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Abstract

In this thesis we analyse the O(d,d) covariant cosmological theory presented by
Hohm and Zwiebach motivated by the quest for de Sitter solutions in the Einstein
4-dimensional frame. For this purpose, we develop the theory for an anisotropic
metric and search for the fixed points of the dynamical system in the string frame,
later translating these stable solutions into the Einstein frame, we find Minkowski
and exact de Sitter solutions as well as another family of solutions that can be
constrained to have an accelerated expansion and a positive Hubble parameter
asymptotically decreasing towards zero. These constraints establish possible inter-
vals for our physical degrees of freedom. Finally, we perform the compactification of
the action with all the α′ corrections, encoded in the F function, for our anisotropic
theory. Therefore, we have the possibility to examine the shape of the F function
with all its corrections in the Einstein frame. We obtain an Einstein-Hilbert action
minimally coupled to two scalars at order zero in α′, and a perturbative poten-
tial given by F in this new frame which no longer depends only on the Hubble
parameter, but mixes all the degrees of freedom of our action.
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1 Introduction

The study of our firmament has always been a fundamental element in our civilisation.
This study has evolved from an agricultural function to a more profound and curious one,
with the aim of understanding the universe in which we live. We have always enlarged
the horizon of our view of the world, until it reached the study of the universe as a whole.
Since 1916, with the formulation of Einstein’s theory of General Relativity (GR), many
physicists such as Einstein himself (1917), de Sitter (1917) or Friedmann (1922), have
tried to find a cosmological model. Initially, the dynamical state of the universe was not
very clear. The first idea was that it was static, but it was not until 1929, when Edwin
Hubble published his work on the recessional velocity of galaxies that increased with dis-
tance, that the paradigm changed. After this publication, the expansion of the universe
became an integral part of the standard cosmological model. Another major shift of our
understanding of the universe relevant for this thesis came in 1998. The study of type
Ia supernovae pointed towards the fact that not only is the universe expanding, but the
expansion is accelerating. This state of affairs can be accommodated within GR by the
inclusion of a minute and positive cosmological constant.

Since then, one of the main goals of cosmology has been to search for solutions that
give rise to an accelerating expanding universe. This search is closely related to, and is in
fact part of, the so-called cosmological constant problem. Many theories have attempted
to solve it, so far without complete success. Given that the problem involves gravity
and quantum physics, it is natural to address it within a quantum theory of gravity like
string theory. In this context it is conceivable that the O(D,D) covariance of the theory
could play a role both in constraining the space of solutions and in going beyond the
perturbative regime in α′. It appears that string theory does not possess a de Sitter
solution to first order in α′. The problem is the difficulty in performing a systematic
treatment of all these α′ corrections. Recently, in 2019, Hohm and Zwiebach [8] man-
aged to classify all α′ corrections in a very simple way, obtaining an O(d,d) invariant
action by considering a cosmological ansatz (only time dependent fields) with the metric
tensor gµν , the bµν field and the dilaton ϕ. When considering a vanishing bµν field and
a Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric in D dimensions, the action
and the equations of motion (EOM) can be written in terms of the dilaton and a single
function F (H), where H is the usual Hubble factor, which encodes all the α′ corrections.
With this formalism de Sitter solutions can be found [9], and can be shown to be stable
in the string frame. However, it is important to recall that these results are expressed
in the D-dimensional string frame, and in order to make contact with observations we
should go to the Einstein frame.

In this work we will first review the cosmological constant problem in section 2, given
that it is the physics to which we want to apply the Hohm and Zwiebach formalism.
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We continue by presenting the O(d,d) covariant theory of Hohm and Zwiebach [8] to
all orders in α′ in section 3, where we also introduce matter as done by Bernardo et
al. in [2]. Subsequently in section 4, we break the O(d,d) covariance by developing
the action for an anisotropic metric and vanishing bµν field. The motivations for this is
two fold. On the one hand we want to apply the general formalism to less symmetric
setups, on the other hand we would like to see what the O(d,d) formalism can teach
us about compactification. Encouraged by the search for de Sitter solutions, we then
study the fixed points (constant Hubble parameter in the string frame) of isotropic and
anisotropic systems both with matter and in vacuum in section 5. In this section we
are also interested in the aspect of these constant solutions in the Einstein frame. We
continue in section 6 by looking at the structure of the function determining the structure
of the theory, F (H) and its possible interpretations. In order to have a clearer view of
this function which encodes all the α′ corrections, we perform a compactification to the
4-dimensional Einstein frame. We finish with a discussion in section 7.
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2 The cosmological constant problem

In 1917, following the development of his General Relativity theory (1915–1916), Einstein
attempted to use his equations to obtain a cosmological model by postulating an isotropic
and homogeneous universe. He was certain that the Universe was static, but in order
to obtain such a solution he had to introduce Λ, a free parameter in the field equations,
which was not fixed by the theory:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (1)

As explained in [5], such a constant introduces both a length and a timescale:

rΛ = ctΛ =
√
3/|Λ|. (2)

Thus, a cosmological constant affects space time at scales larger than rΛ and tΛ. In order
to understand the role of Λ, we now want to compare such a term with the vacuum energy
density term issued from the energy-momentum tensor. By general covariance, any free
falling inertial observer would see the same vacuum. Accordingly, this also applies to the
vacuum energy-momentum tensor [16], that takes the following form:

T V
µν = −ρV gµν . (3)

A free-falling observer can locally take the metric to be Minkowski. Comparing a general
isotropic and homogeneous energy-momentum tensor Tµν = diag(ρ, p, p, p) where ρ is the
energy density of the fluid, and p is the pressure, with Eq. (3) we get the equation of
state for the vacuum energy: pV = −ρV . As we can observe, it has a negative pressure.
By separating this vacuum contribution from the rest of the energy-momentum tensor
we realise in Eq. (1) that we can either reabsorb the vacuum energy term into the
cosmological constant term, or vice-versa, i.e.:

Λeff = Λ+ 8πGρV , ρΛ = ρV +
Λ

8πG
. (4)

Therefore, anything that contributes to the vacuum energy density acts like a cosmolog-
ical constant.

We can now take a look at some bounds on the total effective values. There was
no need for precision measurement methods to see that the total effective cosmological
constant has a very tiny value. We follow the approach in [5], where we start by supposing
an empty universe. For Λ > 0, the only isotropic solution to Einstein’s equations is de
Sitter space, with a cosmological horizon rΛ. This is the largest observable distance scale,
and the presence of matter only shrinks this horizon. Thus rΛ ≥ r, being r the maximum
scale distance up to which we can observe. On the contrary, if we had Λ < 0 the universe
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would recollapse on a timescale tΛ. This means that tΛ > t for t the maximum timescale
observed, i.e. the age of the universe. Using Eq. (2) we can get an upper and a lower
bound on our cosmological constant:

−3t−2 ≤ Λeff ≤ 3r−2, (5)

where we can approximate r > 1060M−1
Pl ≈ 1025m, and t > 1060M−1

Pl ≈ 1016 s, where we
introduced the Planck mass MPl = 1.22 · 1019 GeV, we get:

|Λeff| ≤ 3 · 10−120M2
Pl , |ρΛ| ≤ 10−121M4

Pl. (6)

This bound can also be imposed by anthropic considerations as was done by Wein-
berg [19]. There are various formulations of the anthropic principle, from the very strong,
bordering on the religious, to the weaker, bordering on the trivial. He uses a moderate
version known as the weak anthropic principle. Based on our existence, he claims that
the universe has to be old enough for some stars to have had the time to finish their main
sequence era, and then produce heavy elements necessary for our existence. But, at the
same time, it must be young enough for stars to still produce energy. For a large cosmo-
logical constant Λeff, the universe enters very rapidly in an expanding de Sitter phase,
preventing the formation of gravitationally bound structures like galaxies. We suppose
that at a redshift of around z ≥ 4 gravitational condensation has already begun in our
universe. At that time, the matter energy density would be ρM = (1+ z)3ρM0 = 125ρM0

being ρM0 the current matter energy density. The argument is that a cosmological con-
stant would prevent gravitational condensation if it was bigger than 100ρM0 . Moreover,
if it was much smaller, the formation of structures would have taken place earlier. So
if the anthropic principle explains the smallness of the cosmological constant, we would
expect it to be slightly bigger than the matter energy density nowadays.

We should look at what information quantum mechanical considerations bring us
about vacuum energy, since we must recall that one of the contributions to the effective
cosmological constant is given by the vacuum energy density. Following [15], we now
compute the zero point energies of standard model particles. Quantum field theory tells
us that the vacuum has an energy, and we compute it by loop diagrams for each particle
species. By using dimensional regularisation, for a canonical scalar ϕ of mass m we get:

≈− 1

2

∫
d4x

∫
d4k

(2π)4
log(k2 +m2)

≈− m4

(8π)2

[
−2

ϵ
+ log

(
m2

4πµ2

)
+ γ − 3

2

] ∫
d4x

⊂− ρV

∫
d4x, (7)
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with γ being the Euler-Mascharoni constant, and µ the mass scale introduced by di-
mensional regularisation. In order to eliminate divergences we introduce counterterms.
Hence, for the total zero-point energy we expect:

ρV ≈
∑

particles

O(1)m4
particle. (8)

But in the absence of gravity, the zero-point contributions do not affect dynamics,
whereas when coupled to classical gravity they do. The equivalence principle states
that:

ρV

∫
d4x → ρV

∫
d4x

√
−g, (9)

being g the determinant of the metric. In terms of Feynmann diagrams, this coupling
of the determinant of the metric corresponds to attaching external graviton legs to our
one-loop diagram. By using our effective description of quantum matter coupled to
classical gravity, the vacuum curvature is given by H2

V = ρV
3M2

Pl
. For a positive vacuum

energy density we get a late-time accelerated de Sitter expansion compatible with current
observations for H2

V ≤ H2
0 ≈ (meV)4/M2

Pl. The problem is that, as first noted by Dirac,
if we take an ultraconservative approach and we only consider the contribution of the
electron, giving ρV ≈ (MeV)4, the cosmological horizon rH would lie at a distance inferior
to the Earth-Moon distance:

rH ≤ 1

HV

= MPl

√
3

(MeV)4
≈ 106km. (10)

In brief, considering the contributions from the other standard model particles, we would
get a vacuum energy density of the order of ρV ≈ (TeV)4 = 1060(meV)4, whereas obser-
vationally we have ρΛ ≈ (meV)4. We then need a fine-tuning of 10−60 in the parameter Λ.

Considering the huge gap between the observational bound on the effective cosmolog-
ical constant ρΛ, and the result for the vacuum energy density ρV from QFT coupled to
GR, we can ask ourselves, is this the cosmological constant problem? Why is the value
of the cosmological constant so tiny? Or why do we need such a fine-tuned Λ parameter?
As emphasised by Padilla in [15] this is only the beginning, since we can afford a fine-
tuned free parameter to match observations. The problem arises when considering the
description of matter to two-loops, the cancellation imposed at first order is completely
spoiled! Consequently, we should constantly fine-tune our parameter depending on the
cut-off of our effective theory.

Quite a lot of arguments and theories have been created in order to try to solve this
radiative instability of the cosmological constant. To name a few of them, we have t’Hooft
symmetry arguments, supersymmetry, long distance modifications of gravity such as the
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sequester model[15], anthropic considerations [19], or string theory as reviewed in [5],
among many others.
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3 O(d,d) invariant cosmology

Classical string theory is one of the potential solutions to the cosmological constant
problem. The theory offers duality invariance, the symmetry that sends the scale factor
a(t) to 1/a(t). Moreover, it also offers infinitely many higher-derivative α′ corrections,
which could explain some features of early universe cosmology.

Recently Hohm and Zwiebach [8] have managed to classify all the α′ corrections, by
considering a D = d + 1 dimensional duality covariant theory. This was motivated by
the work of Meissner and Veneziano [13] and Sen [17], who managed to put the duality
covariant first order string action in an O(d,d) covariant way. Hohm and Zwiebach start
by considering the more general O(d,d) covariant action with all order α′ corrections.
Afterwards, they suppose some specific ansatz on the metric and the b field, and all
fields to be only time dependent, relevant for cosmology. Along with this, they manage
to classify all the higher-derivative corrections to all orders in α′, which are compatible
with O(d,d) invariance. The space of our theory is then O(d,d) covariant theories, and
string theory should occupy some point of this space. This O(d,d) symmetry contains
the scale factor duality.

3.1 Vacuum

3.1.1 Two-derivative theory

The two derivative theory, without α′ corrections, has the presence of the following
degrees of freedom: the D-dimensional metric gµν and its associated Ricci scalar R, the
b-field bµν and its 3-form Hµνρ = 3∂[µbνρ], and the dilaton ϕ. The string action at first
order then reads:

I0 =

∫
dDx

√
−ge−2ϕ(R + 4(∂ϕ)2 − 1

12
H2). (11)

By restricting the fields to the form:

gµν =

(
−n2(t) 0

0 gij(t)

)
, bµν =

(
0 0
0 bij(t)

)
, ϕ = ϕ(t), (12)

the action takes the O(d,d) invariant form [13]:

I0 =

∫
dt ne−Φ

(
−(DΦ)2 − 1

8
tr((DS)2)

)
, (13)

where Φ is the O(d,d) invariant dilaton defined as e−Φ =
√

det gije
−2ϕ, D = 1

n(t)
∂
∂t

is the

covariant time derivative, and the O(d,d) valued matrix S is given by:

S = ηH =

(
bg−1 g − bg−1b
g−1 −g−1b

)
, η =

(
0 1d

1d 0

)
, (14)
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where η is an O(d,d) metric, invariant under O(d,d) transformations. If H transforms
as a tensor under Ω ∈ O(d, d), then:

η → ΩTηΩ = η , H → ΩTHΩ. (15)

This implies the following transformation law for S:

S → Ω−1SΩ. (16)

This action is invariant under diffeomorphisms. We have the lapse function that trans-
forms as a density under time reparametrisations t → t − λ(t) as δλn = ∂t(λn). On
the other hand, the b field, the shifted dilaton Φ and the metric g transform as scalars
δλg = λ∂tg.

Firstly, we get the EOM at first order. By varying the action with respect to the
dilaton we get:

δΦI0 =

∫
dtne−ΦδΦEΦ,

EΦ = 2D2Φ− (DΦ)2 +
1

8
tr((DS)2). (17)

For the lapse function we write the variation as:

δnI0 =

∫
dtne−Φ δn

n
En,

En = (DΦ)2 − 1

8
tr((DS)2). (18)

The form in which we write the variation δn/n is due to the fact that δn transforms as a
density under time reparametrisations, so that the ratio transforms as a scalar. Defining
En this way, it will also be a scalar.
Now for the S matrix we must note that it is a constrained field, i.e. S2 = 1, so that
δS = −S(δS)S is a constrained variation. By varying the action with respect to S we
obtain:

δSI0 =

∫
dtne−Φtr(δSFS),

FS =
1

4
(D2S −DΦDS). (19)

Since δS is a constrained variation, the vanishing of FS does not give the correct EOM
[8]. We can rewrite the variation δS in terms of an unconstrained variation δK:

δS =
1

2
(δK − SδKS), (20)
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which introduced into Eq. (19) gives us:

δSI0 =

∫
dtne−Φtr(δKES),

ES =
1

2
(FS − SFSS), (21)

where now the vanishing of ES gives the correct EOM. We can also note that tr(δSES) =
tr(δSFS), so that the variation of the action can now be expressed in terms of the off-
shell EOM. We simplify the equation for ES by using the anticonmutativity property of
S and DS since D(S2) = (DS)S + SDS = 0. By deriving again this equation we obtain
the relation:

S(D2S)S = −D2S − 2S(D)2. (22)

By introducing both equations and Eq. (19) into (21) we get the EOM given by the
variation of S:

δSI0 =

∫
dtne−Φtr(δSES),

ES =
1

4
(D2S + S(DS)2 −DΦDS). (23)

3.1.2 O(d,d) invariant α’ corrections

We must now highlight the work of Hohm and Zwiebach [8]. By introducing a cosmo-
logical ansatz for the fields, and by using field redefinitions with the EOM at first order,
they recursively get a very simplified form of the action. We first suppose at each order
in α′ the most general action, where we have 2k + 2 time derivatives by dimensional
analysis. We can write the total action as:

I =
∞∑
k=0

Ik , Ik =
k∑

p=0

Ik,p , Ik,p = α′k
∫

dtne−ΦXp({DΦ}, {S}), (24)

where the brackets mean that the function Xp depends on the values in brackets and
higher covariant derivative terms. According to the dilaton theorem [1], the dependence
on non-derivative terms of Φ is in the exponential. At each order we will have as many
Ik,p as combinations of covariant derivative terms in Φ and S are possible, always sat-
isfying the condition that imposes the total number of derivatives to be 2k + 2. The
demonstration consists in getting to:

Ik = α′k
∫

dtne−ΦX(DS), (25)
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by induction. We suppose that all Ik are written in this form up to order k − 1, and we
attempt to prove the same form at order k. We will be using the properties of the traces
of the S field given in [10]:

tr(S) = tr(DS) = tr(D2S) = ... = 0 , (26a)

tr((DS)2k+1) = 0 , for k = 0, 1, 2... , (26b)

tr(S(DS)k) = 0 , for k = 0, 1, 2... , (26c)

