
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Development of a PicoTDC-based card for
the ALICE TOF detector

Supervisor:

Dr. Davide Falchieri

Co-supervisor:

Dr. Pietro Antonioli

Submitted by:

Sandro Geminiani

Academic Year 2023/2024

To my beloved family.

Abstract

The readout electronic system related to the ALICE TOF (Time-Of-Flight) uses the
TRM (TDC readout module) card, based on the HPTDC (High-Performance TDC)
ASICs, as the main element to provide the time measurements of a particle crossing
the TOF detector.

This master thesis is linked to the wider project of a new TRM2 board, begun since
the TRM board components are now out of production and the TOF readout system
must be reliable during the current and the next LHC Runs. The thesis focuses on the
development of a test board hosting a PolarFire FPGA and two PicoTDC ASICs, which
are the main components selected for the TRM2 development. The work done for the
thesis regards the control and test of the PicoTDCs configuration and readout, through
the design of the FPGA firmware architecture and the related software routines.

As the board supports Ethernet connection with the FPGA, the firmware and software
were built considering the IPbus protocol, which communicates over the Ethernet protocol
exploiting the UDP/IP model. The IPbus is implemented on the FPGA as a master-slaves
structure, in which each slave is identified using a 32-bit address and communicates with
the master through a 32-bit data bus. The IPbus slaves implement different hardware
features that can be controlled through IPbus data transfers.

The designed firmware relies on a structure supporting a 1Gb/s Ethernet communi-
cation able to control the on-chip IPbus, which includes up to 12 IPbus slaves to manage
the PicoTDCs and board features. Then, dedicated software front-end libraries were built
to manage the operations of each slave, using the µHAL IPbus back-end library.

The whole system was used to test the setup for a PicoTDC resolution measurement,
employing a programmable delay line with a 0.5 ps resolution. The developed firmware
and software proved reliable during all 36 hours of measurement, providing 18 datasets
of 107 events each. Furthermore, the analysis showed excellent compatibility between
the measured time differences and the configured time delays. Finally, a single channel
resolution of (2.95± 0.43) ps was estimated for both the PicoTDC ASICs.

Contents

Introduction iv

1 The ALICE experiment and its TOF detector 1
1.1 Heavy-ion collision physics . 1

1.1.1 Introduction to Quantum Chromodynamics (QCD) 2
1.1.2 Quark-Gluon Plasma (QGP) overwiew 4
1.1.3 QGP probes in heavy-ions collisions 6

1.2 ALICE layout and its TOF detector . 9
1.2.1 ALICE detector Layout . 10
1.2.2 The TOF detector . 12
1.2.3 Multi-gap Resistive Plate Chamber (MRPC) 14

1.3 The TOF readout system . 15
1.3.1 The TOF redaout chain . 15
1.3.2 The TRM board and the HPTDC 17
1.3.3 Implementation of the TOF continuous readout 20
1.3.4 The picoTDC as a successor of the HPTDC: towards TRM2 . . . 21

2 The PicoTDC board and the IPbus protocol 25
2.1 PicoTDC overview . 27

2.1.1 Architecture . 27
2.1.2 Phase Locked Loop (PLL) . 29
2.1.3 Delay Locked Loop (DLL) and interpolators line 29
2.1.4 The Data Processing Unit . 30

2.2 Board features overview . 32
2.2.1 Power supply section . 34
2.2.2 FPGA PolarFire . 35
2.2.3 Ethernet subsystem on board . 37

2.3 The IPbus communication protocol . 42
2.3.1 Introduction to xTCA architectures and IPbus 42
2.3.2 The on-chip IPbus protocol . 42
2.3.3 IPbus protocol at software level 45
2.3.4 Ethernet frame and IPbus packet structures 46

3 PicoTDC board firmware project 51
3.1 Firmware structure . 53

3.1.1 PolarFire infrastructure overview 55
3.1.2 IPbus payload overview . 59

3.2 The Ethernet frame path . 60

ii

3.2.1 The Ethernet interface . 60
3.2.2 The CoreTSE IP core . 63
3.2.3 The TSE converter interface . 66
3.2.4 The UDP engine . 70

3.3 IPbus slaves used for TDCs . 72
3.3.1 The TDC external signals generator 73
3.3.2 The I2C master . 76
3.3.3 The TDC readout slave . 79

4 Software organization for the PicoTDC board 85
4.1 µHAL API library and Control Hub overview 85

4.1.1 The Control Hub application . 86
4.1.2 The µHAL API library . 88

4.2 Libraries for connection to IPbus slaves 91
4.2.1 The External signals library . 92
4.2.2 The I2C Master library . 94
4.2.3 The Configuration library . 100
4.2.4 The Readout library . 105
4.2.5 The PicoTDC library . 108

4.3 User main programs . 109
4.3.1 User program for TDCs configuration (PicoTOF) 110
4.3.2 TDCs readout user program (PicoRead) 116

5 Resolution measurements 121
5.1 Experimental setup . 121

5.1.1 Si5341-D evaluation board . 124
5.1.2 Electromagnetic trombone . 125

5.2 Data acquisition and analysis . 125
5.2.1 DAQ workflow . 126
5.2.2 Analysis and results . 127

Conclusion 135

Bibliography 137

iii

Introduction

The Run 3 phase of LHC (Large Hadron Collider) at CERN started in July 2022,
reaching new records center of mass energy for proton-proton, proton-ion, and ion-ion
collisions. This new data-taking phase concludes three years of updating and maintenance
work for the collider and the 4 experiments, located along the accelerator. The ALICE
(A Large Ion Collider Experiment) experiment is located at point n.2 of the LHC and
was built to study particles’ strong interaction and the QGP (Quark-Gluon Plasma). To
cope with the higher luminosity and interaction rate, the ALICE upgrade considered some
sub-detectors overhaul and the restyling of the readout system to supply a continuous
readout.

The ALICE Time-Of-Flight (TOF) detector was built to perform particle identifi-
cation within an intermediate momentum range. During LHC Run 3, only the TOF
detector electronic readout system was modified to follow the continuous readout direc-
tion of the whole experiment. Such an upgrade was completed while keeping the main
readout board used in previous LHC Runs: the TRM (TDC Readout Module).

In detail, the TRM is a VME slave card and it hosts 30 HPTDC (High-Performance
TDC) ASICs able to perform time digitization of the front-end signals, related to a par-
ticle crossing an MRPC (Multi-gap Resistive Plate Chamber). The board uses an FPGA
to manage the readout workflow and the VME interface. Since the TRM components de-
scribed are out of production and their maintenance is increasingly problematic, a project
for a new TRM2 card started.

This thesis work focuses on the development of a test board used to characterize the
PicoTDC ASIC and the PolarFire FPGA, selected as the new TDC and FPGA that
will be implemented on the TRM2 board. The hardware layout was designed by the
INFN electronics laboratory and the ALICE group of Bologna, while my work consisted
of developing the firmware architecture and the related software suites used for the con-
figuration and readout of both the integrated TDCs. Since the PicoTDC board supports
Ethernet connection, the software and firmware projects were designed considering the
IPbus communication protocol, built over Ethernet protocol.

The thesis’s first chapter includes an introduction to QGP (Quark-Gluon Plasma)
physics and a brief description of the ALICE layout, considering the last upgrades for
Run 3. This chapter focuses on the TOF detector, emphasizing its readout system. In
the end, a description of the TRM board and some considerations about the new TRM2
board are provided.

The following four chapters describe the work done for the development of the Pi-
coTDC test board. Specifically, the second chapter shows the test board layout, focusing
on the Ethernet subsystem. Then an introduction to the IPbus protocol is also provided
at firmware and software levels.

Chapters 3 and 4 describe the implemented firmware architecture and the related
software suites. Software and firmware are designed to control the board features and

iv

the PicoTDC operations.
Finally, chapter 5 shows the setup used to perform a time resolution measurement,

employing 2 input channels for each PicoTDC. This was done to test the readout and
configuration system reliability and to estimate the effective time resolution of the Pi-
coTDCs.

v

Chapter 1

The ALICE experiment and its TOF
detector

ALICE is a general-purpose detector focused on the study of QCD (Quantum Chro-
modynamics), which is the theory of strong interactions in the Standard Model. ALICE
was designed to support analysis for heavy-ion collision physics, which generates the
requested conditions to study the Quark-Gluon Plasma.

This detector provides a precise tracking system and a sophisticated Particle Identi-
fication (PID) setup covering a wide momentum range (0.1 to 100 GeV/c), to cope with
the high particle multiplicities produced in heavy-ion collision. During LHC Run 2 (2015-
2018) ALICE accumulated an integrated luminosity of ∼0.4 nb−1 for Pb-Pb interactions
at the center of mass energy

√
s = 5.02. Furthermore, p-p and p-Pb collisions were also

investigated considering respectively energy up to
√
s = 13 TeV and

√
s = 8.16 TeV [1].

Up to now during LHC Run 3, ALICE collected data considering energies
√
s = 13.6 TeV

and
√
s = 5.36 TeV respectively for p-p and Pb-Pb collisions [2].

The TOF system is one of the ALICE PID sub-detectors, located at 3.7 m from the
beam axis. It is used for particle identification in the intermediate momentum range and
covers all the ALICE barrel for time-of-flight measurements.

The chapter introduces the QCD and QGP physics plus provides a brief overview
of the QGP probes studied at the ALICE experiment. The following sections explain
the ALICE current layout focusing on the TOF detector specifications and performance.
Then a complete explanation of the TOF readout chain is provided, aiming to introduce
the main element of the readout electronic system: the TRM card (TDC Readout Mod-
ule). In the end, an upgrade of the TRM board is discussed, considering new generation
components, explained in the next chapters.

1.1 Heavy-ion collision physics

Ordinary nuclear matter is made up of protons and neutrons that are composed in
their internal structure by partons: quarks and gluons. Quantum Chromodynamics is
the theory within the framework of the Standard Model built to describe the strong inter-
actions between partons and used to explain the formation of hadrons, such as neutrons
and protons. Therefore, QCD mainly enters into the description of the Quark Gluon
Plasma which is a deconfined state of quarks and gluons that is thought to expand in the
early stage of the Universe at ∼ 10−6 s after the Big Bang.

1

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 2

The QGP has been studied since the 70s [3] using heavy-ion collision, as they ensure,
at relativistic energies, the best conditions of particle density and temperature. The first
indirect result of a new state of matter was announced by CERN in 2000, providing at
SPS1 heavy-ion collisions with beam energy up to 40 GeV per nucleon [4]. Centers of
mass energy

√
s ≂ 200 GeV were reached in the following facilities at RICH2, finding new

results at higher temperatures for QGP studies. New record collision energy is reached
at the LHC in Geneva, in which the ALICE experiment is located providing a specific
layout able to perform QGP analysis for heavy-ion collision at energy up to

√
s = 5.5

TeV.

1.1.1 Introduction to Quantum Chromodynamics (QCD)

The first step to the historical introduction of QCD was the proposal of a color
quantum number that explains the internal structure of hadrons, defined in the quark
model as:

• mesons for quark anti-quark states (q̄q),

• baryons for three-quark states (qqq).

This quantum number is related to a conserved color charge that can assume only three
values by experimental observations: red, blue and green. Therefore quarks and anti-
quarks carry respectively color charge and anti-color charge. This new quantum number
was proposed to explain the presence in nature of 3/2-spin baryons composed of the same
flavor quarks as:

Ω− = |s↑s↑s↑⟩ ⊗ |ψcolor⟩ (1.1)

The |ψcolor⟩ can be seen as an antisymmetric superposition of three quarks wavefunctions,
including all three possible color charges. |ψcolor⟩ state is added to preserve the Pauli
exclusion principle3, as the |s↑s↑s↑⟩ is symmetric under the position exchange of two
quarks. As the color charges contribute equally, the hadron state seen in Equation 1.1 is
defined as colorless [5]. In the end, the theory asserts color-singlet wavefunction states
for both baryons and mesons explaining why no colored states have ever been detected
as free particles.

This whole mechanism is explained by QCD, which is a gauge field theory based on the
symmetry group SU(3)c

4 and used in the Standard Model to describe strong interactions
between quarks. Specifically, each quark is associated with a matter field spinor defined
by three different color fields: qred, qblue and qgreen. The spinors interact with each other
using a massless vector gauge field called gluon, which provides eight different colored
states considering the SU(3)c adjoint representation [5]. This interaction mechanism is
built to preserve locally the SU(3)c non-abelian symmetry and to conserve the color
charge. The Lagrangian density of QCD is:

LQCD = −1

4
F a
µνF

µν
a +

∑
f

q̄fα(iγµD
µ)αβqfβ −

∑
f

mf q̄
f
αq

αf , (1.2)

1Super Proton Synchrotron.
2Realtivistic Heavy Ion Collider at BNL.
3It asserts that anti-symmetric wavefunctions must define particles with half-integer spin. Therefore

in this case the baryon wavefunction must be anti-symmetric under the exchange of any two quarks.
4The c subscript states for the conserved color charge.

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 3

in which F µν
a is the strength field vector defined as:

F a
µν = (∂uG

a
ν − ∂νG

a
µ − gsf

a
bcG

b
µG

c
ν) (1.3)

and Dµ is the covariant gauge derivative:

Dµ = ∂µ + igs
λa
2
Gµ

a . (1.4)

Here the Ga represents the gluon field with state a (a = 1, . . . , 8), while the spinor
qfα is the quark with a color α (α = red, blue, green) and a flavor f. The λa denotes
the Gell-Mann matrices which are the generators of the SU(3)c group5, while gs is the
dimensionless coupling constant of the strong interactions. Considering the quark masses
mf , a Lagrangian quark mass term is also defined.

In the QGP description, two important concepts of QCD were considered: the asymp-
totic freedom and the confinement. Since the QCD works as a perturbative theory for

weak values of gs coupling, αs =
g2s
4π

[5] must be investigated by taking an analogy with
the fine structure constant of QED6. The αs value must be estimated using amplitude
computation of Feynman diagrams. At higher transferred momentum Q, loops like the

Figure 1.1: One loop diagrams for qq interactions in QCD [5].

ones in Figure 1.1 must be considered among all the diagrams. Therefore, divergent terms
appear in the amplitude computations and the renormalization method must be applied
to absorb these terms into the estimation of αs, causing the running of the coupling
[6]. As QCD is a not-abelian theory, gluon mediators are color-charged allowing gluon
self-interaction Feynman diagrams. As shown in Figure 1.1, QCD theory allows two loop
types that imply a q̄q couple or gluons. These two provide different contributions for the
estimation of αs, generating the following equation for the coupling as a function of Q:

αs(Q) =
1

B ln(Q2/Λ2
QCD)

, (1.5)

in which B is a positive quantity and the Λ (≃ 200 MeV) is an intrinsic energy scale of
the strong interaction.

The plot of Figure 1.2 mostly reproduces Equation 1.5 and at large Q values the
αs → 0. This effect is called asymptotic freedom and shows that quarks behave as free
at short distances (high energy), allowing for perturbative QCD calculations. At large
distances or low transferred Q momentum, the αs becomes larger and below Q ∼ ΛQCD

the QCD gauge theory is no more consistent, as it works as a perturbative theory. This αs

behavior gives strong hints for confinement effect explanation, implying that only color-
singlet states, as hadrons, can propagate as free particles. In fact, at large distances,
quarks show the largest coupling and are more inclined to interact generating hadrons
[6].

5For a SU(N) group the total generators are N2 − 1, so 8 generators are considered.
6α = e2

4π , in which e is the electric charge unit.

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 4

Figure 1.2: Running coupling constant αs as a function of the exchanged momentum Q
[7].

1.1.2 Quark-Gluon Plasma (QGP) overwiew

As mentioned, the QCD asserts that quarks and gluons behave as deconfined states at
high energy levels, and at lower energy regimes they can not propagate as free particles
forming the hadrons. The quark-gluon plasma is a colored matter state consisting of
deconfined quarks and gluons, provided at extremely high temperature and/or density
conditions. A QCD thermodynamic approach can be used to explain the QGP formation
as a hadronic matter phase transition. Figure 1.3 shows the QCD phase diagram, defined
by the temperature T and the baryon chemical potential µB. The µB variable is related
to the net baryon density and is the system energy U deviation caused by increasing the
NB baryon quantum number by one unit:

µB =
∂U

∂NB

. (1.6)

in which dU = TdS−PdV +µBdNB considers all the classical thermodynamic variables.
In equilibrium thermodynamics, the phase transitions of a system are classified by

exploiting the free energy function F = U − TS, defined using the internal energy U
and the entropy S. As shown in Figure 1.3, the transition between the hadrons gas and
QGP behaves mainly as a first-order transition, indicating a discontinuity of ∂F

∂T
that

identifies an abrupt change of matter phase. A critical point7 is defined by specific values
[Tcrit, µ

crit
B], in which the QGP and hadrons gas phases coexist. Above this point on the

boundary path, the transition becomes a crossover [9], indicating no discontinuities in all
F derivative orders, and provides a smooth phase change.

7It is a second-order critical point [9].

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 5

Figure 1.3: QCD phase diagram [8].

At high baryonic potential and temperatures close to zero, the matter behaves as a
color superconductor in which the deconfined quarks tend to form couples with specific
color combinations. This behavior is thought to describe the internal structure of neutron
stars. Instead, the crossover region, for µB → 0 and T > Tcrit, represents the early
universe conditions for the QGP phase transition.

In the statistical mechanics framework, the F free energy of a particles system is
defined by the Z partition function as follows8:

F (V, T) = −T ln(Z(V, T)), (1.7)

in which Z definition involves directly the Lagrangian describing the dynamic of the sys-
tem [10]. As mentioned in subsection 1.1.1, the QCD gauge field theory is consistent in
the asymptotic freedom regime, so an analytic approach using LQCD is allowed only at
high energies. To investigate hadronic matter phase transition, energy regimes among
ΛQCD ∼ 200 MeV are considered, therefore non-perturbative approach as Lattice-QCD
has been provided. The L-QCD is a computational method that mainly infers the ther-
modynamics behavior of a lattice structure of quarks linked by gluons, for different T
and µB values.

As a brief introduction to L-QCD methods, an important variable used is the Polyakov
loop, which provides a measure of the quark deconfinement along the Lattice [10]. This
is defined to inspect the characteristics of QCD chiral symmetry breaking, which is ex-
ploited in theoretical models to explain light mesons appearance [11] and also indicate
the behavior of the quark effective mass [10]. Past models, with µb = 0 and using the
Polyakov loop as a variable, show that deconfinement and chiral symmetry restoration
happen at the same temperature TC

9.
Figure 1.4 shows an L-QCD plot for the scaled energy density ϵ/T 4 as a function

of T/TC , within limit condition µB = 0. Each curve is found considering a different
number of quark flavors and TC represents the phase transition temperature at µB = 0.
Therefore, in a small values range around T/TC = 1 an abrupt rise in energy is found

8Considering k = 1 for Plank units.
9This proves that deconfinement coincides with the shift of quark constituent mass to its real one, at

vanishing baryon potential.

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 6

Figure 1.4: Lattice QCD results for ϵ/T 4 as a function of T/Tc, considering different nf

cases and showing the Stefan-Boltzmann limit ϵSB/T
4 [12].

from a low value in the hadron regime to a higher plateau, slightly below the limit for a
non-interacting quark and gluons gas defined by the following Stefan Boltzmann’s law:

ϵSB
T 4

=
(
16 +

21

2
nf

)π2

30
, (1.8)

in which nf is the considered number of flavors. As the transition is a crossover at TC
value, strong interactions are still ongoing in the energy range around TC providing a
slower function rise. In this region, the matter behaves as a strongly interacting QGP
(sQGP) and the quark-gluon gas limit is believed to be reached slowly at higher temper-
atures [12].

The value of TC has been investigated over the years and the last results for L-QCD
provide a crossover temperature estimation TC ∈ [149, 163] MeV [13].

1.1.3 QGP probes in heavy-ions collisions

At LHC heavy-ions collisions are employed to study the QGP crossover phase tran-
sition region at temperatures characteristic of the µB → 0 limit. The formation and
evolution over time of QGP matter, inside ALICE, is schematized in Figure 1.5 consid-
ering mainly 6 steps [14]:

• Collision: two beams of heavy ions are accelerated at relativistic energy providing
a high Lorentz contraction. As shown in Figure 1.5, the distance between the
centers of two colliding nuclei is defined by the impact parameter b, which is used
to know the number of nucleon-nucleon collisions performed.

• Initial state: within nucleon inelastic collision partons interact considering a large
Q2 transfer momentum range. Softer scattering partons mainly enter an initial
pre-equilibrium phase of a weakly interacting partons gas, while hard scattering
produces high-momentum gluons and quarks.

• QGP formation: creation of even softer partons in the initial state leads to the
QGP formation at ∼ 1 fm/c after the ions collision. At this point the matter

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 7

Figure 1.5: Heavy-ion collision time evolution inside ALICE [14].

expands driven by multiple partons interactions and its behavior can be described
through hydrodynamics, considering an analysis of the bulk viscosity.

• Hadronization: temperature and energy density decrease through the expansion
started from the collision point, then, close to the transition temperature, partons
begin to confine into hadrons considering different times and phase-space conditions
since the transition is a crossover.

• Freeze-out: after hadrons materialize out of partons, the energy density could be
high enough to allow further inelastic collisions causing a new hadrons ”chemical”
composition. Reaching Tchem (it mainly coincides with TC for µB → 0) the particle
composition freeze-out while elastic collision, as for π and K in the figure, continues
until Tkin is achieved at ∼ 10 fm/c [14] after the initial collision.

• Detection: ALICE detect final particles from initial collision after ∼ 1015 fm/c.

At LHC collision energies the QGP state is generated with record lifetime and volumes,
while its features are inspected in ALICE detecting specific decaying products. In heavy
ion collisions, the QGP lifetime (few fm/c) does not allow a QGP direct study, so the
analysis relies on some probes divided into 3 categories considering the system evolution
phases in which they were generated [1] [14]:

• Soft probes: they include particles produced within the hadronization phase re-
sulting from the soft scattering products of the collision. These are sensitive to the
whole medium evolution, so they are used to analyze the final QGP hadrons produc-
tion and the statistical/thermal properties of the bulk by exploiting the following
methods:

– Hadrons multiplicity measurement: the charged particle multiplicity per
unit of pseudorapidity is studied as a function of collision centrality and is
used to estimate the energy density produced during the collision [14].

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 8

– Hadrons spectrum and yields: the hadrons spectra at kinetic freeze-out
are studied to infer the mechanisms of the hadronization phase at different pt.
Furthermore, the different hadron yields and the reconstruction of resonance
decays are used to describe the final system hadrochemical composition, which
is studied to mainly obtain information on the composition of the first collision
stages.

– Strangeness enhancement: this is included in the study of hadrons yields
and it is a main signature of QGP formation. In detail, initial colliding ions
have small strangeness content and provide no net strangeness. Therefore, the
formation of strange hadrons as final collision states implies a higher strange
production within QGP than the hadrons gas phase.

– Fluid Dynamics: the plasma behaves as a perfect fluid that shows different
pressure gradients providing an anisotropic expansion behavior. This expan-
sion is a consequence of partons scattering after the collision, therefore the
azimuthal anisotropies of hadron spectra can be useful to infer the shape of
the fluid’s early stage. The analysis of the azimuthal particle distribution
shows elliptic flow evidence that remarks an ”almond shape” form for QGP
first stages [14].

• Hard probes: these processes consider particles generated at high Q2 momentum
transfer during the collision of the initial ions, before QGP evolution. The dynamic
and cross-section of these products can be treated using perturbative QCD and
their interactions with the medium are used to infer QGP properties. The main
variable used in such an analysis is the nuclear modification factor:

RAA =
d2NAA/dptdη

⟨TAA⟩dσpp/dpt
, (1.9)

in which d2NAA/dptdη
10 is the differential yield in A-A collision, ⟨TAA⟩ is the

average nuclear overlap and dσpp/dpt is the differential cross section for pp inelastic
collision. Deviation from the unity of this quantity shows different behavior between
heavy ions and p-p collisions, assuming no QGP is formed in pp collisions. Within
the ALICE analysis, the main hard probes considered are:

– Heavy quarks hadrons and Quarkonia states: as the mass of charm and
beauty quarks are larger than typical medium temperature, their production
is dominant within hard scattering at the early stage of the system evolution.
Passing through the medium, these quarks go through elastic and inelastic
collisions probing effectively the QGP and then forming heavy-quarks hadrons
and quarkonia-bound states. The yields of these hadron states are investigated
as they probe the collision dynamics at long and also short timescales.

– Jet quenching: high pt quarks or gluons are also produced in hard scattering
at initial stages. These pass through hot and dense matter suffering energy
and momentum losses due to gluon radiation and elastic collisions, produc-
ing showers. At the hadronization phase, these processes end by defining jets
of colorless hadrons. Therefore, jet quenching is defined as the shower de-
velopment and modifications due to the medium, studied considering yield
suppression and the found geometry of jets.

10η is the pseudorapidity and pt is the particles transverse momentum.

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 9

• Electromagnetic probes: several mechanisms during the system evolution can
produce photons or dilepton states. The thermal photons produced by the QGP
medium as qq̄ annihilation, are used to infer the plasma temperature and are clear
evidence of quark deconfinement. This interesting signature is a small signal in an
energy spectrum dominated by background, as prompt photons, coming from initial
hard-scattering, and photons produced in the hot hadronic phase.

A strong signature of the QGP formation in heavy-ions collision is the strangeness
enhancement, as one of the first proposed. Recent 2017 results, shown in Figure 1.6,
highlight a similar behavior for p-p collisions at high multiplicity (considering

√
s = 7

TeV). Indeed the plot, found for the ratio of strange particles to pions, shows higher
values as a function of multiplicity dNch/dη for p-p collision data, finding compatibility
with the Pb-p data and reaching the highest values for Pb-Pb collisions. Therefore, these
results may point to physics mechanisms that explain the suppression of strangeness in
fragmentation, which must be investigated in future experiments [15].

