
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Growth of structures in non-standard
Dark Energy models

Supervisor:

Prof. Silvia Pascoli

Co-supervisors:
Prof. Olga Mena

Dr. Rasmi Hajjar

Submitted by:

Pietro Ghedini

Academic Year 2023/2024



1



Abstract

Despite the fact that the ΛCDM model has been highly successful over the last few
decades in providing an accurate fit to a broad range of cosmological and astrophysical
observations, different intriguing tensions and anomalies emerged at various statistical
levels. Among these, the H0 tension is now exceeding five standard deviations, pointing
to new physics beyond the ΛCDM model. Alternative appealing models, still allowed by
observations, include the interacting dark energy (IDE) scenario, where dark matter and
dark energy interact non-gravitationally. It is well-known that within these interacting
cosmologies the growth of structure is modified and departures from the standard cos-
mological model of structure formation are parameterised via the growth rate f .
This study explores the growth of structure in non-standard dark energy cosmologies,
trying to extend the standard parametrisation for f to take into account the depen-
dence on the coupling ξ between dark matter and dark energy. We aim as well to place
constraints on the phenomenological parameters of these alternative models, by con-
sidering different datasets related to different cosmological measurements, to achieve a
complementary analysis. We put emphasis, in particular, on redshift space distortion
measurements (RSD), whose role has not been recently highlighted.
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Sommario

Nonostante il modello cosmologico standard, noto come modello ΛCDM, abbia avuto
molto successo negli ultimi decenni nel fornire un fit a molte osservazioni cosmologiche e
astrofisiche, diverse tensioni e anomalie sono emerse a diversi livelli statistici. Tra queste,
la tensione su H0, ovvero il valore del parametro di Hubble oggi, supera ora le cinque
deviazioni standard, suggerendo la necessità di nuova fisica che vada oltre il modello
cosmologico standard ΛCDM. Tra i vari modelli alternativi, permessi dalle osservazioni,
troviamo i modelli di energia oscura interagente (Interacting Dark Energy, IDE). In
questi modelli, energia oscura e materia oscura interagiscono non gravitazionalmente. É
noto che in questi modelli di cosmologie interagenti, la crescita delle strutture è modifi-
cata e deviazioni dal modello standard che descrive questo fenomeno sono parametrizzate
tramite il rate di crescita f .
Questo studio esplora la crescita delle strutture in modelli cosmologici dove si considera
una forma non standard di energia oscura, provando a estendere la nota parametriz-
zazione per f per includere la dipendenza sul parametro di accoppiamento ξ tra materia
ed energia oscura. Ci poniamo inoltre l’obiettivo di fissare dei limiti sui possibili valori
che i parametri cosmologici possono assumere in queste modelli cosmologici alternativi,
considerando diversi set di dati derivanti da misurazioni differenti, per ottenre un’analisi
complementare. Nel seguente lavoro, si è posta particolare enfasi sulle misure delle dis-
torsioni nello spazio dei redshifts (Redshift Space Distortions, RSD), il cui ruolo non è
stato evidenziato in lavori recenti.
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Introduction

The standard cosmological model, known as ΛCDM, describes the Universe as isotropic
and homogeneous on large scales. The majority of the matter in the model is made up
of Cold Dark Matter (CDM), which is parameterised as a perfect fluid of collision-less
particles that interact solely through gravity. The model also accounts for the existence
of Dark Energy, represented by a cosmological constant Λ in the Einstein equations, re-
sponsible for the observed accelerated expansion of the Universe at later stages (see [1]).
The ΛCDM model has been highly successful over the last few decades in providing an
accurate fit to a broad range of cosmological and astrophysical observations. Neverthe-
less, as error-bars on cosmological parameters began to narrow, different intriguing ten-
sions and anomalies emerged at various statistical levels. Currently, the most significant
tension is between the Hubble constant (H0) value, as measured by the SH0ES collab-
oration [2], that is using a distance ladder with Cepheids variables to calibrate Type
Ia Supernovae (H0 = 73.04 ± 1.04 km/s/Mpc), and the value inferred by the Planck
satellite [1] from Cosmic Microwave Background (CMB) observations (H0 = 67.36±0.54
km/s/Mpc) assuming a ΛCDM model for the expansion history of the Universe. The
so-called H0 tension [3, 4] has recently overcome the threshold of five standard devia-
tions [2, 5], essentially ruling out the possibility of a statistical fluke. Consequently, the
H0 tension suggests a discrepancy between our comprehension of the early (i.e. CMB
measurements) and late (i.e. Cepheids measurements) Universe and may also point to
new physics, because inferring H0, i.e. the rate at which the Universe is expanding to-
day, from observations of the Cosmic Microwave Background necessarily relies on the
cosmological model and its underlying assumptions. In more complex cosmologies be-
yond ΛCDM, values of H0 consistent with local distance ladder measurements can be
obtained, and numerous potential solutions have been proposed in the literature, see,
e.g., Refs. [6, 7] for some reviews.
Another important emerging tension of the ΛCDMmodel is the σ8 tension, parameterised
by S8 = σ8(Ωm/0.3)

1/2 (from Planck CMB observations we obtain S8 = 0.825±0.011 [1],
while the weak lensing survey KiDS-1000 gives S8 = 0.766+0.020

−0.014 [8]).
One model that has gained popularity for potentially resolving the H0 tension is the
interacting dark energy (IDE) scenario, where a non-gravitational interaction between
dark matter and dark energy is postulated [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
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21, 22, 23, 24, 25, 26, 27, 28]. It is well-known that within this interacting cosmologies
the growth of structure is modified, and therefore it is crucial to apply observational
constraints on the former to set bounds on this putative cosmological scenario.
Departures from the standard cosmological model of structure formation are parame-
terised via the growth rate f [29, 30]. Within the canonical General Relativity scheme,
and in a flat ΛCDM background, f = [Ωdm]

γ with γ = 0.55 [29] and Ωdm is the relative
energy density (i.e. we use Ωdm but we refer to Ωdm/Ωtot). Consequently, a departure
from this standard value would suggest an inconsistency between the concordance cos-
mological model and observations. Therefore, it is timely to explore what would be the
deviations from the standard prediction for f within well-motivated, non standard mod-
els.
In this study, we aim to explore the growth of structure within non-standard dark energy
cosmologies and set bounds on the phenomenological parameters describing the possible
alternative models.

The structure of the thesis is as follows.
In Chapter 1, we will present the standard cosmological model, describing as well all the
measurements that consolidate this model. In addition, we will present the framework
of the standard cosmological perturbation theory.
In Chapter 2, we describe how to introduce a new non-gravitational interaction between
dark matter and dark energy, leading to the interacting dark energy (IDE) models. We
find a parametrisation for the growth function f and also for σ8,0, namely the value
of σ8 today, for different values of the coupling. We also check the consistency of our
parametrisation for f obtaining two different contour plots in the (Ωdm, ξ) plane: the
first one with data obtained from the public available codes CLASS [31, 32] and the other
obtained considering our parametrisation for f .
In Chapter 3, we present the cosmological and astrophysical observations data-sets and
likelihoods that will be used to constrain our model, showing the obtained results using
Cobaya [33, 34].
Finally, in Chapter 4, we summarise and discuss the final results.
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Chapter 1

Cosmology overview

1.1 The Standard Cosmological Model

The Standard Cosmological Model, also known as Hot Big Band Model, is the basis of
the evolution theory of our Universe. It is based on the so called cosmological principle,
stating that, on scales larger than 100 Mpc, the Universe is homogeneous and isotropic.
The success of this cosmological model rests on three main observations: the expansion
of the Universe, light element abundances (which are in agreement with Big Bang Nu-
cleosynthesis predictions) and the Cosmic Microwave Background radiation (CMB) [35].

1.1.1 Hubble Law and Redshift

We have evidence that the Universe is expanding, as found by Hubble in 1929 [36]. He
noticed that distant galaxies are receding from us and that the velocity increases with
the distance. Then, in order to understand the history of the Universe, we need to study
how the scale factor changes with time. To quantify the change in the scale factor it is
useful to introduce a new parameter, called Hubble parameter H(t), defined as

H(t) =
1

a

da

dt
=
ȧ

a
, (1.1)

where a = a(t) is the scale factor and today a(t0) = 1, meaning that at earlier times it
was smaller. The value of this parameter today, H(t0) = H0 is a very important value
in cosmology as, for example, it determines the age of the Universe today (∼ H−1

0 ).
Unfortunately, there are inconsistencies in the values obtained considering local (dis-
tance ladder with Cepheids variables to calibrate Type Ia Supernovae) measurements
and early-Universe (CMB) measurements. This is known as H0 tension [3]. From the
Planck CMB measurements [1], we have H0 = (67.36± 0.54) km/s/Mpc, while from the
SH0ES collaboration [2] one finds H0 = (73.04± 1.04) km/s/Mpc.
It is conventional to parameterise the Hubble parameter today, H0, as H0 = 100h
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km/s/Mpc, where h is a dimensionless parameter whose value depends on the kind
of measurement one is considering.
The expansion of the Universe changes also the light emitted by the sources in such a
way that we measure an increased wavelength λo (measured at a time t0, today) with
respect to the emitted one λe (emitted at a time te). We introduce the parameter z,
known as redshift, to measure this change in the wavelength, defined as

z =
λo − λe
λe

. (1.2)

There exists a relation between the redshift and the scale factor, given by

1 + z =
λo
λe

=
a(t0)

a(te)
=

1

a(te)
, (1.3)

where we used the fact that today a0 = 1.
If we consider two observers at rest in the comoving frame, they are moving away from
each other with a velocity that depends on the evolution of the scale factor. At low
redshift, so that z ≃ v we find the Hubble law describing the expansion of the Universe

v = H0d , (1.4)

so one expects that, at least at low redshift, the velocity of recession should increase
linearly with the distance. Eq. (1.4) is only an approximation since, at larger redshifts,
it only represents the first contribution: in order to get the correct relation, one must
consider additional terms.

1.1.2 Friedmann-Lemaitre-Robertson-Walker metric

In order to study cosmology, we need to work with Einstein’s theory of General Rel-
ativity. An important concept is the one of metric, which turns coordinate distances
into physical distances, allowing us to make quantitative predictions in an expanding
Universe. Moreover, the great advantage of the metric is that it incorporates gravity.
In four space-time dimensions, the interval between two points is defined, using Einstein
summation rule1, as

ds2 = gµνdx
µdxν , (1.5)

where the indices µ and ν run from 0 to 3 and the 0-th component refers to time.
The tensor gµν , known as the metric tensor, is a symmetric tensor (so in principle has
10 non zero components) and it describes the space-time geometry.
In Special Relativity, the metric tensor is ηµν , which represents Minkowski space-time.

1Repeated indices are implicitly summed over.
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Minkowski metric describes a static and flat Universe, therefore is not the proper metric
to use in the case of a homogeneous and isotropic Universe which is expanding and in
which matter and energy are present.
The form of the metric for our Universe can be partly fixed using the Cosmological
Principle. In particular, homogeneity translates into invariance under translations (gµν
must be independent of the spatial coordinates in cartesian coordinates), while isotropy
means invariance under rotations (the off-diagonal elements must vanish). Then, what
one finds is that the most general form of the metric is given by the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric [37]:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dϕ2)

]
, (1.6)

where r, θ and ϕ are the comoving coordinates and t is the proper time of an observer
who sees the time expand uniformly around them.
The symmetries fix the metric up to arbitrary values for the scale factor a(t), which
describes the time evolution of the Universe, and for the curvature parameter k, which
can assume three different values, corresponding to three different geometries:

• k = −1: in this case, we talk about an open Universe, where the t = constant
surface Σt is a 3D hyperboloid;

• k = 0: in this case, we recover flat space-time and Σt is flat;

• k = +1: in this case, we talk about a closed Universe and Σt is a 3D sphere.

Throughout this study we will always assume that we work in a flat Universe with k = 0.

1.1.3 Friedmann equations

The evolution of the Universe is described by the theory of General Relativity, i.e. by
the Einstein equations, describing the evolution of physical systems under the action of
gravity

Gµν = Rµν −
1

2
gµνR = 8πGTµν , (1.7)

in which Gµν is the Einstein tensor, G is the Newton constant, Tµν is the stress-energy
tensor, R is the Ricci scalar, R = Rµνg

µν , and Rµν is the Ricci tensor, defined as

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

α
µν − Γα

βνΓ
β
µα , (1.8)

where commas denote derivatives with respect to x and Γα
µν are the Christoffel symbols,

defined as
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Γα
µν =

1

2
gαβ(gµβ,ν + gνβ,µ − gµν,β) . (1.9)

Einstein later added a term to his equations as he believed that our Universe was a static
one, but a static Universe containing only non relativistic matter would collapse:

Rµν −
1

2
gµνR + gµνΛ = 8πGNTµν . (1.10)

Λ is the cosmological constant, which represents a vacuum energy and works as a repulsive
force opposed to the collapse of the Universe. When Hubble discovered the expansion
of the Universe in 1929, Einstein stated that the cosmological constant was the biggest
mistake of his career. Today, Λ is needed in order to describe our Universe, in particular
to explain the fact that our Universe is now in a phase of accelerated expansion.
In cosmology, one can assume the stress-energy momentum tensor Tµν to be that of a
perfect fluid, so

Tµν = (ρ+ p)uµuν + pgµν , (1.11)

where ρ is the energy density (the sum of the energy densities of the single components),
p is the (total) pressure and uµ is the four velocity. In a homogeneous and isotropic
Universe, Tµν is diagonal, Tµν = diag(−ρ, p, p, p).
Considering Einstein equations (1.10), using the FLRW metric (1.6) and this particular
form of the stress-energy tensor, we have that the 10 Einstein equations reduce to just 2
equations, known as Friedmann equations:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
; (1.12a)

Ḣ +H2 =
ä

a
= −4πG

3
(ρ+ 3p) , (1.12b)

where ρ and p are the total energy density and pressure of the Universe, including the
cosmological constant contribution

ρΛ = −pΛ =
Λ

8πG
. (1.13)

The first Friedmann equation (1.12a) is usually rewritten in terms of the density param-
eter Ω as

1− Ω = − k

a2H2
, (1.14)

where
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Ω =
ρ

ρc
(1.15)

and

ρc =
3H2

8πG
. (1.16)

ρc, called critical density, represents the density we would have if we consider a flat
Universe (k = 0). This means that the density parameter Ω is related to the geometry
of the Universe. As a matter of fact:

• for an open Universe: Ω < 1 ↔ ρ < ρc ↔ k = −1;

• for a flat Universe: Ω = 1 ↔ ρ = ρc ↔ k = 0;

• for a closed Universe: Ω > 1 ↔ ρ > ρc ↔ k = +1.

The right hand side of Eq. (1.14) is known as the curvature parameter

Ωk = − k

a2H2
(1.17)

and the energy density associated, also known as curvature density, is defined as

ρk = − 3k

8πa2G
. (1.18)

In order to fully be able to solve the Friedmann equations (1.12a) and (1.12b), we need a
third equation. We use the equation of state for a perfect fluid, which relates its density
and its pressure, p = wρ, where w is a dimensionless parameter which takes a different
value for each component of the Universe.
One can obtain a continuity equation for the density or via the conservation of the stress-
energy momentum tensor, or combining the two Friedmann equations. The final result
is that

ρ̇ = −3
ȧ

a
(ρ+ p) = −3

ȧ

a
ρ(1 + w) , (1.19)

whose general solution is given by

ρ ∝ a−3(1+w) . (1.20)

Let us now study the general behaviour of the different components of the Universe,
therefore, for different values of w:
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• Relativistic matter : in this case, wr = 1/3 and this is generically referred to as
radiation. The energy density evolves with the scale factor as ρr ∝ a−4, with the
scale factor evolving in time as a(t) ∝ t1/2 (for a spatially flat Universe k = 0, for
which it is easy to solve the Friedmann equations). This tells us that the energy
density of radiation decreases as the Universe expands.

• Non-relativistic matter : the fluid has zero pressure since wm = 0. This leads to
ρm ∝ a−3, with a(t) ∝ t2/3 (in the case of k = 0), which is what one would expect
since the density goes like the inverse of the volume (∼ a3). This means that it
decreases less with the expansion of the Universe with respect to the radiation case:
this is no surprise since the photons are redshifted as the Universe expands.