We will also consider field redefinitions with corrections of order α′k:

Φ → Φ + α′kδΦ , S → S + α′kδS. (27)

Using these field redefinitions we will only need to vary I0 at each field redefinition, since
it will generate terms of order k. By varying the higher terms of the action we will obtain
O(α′k+1), that will be corrected afterwards. With such field redefinitions, the variation
of I0 is given by:

δI0 =

∫
dt ne−Φ(δΦEΦ + tr(δKES)). (28)

The demonstration is split in 5 parts:

1. A factor D2Φ in an action can be replaced by a factor of QΦ with only first deriva-
tives. We examine a term from the action with these characteristics:

Zk = α′k
∫

dtne−ΦX({DΦ}, {S})D2Φ. (29)

Considering only shifted dilaton redefinitions and using the EOM at first order for
the dilaton, we get that the variation of the action is given by Eq. (17):

δI0 =

∫
dt ne−Φ2δΦ

(
D2Φ− 1

2
(DΦ)2 +

1

16
tr((DS)2)

)
, (30)

which by a proper choice of 2δΦ = −X({DΦ}, {S}), and summed to Eq. (29) will
eliminate the second derivative term in Eq. (29). This means that at order k we
will have a replacement of second derivatives of Φ by an expression of just first
derivatives:

D2Φ → QΦ =
1

2
(DΦ)2 − 1

16
tr((DS)2). (31)

2. A factor D2S in an action can be replaced by a factor of QS with only first deriva-
tives. As we did before, we use the EOM at first order and a redefinition of the S
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fields (by means of δK). The term that we want to cancel is the generic term with
a second derivative of S:

Zk = α′k
∫

dtne−ΦX({DΦ}, {S})tr(GD2S), (32)

where G is a matrix which is a function of S such as G({S}). By varying the action
at first order we get from Eq. (23):

δI0 =

∫
dt ne−Φtr

(
1

4
δK(D2S + S(DS)2 −DΦDS)

)
. (33)

Now, if we choose the variation of the matrix to be:

1

4
δK = −X({DΦ}, {S})G, (34)

the net effect of the variation of the action at first order, will be the replacement
in the term Z ′

k:
D2S → QS = −S(DS)2 +DΦDS. (35)

3. Any action can be reduced so that it only has first time derivatives of Φ. Such
general terms can be expressed as:

Zk = α′k
∫

dtne−ΦX({DΦ}, {S})Dm+2Φ , 0 ≤ m ≤ 2k. (36)

The Dm+2Φ term can be written as Dm(D2Φ). We integrate by parts the m deriva-
tives and then replace D2Φ by QΦ, so that the transformed Eq. (36) at order k
reads:

Z ′
k = α′k

∫
dtn(−Dm)(e−ΦX)(

1

2
(DΦ)2 − 1

16
tr((DS)2)). (37)

We now integrate back all the m derivatives one by one. It is done one by one since
at each step we will generate second derivatives of Φ and S, which with the first
2 properties can be reduced to first derivative terms. Therefore, the most general
action at order k can now be written as:

Ik = α′k
∫

dtne−ΦX(DΦ, {S}). (38)

4. Any action can be reduced so that it only has first time derivatives of S. Again,
we proceed the same way we did in the dilaton case. Now such term will have the
form:

Zk = α′k
∫

dtne−ΦX(DΦ, {S})tr(GDm+2S) , 0 ≤ m ≤ 2k, (39)
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with G again being a matrix in terms of S and its derivatives G({S}). As X is a
scalar, in order to facilitate the notation we can write:

F(DΦ, {S}) = e−ΦX(DΦ, {S})G({S}). (40)

We now integrate by parts the m derivatives and then replace D2S by QS, getting
a variation of the Zk term:

Z ′
k = α′k

∫
dtntr((−Dm)FQS). (41)

Once again we integrate back by parts, by one derivative at a time. The second
derivative terms generated by DQS will be replaced by the expressions of QS and
QΦ found in properties 1 and 2. Only terms like DΦ, S, and DS can appear. We
now recall Eq. (26c), which implies that terms with an S will not appear, neither
quadratic or cubic terms since it is a constrained field S2 = 1. At order k the
action takes now the simplified form:

Ik = α′k
∫

dtne−ΦX(DΦ,DS). (42)

5. Any action Ik with k > 1 is equivalent to one without any appearance of DΦ. Now
that we only have first derivatives of the dilaton, we can write the pieces of the
action as:

Ik,p = α′k
∫

dtne−Φ(DΦ)pXl(DS), (43)

where Xl is a generic invariant function of traces of DS and powers of it:

Xl(DS) = tr((DS)l1 ...(DS)ln) , l = l1 + ...+ ln. (44)

These functions satisfy: l + p = 2k + 2. Now we can rearrange Eq. (43), and then
integrate by parts:

Ik,p = −
∫

dtnD(e−Φ)(DΦ)p−1Xl

=

∫
dtne−Φ

(
(p− 1)(DΦ)p−2D2ΦXl + (DΦ)p−1DXl

)
. (45)

We now replace D2Φ by QΦ. Moreover, the covariant derivative acting on Xl

will give second derivative terms of S inside the traces, which are replaced by
QS = −S(DS)2 + DΦDS. Looking at Eq. (44) we see that the first part of the
replacement vanishes since it will give terms such as tr(−S(DS)l1+2) that vanish
identically (26c), so the net change inside Xl is D2S → DΦDS and we get:

DXl = DΦ
(
l1tr((DS)l1 ...(DS)ln + ...+ lntr((DS)l1 ...(DS)ln

)
= lDΦXl(DS). (46)
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With both replacements Eq. (45) reads:

Ik,p =

∫
dtne−Φ

(
(p− 1)(DΦ)p−2

(
1

2
(DΦ)2 − 1

16
tr((DS)2)

)
Xl + l(DΦ)pXl

)
=

∫
dtne−Φ

(
1

2
(p+ 2l − 1)(DΦ)pXl −

1

16
(p− 1)(DΦ)p−2tr((DS)2)Xl

)
.

(47)

We note that the first term is proportional to (DΦ)pXl as the original Eq. (43).
We can equate them obtaining:∫

dtne−Φ(DΦ)pXl =
1

8

(p− 1)

(p+ 2l − 3)

∫
dtne−Φ(DΦ)p−2tr((DS)2)Xl. (48)

The denominator does not vanish since p+ l = 2k+2, then the denominator reads
2k + l − 1 ≥ 1 for k ≥ 1. We can recursively use Eq. (48) in order to reduce the
powers of DΦ by two, by also increasing l, the powers of DΦ by two. We have two
cases. For the case of even powers of DΦ, we can use Eq. (48) recursively until
we get to a vanishing power of dilaton derivatives. For the case of odd powers, we
can get to a single DΦ term, then looking at Eq. (48), we would obtain p = 1 and
the prefactor on the right hand side makes it vanish. We have finally achieved our
objective, any Ik term can be written as:

Ik = α′k
∫

dtne−ΦX(DS). (49)

By imposing O(d,d) invariance and using covariant redefinitions of S and Φ we get to this
much simpler action. But, we can further constrain the form of Xl by using redefinitions
of the lapse function. Up to now, the total action has the form:

I =

∫
dtne−Φ(L0 + α′L1 + α′2L2 + ...), (50)

where Lk posseses 2k + 2 derivatives of S in all possible combinations. Taking into
account that traces of odd powers vanish (Eq. (26b)), L1, L2... take the form:

L1 =a1tr((DS)4) + a2(tr((DS)2))2, (51)

L2 =b1tr((DS)6) + b2tr((DS)4)tr((DS)2) + b3(tr((DS)2))3. (52)

Inspired in the previous demonstrations, we can still use time lapse redefinitions in order
to remove all the tr((DS)2) terms. Once again, we use a variation of order α′k, this time
of the lapse function, which produces a variation in the first order action:

n → n+ α′kδn, (53)

δnI0 = α′k
∫

dtne−Φ δn

n
((DΦ)2 − 1

8
tr((DS)2)). (54)
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We now want to eliminate terms like:

Ik,p = α′k
∫

dtne−ΦX2k(DS)tr(DS)2. (55)

By using a further Φ redefinition, in order to replace (DΦ)2 by 1
8(4k−1)

tr((DS)2) (from

Eq. (48)), we can eliminate such terms by choosing:

δn

n
= βX2k(DS), (56)

with β a constant to be determined. It is clear that we can cancel the Ik,p with the
variations of the first order action by imposing βk

2(4k−1)
= −1. So any term with a tr(DS)2

term can be removed by further dilaton and lapse function covariant redefinitions.

3.1.3 Equations of motion

For a Friedman-Lemâıtre-Robertson-Walker (FLRW) metric, only single-trace terms in
S are necessary, as explained in section 3.1.4. By neglecting multi-trace terms, we get to
the final action:

I =

∫
dt ne−Φ

(
−(DΦ)2 +

∞∑
k=1

α′k−1ck tr(DS)2k

)
. (57)

We get an O(d,d) covariant action where only first derivatives appear, a huge and unex-
pected simplification. In the same way as the first order case, we vary the action with
respect to Φ, S, and n. The derivation of the EOM for Φ and n is similar as in the first
order case. We should look at the EOM for S in more detail. We fix the gauge n = 1.
The general case will be recovered in section 3.2, for it we only have to replace the dots
by the covariant derivative. The variation of the action with respect to S reads:

δSI =
∞∑
k=1

α′k−1ck

∫
dte−Φ(2k)tr

(
(δ
dS

dt
)Ṡ2k−1

)
=−

∞∑
k=1

α′k−1ck

∫
dt(2k)tr

(
δS

d

dt
(e−ΦṠ2k−1)

)

=

∫
dte−Φtr

(
δS

∞∑
k=1

α′k−1ck(2k)

[
Φ̇Ṡ2k−1 − d

dt
Ṡ2k−1

])
. (58)

This relation gives tr(δSFS), as before, we get ES with Eq. (21):

ES =
1

2

∞∑
k=1

α′k−1ck(2k)

([
Φ̇Ṡ2k−1 − d

dt
Ṡ2k−1

]
− S

[
Φ̇Ṡ2k−1 − d

dt
Ṡ2k−1

]
S

)
. (59)
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In order to simplify it we must recall a few properties of the S matrices. Firstly, as we
saw S and Ṡ anticonmute, so the same happens for S and an odd number of Ṡ. Secondly,
if we differentiate again the equation of anticonmutativity we get:

SS̈ = −S̈S − 2Ṡ2. (60)

With all that we can look for an expression for S d
dt
Ṡ2k−1S:

S
d

dt
Ṡ2k−1S =S

d

dt
(ṠṠ...Ṡ︸ ︷︷ ︸

2k−1

)S

=S(S̈Ṡ...Ṡ)S + S(ṠS̈...Ṡ)S + ...+ S(ṠṠ...S̈)S︸ ︷︷ ︸
2k−1

=− 2Ṡ2kS − S̈Ṡ...Ṡ + 2Ṡ2kS − ṠS̈...Ṡ − ...− 2Ṡ2kS − ṠṠ...S̈

=− d

dt
Ṡ2k − 2SṠ2k. (61)

By the anticonmutativity property of S and Ṡ we will have alternance in the sign of
2SṠ2k and as we have an odd number of them, we are left with only one of those terms
with a negative sign. Taking Eqs. (59) and (61) into account, we get the final EOM for
S. We write the three EOM with n = 1:

EΦ = 2Φ̈− Φ̇2 −
∞∑
k=1

α′k−1cktr(Ṡ
2k), (62a)

ES = −2
∞∑
k=1

α′k−1k ck

(
d

dt
Ṡ2k−1 − Φ̇Ṡ2k−1 + SṠ2k

)
, (62b)

En = Φ̇2 −
∞∑
k=1

α′k−1(2k − 1)cktr(Ṡ
2k). (62c)

With a general variation of the action given by:

δI =

∫
dt ne−Φ

(
δΦEΦ + tr(δSES) +

δn

n
En

)
. (63)

We can further note that by imposing time reparametrisation invariance of the action
under:

δξS = ξṠ , δξΦ = ξΦ̇ , δξn = ∂t(ξn), (64)

we obtain a Bianchi identity that reads:

Φ̇2(EΦ + En) + tr(ṠES) =
d

dt
En. (65)

This equation tells us that it is enough to solve EΦ+En = 0 and ES = 0, so that En = 0
is a Hamiltonian constraint that has to be satisfied for the initial conditions, and will
hold at all times.
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3.1.4 FLRW

We will focus on the case of the FLRW metric, with vanishing b field, such that:

S =

(
0 a2(t) · 1d

a−2(t) · 1d 0

)
, (66)

where a(t) is the scale factor for the d spatial dimensions, and H is the usual Hubble
parameter H = ȧ/a. The covariant dilaton and its first derivative are now defined as:

e−Φ = (a(t))de−2ϕ → Φ̇ = −dH + 2ϕ̇. (67)

Let us evaluate the terms appearing in Eqs. (62). The derivatives of S are given by:

Ṡ = 2H

(
0 a2(t) · 1d

−a−2(t) · 1d 0

)
= 2HJ → S̈ = 2ḢJ + 4H2S, (68)

where we introduced the J matrix:

J =

(
0 a2(t) · 1d

−a−2(t) · 1d 0

)
→ J̇ = 2H

(
0 a2(t) · 1d

a−2(t) · 1d 0

)
= 2HS. (69)

We note that J2 = −12d. Then for the even powers of Ṡ we have:

Ṡ2 = −4H2
12d → Ṡ2k = −(−1)k−1(2H)2k12d, (70)

while for the odd ones:

Ṡ2k−1 = Ṡ2(k−1)Ṡ = (−1)k−1(2H)2k−1J, (71)

implying:

d

dt
Ṡ2k−1 = (−1)k−1(2k − 1)2Ḣ(2H)2k−2J + (−1)k−1(2H)2kS. (72)

The last term that we need to substitute is given by:

SṠ2k = −(−1)k−1(2H)2kS. (73)

A key point for our future development is that we can introduce exclusively single-
trace terms in the action, neglecting multitrace ones. This works for a FLRW isotropic
ansatz as stated previously. By computing the single-trace terms that appear in the
action (57) using Eq. (70) we get:

cktr(Ṡ
2k) = (−1)k22k+1ckdH

2k, (74)
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whereas for example, for a double-trace term of same order we would have:

ck,ltr(Ṡ
2(k−l))tr(Ṡ2l) = (−1)k22k+1ck,l2d

2H2k. (75)

The only effect at order (α′)k−1 would be a redefinition of the ck coefficients ck →
ck + 2dck,l. As multitrace terms enter at third order (52) and these coefficients ck≥3, are
not fixed, we can neglect multitrace terms.