Figure 1.6: pT -integrated yield ratios for strange and multi-strange particles to pions
(π+ + π−) as a function of multiplicity, with rapidity y < 0.5. The plot shows the
comparison between found data for different collisions and the Monte Carlo simulations
performed for p-p collisions [15].

1.2 ALICE layout and its TOF detector

During the LS2 LHC (2019-2022) phase, ALICE collaboration aimed to improve the
experiment capabilities to probe the QGP with the methods explained before, inspecting
also p-p collisions at high multiplicity. Therefore, the upgrade involved the overhaul of
some core detectors to improve the pointing resolution and the readout rate supported
by ALICE. Furthermore, the ALICE readout system was also reinvented to supply con-
tinuous readout, obtaining larger data samples and coping with a high interaction rate.

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 10

The Runs 3 and 4 planning is to record data at interaction rates of 0.5 MHz to 1
MHz and 50 kHz for p-p and Pb-Pb collisions. This will allow the experiment to store
an integrated luminosity respectively of 200 pb−1 and 13 nb−1 [16].

The following section explains the current ALICE detector layout, describing each
sub-detector briefly and focusing on the LS2 upgrades. Furthermore, it includes a full
overview of the ALICE-TOF detector layout which has not undergone any changes during
LS2, while its readout electronic system was modified.

1.2.1 ALICE detector Layout

The ALICE experiment was designed to detect large particle multiplicities 11 in a wide
momentum range (from ∼ 100 MeV/c to ∼ 100 GeV/c). As shown in Figure 1.7, ALICE
is mainly composed of a barrel structure, built around the collision point, and a forward
muon system covering higher mid-rapidity regions. L3 solenoid magnet is installed inside
the barrel structure generating up to 0.5 T magnetic field, while the forward system is
embedded in a dipole magnetic field of 3.0 Tm bending power [16].

Figure 1.7: Internal view of the ALICE experiment, considering the direction of the beam
pipe [16].

The ALICE barrel covers all the azimuth around the beam direction and provides
a tracking system and outer sub-detectors for particle identification (PID). One of the
LS2 upgrades regards the ITS2 (Inner Tracking System) detector, located between 2.2
cm and 39.5 cm from the beam pipe. Its layout consists of 7 concentric layers over

11∼ 2000 charged particles per rapidity unit at mid-rapidity.

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 11

η < |1.3| mid-rapidity region, built using ALPIDE12 pixel sensors technology13. The
main goal of the ITS restyling was to improve primary or heavy-flavor hadrons decay
vertices reconstruction, allowing also an improved detection of low-pt particles. Another
requirement achieved is the high readout rate, to avoid occupancy saturation and support
the high luminosity reached at ALICE.

The following TPC (Time Projection Chamber) in the radial direction is the main
tracking sub-detector of the ALICE barrel, with a cylindrical shape of 88 m3 volume and
a length of 5 m along the beam direction. It covers |η < 0.9| mid-rapidity region and
mainly provides particle tracking from low 100 MeV/c up to 100 GeV/c. The readout
system is placed on a central electrode, that divides the chamber into two halves organized
in sectors. To cope with higher readout rates, the TPC readout sectors were upgraded
replacing the Run 1 and Run 2 MWPC14 technology with GEM (Gas Electron Multiplier)
sensors. These last reduce the ions backflow into the chamber drifting volume, allowing
for reduction of space charge effects that set limits on the achievable readout rate in
previous Runs [16]. Besides tracking, TPC provides PID features as well, since it can
measure particle stopping power (dE

dx
).

On the outer TPC surface, the first sub-detector of PID system is the TRD (Transition
Radiation Detector), covering the mid-rapidity range η < |0.84|. It uses a system of
radiators and MWPCs for hadron-e discrimination, at pt greater than 1 GeV/c, through
dE
dx

measurements and the TR photons detection.
At an even outer radius, the TOF(Time Of Flight) detector is set around the bar-

rel covering a mid-rapidity range η < |0.9|. It provides particle identification in the
intermediate momentum range of 0.3-5 GeV/c and its structure will be explained later.

To achieve hadrons PID in the high pt momentum range (pt > 1 GeV/c), the HMPID
(High-Momentum Particle Identification Detector) is finally set. It is designed with an
acceptance of only 5% of the barrel phase space and uses proximity-focusing Ring Imaging
Cherenkov (RICH) counters.

Furthermore, attached to the ALICE magnet coil, a large acceptance section of the
barrel is covered by electromagnetic calorimeters: the EMCal (Electromagnetic Calorime-
ter) and the PHOS (Photon Spectrometer). The EMCal is a Pb-scintillator sampling
calorimeter, covering a mid-rapidity range η < |0.7| at ϕ = 107o. The PHOS is a high-
resolution calorimeter made of lead-tungstate crystals, exploiting charge particle veto
(CPV) and placed in front of its active area [17].

Finally at large pseudorapidity region (−4.0 < η < −2.5) the Muon Forward system is
located to measure the resonance spectrum of the heavy-quark vector mesons and lighter
ϕ, reconstructing their µ−µ+ decay channel. As was for the Run 2 setup, this sub-system
provides a first absorber, to avoid hadrons and photons detection, followed by the MCH
and MID detectors, as shown in Figure 1.7. The Muon Tracking Chambers consists of
ten layers based on MWPC technology, located at different stations inside the magnet
dipole. Then a second muon filter is set and four RPC-based layers compose the Muon
Identification Detector. A further shield is set at the end of the MID to protect the
chambers from particles produced at large rapidity. During the LS2 upgrade, as shown
in the zoomed image of Figure 1.7, the Muon Forward Tracker was set between the inter-
action point and the absorber, including five layers based on ALPIDE chip technology.
The MFT goal is to enhance the muon spectrometer’s physics program, improving the

12ALICE Pixel Detector.
13Monolithic Active Pixel Sensors (MAPS).
14Multi-Wire Proportional Chamber

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 12

pointing and mass resolutions for the reconstruction of heavy-flavour hadron decays [16].
Another LS2 upgrade was installing the FIT (Fast Interaction Trigger) detector that

provides five sensor arrays, located at different positions along the beam pipe direction.
In particular, two of them are based on Cherenkov counters and were installed on both
sides of the interaction point, as shown in Figure 1.7. These two mainly aim to estimate
collision parameters as collision time, which is important in the TOF PID technique. A
further layer with ring geometry, based on scintillators, is located on the other side of the
muon system absorber. This is used with the Cherenkov layers to provide fast trigger
signals for some ALICE detectors and help in collision parameter calculations. Then,
each of the last two scintillator counters is set far away on either side of the ALICE
detector to monitor the background and help in tagging diffractive events [18].

At a larger distance, ZDC (Zero Degree Calorimeter) detector was built to measure
the centrality for nucleus-to-nucleus collisions. This setup is set at 116 m on either side
of the interaction point and it exploits two calorimeters respectively to detect spectator
neutrons and protons [17].

1.2.2 The TOF detector

The TOF PID technique identifies particle types through indirect mass measurements,
achieved through the estimation of particle momentum p and velocity v. The tracking
system is used to infer p, while the velocity v = L/t is found through the L particle
trajectory length and the time of flight t, measured directly by the TOF detector. As
follows from the p and v relation given by special relativity, the particle mass m is
calculated as:

m =
p

c

√(
c2t2

L2
− 1

)
. (1.10)

Considering two different mass particles with the same p and over the same track length
L, the ∆t value follows this equation (in the limit m2c2

p2
< 1):

∆t = |t1 − t2| =
∣∣∣∣ L2c

(
m2

1c
2 −m2

2c
2

p2

)∣∣∣∣, (1.11)

in which t1 and t2 are the measured TOF for particles one and two. Therefore, particle
discrimination is accomplished in TOF detectors considering the ∆T separation provided
in units of time resolution σTOF . As shown by equation 1.11, particles can be distinguished
using the measured time if the particle momentum is not so large that the |t1 − t2|
difference becomes comparable to the σTOF time resolution of the detector.

Figure 1.8 shows achieved PID performance of the TOF detector, considering the last
provided σTOF resolution of ∼ 60 ps (56 ps) using LHC Run 2 detector calibration [19].
Looking at the 3σTOF horizontal line, the detector can discriminate π/K and K/p up to
momenta respectively of ∼ 3 GeV and ∼ 5 GeV.

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 13

Figure 1.8: The plot shows the comparison between the simulations obtained considering
σTOF equals to 80 ps and 60 ps, for π/K and K/p time difference separation as a function
of particle momentum. Through a new calibration [19] in Run 2, TOF reached a 60 ps
resolution extending the momentum range where it can discriminate particles.

Figure 1.9: Schematic of a SuperModule inserted in the ALICE Spaceframe. The
Babyframe and the Backframe are mainly used for electronics and services purposes
(cooling, gas, high-voltage) [20].

The TOF layout takes a modular structure set in the outer cylindrical surface of the
ALICE barrel Spaceframe, which contains the Tracking system and the TRD detector
[20]. As shown in Figure 1.9, taking the beam pipe direction as a reference, the TOF uses
aluminum structures to arrange modules longitudinally in groups of 5 and transversally
in sectors of 18, for a total of 90 modules. Each of the longitudinal groups, composed

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 14

of five modules, is called SuperModule, which provides on either side two crates hosting
DC-to-DC low voltage power supplies and the readout electronics.

Each TOF module contains sets of double-stack MRPCs (area of 120 x 7.4 cm2), used
as the single detecting units of TOF detector. The module supports external front-end
electronics and services to manage the functioning of the MRPC strips. In general, the
SuperModule structure supplies modules with a different number of strips, so for best
coverage 15 strips are used in its central module while each of the four external ones takes
19 strips. The TOF detector instruments and reads 1539 MRPCs, which supply a total
of 105 readout channels [19].

1.2.3 Multi-gap Resistive Plate Chamber (MRPC)

The Multi-gap Resistive Plate Chamber is a gas particle detector that operates in
very high voltage regimes (some kVs). As shown on the left of Figure 1.10, the MRPC is
designed considering two plates working as the anode (+HV) and the cathode (-HV), pro-
viding a multi-gap structure in between built using intermediate resistive plates. Indeed,
the voltage is only applied on the outer plates letting the intermediate ones electrically
float to their proper voltage value. The MRPC readout is based on pick-up pads placed
on the outer surfaces since this detection technique is based on charge inductance on
both the anode and cathode. The high voltage provides a uniform and high electric field
for each gap, allowing a very fast avalanche formation between resistive plates. The final
signal obtained, as charge induced on both the cathode and anode, is the sum of all the
avalanches generated in the gaps.

Figure 1.10: On the left, a schematic of a general MRPC is shown, while on the right
a dual-stack MRPC similar to the ALICE TOF one is schematized (the +HV and -HV
represent respectively the applied positive and negative high-voltages).

The ALICE MRPCs strips were developed in a double stack structure as shown in the
right scheme of Figure 1.10. Each stack consists of 5 equally spaced gas gaps of 250 µm,
providing specific voltages considering the 2 external cathode plates and the common
anode. Each stack has external and internal resistive ”soda-lime” glasses of respectively
550 µm and 400 µm thickness. The strip exploits an active area segmented into two
rows of 48 pickup pads of 3.5x2.5 cm2, for a total of 96 readout pads [20] [21]. Such a
geometry was chosen to provide a direct differential signal from each MRPC pad to the
front-end electronics and to allow a better pointing of the device towards the interaction
region. The double-stack MRPC strips, installed on the ALICE TOF detector, ensure an
efficiency close to 100% and a time resolution below 50 ps [21].

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 15

1.3 The TOF readout system

Particle Physics experiments are developed to detect signals from many events, among
which the interesting ones must be classified. A logic signal called trigger implements a
discrimination mechanism between interesting events and background, following specific
criteria derived from detected signals (such as detector coincidence, number of detected
events across the detector ecc.). During LHC Run 1 and Run 2, the ALICE readout was
designed as fully triggered. It was based on a three-level trigger model that supplies first
signals L0, L1 and a last L2 trigger to complete the data acquisition. These three required
different latencies achieving a final readout rate of 1 KHz over a Pb-Pb interaction rate
of 8 KHz.

During LHC Run 3, a continuous readout and compressing data strategy is exploited
to support the increased LHC interaction rate. Therefore, to synchronize each readout
and data processing branch, the data stream is divided into the so-called time frames
(TF) of 128 LHC orbits length (∼11 ms). Furthermore, each TF is subdivided into
Heart-Beat frames (HBF), providing data packets in a specific time window of ∼89.4
µs. The ALICE readout upgrade regarded all the readout infrastructure starting from
the new Online and Offline processing farm (O2) design, which manages and compresses
the received data from the setup. The upgrade also included a new design for some
sub-detector readout chains to support continuous readout, while others still operate in
triggered mode.

The TOF detector update considered its electronic readout system and took only
minimum intervention to achieve the continuous readout. In particular, the main readout
elements are still the TRM cards which were not modified or upgraded.

1.3.1 The TOF redaout chain

As mentioned in subsection 1.2.2, each TOF Supermodule provides on either side 2
VME crates, supporting a DC-to-DC converter for low-voltage power supply and the
Supermodule readout electronics. Each crate can contain up to 12 boards: 1 DRM2
(Data Readout Module 2), 1 LTM (Local Trigger Module) and 9 or 10 TRMs (TDC
Readout Module).

The first front-end system is shown in Figure 1.11 and it manages the differential
signals from the MRPC pads through FEA (Front-end Analog card) cards, which com-
municate directly with the crate boards. Each FEA (Front-end Analog card) supplies 3
NINO ASICs to amplify and discriminate the MRPCs output signals. Each NINO chip
provides 8 input differential channels to match the MRPC pad differential output [20].
The FEA card collects the NINO outputs and provides a connection through shielded
cables to the TRMs. Each differential output is then digitized by the HPTDC (High-
Performance TDC) ASICs, hosted by the TRMs. Figure 1.11 also shows the FEAC
(Front-end Analog Controller) custom card, used to collect signals from 12 FEA cards.
Then LTM card manages the FEAC signals for trigger purposes and monitors the FEAs
low-voltage supply.

The readout electronic system works through the VME bus provided by the crate. The
VME is an asynchronous communication protocol that supports master/slave topology.
Therefore, the system is based on a single master topology, in which the DRM2 board
acts as the VME master to manage the data transactions with the TRMs slaves. The
LTM board instead works as an independent interface between the front-end system and

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 16

Figure 1.11: Front-end electronics provided for one MRPC, showing the connection with
specific boards inserted in the readout crate [20].

the CTTM (Cosmic and Topology Trigger Module) ALICE trigger system. In detail,
each board type hosts different components to accomplish specific operations:

• The TRM hosts 30 HPTDCs for a total of 240 differential input channels fed by
the front-end output signals. An Actel APA 750 FPGA controls the data stream
received from these ASICs, while some external SRAM memories buffer the data
until they are read.

• The DRM2 uses a Microsemi Igloo2 FPGA to manage the TRMs readout and
data stream towards the DAQ system. The FPGA provides different operations
and features, through the control of some components on board [22]:

– An SSRAM of 1Mbx36 memory is used to buffer the TRMs data, read by the
DRM2 through the VME bus.

– The GBTx ASIC drives the data toward the DAQ system. This ASIC provides
a fast link through a VTRx optical transceiver, reaching a bandwidth of 3.2
Gb/s. The same link receives the 40 MHz LHC clock and the input trigger
signal, which is used to start the TRMs readout.

– The board also features other 2 slow-control links to the FPGA. The first is
a CONET2 optical link15 to configure the connected TRM boards, monitor
data taking and read voltage and temperatures. The other one is an Ethernet
link connected to an Atmel ARM processor for reprogramming remotely the
FPGA.

15Developed by CAEN

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 17

• The LTM board hosts 2 different FPGAs with different implemented logic to moni-
tor the voltage and temperature of the front-end system and generate trigger signals
sent to the CTTM and then to the TCP (Trigger Central Processor).

Figure 1.12: Schematic of the readout system, considering each step from the HPTDCs
to the final ALICE DAQ system [23].

The main TOF upgrade, performed during the LS2 period, is the DRM2 board intro-
duction inside the readout system, which is responsible for the TRMs readout and the
LHC input clock distribution to all the crate boards. In detail, the readout mechanism
is shown in Figure 1.12, highlighting each specific step starting from the MRPCs signal
detection [22]:

1. The TRMs cards digitize the signals from the FEE electronics using the hosted
HPTDCs, waiting for a trigger.

2. The DRM2 receives an input trigger through the GBTx link and sends it directly
to the HPTDCs via the VME interface. Then the data are read and stored on the
DRM2 SSRAM.

3. Finally the data are sent through an optical link to the ALICE DAQ system, using
the GBTx ASIC.

Such a system has been implemented to mimic a continuous readout through a periodic
trigger of 33 KHz, as explained in the following sections. Furthermore, the VME64
readout (40 MB/s) has been upgraded to the VME64 2eSST 16, allowing the DRM2 to
read data from TRM cards with a bandwidth of up to 160 MB/s. The new design of the
TOF readout matches the features of TRM boards, which have been used since the start
of LHC Run 1.

1.3.2 The TRM board and the HPTDC

The TRM is a 9U VME slave card that hosts 30 HPTDC ASICs, organized in two
separate 32-bit parallel readout chains. Its layout consists of 10 piggyback cards hosting
3 HPTDCs each, arranged on both sides of the board. To control the data stream from

16The DRM card reads 64-bit data on the falling and rising edges of the DTACK signal, considering
a frequency of 10 MHz.

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 18

the ASICs, the board provides a central FPGA that implements the VME interface and
acts as [24]:

• Readout controller: it manages the readout of both the TDCs chains as it receives
the first trigger input via VME interface.

• Event manager: considering some parameters describing each triggered event,
the FPGA decides to discard the data or collect them in an event packet with a
specific header associated.

Considering the logic block scheme of Figure1.13, these FPGA processes are shown sepa-
rately to explain better the data stream during the TRM readout. As mentioned, during
Run 3 a unique trigger signal is used to start the readout of the HPTDCs data buffers.
Then the readout controller sends the data from both TDCs chains to the event manager,
which scans the data related to each event. All the valid event packets are buffered in an
external dual port RAM waiting to be read by the DRM2 through the VME interface,
passing through the output FIFO.

Figure 1.13: Logic block scheme of the TRM board, showing each process implemented
on the core FPGA [24].

Specifically, the HPTDC is a multi-channel TDC with a programmable binning (24.4
ps to 781 ps), developed in a 0.25 µmCMOS technology by the CERN/EP microelectronic
group [25]. This ASIC was built to provide multi-hit measurements in a multi-events
environment. Figure 1.14 shows its architecture highlighting with different colors its 2
main sections: the Timing Unit and the Data Processing Unit.

The Timing Unit works considering a precise reference clock of 40 MHz (LHC clock),
which feeds a PLL generating configurable 40/80/160/320 MHz clock frequencies. The
time measurements are performed using counters running with the generated frequencies
and exploiting the state of an internal DLL (Delay Locked Loop). The DLL consists of a
32 delay elements line, that samples the hit signals at each step to provide a binning of
Tclock/32. A further interpolation, within a DLL delay cell, is used in the VHRM (Very
High Resolution Mode) mode, exploiting an R-C delay line of 4 equal steps. This mode

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 19

Figure 1.14: HPTDC blocks diagram, in which the Timing Unit and Data Processing
Unit are indicated in red and blue respectively [25].

leads to a 24.4 ps binning, but limits from 32 to 8 the number of available TDC input
channels. As each of the 30 HPTDCs, installed on the TRM, works in the VHRM mode,
the NINO ASIC was built as an 8-channel output device to feed directly a corresponding
TDC. Each of the 32 input differential channels can perform time measurements for both
the leading and trailing edges of a hit signal. Then a 4-measurement buffer is provided
for each of them, limiting to 5 ns (10 ns guaranteed) the distance between 2 consecutive
measurements as indicated by the constructor [25].

As shown in Figure 1.14, the channels are organized, inside the ASIC architecture,
into 4 groups of 8 channels, and the Data Processing Unit mainly contains the processes,
synchronous with a 40/80/160 MHz clock, implemented to manage the data up to the
readout. Each group stores the channel measurements in a 256-word deep buffer (L1)
waiting to be serviced by the trigger-matching unit (optionally disabled for a free-running
acquisition). This function associates the timestamp of a trigger signal (measured with
a 25 ns binning) to the hits measurements. The matching is provided considering the
configurable time window and trigger latency, which is the time needed for the trigger
arrival. Trigger time tags are stored in a unique 16-deep Trigger FIFO waiting to be used
inside the matching function.

Then all the data that defines an event including hits and specific event words, are
written in a FIFO collecting all the 4 groups’ data. All the accepted data from the TDC
can be read using a parallel or a serial interface, in words of 32 bits. As mentioned, the
TRM uses the parallel interface configuring chains of 15 TDC slaves that are read by the
core FPGA programmed as the master chip.

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 20

1.3.3 Implementation of the TOF continuous readout

During LHC Run 3, the continuous readout system of ALICE TOF detector is imple-
mented exploiting the trigger matching function and the buffer features of the HPTDC.
The trigger matching is shown in Figure 1.15, where at each trigger input a trigger la-
tency is set backward in time defining the trigger time tag that must be matched to
specific hit measurements, found within a configured matching window. The search for
hits, matching a trigger, stops when a hit older than a wider search window is found or
the L1 buffer is empty. All the matched hits are shifted to the readout FIFO while the
others are rejected. The HPTDC architecture is designed to work considering the bunch

Figure 1.15: HPTDC trigger matching for hits on channels [25].

structure of particle beams, so the trigger time tag identifies a bunch ID, providing a
binning of 25 ns since particle bunches cross at LHC with a 40 MHz frequency. There-
fore, the latency and matching window time lengths are defined using this specific clock
period as a time unit.

Figure 1.16: On the top-left the matching trigger algorithm, configured for Run 1 and Run
2, is shown. On the bottom-left, a periodic trigger and a specific HPTDC configuration
are used to mimic a continuous readout, as for Run 3. On the right, a plot of the allowed
values for matching window and trigger rate is shown, in which the green point is the
today chosen operational point at LHC [26].

The left plot of Figure 1.16, shows first the trigger matching application during Run
1 and Run 2. Due to the few KHz trigger rates, the trigger latency is set to 6500 ns

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 21

(representing the L1 trigger latency), while a matching window of 600 ns was used to
collect all the hits matched to the triggered collision. Using a similar configuration, the
continuous readout is implemented considering a single periodic trigger with frequency fT
and setting a matching window of mW = 1/fT [26]. This idea is shown on the bottom-left
plot of Figure 1.16, in which a 250 KHz trigger and a matching window of 4 µs are set.
Therefore, as the HPTDC allows matching multiple triggers with hit measurements, a
larger latency of 5 µs is used to acquire continuously all the hits registered by the TOF
detector.

However, this readout system is constrained by some limits and the allowed fT and
mW values are shown in blue in the right plot of Figure 1.16. On the one hand, the
HPTDC does not allow matching window values larger than half of the LHC orbit. On
the other hand, the trigger period must be less than the TRM time for a read cycle of
the 30 HPTDCs, which defines a trigger frequency limit of 250 KHz. In the end, the
readout time on average must be lower than 1/fT , and a good working point was found
at a trigger frequency of 33 KHz shown as a green point on the plot. This result was also
achieved thanks to the VME64 2eSST upgrade of the VME interface, which increases the
TRM readout rate by the DRM2 board.

1.3.4 The picoTDC as a successor of the HPTDC: towards
TRM2

Since the TOF detector needs to be reliable and operative until the next shutdown of
the ALICE experiment (at the end of Run 4) it is important to provide at least a partial
replacement for the 684 TRM modules installed. Especially, several TRM components
are no longer repairable or are out of production, which is the case of the HPTDCs and
the Actel APA 750 FPGA. It is anticipated that a relatively large amount of TRM boards
(50 cards) will not be available in Run 4, while during Run 3 the available spares have
already been ended.

Figure 1.17: Layout scheme of the TRM2 board.

A new project for a TRM2 board started and the first card layout is shown in Figure
1.17. Similarly to the TRM, such a board is a 9U VME64 card and shows new-generation

CHAPTER 1. THE ALICE EXPERIMENT AND ITS TOF DETECTOR 22

components. In detail, the Microchip PolarFire FPGA is the best candidate for the
core FPGA that controls the board features. This is connected to 4 PicoTDC ASICs
that replace the old HPTDCs, in the data digitization. The PicoTDC is a configurable
binning TDC, built with a 65 nm CMOS technology, and it shows an architecture similar
to the one of the HPTDC that supports continuous readout performance. Such an ASIC
provides some new interesting improvements that must be considered in the TRM2 layout
project:

• PicoTDC can use all the 64 differential input channels, with all the possible config-
ured binning. Therefore, as shown in Figure 1.17, only 4 ASICS are used to cover
the needed 240 channels supplied by the TRM board.

• Fewer piggy-backs can be arranged providing 5 VHDCI connectors for each card
side. Each VHDCI connector must feed 24 PicoTDC channels.

• Each PicoTDC is independent of the other, therefore the readout can not be im-
plemented using a chain as in the TRM case considering the HPTDCs.

To test the performance of both the PolarFire FPGA and the PicoTDC ASICs, a test
board was designed by the INFN electronics laboratory and the ALICE group of Bologna.
The PicoTDC board project aims to test specific configurations of these ASICs set via
the PolarFire FPGA.