• Vacuum energy : for the case of a cosmological constant (or dark energy), wΛ = −1,
which means that pΛ = −ρΛ, meaning that the density is a constant. In a spatially
flat Universe, the scale factor exponentially grows as a(t) ∝ eHΛt.

• Curvature: if k ̸= 0, we can treat the curvature component as an additional fluid
with equation of state wk = −1/3. This leads to ρk ∝ a−2 and a(t) ∝ t.

As we see, the time dependence of the scale factor is determined by the energy density
of the Universe.
Since our Universe is a mixture of different components, the fact that the energy densities
evolve differently for each of them can lead to having different phases in the Universe
history. The Big Bang Model predicts an initial phase of radiation domination, followed
by a matter dominated epoch. Today, the Universe expansion is accelerated, which
cannot be re-conducted to either components above, but we need something that behaves
as a cosmological constant Λ (Dark Energy).
Using one of the Friedmann equations, i.e. (1.12a), we can derive the dependence of the
Hubble parameter on the densities of the different components. This is given by

H2 = H2
0 [Ω

0
ka

−2 + Ω0
ma

−3 + Ω0
ra

−4 + Ω0
Λ] . (1.21)

If we take a = 1, the densities satisfy the following relation

Ω0
m + Ω0

r + Ω0
Λ + Ω0

k = 1 . (1.22)

1.1.4 Dark Matter and Dark Energy

When we use Ωm we are actually referring at the contribution of two different components:
baryonic matter, Ωb, and dark matter (DM), Ωdm. The most intriguing fact about
this distinction is that we do not know the true nature of dark matter even though it
constitutes the majority of the mass of the Universe. From [1], we know that ordinary
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matter makes up for the 5% of the Universe total energy, while dark matter represent
the 26% of the total.
Dark matter has been introduced as a consequence of several evidences, as for example
the necessity to have more matter in order to be able to explain the rotational velocities
of spiral galaxies. In the 1970’s, Vera Rubin found that the rotational velocity approaches
an approximate constant value even outside of the range of luminous matter, while it
was expected to decrease as r−1/2, being r the distance from the galactic center [38]. A
more recent evidence is the Bullet Cluster [39], which is a striking piece of evidence for
non-collisional particle dark matter. When we talk about dark matter, we actually refer
to cold dark matter (CDM). Therefore, in all the work, when we say dark matter (dm),
we actually refer to cold dark matter (cdm).
The remaining part of the energy budget of the Universe, 69% [1], is represented by dark
energy, whose nature is still a secret. It is a component with a strong negative pressure,
dominating gravitational physics on large scales and is the responsible of the accelerating
phase of expansion of our Universe right now.
In the standard cosmological model, dark energy is a cosmological constant component,
characterised by an equation of state with wΛ = −1.
The minimal scenario is the so called ΛCDM model, where we consider that the Universe
is spatially flat (Ωk = 0.0007 ± 0.0019 [1]) and composed by baryonic matter (Ωbh

2 =
0.02242± 0.00014 [1]), cold dark matter (Ωdm = 0.11933± 0.00091 [1]) and dark energy
(ΩΛ = 0.6889± 0.0056 [1]).
From this, we see that Eq. (1.22) can be simply rewritten today, considering the main
contributions, as

Ω0
dm + Ω0

Λ = 1 . (1.23)

1.1.5 Cosmological distances

Measuring distances in an expanding Universe is not an easy task. Moreover, one must
discriminate between the comoving distance, which remains fixed as the Universe ex-
pands, and the physical distance, which instead grows as the Universe expands.
The total comoving distance, which is the distance that light can have traveled since
t = 0, is given by

η =

∫ t

0

dt

a(t)
, (1.24)

and it is used to describe the distance between two points in the comoving frame, the
reference frame where the coordinates of an observer at rest do not change during the
evolution of the Universe. Regions separated by distances greater than η are not causally
connected. The corresponding physical distance, that is the farthest distance we can
observe today, is given by
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dH(t0) = a(t0)η , (1.25)

which is also called horizon distance.
One can introduce the concept of proper distance dP : this is the distance measured along
a null geodesic. From the line element (1.6),

ds =
a(t)dr√
1− kr2

. (1.26)

Integrating this result, we obtain that the proper distance is

dP (t) = a(t)f(r) , (1.27)

where f(r) is given by

f(r) =


sin−1(r) , if k = 1 ;

r , if k = 0 ;

sinh−1(r) , if k = −1 .

(1.28)

There exists a relation between the proper distances at different times (for example today
t0 and a generic instant of time t), which is

dP (t0) = a0f(r) =
a0
a(t)

dP (t) . (1.29)

In the case of a flat Universe (k = 0), and in absence of peculiar motion in the comoving
frame (ṙ = 0), taking the derivative of Eq. (1.27) gives the Hubble law (1.4), if we
evaluate it at t = t0.
Another way to measure distances is by using the so-called distance-luminosity relation.
If we denote with F the flux of energy measured by an observer at fixed distance from
the source, the luminosity distance is defined such that

F =
L

A
=

L

4πd2L
. (1.30)

In a flat FLRW space-time, since the photons get redshifted during the expansion and the
luminosity depends on the redshift too, we find that the relation between the luminous
and the physical distance is given by:

dL = dP (1 + z) . (1.31)

We can rewrite the luminosity distance in terms of the apparent and absolute magnitudes,
respectively m and M . The first one is a measure of the flux of a source as seen by an
observer on Earth, while the second is a measure of the flux emitted by the source. The
difference of these two magnitudes, m−M , is called distance module.
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dL = 10(m−M−25)/5 . (1.32)

In order to obtain this result, we must use astrophysical sources whose absolute mag-
nitude is theoretically known. These objects are called standard candles and the most
famous example is represented by the Cepheids variable stars. One could also use Su-
pernovae, which are known as standardizable candles.
Another useful distance measurement is the angular diameter distance dA.
Let us suppose that we know the proper length ℓ of an object, aligned perpendicular to
our line of sight. Measuring the angular size of the object δθ, it is possible to compute
the angular distance from the relation

dA =
ℓ

δθ
. (1.33)

In the case of a static and Euclidean Universe, it coincides with the proper distance,
dA = dP , while in a spatially flat Universe, the relation between the angular diameter
distance and the luminosity distance is dL = (1 + z)2dA.

1.1.6 Cosmological measurements

We review the observations that support the cosmological model described above. In
particular, how the ΛCDM model parameters can be constrained by the measurements
of Supernovae luminosity distances, Cosmic Microwave Background (CMB), Big Bang
Nucleosynthesis (BBN), Baryon Acoustic Oscillations (BAO) and Large Scale Structure
(LSS).

Supernovae

We have seen that the Hubble parameter measures the expansion rate of the Universe
at a given time t. Since the Universe was thought to be decelerating in its expansion,
the deceleration parameter was introduced and it is defined as

q = − ä a
ȧ2

=
Ωm

2
+ Ωr − ΩΛ , (1.34)

where the second equality holds if the Universe only contains matter, radiation and
a cosmological constant. To have an accelerated expansion for the Universe, we need
q0 = q(t0) to be negative, which cannot be explained by a cosmological model only
containing matter and radiation.
We can write the luminosity distance for z ≪ 1 Taylor expanding the scale factor around
t0, today:

dL(z) ∼
z

H0

[
1 +

1 + q0
2

z

]
, (1.35)
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and we see that, at first order, we recover the Hubble law, but then we have deviations,
related to the deceleration parameter. So both H0 and q0, related to the expansion of the
Universe, can be obtained measuring the luminosity distance using standard candles.
In recent years, Supernovae are considered as standardizable candles because of the
relation between their peak and light-curve width. They are divided into two classes,
based on their spectra: Supernovae of type I (SNI) do not contain hydrogen absorption
lines in their spectra and Supernovae of type II (SNII), that contain strong hydrogen
absorption lines. SNI are divided themselves into three sub-classes: Ia, Ib and Ic. While
Ib and Ic are similar to SNII, SNIa are completely different and can be used as standard
candles due to their high luminosity. Moreover, we can expect the luminosity of these
SNIa to be (roughly) always the same since they all explode starting from the same
initial mass, known as Chandrasekhar limit (MC = 1.4M⊙, with M⊙ the mass of the
Sun) [40]. From the light curve of a SN, we can obtain the two magnitudes, m and M ,
so we can obtain the luminosity distance dL.
In addition, SNIa can constrain some of the cosmological parameters, like the density
parameters Ωi. As a matter of fact, we can rewrite the luminosity distance is terms of
the densities of the different components present in our Universe as

dL(a) =
1 + z

H0

∫ 1

1/(1+z)

da′

a′2
√
ΩΛ + Ωma′−3 + Ωra′−4

. (1.36)

The search for SN in distant galaxies made by The Supernova Cosmology Project and
the High-z Supernova Search Team, using light curves and redshifts of SNIa to measure
cosmological parameters and the acceleration of the Universe, led to the discovery of
cosmic acceleration.
Currently, the most recent results related to Supernovae are obtained thanks to the Dark
Energy Survey (DES) [41] which aims as well to improve both the statistical precision of
supernova cosmology and the control of systematic errors in using Supernovae to measure
distances. DES is also designed to probe the origin of the accelerating Universe, helping
to understand the nature of dark energy.
Out of this set of data, we can also set bounds on the density parameters, as can be seen
in Fig. 1.2.
Another important data set is the Pantheon [44] one, composed by 1048 data points.

Cosmic Microwave Background

The Cosmic Microwave Background (CMB), discovered accidentally by Penzias and Wil-
son in 1965 [45], is a rich source of data for the Universe’s cosmological parameters.
In the primordial Universe, photons and baryons were tightly coupled in the so-called
photon-baryon fluid. At the epoch of recombination (T ∼ 3000K, zdec ∼ 1090), photons
decoupled, free-streaming through the Universe. The epoch of last scattering, meaning
the time at which a CMB photon underwent its last scattering from an electron, it is
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Figure 1.1: Hubble diagram for the DES-SN3YR sample. Top: distance modulus (µ) from BBC
fit (black bars, which are used for cosmology fits) and for each SN (red, orange circles). The
dashed gray line describe the best fit model, while the green and blue dotted lines show models
with no dark energy and matter densities Ωm = 0.3 and 1.0 respectively. Bottom: residuals to
the best fit model; 1σ error bars show 68% confidence. Figure taken from [42].

the origin of the CMB. The Universe at this point was surprisingly isotropic, about 1
part in 105. The small anisotropies in temperature and polarization, that were present
at the decoupling time, are essential to understand the physics at this redshift, but also
to understand the early Universe (there could be processes leaving an imprint on the
CMB photons, as for Baryon Acoustic Oscillations, BAO). Moreover, since the photons
travelled to reach us, they also carry some (integrated) information about the post-
decoupling Universe, since there could be processes affecting the photon’s propagation.
The photons of the CMB present a black body spectrum since they were in thermal
equilibrium with the electrons, with an average temperature of TCMB = 2.725K. This
was first measured by the COsmic Background Explorer (COBE) satellite [46].
Let us consider the CMB temperature field as a function of the angle on the sky, T (n̂),
and let us denote the fractional difference (i.e. the dimensionless temperature fluctuation
around the mean value) as

Θ(n̂) =
T (n̂)− TCMB

TCMB

. (1.37)

Since temperature fluctuations are defined on a spherical surface, we can expand this
function in spherical harmonics as

Θ(n̂) =
∑
ℓm

aℓmYℓm(n̂) . (1.38)
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Figure 1.2: Constraints for the ΛCDM model (non-zero curvature allowed) from the DES-
SN5YR dataset only (cyan), from DES-SN5YR combined with BAO and weak lensing mea-
surements (orange), and from DES-SN5YR combined with CMB measurements (blue). For
comparison, we also present cosmological constraints from Planck Collaboration (2020) only
(black dashed). Figure taken from [43].

Assuming isotropy, we can define the power spectrum of the temperature anisotropies
Cℓ as an ensemble average of the expansion coefficients, which contain the information
about the temperature perturbation,

Cℓ = ⟨aℓma∗ℓm⟩ , (1.39)

which does not depend on m due to isotropy. This is an important quantity since it
can be predicted by cosmological models, meaning that a certain model can predict
the statistic of the anisotropies. We cannot extract from observations the true power
spectrum, but we can build an estimator,

Ĉℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

aℓma
∗
ℓm . (1.40)

This however is not a realistic way to calculate the spectrum, since the sky coverage is
not complete and there are instrumental noises. This estimator is characterised by a
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Figure 1.3: Planck 2018 temperature power spectrum. The base-ΛCDM theoretical spectrum
best fit to the Planck TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper
panel. Residuals with respect to this model are shown in the lower panel. Figure taken from [1].

variance, called cosmic variance,

∆Cℓ

Cℓ

=

√
2

2ℓ+ 1
, (1.41)

which decreases with increasing ℓ.
The relation between a certain multipole ℓ and the angular scale is such that θℓ ∼ π,
meaning that smaller (larger) multipoles correspond to large (small) angular scales.
From Fig. 1.3, we see that there are peaks in the power spectrum, a signal of correla-
tions present between temperature anisotropies at different angular separations. These
peaks are the acoustic waves generated in the early Universe from the primordial inho-
mogeneities in the distribution of dark matter.
The best data about the CMB are the one obtained by the Planck collaboration [1],
the most recent release being the one in 2018. From these data, we can constraint the
cosmological parameters: in particular, 6 parameters appear to be sufficient to describe
the CMB spectra within the so-called concordance ΛCDM model (concordance because
different observational probes of different nature all point to roughly the same values).
These parameters are: the baryon density, ωb = Ωbh

2; the cold dark matter density,
ωdm = Ωdmh

2; the optical depth τ ; the characteristic angular size of the fluctuations in
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the CMB (also called acoustic scale), θs; the scalar spectral index, ns; the amplitude of
the primordial spectrum, As. In [1], the values of these parameters, among the others,
are given with 68% confidence regions.
Following [47], we can see how these parameters act on the CMB spectra, so how we can
infer the constraints on them from the data:

• θs controls the peaks location. It is defined as the ratio between the sound horizon
at decoupling, affected by changes in ωb, and the angular diameter distance, which
depends on the expansion history after decoupling and, for this reason, is controlled
by ΩΛ or h;

• the relative height between odd and even peaks depends on the ratio between Ωb

and Ωγ. Actually, we can say that Ωγ is fixed since we know precisely TCMB;

• Ωm controls the amount of expansion between equality and decoupling, controlling
the height of all peaks;

• the amplitude of the high-multipole is controlled by the expansion history before
decoupling and so it depends on Ωb and Ωm (= Ωb+Ωdm);

• the overall amplitude of the power spectrum is controlled by As;

• the overall tilt is controlled by ns;

• the slope at low multipoles is controlled by ΩΛ and h;

• the amplitude at ℓ ≫ 40 versus at ℓ < 40 is controlled by τ , that determines the
suppression visible at high ℓ.

These are only the primary effects, those which held a higher effect, but there a number
of other tiny dependencies that play a role, even if small: for example, from the first
acoustic peak we can infer information about the geometry of the Universe. Moreover,
CMB photons are polarized by the temperature quadrupole, sourced both by scalar
perturbations and tensor perturbations (primordial gravitational waves), and they are
affected by gravitational lensing.

Big Bang Nucleosynthesis

The primordial Universe is filled by a cosmic fluid consistent of relativistic particles in
equilibrium and decoupled relativistic and non-relativistic particles. As the Universe
cools down, at some point it will reach temperatures lower that the binding energy of
light nuclei. This epoch of nuclear fusion is known as Big Bang Nucleosynthesis (BBN).
In order to fully study this complex mechanism, one needs to consider the decoupling
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Figure 1.4: Constraints on parameters of the base-ΛCDM model from the separate Planck EE,
TE, and TT high-ℓ spectra combined with low-ℓ polarization (lowE), and, in the case of EE
also with BAO, compared to the joint result using Planck TT,TE,EE+lowE. Parameters on
the bottom axis are our sampled MCMC parameters with flat priors, and parameters on the
left axis are derived parameters (with H0 in km s−1Mpc−1). Contours contain 68% and 95%
of the probability. Figure taken from [1].

condition for each species present in the cosmic bath.
To describe BBN, we introduce the baryon-to-photon ratio η

η =
nb

nγ

, (1.42)

where

nb =
np

X
, with np = gp

(
mpT

2π

)3/2

e−
mp
T (1.43)

is the number density of baryons (in terms of the ionisation fraction X) and

nγ =
2ζ(3)

π2
T 3 (1.44)

is the number density of photons.
Eq. (1.42) can be used to obtain the abundance of atomic nuclei, and the neutron-to-
proton ratio

nn

nb

= e
− Q

kbT , (1.45)
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where Q = mn −mp. If we assume that at a temperature of 0.1 MeV, the neutron-to-
proton ratio has a value of 1/7, we find that the Helium abundance is YHe ≃ 0.25.
After BBN, only light nuclei are produced (Li7 being the massive one) and their abun-
dances can be used to constrain the cosmological parameters. In Fig. 1.5 we can see this,
together with the Planck 2018 [1] results.