By evaluating Eqs. (62) with Eqs. (70)-(73), we get the EOM for our FLRW ansatz.
For ES = 0:

0 =− 2
∞∑
k=1

(−α′)k−1k ck

(
(2k − 1)2Ḣ(2H)2k−2J + (2H)2kS − Φ̇(2H)2k−1J − (2H)2kS

)
=−

∞∑
k=1

(−α′)k−12k ck

(
(2k − 1)2Ḣ(2H)2k−2 − Φ̇(2H)2k−1

)
J. (76)

We note that the dependence in the S matrix vanished, obtaining a unique equation
instead of a matrix one. For future convenience we multiply Eq. (76) by 4d. For EΦ = 0
we have:

0 = 2Φ̈− Φ̇2 + 2d
∞∑
k=1

(−α′)k−1ck(2H)2k, (77)

where the factor 2d comes from the trace of 12d. Finally for En = 0:

0 = −Φ̇2 − 2d
∞∑
k=1

(−α′)k−1(2k − 1)ck(2H)2k. (78)

The key point in this development is to understand that we can express all three EOM
by means of defining a unique function F (H):

F (H) = 4d
∞∑
k=1

(−α′)k−122k−1ckH
2k. (79)

We get the EOM for the isotropic FLRW metric in vacuum:

Ḣ F ′′(H)− Φ̇F ′(H) = 0, (80a)

Φ̈ +
1

2
H F ′(H) = 0, (80b)

Φ̇2 +H F ′(H)− F (H) = 0, (80c)

where we have ES = 0, EΦ + En = 0 and En = 0 respectively, and primes denote
derivatives with respect to H. It is useful to note the expression for EΦ for the next
section in which we introduce matter:

EΦ = 2Φ̈− Φ̇2 + F (H). (81)
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We can note that the action can also be rewritten in terms of the F (H) function as:

I =

∫
dte−Φ

(
−Φ̇2 − F (H)

)
. (82)

The F (H) function encodes the α’ corrections at all orders. It has been used to look for
non-perturbative de Sitter solutions [8], [4], [3]. The functional forms found for F (H) in
these works are not at all guaranteed to be stringy solutions, apart from the fact that is
not clear that after our perturbative development of the theory we could just choose a
non-perturbative function to play the role of F (H).
We can observe that, as expected, the O(d,d) invariance turned into the duality invari-
ance of the scale factor, since under a transformation of the scale factor, we get:

a → a−1 , H → −H , Φ → Φ , F (H) → F (H) , F ′(H) → −F ′(H). (83)

3.2 Matter

To have a more realistic cosmological model, we need to add a matter action to (57). In
order to make it as general as possible, we can suppose that the matter action depends
also on the shifted dilaton. For this part we will add the dimensionful constant 2κ2 =
16πG where G is the Newton constant in D dimensions and has mass dimensions 2−D.
We take advantage of this comment on dimensional analysis to point out that the action
in Eq. (84) does not have zero mass dimension because we have integrated out the D−1
spatial dimensions. The action then reads:

I =
1

2κ2

∫
dt ne−Φ

(
−(DΦ)2 +

∞∑
k=1

α′k−1ck tr(DS)2k

)
+ Sm[Φ, n, S, χ], (84)

where for consistence with the symmetries of the background we suppose the matter
fields χ to be exclusively time dependent. We follow [2], where the matter action at first
order in α′ in an O(d,d) covariant way is first introduced. Similarly to what is done
in [8], by means of field redefinitions they argue that by introducing a matter action in
this way, we are not neglecting α′ corrections to the matter sector, the EOM at first
order are used to rearrange the total action into the form in Eq. (84). Since the extra
matter factors that contribute to the corrected action at order k (since they enter in the
EOM and then in the redefinitions of the fields) can be eliminated with the new degree
of freedom χ. To get the EOM, the gravitational part is derived in the same way as in
the previous section. Now for the matter part, by varying the action with respect to the
shifted dilaton we obtain:

δΦI =

∫
dtne−ΦδΦET

Φ , (85)

ET
Φ =

1

2κ2

(
2D2Φ− (DΦ)2 −

∞∑
k=1

α′k−1cktr((DS)2k)

)
+

eΦ

n

δSm

δΦ
. (86)
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So that for EΦ on-shell, the EOM reads:

2D2Φ− (DΦ)2 −
∞∑
k=1

α′k−1cktr((DS)2k) = −2κ2 e
Φ

n

δSm

δΦ
= κ2eΦθ̄, (87)

where bared variables are multiplied by
√
g, and we define θ as the dilatonic charge that

can be seen as the measure of how strongly the dilaton couples to matter:

θ = − 2
√
g

δSm

δΦ
. (88)

Now, by varying the action with respect to the lapse function we obtain:

δnI =

∫
dtne−Φ δn

n
ET

n , (89)

ET
n =

1

2κ2

(
(DΦ)2 −

∞∑
k=1

α′k−1(2k − 1)cktr((DS)2k)

)
+ eΦ

δSm

δn
, (90)

and the EOM then reads:

(DΦ)2 −
∞∑
k=1

α′k−1(2k − 1)cktr((DS)2k) = −2κ2eΦ
δSm

δn
= 2κ2eΦρ̄, (91)

with ρ the energy density in the energy-momentum tensor. We can get this expression
from the definition of the energy-momentum tensor :

Tµν = − 2√
−G

δSm

δgµν
→ T00 = − n2

√
g

δSm

δn
→ δSm

δn
= −ρ̄. (92)

For the S field, the variation reads:

δSI =

∫
dtne−Φtr(δSF T

S ) (93)

F T
S =

1

2κ2

(
∞∑
k=1

α′k−1ck(2k)
[
DΦ(DS)2k−1 −D(DS)2k−1

])
+

eΦ

2n

δSm

δS
. (94)

We must recall that S is a constrained field, so that the EOM is given by the vanishing
of ET

S = (F T
S − SF T

S S)/2. We obtain:

ET
S = − 1

κ2

∞∑
k=1

α′k−1k ck
(
D(DS)2k−1 −DΦ(DS)2k−1 + S(DS)2k

)
− eΦ

4
SηT , (95)
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where we define T as the O(d,d) covariant energy-momentum tensor:

T =
1

n

(
η
δSm

δS
S − ηS

δSm

δS

)
. (96)

We assume the variation of the matter action is unconstrained, so that:

δSm

δS
= −S

δSm

δS
S. (97)

We can verify that an unconstrained variation satisfies this property since by taking
FS = δSm

δS
and introducing it into the expression of ES to obtain the unconstrained

equation of motion using Eq. (97), we get ES = FS = δSm

δS
. Later on, in section 3.2.1, we

will see the reason for this assumption. Then the O(d,d) covariant energy-momentum
tensor takes the simpler form:

T = − 2

n
ηS

δSm

δS
. (98)

In order to get the continuity equation, we derive Equation (91) getting:

2κ2eΦρ̄DΦ + 2κ2eΦDρ = 2D2ΦDΦ−
∞∑
k=1

α′k−1(2k − 1)2kcktr(D2S(DS)2k−1). (99)

The derivative inside the trace can be simplified in this way because of the ciclicity
property of the trace. We introduce the expression for D2Φ from (91). Moreover, for
the expression inside the trace we take the trace of Eq. (95) and then multiply by DS
obtaining:

Dρ̄ = −1

4
tr(S(DS)ηT ) +

1

2
DΦσ̄. (100)

The continuity equation can be obtained in the same way by using the equations at first
order, since α′ corrections should not violate diffeomorphism invariance and then the
Bianchi identities.

3.2.1 FLRW

We now only have to substitute the expressions obtained, as we did for the gravitational
part. The only new part that requires a bit of caution is the computation of the ES

equation. From our ansatz for the S matrix (66) we get the variation:

δSm

δS
=

(
0 δSm

δg−1

δSm

δg
0

)
. (101)
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Then, from the usual definition of the energy momentum tensor in terms of the variation
of the matter action we have:

T k
i gkj = (Tg)ij = − 2√

−G

δSm

δgij
→ Tg = − 2√

−G

δSm

δg−1
, (102)

gikT j
k = (g−1T )ij =

2√
−G

δSm

δgij
→ g−1T =

2√
−G

δSm

δg
. (103)

We can easily check the assumption of Eq. (97). It is satisfied for whatever metric, with
the condition of vanishing b-field, as we can see:

S
δSm

δS
S =

√
−G

2

(
0 g
g−1 0

)(
0 −Tg

g−1T 0

)(
0 g
g−1 0

)
=

√
−G

2

(
0 Tg

−g−1T 0

)
= −δSm

δS
.

(104)
For the expression of the covariant energy momentum tensor, using Eq. (98), we obtain:

T =
2

n

√
−G

2

(
g−1 0
0 g

)(
0 Tg

−g−1T 0

)
=

√
g

(
0 g−1Tg
−T 0

)
=

√
g

(
0 p1d

−p1d 0

)
,

(105)
where we supposed an isotropic energy momentum tensor with spatial coordinates T j

i =
pδji . The gravitational part is exactly the same as the computed for the vacuum case, so
by fixing n = 1 and using Eq. (95), together with Eq. (76), and (105) we find:

eΦ

2
κ2SηT = −

∞∑
k=1

(−α′)k−12k ck

(
(2k − 1)2Ḣ(2H)2k−2 − Φ̇(2H)2k−1

)
J. (106)

Next, we have to multiply Eq. (106) by the matrix J , and recalling that J2 = −12d, we
compute:

SηT J =
√
g

(
0 a21d

a−2
1d 0

)(
0 1d

1d 0

)(
0 p1d

−p1d 0

)(
0 a21d

−a−2
1d 0

)
= −√

gp12d.

(107)
Note that, as in the vacuum case, we obtain a unique equation. Multiplying both sides
of Eq. (106) by 4d, we finally obtain the equations [2]:

Ḣ F ′′(H)− Φ̇F ′(H) = −2dκ2eΦp̄, (108a)

2Φ̈− Φ̇2 + F (H) = κ2eΦθ̄, (108b)

Φ̇2 +H F ′(H)− F (H) = 2κ2eΦρ̄, (108c)

which are the equations for the S matrix, for the dilaton Φ and for the lapse function n.
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For the continuity equation from Eq. (100), as SṠ = −ṠS by fixing the lapse function
n = 1, we compute:

tr(SṠηT ) = −tr(SηT Ṡ) = −2Htr(SηT J) = 4dH
√
gp. (109)

We then get to the final expression of the continuity equation for a FLRW like metric,
which reads:

˙̄ρ+ dHp̄− 1

2
Φ̇θ̄ = 0. (110)

3.3 Einstein frame

We must not forget that we are working in the string frame, so that our Hubble parameter
is also in the string frame. In order to get it in the D-dimensional Einstein frame we
must perform a Weyl transformation of our metric, so that:

gµν = Ω−2g̃µν →
√
−g = Ω−D

√
−g̃, (111)

where g̃µν is the metric in the Einstein frame. The conformal factor Ω is fixed by requiring
the gravitational part of the action to be exclusively:

∫
dt
√
−g̃R̃, with R̃ the Ricci scalar

in the new frame. The Ricci scalar varies with Ω2, so that the Weyl transformation is:

Ω = e−
2ϕ
d−1 . (112)

Moreover, as explained in [8] and [11], we imposed g00 = −n2 = −1, so in order to have

g̃00 = −1 we will have to reparametrise the time coordinate dte
−2ϕ
d−1 = dt′. This procedure

will be repeated in a different way in section 6, where we will not fix the lapse function
so that we do not need this last time reparametrisation. By expressing HE = ȧE/aE in
terms of the string frame parameters, the Hubble parameter in the Einstein frame HE

parametrised with the cosmic time in the Einstein frame t′ reads:

HE(t
′) = − e

2ϕ
d−1

d− 1
(Φ̇ +H) = −a

d
d−1 e

Φ
d−1

d− 1
(Φ̇ +H), (113)

where H, a, Φ, ϕ, and the derivatives are in the string frame. In section 4.3 we will see
how to derive this Einstein frame Hubble parameter step by step. In order to look for
the different solutions for which the Hubble parameter is constant in the Einstein frame,
we can derive with respect to t′:

dHE

dt′
=

dt

dt′
dHE

dt
= − e

4ϕ
d−1

d− 1

(
2ϕ̇

d− 1
(Φ̇ +H) + (Φ̈ + Ḣ)

)
,

= − e
4ϕ
d−1

d− 1

(
Φ̈ + Ḣ +

1

d− 1
(dH + Φ̇)(Φ̇ +H)

)
, (114)
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where in the last line we used the identity (67). We obtain an interesting result, since in
order to obtain a constant Hubble parameter in both frames, one of the possibilities is
to have the velocity of the shifted dilaton and the Hubble parameter in the string frame
constants. So that, with Φ̇ = −H or Φ̇ = −dH we get respectively Minkowski and de
Sitter vacuum in the Einstein frame, as commented in [4]. We recall that until now we
have not assumed that we are either in the vacuum or matter case.

By putting Eq. (114) to 0, and substituing the dilaton components with the EOM
(80) of the vacuum case, we can get a differential equation for F (H) and H. For the
case in which F ′(H) ̸= 0:

0 = (d− 1)Φ̈ + (d− 1)Ḣ + dH2 + Φ̇H(d+ 1) + Φ̇2,

= (d− 1)(Ḣ − 1

2
HF ′(H)) + dH2 + (d+ 1)

F ′′(H)

F ′(H)
HḢ + F (H)−HF ′(H).(115)

We can look for some special cases, for example a constant Hubble parameter, from
Eq. (80a), imposes a vanishing Φ̇ or a vanishing F ′(H). For the first option, we get a
vanishing shifted dilaton acceleration and then F ′(H) = 0, or H = 0. We impose H = 0,
introducing this into Eq. (80c) we also get a vanishing F (H) function. Substituting
these values into Eq. (114) we get an expression that vanishes identically. This solution
of H = 0 (in the string frame) gives a constant Hubble parameter in the Einstein frame.
Moreover, looking at Eq. (113), we can see that it is a Minkowski solution.
Looking at the neglected case F ′(H) = 0 we get a constant but non zero shifted dilaton
velocity given by the value of the F function Φ̇2 = F (H), which introduced into Eq.
(114) allows Φ̇ = −H and Φ̇ = −dH, giving a Minkowski and a de Sitter solution in the
Einstein frame respectively. A systematic analysis of the fixed points of the system will
be done in section 5.

We can also do different substitutions so that we do not get Ḣ terms in the differential
equation. From Eqs. (80) we now carry out the substitutions:

Φ̈ = −1

2
HF ′ , Φ̇2 = F −HF ′ , Ḣ = Φ̇

F ′

F ′′ . (116)

This relation gives a different differential equation. The positive point is that now we
have a differential equation to get the F function in terms of derivatives with respect to
H exclusively, but with the cost of introducing square roots. The differential equation
now reads:

−1

2
HF ′F ′′+F ′s

√
F −HF ′+

dH2

d− 1
F ′′+

d+ 1

d− 1
sHF ′′√F −HF ′+

1

d− 1
(F−HF ′)F ′′ = 0,

(117)
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where s = ±1 by the duality in the sign of Φ̇ by its definition in Eq. (116) from the
EOM. This equation coincides with the work done in [12]. But as we can suppose, this
differential equation cannot be solved analitycally. We finish this section by commenting
that adding matter further complicates the equation by making the time dependent
factors of the dilatonic charge θ(t), the pressure p(t) and the energy density ρ(t) appear.
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4 Anisotropic case

4.1 Vacuum

With the objective of compactifying the theory, and seeing what aspect it should have in
4 dimensions, one of the first ideas is to use an anisotropic metric, with a 3-dimensional
part with the scale factor a(t), and a D-4-dimensional part with the scale factor b(t) for
the extra dimensions. The metric and S matrix are:

gij =

(
a2 · 13 0

0 b2 · gmn

)
, S =

 0
a2 · 13 0

0 b2 · gmn

a−2 · 13 0
0 b−2 · gmn 0

 = S3+SD−4,

(118)
where we assume a FLRW metric for the 3-dimensional part and a metric b2gmn for
the extra dimensions. Then, we require the time dependence of the metric of the extra
dimensional part to be in the scale factor b(t). Thus the time derivative reads:

Ṡ =

 0
2Ha2 · 13 0

0 2σb2 · gmn

−2Ha−2 · 13 0
0 −2σb−2 · gmn 0

 = Ṡ3 + ṠD−4, (119)

where σ = ḃ/b is the Hubble factor for the extra dimensions. Let us first compute the
first order Lagrangian in this case. An important feature is the fact that the Ṡ3 and
ṠD−4 matrices will not have cross-terms in the single-trace terms:

Ṡ2 = Ṡ3Ṡ3 + ṠD−4ṠD−4 + Ṡ3ṠD−4 + ṠD−4Ṡ3 = Ṡ2
3 + Ṡ2

D−4. (120)

Taking (13) and (120) we obtain the form of the zero-order action:

I0 =

∫
dt ne−Φ 1

n2

(
−Φ̇2 − 1

8
tr(Ṡ2

3)−
1

8
tr(Ṡ2

D−4)

)
, (121)

where the shifted dilaton is defined as usual:

e−Φ = e−2ϕ√g, (122)

with
√
g being the determinant of the spatial part of the full metric in Eq. (118).

For the α′ corrections part, by simply taking Eq.(57) and substituting we would
obtain an action where the 2 scale factors do not talk to each other directly. However,
taking into account that one of the simplifications that was done for the isotropic FLRW
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case no longer holds. One can no longer neglect the multi-trace factors. Let us see an
example, for a multi-trace term of order k, such that 2l = k, we have:

(tr(Ṡ2l))2 = (tr(Ṡ2l
3 ))

2 + (tr(Ṡ2l
D−4))

2 + 2 tr(Ṡ2l
3 )tr(Ṡ

2l
D−4). (123)

Now multitrace terms provide new factors to our action. We can introduce the coefficients
that will arise from the multitrace terms in the ck,l coefficients at each order. The
complete action can be written as:

I =

∫
dt ne−Φ

(
−(DΦ)2 +

∞∑
k=1

α′k−1

k∑
l=0

ck,l tr(DS3)
2(k−l)tr(DSD−4)

2l

)
. (124)

We do not have to demonstrate the 5 properties of [8] since we start from the action
found in there, but with the difference that we are forced to also include multitrace
terms. An interesting property is given by the redefinitions of the time lapse function,
which allowed us to make all the tr(DS)2 disappear for k > 1. Having a look at Eqs.
(51) and (52) we see that it is not until third order where the mixed terms will appear
in the action.
We have the total action for the anisotropic case in Eq. (124), we can redefine the S
matrices, since this redefinition does not have any impact on the equations. The principal
reason is to get an S matrix similar to the one in [8], and in such a way that they are
constrained to S2

3 = 16 and S2
D−4 = 12(D−4). From now on we define:

S3 =

(
0 a2 · 13

a−2 · 13 0

)
, SD−4 =

(
0 b2 · gmn

b−2 · gmn 0

)
. (125)

To get the EOM we have to vary our action. For S3 we obtain:

δS3I =

∫
dte−Φ

∞∑
k=1

α′k−1

k∑
l=0

ck,l2(k − l)
(
Φ̇tr(δS3(Ṡ3)

2(k−l)−1)tr(ṠD−4)
2l+

+tr(δS3
d

dt
(Ṡ3)

2(k−l)−1)tr(ṠD−4)
2l + tr(δS3(Ṡ3)

2(k−l)−1)tr(
d

dt
(ṠD−4)

2l)

)
=

∫
dte−Φtr

[
δS3

∞∑
k=1

α′k−1

k∑
l=0

ck,l2(k − l)
(
Φ̇(Ṡ3)

2(k−l)−1tr(ṠD−4)
2l+

+(
d

dt
(Ṡ3)

2(k−l)−1)tr(ṠD−4)
2l + (Ṡ3)

2(k−l)−1tr(
d

dt
(ṠD−4)

2l)

)]
. (126)

We already have the form
∫
dte−Φtr(δS3FS3), but δS3 is a constrained variation, which

means that the EOM will be given by ES3 =
1
2
(S3FS3S3 − FS3) = 0 [8]. We can recover

the relationship demonstrated in Eq. (61):

S3
d

dt
Ṡ
2(k−l)−1
3 S3 = − d

dt
Ṡ
2(k−l)−1
3 − 2S3S

2(k−l)−1
3 , (127)
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and obtain:

ES3 =
∞∑
k=1

α′k−1

k∑
l=0

ck,l2(k − l)

(
Φ̇(Ṡ3)

2(k−l)−1tr(ṠD−4)
2l + (

d

dt
(Ṡ3)

2(k−l)−1)tr(ṠD−4)
2l

−(Ṡ3)
2(k−l)−1tr(

d

dt
(ṠD−4)

2l)− S3(Ṡ3)
2(k−l)tr(ṠD−4)

2l

)
.