Executive summary

The ALICE detector is designed to study the QGP state of matter, considering the
framework of heavy-ion collisions at relativistic energy. Within the ALICE setup, its TOF
detector is used for particle identification in the intermediate pt momentum range. Before
LHC Run 3, the TOF electronic readout system was upgraded to support continuous
readout. This upgrade did not include the TRM boards used to digitize the signals
coming from the TOF setup. As many TRM components are out of production and the
TRM spares are progressively reducing, a new project for a TRM2 board began. This
card will provide a new design including a PolarFire FPGA and the new PicoTDC ASICs,
which must be tested using a first test board.

Chapter 2

The PicoTDC board and the IPbus
protocol

The PicoTDC board is shown in Figure 2.1 and provides a PolarFire FPGA to im-
plement the logic that controls two PicoTDC ASICs, hosted on board. Furthermore,
the board supplies different interfaces exploited to communicate directly to the FPGA.
Therefore, the FPGA firmware and related software routines can be designed to pro-
vide user commands that control the different board features through Ethernet or USB
communication protocols.

This chapter provides first a detailed description of the PicoTDC ASIC, since it is
the main TRM2 element. Then, it describes the board layout designed by the INFN
electronics laboratory of Bologna focusing on the Ethernet connection subsystem, since
both the software and firmware were developed using the IPbus protocol. Finally, a brief
introduction to the IPbus protocol is provided, explaining how the IPbus is built over
the Ethernet protocol.

25

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 26

Figure 2.1: PicoTDC board in which the PolarFire FPGA (blue), the 2 PicoTDCs (red)
and the Ethernet connector subsystem (purple) are highlighted.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 27

2.1 PicoTDC overview

The PicoTDC is an ASIC designed by CERN that provides high-resolution measure-
ments with a high channel count. Similar devices are used in many scientific domains,
especially in HEP physics to build PID and TOF detectors, and tracking systems at high
particle rates. The PicoTDC was designed to support applications and R&D activities
with different high-time resolution detectors. Therefore, this ASIC does not include any
analog front-end and discriminator circuit, since they must be optimized for each specific
sensor type.

As mentioned in subsection 1.3.4, the PicoTDC is a 65 nm CMOS technology ASIC
and mainly reproduces the HPTDC architecture, divided into two sections: the Timing
Unit and the Data Processing Unit. The former decodes the hit signals received in
each input channel, while the second elaborates the data and collects them into FIFO
memories, waiting to be read out. The PicoTDC, as a new generation chip, provides
better resolution and a higher number of input channels than the HPTDC, which has
been extensively used in HEP experiments and is now out of stock.

2.1.1 Architecture

This ASIC can detect both the leading and trailing edges of a signal, providing the
measures for the arrival time of each edge or a direct Time Over Threshold (TOT)
measurement of the signal. For best resolution performance, the TDC must rely on a
precise time reference of a differential external clock. Such a clock feeds an on-chip PLL
and must run by construction at 40 MHz (quite synchronous with the LHC bunch crossing
frequency that runs at 40.08 MHz).

The PLL performs clock multiplication generating frequencies from 40 MHz up to
1.28 GHz. All the clocks used inside the TDC come from the PLL since they must be
perfectly synchronized.

As shown in Figure 2.2, the TDC arranges 64 differential acquisition channels into 4
groups with the same data flow, which ends in a related readout FIFO with 8 differential
output lines.

The Timing Unit in Figure 2.2 includes, for each input channel, the hit decoding and
the first derandomizer logic. The hit decoder implies a 2-stage DLL to sample the hit
signal for each time tap at each clock cycle, detecting the leading or trailing edge of the
signal (the hit decoder can be configured to sample both leading and trailing edges or
just one). In detail, the DLL works synchronously with the 1.28 GHz clock, and its first
stage reaches a fine resolution of 12.2 ps (6 bits). Its second stage provides an additional
interpolation within each first-stage delay cell, enabling a better resolution of 3.05 ps (2
bits). The final time measurement includes the DLL state (6 or 8 bits), a medium time
measurement given by the final state of the PLL feedback divider (5 bits), and a coarse
time measurement, found by a counter synchronous with the 40 MHz clock (13 bits). In
the end, the total dynamic range takes 24 bits for a 12.2 ps binning and 26 bits for the
3.05 ps finest binning, while the full-scale range is 204.8 µs [27]. The Timing Unit also
includes, for each channel, a local derandomizer that runs at the DLL frequency. Such
a memory can stand up to 4 measurements, before being written into the next 512-word
channel buffer synchronously with a 320 MHz clock. If the derandomizer is full, the next
data will be ignored. Furthermore, the TDC allows a 781 ps minimum time between
two consecutive time measurements; otherwise, the hit values written inside the channel

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 28

Figure 2.2: PicoTDC internal scheme architecture explaining from left to right both the
Timing Unit (red) and the Data Processing Unit (blue) of the device.

buffers can be corrupted [27].
The Data Processing Unit is clocked with the generated 320 MHz frequency and

arranges the following logic in 4 groups of 16 input channels. Each channel, as men-
tioned, stores its time measurements in a 512-word deep buffer waiting to be read out
by the trigger-matching function of the related group. In detail, the trigger information
is generated using the coarse counter, running at 40 MHz, at each trigger input signal.
Considering each group, this information is stored in the related 512-word deep FIFO.
Then, as for HPTDC, the PicoTDC can associate trigger signal information to the related
hits measurements. Therefore, considering the TDC configuration, each group data can
go through 2 processes:

• The free-running mode: the trigger-matching and the trigger input are disabled,
so the data are written directly into the next readout buffer.

• The trigger mode: the trigger-matching function of each group uses the trigger
information stored in the trigger FIFO, which includes a trigger time tag, an event
ID and a bunch count ID. The matching is performed by selecting the hits related
to a specific tag, within a configurable time window. Then all the data describing
a triggered event are sent to the next readout buffer considering a particular data
sequence.

Finally, the data of each group are stored in the corresponding 512-word deep readout
FIFO, using a 32-bit format. All the group readout buffers can be read through 1 to 4
byte-wise1 readout ports at a configurable rate of 320/160/80/40 MHz.

The PicoTDC can be configured and monitored via an I2C connection by accessing
its internal registers, using 16-bit addresses. As I2C is a communication protocol with a
master/slave structure, a master must address the desired connected slave using a specific

1Each port provides 8 differential lines.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 29

7-bit address. Therefore, within its configuration and control routines, the PicoTDC acts
as an I2C slave and its 7-bit address is settable via 7 external pins (I2C ADDR[6:0]) [27].

2.1.2 Phase Locked Loop (PLL)

An analog PLL is a device capable of generating multiple clock frequencies in response
to an input reference clock. As shown in Figure 2.3, this circuit compares the frequencies
of the clk in signal and an adjustable feedback signal, generated by the divider. When
these two match in phase and frequency, we have a final steady state indicating that the
PLL is locked and the desired frequency is produced.

Figure 2.3: PLL block diagram [27].

Considering the scheme in Figure 2.3, the TDC PLL includes as the first object on
the left a TMR PFD, which is a phase frequency detector built using the triple modular
redundancy technique. In electronics the TMR technique generates reliable ASICs for
critical environments, such as the one exposed to radiation, preventing ASIC malfunc-
tioning. The PFD checks the difference in frequency and phase of the two inputs and
activates a charge pump that supplies voltage impulses proportional to the discrepancy.
As the second step, an L-C based Voltage Control Oscillator (VCO) is set to modulate
the output frequency in response to an input voltage. Closing the loop, a TRM fre-
quency divider provides feedback for the PFD and the AFC block (Automatic Frequency
Calibration). The AFC logic is used as calibration for the VCO switchable capacitor to
optimize the PLL performance in response to changes in temperature, power and voltage
[28].

The PLL lock phase is obtained after ∼10 ms and its measured jitter is 340 fs [27].

2.1.3 Delay Locked Loop (DLL) and interpolators line

The analog DLL is the technological evolution of a delay line looped circuit. Specif-
ically, it constrains the total delay buffer to be equal to an external clock period, using
a phase detector followed by a charge pump that controls the voltage of each delay gate.
This structure allows to cure the metastability of the delay line circuit caused by voltage
and temperature variations. Then the hit signal is sampled inside a capture register for
each time tap, leading to the time measurement with a resolution equal to the tap delay.
To increase the measurement dynamic range without using too large delay lines, the loop
structure and separated counters are exploited providing coarser measurements that must
be added to the DLL one.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 30

Figure 2.4: This DLL scheme explains its two main consecutive stages, showing the
adjustment taps line before the capture register of two different channels [28].

The PicoTDC DLL, as shown in Figure 2.4, exploits a 64-taps delay line with a 1.28
GHz reference clock, reaching a resolution of 12.2 ps. The DLL also has a second stage
line that arranges 4 R-(parasitic C) interpolation time taps at each delay step of the first
stage. In detail, the total number of time taps becomes 256, reaching a binning of 3.05
ps. As explained, the final PicoTDC time measurement is the sum of all the values, found
by the TDC coarser counters, and the DLL measurement, considering its coarse or fine
binning.

In the DLL final stage, each delay time buffer disposes of a built-in adjust feature
with a resolution of 0.6 ps to correct the possible mismatches [28]. The tap adjustment is
done directly on the output of the first two stages and is used in the fine resolution mode
(3.05 ps binning), requesting an individual calibration for each supplied TDC. Dividing
the channels into 2 halves ([0-31] and [31-63]), it is possible to set all the adjustment
tap values in a 2570-bit deep I2C register (0xFFFC) to configure each half independently
[27].

The DLL must be initialized after the PLL lock state and its correct locking phase
takes ∼10 ms.

2.1.4 The Data Processing Unit

As mentioned, the Data Processing Unit of the TDC architecture runs at 320 MHz
and is built to implement buffering and trigger extraction features for each 16-channel
group. In detail, each channel buffer takes the oldest hit in the related derandomizer
and works until its 512 words-deep memory fills up. The buffer logic is implemented
considering the TDC configuration, and provides [27]:

• Paired measurement: the TDC is configured to perform TOT measurement.
Therefore, only one 32-bit word is stored in the buffer collecting the information
of both the detected leading and trailing edges. The word format contains 16 or
19 bits to represent the leading edge of the pair and provides 8 or 11 bits for the
width.

• Single measurement: the TDC is configured to perform time measurements of
one or both the signal edges. Therefore, each measurement for a detected leading

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 31

or trailing edge is stored in the channel buffer considering a 32-bit word, in which
24 or 26 bits represent the measurement.

For single-channel calibration purposes, a configurable 26-bit offset can be added to the
measurement before the channel buffer storing.

At this stage, the trigger matching function, implemented for each group, reads the
time measurements at random access inside the corresponding channel buffers. As shown
in Figure 2.5, each trigger input signal is associated, through the trigger interface, with a
time tag found as the difference between the trigger signal arrival time and the configured
latency width. This trigger time tag is decoded using the 40 MHz coarse counter and can
be optionally subtracted to have values relative to the event of interest occurrence.

The buffered data are matched to the corresponding trigger time tag, (stored in the 512
deep-word triggers FIFO) considering a configurable time window. The data within the
time window are selected as belonging to a specific triggered event and are written to the
next readout FIFO, with header and trailer words. Considering the TDC configuration,
the headers contain event information such as the Event ID, the Bunch ID, the trigger
time tag, and status bits showing the nearly full TDC buffers. The trailer instead provides
the same Event ID plus a word count (see subsection 4.3.2).

Figure 2.5: The trigger matching function scheme considers as processed (P) only the
hits matching the window, while the others are called failed (F) [27].

The latency and time window lengths are defined in steps of 40 MHz clock cycles,
as the trigger time tag is decoded through the 40 MHz coarse counter. The maximum
configurable value for the latency is half of the maximum coarse count (213/2 = 4096
clock cycles) by construction. However, it is recommended to have a maximum trigger
latency of 211 = 2048 clock cycles (51.12 µs) [27]. Furthermore, the trigger latency must
be set longer than the matching window to prevent the matching function ends before
all the related hits are written inside the channel buffers. The trigger matching function
stops when newer hits arrive after the search limit or when no more data are available
in the buffers. The hits, that do not match with the latest trigger, are removed from the
channel buffers. If no trigger is waiting in the FIFO, the hits are also removed from the
buffer, after a trigger latency plus one clock cycle, to prevent the logic from overflowing.

As the trigger FIFO runs full, the time tags are discarded, while the event counter
keeps running to maintain synchronization with the data acquisition. All the logic and
buffer memory implemented in the Data Processing Unit can be reset through a global
reset, sent via an I2C command or a dedicated external pin.

This digital logic is properly designed for experiments and applications with large
drift time or closely spaced triggers, since it can match detected hits to multiple triggers.
Furthermore, the TDC provides an event counter and a bunch counter both running at

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 32

40 MHz, reproducing the LHC bunch structure. Used only in the triggered mode for
header and trailer information, these two 13-bit counters can be reset to their configured
offset through the rollover or as a command response (using the I2C bus or dedicated
external pins).

The final readout phase is managed by each group, in which the readout priority is
arranged in a round-robin fashion to guarantee a fair bandwidth between the 16 channels
[27]. Each group is the input of a 512 words-deep FIFO that organizes the output data
flow as 8-bit communication, running at a frequency of up to 320 MHz. As the readout
FIFOs run full, the TDC can be configured to reject all the possible arriving events data
or to block the trigger matching function, until new space in the readout FIFOs becomes
available.

2.2 Board features overview

The board layout includes three main sections, as shown in Figure 2.6. Starting
from the figure top-left, the power supply is the first section and provides all the specific
voltages to power up each board component.

Looking at the bottom of the figure, the 2 PicoTDCs are linked to the PolarFire
FPGA. The 2 ASICs can receive sub-LVDS signals through 2 FMC (FPGA Mezzanine
Card) connectors, where other boards including the front-end electronics (discriminator
and amplifier) and the related sensor might be plugged.

The last section, on the right, includes the possible connectors that interface with
the integrated FPGA for different purposes. On the right of the FPGA, a JTAG con-
nector and many I/O auxiliary facilities are provided for FPGA programming and reset.
Furthermore, a USB-C link is provided through an FTDI chip or plugging a Cypress
mezzanine, while an Ethernet link is managed instead through a PHY chip or exploiting
an optical connector. This section focuses mainly on the Ethernet subsystem, showing
its hardware features and design.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 33

Figure 2.6: This PicoTDC board scheme shows its main components providing a subdi-
vision into sections.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 34

2.2.1 Power supply section

The board must be supplied with a voltage between 9 V and 14 V to reach the desired
voltage level for each component. As the first control interface, the supply section includes
a push button connected to three voltage monitors programmed to cut the circuit current
until the button is pressed.

At that point the current flows into five switching converters, to generate the five
independent voltage levels for the five different power rails of the board. Furthermore, the
LDOs (Linear Dropout Regulator) generate other voltage levels along the lines, reducing
the current noise caused by the switching inductance and dissipating more power in
exchange.

Figure 2.7: Simple circuits schematics of a buck converter and an LDO circuit [30].

Figure 2.7 shows on the left a simple schematic of the DC-DC buck converter circuit.
It consists of a two-loop circuit designed to set a defined voltage drop on the load, using
the inductance features of creating opposite voltage drops in response to current changes
[29]. When the switch is closed, the current flows into the inductance and the diode is cut
from the circuit. Then, in the open switch phase, the current flows only in the second loop
since now the diode is forward biased and the inductance behaves as a current generator.
The voltage on the load floats around a common value due to the coupling with the
capacitor. Thus, working on the switch frequency, it is possible to obtain an almost
constant voltage drop on the load for the whole time. Considering the buck converter
continuous mode, the output voltage Vout as a function of Vin is defined by the duty cycle
of the switch, which provides the D coefficient for the equation [29]:

Vout = DVin with 0 < D < 1. (2.1)

The right scheme of Figure 2.7 represents the LDO (Low-Dropout Voltage regulator)
circuit, which usually requires a transistor and a differential amplifier. The LDO senses
any change in the output load resistance to provide a constant voltage at the regulator
output [30]. The circuit uses the amplifier to compare a reference voltage Vref and a
fraction of the output voltage Vout, found using two resistances R1 and R2 in series. Its
output considers any variation VERR between these two voltages and it is connected to
the GATE of a PMOS transistor, used as a pass element. Then considering the Vin input,
any voltage variation results in a change of the VGS voltage that causes an increase in
current IDS through the transistor. This mechanism keeps the final output voltage at the
constant value of:

Vout = Vref

(
1 +

R1

R2

)
, (2.2)

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 35

if Vin is high enough to keep the amplifier or the transistor out of saturation [30].

Figure 2.8: Voltage supply lines scheme.

Figure 2.8 shows how the power rails on the board are built, highlighting which
components are linked along each line. Considering only the Ethernet subsystem for the
connectors:

• The PHY chip (dark blue boxes) for the Ethernet is powered by three different lines
on the 3.3 V rail, which exploits LDOs for 2.5 V, 1.8 V and 1.0 V levels.

• The FPGA banks, transceiver and power supply interfaces (light blue boxes) are
powered using lines at 3.3 V, 2.5 V and 1.8 V; while its core is powered by the 1.0
V line.

• The two PicoTDCs (green boxes in the bottom-right corner) are linked to the 1.8
V line through 2 LDOs that keep their voltage at 1.2 V.

The LDOs and switching circuits are represented as pink boxes, while the USB electronics
is shown in the top-right corner. In detail, the FTDI system is shown using the red boxes
and the Cypress Mezzanine connector considers only the dark green box. An important
observation regards also the power line of the FPGA bank 7, drawn in Figure 2.8. As
mentioned in the following subsection, the PolarFire FPGA, hosted on board, provides
a structure of only 6 banks. However, the FPGA power supply includes a further bank,
without any I/O pins, that must be powered.

2.2.2 FPGA PolarFire

An FPGA (Field Programmable Gate Array) is a silicon chip that provides a user-
programmable matrix of logic blocks to implement logic functions and algorithms. The
one on board is a PolarFire MPF200T FCG784E, developed by Microchip Technology.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 36

This device is a flash memory FPGA, which ensures low static power consumption and
a reliable system even under radiation exposure.

This PolarFire FPGA mainly includes a logic fabric, a lot of user-programmable I/Os,
a 16-lane transceiver communicating with the fabric, a security encryption co-processor
and a system controller [31]. Microchip also offers soft IPs to implement communication
protocols, such as Ethernet.

The fabric features 192K logic elements (4 LUTs and 1 FFD each) and 588 math
blocks, which use an 18x18 MACC (Multiply-Accumulate) to create digital filters. Fur-
thermore, the FPGA fabric integrates 4 different types of memories :

• LSRAM is a volatile memory, based on interleaving unit cells of 20 KBytes of static
RAM with SECDED (Single Error Correction and Double Error Detection).

• µRAM is a smaller 64x12Byte deep RAM, implemented using latches and SEU
(single event upset) immune capabilities.

• µPROM is a non-volatile memory, that is writable during programming and read-
able at runtime. By construction it is SEU-immune and for such a reason is very
useful for instantiation of parametric and initialization data.

• sNVM features 56 KBytes of non-volatile memory which is readable and writable at
runtime by a user service call, using the system controller. It is useful to initialize
LSRAM and µRAM with secure data.

The configuration memory is SEU (Single Event Upset) immune, where the SEU is a
signal instability inside the fabric due to radiation.

Considering the clock network, the FPGA provides a global network to route clocks
and resets within large sections, with low skew, and regional networks that take clock
domains only for limited silicon sections. As clock management tools it provides 8 DLLs
and 8 PLLs, not considering the PLLs used for the transceiver lanes.

Up to 368 I/Os support both differential and single-ended I/O standards. As digital
logic, for the I/Os to the fabric, the device includes I/O delay chains, registers and control
logic for I/O modes. As shown in Figure 2.8, the FPGA PolarFire MPF200T FCG784
provides 6 different I/O banks hosting user I/Os that share the same VDDI power supply
and voltage reference Vref [32]. The FPGA banks are numbered from 0 to 5 and their
I/O pins are instrumented for different tasks inside the firmware:

• Bank-0 provides the HSIO2 pins for Ethernet and USB-C FTDI connections. Fur-
thermore, two pins are used to implement the I2C connection for the configuration
of both PicoTDCs, exploiting a voltage I2C translator to interface with the ASICs
that need logic-level signals with power rails at 1.2 V [33].

• Bank-1 provides the HSIO pins directly linked to the Cypress mezzanine connector
for a USB-C connection.

• Bank-2 provides the GPIO3 pins for the PicoTDC A connections.

• Bank-3 provides fixed pins for FPGA programming via JTAG/SPI connection and
global reset of the FPGA features.

2High Speed I/O
3General Purpose I/O

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 37

• Bank-4 provides the GPIO pins for the PicoTDC B connections and the input of
the on board 40 MHz differential clock.

• Bank-5 provides auxiliary GPIO pins for clock and reset inputs. Furthermore,
other pins are linked to JVS strips on board and used as firmware debugging facil-
ities.

On the PolarFire east side, the 4 XCVR interfaces are supplied for transceiver commu-
nication from 250 Mb/s up to 12.7 Gb/s, with 4 lanes each [31].

Figure 2.9: Banks locations inside the PolarFire MPF200T FCG784 FPGA, in which
each bank is associated with a specific task implemented inside the firmware [31].

Furthermore, the FPGA provides a system controller based on a Cortex M3 ARP
internal processor and is used to ensure correct FPGA power-up and functioning, re-
sponding to the system service calls. The system service provides information on the
FPGA state, allowing the user to call specific system controller actions.

For programming features, the FPGA PolarFire can behave as a slave or a master.
In the first mode, the device’s flash memory can be programmed via a JTAG connector
or by using an SPI external master. The other mode allows the system control to check
for an external SPI flash memory and update or reboot the firmware [31].

In summary, the PolarFire FPGA is designed for the best achievable power consump-
tion using CMOS configuration cells, which provide power advantages over SRAM FPGA
technology [31]. Furthermore, these kinds of FPGA were chosen over the SRAM ones for
their immunity to Single Event Upset in the configuration bits.

2.2.3 Ethernet subsystem on board

An Ethernet network is a framework where each connected device can transfer data
with the defined nodes. This communication is based on the OSI (Open Systems In-
terconnection) model shown in Figure 2.10, which provides a 7-layer structure with an
increasing connection abstraction level from bottom to top [34]. Each node of an Ethernet

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 38

network offers such a layer structure and each layer relies on independent and transparent
communication with the same layer of other nodes. Specifically, the OSI model aims to
provide functions and information to the highest framework layer passing through all the
previous ones.

Figure 2.10: OSI model 7-layer structure.

The lowest abstraction layer of the OSI model is the Physical level (PHY), which cor-
responds to the device interface supporting the electrical communication over a physical
connection with another device. Considering our case for a 1 Gb/s Ethernet communi-
cation, such a role is performed by the VSC8541-05 chip, which must be configured in a
1000BASE-T mode to allow a physical connection using a twisted pair Ethernet cable.

In general, within the framework of a node, the PHY communicates its information to
the Data Link layer through an internal sub-layer called MAC (Medium Access Control).
The MAC represents an implemented entity of each Ethernet node, which is responsible
for the data transmission to and from the PHY chip [34]. In our case, the MAC is
implemented inside the FPGA firmware using specific VHDL modules.

In our case, the Ethernet communication considers a full-duplex data transfer with a
1 Gb/s bandwidth, and the MAC/PHY interface can be implemented as [34][35]:

• GMII (Gigabit Media Independent Interface): it considers a clock running
at 125 MHz frequency, providing an SDR4 data communication over 8 lines in both
directions,

• RGMII (Reduced Gigabit Media Independent Interface): it provides a
DDR5 data communication over 4 lines considering the same clock frequency im-
plemented for the GMII interface.

4Single Data Rate.
5Double Data Rate.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 39

• SGMII (Serial Gigabit Media Independent Interface): it provides a DDR
data communication over a single differential line, considering a 625 MHz differ-
ential clock. On board, this interface must be configured using the 1000BASE-X6

mode via the transceiver connector, which bypasses the PHY chip supporting a
direct connection with the FPGA transceiver interface. Therefore, the PHY/MAC
interface is implemented directly inside the FPGA.

These three interfaces are shown in Figure 2.11, in which all the data and stream control
signals are indicated for transmission and reception. Furthermore, the function of each
implemented signal is explained in Tables 2.1, 2.2 and 2.3 respectively for GMII, RGMII
and SGMII interfaces, in which the MAC side is used as the reference to assign signal
direction.

Signal Direction Description
TXD[7:0] Output Transmitted data
TX EN Output It indicates that transmitted data are

available.
TX ER Output It indicates the transmission of a data

error.
RXD[7:0] Input Received data
RX ER Input It indicates a received data error.
RX DV Input It indicates a valid data received.
RX CLK Input Clock used for the reception data

stream, running at 125 MHz
GTX CLK Output Clock used for the transmission data

stream, running at 125 MHz

Table 2.1: GMII interface signals, taking the MAC side as I/O reference.

Signal Direction Description
TXD[3:0] Output Transmitted data
RXD[3:0] Input Received data
TX CTL Output Control signal for transmitted data
RX CTL Input Control signal for received data
RXC Input Clock used for the reception data

stream, running at 125 MHz
TXC Output Clock used for the transmission data

stream, running at 125 MHz

Table 2.2: RGMII interface signals, taking the MAC side as I/O reference.

6It considers a physical connection using fiber-optic cables and sometimes over shielded copper cables.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 40

Signal Direction Description
TXD Output It provides in a single differential line

the GMII TXD [7:0], TX ER and
TX EN signals.

RXD Input It provides in a single differential line
the GMII RXD [7:0], RX ER and
RX DV signals.

