore deduced that in the presence of a Higgs mixed sector between a
singlet U(1)A′ dark Higgs S and the SU(2)L SM Higgs the decay h → A′A′ is possible
and that it is controlled by the mixing parameter. Also the mechanism through which
the dark photon gets a mass is necessary to realise it.

Now, the next step is to see if this decay width can yield a measurable contribution
(while keeping κ small) to the Higgs total decay width because, as experiments has shown,
there’s approximately a 10% error in the measured Higgs decay width and therefore room
for BSM physics (the invisible Higgs BR actually computed by ATLAS collaboration 10.7
(7.7)% at the 95% CL [33]). In that 10% is where a hypothetical h → A′A′ decay could
enter and represent a significant (or a small) contribution. This branching ratio can be
measured, if it is not so small, in expected LLP detectors along with the dark photon
decay length constraining the dark photon parameter space (see section 4).

To confirm if sizeable BRs with small κ′ are possible we have represented the Higgs
branching ratio of the dark photon’s channel in figure 5. Just looking at the plot we
observe that it is indeed viable to produce these BRs via the dark Higgs portal while
having a small κ′. We leave in table 1 the κ′ values for the different BR’s and mA′ values
used in section 4 i.e. the intersection between the dashed lines and solid ones in figure
5. On the other hand, we have also represented in figure 6 the value of κ vs the dark
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Higgs mass ms. Looking at figure 6 we can see that there are values of the dark Higgs
from which, if the dark Higgs mass is higher, κ cannot be considered small compared
to 1 and eqs (66) and (65) are not valid. We represented this non perturbative zone
(defined as κ > 0.25) in grey. We also show in table 2 the dark Higgs masses for which
κ is equal to 0.25 for each value of κ′ presented in table 1. In the following section we
will take advantage of the fact that a sizeable BR of the SM Higgs decaying into two
dark photons can be obtained via the mixed Higgs sector to represent the forthcoming
detectors’ reach in the dark photon parameter space. However, we have to keep in mind
that our analysis is not valid for all dark Higgs masses and to be conservative we will
assume that the dark Higgs mass is lower than 475.8 GeV (which is the lowest value in
table 2).

Figure 6: Higgs mixing parameter κ as a function of the dark Higgs mass ms for the
different values of κ′ present in table 1. The zone out of the small κ regime is defined by
the condition κ > 0.25 and it is depicted in grey. We computed the mass from which κ
is comparable to the unity for every value of κ′ and included them in table 2.
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mA′ [GeV ]
BR(h → A′A′) 0.5 10 20 40

0.1 0.014 0.015 0.016 0.019
0.01 0.0044 0.0047 0.0052 0.0059
0.001 0.0014 0.0015 0.0016 0.0019

Table 1: Table of the different values of κ′ =
κm2

h

m2
h−m2

s
for the branching ratios used in

section 4 and for different values of mA′ in the combined range of CODEX-b, ANUBIS
and MATHUSLA.

mA′ [GeV]
BR(h → A′A′) 0.5 10 20 40

0.1 547.10 527.73 504.87 475.81
0.01 955.29 920.19 878.70 825.82
0.001 1688.76 1625.94 1551.67 1456.94

Table 2: Table of the different dark Higgs mass values in GeV from which for higher
dark Higgs masses the small κ regime (κ ≤ 0.25) does not apply and therefore neither
eqs (66) and (65). We obtained them for each one of the κ′ values presented in table 1.

4 Diluent dark photon at forthcoming LLP detectors

The objective of this work is to test the sensitivity of three of the upcoming LLP trans-
verse detectors to a diluent DP. Roughly estimating the orders of magnitude of the kinetic
mixing and mass of a diluting DP (i.e. a dark photon that dilutes with a factor of 2),
the fast conclusion one could arrive is that actual experiments would hardly be sensitive
to it. Therefore, one could think that this diluent DP is quite far for being discovered.
However, as we have done in this work, by translating into the DP parameter space the
sensitivities of CODEX-b, ANUBIS and MATHUSLA, which are based on the exotic
Higgs decay into two dark photons, a diluent DP is actually detectable with significant
confidence. In this section we will talk about the general LLP detectors’ status and
report, along with a description of CODEX-b, ANUBIS and MATHUSLA experiments,
the procedure carried out to obtain the mentioned results. Then we will show the results
and comment them.