(128)

We proceed in the same way for SD−4 and obtain:

ESD−4
=

∞∑
k=1

α′k−1

k∑
l=0

ck,l2l

(
Φ̇tr((Ṡ3)

2(k−l))Ṡ2l−1
D−4 + tr((Ṡ3)

2(k−l))
d

dt
(ṠD−4)

2l−1

−tr((Ṡ3)
2(k−l))

d

dt
(ṠD−4)

2l−1 − tr((Ṡ3)
2(k−l))SD−4Ṡ

2l
D−4

)
. (129)

By varying the action with respect to the shifted dilaton we get:

EΦ = 2Φ̈− Φ2 −
∞∑
k=1

α′k−1

k∑
l=0

ck,ltr(Ṡ
2(k−l)
3 )tr(Ṡ2l

D−4). (130)

Finally, we vary with respect to the lapse function and then fix n=1, we obtain En:

En = Φ̇−
∞∑
k=1

α′k−1(2k − 1)
k∑

l=0

ck,ltr(Ṡ
2(k−l)
3 )tr(Ṡ2l

D−4). (131)

4.1.1 FLRW

Let us now compute the EOM for the FLRW like metric. First we compute some of the
expressions. Using (125) we can get the derivatives and the expressions needed as:

Ṡ3 = 2H

(
0 a2 · 13

−a−2 · 13 0

)
= 2HJ3 → Ṡ2k

3 = (−1)k(2H)(2k)16, (132)

ṠD−4 = 2σ

(
0 b2 · gmn

−b−2 · gmn 0

)
= 2σJD−4 → Ṡ2k

D−4 = (−1)k(2σ)(2k)12(D−4). (133)

We proceed with the computation of the odd powers of the S matrices:

Ṡ
2(k−l)−1
3 = Ṡ

2(k−l−1)
3 Ṡ3 = (−1)(k−l−1)(2H)2(k−l)−1J3, (134)

Ṡ2l−1
D−4 = Ṡ

2(l−1)
D−4 ṠD−4 = (−1)(l−1)(2σ)(2l−1)J2(D−4). (135)
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The time derivatives for the powers of Ṡ3 matrices, using the fact that J̇3 = 2HS3 read:

d

dt
Ṡ
2(k−l)
3 = (−1)k−l2(k − l)22(k−l)H2(k−l)−1Ḣ16, (136)

d

dt
Ṡ
2(k−l)−1
3 = (−1)k−l−1(2(k − l)− 1)22(k−l)−1H2(k−l−1)ḢJ3 + (−1)k−l−1(2H)2(k−l)S3.

(137)

In a symmetric way, for SD−4, we use J̇D−4 = 2σSD−4, and get:

d

dt
Ṡ2l
D−4 = (−1)l(2l)22lσ2l−1σ̇12(D−4), (138)

d

dt
Ṡ2l−1
D−4 = (−1)l−1(2l − 1)22l−1σ2(l−1)σ̇JD−4 + (−1)l−1(2σ)2lSD−4. (139)

All that remains is to introduce in Eqs. (128)-(131) the expressions (132)-(139) in order
to get the EOM for our ansatz (118). For ES3 we have:

ES3 =
∞∑
k=1

α′k−1

k∑
l=0

ck,l2(k − l)(−1)k22k(D − 4)
(
Φ̇H2(k−l)−1σ2l

+(2(k − l)− 1)ḢH2(k−l−1)σ2l + 2lσ̇σ2l−1H2(k−l)−1
)
J3, (140)

which after a few simplifications reads:

ES3 = −
∞∑
k=1

(−α′)k−1

k∑
l=0

ck,l2(k − l)22k−12(D − 4)

([
d

dt
− Φ̇

]
H2(k−l)−1σ2l

)
J3. (141)

In the same way we can get the equation for SD−4:

ESD−4
= −

∞∑
k=1

(−α′)k−1

k∑
l=0

ck,l(2l)2
2k−16

([
d

dt
− Φ̇

]
H2(k−l)σ2l−1

)
JD−4. (142)

We see that as in [8] a huge simplification comes out, since we have a unique EOM for
each case and not a matrix equation, since all the terms with the S matrices vanish. We
complete the set of equations with En and EΦ:

En = Φ2 +
∞∑
k=1

(−α′)k−1(2k − 1)12(D − 4)
k∑

l=0

ck,l2
2kH2(k−l)σ2l, (143)

EΦ = 2Φ̈− Φ2 +
∞∑
k=1

(−α′)k−112(D − 4)
k∑

l=0

ck,l2
2kH2(k−l)σ2l. (144)

33



Looking at the resulting EOM, we can define 3 functions f(H, σ), coming from (141),
g(H, σ), from (142), and h(H, σ), from (143).

f(H, σ) = 12(D − 4)
∞∑
k=1

(−α′)k−1

k∑
l=0

ck,l2
2k2(k − l)H2(k−l)−1σ2l, (145)

g(H, σ) = 12(D − 4)
∞∑
k=1

(−α′)k−1

k∑
l=0

ck,l2
2k2lH2(k−l)σ2l−1, (146)

h(H, σ) = 12(D − 4)
∞∑
k=1

(−α′)k−1

k∑
l=0

ck,l2
2k(2k − 1)H2(k−l)σ2l, (147)

where for convenience we multiplied the f(H, σ) function, and then Eq. (141) by 12, and
g(H, σ), i.e. Eq. (142) by 4(D − 4). These factors are consistent with the results of the
isotropic case [8], where we multiply the S EOM by 4d, i.e. 4 times the dimensionality
of the metric with respect to which we are varying. Moreover, we can look for a unique
function, which is linked to those three via their derivatives. We define:

F (H, σ) = 12(D − 4)
∞∑
k=1

(−α′)k−1

k∑
l=0

ck,l2
2kH2(k−l)σ2l. (148)

Via a trivial calculation we find:

f(H, σ) = ∂HF (H, σ) , g(H, σ) = ∂σF (H, σ),

h(H, σ) = H∂HF (H, σ) + σ∂σF (H, σ)− F (H, σ), (149)

with ∂HF = ∂F
∂H

, and ∂σF = ∂F
∂σ

. We point out that, for a more general case in which
we study an anisotropic D-dimensional space with d dimensions expanding with scale
factor a, and D-d-1 dimensions with scale factor b, we just have to replace the factors of
3 by d, and the factors D-4 by D-d-1. Using Eq. (148), we get to the final EOM for the
anisotropic case, as a function of a unique F (H, σ) and its derivatives:

Ḣ∂2
HF (H, σ) + σ̇∂HσF (H, σ)− Φ̇∂HF (H, σ) = 0, (150a)

σ̇∂2
σF (H, σ) + Ḣ∂σHF (H, σ)− Φ̇∂σF (H, σ) = 0, (150b)

Φ̈ +
1

2
(H∂HF (H, σ) + σ∂σF (H, σ)) = 0, (150c)

Φ̇2 +H∂HF (H, σ) + σ∂σF (H, σ)− F (H, σ) = 0, (150d)

where (150c) is the sum of (143) and (144). A positive point of these equations is that
having a constant shifted dilaton does no longer mean a constant Hubble parameter and
vanishing F and F ′ as in the isotropic case (Eqs. (80)). As expected, the EOM are
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totally symmetric in H and σ. We can see that with the use of F (H, σ) we can rewrite
the total action for n = 1 as:

I =

∫
dte−Φ

(
−Φ̇2 − F (H, σ)

)
. (151)

4.1.2 First order

In order to check the results, we can compare Eqs. (150) with the first order anisotropic
stringy Friedman equations in vaccum [7]. Evaluating F and its derivatives at first order:

F = 243(D − 4)(c1,0H
2 + c1,1σ

2),

∂HF = 253(D − 4)c1,0H , ∂σF = 253(D − 4)c1,1σ, (152)

∂2
HF = 253(D − 4)c1,0 , ∂σF = 253(D − 4)c1,1 , ∂HσF = 0.

By introducing them into Eqs. (150) we obtain the stringy equations at first order:

Ḣ − Φ̇H = 0, (153a)

σ̇ − Φ̇σ = 0, (153b)

Φ̈− 3H2 − (D − 4)σ2 = 0, (153c)

Φ̇2 − 3H2 − (D − 4)σ2 = 0, (153d)

imposing the coefficients at first order to be:

c1,0 = − 1

(D − 4) · 24
, c1,1 = − 1

3 · 24
. (154)

Those coefficients are consistent, since comparing them with the usual c1 = −1/8, we
have a difference of wether 1/(2(D−4)), or 1/(2·3). These factors are due to the presence
of the factor with the trace of Ṡ2l

D−4 in ES3 , and viceversa, as can be seen in Eqs. (128)
and (129). Moreover, the function F (H, σ) at leading order will have the expected form
[12]:

F (H, σ) = −3H2 − (D − 4)σ2 +O(α′). (155)

4.2 Matter

The vacuum case shows a total symmetric appearence of H and σ in the EOM. To make
it more interesting, and break the degeneracy of H and σ we can introduce a matter
action:

I =
1

2κ2

∫
dtne−Φ

(
−(DΦ)2 +

∞∑
k=1

α′k−1

k∑
l=0

ck,l tr(DS3)
2(k−l)tr(DSD−4)

2l

)
+Sm[Φ, n, S3, SD−4, χ]. (156)
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The EOM are obtained in the exact same way as in the isotropic case. We show here
the results obtained, which have been compared with the works [2], [12], [7]:

Ḣ∂2
HF (H, σ) + σ̇∂HσF (H, σ)− Φ̇∂HF (H, σ) = −2dκ2eΦp̄, (157a)

σ̇∂2
σF (H, σ) + Ḣ∂σHF (H, σ)− Φ̇∂σF (H, σ) = −2(D − d− 1)κ2eΦq̄, (157b)

2Φ̈− Φ̇2 + F (H, σ) = κ2eΦθ̄, (157c)

Φ̇2 +H∂HF (H, σ) + σ∂σF (H, σ)− F (H, σ) = 2κ2eΦρ̄, (157d)

where p now denotes the pressure in the d-dimensional space with Hubble parameter
H(t) and q the pressure in the D− d− 1 extra dimensions, which come from the spatial
part of the energy momentum tensor T = diag(ρ, p, p, p, q, q...). The continuity equation
reads:

˙̄ρ+ dHp̄+ (D − d− 1)σq̄ − 1

2
Φ̇θ̄ = 0. (158)

In order to compare with the isotropic case, we leave the more general case where we
make the factor d appear, which in this section is d = 3. It is easy to see that now the
degeneracy between H and σ can be broken by means of their pressure. We will mostly
suppose the extra dimensions to be pressureless.

4.3 Einstein frame

In this section we want to compute the Hubble parameter in the 4-dimensional Einstein
frame in terms of the string variables and derivatives. To have an idea of the Hubble
parameter in the Einstein frame, we have to look at the action in the string frame, which
is of the form: ∫

dDx
√

−G(S)e−2ϕ(R(S) + ...), (159)

with G(S) the determinant of our D-dimensional metric in the string frame, and R(S)

the associated Ricci scalar. In order to go to the Einstein frame we need to perform
a conformal transformation so that we only have our 4-dimensional metric factor in
front of the Ricci scalar, this is normally done in 3 steps. First we go to the Einstein
D-dimensional frame, then we compactify the extra dimensions so that we get to the 4-
dimensional Jordan frame, and finally we do a second Weyl rescaling to the 4-dimensional
Einstein frame, as can be seen in [14]. The Weyl rescaling is defined by:

gMN = Ω−2ĝµν ,
√
−g = Ω−D

√
−ĝ, (160)

where ĝ is the metric in the new frame. As it is constructed from the metric, the Ricci
scalar will also transform. Focusing only in the part of the Ricci scalar in the new frame
we have:

R = Ω2(R̂ + ...). (161)
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In this section we use the index s for the variables in the D-dimensional string frame, the
index ed for the variables in the D-dimensional Einstein frame, which coincides with the
4-dimensional Jordan frame after splitting the metric and Ricci in 4 and D-4-dimensional
parts, and finally the index E for the 4-dimensional Einstein frame.
Let us focus on the first Weyl transformation to the D-dimensional Einstein frame.
First, we have to conformally transform the complete D-dimensional metric in order to
eliminate the e−2ϕ factor. With the transformation of the determinant of the metric in
Eq. (160), and the one of the Ricci scalar we can see from Eq. (159) that we need a
Weyl parameter such as:

Ω1 = e−
2ϕ

D−2 , (162)

with the metrics in the string and Einstein D-dimensional frame respectively given by:

G
(S)
MN =

−n2
s(t) 0 0
0 a2s(t) · 13 0
0 0 b2s(t) · gmn

 , G
(ED)
MN =

−n2
ed(t) 0 0
0 a2ed(t) · 13 0
0 0 b2ed(t) · gmn

 .

(163)
Then, to go to the 4-dimensional Jordan frame, we decompose the Ricci into a 4 and a D-
4-dimensional part, we do not obtain any extra factor in front of the new 4-dimensional
Ricci scalar. The process makes only appear the bD−4

ed that comes from the metric:√
−G(ED) =

√
−g(ED)bD−4

ed , where g(ED) is the determinant of the 4-dimensional part
of G(ED). In such a way that we will need a second Weyl transformation, from the
determinant of the metric we will have a factor Ω−4

2 , and from the Ricci scalar we have
Ω2

2. A very important point to remark is that the factor bD−4
ed that comes from splitting

the metric is in the Einstein D-dimensional frame, we should then express it in terms of
the bs scale factor in the string frame. Thus, the second conformal transformation, now
only on the 4-dimensional metric, will be given by:

Ω2 = b
D−4
2

ed = (bse
− 2ϕ

D−2 )
D−4
2 , (164)

where in the last equality we expressed everything in terms of string variables. Moreover,
bs now is not interpreted as the scale factor of the extra dimensions, but as a scalar field.
The two metrics involved in the transformation are:

g(ED)
µν =

(
−n2

ed(t) 0
0 a2ed(t) · 13

)
, g(E)

µν =

(
−n2

E(t) 0
0 a2E(t) · 13

)
. (165)

The total transformation on the 4-dimensional part of the string metric will be:

Ω = e−
2ϕ

D−2 (bse
− 2ϕ

D−2 )
D−4
2 = e−ϕb

D−4
2

s → g(E)
µν = e−2ϕbD−4

s g(S)µν , (166)

where g
(E)
µν is the 4-dimensional metric in the Einstein frame, and g

(S)
µν the 4-dimensional

part of the metric in the string frame. We can use the freedom to reparametrise the
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time in order to have the cosmic time T in the Einstein frame also, as done in [4], and

[11]. The time reparametrisation is such that in the new time T , we have g
′(E)
00 = −1. In

this way, the scale factor in the Einstein frame and the differential equation for the time
reparametrisation will be given by:

aE(T ) = as(t)e
−ϕ(t)b

D−4
2

s (t) ,
dT

dt
=

nE

ns

= e−ϕ(t)b
D−4
2

s (t). (167)

Instead of the time reparametrisation technique we recover the covariant derivatives
formalism. We define them for the string frame and the 4-dimensional Einstein frame
respectively by the following relation:

Ds =
1

ns

d

dt
, DE =

1

nE

d

dt
, (168)

they are related by:

DE = e
2ϕ

D−2 b−
D−4
2 Ds. (169)

We recall the definition of the shifted dilaton, and its derivatives for the anisotropic case:

e2ϕ = eΦa3sb
D−4
s → 2Dsϕ = DsΦ + 3H + (D − 4)σ, (170)

where H = 1
as
Dsas, and σ = 1

bs
Dsbs. We compute the Hubble parameter in the Einstein

frame:

HE(T ) =
1

aE
DEaE = eϕb

−D−4
2

s

(
−Dsϕ+

D − 4

2
σ +H

)
. (171)

Using relation (170), HE can also be written as:

HE(T ) = −1

2
e

Φ
2 a

3
2
s (DsΦ +H). (172)

We can now compare with the expression for the isotropic case in Eq. (113). It is the
same Hubble factor taking d = 3. Let us now compute the derivative with respect to T :

dHE(T )

dT
= −1

4
eΦa3

(
(DsΦ + 3H)(DsΦ +H) + 2(D2

sΦ +DsH)
)
. (173)

Imposing then constant Hubble parameter and shifted dilaton velocity, we find two equa-
tions giving a constant Hubble parameter in the Einstein frame:

DsΦ = −H , DsΦ = −3H. (174)

We can observe that unlike what we could expect, the parameters of the extra dimensions
do not appear in these expressions, neither in that of HE, nor in that of its derivative
when we write the expressions in terms of the shifted dilaton Φ. But at this point it is
important to note that we express everything in terms of Φ for the dynamical system
analysis in section 5. In Eq. (171) which is in terms of the dilaton ϕ, the real physical
degree of freedom, we can see that in fact the Hubble parameter does depend on σ.
Moreover, we obtain the same results as for the isotropic case, but here we do not have
d as a free parameter of the theory, but it is fixed at d = 3.