Figure 1.5: Summary of BBN results with Neff = 3.046, using Planck TT,TE,EE+lowE. All
bands are 68% credible intervals. The standard BBN predictions computed with PArthENoPE

are shown in green, while those from PRIMAT are in black dashed lines. The blue lines show
the PArthENoPE results based on the experimental determination of nuclear rates by Adelberger
et al. (2011), instead of the theoretical rate of Marcucci et al. (2016). Figure taken from [1].

Baryon Acoustic Oscillations

Before recombination, for z > 1100, the competition between gravity and radiation
pressure brings to oscillations in the plasma that propagates as acoustic waves, known
as Baryon Acoustic Oscillations (BAO). They were detected for the first time in 2005 by
the Sloan Digital Sky Survey (SDSS) [48], but now there are several independent galaxy
surveys that have detected them, spanning a range of redshifts.
At recombination, pressure waves get frozen and baryons accumulate at a fixed distance
from the original overdensity. So acoustic oscillations imprint a characteristic scale in
the clustering of matter, which can be seen at late times in the matter power spectrum
as a sequence of peaks and troughs, corresponding to an oscillating mode caught at an
extrema (peaks) or in phase with the background (troughs). BAO then provides a stan-
dard ruler to measure the distance to various redshifts using the clustering distribution of
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Figure 1.6: The measured correlation function for monopole (ℓ = 0, blue), quadrupole (ℓ = 2,
red) and hexadecapole (ℓ = 4, gray), with the best fitting full-shape model shown by the solid
line. Figure taken from [49].

galaxies measured from large galaxy surveys. This relation depends on the cosmological
parameters.
The BAO scale is set by the radius of the sound horizon at the time of photon decoupling,
the end of baryon drag.
Moreover, the BAO and SNIa methods to estimate distances are completely complemen-
tary, since they are based on different principles.
The most precise BAO measurements today come from the extended Baryon Oscillation
Spectroscopy Survey (eBOSS) DR16 galaxy sample [50, 51] and they allow to constrain
the cosmological parameters through their impact on the sound horizon radius and on
the distances DH = 1/H(z) and DM , the comoving angular diameter distance. In par-
ticular, the most constrained parameters by BAO distance measurements are H0 and
Ωm, making these measurements complementary to the CMB one and actually, the BAO
measurements serve as a probe to break CMB’s degeneracies.

Large Scale Structure

Under the effect of gravity, the tiny inhomogeneities at decoupling, that transforms in
the anisotropies of the CMB, collapse to form the structures we see today in the Universe
under the action of gravity. One of the main differences with the CMB is the fact that
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Figure 1.7: Cosmological constraints under the assumption of a model with a w = −1 cosmo-
logical constant with free curvature (oΛCDM). 68% and 95% constraints on Ωm−ΩΛ from the
Planck CMB temperature and polarization data (gray), Pantheon SNe Ia sample (red), and
SDSS BAO-only measurements (blue). The dashed line represents a model with zero curvature.
Figure taken from [50].

we can observe the Large Scale Structure (LSS) at various redshifts.
We can define the power spectrum of matter density fluctuations Pm, which basically is
the counterpart to the power spectrum Cℓ of the CMB, as

Pm(k, z)δ(k− k′) = ⟨δm(k, z)δm(k′, z)⟩ , (1.46)

where δm(k, z) is the matter overdensity field. This result is obtained in Fourier space:
working in real space, we have ξ(r), which is known as the correlation function. Even if
they represent the same quantity, Pm(k, z) is used to measure the galaxy power spectrum,
depending both on background and perturbation evolution, while ξ(r) is used to provide a
BAO distance measurement, essentially a background probe. In both cases, the spectrum
depends on the cosmological parameters.
Among all the galaxy surveys aimed at measuring the LSS of our Universe, we name the
SDSS and the BOSS ones, which uses BAO, together with the most recent DESI.
One can also consider the so called Redshift Space Distortions (RSD) [52] to study the
LSS, serving as a probe for linear growth of structures. In particular, RSD’s serve as a
probe for the combined quantity fσ8, which is the product between the linear growth
rate (which we will discuss more in detail in the next section) and the root mean square
mass fluctuation amplitude for spheres of size 8h−1 Mpc.
The mass variance of the matter clustering, for a generic physical scale R, is given by [53]
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Figure 1.8: Left panel: Growth rate reconstruction fGP (z) from Tab. 1.1. Right panel: The
reconstruction of [fGPσ8](z) function using the sample in Tab. 1.2. In both plots the shaded
areas represent the 1σ and 2σ CL regions. Figure taken from [53].

σ2
R =

1

2π2

∫ ∞

0

P (k, z)W 2
R(k)dk , (1.47)

where P (k, z) is the matter power spectrum and WR(k) is the window function.
The matter power spectrum can be written, introducing the transfer function T 2(k) and
the linear growth function D(z), as

P (k, z) =

[
D(z)

D(z = 0)

]2
T 2(k)P (k, z = 0) . (1.48)

If we fix R = 8 Mpc/h, combining Eqs. (1.47) and (1.48) we obtain that σ8(z) =
D(z)σ8(z = 0).
The f(z) data are shown in Tab. 1.1, while the [fσ8](z) data are shown in Tab. 1.2. [53]

Survey z f Reference Cosmological tracer
ALFALFA 0.013 0.56 ± 0.07 [54] HI extragalactic sources
2dFGRS 0.15 0.49 ± 0.14 [55, 56] galaxies
GAMA 0.18 0.49 ± 0.12 [57] multiple-tracer: blue and red gals.
WiggleZ 0.22 0.60 ± 0.10 [58] galaxies
SDSS 0.35 0.70 ± 0.18 [59] luminous red galaxies (LRG)
GAMA 0.38 0.66 ± 0.09 [57] multiple-tracer: blue and red gals.
WiggleZ 0.41 0.70 ± 0.07 [58] galaxies
2SLAQ 0.55 0.75 ± 0.18 [60] LRG & quasars
WiggleZ 0.60 0.73 ± 0.07 [58] galaxies

VIMOS-VLT Deep Survey 0.77 0.91 ± 0.36 [56] faint galaxies
2QZ & 2SLAQ 1.40 0.90 ± 0.24 [61] quasars

Table 1.1: Data compilation of 11 f(z) measurements. [53]
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Survey z fσ8 Reference Cosmological tracer
SnIa + IRAS 0.02 0.398 ± 0.065 [62] SNIa + galaxies

6dFGS 0.025 0.39 ± 0.11 [63] void
6dFGS 0.067 0.423 ± 0.055 [64] galaxies

SDSS-veloc 0.10 0.37 ± 0.13 [65] DR7 galaxies
SDSS-IV 0.15 0.53 ± 0.16 [66] eBOSS DR16 MGS

BOSS-LOWZ 0.32 0.384 ± 0.095 [67] DR10, DR11
SDSS-IV 0.38 0.497 ± 0.045 [66] eBOSS DR16 galaxies
WiggleZ 0.44 0.413 ± 0.080 [68] LRG & bright emission-line galaxies

CMASS-BOSS 0.57 0.453 ± 0.022 [69] DR12 voids + galaxies
SDSS-CMASS 0.59 0.488 ± 0.060 [70] DR12

SDSS-IV 0.70 0.473 ± 0.041 [66] eBOSS DR16 LRG
WiggleZ 0.73 0.437 ± 0.072 [68] bright emission-line galaxies
SDSS-IV 0.74 0.50 ± 0.11 [71] eBOSS DR16 voids

VIPERS v7 0.76 0.440 ± 0.040 [72] galaxies
SDSS-IV 0.85 0.52 ± 0.10 [71] eBOSS DR16 voids
SDSS-IV 0.978 0.379 ± 0.176 [73] eBOSS DR14 quasars

VIPERS v7 1.05 0.280 ± 0.080 [72] galaxies
FastSound 1.40 0.482 ± 0.116 [74] ELG
SDSS-IV 1.48 0.30 ± 0.13 [71] eBOSS DR16 voids
SDSS-IV 1.944 0.364 ± 0.106 [73] eBOSS DR14 quasars

Table 1.2: Data compilation of 20 [fσ8](z) measurements. [53]

1.2 Cosmological perturbation theory

The nonlinear structures that we see today in our Universe, as galaxies or clusters, were
generated by small initial perturbations due to gravitational instabilities that evolved
after the CMB decoupling. The non linearity of these structures is the reason why the
cosmological principle is true only on large scales.
If we consider a non relativistic fluid, perturbation theory can be simply described by
the Newtonian theory of gravity, but for what is of interest to us later, we will consider
a relativistic fluid and therefore we need to use the theory of General Relativity, even
though this brings in the issue of gauge freedom.
When studying perturbation theory, one needs to distinguish two possibilities: introduc-
ing the scale that governs the growth of perturbations RH = H−1, a perturbation with
wavelength λ, at a certain time t, is inside the horizon if aλ < H−1, while is outside the
horizon if aλ > H−1. The horizon crossing of a perturbation corresponds to aλ = H−1.
We start the study of cosmological perturbations by perturbing the metric, namely

gµν = g(0)µν + g(1)µν , (1.49)

where g
(0)
µν represent the homogeneous background and is only (cosmic) time dependent,

while g
(1)
µν represents the small (with respect to the background) spatially dependent per-

turbation.
The equations of General Relativity are invariant under a general change of coordinates,
meaning that ds2 must remain constant. What we want to do here is a gauge transfor-
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mation: we select a class of transformations that leave g
(0)
µν invariant and only change the

g
(1)
µν part of the metric.
In the literature, the most common gauge choices are represented by the synchronous
gauge and the conformal Newtonian (or longitudinal) gauge [75]. In the following we
will only consider the Newtonian gauge as it is particularly convenient to study scalar
perturbations (we neglect the study of vector and tensor perturbations).
With this gauge choice and introducing the conformal time τ defined as dτ = dt/a(t),
the perturbed line element is obtained adding two additional functions that depend both
on space and time, taking into account the fact that at small scales the Universe is not
homogeneous and isotropic

ds2 = a2(τ){−(1 + 2ψ)dτ 2 + (1− 2ϕ)dxidxi} , (1.50)

where ψ=ψ(τ, x⃗) and ϕ=ϕ(τ, x⃗) are two scalars potentials characterizing the perturba-
tions. An advantage of using this gauge is that, in the Newtonian limit, ψ reduces to
the gravitational potential. ϕ, instead, is the spatial curvature perturbation.
The metric gµν is given by:

gµν = a2(τ)


−1− 2ψ 0 0 0

0 1− 2ϕ 0 0
0 0 1− 2ϕ 0
0 0 0 1− 2ϕ

 , (1.51)

and the inverse can be easily obtained by simply inverting the diagonal element and
Taylor expanding as we consider small perturbations

gµν = a−2(τ)


−1 + 2ψ 0 0 0

0 1 + 2ϕ 0 0
0 0 1 + 2ϕ 0
0 0 0 1 + 2ϕ

 . (1.52)

With this new metric, we want now to write the Einstein equations (1.7) at linear order
in perturbation theory.
Computing all the necessary ingredients and moving to Fourier space, what we obtain
is [75]:

k2ϕ+ 3
ȧ

a

(
ϕ̇+

ȧ

a
ψ

)
= 4πGa2δT 0

0 ; (1.53a)

k2
(
ϕ̇+

ȧ

a
ψ

)
= 4πGa2(ρ+ p)θ ; (1.53b)

ϕ̈+
ȧ

a

(
2ϕ̇+ ψ̇

)
+

(
2
ä

a
− ȧ2

a2

)
ψ +

k2

3
(ϕ− ψ) =

4πGa2

3
δT i

i ; (1.53c)
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k2(ϕ− ψ) = 12πGa2(ρ+ p)σ , (1.53d)

where θ is defined such that (ρ + p)θ = ikjδT 0
j and σ is defined such that (ρ + p)σ =

−(k̂ik̂j − 1/3δij)Σ
i
j. Σ

i
j = T i

j − δijT
k
k /3 represents the traceless component of T i

j and σ is
related to the anisotropic stress perturbation Π by 3σ(ρ+ p) = 2Πp.
To linear order in the perturbations, the components of the stress-energy tensor are:

T 0
0 = −(ρ+ δρ) ; (1.54a)

T 0
i = −T i

0 = (ρ+ p)vi ; (1.54b)

T i
j = (p+ δp)δij + Σi

j , (1.54c)

where we allowed an anisotropic shear perturbation in T i
j (Σi

i = 0) and vi = dxi/dt is a
small coordinate velocity.
The conservation of the energy-momentum tensor is a consequence of the Einstein equa-
tions

T µν
;µ = ∂µT

µν + Γν
αβT

αβ + Γα
αβT

νβ = 0 . (1.55)

Using this result, we obtain:

δ̇ = −(1 + w)(θ − 3ϕ̇)− 3
ȧ

a

(
δp

δρ
− w

)
δ ; (1.56a)

θ̇ = − ȧ
a
(1− 3w)θ − ẇ

w + 1
θ +

δp

δρ

k2δ

1 + w
− k2(σ − ψ) , (1.56b)

where δ = δρ/ρ and θ is the divergence of the fluid velocity, θ = ∂iv
i. These equations

are valid for a single uncoupled fluid or for the net (mass-averaged) δ and σ for all fluids.
If there is a coupling among different components, we need to modify these results for
the involved components.
Considering Cold Dark Matter (CDM), we can set θ = σ = w = ẇ = 0, and neglecting
the ϕ̇ term since it gives a smaller contribution than the others (we are considering the
Newtonian limit, i.e. i.e. k ≫ H), the above equations reduce to

δ̇dm = −θdm ; (1.57a)

θ̇dm = − ȧ
a
θdm + k2ψ . (1.57b)

We want to obtain an equation for δdm, so we take the time derivative of Eq. (1.57a) and
we substitute Eq. (1.57b)
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δ̈dm = −θ̇dm = Hθdm − k2ψ , (1.58)

where H = ȧ/a. From Eq. (1.53d) we see that ϕ = ψ and using Eq. (1.53a), we can
substitute

k2ψ = −4πGa2ρδdm (1.59)

inside Eq. (1.58) and, using Eq. (1.57a), the result we obtain is

δ̈dm +Hδ̇dm − 4πGa2ρdmδdm = 0 . (1.60)

Now, we want to go from having derivatives with respect to conformal time τ to have
derivatives with respect to the scale factor a. This means that

δ̇dm =
dδdm
dτ

=
dδdm
da

da

dτ
= δ′dmȧ = δ′dmaH . (1.61)

Inserting this in Eq. (1.60) and dividing by a2H2, we obtain

δ′′dm +

(
2

a
+

H′

H

)
δ′dm − 4πG

H2
ρdmδdm = 0 . (1.62)

We can now manipulate some of the terms appearing in this equation.
Let us firstly consider H′: we rewrite it back in terms of derivative with respect to τ

H′ =
dH
da

=
dH
dτ

dτ

da
= Ḣȧ−1 . (1.63)

in such a way that we can introduce the deceleration parameter q, defined as

q = − Ḣ
H2

=
1

2
(1 + 3wΩde) . (1.64)

Let us now work on the last term in Eq. (1.62): we see that we can introduce the critical
density ρcr as long as we substitute the Hubble parameter in proper time τ , H(τ), with
the one in cosmological time t, H(t), using the following relation H(τ) = aH(t).
Then,

4πG

H2
ρdm =

4πG

a2H2
ρdm =

3

2a2
ρdm
ρcr

=
3

2a2
Ωdm (1.65)

and, putting everything inside Eq. (1.62), we obtain the result we were looking for:

δ′′dm = −(2− q)
δ′dm
a

+
3Ωdm

2

δdm
a2

. (1.66)

One could try to solve now this equation numerically, considering the simple case of
w = −1, corresponding to having the dark energy described by a cosmological constant.
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In Fig. 1.10, we can see the behaviour of δdm/a as a function of a, obtained solving
numerically Eq. (1.66) (to solve it we used a Python code).
In order to do this, we use the expression of the deceleration parameter q in terms of Ωde,
as written in Eq. (1.64). We must keep in mind that the density parameters appearing
in the equations are the time dependent relative ones, meaning that we must substitute
Ωi with Ωi/Ωtot in the equations. Assuming Ωtot is simply given by the dark energy and
the dark matter contribution, we have

Ωde →
Ωde

Ωde + Ωdma−3
and Ωdm → Ωdma

−3

Ωde + Ωdma−3
. (1.67)
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Figure 1.9: Plot of δdm/a as a function of a. As initial conditions to solve Eq. (1.66) numerically,
we have used δdm(a ≃ 10−3) = a and δ′dm(a ≃ 10−3) = 1. The plot is obtained considering
Ωdm = 0.25 and Ωde = 0.75.