4.1 A brief review of the LLP detectors’ status

As mentioned before, usually a very low decay rate means negligible particle production
at colliders and therefore difficult detection. Nonetheless, technologies and high particle
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physics’ techniques have been improving in the last decades with a CERN facility very
mature at this moment and currently at the 3rd run of its most powerful accelerator: the
Large Hadron Collider (LHC). During the last two decades new ideas of LLPs detectors
designed to be placed in the LHC or in the Super Proton Synchrotron (SPS) has been
proposed and the search of LLPs is on the rise nowadays (see [34] for a review of recent
LLP detectors). The most important current, planned or propound LLP experiments
during the last few decades can be divided into two types depending on their position
w.r.t. the accelerated proton beam (whether the LHC beam or the SPS one):

Forward experiments: These are experiments located in the forward direction of
the proton beam that collides with another proton beam (they search within the forward
“remnants” of the LHC p-p collision) or with a fixed target (on which SPS protons
collide) and can be classified in decay-volume based experiments or proton fixed-target
based ones. For example, the most developed forward decay-volume based experiment is
FASERν (Forward Search ExpeRiment [35]) located at the LHC tunnel 480 m away from
the ATLAS experiment Interacting Point (IP). it is currently working and has already
obtained its first results from the LHC run III [36]. On the other hand, proton fixed-
target based experiments have already put constraints in the LLP zone of BSM models
(such as the DP minimal model, see the νCal constraint in fig 12) and new proposals like
the NA62 “beam-dump” mode [37] will test the DP parameter space even further into
the LLP zone (see NA62 reach in figure 12). A significantly bigger and general-purpose
experiment (again fixed-target based) is planned to be built at the CERN SPS Beam
Dump Facility by the name of Search for Hidden Particles (SHiP) [38]. This experiment
will be able to dive deeper into the LLP zone of BSM models (see figure 12 for its reach
in the DP minimal model case).

Transverse experiments: The transverse experiments are thought to detect parti-
cles remnants of beam collisions that are normally produced in the transversal direction16

and that, because of their long lifetime (LLPs) and weakly interacting character, avoid
most LHC experiments’ detectors (inner tracker, calorimeters, muon spectrometers....).
The transversal direction of these experiments helps to avoid a vast part of the back-
ground making them more sensitive than present LLPs searches(one can see this easily
in figure 12). One transverse experiment is the imminent COmpact Detector for EX-
otics at LHCb or CODEX-b (supposed to be partially installed and taking data in 2030
with the LHC run 4 and fully installed in 2035 for the LHC run 5) which has already
a prototype CODEX-β that will take data in the current LHC 3rd run and validate
background estimates [39]. It is planned to be located at the UX85 experimental cavern
of the LHCb a bit ahead of the IP8 and roughly 25m apart from it. Another one is
the ANUBIS experiment which has a prototype called proANUBIS already working in
ATLAS with very preliminary calibration results obtained in April of this year [40]. The
objective is to install ANUBIS last version at the ceiling or in the main shaft (PX14) of

16With transversal direction we mean the direction transverse to the proton beam.
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ATLAS cavity (see image (a) of figure 9). However, the most ambitious among them is
the MAssive Timing Hodoscope for Ultra Stable neutraL pArticles (MATHUSLA) [19],
a huge experiment at first thought to have dimensions of 200m×200m×20m (now the
design dimensions have changed [41]) centered along the LHC beam line to be built at
the surface of the LHC during the HL-LHC programme (currently going on, but not at
the time when MATHUSLA was proposed). Due to its ambitious design, and thus ele-
vated budget, it is currently unclear whether MATHUSLA, in that proposed geometry,
will ever be realised. However, the MATHUSLA collaboration is working on a revised
geometry with reduced size [41]. The functioning and background of each one of these
transverse decay-volume based experiments are described in the next section.