38



4.3.1 Differential equation for the vacuum case

With the objective of getting a de Sitter solution in the Einstein 4-dimensional frame,
we now impose Eq.(173) to vanish, and using Eqs. (150) we try to establish a differential
equation for F (H, σ) in terms of H and σ exclusively. As in [8], we suppose that the
second derivatives: ∂2

σF (H, σ) and ∂2
HF (H, σ) are non vanishing, so with the expressions:

DsH = DsΦ
∂2
σF∂HF − ∂σHF∂σF

∂2
σF∂2

HF − (∂σHF )2
, Dsσ = DsΦ

∂2
HF∂σF − ∂σHF∂HF

∂2
σF∂2

HF − (∂σHF )2
,

D2
sΦ = −1

2
(H∂HF + σ∂σF ) , DsΦ

2 = F − (H∂HF + σ∂σF ), (175)

we get an extra condition on the derivatives of the F function, the determinant of its
Hessian has to be different from zero. By imposing Eq. (173) to vanish, we get:

0 = DsΦ
2 + 4HDsΦ + 3H2 + 2D2

sΦ + 2DsH. (176)

Then introducing expressions (175) we obtain:

0 = F − 3(H∂HF + σ∂σF ) + 4Hs
√

F − (H∂HF + σ∂σF ) + 3H2

+2s
√

F − (H∂HF + σ∂σF )
∂2
σF∂HF − ∂σHF∂σF

∂2
σF∂2

HF − (∂σHF )2
, (177)

where, as in the isotropic case s = ±1, due to the square root of DsΦ
2. This expression

cannot be compared with the work of Padilla et. al. [12] since they take a general
anisotropic ansatz, no 3 and D-4-dimensional parts, so when looking for the Hubble
parameters in the Einstein frame, they only perform the first Weyl rescaling as we did in
the isotropic part. But as in our work we are looking forward to a compactification we
decided to proceed with the complete scheme. We can remark that finally we see appear
the extra dimensional terms in our expression, they appear through the EOM.
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5 Fixed point analysis

As we have seen, the equations for constant Hubble parameter in the Einstein frame for
time evolving H, y, and σ are difficult to solve analytically. Let us now look for the fixed
points in the EOM of all four dynamical systems we have seen until now. For this section
we fix the time lapse function in the string frame to be 1. We will look for solutions with
constant H, σ and Φ̇, comparing our results with [4] and [3] for the isotropic case. These
fixed points are especially interesting, since what we are looking for are constant stable
Hubble parameters, even if they are in the string frame. Within this framework we will
also analyse the linear stability of these points. Finally, we will look at the expressions of
these constant Hubble parameters solutions in the Einstein frame. Let us first introduce
how we will obtain the fixed points and their stability.

We follow the approach in [18]. We suppose a vector x with the dynamical variables
of our system, i.e. (H, y) for the isotropic case, or (H, σ, y) for the anisotropic one, the
dynamical system is the following:

dx

dt
= f(x), (178)

where f(x) is a vector-valued function of the dimensionality of x. The linear analysis lies
on Taylor expanding our vector valued function up to first order, and according to the
Hartman-Grobman theorem, the linearized system represents the full nonlinear system
near the fixed point. For this we expand the variables as x = x0 + δx, where x0 is the
fixed point. The f(x) are expanded as:

f(x) = f(x0) + J (f(x0))δx+O(δx2), (179)

where J (f(x0)) is the Jacobi matrix of the system evaluated in the fixed point. Thus we
find:

dδx

dt
= J (f(x0))δx+O(δx2). (180)

The solution for each of the variables is then δxi ≈ emit where mi are the eigenvalues
of the Jacobian matrix. Therefore, if the real part of the eigenvalues are negative, this
means that the linear perturbations will decrease with time, giving a linearly stable fixed
point. If one of them is positive, one of the perturbation mode will grow exponentially
with time, making the fixed point unstable. Instead, if we have one of the eigenvalues
vanishing and the rest negative, the fixed point is called a bifurcation. In this case,
one of the perturbation modes remains constant at linear order and the others decrease
exponentially.
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5.1 Isotropic in vacuum

We recall the EOM for the isotropic case in vacuum (80), for the search of fixed points
we will rearrange them as:

Ḣ = y
F ′(H)

F ′′(H)
, (181a)

ẏ =
1

2
(y2 − F (H)), (181b)

y2 +HF ′(H)− F (H) = 0, (181c)

where we define y = Φ̇, and impose F ′′ ̸= 0. To compute the fixed points, we establish
Ḣ = ẏ = 0. So Eq. (181b) fixes y20 = F0, we have then:

y0F
′
0 = 0 , H0F

′
0 = 0 , y20 = F0. (182)

Recalling the form of F (H) in Eq. (79), we can see that for vanishingH we have vanishing
F (H) and F ′(H), but this relation is not an equivalence. We can find a function which
has a zero value for F (H0) or its derivative F

′(H0) and still have a non-vanishing Hubble
parameter H0 ̸= 0. As the solutions y0 and H0 will be two constants, a part from the
special cases in which H0 is zero, we can suppose that they are proportional y0 = cH0.
This idea is also motivated by Eq. (114), where we will have constant Hubble parameter
in both string and Einstein frames for Φ̇ = −H0 or Φ̇ = −dH0. We present the fixed
points of this system in table 1.

y F ′(H) Stability
0 0 Bifurcation

cH0 0 Stable for c < 0

Table 1: Fixed points for the isotropic case in vacuum.

As explained previously, and done in [4] and [6] in order to determine the linear
stability, we calculate the derivatives of (181a) and (181b) with respect to H and y and
we evaluate the eigenvalues in the fixed points. We get:(

∂Ḣ
∂H

∂Ḣ
∂y

∂ẏ
∂H

∂ẏ
∂y

)
=

(
y0

F ′
0

F ′′
0

−1
2
F ′
0 y0

)
→ m± = y0 ±

√
−1

2

F ′2
0

F ′′
0

, (183)

where m± are the two eigenvalues of the Jacobian matrix. For it to be a linearly stable
point we need to have both eigenvalues negative. First we see that the square root
cancels in both cases since F ′

0 = 0. For the first fixed point, which has a vanishing y0,
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we see that both eigenvalues vanish, we then have to look at non-linear stability [3].
The linearly stable point is then for y0 = cH0, and the condition of stability is c < 0,
which is in accord with the solutions of constant Hubble parameter in the Einstein frame.
So by introducing the set of infinite α′ corrections codified in the function F (H) we can
find de Sitter solutions with the condition: F ′(H) = 0. For the fixed points in vacuum to
be stable, we need to ask a non vanishing shifted dilaton velocity, which has the opposite
sign to H0.

5.1.1 Hubble parameter in the Einstein frame

Let us examine the Hubble parameter in the Einstein frame for the stable fixed points.
For a non vanishing Φ̇, we will have 2ϕ̇ = Φ̇0+dH0 = (c+d)H0. As the derivative of the
dilaton ϕ is a constant, we can integrate the expression in order to obtain the variation
of the dilaton as a function of the time t:

ϕ(t) = (c+ d)H0(t− t0)/2 + ϕ0, (184)

that following Eq. (113) gives a Hubble parameter in the Einstein frame such as:

HE(t
′) = −e

(c+d)H0(t−t0)+2ϕ0
d−1

d− 1
(c+ 1)H0. (185)

It is easy to see in this expression the 2 special cases mentioned above. For c = −1 we
obtain a zero HE, and for c = −d the velocity of the dilaton vanishes. then the HE is
constant.
If we look for a positive HE, it is important to note that the linear stability condition
is to have c < 0, and H0 is in the string frame, so its sign is not really relevant for us.
We have two possibilities: one in which H0 < 0, then −1 < c < 0, and another situation
for H0 > 0, and c < −d. For both of them we start with a constant positive Hubble
parameter and in the limit t → ∞ it vanishes.
We must now remember that t is the cosmic time in the string frame, with the expression
for ϕ and recall the relation:

dte
−2ϕ
d−1 = dt′, (186)

where t′ is the reparametrised cosmic time in the Einstein frame. By integrating this
equation we obtain a relation between the two time parametrisations:

t′ − t′0 = − 2(d− 1)

(c+ d)H0

e
−(c+d)H0(t−t0)−2ϕ0

d−1 , (187)

with t′0 and t0 two integration constants. By introducing it into Eq. (185) we obtain a
final expression for HE(t

′):

HE(t
′) =

(
c+ 1

c+ d

)
1

t′ − t′0
. (188)
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Thus, for t′ > t′0 we will need the prefactor to be positive, so that we start with a positive
Hubble parameter, and for t′ → ∞ we have HE → 0. For it to be positive, we need to
impose either c < −d, or −1 < c < 0. We can note from Eq. (187) that in the case
of c < −d for a positive H0; and in the case −1 < c < 0 for a negative H0, we have
both times parametrised in the same direction. These two cases can be interpreted as a
large and negative shifted dilaton velocity case; and a small but positive shifted dilaton
velocity respectively.

So, as already advanced in section 3.3, for Φ̇ = −H0 we have a Minkowski solution,
and for Φ̇ = −dH0 we have a de Sitter universe in the Einstein frame. For a different
proportionality factor between these two, we can get stable solutions where the Hubble
parameter in the Einstein frame is always positive and decreases asymptotically to a
vanishing value.

5.2 Isotropic with matter

Using the EOM for the isotropic case with matter (108), assuming a barotropic equation
of state for the fluid p = ωρ and a dilatonic charge such that θ = λρ, we can rearrange
them for the study of the fixed points as:

Ḣ =
1

F ′′ (yF
′ − dω(y2 +HF ′ − F )), (189a)

ẏ =
1

2

(
y2 − F +

λ

2
(y2 +HF ′ − F )

)
, (189b)

y2 +H F ′ − F = 2κ2eΦρ̄. (189c)

Let us compute the fixed points for a general case. Motivated by Eq. (114), we choose
y0 = cH0. By introducing this expression we get:

−(c2H2
0 − F 2

0 )dω − (dω − c)H0F
′
0 = 0, (190a)

(c2H2
0 − F0)(1 +

λ

2
) +

λ

2
H0F

′
0 = 0, (190b)

c2H2
0 +H0F

′
0 − F0 = 2κ2eΦρ̄. (190c)

By substituting (190a) into (190b) for ω ̸= 0 we have:

H0F
′
0

(
ωd− c

(
1 +

λ

2

))
= 0, (191)

where clearly we can have F ′
0 = 0 which looking at Eq. (190a) will give us H2

0c
2 = F0,

which coincides with the general case of the vacuum equations. We can also obtain an
interesting alternative option which reads: ωd = c(1 + λ/2), giving a relation: (F0 −
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c2H2
0 ) = λκ2eΦρ̄. The Eq. (191) relates the parameter of the equation of state of our

fluid, with the Hubble factor, the shifted dilaton velocity and the dilatonic charge. By
reintroducing the Hubble factor in the equation we have ωdH0 = Φ̇0(1 + λ/2).
We observe two special cases: the case for which we have a high coupling between the
dilaton and the matter action λ = −2 which fixes the fluid to be pressureless, ordinary
matter ω = 0 and F ′

0 = 0, and the case where the dilaton is not coupled to matter λ = 0
which gives a negative pressure for stable fixed points ω = c/d and a value of the Hubble
factor given by H2

0c
2 = F0.

We now have to take a look at the solutions for ω = 0, the Eqs. (189) read now:

0 = y0F
′
0, (192a)

0 = y20 − F0 +
λ

2
(y20 +H0F

′
0 − F0), (192b)

y20 +H0 F
′
0 − F0 = 2κ2eΦρ̄. (192c)

We consider first the special case in which we have vanishing F ′
0(H), then the case of

vanishing y0. For the case in which F ′(H) = 0 we get:

(y20 − F0)

(
1 +

λ

2

)
= 0, (193a)

y20 − F0 = 2κ2eΦρ̄, (193b)

for which we have again two options: either λ = −2 for a general y0 giving y20 − F0 =
2κ2eΦρ̄, either y20 −F0 = 0 in which we recover the vacuum case. For the y0 = 0 case the
equations read:

−F0 +
λ

2
(H0F

′
0 − F0) = 0, (194a)

H0F
′
0 − F0 = 2κ2eΦρ̄. (194b)

We obtain a vacuum case for which F0 = F ′
0 = 0, already commented in the previous

section, then one for which from (194a) we get H0F
′
0 = (2+λ)κ2eΦρ̄. We summarise the

fixed points in table 2 neglecting the vacuum cases. In the table we have added a last
line for a fixed point from the general case y0 = cH0 with λ = 0, since as we will see
later, it has a special stability condition.

In order to evaluate the stability of these fixed points we proceed in the same way;
we compute the Jacobian of the differential equations system:(

∂Ḣ
∂H

∂Ḣ
∂y

∂ẏ
∂H

∂ẏ
∂y

)
=

(
y0 − dωH0

F ′
0−2dωy0

F ′′
0

−1
2
(λ
2
H0F

′′
0 − F ′

0) y0(1 +
λ
2
)

)
. (195)

After some simplifications we obtain the two eigenvalues m±:

m± = −dωH0

2
+ y0(1 +

λ

4
)± 1

2

√
(dωH0 −

λ

2
y0)2 + λF ′

0H0 −
2F ′

0

F ′′
0

(F ′
0 − 2dωy0). (196)
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y F F ′ ω λ Stability
0 λκ2eΦρ̄ H0F

′
0 = (2 + λ)κ2eΦρ̄ 0 All Unstable

cH0 c2H2
0 − F0 = −λκ2eΦρ̄ H0F

′
0 = (2 + λ)κ2eΦρ̄ ωd = c(1 + λ

2
)

c < 0
−2 < λ < 0

cH0 c2H2
0 − F0 = 2κ2eΦρ̄ 0 0 -2

Bifurcation
for c < 0

cH0 H2
0c

2 H0F
′
0 = 2κ2eΦρ̄ c/d 0

Bifurcation
for c < 0

Table 2: Fixed points for the isotropic case with matter

So if both eigenvalues are negative, we will have a stable point, and extra conditions on
our parameters. For the case ωd = c(1+ λ

2
) we need to simplify the eigenvalues from Eq.

(196) and obtain [4]:

m± =
H0

2
|c|(sgn(c)±

√
1 + 2λ+ λ2). (197)

Thus fixing the interval for λ for which our solution is stable, being (−2; 0) and also
giving negative c as the only class of solutions. Now for λ = 0 the two eigenvalues are:

m+ = 0 , m− = cH0. (198)

From [4], in order for this fixed point to be linearly stable we need a negative c, arguing
that this is exactly what happens when perturbing around dS vacuum in GR, but in this
case we have the constant shift of the Hubble parameter, and of the shifted dilaton.
For the case with vanishing ω and y0 we will have a positive and a negative eigenvalue,
meaning that this fixed point is not stable.

These solutions are quite interesting, since for the case c = −1 we get Minkowski,
and for c = −d we get de Sitter in both, the string and the Einstein frame.
A very important verification is confirming under which conditions ρ̄eΦ is constant. For
this we can compute its derivative and use the continuity equation (110), we get:

d

dt
ρ̄eΦ =eΦ( ˙̄ρ+ Φ̇ρ̄)

=eΦ
(
Φ̇

(
1

2
θ̄ + ρ̄

)
− dHp̄

)
. (199)

By supposing p = ωρ and θ = λρ as usual, we obtain that the condition for vanishing
Eq. (199) with ρ̄eΦ ̸= 0 is given by:

y

(
1 +

λ

2

)
= dωH. (200)

We remark that by imposing ρ̄eΦ to be constant, we obtain an equivalent equation as
for the study of the fixed points of the dynamical system.
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5.2.1 Hubble parameter in the Einstein frame

Let us study as in the vacuum case, the Hubble parameter in the Einstein frame for the
stable solutions. For the general case we have ωd = c(1 + λ

2
) and the two conditions are

c < 0 and −2 < λ ≤ 0, which means that ω < 0. For the solution to be stable we need a
fluid with negative pressure. The expression of the Hubble parameter is the same as for
the vacuum case:

HE(t
′) =− e

(c+d)H0(t−t0)+2ϕ0
d−1

d− 1
(c+ 1)H0

=

(
c+ 1

c+ d

)
1

t′ − t′0

=

(
ωd+ 1 + λ

2

d(ω + 1 + λ
2
)

)
1

t′ − t′0
, (201)

where we used the stability equation: c(1+λ/2) = ωd. As in the vacuum case, for this last
equation, we suppose c ̸= −d, since for c = d we get a de Sitter solution in the Einstein
frame: HE = e2ϕ0H0, and an equation of state parameter given by: ω = −(1 + λ

2
). The

case where the dilaton is not coupled to matter λ = 0 will give us vacuum energy.
In general for ω ̸= −(1+ λ

2
) we can see from Eq. (201), that for the Hubble parameter

to be positive for t′ > t′0, we need to impose ω < −(1 + λ
2
). As the stability condition

on the dilatonic charge parameter is −2 < λ ≤ 0, the upper bound for ω in the case of
a very weak coupling between the dilaton and matter is ω < −1, on the contrary for a
strong coupling we obtain ω < 0. Which means that the presence of the dilatonic charge
allows a smaller pressure in absolute value. A more profound analysis will be performed
in the anisotropic section where the Hubble parameter is in the 4-dimensional Einstein
frame and not in the D-dimensional Einstein frame.