RX CLK Input Differential clock used for the reception
data stream, running at 625 MHz

TX CLK Output Differential clock used for the transmis-
sion data stream, running at 625 MHz

Table 2.3: SGMII interface signals, taking the MAC side as I/O reference.

Figure 2.11: GMII, RGMII and SGMII data transfer interfaces, in which the differential
and single-ended signals are shown respectively in purple and black.

The PHY chip placed on board implements the RGMII interface, which is built to
produce a data rate equal to the GMII, using a reduced number of lines. Making a
comparison between the two tables 2.1 and 2.2, the following characteristics of the RGMII
signals are highlighted:

• The number of data lines in both directions is reduced from 8 to 4

• In data reception, the RX CTL signal implements the functions provided by the two
GMII signals RX ER and RX DV.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 41

• In transmission, the TX CTL signal implements the functions provided by the two
GMII signals TX EN and TX ER.

As mentioned before, the RGMII uses DDR communication as it sends and receives words
on both the rising and falling edges of the clock. This is done to keep the same GMII
data rate using half of the data lines, as GMII transfers data only on the rising edge of
the clock.

Figure 2.12 considers the RGMII interface for data transmission and reception. The
first case on top represents data transmission, which uses the TXD[3:0] bus to send
bytes stream from MAC to PHY, synchronously with TXC. RGMII splits the one-byte
word sending its first 4 LSbs on the rising edge and the other four on the falling one.
The TX CTL signal considers on the rising edge the information of the GMII TX EN while
on the falling edge the information of TX ER. On reception instead, the data are sent
from PHY to MAC using the RXD[3:0] bus, with the same mechanism explained for
transmission and synchronous with the RXC clock. The control signal RX CTL behaves
as the GMII RX DV on the rising edge and RX ER on the falling one.

Figure 2.12: RGMII data transmit and receive operations between MAC and PHY [36].

The VSC8541-05 PHY chip is placed on board and it is directly connected to the
FPGA. On the other hand, the chip is linked to an RJ-45 connector via a transformer,
used to modulate the input and output voltage levels. This PHY device can be configured
using the hardware strapping mode or writing its internal registers via its SMI (Serial
Management Interface) interface [37]. The on board chip uses the first method and
associates configuration instructions to some pull-up/pull-down logic values, sampled on
the rising edge of the PHY NRESET input signal (active-low reset). To achieve a correct
performance any device must not drive the external pin signals related to the pull-up and
pull-down loads, until the NRESET deasserts. Therefore, NRESET must last at logic ’0’
for more than 2 ms to configure the chip properly. At the end, the chip is configured
to provide RGMII and full-duplex communication, while supporting the 1000BASE-T
connection mode.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 42

2.3 The IPbus communication protocol

The IPbus (developed in 2009 by J. Mans et al.) is a communication protocol used to
control different hardware features provided on a board, exploiting logic modules imple-
mented inside the firmware of an FPGA. The protocol is based on a complete software-
firmware suite to control a large network of devices. To address different endpoints along
the network, the IPbus communicates over the Ethernet protocol.

2.3.1 Introduction to xTCA architectures and IPbus

The electronic systems, employed for data acquisition in particle physics experiments,
were mainly built using the VME bus standard and characterized by crates based on a
single controller bus topology. Other solutions have been implemented in recent years such
as xTCA (Telecommunications Computing Architectures), in which each slave board is no
longer passive but behaves as an independent endpoint communicating and interacting
with the other network devices. The main net control can be distributed over all the
devices, for a full mesh topology, or managed by one or two central hubs, for a single/dual
star topology. The xTCA standards use the Ethernet as a communication protocol over
the net, implementing a high fast-link of 1-12 Gb/s.

However, contrary to VME, this standard does not specify a communication technol-
ogy to access the hardware memory of boards through external software applications. A
hardware control system must be very reliable and predictable, as it is responsible for all
the configuration, debugging, readout and control hardware routines. Furthermore, the
system must be scalable to provide good performance from the simple scenario of one
board to the final framework of a large experiment. For these reasons, the IPbus proto-
col was developed as an IP-aware hardware system that perfectly fits the firmware logic
blocks provided by an FPGA [38]. Built on top of the Ethernet frames, IPbus is scalable
since it is possible to use switches and routers to enlarge the net, and it is also very
reliable since Ethernet allows many systems to be online for solving possible transaction
failures.

A test system was set for a realistic network to investigate the possibility of using
IPbus in the electronic system of the CMS experiment at CERN for LHC Run 2 in 2015
[38]. This test for one software client controlling one target device shows a transaction
latency of 250 µs for single-word read/write transactions. Such a result is larger than
the one for the VME one-word transaction. However, IPbus allows the concatenation of
many words for higher efficiency in read/write block transactions, providing a throughput
of 0.5 Gb/s with a data payload of more than 1 MB [38].

2.3.2 The on-chip IPbus protocol

The on-chip implementation of the IPbus protocol is based on the Wishbone SoC bus,
a System-On-Chip design methodology providing a common interface between different
IP cores [39]. The Wishbone standard was developed to improve the reusability and com-
patibility of IP cores, solving integration problems that limit the user in the development
of System-On-Chip. This design provides a master/slave architecture in which each slave
can be addressed by the master for data transfer, considering variable width, from 0 to 64
lines, for both data and address buses. The communication between master and slaves
is clock synchronous and is controlled through a handshaking mechanism, which uses

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 43

specific and optional signals deeply explained in [39]. Among these handshake signals,
the strobe and the ack are asserted respectively by the master for a valid data transfer
and by the slave to end the data transfer.

Bus type Signal Direction Width Description
ipb addr Master to slave 32 Address bus

ipb in ipb wdata Master to slave 32 Data to be written to slave
ipb write Master to slave 1 It is asserted for a write cy-

cle and deasserted for a read
cycle.

ipb strobe Master to slave 1 It qualifies address and
data; its assertion marks
start of cycle.

ipb rdata Slave to master 32 Data read from slave
ipb out ipb ack Slave to master 1 Acknowledge flag: assertion

marks the end of cycle.
ipb err Slave to master 1 Error flag: assertion marks

the end of cycle.

Table 2.4: IPbus protocol signals description [40]

Indeed, the on-chip IPbus supports a hierarchical topology design with a single master
connected to multiple slaves, where data transfer relies on the 32-bit address and data
buses. As the system works synchronously with a single reference clock running at an un-
constrained frequency, within our implemented system the IPbus clock must run at 31.25
MHz to exploit all the available 1 Gb/s bandwidth defined by the Ethernet subsystem at
a lower abstraction level.

The IPbus data transfer is implemented through the signals shown in Table 2.4,
employed at different levels in the two data transactions defined in the IPbus protocol:
the write cycle and the read cycle. Specifically, the system implements for both the bus
cycles a common address bus ipb addr and the two different data buses: ipb wdata
and ipb rdata. As indicated in the Wishbone SoC standard for the strobe and
ack signals, the master always starts a cycle asserting the ipb strobe and the slave
ends the transaction asserting the ipb ack or the ipb err in case of transaction error.
Considering the Figure 2.13 from left to right, the 2 bus cycles are shown:

• The write cycle: the master addresses a specific slave through ipb addr bus
while the data are sent on the ipb wdata bus, asserting both the ipb strobe
and ipb write signals. Then the slave, after data reception, ends the transaction
asserting the ipb ack signal.

• The read cycle: the master sets the wanted slave address on the ipb addr
bus, asserting the ipb strobe and keeping the ipb write low. Then the slave
sends the requested data on the ipb rdata bus ending the cycle by the ipb ack
assertion.

For both transactions, the slave handshake allows one or more wait clock cycles before
the assertion of the ipb ack signal. Furthermore, the ipb strobe and the ipb ack
signals must simultaneously deassert to start a new data transaction. The IPbus allows
the master to tie high the ipb strobe between two transactions, while it guarantees to

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 44

Figure 2.13: Scheme of an IPbus write cycle with 1 wait state and a read cycle with 0
wait states [40].

deassert the strobe on the clock cycle following the ipb ack. On the other hand, the
slave is allowed to tie ipb ack to ipb strobe if a zero-wait state is always possible.

Figure 2.14: Scheme of the on-chip IPbus.

Figure 2.14 shows the IPbus system architecture, where the single master controls
the slaves through a multiplexer interconnection, implemented by the Bus fabric and
the Address decoder logic modules. The whole protocol is designed using point-
to-point connections, where the buses ipb in and ipb out collect the Table 2.4 I/O
signals, considering the slaves as reference. To start a data transaction, the master sends a
specific slave address through the ipb in connected to the Bus fabric, which uses the
Address decoder to obtain the corresponding sel slave identifier. Then the bus
fabric enables the data transfer for the slave associated with the found sel slave. Such
a mechanism allows the slave to decode only its internal address space within the 32-bit
IPbus address, leaving the decoding of the slave address position to the Bus fabric.

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 45

2.3.3 IPbus protocol at software level

As mentioned before the IPbus communication is built over the Ethernet protocol,
more precisely it exploits the UDP/IP layered model to transfer data among a network
of devices. Such a model is mapped approximately as the OSI one since it provides the 5-
layer structure shown in Figure 2.15, in which the disposition of the layers shows a higher
abstraction level from bottom to top. Each layer communicates only with its neighbors
and provides information to the lower one, to build the final frame for data transfer across
the network. Therefore, each layer defined for each network host accomplishes a different
task as follows [41]:

• The Physical layer is the physical connection that drives the signals on the net-
work, providing the bits communication.

• The Link layer builds the final frames moving across the network. It transfers
data considering the physical (MAC) address, which uses a 6-byte width and char-
acterizes each device.

• The Network layer generates the packets that must reach specific sub-nets or
nodes of a network. It considers the 4-byte virtual (IP) address, which identifies
each node.

• The Transport layer establishes the connection between applications on different
hosts, using 2-byte port addresses.

• The Application layer generates the data and requests the connection for data
transfer between different hosts.

Figure 2.15: On the left the UDP/IP model structure[41] is shown, while on the right,
there is a scheme for the Ethernet frame encapsulation, in which the color of each data
packet is associated with the specific layer.

As shown in the right part of Figure 2.15, the IPbus protocol is defined within the
Application layer, in which some software services construct a specific IPbus packet and
ask for a connection with another host. Therefore, this scheme explains how the UDP/IP
model builds the final Ethernet frame starting from the highest abstraction layer up to
the Link layer. In detail, each data packet is built considering a corresponding protocol
that uses a packet structure of two sections:

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 46

• The header contains both the source and destination addresses of the transaction
plus some useful information that describes the protocol data packet.

• The payload defines the specific data packet of the lower layer, starting from the
IPbus packet that includes the main data payload of the transfer.

The Link and Network layers manage the data through the Ethernet and the IP (In-
ternet Protocol) protocols, while the Transport layer can be associated with one out of
two protocols [42]: the TCP (Transport Control Protocol) or the UDP (User Datagram
Protocol).

The TCP is a connection-oriented protocol, since it generates a bi-directional channel
between the source and destination hosts before any data transfer begins. The channel
closes when it is no longer necessary for communication. TCP provides handshaking
mechanisms to re-transmit packets in case of transaction errors or connection congestion,
ensuring a time-ordered data stream.

On the other hand, UDP is a connectionless protocol, as it does not need any channel
generation to deliver data from one port to another. It provides the basic information
for the Transport layer, mainly the source and destination port addresses plus a field for
transaction errors. Therefore, it supports simple and fast communication in exchange for
less reliability, as it just drops the packet in case of error or closes the connection in case
of congestion.

In the IPbus framework, the UDP protocol was chosen to leave the complexity of error
mitigation at the software level ensuring fast communication with the FPGA-implemented
firmware. At the software level the final Ethernet frames are managed by the Control Hub
application and the µHAL library, used at different levels to control the IPbus transaction
between clients and targets.

Control Hub [38] is a client software application that provides arbitration mechanisms
between multiple µHAL-designed applications. It communicates with each application
using the TCP (Transmission Control Protocol) protocol to ensure a reliable connection
and avoid undesired data stream stops, from and to the target. This application is de-
signed for independent and efficient communication between multiple clients and targets.

The µHAL library [38] is the Hardware Access Library, which works as an end-user
Python/C++ API to perform IPbus transactions. It is built to map the IPbus firmware
implemented logic, allowing the concatenation of many client IPbus read or write requests
to reach the best efficiency. Each µHAL application performs UDP data transfer to
control addressed IPbus slaves implemented on board. Furthermore, the µHAL library
and the IPbus protocol are designed to mitigate transaction errors during communication.

Each device-µHAL interface can run in local or remote mode, in which the client
communicates with the target hardware using directly the UDP transport protocol or
exploiting the Control Hub application.

2.3.4 Ethernet frame and IPbus packet structures

Considering the Physical layer of the UDP/IP model, the Ethernet frame, sent as a
bit stream through a physical connection between two hosts, is shown in Figure 2.16.
The host MAC sub-layer generates this frame structure, which provides two more fields
besides the frame header and payload [43]. The first is the Preamble, which covers a
length of 7 bytes with a repeated 0x55 pattern. The other represents the SFD (Start

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 47

Frame Delimiter), which shows the 0xD5 value. The MAC sub-layer uses these two to
find or mark the Ethernet frame start during reception or transmission.

Figure 2.16: Structure of an Ethernet frame sent from one MAC source to another MAC
destination.

Considering again Figure 2.16, it is possible to recognize the frame header and payload.
The header takes a total length of 14 bytes and it implies two main regions. The first
12 bytes include the source and destination MAC addresses. Then, the Type field takes
only 2 bytes and indicates the data payload length in bytes or the frame type in case
of particular frame transitions. The payload provides instead the specific data content
of the frames, with a length constrained between 0 and 1500 bytes. At the frame end,
the MAC sub-layer can provide optionally the footer section which takes two more fields:
the pad and the CRC. The pad sets a minimum frame length of 64 bytes, adding 0 to
46 bytes, with pattern 0x00, at the payload end. The CRC (Cyclic Redundancy Check)
is an error-detecting code of 4 bytes, found using a cyclic redundancy algorithm that
considers all the frame bytes. This is checked by the receiving Ethernet MAC, which
decides whether to drop or not the frame.

Figure 2.17: Structure of an IP packet, considering the UDP/IP model within the IPbus
framework.

In the IPbus framework, the payload of the Ethernet frame includes the IP packet
shown in Figure 2.17. This packet structure considers the IPv4 version and highlights

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 48

the bytes section related to different UDP/IP layers, using different colors. Indeed the
blue region in the scheme describes the IP header, in which the 4-byte IP addresses are
shown together with other information, such as [44]:

• Version: it provides the IP version (in this case it is 4).

• Header Length: it defines the header length, fixed at 20 bytes in this framework.

• Diff Service: it specifies the Differentiated services used in the data transfer.

• Total Length: it specifies the total IP packet length from 20 to 65535 bytes.

• Identification: it identifies the possible fragments of a packet.

• Flags and Fragment Offset: these are used in the fragmentation process of the
IP protocol, with the Identification field. The fragmentation process is important
in Ethernet communication as it splits large IP packets to transmit many Ether-
net frames, without exceeding their maximum length. These fragments are then
collected at the destination providing the full IP packet information.

• Time to live: this field indicates the lifetime of the IP packet, which is set to avoid
the frame lying in the network without finding a destination.

• Protocol: it identifies the protocol used within the packet payload. Our case
considers code 17 since it indicates the UDP transport protocol.

• Header checksum: it is an errors control field that scans the header but not the
payload section of the packet.

The following IP payload includes the UDP frame, exploiting the same packet struc-
ture as the other layers. Within the scheme of Figure 2.17, the UDP header is shown
in yellow and provides the basic information for the Transport protocol as explained in
the subsection before. The UDP payload is shown in green and provides the final IPbus
packet, built for reliable communication with the IPbus subsystem implemented inside
the FPGA.

Indeed, the IPbus protocol provides a resend-request feature to overcome UDP packet
drops. This feature is defined at the software level since the IPbus protocol relies on a
request/response mechanism between the host client and the target device, in which the
response may or not contain an error code. Considering the IPbus version 2.0, each data
packet is arranged as the previous UDP/IP packets setting a header and a payload, which
collects a series of response or request transaction packets with their specific header [45].

Figure 2.18 shows first the byte scheme of the IPbus packet header, which provides:
the IPbus protocol version, a packet identifier to track the transactions, a special field
to define the transmission byte order and the last field relative to the packet type. The
transaction header provides instead the protocol version and an ID, which allows the
client/target to track the specific operation. The total number of 32-bit words, within
the transaction, is set using 8 bits, which limits the transaction size to a maximum of
255 words. Therefore, in the case of a transaction exceeding this limit, the packet is split
across two or more transactions. Furthermore, the transaction header includes the IPbus
transaction type (e.g. Read/Write) and another field ”Info Code”, which defines the data
direction and the presence of error. Regarding these last 4 bits all successful responses
have an ”Info Code” of 0x0 and all the requests must have 0xf, while other values are
used as response error codes [45].

CHAPTER 2. THE PICOTDC BOARD AND THE IPBUS PROTOCOL 49

Figure 2.18: Schemes of the IPbus packet header and transaction header [45].

Executive summary

The PicoTDC board is a custom card designed by the INFN Bologna with two Pi-
coTDC ASICs directly connected to a PolarFire FPGA. To test the feature of the Pi-
coTDCs, the board supports a 1Gb/s Ethernet communication supplying an Ethernet
connector linked to a PHY chip, which is RGMII interfaced with the FPGA. The soft-
ware and the firmware implemented are based on the IPbus protocol, built over the
Ethernet protocol as indicated by the UDP/IP model. The IPbus was designed to access
the hardware feature on a board through software applications. In detail, the Ethernet
protocol provides the information to move across a device network, while IPbus interfaces
with specific firmware modules to control the addressed device.

Chapter 3

PicoTDC board firmware project

The firmware project was built using the Libero Soc software, developed by Microchip
and the main design is based on an example firmware for a KC705 Xilinx board, provided
by the CERN IPbus Git repository [46]. This architecture was then adapted to the fea-
tures and IP cores, provided by Libero Soc for a PolarFire FPGA. The firmware employs
the Ethernet connection to control an on-chip IPbus, designed for the configuration and
readout of the PicoTDCs. Starting from an existing project [47], the IPbus slaves were
developed to fit the features of the PicoTDC board.

VHDL is used as the main hardware descriptive language, defining a hierarchical
topology as requested by the IPbus. As shown in Figure 3.1, using Libero SoC synthesis
and implementation tools, the designed architecture requires a small percentage of the
FPGA resources. After the firmware implementation, 180 I/O pins are locked and the
15.4% of the logic elements is employed. For what concerns the FPGA memory, almost
the 50% of the LSRAM memory is used within the firmware, while the µSRAM occupied
is negligible. Furthermore, to configure some IP cores, the sNVM memory is also used as
shown in Figure 3.1, in which a page takes 236 bytes of memory.

This chapter explains the whole firmware architecture, but some small variations and
simplifications on its structure are supplied to better understand the data stream. In
each section VHDL modules are grouped based on the specific features they implement,
not considering other modules less relevant to the chapter’s purpose. The source code of
the firmware project can be found within the repository in [48], which is evolving as new
features are added or bugs are solved.

51

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 52

Figure 3.1: Libero SoC report of the FPGA resources employed, after firmware imple-
mentation.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 53

3.1 Firmware structure

The firmware structure was designed to support the communication between the PHY
chip and the PicoTDCs. In detail, the PHY chip manages the Ethernet data transfer with
the FPGA, through the RGMII interface. As MAC and IP addresses of the board are
hard-coded within the firmware, some VHDL structures are implemented to scan received
frames and construct the transmitted frames. As mentioned, the Ethernet frame contains
the IPbus packets used by the on-chip IPbus to perform IPbus transactions from and to
the IPbus slaves, which are implemented to control the PicoTDCs and board operations.

The VHDL language supports a modular design, which means VHDL organizes spe-
cific logic functions and processes inside single units, called modules. This feature provides
simpler designs since VHDL modules work independently inside their inner structure, but
they have a specific purpose within a design.

Figure 3.2: Hierarchical topology of the implemented firmware, with a specific color
assigned to each level.

Therefore, starting from the I/O ports of the FPGA, the firmware architecture provides
a hierarchical topology as shown in Figure 3.2, in which modules are organized by level
and color:

• Level-1: it provides the first interface with the I/O pins employed for the firmware.

• Level-2: it supports the communication between the Ethernet and the IPbus sub-
systems.

• Level-3: it provides the features of the Ethernet or IPbus subsystem.

• Level-4: it collects all the modules implemented to accomplish a single Ethernet
or IPbus subsystem feature.

Figure 3.2 does not show all the Level-4 modules of the firmware, but considers only the
main two that build the connection between the PolarFire infrastructure and
the IPbus payload. Figure 3.3 visually explains how each module, at the lower levels
in Figure 3.2, is nested within the Level-1 Top PolarFire, which is the interface that
communicates with the PHY chip and the two PicoTDCs. Then the two Ethernet and
IPbus subsystems correspond respectively to the PolarFire infrastructure and
the IPbus payload modules, nested inside the Top PolarFire. These two modules

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 54

Figure 3.3: Firmware architecture showing the hierarchical topology and the modules
contained in the Level-1 Top PolarFire module. The grey lines show the reset and
clock network, while the red ones indicate the data stream.

share the resets and clocks network, indicated by the grey lines, and build the data
stream, shown in red, between the PHY chip and the two PicoTDCs.

The PolarFire infrastructure is designed to manage the Ethernet frame trans-
fer. Its inner structure includes three modules that cooperate to manage the data stream
between the PHY chip and the IPbus payload:

• Clock and Resets: it receives as input the Peripheral reset external signal
and the 40 MHz on board clock, which also feeds the 2 TDCs. It generates the resets
and clocks network used within all the firmware.

• Ethernet interface: it manages the Ethernet frames traffic with the PHY
chip, scanning for transaction errors.

• IPbus ctrl: it manages the IPbus data transfer with the IPbus payload
through the Transactor internal module. The UDP engine communicates with
the Transactor as a bridge between the Ethernet interface and the IPbus
subsystem.

The UDP engine is designed to manage and control all the Ethernet frame data pack-
ets, corresponding to the 5-layer UDP/IP model. This module is responsible for control-
ling each packet considering the MAC (00-0c-29-7d-ae-c7), IP (192.168.200.32) and UDP
(50001) addresses of the board, which are hard-coded within the firmware.

Therefore, the UDP engine is responsible for IPbus transaction packet transfer with
the Transactor module, which generates the IPbus read or write cycles within the
on-chip IPbus. Considering the Transactor as the IPbus master, the connection with
the IPbus payload builds the IPbus system explained in subsection 2.3.2. Indeed,
as shown in Figure 3.3, IPbus payload module includes the link between the Bus
fabric and all the 12 slaves modules. Only the connection between slaves and TDCs is
shown for simplicity, while the IPbus slaves also provide other functionalities to control
the board system.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 55

3.1.1 PolarFire infrastructure overview

As already mentioned, the internal structure of the PolarFire infrastructure
includes 3 modules that must work together to manage the Ethernet traffic information
and control the IPbus payload module.
Analyzing each internal module individually, the Clock and Resets generates the
needed clock frequencies and resets to regulate the operational speed of the other two
modules. As shown in Figure 3.4, its internal structure includes some Level-4 modules,
such as two PLL cores and the Reset module.

Figure 3.4: Internal structure of the Clock and Resets module, which includes from
left to right two PLLs cores and the Reset module block.

The Libero IP catalog provides the PLL cores, which exploit the built-in PLLs of the
FPGA fabric [49]. Using the input clock running at 40 MHz, each core was configured
to generate clocks feeding different firmware subsystems:

• PLL TDC: it generates the TDC readout clock, which runs at 160 MHz. This
clock feeds the IPbus slaves responsible for the TDCs readout, so they can correctly
sample the data coming from the TDCs. Therefore, the PLL TDC core is configured
to produce this output clock in phase with the 40 MHz input clock, which is also
distributed to the PicoTDCs to generate the 160 MHz readout rate.

• PLL ETH IPB: it generates the clocks respectively used within the Ethernet sub-
system and the IPbus subsystem:

– Eth clock: it runs at 125 MHz to allow a 1 Gb/s bandwidth, as required by
the RGMII specifications (125 MHz × 4 bits = 1Gb/s). Furthermore, such a
clock is used for the Ethernet frame data transfers.

– IPb clock: it runs at 31.25 MHz and feeds the on-chip IPbus. This frequency
is requested by the IPbus specification to match a 1 Gb/s Ethernet bandwidth,
as the IPbus works through a 32-bit data bus and the Ethernet interface of
the UDP engine is based on an 8-bit bus running at 125 MHz (125 MHz/4 =
31.25 MHz).

Furthermore, the PLL core features other two signals that control its functioning: the
PLL POWERDOWN N and the PLL LOCK. The PLL POWERDOWN N input signal is active-
low and is fed by the Peripheral reset, which is also active-low. This signal keeps

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 56

the PLL in reset mode, when asserted, and stops the frequency generation. There-
fore, the Peripheral reset is linked to a button on board, which instantly stops
the data transactions when pressed. The PLL LOCK is an active-high output signal,
which indicates the steady state of the generated clocks. Both the PLL LOCKs and
the Peripheral reset signal are used as input for an AND logic port to generate
an input signal for the Reset module. The resulting signal is asserted whenever the
Peripheral reset is asserted or one PLL is not locked.

The Reset module is designed to asynchronously assert all the reset output signals
shown in Figure 3.4, when the AND output signal is asserted. Otherwise, the Nuke and
Soft rst signals, generated by the IPbus slaves, are sampled considering respectively
the Eth clock and IPb clock rising edges. When Nuke is asserted all the output
reset signals are asserted, while the Soft rst only controls the IPb rst. In particular,
considering the black arrows in Figure:

• IPb rst is the reset within the IPbus payload module.