Once we solved the equation numerically, we are now able to compute the growth rate
f , defined as

f =
d ln δdm
d ln a

=
δ′dm
δdm

a . (1.68)
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f represents a measure of the matter clustering evolution from the primordial density
fluctuations to the large-scale structure observed today.
We expect that the growth rate can be parameterized as

f = [Ωdm]
γ =

[
Ωdma

−3

Ωde + Ωdma−3

]γ
, (1.69)

where γ, called growth index, is defined as a constant if we consider dark energy models
within General Relativity. In particular, what one finds is that γ ≃ 3(w−1)/(6w−5) [30].
For the ΛCDM model, w = −1 and so γ = 6/11 ≃ 0.55 [29], namely

f =

[
Ωdma

−3

Ωde + Ωdma−3

]0.55
. (1.70)

The result is shown in Fig. 1.10.
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Figure 1.10: Plot of f . The blue solid line is the result obtained considering the numerical
result of the differential equation while the red dashed line is obtained from Eq. (1.70). The
plot is obtained considering Ωdm = 0.25 and Ωde = 0.75.
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Chapter 2

Coupled cosmologies

As reported in the previous chapter, the Planck measurements [1] show that only 5% of
the total energy density of the Universe today is related to baryonic matter, 26% comes
from dark matter and the remaining 69% comes from dark energy, which is described by
a cosmological constant in the ΛCDM model. It is difficult to understand the value of
this constant Λ from the quantum field theory approach, as the predicted energy for the
vacuum fluctuations is ∼120 orders of magnitude larger than the observed value. This
is usually referred to as the cosmological constant problem.
There is another problem concerning these two dark components of the Universe: the
so-called coincidence problem (also known as the why now? problem) related to the fact
that now dark energy and dark matter contribute to the total energy density with the
same amount, regardless of their different evolution history.
Possible solutions to these problems are related to the nature of dark energy: one possi-
bility is that dark energy is a dynamical fluid and, for example, the quintessence option
consists of a quintessence field which changes with time and varies in space [9].
As a note, all the plots presented in this chapter are obtained using Python codes.

2.1 Dark coupling

Cosmology gives us evidences for the existence of dark energy and dark matter, but we
still do not know what they actually are. Since observations allows it, we could extend
the ΛCDM model by introducing a new non-gravitational interaction in the dark sector,
i.e. between dark energy and dark matter. While the strength of interactions between
ordinary matter and the dark energy fields is severely constrained by observations [76],
interactions among the dark sectors are still allowed.
For this reason, we explore the idea that the densities of dark matter and dark energy
do not evolve independently, but coupled [10]. This ”dark coupling”, based on models
of coupled quintessence [77, 78, 79, 80], could affect significantly the evolution history
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of the Universe and the density perturbation evolution. Moreover, it could alleviate the
coincide problem since the introduction of a coupling could stabilise the ratio of the two
dark components during the entire expansion history. These are known as interacting
dark energy (IDE) models [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28].
To introduce the interaction, we write an additional term in the stress-energy tensor
entering Einstein equations. In this coupled scenario, the dark energy and dark matter
components of T µν are no longer separately conserved [9], namely:

∇µT
µ
(dm)ν =Qν ; (2.1a)

∇µT
µ
(de)ν =−Qν , (2.1b)

where the four-vector Qν governs the energy-momentum transfer between the dark com-
ponents. One should notice that the energy-momentum tensor of the whole dark sector,
T µ
(dark)ν = T µ

(dm)ν + T µ
(de)ν , is still conserved, ∇µT

µ
(dark)ν = 0.

We consider two families of four momentum-energy transfer Qν . In the first family of
models (called DEvel), Qν is parallel to the dark energy four-velocity, while in the second
family of models (called DMvel), Qν is parallel to the dark matter four-velocity

Qν = Qu(de)ν /a (DEvel) ; (2.2a)

Qν = Qu(dm)
ν /a (DMvel) . (2.2b)

The scale factor in the denominator is introduced because - at least at linear order -
the velocity u is proportional to a, as can be seen in Equation (2.8) [9]. In addition, we
introduce the parameter Q, which drives the exchange between dark matter and dark
energy.
In DEvel models, there is no momentum transfer to the dark energy frame, i.e. momen-
tum must be conserved in the dark energy frame. This translates in having an extra
source of acceleration for the dark matter fluid, appearing in the dark matter velocity
perturbation equation. Due to the presence of this additional force felt by dark matter,
which violates the equivalence principle, DEvel models are effectively modified gravity
models.
In DMvel models, instead, this additional term will not appear since both momentum
and energy density are transferred from the dark matter system to the dark energy one.
DMvel models are not a modification of gravity, but their growth can be quite different
from the growth in a General Relativity dynamical dark energy model which has the
same background history, since dark matter does not behave like dust.
Both for DEvel and DMvel models, we introduce two sub-classes of models:

Q = Σρdm (class I) ; (2.3a)

35



Q = Σρde (class II) , (2.3b)

where Σ is the interaction rate. One must keep in mind that other possibilities for
the coupling, which do not belong to this classification can be used as well, i.e. this
classification should be considered as a ”basis set”.
The expansion history does not depend on the choice of DEvel or DMvel models, but
does depend on the form of Q. Unfortunately, we can write an analytic form for the
expansion history only with the choice Q = ξHρde or Q = ξHρdm, where ξ and the
equation of state parameter w are constants [9]. Generically, the explicit expression for
the coupling Q is purely phenomenologically motivated.

2.2 Background evolution

The evolution equations for the dark matter and dark energy background energy densities
are given by [10]

ρ̇dm + 3Hρdm = Q ; (2.4a)

ρ̇de + 3Hρde(1 + w) = −Q , (2.4b)

where dot represents derivative with respect to conformal time τ (d/dτ), w is the dark
energy equation of state parameter (w = Pde/ρde) and we assume dark matter to be
pressureless (wdm = 0).
The sign of Q determines the direction of energy transfer: if Q is positive, energy flows
from the dark energy system to the dark matter one; if Q is negative, the flow is re-
versed [9]. Moreover, a positive (negative) Q contribute as an effective negative (positive)
pressure in the dark matter background equation, leading to less (more) dark matter in
the past (with respect to the uncoupled case). As a consequence, the matter-radiation
equality will happen later (earlier) on [10].
From Eqs. (2.4a) and (2.4b) we can also see that dark matter and dark energy, due to
the presence of the coupling, will have an extra contribution to their effective equation
of state

weff
dm = − Q

3Hρdm
; (2.5a)

weff
de = w +

Q

3Hρde
. (2.5b)

The deceleration parameter still satisfies the very same relation than in the uncoupled
case
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q = − Ḣ
H2

=
1

2
(1 + 3wΩde) , (2.6)

so we still need to require w < −1/3 to have an accelerated expansion.
Having stated the general result equations, we can now consider a particular case, namely
we consider a coupling Q given by Q = ξHρde, where H governs the time dependence
of the interaction rate. With this particular choice for Q, an analytical solution of the
background evolution equations can be found [10]:

ρdm = ρ
(0)
dma

−3 + ρ
(0)
de

ξ

3weff
de

(1− a−3weff
de )a−3 ; (2.7a)

ρde = ρ
(0)
de a

−3(1+weff
de ) . (2.7b)

While the dark energy density ρde is always positive during the cosmic evolution, we
must fix some conditions in order to have the same for ρdm: all values of w < 0 are
acceptable for ξ < 0, but if ξ > 0, we must impose that ξ ≲ −w [10].
To solve these equations with the proper background conditions, we use the publicly
available code CLASS (Cosmic Linear Anisotropy Solving System)2 [31, 32], modifying it
to introduce this coupled scenario (the modified part of the code can be found in the
Appendix A). Solving the background evolution, we obtain the value of ρdm and ρde for
different values of the coupling as a function of a. The relative densities (Ωdm,de/Ωtot,
with Ωtot = Ωdm + Ωde) obtained for different couplings are shown in Figure 2.1: it is
evident that their evolution changes as the value of the coupling changes.

2.3 Perturbation theory in coupled cosmologies

The presence of the dark coupling will also affect the evolution of the dark matter and
dark energy density perturbations, δdm and δde, as well as the divergences of their proper
velocities, θdm and θde.
Considering the perturbed line element (1.50), we obtain that the four-velocity is given
by

uν = a(−(1 + ψ), vi) . (2.8)

The continuity and Euler equations for the coupled dark matter and dark energy com-
ponents, at linear order, are given by [9]

2The unmodified version of the codes is public available and can be found at this link: https:

//github.com/lesgourg/class_public
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Figure 2.1: Plot of the relative energy densities (i.e. Ωdm,de/Ωtot, with Ωtot = Ωdm + Ωde) for
dark matter (red lines) and dark energy (blue lines). In particular, we consider three different
values for the coupling: ξ = 0 (solid lines); ξ = −0.2 (dashed lines); ξ = −0.4 (dash-dotted
lines). We push the value of the coupling in this plot way beyond the allowed values (as can
be seen in Fig. 2.9). The results are obtained using a suitable modified version of CLASS [31,
32], whose output is consistent with the one that we obtain solving numerically the background
evolution equations (2.4a) and (2.4b) in Python.

δ̇dm =− (θdm − 3ϕ̇) +
Q

ρdm

(
δQ

Q
− δdm + ψ

)
; (2.9a)

θ̇dm =−Hθdm + (1− b)
Q

ρdm
(θde − θdm) + k2ψ ; (2.9b)

δ̇de =− (1 + w)(θde − 3ϕ̇)− Q

ρde

(
δQ

Q
− δde + ψ

)
− 3H(ĉ2sde − w)

[
δde +H

(
3(1 + w) +

Q

ρde

)
θde
k2

]
; (2.9c)

θ̇de =−H
(
1− 3ĉ2sde −

ĉ2sde + b

1 + w

Q

Hρde

)
θde +

k2

1 + w
ĉ2sdeδde
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+ k2ψ − b
Q

ρde

θdm
1 + w

, (2.9d)

where b = 0 refers to DEvel models and b = 1 refers to DMvel models, ĉ2sde is the dark
energy pressure perturbation sound speed in the rest frame of the dark energy, defined
such that [10]

δpde = ĉ2sdeδρde + (ĉ2sde − ĉ2ade)ρ̇de
θde
k2

. (2.10)

ĉ2ade is the so-called adiabatic sound speed and it is defined as ĉ2ade = ṗde/ρ̇de. In the
case of a constant equation of state parameter w, ĉ2ade = w. We assume ĉ2sde = 1,
in such a way that we can neglect dark energy perturbations, as they will not cluster
significantly, in the perturbation evolution. Another consideration we can make is that
the Euler equation for dark matter is only modified for DEvel models, violating the weak
equivalence principle.
When considering these coupled models, one must be careful as it is well known that
there could be the appearance of non adiabatic, early time instabilities, as reported for
example in [10, 15]. The onset of non-adiabatic instabilities depends on the form of the
dark coupling (DEvel or DMvel and class I or class II, with a stronger dependence on
this second distinction) and on the equation of state parameter w. We introduce a doom
factor d [10], defined independently of the dark coupling scenario one chooses, as

d =
Q

3Hρde(1 + w)
. (2.11)

Since for d>1 large-scale instabilities could arise, we consider as viable only those models
for which the doom factor is always negative, i.e. ξ < 0 and w > −1 or ξ > 0 and
w < −1 [10].
The growth equation for dark matter can easily be derived from Eqs. (2.4a), (2.4b),
(2.9a) and (2.9b) going to the Newtonian limit (i.e. k ≫ H). The result of this calculation
is very sensible to the type of coupling.
The simplest case is obtained for DMvel class I, Q ∝ ρdm, coupled models, for which we
simply recover the result obtained in the uncoupled case, i.e.

δ′′dm = −(2− q)
δ′dm
a

+
3Ωdm

2

δdm
a2

, (2.12)

and the difference between non interacting cosmologies arise exclusively due to the dif-
ferent background evolution of H and Ωdm. The prime appearing in Eq. (2.12) represents
derivatives with respect to a.
For all other cases, i.e. DMvel class II and DEvel class I and II, the dark matter linear
perturbation equations and the growth equations will both depend on the coupling term,
so in order to obtain them we must give an explicit form for the interaction term Q.
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To obtain the growth equation for dark matter, we will consider, as we did in the previous
section, Q = ξHρde, where ξ is a constant. Neglecting the dark energy perturbations (ĉ2sde
= 1), using the form of Q given above and working in the Newtonian limit, Eqs. (2.9a)
and (2.9b) reduce to

δ̇dm =− θdm − ξH ρde
ρdm

δdm ; (2.13a)

θ̇dm =−Hθdm − (1− b)ξH ρde
ρdm

θdm + k2ψ . (2.13b)

Taking the derivative of Eq. (2.13a), using Eq. (2.13b) and k2ψ = −4πGa2ρdmδdm, what
we obtain is

δ̈dm −Hθdm − (1− b)ξH ρde
ρdm

θdm − 4πGa2ρdmδdm + ξḢ ρde
ρdm

δdm

+ ξH
(
ρ̇deρdm − ρdeρ̇dm

ρ2dm

)
δdm + ξH ρde

ρdm
δ̇dm = 0 .

(2.14)

Using again Eq. (2.13a) to get rid of θdm, we are left with an equation only for δdm,
namely

δ̈dm +Hδ̇dm + ξH2 ρde
ρdm

δdm + (1− b)ξH ρde
ρdm

(
δ̇dm + ξH ρde

ρdm

)
− 4πGa2ρdmδdm

+ ξḢ ρde
ρdm

δdm + ξH
(
ρ̇deρdm − ρdeρ̇dm

ρ2dm

)
δdm + ξH ρde

ρdm
δ̇dm = 0.

(2.15)

As we did in the uncoupled case, we want to go from having derivatives with respect to
τ to have derivatives with respect to the scale factor a(τ). Using Eq. (1.61), the result is

δ′′dm +

[
2

a
+

H′

H
+
ξ(2− b)

a

ρde
ρdm

]
δ′dm +

[
ξ

a2
Ḣ
H
ρde
ρdm

+
ξ

a2H

(
ρ̇deρdm − ρdeρ̇dm

ρ2dm

)
−4πG

H2
ρdm +

ξ

a2
ρde
ρdm

+ (1− b)
ξ2

a2
ρ2de
ρ2dm

]
δdm = 0 ,

(2.16)

where we divided by a2H2. Now, using Eqs. (2.4a) and (2.4b) to get rid of the derivatives
of the energy densities, introducing, with the tricks used in the uncoupled case (see
Eq. (2.6)), the deceleration parameter q and the density parameter for dark matter Ωdm

(see Eq. (1.65)), we obtain
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δ′′dm +

[
2− q

a
+
ξ(2− b)

a

ρde
ρdm

]
δ′dm +

[
−qξ
a2
ρde
ρdm

− 3wξ

a2
ρde
ρdm

− ξ2

a2
ρde
ρdm

−ξ
2

a2
ρ2de
ρ2dm

− 3Ωdm

2a2
+

ξ

a2
ρde
ρdm

+ (1− b)
ξ2

a2
ρ2de
ρ2dm

]
δdm = 0 .

(2.17)

Rearranging all of the terms, we finally find that the result we were looking for, so the
growth equation for dark matter perturbations in the Newtonian limit, is given by

δ′′dm = −Bδ
′
dm

a
+

3

2
AΩdm

δdm
a2

, (2.18)

where

A = 1 +
2

3

1

Ωdm

ρde
ρdm

[
−ξ(1− q − 3w) + ξ2

(
1 + b

ρde
ρdm

)]
; (2.19a)

B = 2− q + (2− b)ξ
ρde
ρdm

. (2.19b)

As before, b = 0 is the case of DEvel models while b = 1 is the case of DMvel models.
From now on, we shall consider b = 1, therefore we shall focus on a specific DMvel model.