We are aware of the existence of other LLP detectors such as SpinQuest [42] or AL3X
[43] but we wanted to present a general overview of LLP experiments and explaining all
of them goes beyond the focus of this thesis. In figure 7 one can find an sketch of the
previous classification w.r.t. the LLP mass, lifetime and the parton center of mass energy.

Figure 7: A sketch of the different installed, planed of propound experiments in terms of
the LLP mass, lifetime and the parton center of mass energy. Source: Aielli et al. [44].

4.2 Testing a diluent dark photon with CODEX-b, ANUBIS
and MATHUSLA sensitivities

In this subsection we will describe the three experiments CODEX-b, ANUBIS and
MATHUSLA and discuss the associated expected backgrounds to searches for LLPs.
Then we will present the procedure followed to cast their sensitivities onto the DP pa-
rameter space. In addition, we will also include CMS searches for exotic Higgs decaus
into dark photons that later decay into 2d2d̄ and 2τ+2τ− presented in [45]. We must
mention also analogous searches by ATLAS such as [46] aslo included in our plot (figure
12) or [47] that include constraints on the Higgs boson branching ratio that are the most

32



stringent to date for ms < 40 GeV and 1 < cτs < 100 mm (not in the zone we are
interested).

4.2.1 CODEX-b, ANUBIS and MATHUSLA description

In order to give some insights of CODEX-b, ANUBIS and MATHUSLA experiments we
will describe briefly the design of each of them and introduce their main backgrounds
(mainly produced by highly energetic muons produced at the p-p collision):

• CODEX-b: the experiment has cubic geometry and consists of six RPC (Resistive
Plate Chambers that have cm spacial and ns timing resolution) panels of 10 m2

conforming the six outer faces of the cube and four additional RPC 10 m2 panels
located in the interior and separated 2 m from each other (one can appreciate
this in picture (a) of figure 8). The idea is to measure the signature of the LLP
decaying products and reconstruct the LLP mass and decay width (with enough
data). To do that one needs to reconstruct the LLP decay vertex and the CODEX-
b collaboration has establish 6 as the minimum number of hits per track in order
to have a good reconstruction resolution of the decay. Additional minimum track
threshold of 600 MeV is also imposed. The backgrounds come principally from
SM LLPs such as leptons (µ,...) or neutral hadrons (n, KL,...). The latter could
enter the detector without being detected and decay inside it imitating BSM LLPs.
However, the hadrons that come directly from the IP are avoided by a Pb shield
that will be placed near the IP8, see picture (a) of figure 8. The location of the
experiment allows for an additional passive shield constituted by the UXA concrete
wall. Other important source of background are highly energetic muons coming
from the IP. When passing through the Pb shield or the concrete shield they could
hit atoms and produce hadrons. In order to reject this background a veto is placed
inside the Pb shield that will detect muons that trespass it and hit the UXA wall.
Hadrons produced in the Pb shield don’t pass the UXA concrete wall (image (b)
of figure 8) and muons that trespass both shields are vetoed together by the veto
station of the Pb shield and the RPC front face.

• ANUBIS: this experiment is thought to be installed in the PX14 ATLAS shaft or
along the ATLAS cavity ceiling and it will consist in two or more tracking stations
(TS) of 100 cm2 made out of RPC panels that will reconstruct BSM LLP decays.
It will be located 80 m from ATLAS and each TS will be positioned 18.5 m apart
form each other inside the PX14 ATLAS shaft in its shaft configuration, see figure
9. The authors claim this would be an almost free background experiment following
all performance specifications they mention in their proposal [48]. The principal
source of background are neutral SM LLP (n, KL,...) that decay in ANUBIS decay
volume. These sources will be vetoed by ATLAS measurements in the calorimeters
stations as usually these particles are associated with productions of energetic jet
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(a) (b)

Figure 8: (a): CODEX-b location and structure. (b): muon background. Source:
CODEX-b collaboration[17].

of other hadrons. Other backgrounds are cosmic rays (properly vetoed by the
performance specifications listed in [48]), beam-induced backgrounds like beam-
gas or beam-collimator collisions (avoided by ANUBIS position) and decays of
quasi-thermal neutrons (products lowly energetic and rapidly absorbed). Highly
energetic muons are vetoed by the TS. The inconvenient of this experiment is that
the PX14 shaft is used during LHC maintenance and in case of an emergency so
ANUBIS would have to be designed in order to be easily removed while conserving
all its detecting capabilities. The ceiling configuration minimizes the use of ATLAS
PX14 shaft (see picture (a) of 9).