5.3 Anisotropic in vacuum

In vacuum the EOM for our anisotropic ansatz are Eqs. (150); as usual we rearrange
them in order to study the fixed points of the system, they read:

Ḣ = y
∂2
σF∂HF − ∂σHF∂σF

∂2
σF∂2

HF − (∂σHF )2
, (202a)

σ̇ = y
∂2
HF∂σF − ∂σHF∂HF

∂2
σF∂2

HF − (∂σHF )2
, (202b)

ẏ =
1

2
(y2 − F ), (202c)

y2 +H∂HF + σ∂σF − F = 0, (202d)
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where the denominator of Eqs. (202a) and (202b) is the determinant of the hessian of
F (H, σ), and we ask it to be non-vanishing. We must now remember that in contrast
to the previous case, having one of the Hubble factors H or σ vanishing does not mean
that F or any of its derivatives is zero, we need both of them to be 0.

Looking for the fixed points, the Eqs. (150a) and (150b) tell us that for constant
H and σ we have either y0 = 0, or ∂HF0 = 0 and ∂σF0 = 0 respectively. For a zero
velocity of the shifted dilaton, Eq. (202d) imposes H0∂HF0+σ0∂σF0 = 0. For the case of
vanishing first derivatives we see that the equations are satisfied for whatever y having
y20 = F0. The fixed points are shown in table 3.

H σ y ∂HF ∂σF Stability
H0 σ0 0 H0∂HF0 + σ0∂σF0 = 0 Unstable
H0 σ0 y0 0 0 y0 < 0

Table 3: Fixed points for the anisotropic case in vacuum

Let us now look at the stability of these fixed points in order to look for extra
constraints. As usual, we look at the Jacobian of the differential system:∂Ḣ

∂H
∂Ḣ
∂σ

∂Ḣ
∂y

∂σ̇
∂H

∂σ̇
∂σ

∂σ̇
∂y

∂ẏ
∂H

∂ẏ
∂σ

∂ẏ
∂y

 =

 y0 0 α0

0 y0 β0

−1
2
∂HF0 −1

2
∂σF0 y0

 , (203)

where for example ∂σF0 = ∂σF |0 , is the derivative evaluated in the fixed point, and we

called the factors
∂2
HF0∂σF0−∂σHF0∂HF0

∂2
σF0∂2

HF0−(∂σHF0)2
= α0 and ∂2

σF0∂HF0−∂σHF0∂σF0

∂2
σF0∂2

HF0−(∂σHF0)2
= β0 for simplicity.

The three eigenvalues are given by:

m1 = y0 , m2,3 = y0 ±
√

−1

2
(∂HF0 α0 + ∂σF0 β0). (204)

For the fixed point with non vanishing y0, the square root vanishes and the three eigen-
values are given by the value of y0, thus the stability of the solution requires y0 < 0. For
the other family of fixed points we get a vanishing eigenvalue, a positive and a negative
one, so these fixed points are unstable for non vanishing first derivatives.

5.3.1 Hubble parameter in the Einstein frame

We proceed now with the computation of the Hubble parameter. The derivative of the
dilaton is also constant and is given by 2ϕ̇ = Φ̇0 + 3H0 + (D − 4)σ0. By integrating to
obtain the expression for ϕ we obtain:

ϕ =
1

2
(Φ̇0 + 3H0 + (D − 4)σ0)(t− t1), (205)
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with t1 an integration constant, introducing it into Eq. (171), where we neglect s indices
since everything is now in the string frame, we get:

HE(T ) = −1

2
e

1
2
(Φ0+3H0+(D−4)σ0)(t−t1)b−

D−4
2 (Φ̇0 +H0). (206)

In order to express Eq. (206) in terms of T , we integrate the relation between T the
cosmic time in the Einstein frame and t the string frame time in Eq. (167). But here
we encounter a difficulty, since we also have the scale factor in the extra dimensions b(t)
in the integral. But as σ0 is a fixed point, we have whether b = eσ0t, whether b = b0 a
constant. Let us first integrate Eq. (167) for a constant b = b0 and vanishing σ0:

dT

dt
= e−

1
2
(Φ0+3H0)(t−t1)b

D−4
2

0

T − T1 = − 2b
D−4
2

0

(Φ0 + 3H0)
e−

1
2
(Φ0+3H0)(t−t1), (207)

with T1 is an integration constant. The Hubble parameter then reads:

HE(T ) =− 1

2
e

1
2
(Φ̇0+3H0)(t−t1)b

−D−4
2

0 (Φ̇0 +H0)

=
Φ̇0 +H0

Φ̇0 + 3H0

1

(T − T1)
. (208)

Again, in this expression we are neglecting the special cases of constant Hubble parame-
ter, Φ̇0 = −H0 and Φ̇0 = −3H0 that give Minkowski and de Sitter solutions respectively
in the Einstein frame. We emphasise on the fact that we obtain a de Sitter solution in
the Einstein 4-dimensional frame, which is moreover a stable fixed point solution in the
string frame, this Hubble factor is given by:

HE = H0b
−D−4

2
0 , (209)

where we see that HE is given by the string frame H0 and the inverse of the square root
of the volume of the extra dimensions which is constant.
An important thing to remark for the general case is that, by computing the HE for
the spatial 3-dimensional parts in terms of the shifted dilaton Φ, all traces of the total
dimensions parameter D disappear.

Now, let us look at the solutions in order to have a positive Hubble parameter for
T > T1. We recall that the stability condition imposes c1 < 0, i.e. opposite signs for
H0 and Φ0. It is important to note that H0 represents the Hubble parameter of the
3-dimensional space in the D-dimensional string frame, so we can take it to be negative.
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For a negative H0, then Φ̇0 needs to be positive in order to obtain stable solutions.
We need in the last expression of Eq. (208) both the numerator and the denominator to
have the same sign. That imposes two intervals for Φ̇0, given by:

0 < Φ̇0 < |H0| , 3|H0| < Φ̇0, (210)

For a positive H0 we get a negative Φ̇0, and the allowed intervals to have a positive
HE are:

Φ̇0 < −3H0 , −H0 < Φ̇0 < 0. (211)

For both cases we have two intervals for Φ̇0, which give a high and a slowly varying
shifted dilaton with respect to the value of the Hubble parameter in the string frame.
Thus, when we consider the extra dimensions to have a constant volume, we get a Hubble
parameter which is positive and decreasing for:

3|H0| < |Φ̇0| , |Φ̇0| < |H0|. (212)

Moreover, the only constraint that we have on the Hubble parameter in the string frame
for the general case is to satisfy ∂HF (H0, σ0) = 0.

We now look for the case of non vanishing σ0, with a scale factor in the extra dimen-
sions expanding or contracting exponentially b = eσ0t; from Eq. (167) the differential
equation between the two times now reads:

dT

dt
=e−

1
2
(Φ̇0+3H0+(D−4)σ0)(t−t1)e

D−4
2

σ0t

=e−
1
2
(Φ̇0+3H0)(t−t′1), (213)

where we redefined t′1. The expression relating the two time parametrisations reads:

T − T ′
1 = − 2

Φ̇0 + 3H0

e−
1
2
(Φ̇0+3H0)(t−t′1), (214)

with T ′
1 a new integration constant. By introducing it into Eq. (171), we obtain a Hubble

parameter given by:

HE(T ) =− 1

2
e

1
2
(Φ̇0+3H0+(D−4)σ0)(t−t1)e−

D−4
2

σ0t(Φ̇0 +H0)

=
Φ̇0 +H0

Φ̇0 + 3H0

1

T − T ′
1

, (215)

where again the case Φ̇0 = −3H0 corresponds to a de Sitter solution in the Einstein 4-
dimensional frame. Its value for an exponential b scale factor, by recovering the original
t1 integration constant reads:

HE = e−
1
2
(D−4)σ0t1H0, (216)
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where again the extra dimensions factors appear in the expression of HE. It is also im-
portant that both expressions are only dependent of the scale factors of both the 3 and
D-4-dimensional spaces.
We observe that the HE for both Eqs. (208) and (215) is the same, with different initial
times T1 and T ′

1 which are just integration constants. So we can do a totally analogous
interpretation of these results. Meaning that, no matter the volume of the extra dimen-
sions being exponentially expanding or contracting, or constant, the Hubble parameter in
the 4-dimensional Einstein frame does not feel any difference. Thus, we can have stable
fixed points solutions in the string frame, which, when translated to the 4-dimensional
Einstein frame give a positive HE. This HE has a decreasing behaviour as time increases
and tends asymptotically to zero.

Unlike in section 5.1.1, this Hubble parameter is in the 4-dimensional Einstein frame.
We can compute the deceleration parameter q which is given by:

1 + q =− dHE

dT

1

H2
E

=
Φ̇0 + 3H0

Φ̇0 +H0

. (217)

The deceleration parameter then reads:

q =
2H0

Φ̇0 +H0

. (218)

The expansion of the universe is accelerated for q < 0. Looking at Eq. (218) we need
the numerator and the denominator to have opposite signs. Knowing that H0 and Φ̇0

have also opposite signs for the fixed points to be stable, the condition in absolute value
to obtain an accelerating expanding universe is:

|Φ̇0| > |H0|. (219)

Now using the condition to obtain a positive HE, in Eq. (212) we get that in order to
obtain an accelerating expanding universe:

Φ̇0 < −3H0. (220)

5.3.2 Hubble parameter in terms of the dilaton

It is now crucial to recall that the shifted dilaton is not the physical degree of freedom.
So in this section we will look at the stability condition translated in terms of the dilaton
ϕ, after we will look what expression holds for the the dilaton in the special cases where
we obtain exact Minkowski and de Sitter in the Einstein frame. Finally we look at the

50



Hubble parameter HE for the general case in terms of ϕ.

The derivative of the dilaton is given by: 2ϕ̇0 = Φ̇0 + 3H0 + (D − 4)σ0. So that for
the special case in which we obtain a Minkowski solution, HE = 0 we have:

2ϕ̇0 = 2H0 + (D − 4)σ0. (221)

Then a solution in which we have a constant dilaton is allowed for H0 = −D−4
2

σ0. For
the exact de Sitter solution, the derivative of the dilaton is given by:

2ϕ̇0 = (D − 4)σ0, (222)

it is then proportional to the Hubble factor of the extra dimensions and vanishes only
for σ0 = 0, a constant volume for the extra dimensions.
Let us now take a look to the general stable fixed points case, where the condition is to
have Φ̇0 and H0 with opposite sign. We must then split the two cases for positive and
negative H0. If H0 > 0 the condition for the fixed points to be stable is:

2ϕ̇0 − 3H0 − (D − 4)σ0 < 0. (223)

For a negative H0 we need:

2ϕ̇0 + 3|H0| − (D − 4)σ0 > 0. (224)

We now recall from the previous section that HE has the same expression for an ex-
ponential (σ = σ0) or a constant scale factor (σ0 = 0). In terms of the dilaton HE

reads:

HE(T ) =
ϕ̇0 −H0 − D−4

2
σ0

ϕ̇0 − D−4
2

σ0

1

T − T1

. (225)

When expressing the Hubble parameter in terms of the physical degree of freedom we
obtain that in fact, HE depends on the Hubble factor of the extra dimensions, and the
total dimensionality of the theory D. Again we want this parameter to be positive and
decreasing, for it we need the fraction to be positive. We can split the condition in two
possibilities depending on the sign of H0. If we have a positive Hubble parameter in the
extra dimensions, to have HE > 0 we have two intervals:

ϕ̇0 <
D − 4

2
σ0 , H0 +

D − 4

2
σ0 < ϕ̇0. (226)

But at the same time the stability condition of Eq. (223) must be satisfied then the two
intervals are constrained to:

ϕ̇0 <
D − 4

2
σ0 , H0 +

D − 4

2
σ0 < ϕ̇0 <

3

2
H0 +

D − 4

2
σ0. (227)
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Then for a negative H0 the two intervals together with the stability condition in Eq.
(224) read:

D − 4

2
σ0 −

3

2
|H0| < ϕ̇0 <

D − 4

2
σ0 − |H0| ,

D − 4

2
σ0 < ϕ̇0. (228)

We can now look at the deceleration parameter q which in terms of the dilaton reads:

q =
H0

ϕ̇0 −H0 − D−4
2

σ0

. (229)

If we have a positive H0, then ϕ̇0 < H0+
D−4
2

σ0, so putting it together with the condition
of a positive HE we get:

ϕ̇0 <
D − 4

2
σ0, (230)

and for the case with H0 < 0 we obtain:

ϕ̇0 >
D − 4

2
σ0. (231)

These results are consistent with the intervals of the previous section. Their physical
meaning is clearer expressed in this form. In conclusion, the stable fixed points in the
string frame provide, apart than a Minkowski and a de Sitter solution, a positive Einstein
frame Hubble parameter that gives an accelerated universe. The conditions depend on
the sign of H0, for both cases the condition rests on the dilaton velocity and the Hubble
parameter of the extra dimensions, given by Eq. (230) for H0 > 0 and Eq. (231) for
H0 < 0.

5.4 Anisotropic with matter

From the EOM for the case of anisotropic space with matter, Eqs. (157), we assume a
barotropic equation of state p = ωρ, a dilatonic charge θ = λρ, and pressureless matter
in the extra dimensions. We can rearrange this system of equations in order to leave the
usual form for the fixed points study:

Ḣ =
y(∂2

σF∂HF − ∂σHF∂σF )− ∂2
σFdω(y2 +H∂HF + σ∂σF − F )

∂2
σF∂2

HF − (∂σHF )2
, (232a)

σ̇ =
y(∂2

HF∂σF − ∂σHF∂HF ) + ∂HσFdω(y2 +H∂HF + σ∂σF − F )

∂2
σF∂2

HF − (∂σHF )2
, (232b)

ẏ =
1

2

(
y2 − F +

λ

2
(y2 +H∂HF + σ∂σF − F )

)
, (232c)

y2 +H∂HF + σ∂σF − F = 2κ2eΦρ̄, (232d)
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where we need to impose ∂2
HF , ∂2

σF , and ∂2
σF∂2

HF − (∂σHF )2 to be non-vanishing. It
is important to look at the original EOM, from Eq. (157b), we see that we still need
whether y0 = 0, whether ∂σF0 = 0.