2.4 Growth factor f

The growth factor f , as defined in the previous chapter in Eq. (1.68), is an important
parameter to consider as, not only is sensitive to modifications of General Relativity, but
can give us information about departures from the ΛCDM model, which is what we are
interested in.
As we did in the uncoupled scenario, we would like to find a way to parameterise f .
Starting from the known result in Eq. (1.70), true in the ΛCDM model, we try to find
how the presence of a coupling modifies it. The most simple parametrisation for the
fitting function to f is the following one:

f(ξ) =

[
Ωdm

Ωdm + Ωde

]γ0(ξ)+aγ1(ξ)+a2γ2(ξ)

. (2.20)

To explicitly derive the dependence of the γi’s on the coupling, as this is what we would
like to see, we did a plot of them as a function of the coupling, shown in Fig. 2.2, and
then tried to do a fit to these curves.
The best fitting function to all of the γi(ξ), i = 0, 1, 2, is found to be given by a polynomial
of sixth order in the coupling, namely

γi(ξ) = ai + biξ + ciξ
2 + diξ

3 + eiξ
4 + fiξ

5 + giξ
6. (2.21)
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Figure 2.2: Plot of the three γi(ξ) in Eq. (2.20) as a function of the coupling. The dark yellow
star represents the value of the uncoupled case, i.e. γ = 0.55, while the yellow dashed line is
the fit given by Eq. (2.21). This plot is obtained considering Ωdm = 0.25 and Ωde = 0.75.

The results of this fitting procedure are shown in Fig. 2.2 and in Tab. 2.1, which shows
the values of the fitting coefficients. From the plot, it is possible to notice that γ0
converges to the value of the ΛCDM parametrization, i.e. to 0.55 (the cyan star), when
the coupling goes to zero, while the other γi, i ̸= 0, converge to 0: this is consistent
with the fact that when the coupling ξ is zero, we should recover the uncoupled scenario
result, Eq. (1.70).

i ai bi ci di ei fi gi
0 0.541 2.259 8.215 18.320 23.180 15.518 4.235
1 0.017 -5.877 -31.240 -70.487 -90.224 -60.824 -16.681
2 -0.004 7.858 32.350 69.457 87.636 58.768 16.084

Table 2.1: Values of the coefficients appearing in the parametrisation of the γi’s, as reported
in Eq. (2.21). These values are obtained using a Python code, considering Ωdm = 0.25 and Ωde

= 0.75.
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Figure 2.3: Left panels: fitting function and numerical solutions for f (light blue solid line),
for three different values of the coupling. Right panels: relative deviations. The grey area
represents the deviation for the uncoupled case, that we consider as a bound for the deviations
in the coupled case. In all plots, the blue dashed line (’a2’) depicts the exact fit using Eq. (2.20),
while the red dash-dotted line (’polynomial’) uses the polynomial approximation to the exact
fit, see Eq. (2.21). These plots are obtained considering Ωdm = 0.25 and Ωde = 0.75.

All of the above results are obtained working in the simplified case in which we consider,
as components of the Universe, only dark matter and dark energy, with fixed values for
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Ωdm and Ωde, namely Ωdm = 0.25 and Ωde = 0.75. However, to be more precise, one
should also take into account the baryonic component in the evolution of the Universe by
considering Ωm (instead of Ωdm), i.e. Ωm = Ωb + Ωdm is the sum of the energy densities
of baryons and dark matter (this is precisely what CLASS [31, 32] does). Fig. 2.3 depicts
how both the exact fit using Eq. (2.20) and that in which the coefficients of Eq. (2.20)
are assumed to follow a 6th order polynomial function (see Eq. (2.21)), compare to the
numerical solution for f , for three different values of the coupling ξ. We also show the
relative deviations, i.e. the ratio between the fit function and the exact solution (minus
one), obtained numerically with Python codes. The result is shown in Fig. 2.3 as well.
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Figure 2.4: Plot of the maximum error for the parametrisation considered, both without the
explicit expressions for the γi’s (blue dash-dotted line), Eq. (2.20), and with that result (red
dashed line), Eq. (2.21), as a function of the coupling. This plot is obtained considering Ωdm

= 0.25 and Ωde = 0.75.

The maximum error obtained for each parametrisation is given in Fig. 2.4. It is possible
to see that, in both cases, the maximum deviation is always smaller than the one in the
uncoupled case, that we take as a bound.
We notice that this parametrisation for f , differently for the result obtained in the uncou-
pled case (Eq. (1.70)), is not independent on the value of Ωdm, as can be seen in Fig. 2.5.
Nonetheless, for small deviations from the value of Ωdm for which the parametrisation is
obtained, i.e. Ωdm = 0.25, we find that the relative deviations are always smaller than
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the smallest error associated to the reference value of [fσ8](z) reported in Tab. 1.2, as
can be seen in Figure 2.5. However, to get a more complete and correct result, one should
consider this dependence in the parametrisation for f .
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Figure 2.5: Plot of the f function (left plots) and of the relative deviations (right plots),
considering small deviations from Ωdm = 0.25, fixing the coupling to ξ = −0.1. The gray area
represents the deviation for the uncoupled case, that we consider as a bound for the deviations
in the coupled case. The red-dashed line (labelled ’polynomial’) represent the fit line obtained
the value of the coefficients of the fit function reported in Tab. 2.1, obtained using Ωdm = 0.25.

2.5 σ8

Given the fact that we shall also employ observations of the clustering parameter fσ8,
we also consider how the value of σ8 changes as the coupling ξ does. For simplicity, as σ8
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is indeed a function of the redshift z, we have only considered the value of this parameter
today (z = 0), σ8,0 = σ8(z = 0). The results, taken as an output of CLASS [31, 32], are
presented in Tab. 2.2.

ξ σ8,0
0.00 0.823
-0.05 0.874
-0.10 0.924
-0.15 0.973
-0.20 1.021
-0.25 1.068
-0.30 1.114
-0.35 1.159
-0.40 1.203
-0.45 1.246
-0.50 1.288
-0.55 1.329
-0.60 1.369
-0.65 1.409
-0.70 1.447
-0.75 1.485
-0.80 1.522
-0.85 1.558
-0.90 1.594
-0.95 1.628
-1.00 1.662

Table 2.2: Values of σ8,0, obtained from CLASS [31, 32], for different values of the coupling ξ.

Using these data, we try to find a fitting function. In this case, we consider two different
parametrisations: in the first one we impose the condition that σ8,0(ξ = 0) is equal to
the value obtained in the output from CLASS [31, 32]:

σ8,0(ξ) = 0.823 + α1 ξ + α2 ξ
2 , (2.22)

while in second one, we leave it as a free parameter:

σ8,0(ξ) = β0 + β1 ξ + β2 ξ
2 . (2.23)

The value of the coefficients are presented in Tab. 2.3, while the plots showing how the
fitting functions compare to the ”exact” solution and the relative deviations are reported
in Figs. 2.6 and 2.7, respectively.
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α1 α2

-1.022 -0.185
β0 β1 β2

0.824 -1.019 -0.182

Table 2.3: Values of the coefficients appearing in the two different parametrisations of σ8,0, as
reported in Eq. (2.22) (left table) and Eq. (2.23) (right table).
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Figure 2.6: Fit to the σ8,0 values, obtained as an output of CLASS [31, 32], as a function of
the coupling ξ. The solid cyan line is the exact result, the blue dashed line corresponds to
eq. (2.22) with the coefficients shown in the left part of Table 2.3 while the red dot-dashed line
corresponds to eq. (2.23) with the coefficients shown in the right part of Table 2.3.

2.6 fσ8

The observational values of [fσ8](z) are the ones reported in Tab. 1.2. To check the
consistency of the CLASS [31, 32] output, we tried to recreate the right plot of Fig. 1.8,
finding that the output of the public available CLASS perfectly recreates the black solid
line.
We then change the value of the coupling, fixing Ωdm to the value Ωdm = 0.25 3. We also

3We shall see that this generates a small difference with the standard CLASS output since the best
fit-value for Ωdm from Planck18 [1] is slightly different.
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Figure 2.7: Relative deviation for the two fitting functions considered, namely Eqs. (2.22)
and (2.23). The behaviour is not smooth due to having considered only few values of the
coupling.

obtain the very same plot fixing the coupling ξ to the value ξ = −0.1 and changing Ωdm.
These results are reported in Fig. 2.8.
The values of Ωdm and ξ are chosen accordingly to the χ2 contour plot in the (Ωdm, ξ)
plane obtained with a Python code and shown in Fig. 2.9.
Now that we have implemented our model numerically and we have also developed an
analytical expression for the growth factor, we are ready to compute the χ2 analysis of
the [fσ8](z) quantity to test the validity of the growth formula derived here.
The χ2 function reads as:

χ2 =
N∑
i=1

[
[fσ8]

(theo)(zi)− [fσ8]
(obs)(zi)

σ
(obs)
fσ8

(zi)

]2

, (2.24)

where the subscript (obs) refers to the observational values in Tab. 1.2, while the sub-
script (theo) refers to the values obtained either analytically or from CLASS [31, 32]. To
the values obtained using this formula, we subtract the minimum value of the χ2 function
that we have.
The results from the χ2 analysis are shown in Fig. 2.9, where it is shown the best fit
point (the yellow circle in the plot), given by (Ωdm, ξ) = (0.248, 0.0), and therefore
explaining the choice of the value of Ωdm fixed to Ωdm = 0.25 to obtain the left plot in
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Figure 2.8: These two plots are similar to the right plot of Fig. 1.8. The values in the legend
must be interpreted as (Ωdm, ξ). The data points are the ones in Tab. 1.2. The black solid
line is obtained considering the unmodified CLASS [31, 32], while the other lines are obtained
considering our modification of CLASS (as reported in Appendix A). Left panel: the different
lines are obtained fixing Ωdm = 0.25 and changing the coupling. Right panel: the different
lines are obtained fixing the coupling ξ = −0.1 and changing Ωdm.
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Figure 2.9: Contour plot in the (Ωdm,ξ) plane for the χ2 for [fσ8](z). Left: contour plot
obtained considering fσ8 as the output of CLASS [31, 32]. Regions from 1σ (darker color) to 3σ
(lighter color) are shown. Right: the contour plot obtained considering f from Equations (2.20)
and (2.21) and σ8 as an output of CLASS is given by the blue lines shown on top of the left
contour plot. In this case, the 1σ line is the lighter color and the 3σ line is the darkest one.

Fig. 2.8. The value of the coupling, ξ = −0.1, was instead chosen since it is excluded at
3σ by observations and therefore it can be regarded as an ”lower bound” to the value
the coupling can take.
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In the right plot of Fig. 2.9, one can also see which is the effect of the parametrisation
that we obtained for the f factor. Notice that the best fit point of the two contour plots
match almost exactly, as well as the 1σ and 2σ regions. The difference that we see is
related to the error that we introduce since our parametrisation is actually dependent on
Ωdm (actually on Ωm), as can be seen from Fig. 2.5. The main effect of this dependence
is to allow for more negative values of the coupling ξ and for lower values of the dark
matter energy density Ωdm. Nevertheless we can conclude that the fitting function used
here is perfectly able to reproduce to a very large extent the numerical results.
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Chapter 3

Cosmological analysis

ı̀In this chapter, we discuss the key role of statistical analysis in the field of cosmology,
introducing in particular the concept of Bayesian statistics. We describe how to obtain
constraints on the parameter of our model and how to sample them, describing the effi-
cient method of Markov Chain Monte Carlo. We describe the datasets and measurements
we are going to use for our analysis and we present the results obtained.

3.1 Statistical methods in cosmology

There is a strong connection between the field of cosmology and that of statistics, in
order to understand and analyse all the data collected from observations of our Uni-
verse. In particular, the framework of Bayesian statistics, born from the paper published
by Reverend Thomas Bayes [81], underlies most of the statistical methods adopted in
cosmology.
The Bayesian school of thought is contrasted by the frequentist one. While the frequen-
tist notion of probability is that probabilities are tied to the frequency of outcomes over
a long series of trials, therefore repeatability of an experiment is essential, the Bayesian
outlook is that probability expresses a degree of belief in a proposition, based on the
available knowledge of the experiment, so repeatability is not a key concept [82].
We see that the main difference in these two points of view is that in one case (fre-
quentist) model parameters and hypothesis are fixed, while in the other (Bayesian) the
probability of an event changes as new data are considered.

3.1.1 Bayesian statistics

For the purposes of cosmology, we can say that the Bayesian approach can be considered
as better to use, for different reasons, among which [82]:

• application of Bayes’ theorem recovers frequentist results (in the long run) for cases
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simple enough where such results exist, while remaining applicable to questions that
cannot even be asked in a frequentist context;

• Bayesian inference deals effortlessly with nuisance parameters, which are param-
eters that, even though they have an effect on the data, we are not interested
in;

• prior information can be very relevant in some situations: Bayes’ theorem ensures
that relevant prior information is accounted for in the final inference;

• it only deals with data that were actually observed.

The whole Bayesian approach rests upon the simple mathematics described by the Bayes
theorem [81]. This result is a general one of probability theory, coming from the fact
that, for any given two propositions A and B, their joint probability satisfies P (A,B) =
P (B,A). This leads to:

P (A|B) =
P (B|A)P (A)

P (B)
, (3.1)

where P (A|B) is the probability we assign to proposition A conditional on assuming that
proposition B is true.
For our purposes, Bayes theorem becomes interesting when A represents the parameters
θ of a model and B represents the observed data d, so that

P (θ|d) = P (d|θ)P (θ)
P (d)

. (3.2)

Notice that now we are working with continuous random variables, so that the P ’s are
not probabilities but probability distribution functions.
On the left-hand side of Eq. (3.2), P (θ|d) is the posterior probability for θ, representing
our degree of belief about the value of θ after we have seen the data d. On the right-hand
side of Eq. (3.2), instead, P (d|θ) is the likelihood L(θ), i.e. the probability of the data
given a certain value of the parameters. P (θ) is the prior probability distribution that
represents our degree of belief in the value of θ before we see the data, while P (d) is a
normalizing constant (called marginal likelihood or Bayesian evidence) defined as [82]

P (d) =

∫
dθP (d|θ)P (θ) . (3.3)

We notice that the Bayesian evidence is independent on the parameters of the model
considered.
Bayesian inference works by updating our state of knowledge about a parameter as new
data flow in, meaning that the posterior from a previous cycle becomes the prior for
the next observations. Essentially, Bayes’ theorem can be seen as a guide for how we
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gain knowledge from experience: we begin with a certain belief, regardless of the data,
represented by p(θ), and then adjust our belief system once we have taken in the data,
resulting in p(θ|d).
The price that we need to pay is that we need to specify an initial prior (not determined
by the theory). Moreover, the final result will inevitably depend on the prior choice.
Even though there is no indication as how to choose the prior, a common choice is to
take a so-called ”flat prior”, i.e. a uniform prior [82].
Therefore, the general recipe is:

• choose a model containing a set of parameters θ;

• specify the priors for the parameters: they should summarize your state of knowl-
edge, before considering the new data, about the parameters;

• construct the likelihood function, usually reflecting the way the data are obtained.
Nuisance parameters, related to the measurement process, are included in the
likelihood;

• obtain the posterior distribution by numerical methods, like MCMC, usually up to
an overall normalisation constant.