• IPb ctrl rst is a reset used within the IPbus ctrl module.

• Eth rst is the reset within the all Ethernet subsystem (it is used within all the
PolarFire infrastructure module).

The Eth rst signal is designed to be asserted for ∼4 ms. Therefore, the PHY NRESET,
sub-net of the Eth rst, works with other signals to generate the PHY chip reset, used
during the hardware strapping configuration of the PHY chip.

The Ethernet interface and the IPbus ctrl are the main modules that define
the link between the PHY chip and the IPbus subsystem. Figure 3.5 shows how these
two modules manage the data stream, highlighting the used signals with red color. The
convention used for data direction is defined by the rx and tx labels. All signals sent
from the PHY chip to the IPbus ctrl module are called rx as for reception, while the
opposite direction is defined by tx term as for transmission.

Figure 3.5: Connection between the Ethernet interface and the IPbus ctrlmod-
ules.

Figure 3.5 shows the RGMII interface provided by the Ethernet interface mod-
ule. As mentioned, the RGMII supports DDR data transfer using 4-bit buses, in both tx

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 57

Signals Direction Width Description
mac rx data Input 8 Data bus used for reception
mac rx clk Input 1 Reception clock running at 125 MHz
mac rx valid Input 1 It indicates the valid received Ethernet

frame.
mac rx last Input 1 It indicates the last byte of the received

Ethernet frame.
mac tx data Output 8 Data bus used for transmission
mac tx clk Output 1 Transmission clock running at 125 MHz
mac tx valid Output 1 It indicates the valid transmitted Eth-

ernet frame.
mac tx last Output 1 It indicates the last byte of the trans-

mitted Ethernet frame.
mac tx ready Input 1 It indicates if the Ethernet inter-

face module is ready to receive a
frame.

Table 3.1: I/O signals for the IPbus ctrl module considering its interface with the
Ethernet interface.

and rx directions, considering a 125 MHz clock. Within the Ethernet interface, all
the RGMII signals are sampled using the PLL-generated Eth clock for transmission or
the rgmii rxc (sourced by the PHY chip) for reception.

Considering the interface between the Ethernet interface and the IPbus ctrl
modules, the data transfer is based on SDR communication using 8-bit data buses syn-
chronous with 125 MHz clock signals. The I/O signals for the IPbus ctrl module are
shown in Table 3.1, in which the mac rx clk and mac tx clk clocks are both fed using
the generated Eth clock.

Figure 3.5 also provides the IPbus ctrl internal architecture, which manages the
Ethernet frame traffic for IPbus packets or other applications, as explained in the fol-
lowing sections. Considering an IPbus packet transfer within an Ethernet frame, the
UDP engine internal module, supplied by the CERN Git repository, manages each UD-
P/IP 5-layer model packet. For what concerns the reception, the UDP engine receives,
on the mac rx data bus, an Ethernet frame scanned to search for the IPbus packet.
Then considering the PLL-generated IPb clock, this module sends to the Transactor
all the Ethernet frame information, on the trans in bus explained in Table 3.2. The
Transactor searches for IPbus transaction packets and builds signals to start IPbus
read or write cycles in the connected IPbus subsystem. A similar mechanism is defined
in transmission, in which the Transactor module provides, on trans out bus of Ta-
ble 3.2, specific information related to each IPbus response or read transaction. Then
UDP engine module uses this information to build the corresponding IPbus packet with
all the related transaction packets, nested within an Ethernet frame. The Ethernet frame
construction is performed considering each UDP/IP model layer through the stored in-
formation of the corresponding source and destination addresses. Finally, the obtained
frame is sent to the Ethernet interface through the mac tx data bus.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 58

Bus type Signal Direction Width Description
pkt ready Input 1 It indicates a received Eth-

ernet frame containing IP-
bus packet.

trans in rdata Input 32 Data bus for received Eth-
ernet frame

busy Input 1 It indicates the busy state of
the UDP engine for recep-
tion.

raddr Output 16 Index of the Reception
RAM register to provide the
corresponding 32-bit word
on the rdata input bus

pkt done Output 1 It indicates the construction
of a transaction packet.

trans out we Output 1 It indicates a valid output
transaction packet.

waddr Output 16 Index of the transmission
RAM register to store the
32-bit words, sent on the
wdata bus

wdata Output 32 Data bus for transmitted
IPbus transaction packets

Table 3.2: Transactor I/O signals considering the interface with the UDP engine
module.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 59

3.1.2 IPbus payload overview

Figure 3.6 shows the implemented IPbus subsystem, providing the connection between
the Transactor and the IPbus payload internal modules. The data stream, shown
in red, provides the same bus format explained in subsection 2.3.2 up to each IPbus
slave. Therefore, the Transactor acts as an IPbus master which uses the ipb in and
the ipb out buses to manage the read and write IPbus cycles, synchronous with the
IPb clock running at 31.25 MHz.

The on-chip IPbus is based on a multiplexer mechanism, which enables the ipb in
or the ipb out buses for the addressed slave, using the information provided on the
ipb addr 32-bit bus. Such a job is managed by the Bus fabric, which acts as the
interface between the Transactor and all the IPbus slaves. At the beginning of every
IPbus cycle, the Bus fabric evaluates the requested slave address, using the Address
decoder. Specifically, the Address decoder works as a look-up table, in which each
possible slave address is associated with a corresponding sel slave integer value from
0 to 11 since the implemented on-chip system counts a total of 12 IPbus slaves (how each
slave and their internal registers are addressed is explained in section 3.3).

Figure 3.6: On-chip IPbus implemented within the firmware, in which the slaves are
connected to their specific feature and the data path is shown in red.

Figure 3.6 shows all the 12 slaves implemented, specifying their following connections
and features within the on-chip and off-chip systems:

• LEDs: it controls some auxiliary LEDs hosted on board, which can be used for
debugging the IPbus subsystem.

• Ctrl and Status: it manages some status and control signals within the firmware.
Using IPbus commands, the Eth rst and IPb rst signals can be checked while
Nuke and Soft reset signals, for system reset, are controlled.

• I2C master: it works as the I2C master for the configuration of both TDCs.

• TDC Areadout and TDC Breadout: they include 4 slaves each, to implement an
independent readout interface for each of the 4 readout ports featured by the 2
chips.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 60

• TDCsext signals: it manages, by IPbus command, the reset and trigger signals
of both the TDCs.

Each slave module in the figure shows for simplicity a bidirectional link with the Bus
fabric, meaning for a 2 buses connection: ipb in and ipb out. As the TDC Aread-
out and TDC Breadout include 4 IPbus slaves each, the corresponding bidirectional
arrow indicates 4 connections.

3.2 The Ethernet frame path

The FPGA and PHY chip communication must rely on a VHDL module implementing
the MAC sub-layer functionalities, described in subsection 2.2.3 within the OSI model
framework. The Ethernet Interface module acts as the UDP/IP Data Link layer
of the PicoTDC board since it is designed to check and control Ethernet transactions at
a low abstraction level. This block provides an RGMII interface directly linked to the
PHY chip and drives the Ethernet frames up to the IPbus ctrl, which is responsible
for checking the correct addressing of the board among a device network. As already
mentioned, the IPbus ctrl has an internal structure that manages each Ethernet data
packet and, besides the IPbus facilities, it supports many other common utilities useful
in an Ethernet network of devices, as explained in the chapter.

In summary, the Ethernet Interface is designed for full-duplex Ethernet com-
munication and exploits a full bandwidth of 1 Gbit/s, through the RGMII interface.
These features match the PHY chip configuration. The Ethernet frame is provided to
the IPbus ctrl module that evaluates each packet and consequently acts.

3.2.1 The Ethernet interface

The PolarFire FPGA supports a 1 Gb/s Ethernet solution using IP cores defined
inside the Libero IP catalog [50] and instantiated inside the Ethernet interface
module as shown in Figure 3.7. The architecture works synchronously with the Eth clk
and the PHY chip rgmii rxc clocks, which both run at 125 MHz.

Figure 3.7: Internal structure of the Ethernet interface, where the data path is
highlighted in red.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 61

The core provided by Microchip for building the UDP/IP Data Link layer is called
CoreTSE. This core contains, as an internal module, the Triple speed MAC, able
to work at 10, 100 or 1000 Mb/s considering its configuration. In a general Ethernet
connection, the MAC (Media Access Controller) is a compulsory element that filters
the Ethernet frames and manages the outgoing or incoming Ethernet transactions. The
CoreTSE also includes the MAC FIFO module used to mitigate transition errors and
provide data queueing for high data throughput, during transmission and reception.

Considering the Figure 3.7, the RGMII to GMII IP core [51] is placed on the left as
the interface between the PHY chip and the CoreTSE. Since CoreTSE provides a GMII
MAC, RGMII to GMII core is necessary to convert the PHY chip RGMII signals. The
same issue is found in the CoreTSE interface for the IPbus ctrl since the MAC FIFO
arranges data transactions through 32-bit buses, while the IPbus ctrl uses only 8 lines
data buses in both directions. Therefore, the TSE converter interface module is
designed as a medium interface to match the IPbus ctrl signals (in table 3.1) and
the CoreTSE interface, shown in Table 3.3. This module works synchronously with the
Eth clock and provides internal processes for data transfer, able to convert data bus
width and control signals.

The last module instantiated within Ethernet interface is the APB interfa-
ce, which uses internal IP cores to provide an APB protocol (Advanced peripheral bus)
communication with the CoreTSE. In detail, whenever the Eth rst signal deasserts, the
APB interfacemodule configures the CoreTSE internal 32-bit registers. The CoreTSE
must be configured to provide a GMII full-duplex Ethernet communication, running at
1 Gb/s.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 62

Transaction Signals Direction Width Description
MRXCLK Input 1 Reception clock run-

ning at 125 MHz
MRXACPT Input 1 It indicates when the

CoreTSE is ready to
receive data.

MRXRDY Output 1 It indicates a received
valid frame.

MRX: from
CoreTSE to
IPbus ctrl

MRXSOF Output 1 It marks the first
received frame word
(Start Of Frame).

MRXEOF Output 1 It marks the last
received frame word
(End Of Frame).

MRXDAT Output 32 Received frame data
bus

MRXBYTEVALID Output 2 It indicates the num-
ber of MSBs (Most
Significant Bytes) not
valid for the last re-
ceived frame word.

MTXCLK Input 1 Transmission clock
running at 125 MHz

MTXACPT Output 1 It indicates when the
CoreTSE is ready to
transmit data.

MTXRDY Input 1 It indicates a trans-
mitted valid frame.

MTX: from
IPbus ctrl to
CoreTSE

MTXSOF Input 1 It marks the first
transmitted frame
word (Start Of
Frame).

MTXEOF Input 1 It marks the last
transmitted frame
word (End Of Frame).

MTXDAT Output 32 Transmitted frame
data bus

MTXBYTEVALID Output 2 It indicates the num-
ber of MSBs (Most
Significant Bytes) not
valid for the last trans-
mitted frame word.

Table 3.3: Table showing the I/O signals of the CoreTSE, considering its interface for
the IPbus ctrl module.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 63

3.2.2 The CoreTSE IP core

In a network with several devices, an Ethernet frame sent from node to node provides
a structure that must be recognized by the receiving Ethernet MAC of each system.
In our case, such a structure is defined within the UDP/IP model and it is explained
in subsection 2.3.4, providing Preamble and SFD fields followed by the Basic Ethernet
frame (consisting of header, payload and footer).

During the Ethernet frame reception, the Ethernet MAC inside the CoreTSE scans
the frame searching for the Preamble and the SFD. When the SFD is found, these two
fields are stripped and the Basic Ethernet frame is sent towards the IPbus ctrlmodule.
On the other hand, for transmitting a frame to another node, the MAC adds SFD and
Preamble fields to a Basic Ethernet frame built by the UDP engine module, inside the
IPbus ctrl.

Furthermore, during data transfer, the MAC processes the whole Ethernet frame length
looking for errors inside each field. For what concerns the transmission, the MAC con-
figuration allows the construction of a CRC checksum, which is added, within the footer
field reporting the found errors. Considering the reception and the FIFO configuration,
the MAC asserts some error flags checked by the MAC FIFO to drop the bad frames.

Figure 3.8: CoreTSE internal structure and connections, in which the APB link to the
APB interface module is shown.

In detail, the CoreTSE configuration is accomplished via two IP cores instantiated
inside the APB interface module, based on the AMBA-APB1 to access the internal
32-bit registers of the CoreTSE (with corresponding 10-bit addresses) [52]. The APB
(Advanced Peripheral Bus) protocol is described within the specification [53] and pro-
vides a simple synchronous communication between a Requester and a Completer. Such
a protocol builds a bridge between the Requester and many Completer modules, repre-
senting a main processor and peripherals. The APB protocol provides a unique address
bus and 2 data buses, one for each direction, with configurable widths (they consider a
maximum of 32 bits), to read and write specific registers of connected APB peripherals.

1Advanced Micro-controller Bus Architecture.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 64

As shown in Figure 3.8, the APB interface design relies on the CoreABC and
CoreAPB3 cores connection. These two act respectively as the Requester and the APB
bridge for the CoreTSE APB interface, which is the only APB Completer.

The CoreABC (APB Bus Controller) [54] is a configurable microprocessor, that sup-
ports many options settings to define its APB interface and I/O signals. Considering our
case, its APB interface provides a 16-bit address bus and 32-bit data buses, while among
the I/O pin-out only the TSE CONF output signal is enabled. As a microprocessor, such
a core can perform a list of operations defined within an internal memory that must be
configured. Therefore, a list of instructions is set within a ROM (Read-Only Memory)
memory considering the CoreABC hard mode [54].

The CoreAPB3 [55] works as a multiplexer, connecting up to 16 Completer modules
with a single Requester. This core is configured to match the APB interface of the
CoreABC module and provide a unique Completer slot for the CoreTSE. Therefore, only
10 of the 16 bits of the APB address bus are employed to read or write the CoreTSE
registers.

Figure 3.9: On the left the Libero SoC GUI interface provides the assembly code to
initialize the CoreABC. On the right, the scheme of the implemented FSM, within the
code, is shown.

At CoreABC initialization, the Libero SoC GUI allows defining the instruction lists
memory through specific assembly commands. The code implemented is shown on the
left of Figure 3.9, providing the definitions of desired addresses and 32-bit values for the
CoreTSE configuration set by the following instructions implementing an FSM 2. As
the CoreABC works synchronously with the Eth clock and uses the Eth rst as reset
signal, the FSM of Figure 3.9 is generated providing the following 3 states:

• ABC reset: whenever the Eth rst is set at logic ’1’, the CoreABC is fully reset.
Therefore, the APB signals and the TSE CONF are set to ’0’.

2Finite-State Machine

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 65

• Main: it provides APB write cycles for all the defined registers whenever the
Eth rst deasserts. Then the value of TSE CONF output signal is set to ’1’, indi-
cating the end of CoreTSE configuration.

• Duty cycle: after the configuration of all the defined registers, the state machine
waits here until Eth rst signal asserts again.

The ABC reset state is not shown in the code of Figure 3.9, since it is intrinsically
implemented within the CoreABC module definition.

The CoreTSE is configured after the whole Ethernet subsystem is reset. Besides the
command for the needed Ethernet GMII communication, the MAC is also configured
to append PAD and CRC fields to each frame, allowing a connection with any external
device that needs a minimum frame length of at least 64 bytes and can not produce a
CRC code. The MAC FIFO is configured to drop any received frame that provides a
metastable 8-bit word, as marked by the gmii rx er signal.

Considering the CoreTSE connection to the TSE converter interface module,
Figure 3.8 shows the MRX and MTX interfaces, which collect the signals of Table 3.3
respectively for TSE converter interface frame reception and transmission. The
data transfer in both directions is synchronous with the 125 MHz Eth clock, which
feeds both the MTXCLK and MRXCLK clocks.

Figure 3.10: MRX data transfer cycle where all the signals are synchronous with the
MRXCLK.

Figure 3.10 describes a received frame sent from the CoreTSE to the TSE conver-
ter interface module. For data reception, the MRXACPT signal has to be high during
all communication. Therefore, such a signal is fed by the TSE CONF, since whenever the
CoreTSE is configured it is ready to send data. Then, during the frame transfer along the
MRXDATA bus, CoreTSE asserts MRXRDY signal for the whole frame length and sets both
MRXSOF and MRXEOF, to mark the first and last 32-bit words of the frame. Furthermore,
the MRXBYTEVALID bus indicates the number of not-valid MSBs within the last word of
the frame, synchronous with the MRXEOF assertion.

Figure 3.11: MTX data transfer cycle where all the signals are synchronous with the
MTXCLK.

On the other hand, Figure 3.11 describes a frame transmission from the TSE con-
verter interface to the CoreTSE. As shown in Table 3.3, all the used signals are
CoreTSE inputs except for the MTXACPT which is an output signal set to ’1’ during all
the transmission, as it indicates the CoreTSE is ready to receive data. The MTXSOF and

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 66

MTXEOF mark respectively the beginning and the end of the frame, while the MTXRDY
is set at ”1” for all the transmitted valid data. The MTXBYTEVALID is always set
synchronously with the MTXEOF assertion and indicates, as before, the number of not-
valid MSBs in the last word of the frame.

As shown in Figures 3.10 and 3.11, the TSE converter interface module man-
ages MRX and MTX interfaces providing different data streams. In detail, the MRXDATA
bus sends a 32-bit word at each MRXCLK rising edge, while the MTXDATA needs four
clock cycles, of the MTXCLK clock, to set a new 32-bit word. This behavior is explained
in the following subsection and is caused by the internal conversion performed by the
TSE converter interface module, to match an 8-bit data bus to a 32-bit data bus
running with the same 125 MHz clock frequency.

3.2.3 The TSE converter interface

The TSE converter interface is designed as a bridge between the IPbus ctrl
and the CoreTSE modules, considering both directions. This module is mainly based on
Finite State Machine (FSM) processes, which are sequential circuits that keep track of the
current state and react to the input and the current state value. As already mentioned,
the TSE converter interface works as a converter for the signals collected in Tables
3.1 and 3.3, considering FSMs synchronous with the common Eth clk running at 125
MHz.

Figure 3.12: Comparison between the MRX cycle and the mac rx cycle, in which the
signals considered in the related FSM are labeled.

As shown in Figure 3.12 in a data transfer from CoreTSE to IPbus ctrl, marked
as the rx direction, a data stream based on 4-byte words has to be converted into a byte-
wise stream. To fulfill such a purpose, a single clock FIFO receives as input the MRXDATA
bus and the CoreTSE control signals, shown in Figure 3.12. The FIFO output have to
provide a byte-wise data stream associated with some control signals that indicate the
beginning and the end of the received frame. Therefore, the FIFO input bus was designed
to provide a FIFO output of 12 bits width, in which:

• the bits [11:4] contain the data information of one byte at a time, for a 4-byte word
sent on the MRXDATA bus.

• the bits [3:2] contain the input information of the MRXBYTEVALID bus for each
data byte.

• the bit position 1 and 0 are used for the MRXSOF and MRXEOF signals for each data
byte.

This output is used, within an FSM, to generate the mac rx last and mac rx valid
control signals related to the mac rx data bus, for the IPbus ctrl module interface.
Figure 3.13 shows the FSM, in which the following I/O signals are considered:

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 67

• SOF(Start of Frame): it is the signal related to the MRXSOF information within the
12-bit data stream.

• EOF(End of Frame): it is the signal related to the MRXEOF information within the
12-bit data stream.

• bytevalid: it provides the value of MRXBYTEVALID bus within the 12-bit data
stream.

• rst: it represents the Eth rst generated by the Clock and Resets module.

• valid: it represents the mac rx valid output signal.

• last: it represents the mac rx last output signal.

Figure 3.13: FSM design to build the mac rx valid and the mac rx last signals.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 68

When the rst is set at logic ’1’ the FSM is switched off, keeping every output signal
at logic ’0’ and setting the FSM state at Reset value. Therefore, the FSM works only
when the rst signal is de-asserted, following the structure shown in Figure 3.13 that
features these 6 states:

• Reset: it is the first state after rst deasserts, in which the beginning of a frame
is searched. If no frame is found the state switches to Transit otherwise the
Payload is chosen as the next state, setting the valid signal at ’1’.

• Transit: it always searches the SOF signal at the ’1’ logic state, to find the
beginning of a frame. If no frame is found the FSM stays in the Transit state,
otherwise it switches to Payload setting the valid signal at ’1’.

• Payload: it searches for the EOF signal at the ’1’ logic state, as it indicates the
last word of the frame. It also evaluates the bytevalid value and if 3 MSBs
are not valid the state goes back to Transit state, otherwise the Byte1 state is
considered.

• Byte1: it evaluates the bytevalid value for the case of 2 not valid MSBs within
the last frame word. Therefore, if bytevalid value is equal to 2 the state switches
to Transit, otherwise the Byte2 state is considered.

• Byte2: it acts as the Byte1 state evaluating the case for bytevalid equal to 1
and considering as next states Transit or Byte3 states.

• Byte3: it considers the case of all valid bytes within the last frame word, with a
bytevalid value equal to 0. The state goes back to the Transit state.

Such a process finds the frame beginning to assert the valid signal and waits for the
consequent EOF signal to mark the last word of the frame. When the end of frame
is found the bytevalid is evaluated to assert the last signal and go back to the
Transit initial state. At this point, both valid and last signals are de-asserted and
the loop restarts again searching for a new frame.

On the other tx direction, a data stream, sent from the IPbus ctrl module to the
CoreTSE, has to provide a conversion from the 8-bit data bus mac tx data to the 4-
byte wise MTXDATA bus, as shown in Figure 3.14. Furthermore, the mac tx last and
mac tx valid signals must be used to obtain the MTX control signals for the CoreTSE
module.

Figure 3.14: Comparison between mac tx cycle and the MTX cycle, in which the signals
used in the related FSM are labeled.

To manage such data stream conversion, the FSM in Figure 3.15 considers the follow-
ing I/O signals:

• valid: it represents the mac tx valid input signal.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 69

• last: it represents the mac tx last input signal.

• rst: it represents the Eth rst input signal.

• new valid: it is a new output valid signal shaped to have a length multiple of 4
clock cycles, as the mac tx data 8-bit bus transmits synchronously with the same
clock used by the MTXDATA 32-bit bus.

• final: it is an output signal that marks the time between the last signal assertion
and the beginning of another frame.

• bytevalid: it is an output bus that assumes the specific values of the MTXBYTEVALID
bus until the FSM processes a new frame.

Figure 3.15: FSM design to generate the new valid, bytevalid and final output
signals.

In detail, the output contains only preliminary signals to generate the final MTX
interface of the CoreTSE. As before, the FSM works only when the rst signal is set at

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 70

’0’, otherwise all the outputs are kept at ’0’ and the initial value Reset is set for the
FSM state. Figure 3.15 shows the FSM design that is based on 6 states as explained
below:

• Reset: when rst signal is de-asserted, the FSM searches for an incoming frame
evaluating the valid input signal. If a frame is found the state switches to Byte0
state, otherwise the Transit state is chosen.

• Transit: the FSM waits in this state until a frame arrives, meaning for the valid
assertion that switches the state to Byte0.

• At this point, the FSM works within the frame length performing the following loop
as follows:

1. Byte0: it searches for the last signal assertion to initialize the bytevalid
signal with value 2 and assert the final signal. Otherwise, the bytevalid
keeps the value found in the previous state.

2. Byte1: it works similarly as Byte0 state, initializing the bytevalid signal
with value 1.

3. Byte2: it works similarly as Byte0 state, initializing the bytevalid signal
with value 0. This state ends the loop for a 4-clock cycle length, which is the
unit that defines the new valid signal length for a frame.

4. Byte3: it evaluates the last signal to exit the loop or restart from the Byte0
state. When last is equal to ’0’, the valid signal is evaluated to know if
the FSM is still analyzing a frame (valid = ’1’) or not. In the first case the
loop restart from Byte0, otherwise the FSM switches the state to Transit
searching for a new frame.

Specifically, the Reset and Transit states also include the last signal evaluation
to deassert the final signal at the beginning of a new frame, when last = ’0’, and
analyze weird frames with only one valid byte, when last = ’1’.

In summary, at the beginning of a frame, the new valid signal asserts within the
Transit state. Then the next loop starts and, whenever last = ’1’, the final signal
asserts, while bytevalid signal takes a value considering the current FSM state. When
Byte3 state is found and valid = ’0’, the loop ends deasserting the new valid signal
and switching the FSM state to Transit.

The output FSM signals feed a process based on a 4-stage shift register, which im-
plements byte memory units using Flip-Flops synchronous to the Eth clock. When
new valid asserts, each memory unit stores a 1-byte incoming word at each clock cy-
cle. Then, a 4-byte packing mechanism is built through a counter ranging from 0 to 3.
Whenever the counter takes the value of 3, a 4-byte word is sampled on the MTXDATA
bus, asserting the corresponding MTXRDY for one clock cycle, to mark 1 valid word. Fi-
nally, the control signals MTSOF, MTXEOF and MTXBYTEVALID are generated using the
counter and both the FSM signals: bytevalid and final.

3.2.4 The UDP engine

The Ethernet frames are managed by the IPbus ctrlmodule, in which the UDP en-
gine organizes the functions of each layer within the UDP/IP model. The UDP engine

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 71

was developed by CERN to manage the Ethernet traffic for the IPbus application and
provide auxiliary utilities, besides UDP transactions. A simplified scheme of its internal
structure is shown in Figure 3.16, in which the module UDP IF collects all the logic blocks
that implement the following features:

• Board addressing: it scans the received frame to check for board correct ad-
dressing at each UDP/IP model level. Furthermore, it builds Ethernet frames in
response to a service request, considering the source address defined in the firmware
and, as the destination address, the value of the source address stored during the
request reception.