To obtain the fixed points, we can follow a method which is motivated by Eq. (174)
and based on the fact that with this way of expressing the solutions, it is easier to
compare with the fixed points of the isotropic section. For it, we parametrise both y0
and σ0 as y0 = c1H0 and σ0 = k1H0. Next, we sum up Eq. (232a) and Eq. (232b) in
order to get an expression for y20 − F0:

y20 − F0 = H0

[
∂HF0

( c1
dω

− 1
)
+ ∂σF0

(
c1
dω

(∂2
HF0 − ∂HσF0)

(∂2
σF0 − ∂HσF0)

− k1

)]
, (233)

and by introducing it into Eq. (232c) we obtain:

H0

[
∂HF0

(
c1
dω

(
1 +

λ

2

)
− 1

)
+ ∂σF0

(
c1
dω

(∂2
HF0 − ∂HσF0)

(∂2
σF0 − ∂HσF0)

(
1 +

λ

2

)
− k1

)]
= 0,

(234)
where we obtain a structure quite similar to the isotropic case (191), with the difference
that we got an extra term with an overall factor ∂σF0.
It is now important to recall that in contrast to the isotropic case [4], we got Eq. (233)
by summing up two equations Eq. (232a) and Eq. (232b); then, we have to impose an
extra condition. As we are considering a pressureless fluid in the extra dimensions, we
recall Eq. (157b), which states that whether ∂σF0 whether y0 then c1 vanishes. For the
vanishing c1 case we get the vacuum solution since it establishes H0∂HF0 + σ0∂σF0 = 0,
which also gives F0 = 0. Then, for a vanishing ∂σF0 we get two cases: vanishing ∂HF0,
which for ω ̸= 0 goes back to the vacuum case, and a second option which establishes:

c1

(
1 +

λ

2

)
= ωd ⇐⇒ Φ̇0

(
1 +

λ

2

)
= ωdH0, (235)

already studied in the isotropic case.
To finish with the discussion of anisotropic fixed points with matter we have to look for
the general case with pressureless 3-dimensional fluid, i.e. ω = 0. We get the following
equations for the fixed points:

0 = y0(∂
2
σF0∂HF0 − ∂σHF0∂σF0), (236a)

0 = y0(∂
2
HF0∂σF0 − ∂σHF0∂HF0), (236b)

0 = (y20 − F0)

(
1 +

λ

2

)
+

λ

2
(H0∂HF0 + σ0∂σF0), (236c)

y20 +H0∂HF0 + σ0∂σF0 − F0 = 2κ2eΦρ̄. (236d)
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Again, from the complete EOM, either y0 = 0 or ∂σF0 = 0. For y0 = 0:

−F0 +
λ

2
(H0∂HF0 + σ0∂σF0 − F0) = 0, (237a)

H0∂HF0 + σ0∂σF0 − F0 = 2κ2eΦρ̄. (237b)

We come back to the vacuum case for H0∂HF0+σ0∂σF0 = 0 and F0 = 0. By introducing
Eq. (237b) into Eq. (237a) we get the relations F0 = λκ2eΦρ̄, together with H0∂HF0 +
σ0∂σF0 = (2 + λ)κ2eΦρ̄, which is the analogous of the ω = y0 = 0 fixed point in table 2
of the isotropic case.
Now for ∂σF0 = 0, we get:

y0(∂
2
σF0∂HF0) = 0, (238a)

y0(∂σHF0∂HF0) = 0, (238b)

y20 − F0 +
λ

2
(y20 +H0∂HF0 − F0) = 0, (238c)

y20 +H0∂HF0 − F0 = 2κ2eΦρ̄. (238d)

As we imposed ∂2
σF0 ̸= 0 the first two equations are equivalent. For ∂HF0 = 0 we get

then two kinds of fixed points, the vacuum case in which y20 = F0, and the case in which
λ = −2 where we get a relation between F0, y0 and the energy density from Eq. (238d) .
Not taking into account the vacuum cases, we show the fixed points in table 4.

y ∂HF ∂σF ω λ Stability
0 H0∂HF0 + σ0∂σF0 = (2 + λ)κ2eΦρ̄ 0 All Unstable

c21H
2
0 − F0 = −λκ2eΦρ̄ H0∂HF0 = (2 + λ)κ2eΦρ̄ 0 ωd = c1

(
1 + λ

2

) c < 0
−2 < λ < 0

c21H
2
0 − F0 = 2κ2eΦρ̄ 0 0 0 -2

Bifurcation
for c < 0

c21H
2
0 = F0 H0∂HF0 = 2κ2eΦρ̄ 0 c1/d 0

Bifurcation
for c < 0

Table 4: Fixed points for the anisotropic case with matter

The values of H0 and σ0 are determined by the conditions imposed on F (H, σ) and
its derivatives. It is very interesting that we obtain the exact same fixed points as in the
isotropic case. The advantage is in the second fixed point of table 4, which gives an extra
degree of freedom in order to fix the value of H0 while considering the stability, even
if we must not forget that the Hubble parameter is in the string frame. As usual, we
compute the stability of these fixed points by computing the eigenvalues of the Jacobian
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of the system in the fixed points:∂Ḣ
∂H

∂Ḣ
∂σ

∂Ḣ
∂y

∂σ̇
∂H

∂σ̇
∂σ

∂σ̇
∂y

∂ẏ
∂H

∂ẏ
∂σ

∂ẏ
∂y

 =

 y − dω∂2
σFHα1 −dω∂2

σFHβ1
∂2
σF∂HF−∂σHF∂σF−2dωy∂2

σF

∂2
σF∂2

HF−(∂σHF )2

dω∂σHFHα1 y + dω∂σHFHβ1
∂2
HF∂σF−∂σHF∂HF+2dωy∂σHF

∂2
σF∂2

HF−(∂σHF )2

−1
2
∂HF + λ

4
(H∂2

HF + σ∂σHF ) −1
2
∂σF0 +

λ
4
(H∂σHF + σ∂2

σF ) y
(
1 + λ

2

)
 ,

(239)

with α1 =
∂2
HF+k1∂σHF

∂2
σF∂2

HF−(∂σHF )2
and β1 =

∂σHF+k∂2
σF

∂2
σF∂2

HF−(∂σHF )2
. As the expression for the eigenval-

ues is too laborious, we can first simplify it for each of the solutions.

For y0 = ω = 0 we get a vanishing eigenvalue m1 = 0 and then:

m2,3 = ± 1√
2

[(
−∂HF +

λ

2
(H∂2

HF + σ∂σHF )

)(
∂2
σF∂HF − ∂σHF∂σF

∂2
σF∂2

HF − (∂σHF )2

)
+

(
−∂σF0 +

λ

2
(H∂σHF + σ∂2

σF )

)(
∂2
HF∂σF − ∂σHF∂HF

∂2
σF∂2

HF − (∂σHF )2

)]1/2
, (240)

being then an unstable fixed point.

For the general case of non vanishing ω and ∂σF = 0, we use the result of [4], which
for λ ̸= −2 gives ∂HF = 2ω2d2H

1+λ/2
. Note that from our definition of the coefficients α1 and

β1 we obtain a relation ∂2
σFα1−∂σHFβ1 = 1. This relation helps us in the simplification

of the fixed points but erases all trace of the extra dimensions parameters, i.e. k1 or σ
derivatives of the F function. With all that we get 3 eigenvalues:

m1 = cH0

(
1 +

λ

2

)
, m2,3 =

cH0

2

(
1− λ

2
±
√

1 + λ+ λ2/4

)
. (241)

By imposing the condition of all three being negatives, we observe that we need c1 < 0
together with −2 < λ < 0, so that the presence of the anisotropy does not affect the
stability of these fixed points at all.

Let us now look at the special cases for the values of λ. First, for λ = −2 and ω = 0
we get a quite a simple Jacobian matrix with eigenvalues:

m1 = 0 , m2,3 = cH0, (242)

which establishes then that for a negative shifted dilaton velocity y0 we have to look for
the non linear stability of the mode with constant perturbation. For the case of λ = 0

55



we will have the same results. This means that one of the perturbation modes will be
constant, but the other two will vanish exponentially, giving a bifurcation.

5.4.1 Hubble parameter in the Einstein frame

The derivation of HE(T ) is the same as in the vacuum case, so we will have the two
cases, the one for vanishing σ0, in Eq. (208), and the one for exponential expansion or
contraction of the extra dimension, in Eq. (215). For consistency with the derivation of
HE we recover d = 3 in this section.
As we have seen both cases have the same time dependency and prefactor, only the
initial time which is an integration constant changes. We then treat both cases equally
as we have been doing without distinguishing σ = 0 from σ = σ0, the Hubble parameter
is given by:

HE(T ) =
Φ̇0 +H0

Φ̇0 + 3H0

1

(T − T1)
. (243)

Again, the two special values that give a Minkowski solution Φ̇0 = −H0, and de Sitter
solution Φ̇0 = −3H0, behave in the same way as in the vacuum case. Although, in here
they relate the matter parameters λ and ω. For the Minkowski case we obtain from Eq.
(235) which holds for λ ̸= −2, ω ̸= 0, and ∂HF0 ̸= 0:(

1 +
λ

2

)
= −3ω, (244)

and for the exact de Sitter solution:(
1 +

λ

2

)
= −ω. (245)

Let us now look at the more general case. We introduce the stability condition Eq.
(235) into Eq. (243). We obtain the following Hubble parameter in the 4-dimensional
Einstein frame:

HE(T ) =
3ω + 1 + λ

2

3
(
ω + 1 + λ

2

) 1

(T − T1)
. (246)

Where now we cannot make appear the extra dimensions parameter but it actually
appears in the stability conditions. First in Eq. (235), which in terms of the dilaton
reads:

ϕ̇ =3H0

(
ω

2 + λ
+

1

2

)
+

D − 4

2
σ0

=
3H0

2

(
2ω + 2 + λ

2 + λ

)
+

D − 4

2
σ0. (247)

56



As in the vacuum case having c1 < 0 means that for H0 > 0:

2ϕ̇0 − 3H0 − (D − 4)σ0 < 0, (248)

and for H0 > 0 we have:
2ϕ̇0 + 3|H0| − (D − 4)σ0 > 0. (249)

We can again look for more constraints on our parameters by imposing a positive HE

and an accelerating solution with q < 0. First we recall that as in the isotropic case, the
stability conditions, Eq. (235) along with c1 < 0 and −2 < λ < 0 imposes ω < 0. Then
for HE we have two options, given by the numerator and the denominator having the
same sign, they read:

ω < −
(
1 +

λ

2

)
, −1

3

(
1 +

λ

2

)
< ω < 0. (250)

We now look at the deceleration parameter, in this case we have:

1 + q = −ḢE

H2
E

=
3
(
ω + 1 + λ

2

)
3ω + 1 + λ

2

, (251)

which gives a deceleration parameter:

q =
2− λ

3ω + 1 + λ
2

. (252)

The numerator is always positive for linearly stable fixed points, so by imposing the
denominator to be negative, we get:

ω < −1

3

(
1 +

λ

2

)
(253)

In order to satisfy the latter, and obtain a positive HE, we then need:

ω < −
(
1 +

λ

2

)
, (254)

which means that the upper bound on the ω parameter depends on the strength of the
coupling between matter and the dilaton. The lower the coupling (nearer to zero), the
nearer the upper bound of the equation of state parameter ω is from the one of vacuum
energy asymptotically. For a dilaton coupling non vanishing, the upper bound increases
allowing solutions with ω = −1. We obtain the same results as in the isotropic case for
d = 3.
Again for a general fixed point in the string frame, we manage to obtain for the Hubble
parameter in the 4-dimensional Einstein frame a solution which has HE > 0, and is in
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accelerating expansion. The HE decreases asymptotically to zero as time increases.
We can now look at the meaning of the bound on ω for the dilaton and the extra
dimensions Hubble parameter. If we look at Eq. (247) we see that the parameter that
goes with 3H0 is going to be always negative, and in absolute magnitude, the bigger
is the pressure in the 3-dimensional space, the more important will be the contribution
from H0 to ϕ̇0.
Moreover, we can obtain a solution for a vanishing dilaton velocity given a relation
between the Hubble parameters such as:

D − 4

2
σ0 = −3H0

(
ω

2 + λ
+

1

2

)
, (255)

as mentioned the term multiplying H0 is negative, so that means that the two Hubble
parameters in the string frame must have the same sign if we want ϕ̇ = 0. Thus the
introduction of matter gives a relation between the Hubble parameters in order to obtain
a non dynamical dilaton.

5.4.2 Non vanishing pressure in the extra dimensions

We can sketch the fixed points for the case of non vanishing pressure for the fluid in the
extra dimensions. For this we can use the conservation of eΦρ̄ and barotropic equations
of states p3 = ωρ and pD−4 = γρ, together with θ = λρ. We introduce p3, the pressure
of the fluid in the 3-dimensional space, and pD−4 its analogous in the D-4-dimensional
space, with all three parameters ω, γ, and λ constants. The continuity equation now
reads:

˙̄ρ+ 3Hp̄3 + (D − 4)σp̄D−4 −
1

2
Φ̇θ̄ = 0. (256)

After imposing the conservation of eΦρ̄ it reads:

Φ̇0(1 +
λ

2
) = 3ωH0 + (D − 4)γσ0. (257)

As expected, by introducing pressure in the extra dimensions, we come back to a sym-
metric system in which we replace dω by 3ω+(D−4)γσ0. But this replacement is giving
us an extra degree of freedom to fix our Hubble parameter.

By introducing pressure for the D-4-dimensional part, we are not changing the Hubble
parameter in the Einstein frame, it still reads:

HE(T ) =
Φ̇0 +H0

Φ̇0 + 3H0

1

(T − T1)
, (258)

which introducing Eq. (257), for λ ̸= −2 reads:

HE(T ) =
H0

(
3ω + 1 + λ

2

)
+ (D − 4)γσ0

3H0

(
ω + 1 + λ

2

)
+ (D − 4)γσ0

1

(T − T1)
, (259)
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where now HE depends explicitly on the Hubble parameters of the string frame.
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6 On the F(H) function formulation

The F (H) function is the novelty of the work of Hohm and Zwiebach. Given the way
in which it appears in the action, we could think of it as a potential of the string frame
Hubble factor. In this section we will try to see some interpretations of this F function
in the string frame. Then we will perform the compactification of the action to the
4-dimensional Einstein frame, in order to see the form of this function in 4 dimensions.

6.1 String frame

Let us first see how Meissner and Veneziano [13] got to the two derivative theory in Eq.
(13). Let us work on Eq. (11), for a vanishing b-field and a FLRW metric, we have a
Ricci scalar given by [13]:

R =2∂2
t ln
√

detgij + (∂tln
√
detgij)

2 − 1

4
Tr((∂tgij)(∂tg

jk))

=d(d+ 1)H2 + 2dḢ. (260)

Then the zero order action (11) can be rewritten as:

I0 =

∫
dt
√
ge−2ϕ(−4ϕ̇2 + d(d+ 1)H2 + 2dḢ). (261)

For the formulation in the O(d,d) covariant way, Eq. (13) is just Eq. (82) at first order,
which in terms of the usual dilaton ϕ reads:

I0 =

∫
dte−Φ(−Φ̇2 + dH2)

=

∫
dt
√
ge−2ϕ(−4ϕ̇2 − d2H2 + 4dHϕ̇+ dH2)

=

∫
dt
√
ge−2ϕ(−4ϕ̇2 − d(d− 1)2H2)−

∫
dt
√
g

(
d

dt
e−2ϕ

)
2dH

=

∫
dt
√
ge−2ϕ(−4ϕ̇2 + d(d+ 1)H2 + 2dḢ), (262)

where in the last line we used integration by parts, recalling that
√
g = ad. We could

then think that we can compare the action that we obtained at all orders:

I =

∫
dte−Φ(−Φ̇2 − F (H)), (263)

with some kind of perturbative f(R) theory in the string frame, with an action:

S =

∫
dt
√
ge−2ϕ(−4ϕ̇2 + f(R)), (264)
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where we should impose a form for the f(R) function in such a way that f(R) = R +
b1α

′R2 +O(α′2), so that at first order those two actions are exactly equivalent.
For higher order the Ricci scalar will make appear terms with derivatives of H, which
do not appear when developing the F(H) function. For example, for the second order:

b1α
′
∫

dt
√
ge−2ϕR2 = b1α

′
∫

dt
√
ge−2ϕ[d2(d+ 1)2H4 + 4d2(d+ 1)H2Ḣ + 4d2Ḣ2], (265)

while F (H) gives us a term proportional to H4. The problem is that by integrating by
parts we will also get factors of derivatives of the dilaton. But we must now recall the
way in which we derived the form of Eq. (263) in section 3.1.2. We have constrained
the most general O(d,d) covariant action enormously. In these constraints we eliminate
all the higher-derivatives of the S matrix, and the shifted dilaton Φ. That is why we do
not get derivative terms of hte Hubble parameter H in Eq. (263). So we can expect that
by computing the EOM at first order for Eq. (264), we can then redefine the fields with
corrections of order k, so that order by order we eliminate all the Ḣ terms, obtaining
only H2k terms. Then we should only match the prefactors at each order with the use
of the free coefficients.

However, we must now recall that the F (H) function encodes all the higher-derivative
corrections of the string action such as RµναβRµναβ. Therefore, it is clear that if we
wanted to compare the function F (H) with a function f(R) we would need to impose
several extra conditions on our function f(R). First, we would need a perturbative func-
tion in the parameter α′. Second, certainly this function at order α′ cannot consist only
of a square term of the Ricci scalar.

In order to look for some other interpretation of F (H), we can separate the first order
(without α′) from the higher terms. After that we can take a look at the total action in
terms of the dilaton ϕ:

I =

∫
dt
√
ge−2ϕ(−4ϕ̇2 +Rd − Fk>1(H)), (266)

where Rd is the Ricci scalar in d dimensions, and Fk>1(H) encodes all the α′ corrections,
and its leading order is O(α′). The action obtained is formed by a kinetic term for the
dilaton with the wrong sign, although this is not important since we are in the string
frame, the Ricci scalar in D dimensions, and finally the so-called Fk>1(H). Thus, the
function F (H) can be seen as a first ”kinetic” term (which contributes to the Ricci
scalar) plus a perturbative potential for the Hubble factor in the string frame. In order
to have a clearer view of it, we can take a look at its final form in the 4-dimensional
Einstein frame.
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6.2 Compactification

As previously announced, the idea of splitting the D-dimensional theory in the part of
our three spatial dimensions, and other D-4 extra dimensions, was to bring this theory
closer to reality, so that we could see what form the F (H) function has, and hence,
see what form all the higher derivative corrections of the O(d,d) covariant theories in 4
dimensions take. For this, we will need to extract the dependencies of the parameters
in the string frame in their corresponding parameters in the Einstein frame. With this
purpose in mind we could follow the [8] approach, although the time reparametrisations
explained in the previous sections make it all a bit more cumbersome. So we will instead
recover the covariant derivative, as done in [12] to obtain the dependencies between the
parameters in the two frames.