3.1.2 Markov Chain Monte Carlo (MCMC) methods

In cosmology, we want to apply Bayesian statistics to perform parameter estimation.
We have some data d and a model specified by some parameters θ. Each evaluation
of the likelihood typically involves a call to Boltzmann solvers (in our case CLASS [31,
32]). Evaluating the posterior is done using Bayes theorem (see Eq. (3.3)), but since
practically we usually deal with O(10) parameters, we need a way to improve efficiency
by considering a smarter way of sampling. Nowadays the most widely used method is
the Markov Chain Monte Carlo (MCMC) method [83].
The purpose of a MCMC algorithm is to construct a sequence of points in parameter
space, called chain. The generation of the elements of the chain is probabilistic in
nature and is described by a transition probability T (θ(t), θ(t+1)). A sufficient condition
to obtain a Markov Chain is that the transition probability satisfies the detailed balance
condition [82]

p(θ(t)|d)T (θ(t), θ(t+1)) = p(θ(t+1)|d)T (θ(t), θ(t+1)) . (3.4)

The simplest MCMC algorithm is the Metropolis-Hastings algorithm [84, 85]. It works
as follows:

1. start from a random point θ(0) with associated posterior probability p0 = p(θ(0)|d);
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2. propose a candidate point θ(c) by drawing from the posterior distribution q(θ(0), θ(c));

3. evaluate the posterior at the candidate point pc = p(θ(c)|d). Accept the candidate
point with probability

α = min

(
pcq(θ

(c), θ(0))

p0q(θ(0), θ(c))
, 1

)
. (3.5)

This can be performed by generating a random number u from the uniform distri-
bution [0,1) and accepting the candidate sample if u < α, rejecting otherwise;

4. if the candidate point is accepted, add it to the chain and move there, otherwise
stay in the old point (which is counted twice) and go back to point number 2.

The choice of proposal distribution q is crucial for the efficient exploration of the pos-
terior. We also notice that, at each step, the next sample depends only on the current
sample, and not on the previous ones.
If the posterior distribution is symmetric, i.e. q(θ(0), θ(c)) = q(θ(c), θ(0)), the algorithm
is called Metropolis (not Metropolis-Hasting), and the acceptance probability simply
reduces to

α = min

(
pc
p0
, 1

)
. (3.6)

An important problem when working with MCMC is the assessment of chain conver-
gence [82], aiming at establishing when the obtained samples are enough so that the
estimate is sufficiently accurate. Useful diagnostic tools include, for example, the Gel-
man and Rubin criterion [86].
MCMC methods are widely used in cosmology and there are several public available
codes available, like Cobaya4 [33, 34], used in this work, interfaced with the Boltzmann
solver CLASS [31, 32].

3.2 Cosmological measurements

In this section we presents the datasets and likelihoods used to put constraints on our
model.

4The codes are public available and can be found at this link: https://github.com/CobayaSampler/
cobaya/tree/master
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3.2.1 CMB measurements

The Planck mission [1, 87, 88] has achieved exceptionally precise measurements of the
power spectra of CMB anisotropies. The CMB power spectra contains a vast amount
of information. We use as our baseline data set the temperature (TT) and polarisation
(EE) auto-spectra, plus their cross-spectra (TE), as incorporated in the Commander (for
multipoles ℓ < 30) and plik (for multipoles ℓ > 30) likelihoods from the PR3 release [88].
In addition to the primary temperature and polarization anisotropy power spectra, we
also have information on the power spectrum of the gravitational lensing potential [89].
All of the likelihoods described above are already included in Cobaya.
In the following, we will denote with Planck the results obtained using temperature,
polarisation and lensing measurements.

3.2.2 RSD measurements

As RSD reference measurements, we consider the data points in Tab. 1.2. These data
are chosen following these three criteria [53]:

• when the data concern the same cosmological tracer, the considered [fσ8](z) data
are obtained from uncorrelated redshift bins, while data are taken from possibly
correlated redshift bins when different cosmological tracers were analysed;

• direct measurements of fσ8 are taken into account;

• when the same survey collaboration performed two or more measurements corre-
sponding to different data releases, the latest measurement of fσ8 is considered.

For what regards the likelihood, we built our own as the data points used (i.e. the ones
in Tab. 1.2) are not (all) included in Cobaya [33, 34], taking as example the one already
implemented in the codes for BAO measurements. We built the covariance matrix as
a diagonal matrix that has the square of the errors of the different points of Tab. 1.2
as diagonal elements. This matrix is taken to be diagonal because we assume that the
different data points are all uncorrelated.
In the following, we will denote this dataset as RSD .

3.2.3 Supernovae measurements

Type Ia Supernovae (SN Ia) serve as standardizable candles, that can be used to measure
the expansion of the Universe. It was indeed thanks to these kind of measurements that
we were able to discover the accelerating expansion of our Universe [90, 91]. Within the
ΛCDM model, SN Ia have lower statistical power with respect to modern BAO measure-
ments, but are still useful to gain some more informations on dark energy.
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We consider, as SN Ia dataset, the Pantheon+ compilation [92]. It consists of 1550
spectroscopically confirmed SN Ia in the redshift range 0.001 < z < 2.26. The total
number of Supernovae, compiled across 18 different surveys, is significantly increased
with respect to the first Pantheon analysis (1048 SN), particularly at low redshifts [44].
We use the public likelihood [93], included in Cobaya.
In the following, we will denote this dataset as PantheonPlus , instead of using Pan-
theon+, to avoid confusion with the + sign used to express the considered measurements
combinations.

3.2.4 DESI measurements

DESI spectroscopic targets are selected from photometric catalogs of the 9th public data
release of the DESI Legacy Imaging Surveys. The five tracer samples, covering a total
redshift range from z = 0.1 to z = 4.2, are the following ones [94]:

• the Bright Galaxy Samples (BGS) [95], in the range 0.1 < z < 0.4, containing
854 targets per square degree. The final BGS clustering sample used for the BAO
measurement comprises 300,017 redshifts in 0.1 < z < 0.4;

• the Luminous Red Galaxy Sample (LRG) [96], in the range 0.4 < z < 0.6 and
0.6 < z < 0.8. The DESI DR1 LRG clustering sample used for BAO measurements
consists of 2,138,600 redshifts in the interval 0.4 < z < 1.1. The lower redshift
bound was chosen to separate the sample from BGS, as most low-redshift LRG
targets are also BGS targets;

• the Emission Line Galaxy Sample (ELG) [97], in the range 1.1 < z < 1.6. The DR1
ELG sample comprises 2,432,022 reliable redshifts in the interval 0.8 < z < 1.6;

• the combined LRG and ELG Sample (LRG+ELG), in the range 0.8 < z < 1.1.
As reported in [98], the combined LRG+ELG BAO measurement is ∼ 10% more
precise, so it is used for the cosmological inference;

• the Quasar Sample (QSO) [99], in the range 0.8 < z < 2.1. The DR1 QSO sample
used for BAO measurements consists of 856,652 redshifts;

• the Lyman-α Forest Sample (Lyα) [100], in the range 1.77 < z < 4.16. This
represent the highest-redshift BAO measurement from DESI DR1 and is obtained
from a combined analysis of correlations of three different datasets.

In the following, we will denote this dataset as DESI .
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3.2.5 Cosmological inference

As a Boltzmann solver to interface with the cosmological inference code that we chose
to use, i.e. Cobaya [33, 34], we decided to use a suitable modified version of the Cosmic
Linear Anisotropy Solving System code, CLASS [31, 32].
All Bayesian inference is performed using the Metropolis-Hastings MCMC sampler [101,
102], developed for CosmoMC [101] and implemented in Cobaya [33, 34]. To test the
convergence of the chains obtained using this approach, we utilize the Gelman-Rubin
criterion [86], and we establish a threshold for chain convergence of R− 1 ≲ 0.01.
The figures shown in this chapter are obtained using getdist [103] (only the plot shown
in Fig. 3.1 is obtained with a Python code).
We sample in the set of parameters of the ΛCDM model plus the coupling ξ, i.e.
{wb, wdm, 100θs, ln(10

10As), ns, τ, ξ}, where wb(dm) = Ωc(b)h
2 is the baryon (cold dark

matter) energy density, θs is the angular size of the horizon at the last scattering surface,
τ is the optical depth, log(1010As) is the amplitude of primordial scalar perturbation and
ns is the scalar spectral index.
The combinations of the previously described datasets considered are:

• Planck ;

• Planck + RSD ;

• Planck + DESI ;

• Planck + DESI + RSD ;

• Planck + DESI + PantheonPlus ;

• Planck + DESI + PantheonPlus + RSD ;

3.3 Results

Up to now we have presented the constraints on Ωdmh
2 and ξ using the Python wrapper

of CLASS, Classy (see Fig. 2.9) obtained considering the RSD measurements reported in
Tab. 1.2.
To check for consistency between the different codes, our first result from Cobaya was
aimed to reproduce the very same plot.
In order to obtain it, we fixed all the cosmological parameters to their best-fit values,
except for Ωdm and ξ, that were being sampled by Cobaya [33, 34]. As a prior for the
coupling, we considered a flat prior between -1 and 0 (this will be the case for all of the
results obtained). In Cobaya, we use as a sampling parameter Ωdmh

2 5. The prior chosen

5To obtain the values of Ωdm, we multiplied the values of the output of Cobaya by the value of h in
the explanatory.ini file of CLASS, i.e. h = 0.67810.
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Figure 3.1: Contour plot in the (Ωdm, ξ) plane from the χ2 analysis for [fσ8](z) measurements.
Regions from 1σ (darker color) to 3σ (lighter color) are shown. We show the contour plot
obtained considering fσ8 as the output of CLASS (colored shapes), the contour plot obtained
considering f (from Eqs. (2.20) and (2.21)) and σ8 as an output of CLASS (blue lines) and the
contour plot obtained running Cobaya (green lines). We also show the three best fit points.

for Ωdmh
2 is a flat prior between 0.001 and 0.99 (this will actually be true for all of the

results obtained). Fig. 3.1 shows the results of the Cobaya analyses (green contours),
compared to the contour plot obtained using Classy (red-colored shapes) and to the
one obtained using our parametrisation for the growth factor f (blue contours) (see the
caption of Fig. 2.9 for more details). The agreement between the three results is very
good, as we notice that they all almost overlap.
In the following subsections, we shall present the constraints coming from different cos-
mological measurements. We shall denote with ΛCDM the results obtained using the
standard, unmodified version of CLASS, while we shall denote with ΛCDM + ξ the results
obtained considering the studied IDE model and using our modified version of CLASS. In
Appendix B one can find a table with the priors used for all the six (plus one) sampled
parameters in the MCMC analyses in the ΛCDM (+ξ) case. Moreover, we considered
the equation of state parameter for dark energy, w, to be w = −1 + ϵ, with ϵ = 0.01 (so
w = −0.99) in order to regularise early-time super-horizon instabilities in the dynamics
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of cosmological perturbations [10, 15].

3.3.1 Planck results

In this subsection we present the results obtained considering Planck data. As a first
check, we obtained the results considering the public version of CLASS, which should
reproduce the ones presented in [1]. Then, we used our modified version of the codes
to obtain the constraint on the IDE model considered. We shall comment on how the
presence of the coupling ξ affects the best-fit values of the cosmological parameters within
the ΛCDM model.

Planck in ΛCDM

Parameter 68% limits 68% limits from [1]
log(1010As) 3.046± 0.014 3.044± 0.014
ns 0.9644± 0.0041 0.9649± 0.0044
100θs 1.04184± 0.00029 1.04090± 0.00031
Ωbh

2 0.02236± 0.00015 0.02237± 0.00015
Ωdmh2 0.1200± 0.0012 0.1200± 0.0012
τreio 0.0552± 0.0073 0.0544± 0.0073

Table 3.1: Table showing the 68% CL parameter intervals for the base-ΛCDM model from
Planck CMB power spectra, in combination with CMB lensing reconstruction, using the public
(unmodified) version of CLASS. All parameters are sampled in the MCMC analysis with flat
priors. Left column: results arising from our simulation. Right column: constraints from
Planck18 [1].

The results presented here, in Tab. 3.1 and in Fig. 3.2, are obtained considering the
combination of TT, EE, TE and lensing spectra of Planck [1].
We see that all parameters are in excellent agreement with each other, except for a mildly
shift in 100θs, related to having considered different initial conditions in CLASS.

Planck in ΛCDM + ξ

The effect of the introduced coupling between dark matter and dark energy, as expected,
has a significant influence mostly on the Ωdmh

2 parameter. Indeed, as one can see from
Fig. 3.3, there is a strong degeneracy between Ωdmh

2 and ξ, with lower values of Ωdmh
2

being permissible (with respect to the ΛCDM results) for more negative values of the
coupling ξ. As a consequence, from Tab. 3.2, we can notice that the best-fit value for
Ωdmh

2 is significantly lower with respect to the ΛCDM value. All the other parameters,
instead, appear to be less sensitive to the introduced coupling between dark energy and
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Figure 3.2: 68% and 95% CL constraints on the parameters of the base-ΛCDM model using
the combination of TT, EE, TE and lensing spectra of Planck.

dark matter, as the obtained results are consistent with those obtained in the ΛCDM
case (see Fig. 3.3). These results are consistent with the fact that Planck is not sensitive
to very late time physics and the coupling between dark matter and dark energy changes
the cosmological observables mainly at very low redshifts.
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Parameter 68% limits
log(1010As) 3.044± 0.014
ns 0.9657± 0.0042
100θs 1.04190± 0.00030
Ωbh

2 0.02238± 0.00015
Ωdmh2 0.066+0.052

−0.023

τreio 0.0541± 0.0075
ξ > −0.565

Table 3.2: 68% CL intervals for the IDE model considered from Planck CMB power spectra,
in combination with CMB lensing reconstruction, using our modified version of CLASS. We add
the coupling ξ as an additional parameter. All parameters are sampled in the MCMC analysis
with flat priors.

3.3.2 Planck + RSD results

In this subsection we present the results obtained considering Planck and RSD data.
To compare how the coupling affects the parameters, we obtained the results considering
the public version of CLASS, so in the standard cosmological model. Then, we used our
modified version of the codes to obtain the constraint on the IDE model considered. We
comment on how the presence of the coupling ξ affects the best-fit values of the ΛCDM
model. To use the redshift space distortion measurements, we built our own likelihood
since the likelihood for the measurements presented in Tab. 1.2 are not present in the
available version of Cobaya.

Planck + RSD in ΛCDM

Parameter 68% limits
log(1010As) 3.043± 0.014
ns 0.9646± 0.0041
100θs 1.04186± 0.00029
Ωbh

2 0.02237± 0.00015
Ωdmh2 0.1198± 0.0012
τreio 0.0538± 0.0073

Table 3.3: Table showing the 68% CL parameter intervals for the base-ΛCDM model from
Planck CMB power spectra, in combination with CMB lensing reconstruction and redshift
space distortions measurements, using the public (unmodified) version of CLASS. All parameters
are sampled in the MCMC analysis with flat priors.

The results of this analysis can be found in Tab. 3.3 and in Fig. 3.4. We see that the
results are perfectly in agreement with the results obtained considering Planck data
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Figure 3.3: 68% and 95% CL constraints on the parameters of our IDE model using the
combination of TT, EE, TE and lensing spectra of Planck. We show how the results for our
model (red regions) compared to those obtained in the ΛCDM case (blue regions, see Fig. 3.2).

only. While RSD measurements provide important information about the growth of
structure in the Universe, their constraints, in the minimal ΛCDM scenario, are less
tight compared to the Planck CMB constraints. As a result, the MCMC analysis reflects
the Planck results, with only minor adjustments from the RSD data.
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Figure 3.4: 68% and 95% CL constraints on the parameters of the base-ΛCDM model using
the combination of TT, EE, TE and lensing spectra of Planck, together with redshift space
distortions measurements. We show how the results of this combination of data (red regions)
compare to those obtained for Planck alone (blue regions, see Fig. 3.2).

Planck + RSD in ΛCDM + ξ

Also in this case, the only parameter affected by the presence of the coupling is Ωdmh
2.

Differently from the results obtained considering Planck alone, we see that the redshift
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Parameter 68% limits
log(1010As) 3.043+0.015

−0.013

ns 0.9654± 0.0041
100θs 1.04188± 0.00029
Ωbh

2 0.02239± 0.00015
Ωdmh2 0.1184+0.0017

−0.0014

τreio 0.0539± 0.0072
ξ > −0.0134

Table 3.4: Table showing the 68% CL parameter intervals for the IDE model considered from
Planck CMB power spectra, in combination with CMB lensing reconstruction and redshift
space distortions measurements, using our modified version of CLASS. We add the coupling ξ as
an additional parameter to be constrained. All parameters are sampled in the MCMC analysis
with flat priors.

space distortion measurements are more constraining (from Fig. 3.5 we see a smaller
degeneracy with respect to Planck alone). Indeed, we find that the best-fit value of
Ωdmh

2 (see Tab. 3.4), is consistent with the result obtained in the standard cosmological
model using Planck data only.
These results are consistent with the fact that RSD measurements reflect the late time
physics of the Universe, i.e. when the coupling ξ should become more important. RSD
measurements help to break the degeneracy between ξ and Ωdmh

2, placing a tighter
constraint on the coupling ξ. When Planck data is combined with RSD measurements,
the constraints mainly improve on the parameters related to the growth rate of structure.