• IPbus transaction: within an Ethernet frame, it recognizes a UDP packet pro-
viding UDP destination port 50001 (0xC351). The module scans the UDP payload
for an IPbus packet header to manage the following IPbus transaction requests.
Then, corresponding IPbus read and write cycles are performed within the IPbus
subsystem, and the related Ethernet frames, containing an IPbus packet with all
the IPbus transaction responses, are built and sent to the requester client.

• IPbus reliability: it scans received UDP frames that provide IPbus packets (UDP
destination port 50001) for resend and status IPbus requests, to manage UDP
transaction timeout. Then, status and re-send responses are built and sent back to
the client to restore the communication.

• PING utility: it builds the response to an ICMP3 frame and sends it back to the
host that makes the request. The ICMP request and response frames provide an IP
packet with a specific payload containing an ICMP header and the corresponding
data. The PING utility is mainly used to verify the presence of an IP-addressed
device on a network.

• ARP utility: it builds the response of an ARP request and sends it back to the
client host. The ARP request and response are particular Ethernet frames with a
Type field 0x0806, in which the payload provides the main ARP packet as defined
by the IP protocol suite. The ARP utility is used to get the MAC address of a
device knowing its IP address.

• RARP utility: it works similarly to the ARP, providing a similar frame structure
with a Type field 0x0835. The RARP utility is used to get the IP address of a
connected device knowing its MAC address.

The UDP IF block evaluates each field of the Ethernet frame, as it needs to recognize
a utility frame pattern and trigger only the related processes. Considering the IPbus
transaction case, the UDP IF module looks for the IPbus packets and sends the whole
Ethernet frame to the connected Transactor module. The Transactor searches
the IPbus transactions for read and write IPbus cycles and acts as the master within
the IPbus subsystem. Figure 3.16 shows how the information of IPbus transactions is
managed through the Transactor module connection, which works considering the
trans in and trans out buses explained in Table 3.2.

3Internet Control Message Protocol

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 72

Figure 3.16: UDP engine internal structure, showing the connection with the
Transactor.

During the reception, the Transactor works considering the Dualport RX module
that is a dual port RAM storing the frame sent from the UDP IF. The addressing of the
input and output memory buffers is controlled respectively through the raddra (13-bit)
and raddrb (11-bit) buses. So, a valid Ethernet frame stored in the RAM is marked
by the pkt ready signal and is transmitted to the transactor on the rdata bus, while
UDP IF menages the addresses of the Dualport RX buffers and keeps Busy asserted.
During this process, the UDP IF uses the raddr counter, to manage the raddrb address
of the RAM output buffer. When an IPbus transaction request has been processed, the
pkt done signal is asserted and theTransactor is ready to process another IPbus
transaction packet.

A similar mechanism is defined considering the Dualport TX dual port RAM for
transmitting the IPbus transaction packets, from the Transactor to the UDP IF mod-
ule. During the packet transmission to the memory buffer the data are marked by the we
signal and the wraddr value is used, within UDP IF, to manage the waddra (11-bit)
bus for the RAM input buffer. Furthermore, the we signal is also sampled by the UDP IF
module to control the wdata UDP data stream, using the waddrb (13-bit) address of the
RAM output buffer. At the end of each transaction packet transmission the pkt done
signal is asserted.

3.3 IPbus slaves used for TDCs

The IPbus system is implemented within the firmware to manage 12 IPbus slaves, set
inside the IPbus payload module. Each slave controls specific hardware features, as
explained in subsection 3.1.2. Even if the IPbus is based on a 32-bit address bus, our
system uses only 8 bits out of 32 to address a specific slave. Figure 3.17 shows how the
32-bit address width is managed, employing only the least significant byte divided into
two 4-bit sections:

• Slave addr: it is the specific slave address.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 73

• Reg addr: it indicates the internal register address of the selected slave.

Figure 3.17: Bits scheme employed for slave addressing, within the 32-bit address featured
by the IPbus protocol.

All the 12 slaves are listed in Table 3.4 with their corresponding Slave addr and
the number of internal registers (if Reg addr number is set to 1 it means this specific
slave has no internal registers). Inside this section, the slaves used as an interface with
the PicoTDCs are described, as they are more relevant to the thesis topics. These slaves
mainly work synchronously with the IPb clock running at 31.25 MHz, and provide
different features.

Name Slave addr # Reg addr
LEDs 0x1 4
Ctrl and Status 0x2 2
I2C master 0x3 7
TDCsext signals 0x4 1
PicoTDCA readout 0x5 4
PicoTDCA readout2 0x6 4
PicoTDCA readout3 0x7 4
PicoTDCA readout4 0x8 4
PicoTDCB readout 0x9 4
PicoTDCB readout2 0xA 4
PicoTDCB readout3 0xB 4
PicoTDCB readout4 0xC 4

Table 3.4: Table that associates the IPbus slave to its corresponding Slave addr, indi-
cating also the number of internal registers.

3.3.1 The TDC external signals generator

As described in subsection 2.1.4, the PicoTDC ASICs provide the event and bunch
counters, built with a 13-bit width. The first one keeps track of the triggered events
during the full time of a measure. The other instead is implemented to support the ASIC
usage inside a collider environment, described by a beam bunch structure. Therefore, the
bunch counter keeps the TDC synchronized with the number of particle bunches passed
through the accelerator.

These two counters run synchronously with the 40 MHz reference clock and can be
reset to a configurable value, using proper external pins. Specifically, the PicoTDC
provides four main external differential input signals, used to control some of its features:

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 74

• Event reset: it resets the event counter.

• Bunch reset: it resets the bunch counter

• Digital reset: it fully resets the TDC digital section (it does not reset the event
and bunch counters).

• Trigger: it provides the trigger signal to the TDC trigger interface.

Therefore, the TDCsext signals slave is implemented to generate all these four signals
for both TDCs.

Figure 3.18: Internal structure of the TDCsext signals slave, showing the connections
with both the PicoTDCs.

Figure 3.18 shows the internal structure of TDCsext signals, that control respec-
tively the Ext TDCA and Ext TDCB outputs collecting the 4 external signals respectively
for TDC A and TDC B. This module can convert the information provided by the 32-bit
data of an IPbus write cycle into instructions for building the desired signals.

The TDCsext signals architecture contains the IPbus command module that
mainly implements a Dual clock FIFO IP core [56] to match the IPb clock and System
clock subdomains, running respectively at 31.25 MHz and 40 MHz. As the FIFO
implements the same 32-bit width both in input and output, the final IPbus command
output includes the Strobe signal, indicating the arrival of a command, and a 24-bit
data bus running at 40 MHz, which provides a 24-bit command for the Ext FSM FSM
module.

As the IPb rst works as an asynchronous reset for all the TDCsext signals mod-
ule, when IPb rst = ’1’, all the output signals are set at ’0’ and the FSM is initialized at
the Acquisition value. If IPb rst = ’0’, the FSM works as shown in Figure 3.19 de-
coding the command at each Strobe signal assertion and switching between its states:
Acquisition and Transit. The FSM waits in the Acquisition state until one
valid command is provided. Then the state switches to Transit, where the instructions
are decoded to generate the wanted signal after one clock cycle. Finally, the loop is closed
at the Acquisition state where the FSM waits for another valid command. The final
4 output signals are then generated as follows:

• Bunch reset and Event reset: they are built as 1 clock cycle pulses.

• Digital reset: it is built considering two different modes:

– Soft mode: it asserts the digital reset for a 1 ms time length.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 75

– Hard mode: it asserts the digital reset until the next command to switch it
off is sent.

• Software trigger: it is built considering two modes:

– Single pulse: the FSM sends 1 clock cycle pulse.

– Continuos trigger: the FSM generates a continuous pattern of 1 clock cycle
pulses with a configurable period distance.

The Ext FSM drives up to 3 reset signals and a software trigger, which was used to test
the trigger mode of the two ASICs during the resolution measurement.

Figure 3.19: FSM used for both TDCs to generate the 3 external reset signals and a
trigger, which are software driven.

As shown in Figure 3.20 the 24 bits for a command are divided into two sections. The
first one takes from bit 23 to 8 and considers the specific options that can be set for a
command. In particular, from bit-position 23 to 20, it is possible to choose the wanted
signals, while bits 18-19 assign generated signals to one or both TDCs. The other bits are
used respectively to set the soft mode for digital reset (17) and the continuous mode for
the trigger (16). If the trigger continuous mode is set, the least significant bits of the first
section configure the pulse distance. This value features 8 bits and considers a maximum
time distance of ∼6 µs as the 40 MHz clock cycle is the minimum time step. The second
section is used to send specific signals towards the TDCs, preserving the other ones that
are currently asserted. This condition implies setting the corresponding bit to control

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 76

Figure 3.20: Scheme of the 24-bit command.

a specific signal, otherwise all the previous command options are not considered by the
FSM. A set of 4 bits is assigned for each TDC, in which each bit is associated with a
signal.

To sum up, the valid command, considered in the previous explanation for the FSM,
follows this 24-bit pattern and the conditions explained.

3.3.2 The I2C master

The PicoTDCs configuration works through an I2C communication bus that can run
as fast as Fast Mode Plus (1Mb/s) and was tested up to ∼ 0.4 Mb/s speed for our
purposes. The I2C is a serial synchronous protocol that implements a multiple master
and slave structure using a bidirectional communication based on two lines: the serial
clock (SCL) and the serial data (SDA). Our case considers the Figure 3.21 circuit of a
single I2C master instantiated as an IPbus slave and connected with both the PicoTDCs,
which act as I2C slaves.

Figure 3.21: I2C network built for the 2 TDCs slave and the I2C master IPbus slave,
working as I2C master (Vcc = 1.2 V and both the Rp = 4.7 KΩ).

This protocol is half-duplex since only one device at a time can use the SDA line to
transmit data, while the SCL clock is always driven by the master. The signals scheme,
shown at the top of Figure 3.22, describes some specific states for the SCL and SDA
signals used in I2C transactions:

• The start: the master marks the beginning of a transaction setting a high to low
SDA transition, while the SCL is left high.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 77

• The stop: the master stops a transaction setting a low to high SDA transition,
while the SCL is left high.

• The ack: such a state stands for the acknowledgment from the receiver, indicating
a successful data transfer. In detail, the transmitter sets SDA in high impedance and
the receiver asserts SDA low for an entire SCL clock pulse. Otherwise, if the data
transfer fails the SDA is set high, meaning for a NACK state (not acknowledgment).

• The data: SDA transitions take place when SCL is low, while the data is valid
when the SCL is high.

Figure 3.22: On the top we have an example of a SDA-SCL signals, while on the bottom
the I2C transaction pattern is shown

The initial protocol IDLE state is defined by a logic high state of both SCL and SDA
lines. The data transactions are always started and stopped by the master, which can
act as a receiver or a transmitter. Each slave may transmit data after being addressed
by the master, using a 7-bit address assigned to each connected slave. Therefore, the
I2C transaction pattern, in the bottom of Figure 3.22, is used for read and write I2C
cycles. The master always starts the cycle with a start SDA state and provides the SCL.
Then it sends the slave address followed by the R/W bit, which is set to ’0’ for a write
and ’1’ for a read. After this initial condition, the slave sends an ACK on the SDA and
the specific cycle begins. Considering a write cycle as an example, the master acts as
a transmitter and the addressed slave is the receiver, while the opposite happens for a
read. So the transmitter sends one byte and waits for the receiver ACK until the master
sets a stop SDA state, ending the cycle. Otherwise, if the receiver sends a NACK state,
the communication is immediately stopped by the master.

The IPbus slave I2C master is provided by the CERN Git repository and imple-
ments an FSM that generates the I2C read and write cycles. Such a module is directly
connected to the SCL and SDA lines of the two TDCs and its structure is shown in Fig-
ure 3.23. Starting from left to right the IPbus interface module is instantiated to
control some internal registers, needed to drive the I2C master interface. This is

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 78

a sub-module that provides in its internal structure two single clock FIFOs, using the
generated IPb clock, and the I2C master logic, which mainly includes the FSM
for the I2C implementation.

Figure 3.23: I2C Master internal structure where each colored line, linked to the
IPbus interface, indicates a set of internal registers, explained in Table 3.5, while
the red color is used to indicate the IPbus data transfer.

The Tx FIFO provides the byte data stream for an I2C write, while the Rx FIFO gets the
byte data stream obtained after an I2C read. The IPbus interface uses the internal
register shown in Table 3.5 to build the I2C transactions inside the I2C master logic,
using IPbus software commands.

First of all, we use an IPbus write to set, within the prescaler register, the SCL
pulse length and the data setup, using the IPb clock period as the step unit. In
detail, the data setup variable defines the time needed to set data on the SDA line
after the SCL falling edge. Such a value must always be lower than the one set for the
SCL pulse length.

Then, to start an I2C transaction, it is compulsory to write the I2C slave address
inside the device addr register. The I2C master logic FSM uses such a value to
address the desired slave. After this preliminary setup, the FSM is ready to start an I2C
transaction triggered by the values written in registers rd for a read and wr for a write.

Following the green line in Figure 3.23, the bytes, needed for a write, are written inside
the TX FIFO module using register wr data. Then the write cycle starts whenever a
random value is written inside wr, using an IPbus write cycle. All the bytes inside the
TX FIFO are read by the FSM and used for the I2C transaction pattern sent to the
addressed slave.

On the other hand, for a read cycle, the number of desired read bytes must be written
inside the rd register using an IPbus write. At this point, the FSM starts a read I2C
cycle and all the bytes, received from the addressed slave, are written inside the RX FIFO.
Finally, the FIFO data can be read using IPbus read cycles and addressing the register
rd data, as shown by the purple line in Figure 3.23.

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 79

colour name Register addr bits [31:0] function
Light blu prescaler 0x0 [31:16] - [15:0] It sets the length of

the SCL pulse and
the data setup,
using the IPbus
clock cycle as step
unit.

device addr 0x1 [6:0] It sets the slave 7-
bit address used in
the transactions.

status 0x6 [3:0] These are status
and control out-
puts signals for the
I2C master in-
terface.

rd 0x2 [8:0] It triggers an I2C
read cycle pro-
viding the total
number of desired
bytes.

Green wr 0x3 [31:0] It triggers an I2C
write cycle.

wr data 0x4 [7:0] It writes a byte in-
side the Tx FIFO
that will be used
for an I2C write.

Purple rd data 0x5 [7:0] It reads a byte in-
side the Rx FIFO,
using an IPbus
read.

Table 3.5: List of the internal registers of the IPbus interface module, considering
the three line colors used in Figure 3.23.

3.3.3 The TDC readout slave

As already mentioned, each TDC provides 32 differential readout lines organized in 4
ports of 8 lines each. This design reflects the internal arrangement of the 64 input channels
divided into 4 groups of 16 channels each. In detail, the PicoTDC ASIC includes a 512-
word deep FIFO for each group as the final data stage. This FIFO has a 32-bit input
as the TDC data width defined by the constructor, while the output is connected to a
parallel differential interface of 8 lines. In summary, each FIFO output corresponds to
one of the 4 readout ports and is synchronized with another differential output line called
Sync.

Figure 3.24 shows how the data readout works for each port, where the readout label
is assigned for each output differential line and can assume an integer value from 0 to
3. The bottom of the figure includes the 32-bit data stream called Frame. The Frame
pattern shows how the TDC data output is arranged using 4-byte words, defined by the

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 80

Figure 3.24: One TDC port readout considering both modes for the Sync differential
signal.

8-line output after 4 consecutive readout cycles. When there is no data inside the FIFO,
the parallel port is set to a constant value 0xD0, which builds the idle word 0xD0D0D0D0.
Therefore, the final frame pattern provides TDC data interspersed with idle words when
no data are found in the FIFO. To provide data output for other devices connected with
the TDC, the Sync output signal can be configured via I2C for 2 different readout modes
as shown in Figure 3.24:

• Sync strobe: the first byte of a 32-bit word in the frame bus, is marked by a pulse
of a readout clock period length. Then, the next three bytes are sent synchronized
with the readout clock rising edge.

• Sync clock: it defines a periodic signal with a frequency of half the data rate, to
provide a DDR output in which each byte is synchronous with the rising or the
falling edge of the Sync signal.

Furthermore, regardless of the Sync mode, the TDC data throughput can be configured
by setting the readout rate at a frequency of 320/160/80/40 MHz. The user can choose
among two modes that define the number of 4 ports used:

• Single port readout: all the data are sent out through port 0, reducing the total
readout bandwidth and the number of pins needed to interface with the ASIC.

• Four ports readout: the data are sent out considering the internal TDC channels
arrangement in 4 groups. In this case, each port is connected to its respective FIFO
and all the pins are used to interface with the TDC.

To test both these two configurations, it is compulsory to instantiate one IPbus slave for
each PicoTDC port. Therefore, the firmware provides, for each TDC, four PicoTDCX
readoutY slaves, where, as shown in Table 3.4, the X label defines the connected TDC
(A or B) and the Y is a number from 2 to 4, indicating the TDC ports from 1 to 3, or
takes no value for port 0. Table 3.4 also shows the PicoTDCX readoutY corresponding
addresses, considering values from 0x5 to 0xC. Configuring the TDC for a 160 MHz
readout rate, a 8 bits×160 MHz = 1.28 Gb/s bandwidth is obtained in the case of Single

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 81

port readout, while in the Four ports readout a higher 4 ports × 8 bits × 160 MHz =
5.12 Gb/s bandwidth is set. The PicoTDCX readoutY design exploits the Sync strobe
mode and supports a data rate of 160 MHz, as it ensures a 1.28 Gb/s bandwidth for only
one port that is a sustainable rate for the IPbus system implemented considering a small
data buffer to store the TDC output.

The internal structure of this IPbus slave is explained in Figure 3.25, in which the
PicoTDCA readout is shown as an example. This module is mainly based on a dual
clock FIFO, provided by the IP Libero catalog [56], and exploits the same 32-bit width for
both input and output. The FIFO write operation is synchronous with the PLL-generated
TDC readout clock clock, running at 160 MHz, while the FIFO read operation uses
IPb clock, running at 31.25 MHz. The reset network of the slave works asynchronously
using the IPb rst signal, which means each internal module resets its state whenever
the IPb rst is asserted.

Figure 3.25: PicoTDCA readout module internal structure.

The data written in the FIFO are generated by the Readout FSM that features an
internal FSM, running with the TDC readout clock, to sample the data coming from
the TDC and build a 32 bits data stream towards the FIFO. As shown in Figure 3.25, the
FSM also generates the FIFO wr enable signal, marking the valid data written inside
the FIFO memory.

The FSM is designed to sample the data from the TDC port, considering the Sync
signal, used in our case as Sync strobe. In detail, the FSM looks for the Sync = ’1’
condition, which indicates the first byte sent by the TDC on the readout lines. The
TDC port output data feeds a 4-stage shift register, which samples the data using the
TDC readout clock. Each of the 4 flip-flops implemented represents a 1-byte unit
memory, so the FSM, after receiving the Sync pulse, waits for 4 clock cycles and packs
the FFs memories in one 4-byte word. At the end of this process, a 32-bit bus is obtained
similarly to the one, labeled as Frame, in Figure 3.24. Furthermore, the wr enable
signal is generated by the FSM and is asserted when the 32-bit generated data is different
from the 0xD0D0D0D0 idle word.

This process is reliable since it works synchronously with the 160 MHz clock generated
by the Clock and resetmodule, which is fed by the 40 MHz onboard clock used by the
TDC to provide a 160 MHz readout rate. The PicoTDC readout clock and the IPbus slave
clock (TDC readout clock) frequency match and are driven by two different PLLs fed

CHAPTER 3. PICOTDC BOARD FIRMWARE PROJECT 82

by the same source clock. In detail, the TDC PLL and the FPGA PLL, set within the
Clock and reset module, are designed to provide no phase difference between the
source and the output clocks, ensuring the reliability of the IPbus slave for sampling the
output of the TDC port.

To manage the data throughput from the TDCs, the FIFO RAM size has been chosen
to contain ∼ 16K words. The wr enable signal controls the FIFO writing operation,
while the FIFO read is managed by the IPbus interface, using the internal registers
explained in Table 3.6. Therefore, the FIFO write cycle is automatically provided by the
TDCs, while the read cycle is controlled by user IPbus commands.

Colour Name Register addr Bits [31:0] Function
Green Reset FIFO 0x2 [31:0] Setting 0x1 it is possi-

ble to reset the FIFO.
Purple Cnt 0x1 [14:0] Ctrl signals: it

returns the number of
available data for a
read operation, inside
the FIFO buffer.

Empty 0x1 [30] Ctrl signals: it
indicates if the read
buffer is empty.

RxR 0x3 [31:0] It triggers the
rd enable sig-
nals to pull out, from
the read buffer, only
one 32-bit word at a
time.

Table 3.6: List of the internal registers of IPbus interface with different line colors,
as shown in Figure 3.25.

Therefore, as shown in Figure 3.25, following the purple lines related to the rd ena-
ble, we can use an IPbus read cycle, addressing the RxR register, to trigger the FIFO
rd enable signal and pull out a 32-bit word from the FIFO. The other registers linked
to the Ctrl signals lines can also be read via IPbus, to know how many available data
are inside the FIFO read buffer. The Empty register checks the Empty flag assertion for
the FIFO buffer and the Cnt register provides the number of available data for the FIFO
read operation.

On the other hand, the green line in Figure 3.25 corresponds to the rst fifo signal,
used together with the IPb rst signal as input of an OR port connected to the FIFO
reset. This signal is controlled by the Reset FIFO register, which can be addressed
through an IPbus write cycle. By writing the 0x1 value within such a register, the FIFO
reset is asserted for 3.2 µs removing all stored data in the RAM.

Executive summary

The firmware implemented supplies an on-chip IPbus that can be controlled through
UDP transactions, sent from and to a host via an Ethernet connection. In detail, the
architecture provides a hierarchical topology of VHDL logic modules, connecting the
RGMII PHY interface to 12 IPbus slaves that control the board and perform readout.
Therefore, within the firmware, Ethernet frames are managed at each UDP/IP model
level up to the IPbus packet, then decoded to perform write and read IPbus cycles.

Almost all the 12 IPbus slaves are used for the configuration and readout of the
PicoTDCs on board. For what concerns TDC configuration and control, a slave for the
I2C communication with the TDCs and another one controlling the external signals to
the TDCs were designed. Each ASIC readout was supported by 4 slaves, which were
built to match each TDC port data throughput considering a configured readout rate of
160 MHz.

Chapter 4

Software organization for the
PicoTDC board

The software project was developed to match the implemented firmware features and
is based on the source files of the same Git repository used for the firmware development
[57]. In particular, the software is designed to provide a final end-user interface that uses
simple terminal commands for the configuration and readout of both the PicoTDC ASICs
on board. Therefore, using C++ as the programming language, its structure was built
as in Figure 4.1, in which the interactive interface is the top layer of a three-layer model
of increasing abstraction level from bottom to top.

Figure 4.1: Software layers structure.

This chapter provides a software design overview, in which each section is dedicated
to a specific layer of Figure 4.1. Starting from the bottom layer, the first section describes
the µHAL (Hardware Access Library) library main objects used to build the applications,
managed by the Control Hub software application. Then the following section describes
the front-end libraries developed to control the operation of each implemented IPbus slave.
The final section explains all the implemented commands of the interactive interface,
focusing on the main ones used within the PicoTDC time resolution measurement.

The software developed can be found within the same Git repository created for the
firmware project [58].

4.1 µHAL API library and Control Hub overview

As explained in section 2.3, the IPbus protocol relies on Ethernet communication to
control the hardware features of a device network. Our case considers a simple scenario

85

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 86

of a host connected directly to the PicoTDC board, which uses the implemented firmware
on the PolarFire FPGA to manage the Ethernet transactions.

The µHAL was developed to control the IPbus protocol on-chip through specific
UDP/IP frames. At the software level, µHAL uses these frames to trigger read or write
IPbus cycles inside the IPbus subsystem designed within the firmware. This mechanism
is implemented through µHAL objects, identifying each IPbus slave and its internal
memory.

4.1.1 The Control Hub application

The Control Hub is a software service developed by CERN to mediate the trans-
actions between general client software processes and connected hardware devices in a
network. Built specifically to support the IPbus transactions, such an application queues
the different requests provided by developed-µHAL applications and manages each re-
quest transmission to an addressed IPbus slave, implemented inside a specific device
corresponding to an Ethernet network node. Since IPbus works as a request/response
transactional protocol, the Control Hub maintains the connection to the request origina-
tor until the slave response is received. In summary, as deeply explained in [59], Control
Hub generates connections between a single device and a single µHAL application that
sends a request, so no more connection is generated for the connected device until the
response is sent to the original requester and the connection closes.

A Control Hub instance can work on the same host of the software processes or on
separate remote machines, communicating across the network. Therefore, such an ap-
plication allows the setup of large DAQ systems including different device crates in a
wide xTCA architecture network, where the Control Hub instances work as switches for
software process transitions. The communication within each working software client is
performed through TCP protocol, while each connected device implements UDP trans-
port protocol for connection with each Control Hub instance. Such a solution has been
chosen to build a network of devices that supplies the following features:

• Complexity only at software level: the Control Hub solves UDP connection
failure using the reliability of the TCP link with µHAL clients. This mechanism
allows the implementation of a simpler firmware on the FPGA, based only on UDP.

• Fast bit-rate: UDP provides fast communication since it does not supply latency
to control transaction failure.

• Full bandwidth usage for data transmission: UDP does not provide any
control error mechanism, so the bandwidth used towards the external devices is
fairly managed by the Control Hub and is exploited only for data transitions.