• MATHUSLA: the experiment (with the revised geometry) has dimensions 100m
×100m×25m with 20 m underground. Is thought to be placed 70 m away from the
CMS IP in the beam direction. The vertical and horizontal face towards the IP
are preceded by scintillator panels, at the surface level it is located a double layer
tracker made out of RPCs and at its ceiling a multy layer one, see image (a) of figure
10. The BSM LLP would decay inside MATHUSLA’s air filled fiducial volume and
its products (for example SM fermions) will leave a signal in the tracking stations.
Then, reconstructing the tracks of the decay products, one can reconstruct the de-
cay vertex with the LLP mass and momentum. Regarding the possible backgrounds
MATHUSLA, as it is located at the surface, is shielded from most of the ones associ-
ated with p-p collisions. However, the location also adds new potential background
sources (go to image (b) of figure 10 to see MATHUSLA’s backgrounds). Cosmic
Rays (CR) muons represent one of the most important backgrounds, nevertheless
using timing information at the tracking stations MATHUSLA can discard most of
the imitating muon trajectories and a lower frequency is achieved (about 2 Hz for
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(a) (b)

Figure 9: (a): ANUBIS location and possible configurations. (b): ANUBIS functioning
sketch. It is to say that although the central bottom picture of image (a) seems to be
one of ANUBIS tracking stations it is not. These are probably pieces belonging to one
of the muon spectometers of ATLAS. Source: ANUBIS collaboration [40] and Bauer et
al. [48].

a 100 m2 MATHUSLA)17. Other source of background are the muons coming from
the LHC that scatter in MATHUSLA’s air volume, they will have a frequency of
0.1 Hz for MATHUSLA’s actual design. The rest of the background events such as
atmospheric neutrinos or muons coming from the LHC that trespass all the space
of the experiment can be rejected via the topology of the event or the scintillating
veto stations respectively. Neutrinos and muons arriving from LHC that scatter
in the air volume background are taken into account at MATHUSLA’s proposal
paper [19] and after all the cuts the background coming from this cases is 1 per
year. As said in the previous section, MATHUSLA’s first proposal required a huge
budget and the new redimensioned experiment has reduced costs, maybe meaning
we will see the beginning of MATHUSLA’s construction in the next decades.

17Notice that CR travel from up to down in contrast with the LLP decay products and to imitate
them they have to do the same trajectory in the opposite direction. This lowers the false events that pass
the mentioned timing criteria but muon showers are copiously produced and the CR muon background
happens to be of about 2 Hz at the end.
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Figure 10: (a): MATHUSLA experiment display. (b): MATHUSLA’s most important
backgrounds. Source: MATHUSLA collaboration [41].

4.2.2 Casting the experiments’ sensitivities to the minimal dark photon
parameter space

The main feature concerning all these three detectors is that they are sensitive to exotic
Higgs decays whether into two scalars or into two abelian vector bosons. It is estimated
that during the HL-LHC run a total of 1.5 · 108 Higgs will be produced (section II in
[19]), so search for invisible Higgs decays is a reasonable idea. As we have proved in
the preceding section the Higgs decay into two dark photons for a small Higgs mixing is
possible. So we are able to ‘translate’ the detectors’ sensitivity into the DP parameter
space.