3.3.3 Planck + DESI results

In this subsection we present the results obtained considering Planck and DESI data.
To compare how the coupling affects the parameters, we obtain the results considering
the public version of CLASS, i.e. in the standard cosmological model. Then, we use our
modified version of the codes to obtain the constraint on the IDE model considered. We
comment on how the presence of the coupling ξ affects the best-fit values of the ΛCDM
model.

Planck + DESI in ΛCDM

Comparing the results presented in Tab. 3.1 to those in Tab. 3.5, we notice that the
combination of Planck + DESI shifts all the parameters values. In particular, we notice
that the combination of Planck and DESI seems to prefer slightly lower values for Ωdmh

2

with respect to Planck alone. Nevertheless, the results obtained considering both Planck
and DESI are compatible at 1σ level with those obtained considering Planck alone.
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Figure 3.5: 68% and 95% CL constraints on the parameters of our IDE model using the com-
bination of TT, EE, TE and lensing spectra of Planck, together with redshift space distortions
measurements. We show how the results of our model (red regions) compare to those obtained
in the ΛCDM case (blue regions, see Fig. 3.4).

Considering that we are dealing with the first DESI analysis of the cosmological data,
one would need to wait for future data releases from DESI to better understand their
results.
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Parameter 68% limits
log(1010As) 3.051+0.013

−0.015

ns 0.9686± 0.0037
100θs 1.04203± 0.00028
Ωbh

2 0.02248± 0.00013
Ωdmh2 0.11823± 0.00088
τreio 0.0594+0.0066

−0.0079

Table 3.5: Table showing the 68% CL parameter intervals for the base-ΛCDM model from
Planck CMB power spectra, in combination with CMB lensing reconstruction and DESI BAO
measurements, using the public (unmodified) version of CLASS. All parameters are sampled in
the MCMC analysis with flat priors.

Planck + DESI in ΛCDM + ξ

Parameter 68% limits
log(1010As) 3.048± 0.014
ns 0.9674± 0.0037
100θs 1.04198± 0.00028
Ωbh

2 0.02244± 0.00014
Ωdmh2 0.086+0.029

−0.012

τreio 0.0569± 0.0073
ξ −0.268+0.26

−0.083

Table 3.6: Table showing the 68% CL parameter intervals for the IDE model considered from
Planck CMB power spectra, in combination with CMB lensing reconstruction and BAO mea-
surements from DESI, using our modified version of CLASS. We add the coupling ξ as an
additional parameter to be constrained. All parameters are sampled in the MCMC analysis
with flat priors.

As can be noticed from Fig. 3.7, the degeneracy between Ωdmh
2 and ξ is the main effect

of the coupling, as all other parameters perfectly reproduce the results obtained in the
ΛCDM case. Interestingly, since both the redshift space distortion measurements and the
DESI BAO measurements provide information on late time physics, we notice that the
combination of Planck and DESI seems to prefer a more negative value of the coupling
with respect to the case of Planck and RSD. This, as we shall see, is due to the slightly
larger value of the Hubble constant preferred by DESI observations. Even though the
best-fit for ξ differs from zero, the results are compatible at 95% C.L. with a vanishing
value of the coupling. Therefore, there is no strong evidence for a non-zero coupling. One
must keep in mind that, in order to fully understand this result, we should wait for future
DESI data releases. Based on the results of DESI analysis reported in [94], they seem to
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Figure 3.6: 68% and 95% CL constraints on the parameters of the base-ΛCDM model using the
combination of TT, EE, TE and lensing spectra of Planck, together with BAO measurements
from DESI. We show how the results of this combination of data (red regions) compare with
those obtained for Planck alone (blue regions, see Fig. 3.2).

prefer a time-varying equation of state for dark energy. Our model could be re-conducted
to this situation if we consider the fact that we can introduce an effective equation of
state for dark energy, as shown in Eq. (2.5b). As we said for the base-ΛCDM case, we
should need future data releases from the DESI collaboration to fully understand these
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results.
Moreover, as one could expect, this analysis is more constraining than the case of Planck
alone, reducing the lower bound on ξ.
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Figure 3.7: 68% and 95% CL constraints on the parameters of our IDE model using the
combination of TT, EE, TE and lensing spectra of Planck, together with BAO measurements
from DESI. We show how the results of our model (red regions) compare with those obtained
in the ΛCDM case (blue regions, see Fig. 3.6).
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3.3.4 Planck + DESI + RSD results

In this subsection we present the results obtained considering Planck , DESI and RSD
data. To compare how the coupling affects the parameters, we shall proceed as in the
previous sections: we first obtain the results considering the publicly available version
of CLASS, i.e. in the standard cosmological model. Then, we use our modified version of
the codes to obtain the constraints on the IDE model considered. We comment on how
the presence of the coupling ξ affects the best-fit values of the ΛCDM model. To use
the RSD measurements, we built our own likelihood since not all of the data points in
Tab. 1.2 are present in Cobaya.

Planck + DESI + RSD in ΛCDM

Parameter 68% limits
log(1010As) 3.050+0.013

−0.015

ns 0.9688± 0.0037
100θs 1.04203± 0.00028
Ωbh

2 0.02249± 0.00013
Ωdmh2 0.11812± 0.00087
τreio 0.0589+0.0066

−0.0077

Table 3.7: Table showing the 68% CL parameter intervals for the base-ΛCDM model from
Planck CMB power spectra, in combination with CMB lensing reconstruction, BAO measure-
ments from DESI and redshift space distortions measurements, using the publicly available
version of CLASS. All parameters are sampled in the MCMC analysis with flat priors.

Notice that, when combining both DESI and RSD measurements with the Planck ones,
the results we obtain are dominated by Planck and DESI. Indeed, the shift in the best-
fit values is still present, as found for Planck + DESI (see Figs. 3.8 and 3.6). Also, the
best-fit values presented in Tab. 3.7 are closer to the ones presented in Tab. 3.5, with
respect to those in Tab. 3.3.
When adding RSD to the Planck+DESI combination, the overall improvement in the
constraints is not significant. This is because DESI already provides comprehensive
information on the large-scale structure, including aspects that overlap with what RSD
measures. Therefore, DESI data dominates the RSD one, which simply provide small
differences to the results obtained considering Planck+DESI alone.

Planck + DESI + RSD in ΛCDM + ξ

When including the coupling, we notice instead that the RSD measurements appear to
have a much stronger effect on ξ, thanks to the fact that they directly measure the impact

69



3.00 3.05 3.10
log(1010As)

0.03

0.04

0.05

0.06

0.07

0.08

re
io

0.116

0.118

0.120

0.122

0.124

dm
h2

0.0220

0.0222

0.0224

0.0226

0.0228

bh
2

1.0410

1.0415

1.0420

1.0425

1.0430

10
0

s

0.96

0.97

0.98

n s

0.96 0.97 0.98
ns

1.041 1.042
100 s

0.0220 0.0224 0.0228

bh2
0.117 0.120 0.123

dmh2
0.04 0.06 0.08

reio

Planck + DESI + RSD ( CDM)
Planck ( CDM)

Figure 3.8: 68% and 95% CL constraints on the parameters of the base-ΛCDM model using the
combination of TT, EE, TE and lensing spectra of Planck, together with BAO measurements
from DESI and redshift space distortions measurements. We show how the results of this
combination of data (red regions) compare with those obtained for Planck alone (blue regions,
see Fig. 3.2).

of the interaction rate on the growth of structures. Indeed, we notice (see Tab. 3.8)
that the constraint on ξ is less strong than the one obtained considering Planck+RSD,
but stronger than the one obtained considering Planck+DESI. Therefore, adding RSD
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Parameter 68% limits
log(1010As) 3.050+0.013

−0.015

ns 0.9692± 0.0036
100θs 1.04204± 0.00028
Ωbh

2 0.02251± 0.00013
Ωdmh2 0.1167+0.0016

−0.0011

τreio 0.0589+0.0065
−0.0079

ξ > −0.0155

Table 3.8: Table showing the 68% CL parameter intervals for the IDE model considered from
Planck CMB power spectra, in combination with CMB lensing reconstruction, BAO measure-
ments from DESI and redshift space distortions measurements, using our modified version of
CLASS. We add the coupling ξ as an additional parameter to be constrained. All parameters
are sampled in the MCMC analysis with flat priors.

to Planck+DESI changes the parameter constraints more significantly than within the
ΛCDM model. Once again, the only parameter on which the coupling has a noticeable
impact is on Ωdmh

2. In Fig. 3.9, we can still see the degeneracy with the coupling ξ,
favouring lower values of Ωdmh

2. However, RSD data imposes a tighter lower bound on
ξ, making the value of the Ωdmh

2 parameter closer to its (and Planck) ΛCDM result.

3.3.5 Planck + DESI + PantheonPlus results

In this subsection we present the results obtained considering Planck , DESI and Pan-
theonPlus data. To explore how the coupling affects the parameters, we obtain the
results considering the public version of CLASS, i.e. in the standard cosmological model.
Then, we use our modified version of the codes to obtain the constraints on the IDE
model considered, commenting on how the presence of the coupling ξ affects the best-fit
values of the ΛCDM model.

Planck + DESI + PantheonPlus in ΛCDM

The PantheonPlus dataset provides precise supernova data, which gives robust measure-
ments of the expansion history of the Universe at late times. However, the constraining
power of DESI dominates over the PantheonPlus one when considering the six standard
parameters of the concordance cosmological model (ΛCDM) due to its comprehensive
large-scale structure data and its ability to provide precise measurements of the matter
power spectrum, BAO, and RSD. While PantheonPlus observations are important for
constraining the Hubble constant and the late-time expansion history, DESI data are
more powerful for the full set of ΛCDM parameters.
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Figure 3.9: 68% and 95% CL constraints on the parameters of our IDE model using the
combination of TT, EE, TE and lensing spectra of Planck, together with BAO measurements
from DESI and redshift space distortions measurements. We show how the results of our model
(red regions) compare with those obtained in the ΛCDM case (blue regions, see Fig. 3.8).

Planck + DESI + PantheonPlus in ΛCDM + ξ

Also for this data combination the effect of the coupling is reflected only in the degen-
eracy between Ωdmh

2 and ξ. The presence of the Supernovae measurements makes the
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Parameter 68% limits
log(1010As) 3.050± 0.014
ns 0.9681± 0.0036
100θs 1.04201± 0.00028
Ωbh

2 0.02246± 0.00013
Ωdmh2 0.11848± 0.00085
τreio 0.0588+0.0066

−0.0075

Table 3.9: Table showing the 68% CL parameter intervals for the base-ΛCDM model from
Planck CMB power spectra, in combination with CMB lensing reconstruction, BAO measure-
ments from DESI and Supernovae measurements from PanthoenPlus, using the public (unmod-
ified) version of CLASS. All parameters are sampled in the MCMC analysis with flat priors.

Parameter 68% limits
log(1010As) 3.049+0.013

−0.015

ns 0.9676± 0.0036
100θs 1.04199± 0.00028
Ωbh

2 0.02245± 0.00013
Ωdmh2 0.1127+0.0056

−0.0022

τreio 0.0578+0.0066
−0.0074

ξ > −0.0686

Table 3.10: Table showing the 68% CL parameter intervals for the IDE model considered
from Planck CMB power spectra, in combination with CMB lensing reconstruction, BAO mea-
surements from DESI and Supernovae measurements from PanthoenPlus, using our modified
version of CLASS. We add the coupling ξ as an additional parameter to be constrained. All
parameters are sampled in the MCMC analysis with flat priors.

constraint on the coupling tighter with respect to the case of Planck and DESI. The rea-
son is the same as for the RSD measurements, as also Supernovae data is very sensitive
to late time physics, placing a more restrictive lower bound on the coupling ξ.

3.3.6 Planck + DESI + PantheonPlus + RSD results

In this subsection we present the results obtained considering Planck , DESI , Pan-
theonPlus and RSD data. To compare how the coupling affects the parameters, we
proceed as in the previous sections, obtaining first the results considering the public
version of CLASS, e.g. in the standard cosmological model. Then, we use our modified
version of the codes to obtain the constraints on the IDE model considered. We comment
on how the presence of the coupling ξ affects the best-fit values of the ΛCDM model. To
remind here that, in order to use the RSD measurements, we built our own likelihood
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Figure 3.10: 68% and 95% CL constraints on the parameters of the base-ΛCDMmodel using the
combination of TT, EE, TE and lensing spectra of Planck, together with BAO measurements
from DESI and Supernovae measurements from PantheonPlus. We show how the results of this
combination of data (red regions) compare with those obtained for Planck alone (blue regions,
see Fig. 3.2).

since the data points were not present in Cobaya.

74



3.02 3.06 3.10
log(1010As)

0.25

0.20

0.15

0.10

0.05

0.04

0.05

0.06

0.07

0.08

re
io

0.09

0.10

0.11

0.12

dm
h2

0.0220

0.0222

0.0224

0.0226

0.0228

bh
2

1.0410

1.0415

1.0420

1.0425

1.0430

10
0

s

0.96

0.97

0.98

n s

0.958 0.964 0.970 0.976
ns

1.0412 1.0420 1.0428
100 s

0.0222 0.0225 0.0228

bh2
0.10 0.11 0.12

dmh2
0.04 0.06 0.08

reio

0.2 0.1

Planck + DESI + PantheonPlus ( CDM + )
Planck + DESI + PantheonPlus ( CDM)

Figure 3.11: 68% and 95% CL constraints on the parameters of our IDE model using the
combination of TT, EE, TE and lensing spectra of Planck, together with BAO measurements
from DESI and Supernovae measurements from PantheonPlus. We show how the results of our
model (red regions) compare to those obtained in the ΛCDM case (blue regions, see Fig. 3.10).

Planck + DESI + PantheonPlus + RSD in ΛCDM

Notice from Fig. 3.12 that even when we consider the three low redshift datasets, the
dominating one is the DESI dataset. Nevertheless, the shifts in best-fit values (with
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Parameter 68% limits
log(1010As) 3.049± 0.014
ns 0.9681± 0.0036
100θs 1.04201± 0.00028
Ωbh

2 0.02247± 0.00013
Ωdmh2 0.11839± 0.00084
τreio 0.0582+0.0066

−0.0074

Table 3.11: Table showing the 68% Cl parameter intervals for the base-ΛCDM model from
Planck CMB power spectra, in combination with CMB lensing reconstruction, BAO measure-
ments from DESI, Supernovae measurements from PantheonPlus and redshift space distortions
measurements, using the publicly available (unmodified) version of CLASS. All parameters are
sampled in the MCMC analysis with flat priors.

respect to Planck alone) are smaller now because we have also two additional dataset
that have an effect (even if small with respect to DESI) on the results that one would
obtain considering Planck+DESI only.

Planck + DESI + PantheonPlus + RSD in ΛCDM + ξ

Parameter 68% limits
log(1010As) 3.047± 0.014
ns 0.9684± 0.0036
100θs 1.04200± 0.00028
Ωbh

2 0.02247± 0.00013
Ωdmh2 0.1172+0.0014

−0.0010

τreio 0.0572± 0.0072
ξ > −0.0136

Table 3.12: Table showing the 68% CL parameter intervals for the IDE model considered
from Planck CMB power spectra, in combination with CMB lensing reconstruction, BAO
measurements from DESI, Supernovae measurements from PantheonPlus and redshift space
distortions measurements, using our modified version of CLASS. We add the coupling ξ as an
additional parameter to be constrained. All parameters are sampled in the MCMC analysis
with flat priors.