We want then to recover time reparametrisations invariance with the use of the
covariant derivative:

d

dt
→ 1

ns(t)

d

dt
= Ds. (267)

From now on we indicate the quantities in the D-dimensional string frame with the sub-
index s. As the second step of the compactification is to separate the 4-dimensional
terms from the D-4-dimensional, we use our development of the anisotropic action:

I =

∫
dtne−Φ(−(DsΦ)

2 − F (Hs, σs)), (268)

where now Hs = (Dsas)/as and σs = (Dsbs)/bs. To simplify the notation, we introduce
all the constant terms of F (H, σ) defined in Eq. (148), by redefining the coefficients ck,l,
in such a way that:

F (Hs, σs) =
∞∑
k=1

(−α′)k−1

k∑
l=0

ck,lH
2(k−l)
s σ2l

s . (269)

We rescale them as 12(D − 4)22kck,l → ck,l, so that now we have the two coefficients at
first order for string theory being: c1,0 = −3, and c1,1 = −(D − 4). Let us first rewrite
the action in terms of the dilaton:

I =

∫
dtns

√
gse

−2ϕ(−4(Dsϕ)
2− (3Hs+(D−4)σs)

2+4(3Hs+(D−4)σs)Dsϕ−F (H, σ)),

(270)
where we used the definition of the shifted dilaton, and its first derivative in Eq. (170).
As the covariant derivative satisfies the usual integration by parts rule [8]:∫

dtnBDA =

∫
dt
d(BA)

dt
−
∫

dtn(DB)A, (271)
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we can integrate by parts the term with Dsϕ in order to obtain:

I =

∫
dtns

√
gse

−2ϕ(−4(Dsϕ)
2+(3Hs+(D−4)σs)

2+2(3DsHs+(D−4)Dsσs)−F (H, σ)).

(272)
Note that with this last formulation of the action we can already recognise the term that
will be the Ricci scalar in the 4-dimensional action.

6.2.1 To the D-dimensional Einstein frame

As explained in [14], we must first use a Weyl transformation in order to go to the
D-dimensional Einstein frame. Such a Weyl transformation reads:

Gs
MN = Ω−2Ged

MN →
√
−Gs = ns

√
gs = Ω−Dned

√
ged = Ω−D

√
−Ged. (273)

We analogously introduce the ed index for the D-dimensional Einstein frame quantities.
G̃ is the metric in the D-dimensional Einstein frame; the two metrics have the following
form:

Gs
MN =

−n2
s(t) 0 0
0 a2s(t) · 13 0
0 0 b2s(t) · gmn

 , G̃ed
MN =

−n2
ed(t) 0 0
0 a2ed(t) · 13 0
0 0 b2ed(t) · gmn

 .

(274)
We can see, that the transformations of individual parameters are:

n2
s = Ω−2n2

ed , a2s = Ω−2a2ed , b2s = Ω−2b2ed. (275)

We now want to find the expressions of the terms in the action as a function of Ω and
the Einstein frame variables. For this we note that the covariant derivative now reads:

Ds =
1

ns

d

dt
=

Ω

ned

d

dt
= ΩDed. (276)

The covariant derivative of the dilaton in the Einstein D-dimensional frame simply reads:

Dsϕ = ΩDedϕ. (277)

Now, for the computation of the scale factors we must be more careful, for Hs we find:

Hs =
Ω

aed
ΩDed(Ω

−1aed)

=Ω

(
−DedΩ

Ω
+Hed

)
, (278)
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where we defined Hed ≡ (Dedaed)/aed. The same happens for σs:

σs = Ω

(
−DedΩ

Ω
+ σed

)
, (279)

with σed defined analogously as σed ≡ (Dedσed)/σed. Now we look at the covariant
derivatives of the Hubble parameters:

DsHs =ΩDed

(
Ω

(
−DedΩ

Ω
+Hed

))
=Ω2

(
DedHed +

DedΩ

Ω
Hed −

D2
edΩ

Ω

)
. (280)

Performing the same computation we obtain Dsσs:

Dsσs = Ω2

(
Dedσed +

DedΩ

Ω
σed −

D2
edΩ

Ω

)
. (281)

We note that by expressing all the terms inside the brackets in the action of Eq. (272)
as Einstein frame variables, we get an overall Ω2 parameter. We then impose the same
for the F (Hs, σs) function, in such a way that F (Hs, σs) = Ω2Fed(Hed, σed). Let us see
what form the F function takes in the Einstein D-dimensional frame:

Fed(Hed, σed) =
∞∑
k=1

(−α′)k−1

k∑
l=0

ck,lΩ
2k−2

[
−DedΩ

Ω
+Hed

]2(k−l) [
−DedΩ

Ω
+ σed

]2l
.

(282)
We have now obtained all the replacements to be done, so in order to go to the

Einstein frame we need to remove the e−2ϕ factor with the product of Ω factors. We
have an Ω2 from the terms in brackets, and an Ω−D from

√
−Ged. Then, we get:

Ω = e−
2ϕ

D−2 . (283)

By computing its derivatives we have:

DedΩ

Ω
= −2Dedϕ

D − 2
,

D2
edΩ

Ω
=

4(Dedϕ)
2

(D − 2)2
− 2D2

edϕ

D − 2
. (284)

The only thing to do is to introduce everything into the action in Eq. (272). In order
to simplify the action we integrate by parts the second derivative term in Eq. (284), and
by noting that the order k = 1 inside the F function does not contain any α′ correction,
we can develop the function up to first order in α′:

Fed = −3H2
ed − (D− 4)2σed − 4

(D − 1)

(D − 2)2
(Dedϕ)

2 − 4Dedϕ

(D − 2)2
(3Hed + (D− 4)σed) + F k>1

ed ,

(285)
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where we define F k>1
ed which encodes all the α′ corrections. Finally, the expression for

the action in the D-dimensional Einstein frame is:

I =

∫
dtned

√
ged

(
4

D − 2
(Dedϕ)

2 + (3Hed + (D − 4)σed)
2 + 6DedHed

+2(D − 4)Dedσed + 3H2
ed + (D − 4)σ2

ed − F k>1
ed

)
. (286)

We can note from this action that the dilaton has now the correct sign in the kinetic
term, and we can still recognise the Ricci scalar now in the D-dimensional Einstein frame.

6.2.2 To the 4-dimensional Jordan frame

We now want to separate the 4 and D-4 dimensions. Half of the work is already done,
since we have developed the action in terms of H, and σ, already establishing a difference
between these 2 spaces. We now only have to develop the determinant of the metric:

ned
√
ged = ned

√
g̃3
√

g̃D−4 = ned

√
g̃3 · bD−4

ed

√
det(gmn), (287)

where g̃3 represents the determinant of the spatial part of the 4-dimensional metric in
the string frame. As we assumed the metric in the extra dimensions to be b(t) times
a constant metric gmn, the

√
det(gmn) factor can go out the integral with the 1/2κ2

mentioned in the sections 3.2 and 4.2, so we will also neglect this proportionality factor
in our development. The difference between our compactification and a general one, is
that as we are assuming a cosmological ansatz, we have already been able to integrate
out the spatial dimensions

∫
dD−1x.

From now on, for our 4-dimensional theory, the bed(t)no longer represents a scale factor
but a time-dependent scalar field. We write it: b(t). So that this time from the metric,
we see a new scalar field term appear in front of our Ricci scalar. We then have to do a
second Weyl transformation in order to remove it.

6.2.3 To the 4-dimensional Einstein frame

We then go on with the second Weyl rescaling, to have clear the notation we rewrite the
transformation:

Ged
µν = Ω−2gµν →

√
−Ged = ned

√
g̃3 = Ω−4n

√
g3 = Ω−4

√
−g. (288)

The Weyl transformation does not affect the b(t) field anymore. Now for simplicity
we define the quantities without extra index, as the ones in the 4-dimensional Einstein
frame. Again, the metrics read:

Ged
µν =

(
−n2

ed(t) 0
0 a2ed(t) · 13

)
, g̃µν =

(
−n2(t) 0

0 a2(t) · 13

)
. (289)
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The individual parameters as new frame variables read:

n2
ed = Ω−2n2 , a2ed = Ω−2a2, (290)

where Ω is the new Weyl factor to be determined in order to cancel the b(t) contribution
in front of the metric. The covariant derivative will now be replaced by:

Ded = Ω
1

n

d

dt
= ΩD, (291)

with D being the covariant derivative in the Einstein 4-dimensional frame. As in the pre-
vious case, the derivative of the dilaton and the Hubble parameter Hed and its covariant
derivative are replaced by:

Dedϕ = ΩDϕ, (292)

Hed = Ω

(
−DΩ

Ω
+H

)
, (293)

DedHed = Ω2

(
DH +

DΩ

Ω
H − D2Ω

Ω

)
, (294)

defining the Hubble parameter with the proper time covariant derivative H = (Da)/a.
For the sigma parameter we now get a different substitution since it does not get trans-
formed by the Weyl rescaling:

σed =
1

b

Ω

n

d

dt
b = Ω

Db

b
, (295)

and its covariant derivative is replaced by:

Dedσed =ΩD
(
Ω
Db

b

)
=Ω2

(
DΩ

Ω

Db

b
+

D2b

b
−
(
Db

b

)2
)
. (296)

Again we collect an overall Ω2 factor from the terms in brackets; we can now see how
the transformation translates in terms of the F k>1

ed . We factorise again an overall factor
Ω2 to define the function in the Einstein frame F k>1

ed = Ω2Fk>1, with Fk>1 given by:

Fk>1(H, b, ϕ) =
∞∑
k=2

(−α′)k−1

k∑
l=0

ck,le
− (2k−2)2ϕ

D−2 Ω2k−2

[
2

Dϕ

D − 2
− DΩ

Ω
+H

]2(k−l)

·
[
2

Dϕ

D − 2
+

Db

b

]2l
. (297)
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We must now deduce the Ω factor, and compute its derivatives to introduce them in
the previous relations. We get an Ω−4 from the metric contribution, and an Ω2 from the
terms in brackets, so that in order to cancel with the bD−4 we impose:

Ω = b
D−4
2 . (298)

Then, the derivatives of Ω are given by:

DΩ

Ω
=

D − 4

2

Db

b
, (299)

D2Ω

Ω
=

D − 4

2

(
D − 6

2

(
Db

b

)2

+
D2b

b

)
. (300)

If we now introduce all these expressions into the action, by integrating by parts the
resulting D2b/b we get to this final action:

I =

∫
dtn

√
g3

(
4(Dϕ)2

D − 2
+ 6(2H2 +DH) +

(D − 4)(D − 2)

2

(
Db

b

)2

− Fk>1(H, b, ϕ)

)
,

(301)
where the gravitational part is consistent with the work of Pedro et. al. [14], although
we have done it without the Ricci scalar appearing explicitly and then without using its
transformation laws. The Fk>1 which is of order α’ and encodes all the higher derivative
corrections reads:

Fk>1(H, b, ϕ) =
∞∑
k=2

(−α′)k−1

k∑
l=0

ck,l

(
e−

2ϕ
D−2 · b

D−4
2

)2k−2
[
2

Dϕ

D − 2
− D − 4

2

Db

b
+H

]2(k−l)

·
[
2

Dϕ

D − 2
+

Db

b

]2l
.

(302)

Therefore, by compactifying the O(d,d) covariant action, we obtain a 4-dimensional
action with two scalars and the Ricci scalar in the 4-dimensional Einstein frame for a
FLRW metric. Note that from the kinetic term of the b field we see that it has the
correct sign for D > 4 what we have supposed all along the anisotropic development.
Moreover, the α′ corrections give us a kind of potential with all kinds of mixed terms.
To obtain the canonical kinetic term for the b(t) field we can define:

Dln(b(t)) ≡ DB(t) → B(t) = ln(b(t)) , b(t) = eB(t). (303)

As b was initially a scale factor we assume it is always positive. By also introducing the
Ricci scalar R = 6(2H2 + DH), and recovering the original coefficients ck,l the action

67



and the perturbative potential take the form:

I =

∫
dtn

√
g3

(
R +

4(Dϕ)2

D − 2
+

(D − 4)(D − 2)

2
(DB)2 − Fk>1(H,B, ϕ)

)
, (304)

Fk>1(H,B, ϕ) = 12(D − 4)
∞∑
k=2

(−α′)k−122k
k∑

l=0

ck,l

(
e

D−4
2

B− 2ϕ
D−2

)2k−2

·
[
2

Dϕ

D − 2
− D − 4

2
DB +H

]2(k−l) [
2

Dϕ

D − 2
+DB

]2l
. (305)

We obtain some quite reasonable action; the function which encodes all the α′ corrections
has a much more complicated form. It contains an overall exponential factor of the
dilaton and the B scalar, which multiply powers of kinetic terms of the scalars and the
Hubble parameter.
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7 Discussion

In this work we have analysed the O(d,d) covariant theory of Hohm and Zwiebach in
the string frame and in the Einstein frame. We will conclude with a discussion on the
results obtained.

After introducing the formalism and deriving the equations of motion, we have per-
formed a systematic search for the fixed points of the dynamical system. This study was
performed both in isotropic and anisotropic backgrounds. The results are summarised
in tables 1, 2, 3 and 4. By comparing fixed points in isotropic and anisotropic back-
grounds we conclude that no new points or stability conditions are added to the simple
isotropic case by allowing for more general backgrounds. The fixed points extend natu-
rally between the two geometries, as commented in [12]. Quantitatively this means that
in the anisotropic case (∂σF ̸= 0), the conditions where we had H0∂HF0 for the isotropic
case will be replaced by H0∂HF0 + σ0∂σF0, and the dωH0, will come substituted by
3ωH0+(D−4)γσ0. For the anisotropic fixed points analysis, by assuming a pressureless
fluid in the extra dimensions in Eq. (157b) we are fixing either the velocity of the shifted
dilaton or ∂σF to vanish.
If y0 = Φ̇0 = 0, by looking at Eq. (157a) we impose the fluid in the three-dimensional
space to be pressureless matter. In this case we still have the presence of the Hubble
parameter in the extra dimensions, σ, in the equations since it enters with ∂σF , although
it enters in the same way as H does. The σ0 parameter would give us an extra degree
of freedom to fix H0, but those solutions are not stable, like de Sitter solutions with
vanishing pressure in the isotropic space.
If ∂σF0 = 0 the system goes back to the isotropic solutions. We could expect the σ
parameter to be relevant in the stability condition of such fixed points, and give rise to
a condition on the value of σ0, but that turns out not to be the case. The condition of
vanishing equation of state for the fluid in the extra dimension could be relaxed. We
would again obtain symmetric equations in H and σ, and in the two parameters of the
equations of state.
Moreover, for some stable fixed points in the string frame, we obtain Minkowski (Φ̇0 =
−H0) and exact de Sitter (Φ̇0 = −3H0) solution in the 4-dimensional Einstein frame.
Furthermore, the remaining stable fixed points give rise to solutions with a decreasing
Hubble parameter in the Einstein frame. If we compute the latter as a function of the
physical degree of freedom ϕ, we manage to get a dependence of the Hubble parameter
in the 4-dimensional Einstein frame HE on the extra dimension Hubble parameter in the
string frame σ. These solutions are very interesting since, by imposing from a certain
time T0, HE to be positive, and the deceleration parameter q to be negative (correspond-
ing to accelerating expansion), we get to constraint the dilaton ϕ and the Hubble of the
extra dimensions, and in the matter case we can also constraint the parameters of the
equation of state ω and of the dilatonic charge λ. Furthermore, for these solutions, as
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the cosmic time in the Einstein frame (t′, T ) increases, HE decreases asymptotically to
zero.
In future research one could analyse the solutions for a slowly varying dilaton velocity,
i.e. c(t) = c + ϵ(t). It would be interesting to see if there is any solution in which the
Hubble parameter in the Einstein frame starts positive and arbitrarily large, and then
decreases exponentially. If such solutions have an ϵ which gets to zero in a finite time
T1, we would obtain a late constant and tiny Hubble parameter HE(T1) for T > T1.

In the final section of this thesis we have compactified the total O(d,d) covariant
action to all orders in α′. In the four-dimensional Einstein frame we get an expected
extra scalar field describing the volume of the extra dimensions, the dilaton and the 4-
dimensional Ricci scalar for our FLRW metric. The final form of the F function tells us
that it acts as a perturbative potential mixing up all the dynamical fields of the system.
However, these interaction terms enter along with the corrections, since at first order
the action only displays the kinetic terms of the dilaton and the B scalar field minimally
coupled to gravity.

To conclude, the α′ corrections allow for stable de Sitter solutions in the string frame.
Some of the stable points of this family of solutions are also compatible with a de Sitter
solution in the Einstein frame. It should also be highlighted that some stable de Sitter
points in the string frame give us decreasing Hubble parameters in the Einstein frame
that tend assymptotically to zero. In this manner, it would be interesting to study the
hybrid solution that goes from a decreasing HE to a constant and small one.
The development of the anisotropic action does not come with an increase in the variety
of the fixed points, nor in their stability conditions, but the extra dimensions have a role
to play in the Hubble parameter in the 4-dimensional Einstein frame. Nevertheless, this
separation was needed in order to obtain a correct F (H, σ) so that the compactification
was performed in an easier way, without forgetting multi-trace terms in the original
action. The theory obtained in the Einstein frame has a perturbative potential with
infinite corrections in α′, which carries all the interaction terms.
An interesting future direction could be to analyse this perturbative potential in the
Einstein frame. We could also study the fixed points of the system, and compare with
the ones issued from the first order equations, i.e. two scalars minimally coupled to
gravity, in order to see what are the new solutions that this F function provides.
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