First of all, we have to notice that sensitivities are given, by the experimental col-
laborations, as a function of the BR of the exotic Higgs decay into two BSM LLPs
BR(h → A′A′) w.r.t. the decay length at rest of the LLPs them selves. Also, each
sensitivity line corresponds to a different LLP mass value. Notice as well that sensitivi-
ties of decay-volume experiments to exotic Higgs decays present the same hyperbolic-like
form, i.e. tending to a line with positive slope for high decay lengths and more or less
vertical tendency for low decay lengths (of course, for decreasing BR values the sensi-
tivity decreases also because there are less chances to detect the particle). This form is
due to the solid angle that the detector is able to cover times the distance it encloses
(divided by a boost factor that depends on the particle’s momentum) i.e. it depends on
the fiducial decay volume, which at high decay lengths translates into a diagonal limit
(the more solid angle and distance are covered the greater is the detectors’ sensitivity
to longer-lived LLPs). At low decay lengths the possible particle’s decay outside the
fiducial volume represents a vertical limit.

Keeping all the above in mind, the strategy we followed was to obtain for three BR
values, BR(h → A′A′) = 0.001, 0.01, 0.1 the detector’s sensitivity decay length lower
limit and the decay length upper limit (see figure 11) and linearly interpolate points
between the different available LLP mass values for which the sensitivity has been com-
puted (the set of masses are determined by each experiment because of the independent
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analysis each collaboration have carried out with his detector). The interpolation is per-
formed for the lower limit values and upper limit ones independently. Then, to traduce
the data into the (mA′ , ε) parameter space, we have used the decay length data in figure
4 supposing the decay width ΓA′ is proportional to ε2 (which it is for the small values of
ε we are considering, see eqs 46 and 47) to obtain the points in the (mA′ , ε) plane. The
latter procedure yields a band for each BR value as one can see in figure 12.

Figure 11: A sketch of the data acquisition for LLP detectors’ sensitivity. In the figure it
is shown the sensitivity of CODEX-b for a LLP mass of 0.5 GeV and the points extracted
correspond to an exotic Higgs BR of 0.01. Source of the original plot: Aielli et al.
[17]

As we mentioned before, the values of the masses considered are different depending
on the experiment. For CODEX-b the collaboration just presents 2 plots for LLP masses
values of 0.5 GeV and 10 GeV, one can find the plots in figure 3 of [17]. For the ANUBIS
case we have used the line corresponding to 50 events in the ANUBIS ceiling configuration
of figure 4.7 in [18] formLLP =10, 20, 30, 40 GeV. On the other hand, in the MATHUSLA
case we have used the data in figure 3 of [19] corresponding to mLLP =5, 20, 40 GeV.
Although experiments are indeed sensitive to a larger range of LLP mass values we
have been conservative and we have only interpolated between the masses collaborations
have published. For our purpose that is enough even though the complete sensitivity of
experiments would enclose a greater area in figure 12. The centre of mass energy and
the integrated luminosity in these three experiments correspond to the HL-LHC ones,
i.e.

√
s = 14 TeV and L = 3 ab−1.

In addition, we have used this same procedure to include in our plot the 2021 CMS
exclusion for a LLP decaying into down quarks and tau leptons. In this case the CMS
collaboration presented exclusions corresponding to 4 LLP masses from 7 GeV to 55 GeV
included. As one can see in figure 3 of [45] the exclusions are approximately linear w.r.t.
the masses so we have just used the 7 GeV and 55 GeV sensitivities and then performed
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the linear interpolation mentioned above. The result is presented in figure 12.

4.2.3 Constraints, the dilution zone, experiments’ reaches and results in the
minimal dark photon parameter space

All the above has finally enable us to recast in the same plot (figure 12): several dilu-
tion lines, dark photon exclusions (CMS 2021 exclusion [45]) and upcoming experiments’
reach (CODEX-b, ANUBIS and MATHUSLA the most important ones). We have rep-
resented the minimal dark photon parameter space for values of the kinetic mixing from
10−6 to 10−14 and masses between 10−3 to 103 GeV.