When considering all datasets together, we see that the constraints on the ΛCDM + ξ
model become quite strong and the most constraining measurements are the RSD ones.
Indeed, we notice that the degeneracy between Ωdmh

2 and ξ is much smaller than in
all the other cases in which the RSD measurements were not taken into account. All
other parameters reproduce the ΛCDM results, with the particular DESI induced-shift.
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Figure 3.12: 68% and 95% CL constraints on the parameters of the base-ΛCDMmodel using the
combination of TT, EE, TE and lensing spectra of Planck, together with BAO measurements
from DESI, Supernovae measurements from PantheonPlus and redshift space distortions. We
show how the results of this combination of data (red regions) compare with those obtained
for Planck alone (blue regions, see Fig. 3.2).
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Therefore, it is crucial to take RSD measurements into account when studying coupled
cosmologies, since these data are the ones constraining the most the coupling ξ.
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Figure 3.13: 68% and 95% CL constraints on parameters of our IDE model using the combi-
nation of TT, EE, TE and lensing spectra of Planck, together with BAO measurements from
DESI, Supernovae measurements from PantheonPlus and redshift space distortions measure-
ments. We show how the results of our model (red regions) compare with those obtained in
the ΛCDM case (blue regions, see Fig. 3.12).
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3.3.7 Impact of IDE models on cosmological parameters

We shall present in what follows the largest impact of IDE models on the cosmological
parameters, focusing on the Hubble constant and on the dark matter mass energy density
parameter, which is the most affected parameter (among the six) by the presence of the
introduced coupling ξ.

The effect of the coupling on H0

Figure 3.14 illustrates the strong degeneracy between the Hubble constant H0 and the
coupling ξ. Indeed, IDE models could be able to alleviate the so-called H0 tension [104,
105, 106, 107, 108, 109, 110, 111, 112].
We notice that Planck alone allows higher values ofH0, consistent with the measurements
of SH0ES. This is related to the very strong degeneracy that appears between Ωdmh

2

and the coupling ξ (see Fig. 3.3), that is reflected by the degeneracy between H0 and ξ.
Also including DESI measurements, we notice that there is still a huge degeneracy, which
reduces the H0 tension as for more negative couplings, higher H0 values are allowed. As
soon as we consider also Supernovae and RSD measurements, the constraints becomes
tighter. In particular, considering Fig. 3.14, we notice that the RSD measurements give
a very tight constraint for the coupling, which translates into a value for the Hubble
parameter today in agreement with the one we have from Planck.
Therefore, focusing on Planck and Planck+DESI measurements, interacting dark energy
models could fully solve the H0 tension. We notice that actually the addition of DESI
data seems to prefer a non zero coupling, even though still compatible with a zero value
for ξ. When one includes also SN measurements, we obtain lower values of H0 with
respect to the previous dataset combinations considered, but higher than those obtained
with the CMB measurements of Planck in the ΛCDM scenario. This alleviates the H0

tension as well, even if not significantly.
It is only when we introduce the RSD measurements that the constraints become ex-
tremely tight, favoring values of H0 which are in agreement with the Planck ΛCDM
results, not allowing to alleviate the tension. This is a neat important result, since the
RSD measurements are the most sensitive to the effect of the coupling.

The effect of the coupling on Ωdmh
2

In Fig. 3.15, we compare how the expected degeneracy between Ωdmh
2 and ξ gets con-

strained by the different measurements. Here, the behaviour is the same as before. Since
ξ and Ωdmh

2 are strongly degenerate, a tighter constraint on the coupling ξ will lead to
a tighter constraint in Ωdmh

2.
We notice that with Planck data alone the degeneracy is very strong, which is consistent
with the fact that CMB measurements are not sensitive to late times physics. Including
DESI measurements, we notice that the degeneracy gets mildly reduced. As soon as we
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Figure 3.14: One-dimensional probability distributions and 68% and 95% CL joint constraints
on ξ and H0 for our IDE model using different combinations of measurements. The plus sign
should be interpreted as an addition to all the data previously considered, meaning that each
row contains all data from the above. All the results are obtained in the ΛCDM + ξ scenario.

consider also Supernovae and RSD measurements, the constraints becomes tighter. In
particular, considering Fig. 3.15, we notice that the RSD measurements give a very tight
constraint for the coupling, which translates into a smaller degeneracy in the (Ωdmh

2, ξ)
plane.
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Figure 3.15: One-dimensional probability distributions and 68% and 95% CL joint constraints
on ξ and Ωdmh

2 for our IDE model using different combinations of measurements. The plus
sign should be interpreted as an addition to all the data previously considered, meaning that
each row contains all data from the above. All the results are obtained in the ΛCDM + ξ
scenario.
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Chapter 4

Conclusions

In this thesis, we have investigated the growth of structures in non-standard dark energy
cosmologies, focusing on the interacting dark energy (IDE) scenario. Our first goal was
to extend the standard parametrisation within the ΛCDM cosmology of the growth rate
f to include the dependence on the coupling between dark matter and dark energy ξ.
Additionally, we aimed to place constraints on the phenomenological parameters of these
alternative cosmological models by analyzing various cosmological datasets, in different
combinations, to obtain a complementary analysis.
We derived a modified parametrisation for the growth rate f , which incorporates the
coupling ξ. This extended parametrisation offers a more comprehensive description of
structure formation within IDE cosmologies. Such a parametrisation depends on Ωdm.
Nevertheless, we proved that the error introduced due to this additional dependence does
not significantly alter the cosmological analysis, introducing only a tiny difference with
respect to the numerical results.
The cosmological analyses yield constraints consistent with a zero coupling scenario
(ξ ∼ 0), considering all the datasets taken into account in this work. These findings
indicate that current cosmological observations do not yet provide significant evidence
for non-gravitational interactions between dark matter and dark energy. As one would
expect, Planck alone is not able to set very strong constraints on the coupling, as it is
not sensible to the late time physics of the Universe and there is a strong degeneracy
with the dark matter mass-energy density. When adding all the other datasets, the con-
straints become tighter. This is because Supernovae, BAO and RSD measurements are
more sensitive to the time in which the coupling becomes important, with some of them
being more sensitive than others, being RSD the one providing the tighter constraints.
The most peculiar results are obtained introducing the DESI DR1 measurements, which
induce a modification of the best-fit values also in the ΛCDM scenario, then present for
all combinations involving these data. Moreover, in considering the IDE scenario, we also
obtain a non-zero best-fit value for the coupling, even if still consistent with a zero-value
for ξ at 95% CL. In order to fully comprehend the meaning behind these results, we
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should wait for future releases from the DESI collaboration. Therefore, this is not yet a
strong evidence for a possible non-zero coupling.
We find, as we would expect, that the largest degeneracy of the coupling ξ appears with
the density parameter of cold dark matter, Ωdmh

2. The degeneracy between these two
parameters is strong when considering only CMB measurements. Nevertheless, when we
introduce other measurements, which are more sensitive to late time physics (when ξ
becomes more important), the degeneracy is reduced.
Our study placed particular emphasis on redshift space distortions (RSD) measurements,
which have not been extensively highlighted in the recent literature. RSD data are cru-
cial: indeed, we found that it is only when we add them that the constraints become
much tighter, helping enormously in breaking the degeneracies.
Our findings have implications for the H0 tension, which suggests discrepancies in the
Hubble constant values derived from different observational methods. For the same
reason above, while some measurements present a huge degeneracy between H0 and ξ,
alleviating the tension, when we include the RSD data the degeneracy almost disappears
and the constraints point towards the Planck18 ΛCDM values.
Even though the cosmological analyses point towards the zero coupling scenario, indi-
cating that the IDE could not be the final answer to the H0 tension, for example, one
must keep in mind that we only focused in this work on a particular case, among all the
possible ones.
For this reason, as a future line of work, one could consider other models, which are
closer to modified gravity models, to place constraints in light of recent redshift space
distortion measurements.
In summary, while current observations favor a zero dark energy-dark matter coupling
scenario, the methodologies and insights developed in this thesis lay the groundwork for
future investigations into the dynamics of the Universe. Expanding the range of models
and incorporating more comprehensive datasets will be essential in uncovering the true
nature of dark energy, dark matter, and their potential interactions.

83



Appendix A

CLASS modifications

A.1 input.c

We set the default values for the new parameters: b, which discriminates between DEvel
and DMvel models, and the coupling ξ. In addition, we force the dark energy to be
described by a fluid.

pba->Omega0_lambda = 0.;

pba->Omega0_fld = 1. - pba->Omega0_k - Omega_tot;

class_read_double("coupling_xi", pba->coupling_xi);

class_read_double("b", pba->b);

...

/** 9) Dark energy contributions */

pba->Omega0_fld = 1.-pba->Omega0_k-pba->Omega0_g-pba->Omega0_ur

-pba->Omega0_b-pba->Omega0_cdm-pba->Omega0_ncdm_tot

-pba->Omega0_dcdmdr-pba->Omega0_idr-pba->Omega0_idm;

pba->xi = 0.;

pba->b = 1.;

//pba->Omega0_scf = 0.;

//pba->Omega0_lambda = 1.-pba->Omega0_k-pba->Omega0_g-pba->Omega0_ur

// -pba->Omega0_b-pba->Omega0_cdm-pba->Omega0_ncdm_tot

// -pba->Omega0_dcdmdr-pba->Omega0_idr-pba->Omega0_idm;

A.2 background.h

We add two new parameters: b, which discriminates between DEvel and DMvel models,
and the coupling ξ.
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double coupling_xi;

double b;

A.3 background.c

We modify the equations that describe the evolution of the background densities of dark
matter and dark energy. Moreover, we modify the differential equation for the matter
density perturbations and for the growth factor f .

/* cdm */

if (pba->has_cdm == _TRUE_) {

pvecback[pba->index_bg_rho_cdm] = pba->Omega0_cdm*pow(pba->H0,2)/

pow(a,3)+(pba->Omega0_fld*

pow(pba->H0,2)/pow(a,3))*

(pba->coupling_xi/(3.*(pba->w0_fld+

pba->coupling_xi/3.)))*(1.-pow(a,-3.*

(pba->w0_fld+pba->coupling_xi/3.)));

rho_tot += pvecback[pba->index_bg_rho_cdm];

p_tot += 0.;

rho_m += pvecback[pba->index_bg_rho_cdm];

}

...

case CLP:

*w_fld = pba->w0_fld; //+ pba->wa_fld * (1. - a);

break;

...

case CLP:

*dw_over_da_fld = 0.;//- pba->wa_fld;

break;

...

case CLP:

*integral_fld = 3.*((1.+pba->w0_fld+pba->coupling_xi/3.)*log(1./a));

break;

...
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if (pba->has_fld == _TRUE_) {

/* - Compute fld density \f $d\rho/dloga = -3(1+w_{fld}(a)) \rho\f$ */

dy[pba->index_bi_rho_fld] = -(3.+3.*pvecback[pba->index_bg_w_fld]+

pba->coupling_xi)*y[pba->index_bi_rho_fld];

}

...

/* - solve second order growth equation \f$ [D’’(\tau)=-aHD’(\tau)+

3/2 a^2 \rho_M D(\tau) \f$ written as \f$ dD/dloga = D’ / (aH) \f$

and \f$ dD’/dloga = -D’ + (3/2) (a/H) \rho_M D \f$ */

rho_M = pvecback[pba->index_bg_rho_b];

if (pba->has_cdm == _TRUE_) {

rho_M += pvecback[pba->index_bg_rho_cdm];

}

if (pba->has_idm == _TRUE_){

rho_M += pvecback[pba->index_bg_rho_idm];

}

dy[pba->index_bi_D] = y[pba->index_bi_D_prime]/(a*H);

dy[pba->index_bi_D_prime] = -y[pba->index_bi_D_prime]+1.5*a*rho_M*

y[pba->index_bi_D]/H-pba->coupling_xi*

(y[pba->index_bi_rho_fld]/rho_M)*a*H*

(y[pba->index_bi_D]+((1.-pba->b)/(a*H))*

(y[pba->index_bi_D_prime]+

pba->coupling_xi*a*H*

(y[pba->index_bi_rho_fld]/rho_M))+

y[pba->index_bi_D_prime]/(a*H)-

0.5*y[pba->index_bi_D]*(1.+3.*

pvecback[pba->index_bg_w_fld]*

y[pba->index_bi_rho_fld]/(H*H))-

y[pba->index_bi_D]*(pba->coupling_xi+3.*

pvecback[pba->index_bg_w_fld]+

pba->coupling_xi*

(y[pba->index_bi_rho_fld]/rho_M)));

A.4 perturbations.c

We modify the differential equations that describe the evolution of the dark matter
and dark energy density perturbations, respectively δdm and δfld. We also modify the
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equations for θdm and θfld.

/* converting synchronous variables to newtonian ones */

if (ppt->gauge == newtonian) {

...

/* short-cut notations for the perturbations */

double delta_g=0.,theta_g=0.,shear_g=0.;

double delta_b,theta_b;

double theta_cdm=0.;

...

/** - ---> cdm */

if (pba->has_cdm == _TRUE_) {

/** - ----> newtonian gauge: cdm density and velocity */

if (ppt->gauge == newtonian) {

dy[pv->index_pt_delta_cdm] = -(y[pv->index_pt_theta_cdm]+

metric_continuity)+pba->coupling_xi*a_prime_over_a*

(ppw->pvecback[pba->index_bg_rho_fld]/

ppw->pvecback[pba->index_bg_rho_cdm])*

(metric_euler/k2-y[pv->index_pt_delta_cdm]+

y[pv->index_pt_delta_fld]);/* cdm density */

dy[pv->index_pt_theta_cdm] = -a_prime_over_a*

y[pv->index_pt_theta_cdm]+metric_euler+

(1.-pba->b)*pba->coupling_xi*a_prime_over_a*

(ppw->pvecback[pba->index_bg_rho_fld]/

ppw->pvecback[pba->index_bg_rho_cdm])*

(y[pv->index_pt_theta_fld]-y[pv->index_pt_theta_cdm]);

/* cdm velocity */

}

/** - ----> synchronous gauge: cdm density only (velocity set to zero

by definition of the gauge) */

if (ppt->gauge == synchronous) {
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dy[pv->index_pt_delta_cdm] = -metric_continuity+a_prime_over_a*

(ppw->pvecback[pba->index_bg_rho_fld]/

ppw->pvecback[pba->index_bg_rho_cdm])*

(y[pv->index_pt_delta_fld]-y[pv->index_pt_delta_cdm])*

pba->coupling_xi; /* cdm density */

}

}

...

/** - ---> fluid (fld) */

if (pba->has_fld == _TRUE_) {

if (pba->use_ppf == _FALSE_){

/* - ----> factors w, w_prime, adiabatic sound speed ca2 (all

three background-related), plus actual sound speed in the

fluid rest frame cs2 */

class_call(background_w_fld(pba,a,&w_fld,&dw_over_da_fld,

&integral_fld), pba->error_message, ppt->error_message);

w_prime_fld = dw_over_da_fld * a_prime_over_a * a;

ca2 = w_fld; //- w_prime_fld / 3. / (1.+w_fld) / a_prime_over_a;

cs2 = pba->cs2_fld;

/** - ----> fluid density */

dy[pv->index_pt_delta_fld] =

-(1+w_fld)*(y[pv->index_pt_theta_fld]+metric_continuity)

-3.*(cs2-w_fld)*a_prime_over_a*y[pv->index_pt_delta_fld]

-9.*(1+w_fld)*(cs2-w_fld)*a_prime_over_a*a_prime_over_a*

y[pv->index_pt_theta_fld]*(1+pba->coupling_xi/(3.*(1+w_fld)))/k2;

/** - ----> fluid velocity */

if (ppt->gauge == synchronous) {

theta_cdm = 0.;
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}

else {

theta_cdm = y[ppw->pv->index_pt_theta_cdm];

}

dy[pv->index_pt_theta_fld] = /* fluid velocity */

-(1.-3.*cs2-pba->coupling_xi*(cs2+pba->b)/(1.+w_fld))*

a_prime_over_a*y[pv->index_pt_theta_fld]+cs2*k2/(1.+w_fld)*

y[pv->index_pt_delta_fld]+metric_euler-

pba->b*pba->coupling_xi*a_prime_over_a*theta_cdm/(1.+w_fld);

}

else { /* Gamma variable of PPF formalism */

dy[pv->index_pt_Gamma_fld] = ppw->Gamma_prime_fld;

}

}
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Appendix B

Priors used in the MCMC analysis

In this appendix we present a table with the parameters we sampled in the MCMC anal-
yses (using Cobaya [33, 34]) together with the ranges in which we allow these parameters
to change. All of the priors are flat in the ranges given.

Parameter Priors
log(1010As) U [1.61, 3.91]
ns U [0.8, 1.2]
100θs U [0.5, 10]
Ωbh

2 U [0.005, 0.1]
Ωdmh2 U [0.001, 0.99]
τreio U [0.01, 0.8]
ξ U [−1.0, 0.0]

Table B.1: Table summarising the cosmological parameters that are sampled over in different
runs and the priors that are placed on them.
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