As mentioned in subsection 2.3.3, TCP is a connection-oriented protocol as it generates
a connection between a transmitter and a receiver before starting any data transfer.
So, until the connection stands, it uses handshaking algorithms to mitigate connection
congestion during data transactions along the connection. Such a TCP functionality
provides reliable communication, unlike UDP, which, as a connectionless protocol, cannot
ensure reliability.

Figure 4.2 shows our case, which considers a single local host implementing a mono
thread µHAL application and the Control Hub, connected directly to the PicoTDC board.
As explained in chapter 3, the central FPGA, shown in the figure, provides the UDP

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 87

Figure 4.2: Single local-host Ethernet network built for communication with the PicoTDC
board.

transactions management for the IPbus system. At the same time, the two developed
user programs employ a TPC connection with the Control Hub once at a time, as they
were designed as mono-thread µHAL applications. Such a simple Ethernet network was
implemented to ensure a steady connection during all the board operations.

This system was implemented using a Linux OS PC, as the Control Hub was developed
as a Linux service, and the default Control Hub configuration, shown in Table 4.1, was
chosen. Since TCP is a transport protocol, it works by the addressing of specific ports,
as shown in subsection 2.3.4 for the UDP. Considering TCP transactions with software
clients, the first table parameter indicates the Control Hub port, set to 10203 by default.
The 20 ms time represents the timeout during a UDP communication with an IPbus
target device, so if a UDP transaction fails the Control Hub sets a timeout of 20 ms.
The last timeout of 15000 ms represents the upper time limit in which Control Hub
searches for an IPbus target communication. Therefore, the Control Hub terminates the
connection started by a particular µHAL application if no response is obtained within
15000 ms of timeout. These parameters can be changed by creating a new configuration
file called ”sys.config” inside proper directories [60]. Then, in our simple network system,
the Control Hub application is just switched on, before any µHAL software operation
starts.

Configuration setting Default value
TCP port on which Control Hub listens
for connections from clients µHAL

10203

Maximum number of UDP packets
transmitted per single transaction to
each IPbus target

16

Timeout for communication with IPbus
targets (typically FPGA-based devices)

20 ms

Time after which a process will shut
down if not communicating with IPbus
target

15000 ms

Table 4.1: Default Control Hub configuration [60].

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 88

4.1.2 The µHAL API library

As mentioned in subsection 2.3.3, the µHAL library considers 2 different operating
modes regarding its connection with hardware devices:

• The Local-client mode: the µHAL library communicates directly with the device
over UDP.

• The Remote-client mode: the µHAL library uses the Control Hub software
application to communicate with the hardware.

Upon every µHAL application development, a file with .xml extension must be created,
as it is used along the code to define the connection parameters for the client host and
the target device communication. This file is called the XML connection file and mainly
establishes which mode, among the two explained before, is used over the constructed net-
work. Considering the XML connection file TDCconnection file.xml used for our
application, it supplies the main elements to describe the performed Ethernet connection
[61]:

• Id: it is an identifier for the connection used along the application and in our case it
considers the pattern picoTDC board.chtcp.0 (board.protocol.proje-
ct version).

• Uri: it defines the protocol and location to access a target device in URI format.
Our case considers the URI chtcp-2.0://localhost:10203?target=192.
168.200.32:50001, in which:

– chtcp-2.0 defines the usage of TCP channels between Control Hub and
µHAL applications, providing the 2.0 version of the IPbus protocol.

– localhost:10203 defines the TCP communication between the localhost
port for µHAL and the assigned 10203 port address of Control Hub.

– target=192.168.200.32:50001 defines the target board endpoint con-
sidering its IP address and assigned port 50001 for UDP communication.

• Address file: it defines the location for the address XML file.

The address XML file must also be defined before any µHAL application, as it maps all
the address space used for locating the IPbus slaves and their internal registers. At the
software level, it represents a hierarchical table reproducing the topology of the IPbus
slaves implemented on firmware. Such a file uses the <node> unit to have a one-to-one
correspondence between an assigned 32-bit address and the firmware memory location.
Figure 4.3 shows this mechanism, in which the IPbus slave with address 0x00000020

Figure 4.3: Example of an endpoint node inside an XML address file, providing 4 internal
registers.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 89

corresponds to the <node> containing the option fwinfo = endpoint. Furthermore,
the fwinfo option indicates the width attribute, which shows the LSbs-number, within
the IPbus address, used by the slave to address its internal registers. Indeed, the endpoint
node in the figure defines a width equal to 2, providing 4 different internal registers with
addresses from 0x0 to 0x3.

Each node is characterized by the following attributes, some of which are not shown
in Figure 4.3 for simplicity [61]:

• Id: the identifier name used inside the µHAL application.

• Address: the hexadecimal address assigned to each instantiated node.

• Description: a simple explanation of the node functionalities.

• Permission: it is the read or write permission on the correspondent register via
IPbus. Specifically, the ”r” and ”w” stand respectively for read or write permission,
while the ”rw” allows both. If no permission attribute has been set, the permission
is set to ”rw” by default.

• Mask: it is a 32-bit value used internally as a mask for both the data received and
transmitted.

• Mode: if the node identifies a memory block inside the firmware, the assigned
mode defines its type:

– ”incremental”: it identifies a RAM block memory and it must always be
supplied together with the ”size” attribute that defines the depth of the buffer.

– ”non-incremental”: it identifies the FIFO buffer memory linked to this node.

Our system address file address table.xml provides up to 12 endpoint nodes, given
we implemented 12 IPbus slaves. Each of these nodes uses as address the relative IPbus
address defined from 0x10 to 0xC0, leaving the 4 LSbs for the addressing of internal
registers.

Once the connection and address XML files have been defined, the µHAL applications
can be designed using specific objects identifying the connection and the defined <node>s
of the address file. The object classes provided by the µHAL library are the following
[61]:

• ConnectionManager: it identifies the connection file along the code and must
be initialized using the directory for the connection XML file.

• HwInterface: it represents the connection with the Hardware and must be ini-
tialized using the ConnectionManager object.

• Node: it selects the desired node inside the address XML file and must be initialized
using the HwInterface object.

• ValWord<T>: it is a template class that wraps a data word, received in an IPbus
read. Since T stands for the data type used by the template class, our application
considers T as a uint32 t type for a 32-bit data word.

• ValVector<T>: it is a template class that wraps a block of data, received in an
IPbus read. As before, in our case, T is defined as uint32 t type.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 90

Using all these classes, µHAL works as a delayed dispatch model, in which all the com-
mands for read and write IPbus transactions are queued and concatenated until the
dispatch is called or the maximum UDP packet size is reached.

Figure 4.4: Example of the delayed dispatch model used in a C++ program, implementing
a µHAL application.

Figure 4.4 shows a simple example of the dispatch mechanism considering, the address
XML file of Figure 4.3. As the first step, a ConnectionManager and HwInterface
objects are initialized using respectively a string for the connection file directory and the
ConnectionManager::getDevice(const &string) method, which returns an
HwInterface object using the Id parameter of the XML connection file. Then, regi-
ster is a pointer to a constant Node object and is initialized by exploiting the HwInter-
face::getNode(const &string) method, which uses the Id for a <node> within
the address XML file as an internal parameter. The string ”IPbus slave.reg1” refers
to an internal register of the IPbus slave endpoint, shown in Figure 4.3. This string
format provides the sum of the IPbus slave and the reg1 addresses, defining the
address 0x00000021 used inside the firmware to access the corresponding memory loca-
tion. Then, the initialized register object is used to start reading and writing IPbus
transactions for the associated <node> using the methods:

• Node::write(const uint32 t &Value): it generates the write IPbus trans-
action of the related <node>, considering an IPbus data payload of one 32-bit data.

• Node::read(): it generates the read IPbus transaction for the related <node>,
returning a ValWord<T> object that wraps the received 32-bit word.

After setting the wanted transactions, the HwInterface::dispatch()method queues
each generated UDP packet and sends it to address a specific memory location within
the on-chip IPbus, for starting IPbus read or write cycles. As shown in Figure 4.3, a
unique dispatch is used to write the 0x2 value inside the register memory location and
read back the written value, which is assigned to a ValWord<uint32 t> object called

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 91

reg. Thus, after the dispatch, the reg wrapped value is defined as 0x2 and is printed
on the screen using the value public attribute of the ValWord<T> class. Besides the
methods implemented for simple IPbus reading and writing, the library also provides two
methods to write and read buffer memory locations, defined across the address XML file
using the Mode parameter. These functions are designed with only one parameter used
to read or write a predefined number of memory locations:

• Node::readBlock(const uint32 t &aSize): it generates an IPbus packet
including IPbus read requests for a maximum of 255 words, covering a total of
aSize words request.

• Node::writeBlock(const std::vector<uint32 t> &aValues): it gen-
erates an IPbus packet including IPbus write transactions with a payload of 255
words maximum, until the whole size of the vector aValues is written inside the
addressed memory buffer.

The 255-word count limit is constrained by the structure of the IPbus transaction packet
header, as explained in subsection 2.3.4.

In summary, the µHAL API library is built to queue all the IPbus requests that
address different memory locations within the on-chip IPbus. Then the HwInterface::
dispatch() method manages the transmission of each request and scans each received
response, alerting for possible errors at the UDP or IPbus level.

4.2 Libraries for connection to IPbus slaves

Considering our system, the µHAL library controls the IPbus protocol at the lowest
abstraction level, considering the memory locations mapped by the address table.xml
file. Therefore, some front-end libraries were developed to directly manage the IPbus
slaves operations for the board, exploiting functions that collect µHAL commands. As
the implemented slaves are designed for the configuration and readout of both PicoTDC
ASICs, the library dependency structure in Figure 4.5 shows an increasing abstraction
level from top to bottom, starting from the front-end libraries of corresponding IPbus
slaves up to the library used to control a single PicoTDC device.

The front-end libraries, of Figure 4.5, are explained in the chapter and are organized
as follows to control the PicoTDCs:

• External signals: it controls the TDCs external signals slave to generate
the resets and trigger signals for the external pins of the PicoTDCs.

• I2C Master: it manages the write and read I2C transactions for the I2C master
slave, to configure and control the internal registers of both PicoTDCs.

• Readout: it manages the readout of a TDC considering all its 4 ports. In detail, it
controls the operations of the 4 PicoTDCX readoutY, where X value selects the
TDC A or B and the Y indicates the connected readout port.

At a higher abstraction level, the Configuration library is designed to provide Con-
figuration objects identifying a list of values for each desired I2C internal register of
the PicoTDCs. Therefore, such an object works as a register for all the configuration
settings and uses the I2C Master and External signals dependencies to configure

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 92

the TDCs. At the bottom of the structure, the last PicoTDC library shows the highest
abstraction level, as it works as a final control point for all the TDCs operations. This
library must control the features of all the implemented IPbus slaves, so it depends on
all the libraries at lower abstraction levels.

Figure 4.5: Front-end library dependency showing an increasing abstraction level from
top to bottom.

4.2.1 The External signals library

As already mentioned, the External signals library is designed to manage the op-
erations of the TDCsext signals IPbus slave. This library only contains the Exter-
nal sig class that defines objects with the following set of private members:

• hw: a pointer to an HwInterface object used in the class to dispatch the wanted
IPbus transactions.

• ext signals: a pointer to a constant µHAL::Node object that identifies the
<node> EXTERNAL SIGNALS within the address table.xml file.

Figure 4.6: The External sig object private members and the EXTERNAL SIGNALS
<node> within the address table.xml file, which maps the TDCs ext signals
IPbus slave.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 93

The EXTERNAL SIGNALS <node> maps the firmware memory corresponding to the
TDCsext signals slave since address = ”0x00000040”, as shown in Figure 4.6.

As explained in subsection 3.3.1, the TDCsext signals slave scans each 32-bit
received word searching for a valid command and activates an FSM that generates
the corresponding external signal. Therefore, following the scheme of Figure 3.20, the
External sig public methods were designed as a one-word IPbus write transaction,
containing a pre-defined command that triggers a specific signal. In particular, Figure 4.7
shows the External sig::SetOneImpulseTrigger(int tdc n) function which
implements the one pulse software trigger signal for the TDCs. This function design is
mainly repeated for all the other methods, providing the following steps:

1. The tdc n parameter assumes an integer value from 1 to 3, identifying one or both
the PicoTDCs.

2. Each valid option uses the ext signals member to call the Node::write-
(const uint32 t&) for the corresponding command.

3. If a valid tdc n value is set, the HwInterface::dispatch()method dispatches
an IPbus write transaction with a valid command.

Figure 4.7: External sig::SetOneImpulseTrigger(int tdc n) function im-
plementation.

The other developed methods are listed below, showing a name that indicates the gener-
ated signals and their characteristics:

• void External sig::SetLongReset(bool enable, int tdc n):

it asserts or deasserts the digital reset signal setting the boolean enable to 1 or
0. The tdc n value selects one or both the TDCs as before.

• void External sig::SetSoftReset(bool enable, int tdc n):

it considers the soft mode for the digital reset signal, meaning for a reset assertion
of 1 ms maximum length. Both the enable and the tdc n values work as before.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 94

• void External sig::SetPeriodicTrigger(bool enable, uint8 t
period, int tdc n):

it sets a trigger in continuous mode, as explained in subsection 3.3.1. The pulse
period distance is set by the period variable, while the boolean enable switches
on (1) or off (0) the trigger.

• void External sig::SetBunchCReset(int tdc n):

it asserts for one pulse length the reset signal of the TDC bunch counter. The
tdc n selects one or both the TDCs.

• void External sig::SetEventCReset(int tdc n):

it asserts for one pulse length the reset signal of the TDC event counter. The tdc n
selects one or both the TDCs.

4.2.2 The I2C Master library

The PicoTDCs can be configured via an I2C connection with the I2C master IPbus
slave. Each TDC is associated with a 7-bit I2C address, while its configuration and status
internal registers are based on 16-bit addresses with a depth of 1 byte. Therefore, the
I2C Master library provides a homonymous class that implements specific methods to
control the I2C communication with both TDCs.

Figure 4.8: I2C Master private members shown with the I2C PICOTDC <node> struc-
ture of the address file.xml file.

As shown at the bottom of Figure 4.8, the I2C master slave memory map is iden-
tified, within the address table.xml file, by the I2C PICOTDC node and all its
internal sub-nodes defined below. In detail, the I2C Master object provides a list
of private members, including a pointer to a constant µHAL::Node object for each
of the I2C PICOTDC sub-nodes. Furthermore, a pointer to an HwInterface ob-
ject is used as a private member, since all the public functions, designed to interface

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 95

with the I2C master slave, use the HwInterface::dispatch() method. There-
fore, each internal register of the I2C master IPbus slave is identified within the soft-
ware by a private member, and all the public implemented methods are then based on
Node::write(const uint32 t) and Node::read() functions.

The first important public method of the class is the I2C Master::Setup Pre-
scaler(), which exploits the prescaler class member to write the 32-bit memory
location for the address 0x30, used inside the firmware to define the I2C SCL pulse
length and the data setup variable. This last defines the time length needed to set
the SDA value after the SCL falling edge and it must always be lower than the SCL pulse
length. The values assigned to these two parameters consider a maximum 16-bit length
and the LSb stands for the period of the IPbus clock, running at 31.25 MHz. Since
the TDC sustains an I2C communication up to 1 MHz, as explained in subsection 3.3.2,
this function was designed to configure the I2C master slave to support different I2C
communication speeds. As shown in the bottom of Figure 4.8, the prescaler <node>
is associated with a 32-bit value identifying the SCL pulse length within the bit-positions
from 15 to 0, while the data setup is initialized by the bits from 31 to 16.

Figure 4.9: I2C Master::Setup Prescaler() function design.

Figure 4.9 shows the Setup Prescaler() function design that uses the sda scl
[2] class member to define the setup and the SCL pulse lengths, explained in Figure
4.10. Specifically, the setup defines the time length between the SDA value setting
and the next SCL rising edge, so the expression (sda scl[1] - sda scl[0]) in
Setup Prescaler() returns indeed the data setup value (d setup in Figure 4.10).
After the needed uint32 t value is built at line 112 of the code in Figure 4.9, the
Setup Prescaler() performs:

• the prescaler calling of the Node::write(const uint32 t &) method to
generate the write transaction,

• the dispatch of the transaction.

Furthermore, at the function beginning a check for the sda scl[0] ≥ sda scl[1] is
done, ensuring a SCL pulse larger than the data setup length and avoiding metastabil-
ity of the I2C connection. After several tests and optimizations, it was found that values
of the sda scl[0] and the sda scl[1] equal to 20 and 40 respectively gives a stable

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 96

I2C communication at:

(sda scl[1]× 2× TIPb)
−1 ∼ 0.4 MHz, (4.1)

in which the TIPb is the IPbus clock period.

Figure 4.10: Meaning for the uint32 t values of setup, setup d and the SCL pulse
in an I2C transaction.

To start an I2C write cycle for the configuration of a PicoTDC register, some I2C Ma-
ster class members are used at different levels to build an IPbus packet that provides
an I2C pattern transaction as the one on top of Figure 4.11. The data bytes must be
preceded in the I2C pattern by the high and low bytes of the 16-bit TDC register address.
Furthermore, the address is incremented internally for every byte received so it is possible
to configure more than one register, addressing only the register with the lowest address.
At the bottom of Figure 4.11, the main function that performs the I2C register writing
is shown and it exploits the following parameters:

• dev addr: is an uint32 t value identifying the 7-bit I2C address of the PicoTDC.

• reg addr and addr width: the int addr width value defines the bytes width
of the reg addr parameter. Our case for a PicoTDC considers a 16-bit register
address corresponding to addr width = 2.

• data: it is a vector of uint32 t values that contains the bytes that must be
written inside specific TDC registers, using the feature of the internal address in-
crement.

The I2C Master::Write routine function writes these parameters inside ad-
dressed memory locations of the firmware, mapped by the private members of the I2C
Master class. In particular, this function uses each member to call an IPbus write

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 97

Figure 4.11: The I2C write transaction for configuring a TDC register (top) and the
design of function I2C Master::Write routine (bottom).

transaction and store specific information within the registers of the I2C master IPbus
slave. Starting from line 157, Figure 4.11 shows the specific order of the IPbus write
transactions that reproduce the mentioned I2C frame pattern within the I2C master
slave:

1. The device address member calls the write method to write the dev addr
inside the IPbus register 0x31.

2. The reg addr 16-bit value is split into 2 bytes: REG H and REG L. Therefore,
the wr data (IPbus address 0x34) calls the write method first for the REG H and
then for the REG L.

3. To provide the next series of written bytes a loop over the data vector is set using
the wr data member, which calls the write method.

4. The wr data transactions data are written inside a Tx FIFO, as explained in
subsection 3.3.2. When the IPbus register (address 0x33) corresponding to the wr
member is written with any value, all the Tx FIFO memory is read.

After these settings, the hw member calls the dispatch and all the information, sent to
the I2C master slave, is managed to trigger the I2C master logic FSM that builds
the I2C frame pattern for the addressed TDC. The I2C Master::Write routine
function works as a preliminary stage for:

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 98

int Write Regs(uint32 t &dev addr, uint32 t ® addr,
vector<uint32 t> &data, int addr width),

which also implements the control of the I2C transaction status. Therefore, after the I2C
write cycle, the function checks for the error status of the I2C master slave, reading
the memory location corresponding to the status member (IPbus address 0x36). If an
error is found the function returns a 0 and prints an error message on the screen, on the
other hand for a successful transaction the function returns another value different from
0. Considering instead an I2C read cycle for a TDC register, the main developed function
is:

vector <uint32 t> Read Regs(uint32 t &dev addr, uint32 t
® addr, uint32 t read len, int addr width),

which reproduces the transaction pattern of Figure 4.12 and returns the read data in a
vector<uint32 t>, where each uint32 t value corresponds to a byte in the pattern.
The I2C read pattern shows a read command preceded by an I2C write, containing the
two address bytes of a TDC register. Furthermore, the register address is also incremented
internally for an I2C read operation, so it is possible to read the byte content of multiple
registers addressing the one with the lowest address.

The Read Regs function is designed to exploit some of the parameters used for
Write Regs, but it also includes the read len value that stands for the number of
bytes read during the transaction. The code at the bottom of Figure 4.12 shows the
function implementation, including other specific preliminary functions as:

• void I2C Master::Read Wslave(uint32 t &dev addr, uint32 t
® addr, uint32 t read len, int addr width):

it sets the dev addr and reg addr as before using the IPbus write transactions,
and it triggers an I2C read of read len byte payload using an IPbus write trans-
action for the rd member (0x32 IPbus address). The function then uses a dispatch
to send the packet and trigger the read I2C transaction for the addressed TDC,
storing the data within the textttRx FIFO implemented in the I2C master slave.

• std::vector<uhal::ValWord<uint32 t>>
I2C Master::Read Routine(uint32 t read len):

It builds a std::vector<uhal::ValWord<uint32 t>> object, reading one
word from the Rx FIFO at each call of the read method by the class member
rd data (IPbus address 0x35). The function stops whenever a payload of length
read len has been read.

Therefore, the Read Regs function returns the read payload in a vector<uint32 t>
following the steps below:

1. The function calls the Read Wslave method to trigger a read I2C transaction for
the TDC.

2. A control of the transaction status is done using the status class member. If no
error is found the process continues, otherwise the system provides an alert message
for each specific error.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 99

3. At the end, the function calls the Read Routine function and return the new da-
ta v vector<uint32 t> object obtained through the value attribute of the
µHAL::ValWord<uint32 t> object.

These functions are used within the Configuration library to overwrite and control the
single I2C register of the PicoTDC. The Configuration library uses specific objects,
designed to group a variable number of TDC registers, and the I2C Master dependency
to configure the PicoTDCs.

Figure 4.12: The I2C read transaction of a TDC register (top) and the design of function
I2C Master::Read Regs (bottom).

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 100

4.2.3 The Configuration library

To associate some important characteristics to a specific TDC register, the Configu-
ration library provides as the first object the reg info struct. As shown in figure 4.13,
a reg info object supplies specific members to describe the TDC register, including
mainly two uint32 t values for the address (address) and stored value (value).

Figure 4.13: Members of the reg info struct.

Since the value member is a uint32 t variable and the I2C transaction to the TDC
can be performed considering the internal increment of the address, value has been
designed to collect in a 32-bit word the configuration of four consecutive registers setting
each byte from LSB to MSB. All the other members of the related reg info object
provide instead the following features:

• name: name of the register with the lowest address.

• address: lowest 16-bit address among the four used to store the 32-bit value
member.

• readonly: boolean variable that defines whether the four registers are read-only
(true) or not (false).

This is done to reduce the number of IPbus packet dispatches during the TDCs configura-
tion, as we constraint the I2C read and write transactions, managed by the I2C master
IPbus slave, to a maximum of 4-byte data payload instead of only 1 byte.

The reg info struct exploits the I2C Master library dependency to provide the
I2C master::Read Regs and I2C master::Write Regs re-implementations, per-
forming respectively I2C write and read transactions to the TDC considering a reg info
object. Figure 4.14 shows both the function implemented, in which an I2C Master ob-
ject is used as a parameter and a limit of 4 bytes payload for the transaction is set:

• void reg info::Config Reg(I2C Master master, uint32 t
&device, int reg n):

the Write Regs function is called to perform an I2C write transaction to the
TDC addressed by the device uint32 t value. The address attribute of the
reg info object identifies the selected TDC register address. Starting from the
LSB, the function writes n reg bytes of the value reg info member, using a for
loop to initialize the reg value vector needed as parameter for the Write Regs.

• uint32 t reg info::Control Reg(I2C Master master, uint32 t
&device, int reg n)

the Read Regs function is called to perform an I2C read transaction to the TDC
addressed by the device uint32 t value. The address attribute of the reg i-
nfo object identifies the selected TDC register address. Then, the reg value

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 101

vector is initialized using all the bytes read during the transaction, constrained by
the reg n integer value up to a maximum of 4 bytes. Finally, the function returns
the uint32 t my value, which is initialized with all the reg value stored bytes
starting from the LSB.

Such a struct includes another method mainly used to modify internally a specific number
of bits of the value reg info member, at a specific startbit position :

void reg info::Mod Value(uint32 t startbit, uint32 t
number of bits, uint32 t new bits)

Calling this function re-initializes the value member with a modified 32-bit word, where
specific bits were replaced considering the new bits and number of bits parameters.
The function allows the user to change the configuration of one out of the 4 specific TDC
registers, identified by a reg info object.

Figure 4.14: The reg info::Config Reg function (top) and the
reg info::Control Reg function (bottom).

As the Configuration library was designed to simplify the configuration of the
PicoTDC via I2C connection, it contains a homonymous class that mainly identifies a list
of reg info objects resuming all the status and configuration registers of the PicoTDC.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 102

Figure 4.15: Private members of the Configuration class.

To manage a specific configuration text file with ”CSV”1 extension, the Configuration
class supplies the private members shown in Figure 4.15:

• default config: it is an fstream object used to indicate the configuration
along the code.

• config name: it is a string for the ”CSV” directory.

• list: it is a vector<reg info> containing the list of the reg info objects for
the PicoTDC configuration.

• number of registers: it is an integer value initialized by default at 0, which
keeps track of the list vector size.

Therefore, the parameterized constructor of the class was designed to initialize the defa-
ult config fstream member, using only as input parameter the config name
string. Then, the constructor implements the parsing of the fstream object, filling
the list member and updating the number of registers value.

An example of a ”CSV” configuration file can be found in [58], in which a 7-column
structure is defined using the semi-colon as the values separator. Each line considers a set
of bits used to set a TDC feature and shows the following fields for list initialization:

• Name: it considers the name for the TDC feature.

• Bits: it defines the total number of employed bits.