A diluent dark photon needs to have a low coupling with SM particles i.e. ε ≪ 1
(because it is the only free parameter in the coupling, Eq. (46) or Eq. (47)) in order to
live long enough to realise an EMD before decaying and high mass to be non-relativistic
when that happens. That is why dilution factor lines gather at the bottom right part
of our plot 12. We call that zone, defined by DSM ≥ 2, the dilution zone. The dilution
factor lines are obtained equating the decay width of the DP (the one in figure 4) with
the decay width required to obtain the desired dilution factor value (solve eq (2) for
ΓV ). Supposing the decay width is proportional to ε2 one can solve for ε acquiring the
needed ε for dilution. The latter will depend only on the DP mass (gdecSM depends on the
particle’s lifetime but the latter also depends on the dilution factor and the particle’s
mass 18).

An important constraint on the dark photon minimal model (and almost all BSM
models) is the BBN limit. This accounts for the fact that for lifetimes greater or equal
to the time of BBN new particle existence in significant amounts (matter domination)
would be in contradiction with observations. The baryonic abundances after BBN in our
Universe are in excellent concordance with SM alone predictions that foretell radiation
domination for that epoch. To represent this limit in the dark photon parameter space
we forbid the zone where the dark photon decay length is greater than 0.03 s (limit
computed in [13]) and permit the zone where the DP produces a dilution factor lower
or equal than 1.1 because in that case the dark photon would not dominate the energy
density of the Universe (no dilution or low dilution means no matter domination). Notice
that, as said in section 2.3, because of the BBN limit, sizeable dilution (DSM ≥ 2) is
achieved for masses greater or equal than 3 · 10−3 GeV. Also, the steps in the dilution
factor lines are produced by the change of the SM degrees of freedom as in figure 2. The
required ε to have dilution is proportional to g

dec 1/4
SM and therefore when the SM degrees

of freedom decrease the dilution lines in our plot also do so.

18To be technically precise what we have is a recurrent function, see footnote 11
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Figure 12: Dark photon parameter space of kinetic mixing ϵ versus mass mA′ . Black
contour lines indicated values form 1.25 to 104 of the SM dilution factorDSM as computed
in this thesis, where we conventionally define the dilution zone by We also display our
recast of exclusions and sensitivities to Higgs decays into long-lived dark photons, at
CODEX-b [17], ANUBIS [18] and MATHUSLA [19], derived as explained in the main
text and for different values of the Higgs BR into dark photons. The CMS exclusion [45]
recasted as explained in the main text is also included along with recent ATLAS exclusion
[46]. Several other pre-existing constraints are shown: SN1987 constraints of [49] and
its later revision [50], νCal updated constraint [51] and the E137 one [52]. There is an
additional constraint zone we haven’t included and it corresponds to the blob appearing
in figure 3 (b) of [51] for ε ∈ (2.5 · 10−8, 8 · 10−8). We have also added sensitivities for
fixed-target based experiments, NA62 [51], SHiP [53] and LongQuest, a retool of the
SeaQuest experiment at the Fermilab [51]. The BBN constraint τA′ ≲ 0.03 sec [13] is
also shaded in blue on the bottom-right side of the figure.
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All constraints, other than those recasted in this thesis, lie outside the dilution zone
(except for the BBN constraint, of course) and the same happens for the fixed-target
based experiments’ reach. We see a different tendency for the LHC exclusions (ATLAS
and CMS ones). They reach higher masses and in the case of the CMS exclusion limits
they actually hit the dilution zone. CODEX-b recasted sensitivity also reaches higher
masses but it does not touches the dilution zone. However, new frontiers could be opened
by ANUBIS and MATHUSLA experiments (as far as dilution by a DP is concerned).
We see clearly that both sensitivities dive deeper into the dilution zone and they do it
even for an exotic Higgs decay into two dark photons equal to 0.001. This shows the
incredible potential of these transverse experiments.

One key aspect in CODEX-b, ANUBIS and MATHUSLA sensitivities and ATLAS
and CMS exclusions is that the lower the branching ratio the less is the experiment
sensitive to lower values of the kinetic mixing. As said, in our case, the sensitivity
depends on the fraction of the Higgs decay width the decay h → A′A′ represents. The
objective when we build more sensitive experiments is to detect weaker interactions i.e.
lower BRs. Indeed, we have that CMS is not sensitive to a BR of 0.1% (see figure
3 in [45]) and if BR(h → A′A′) = 0.1% CMS would not be able to exclude the DP
parameter space. In addition the CMS exclusions are for dark photon decays into dd̄
and τ+τ− (the decay into d quarks yields more sensitive results) and a dark photon
with these decays forbidden independently of the dark photon mass would avoid this
exclusion, nevertheless we are not aware of models where that type of dark photon is
possible. The forthcoming transverse detectors are much more sensitive and they go
from BR around 10−4 for CODEX-b to BR around 10−5 for ANUBIS and MATHUSLA.
We have to keep in mind that the lower the BR the narrower is the zone of reach in the
parameter space, we can see that in the sensitivity plots e.g. figure 11. For example,
although ANUBIS and MATHUSLA reach BR = 10−5 the recast for that BR would be
almost a line in the DP parameter space. However, for larger BR, say 10−2, the recast
for ANUBIS and MATHUSLA is way wider than the CMS one. The latter is due to the
fact that the sensitivity in the BR(h → BSM particles) vs decay length plane presents
a hyperbolic-like form independently of the experiment as we explained in the previous
section.

5 Conclusions

Searches for BSM physics have been the thrust of the scientific world (as far as high
energy physics is concerned) during the last 50 years. Although some great achievements
have been accomplished, we know we are far from understanding the Universe in its
whole (so many missing pieces: Dark Matter, Dark Energy, baryon asymmetry, neutrino
oscillations, hierarchy problem, strong CP problem,...). However, as human beings we
do not cease in our study of the Universe and old and new experiments are redefining
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themselves in search for the truth. ATLAS [46, 47] and CMS [45] LLP searches are a
good example of existing experiments that, using their available data, find new ways to
look for BSM physics, strengthening their potential to discover it. CODEX-b, ANUBIS
and MATHUSLA are examples of upcoming or proposed experiments that, focusing on
the search of new physics, have adapted their designs to satisfy this task exigencies.
Indeed, these experiments’ sensitivities outperform the ones of ATLAS and CMS for the
search of LLP as one can see just comparing CMS figure 3 on [45] with CODEX-b figure
3 top of [17], the less sensitive of the three upcoming experiments.

Our incomprehension of the Universe shouldn’t deprive our motivations. Indeed, new
matter content, as needed to solve some of the problems of the SM, also opens the door
for new phenomena and new ways to satisfy our curiosity. That is the case of EMD.
Although it could only have happened no later than about 0.03 seconds after the Big
Bang, the existence of EMD can affect very significantly the manifestations of BSM in
the early Universe, ranging from DM to primordial GWs and any other pre-exising relic.

In this thesis we add proofs that motivate the search for LLPs at colliders, in par-
ticular for long-lived dark photons that would have dominated the energy budget of the
Universe at its early stages. At the beginning we have presented the general correlation
between the dilution factor and the LLP’s decay width ΓV and mass mV , using equation
(2). Then we have motivated the Higgs decay into dark photos via the Higgs portal (a
natural portal because it explains dynamically the dark photon’s mass) where sizeable
BRs are achievable (although the analysis for a dark Higgs mass higher than 475.8 GeV
is out of the range of this thesis). Finally, we have shown the capacity of new transverse
LLP search experiments, CODEX-b, ANUBIS and MATHUSLA to be precise, to ex-
plore the dark photon parameter space opening the possibility to detect a diluting dark
photon at the LHC. This constitutes a new result of this thesis, because the only paper
showing that an EMD could be tested at colliders [16] used glueballs as an example of
LLPs, whose early-Universe phenomenology is very different from the one of the dark
photons studied here.

The advent of all these BSM searches, developments and the current running of HL-
LHC anticipates promising results for the next decade. With this work we have proven
that EMD can be actually tested in colliders right now, even for the simplest models.
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A GitHub repository

This work has been implemented using Jupyter Notebook, a python web-based inter-
active computing platform. Below we include a link directly to the GitHub repository
containing all .ipynb files and data necessary to reproduce the results.

https://github.com/CarlosGarciaSanchez19/MasterThesisUNIBOTheorPhys
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