• Address: it provides the TDC register assigned to the list elements.

• Startbit: it provides the start bit position within a 32-bit word, such as the value
member of the reg info struct.

• Default value: it defines the bits used to implement a specific TDC feature

• Access: it defines if the register is read-only (”r”) or not (”rw”). Within the
list initialization, this parameter defines the readonly member of the reg info
objects.

• Tags: it considers some tags that describe the TDC features. Such a column is not
useful within Configuration class and is mainly used to mark all the rows with
a similar purpose.

1Comma-Separated Values

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 103

The Configuration parameterized constructor parses the ”CSV” file and groups the
rows with the same Address field, to initialize a specific reg info for the list member
of the Configuration object. At the end of the process, each list element supplies
a TDC register address and a value member containing 4 configuration bytes, related
to the addressed register and the three next registers specified in the PicoTDC manual
[27]2.

The methods designed for the Configuration class mainly support modifications for
the list private member or implement the TDC configuration and control via I2C
connection. Therefore some of the most important methods, used mostly along the user
interface application, are shown:

• void Configuration::Modify Reg(uint32 t address i, uint32 t
value i):

it searches inside the listmember for a reg info corresponding to the addres-
s i address. Then the value i overwrites the value member of the selected
reg info object.

• void Configuration::Modify Val(uint32 t address i, uint32 t
startbit, uint32 t number of bits, uint32 t new bits) :

it searches inside the listmember for a reg info corresponding to the addres-
s i address. Then, the function re-implements the reg info::Mod Valuemeth-
od, using the other parameter to modify the value member of the selected reg
info object.

• void Configuration::Load Config(uint32 t device, I2C Master
my master):

using an I2C Master object and addressing the TDC through the device pa-
rameter, the function runs over the elements of the list member and exploits the
reg info::Config reg method to overwrite the I2C internal registers of the
addressed PicoTDC, loading the wanted configuration.

• void Configuration::Control Config(uint32 t device,
I2C Master my master) :

using an I2C Master object and addressing the TDC through the device pa-
rameter, the function runs over the elements of the list member and exploits the
reg info::Control reg function to compare each reg info value with the
TDC register values, read during the I2C transactions. If some mismatches are
found the function alerts the user with a message on screen.

Furthermore, both the reg info::Config reg and reg info::Control reg were
re-implemented for the Configuration class, using the same names and adding the
feature of searching a specific reg info within the list of a Configuration object.

The Configuration class also provides some methods to control the PicoTDC be-
havior. Specifically, the PicoTDC needs a power-up routine since when power is applied
to the PicoTDC all the registers are in an undefined state. Therefore, to prevent some
critical situations, the constructor provides the magic word register (0x0004), which

2In the ”CSV” configuration file the 0xFFFC register, used for the TDC taps adjustment, is not
considered.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 104

must be configured with a specific value to activate all the TDC features. In the power-
down mode, the TDC digital section is in a reset state and the ASIC has a low power
consumption, as the PLL, the DLL and the hit receivers are disabled. After TDC con-
figuration, the power-up and initialization must follow the scheme shown in Figure 4.16,
which defines the following steps:

1. PLL activation: the register 0x0134 is used to reset the AFC (Automatic Fre-
quency Calibration) module of the PLL and then restart the AFC, asserting the
pll afcstart signal. The PLL needs at least 10 ms to lock its state, then the
pll afcstart is deasserted.

2. DLL activation: the register 0x0128 is used to assert the dll fixctrl. The
DLL locks its state after a minimum of 10 ms, so the dll fixctrl is deasserted.

3. Writing magic word: the digital reset signal is asserted and the 0x5C magic wo-
rd is written inside the 0x0004 register, to power-up the TDC. Furthermore, it keeps
the digital reset asserted for at least 5 ms, to fully reset the TDC digital section.

All these three steps are accomplished by the Configuration::Ext startupmethod
as shown at the bottom of Figure 4.16. The function uses both the dependency of
I2C Master and External signals library, providing an I2C Master and Exter-
nal sig objects as parameters. Furthermore, Ext startup considers other two pa-
rameters to select the TDC:

• device: it is uint32 t variable, which identifies the 7-bit TDC address.

• tdc n: it is used to select the direction of the digital reset signal generated by the
related IPbus slave. Therefore, it can assume 2 values: 1 for the TDC A and 2 for
the TDC B.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 105

Figure 4.16: Initialization and power-up routine for the TDC, performed by the
Configuration::Ext startup method shown on the code at the bottom.

4.2.4 The Readout library

The Readout library was developed to control the readout of each TDC, by managing
the behavior of the IPbus slaves connected to each of the 4 readout ports featured by the
chip. The address table.xml supplies 4 endpoint nodes for each TDC, designed as
the one at the bottom of Figure 4.17. Each endpoint changes only in the address and in
the id, matching the parameters of Table 3.4 in section 3.3.

To provide an object that identifies the single readout IPbus slave and its internal
registers, the Readout library provides the fifo class. Figure 4.17 shows on the top the
fifo class private members, including one pointer to a constant µHAL::Node object for
each <node> in the address table.xml section shown on the figure bottom. These

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 106

Figure 4.17: Fifo private members and the related node structure of a readout slave,
instantiated inside the address table.xml file.

pointers control different features of the readout IPbus slave, while other private members
are implemented to manage the fifo class functionalities:

• fifo name: it is the fifo identifier and is initialized with the endpoint id of the
address table.xml file.

• hw: pointer to an µHAL::HwInterface object, to perform the IPbus packets
dispatch.

• control: it identifies the CTR <node> (not used).

• count: it identifies the CNT <node>, used to know the number of data stored
inside the dual clock FIFO of the readout IPbus slave.

• empty: it identifies the EMPTY <node>, used to alert for an empty buffer of the
dual clock FIFO.

• reset: it identifies the RESET FIFO <node>, used to reset the dual clock FIFO
memory.

• read fifo: it identifies the RXR <node> and it has the ”non-incremental” at-
tribute, as it is used to read the dual clock FIFO buffer for data readout.

In detail, the fifo class is designed to read and control the dual clock FIFO implemented
within each readout IPbus slave, as it stores the data coming from one of the four Pi-
coTDC ports. Therefore, two main methods, shown in Figure 4.18, were developed to
control the main FIFO operations:

• std::vector<uint32 t> fifo::Read Fifomem():

an IPbus read transaction is called by the count member, to know the num-
ber of data in the read FIFO buffer in a preliminary dispatch. Then, count i
variable is initialized with the word count and the read fifo member calls the
Node::readBlock function, to read all the data within the FIFO if count i >
0. Therefore, this function uses two dispatches to perform the readout and the read

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 107

data are returned in a vector<uint32 t> object since the TDCs provide 32-bit
output data.

• void fifo::Reset Fifo():

the reset member calls the Node::write method using as a parameter the value
0x1, to reset the dual clock FIFO in a single dispatch.

Figure 4.18: fifo::Read Fifomem() and void fifo::Reset Fifo() functions
implementations.

To identify the entire readout of a PicoTDC within a software application, the Read-
out library includes the TDC readout class providing one fifo private member for each
of the four ports featured by the PicoTDC. The TDC readout members are shown in
Figure 4.19 and, besides the four fifo members, this class also features the hw pointer to
an HwInterface object, for IPbus packet dispatches, and the TDC ID string, which
identifies the PicoTDC. The class parameterized constructor is designed to initialize each
fifo object considering the related endpoint <node> within the address table.xml
and the TDC selected by the TDC ID member: ”A” for TDC A or ”B” for TDC B.

Finally, exploiting the fifo members and the hw pointer, the functions to con-
trol the TDCs readout were designed re-implementing the fifo::Read Fifomem and
fifo::Reset Fifo methods:

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 108

• vector< uint32 t> TDC readout::Read All FIFOS()

each fifo member calls the Read Fifomem method and the received data are
collected in only one vector<uint32 t> object.

• vector<uint32 t> TDC readout::Read One FIFO(int n fifo):

the n fifo assumes an integer value from 0 to 3 to select the wanted fifo member
and related TDC port. Then, the selected fifo object calls the Read Fifomem
method and returns the read data in a vector<uint32 t> object.

• void TDC readout::Reset FIFOS(int n fifo)

the n fifo selects the wanted fifo member that calls the Reset Fifo method
to reset the related dual clock FIFO.

Figure 4.19: TDC readout private members.

4.2.5 The PicoTDC library

The PicoTDC is the highest abstraction level library of the front-end dependency
structure, shown at the section beginning. This library provides a homonymous class
that identifies a PicoTDC ASIC and all its functionalities within a software application.
Figure 4.20 shows its private members including an object from each of the main classes
explained before for configuration and readout:

• my master: an I2C Master object to implement I2C transactions.

• my conf: a Configuration object to manage all the TDC registers configura-
tion at the software level.

• my readout: a TDC readout object to control the TDC readout.

• device: it is the I2C 7-bit register assigned to the TDC.

Externa sig objects were not considered members of this class, as the user may want to
exploit only the I2C register interface to control the trigger and resets of the PicoTDCs.
All the PicoTDC methods designed represent the final re-implementation of the ones de-
fined within each library of the dependency structure, including the External signals
library. Therefore, the PicoTDC methods used mainly in the interactive interface are
explained below:

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 109

Figure 4.20: PicoTDC class private members.

• void PicoTDC::Initialize Ext(int n TDC, External sig
my external block):

it assumes a 1 or 2 value for n TDC to select TDC A or B. Then, it triggers the
TDC configuration loading and initialization routine, using the PicoTDC private
members and the object my external block.

• void PicoTDC::Write TDC Reg(uint32 t address):

it uses the address variable to search the correspondent reg info element within
the listmember of my conf. Then, the valuemember of the selected element is
written via I2C inside the TDC correspondent register address. Such a mechanism
is thought to overwrite only registers stored in the my conf private member. A
similar method is used for the I2C read operation: Control TDC Reg(uint32 t
address)

• void PicoTDC::Config TDC Channel(uint32 t n channel):

it works similarly to Write TDC Reg, but the reg info is selected considering the
channel number n channel, which identifies one of the 64 input channels supplied
by the PicoTDC.

• void PicoTDC::Power TDC Down(bool enable):

if the enable variable is set to 1 the TDC turns to power-down mode overwriting
the 0x004 register with the value 0x00. Otherwise, if enable is set to 0, the magic
word 0x5C is written inside the 0x004 register, setting the TDC to power-up mode.

4.3 User main programs

To manage the features of the PicoTDC board via a single connection with a local host,
the first step is to set the XML files for the connection and the addresses. Therefore, the
TDCconnection file.xml and address table.xml files were built as explained.

Then, the user interactive interface is designed considering two main user programs
to manage the TDCs configuration and readout. In particular, the interactive interface
is based on the control of the program settings, using some predefined options and com-
mands performed on the terminal prompt. The settings and statements inside the user
programs are designed using the front-end libraries, while the options management is
built using the program options library of the C++ boost packet. This library is
based on some objects and methods able to decode predefined command line options,
which triggers some specific code portions at computational time.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 110

4.3.1 User program for TDCs configuration (PicoTOF)

The PicoTOF user program is designed for the two PicoTDCs configuration, in which
each ASIC is labeled A or B and has a specific I2C address (0x62 or 0x63). As explained in
subsection 4.1, a µHAL application needs first a µHAL::ConnectionManager object
and a µHAL::HwInterface object, initialized using respectively the TDCconnect-
ion file.xml directory and the id picoTDC board.chtcp.0 provided in the con-
nection file. To set the different commands and manage the TDC configuration, it is
compulsory to declare and initialize the following objects defined in the front-end li-
braries:

• My master: an I2C Master object that provides the I2C communication between
the IPbus slave and the PicoTDCs.

• TDC conf: a Configuration object to manage all the TDC internal registers
values for a common final configuration of both the TDCs.

• My block: an External sig object that triggers the external signals generated
by the related IPbus slave towards one TDC or both.

• My readA and My readB: two different TDC Readout objects used to initialize
each PicoTDC object and provide a reset for all the dual clock FIFOs implemented
in the readout IPbus slaves.

• TDCA and TDCB: the PicoTDC objects that identify PicoTDC A and B

The PicoTOF user program includes a first default initialization for the front-end
objects used:

1. my master object is initialized setting an sda scl[2] member equal to {20, 40},
to provide an SCL frequency on board of ∼ 0.4 MHz (calling the I2C Master::
Setup Prescaler() function).

2. a default ”CSV” file is used for the TDC conf initialization. It includes the con-
figuration of specific registers to match the developed firmware. In particular, the
file considers a 160 MHz readout rate and the sync strobe mode for the TDCs,
as all the readout IPbus slaves were designed to support only this configuration.

Then, all the options listed in Table 4.2 are declared and implemented using the pro-
gram options dependency. The different options along the code are implemented as
if-statements, considered at computational time if the related command has been set
on prompt line as indicated in Table 4.2. The PicoTOF source code can be found in
[58], while below only the options set in Figure 4.21 prompt line, used within the time
resolution measurement, are explained.

Figure 4.21: Prompt command line including all the options used for the time resolution
measurement.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 111

”triggered” and ”lw”:

At the top of Figure 4.22 the ”triggered” if-statement is shown, providing the TDC co-
nf object modification for the list member elements related to addresses 0x8 and 0xC,
for TDC triggered mode. At the bottom of the statement, the add reg function is
implemented to store the modified reg info objects within the stored register
vector, as the ”set” option can be used to overwrite the TDC registers corresponding to
the stored register elements.

At the bottom of Figure 4.22, the ”lw” if-statement is shown and it requires two
integers to set the latency and window length for the trigger matching function of the
TDC. If only 2 integers are provided, the list of the TDC conf object is modified only
for the reg info element related to the 0x10 address. The same mechanism explained
before for the add reg function is implemented at the end. In the example in Figure
4.21, the ”lw” option considers 400 and 360 values, identifying 10 µs latency and 9 µs
window using the 40 MHz clock period as a time unit.

Figure 4.22: If-statements implementing the ”triggered” and ”lw” options.

”falling edge” and ”ch en”:

The default TDC conf object provides a list for a specific configuration, in which
all the TDC input channels are disabled and the sampling of a signal for both rising
and falling edges is considered. Figure 4.23 shows how the ”falling edge” if-statement
is implemented. As before, the TDC conf is modified considering two different modes:

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 112

the ”y” value for setting the falling edge sampling or the ”n” to avoid it. In the TDC
resolution measurement, only the arrival time of the signal rising edge was measured, so
the ”n” string value was set to disable the falling edge sampling.

Figure 4.23: If-statements implementing the ”falling edge” option.

To enable different channels with different modes, the ”ch en” option is used. As
shown at the top of Figure 4.24, the first decoded parameter is a string that identifies
a specific mode to enable a TDC channel:

• -none: it sets a value for the list member of the TDC Conf, to enable a channel
for coarse time measurement and to sample a signal on the rising edge.

• -fine: it sets a value for the list member of the TDC Conf, to enable a channel
for fine time measurement and to sample a signal on the rising edge.

• -fall: it sets a value for the list member of the TDC Conf, to enable a channel
for coarse time measurement and to sample a signal on both rising and falling edges.

• -fineandfall: it sets a value for the list member of the TDC Conf, to enable
a channel for fine time measurement and to sample a signal on both rising and
falling edges.

Then, the following option parameters identify the desired input channels and are used in
the bottom section of Figure 4.24, to modify the TDC conf configuration object. During
the TDC resolution measurement only channels 62 and 63, configured for ”fine” mode,
were used.

As before the add reg function mechanism is implemented for both ”falling edge”
and ”ch en” options, as shown in Figures 4.23 and 4.24.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 113

Figure 4.24: If-statements for the ”ch en” option, showing the two main sections for
decoding the channel mode and setting the channel enable values within the TDC conf
object.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 114

”init”:

After all the command options, used to modify the TDC conf object, have been
processed at the computational time, the last option used to trigger the I2C configu-
ration of the TDC registers must be set: ”set” or ”init”. The ”set” mainly runs over
the stored register vector<uint32 t>, containing all the addresses of modified
elements within the TDC conf, to overwrite only the modified TDC registers. Such an
option was not used during TDC resolution measurement, but would be useful in the
future to overwrite specific TDC registers without fully re-initializing the TDC.

Figure 4.25 shows the if-statement related to the ”init” option, which uses a single
parameter to identify the PicoTDC that must be re-initialized. Therefore, it uses the
TDCA and TDCB objects to load the new configuration stored in TDC conf and perform
the power-up routine.

Figure 4.25: If-statements implementing the ”init” options.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 115

Option name Value provided Option description
help No value provided It produces the help message with the

list of the options.
load string (”CSV” directory) It loads a ”CSV” configuration file.
load conn string (XML directory) It loads an XML connection file.
piconame string (id) It sets id used in the XML connection

file.
I2C addrA string (TDCA address) I2C address of picoTDC A
I2C addrB string (TDCB address) I2C address of picoTDC B
sda scl vector<string>

(setup SCL pulse length)
It sets the values for setup and SCL
pulse lengths.

triggered No value provided Triggered mode
free-running No value provided Untriggered mode
lw vector<string> (l w) Trigger latency and window settings
falling edge char (y/n) Falling edge enable
ch en vector<string>

(mode channels)
It enables the desired channels with [-
none, -fine, -fall, -fineandfall] modes for
fine resolution and falling edge detec-
tion.

en all string (mode) It enables all the channels with [-none,
-fine, -fall, -fineandfall] modes for fine
resolution and falling edge detection.

dis all - It disables all the channels of a TDC.
startup string (chip) Power-up routine for TDC A, B or

AandB (also included in the init com-
mand)

powerdown vector<string>
(chip 1/0)

Powerdown for TDCA, TDCB or both
A,B or AandB (1/0)

init string (chip) It configures and initializes the chip
(A,B or AandB).

set string (chip) It configures the TDC registers modi-
fied by previously used options, for a
selected chip (A,B or AandB).

rst fifo string (chip) It resets the dual clocks FIFOs, pro-
vided by the IPbus slaves implemented
for the readout of TDCA and TDCB.

Table 4.2: Options implemented in the PicoTOF user program.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 116

4.3.2 TDCs readout user program (PicoRead)

As mentioned in section 2.1, the PicoTDCs can be configured to support a free-running
or triggered mode readout. In detail, the TDC data output is provided considering
a continuous stream or supplied whenever a trigger signal is sent to the PicoTDC. The
triggered mechanism is designed inside the TDC to process TDC measurements only when
a trigger signal marks an event, otherwise all the not selected measurements, of each input
channel, are discarded automatically. The free-running mode instead skips the trigger
matching function of the digital TDC section, pulling out all the TDC measurements of
each input channel. As mentioned in subsection 3.3.3, the PicoTDC can also be configured
to use one or four differential readout ports, supplying different output data sequences
at the software level:

• Single port readout: the data output is performed using only chip port 0, keeping
the same 32-bit data format as four-port mode. An additional 32-bit separator
identifies the 16-channel group, which provides data. Within free streaming mode,
the separator is only generated if data are available, while in triggered mode is
generated if any trigger is sampled.

• Four ports readout: the data are read considering the 4 groups division of the
channels and each port takes the output of one 16-channel group.

The PicoRead user main program was developed to perform the readout for TDC
configured in triggered and single readout port mode. As for the PicoTOF user program,
this readout interface needs the µHAL::ConnectionManager and the µHAL::HwIn-
terface objects, initialized as explained. This interface was used for the TDC resolution
measurement, in which a software trigger was implemented to have a final DAQ system
able to count the number of acquired events. Therefore, the PicoRead user program is
mainly based on these two front-end objects:

• Ptread: it is a TDC readout object initialized in our case to perform the TDC
readout of TDC A or B.

• sigMgr: it is an External sig object, to generate a software trigger for a se-
lected PicoTDC.

To implement the different prompt commands along the code, the program options t
struct was designed as shown in Figure 4.26. In particular, a program options t
object, called opt, is instantiated within PicoRead program and, using the options
listed in Table 4.3, each opt member can be initialized to manage the readout for a
specific TDC.

Figure 4.26: program options t struct members.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 117

Option name Value provided Option description
help No value provided It prints help message with the

options list.
connection string (XML directory) It loads the XML connection file.
chip string (A, B) It starts the readout for picoTDC

chip A or B.
events int It sets the desired number of

events when TDC is configured
for triggered mode.

dump bool (1/0) It prints decoded TDC data on
the screen.

output string (file name) It generates an output file with
”ptdat” extension.

Table 4.3: Options implemented in the PicoRead user program.

The full PicoRead source code can be found in [58], while the code at the top
of Figure 4.27 considers only the main loop implementing the PicoTDC readout. The
prompt command line, at the bottom of the figure, represents the main options set for
the TDC resolution measurement, generating a binary file with the ”ptdat” extension.

Figure 4.27: Loop performing the readout within the PicoRead user program and an
example of a prompt command line for the PicoRead interface.

The ”event” option sets a specific number of events in the while statement, which provides
a software trigger at each cycle, using the External sig::SetOneImpulseTrigger,
for a TDC selected by the ”chip” option. Then, the data are read by exploiting the
Ptread object that calls the method TDC readout::Read One FIFO, to read the
FIFO connected to the TDC port 0 and store the payload in a vector<uint32 t>. In
the end, the obtained data for each triggered event are packed, supplying a specific final
header that includes four 32-bit words:

• Event header: it is a fixed 0x12345678 value that identifies the start of a new
event.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 118

• Event Id: it specifies the event id among the ones stored during the loop. Inside
the loop in Figure 4.27, it is initialized through the iev uint32 t value.

• Separator: it is a 32-bit length separator initialized as 0x00000000.

• Data buffer size: it indicates the total number of bytes, stored within a triggered
event.

These data packets are printed on the screen using the ”dump” option or saved in a
”ptdat” file considering the ”output” option.

Figure 4.28: Event words sequence sets for our configuration.

Looking at the TDC output, each triggered event is described by a specific sequence
of 32-bit words. This sequence can be modified through TDC configuration and the
PicoRead user program was developed to support the sequence pattern shown in Figure
4.28. Each 32-bit word has a defined division into different fields, so, referring to the
figure, the word sequence has the following order:

• Channels group separator: it is used to switch between one 16-channel group
and the following one. The Type field considers 0xF as an identifier, while the bits
28 and 27 assume the value:

– 00 for the channels from 0 to 15,

– 01 for the channels from 16 to 31,

– 10 for the channels from 32 to 47,

– 11 for the channels from 48 to 63.

• Header: it is provided after each separator and the type field is characterized by
a 0x8 value. It considers two 13-bit sections called Fields A and B, which identify
the bunch counter and event counter values.

• TDC Hit: it represents the measured hit with the following bit division:

– Id: the bit 31, set to 0, identifies the TDC hit word.

– Channel: bit positions from 30 to 27 identify the input channel within the
16-channel group.

– Edge: bit 26 shows if the measurement was performed on the rising edge (1)
or the falling edge (0) of a pulse.

CHAPTER 4. SOFTWARE ORGANIZATION FOR THE PICOTDC BOARD 119

– Value: bits from 25 to 0 are used for the full-time measurement of TDC, in
which each specific measurement performed by the TDC is shown.

• Trailer: it is the event summary for every separator and is identified by the type
field 0xA. It shows the event counter value and the number of hits found for each
separator. The Overflow bit is not used for our default configuration so it is always
set to 0.

Executive summary

The software design was developed to finally provide the user with a simple interactive
interface for controlling the hardware feature of the PicoTDC card. Starting from the
µHAL back-end library, some front-end libraries were designed to have higher abstraction
level commands for the implemented IPbus slaves. The connection between a host and
the board is supported by the Control Hub software application, which also manages
the internal connection with a mono-thread µHAL application. As a final interactive
interface, two user programs were designed for the configuration and readout of the
PicoTDCs. These two were implemented to allow the user to control the PicoTDC
features by some prompt command lines, reducing the complexity of the DAQ system
operations.

Chapter 5

Resolution measurements

Since the PicoTDC board has to be used in future test beams to test particle sensors,
a setup for the PicoTDC resolution measurement was built to prove the reliability of the
developed firmware and software. Such a measurement was also important to test the
board performances and find the effective resolution capabilities of the PicoTDCs ASICs,
configured in their fine resolution mode. Previously, the ALICE Bologna group tested
the PicoTDC resolution only using a test card provided by CERN, estimating a final
resolution of less than 5 ps [62].

In general, the resolution measurement of a TDC ASIC is performed considering
repeated measurements of the same known and stable time interval. The final histogram
reporting all the occurrences must show a Gaussian shape with a mean set around the
known time interval value. Fitting the histogram, the standard deviation parameter is
taken as the effective resolution of the ASIC, while the mean represents the time interval
measured.

The first chapter section shows how the measurement setup was built, while the second
one explains the analysis done for the datasets obtained for both PicoTDCs A and B.
At the end of section 2 the final results are discussed, providing some conclusions on the
PicoTDC resolutions and the reliability of the developed DAQ system.

5.1 Experimental setup

The setup shown in Figure 5.1 provides two differential signals with the same frequency
on two input channels of one PicoTDC. One of these two signals is delayed using a time
delay programmable line, to define a fixed time difference between the two. Therefore,
by setting different delays, many stable time differences, in a specified time range, can
be measured for resolution estimation. Our setup is built with the following devices:

1. TTi PLL-105P: it is a linear DC Power supply to power the PicoTDC board with
a voltage of 11.0 V.

2. PicoTDC board: Figure 5.1 shows the test board, in which the TDCs are highlighted
in red, while the PolarFire FPGA and the Ethernet connector are highlighted in
purple. The Ethernet connector is wired to a local host with Linux OS, providing
the libraries and the designed software (including the Control Hub).

3. The mezzanine adapter: in Figure 5.1, it is connected to TDC B through an FMC
connector. This is an adapter board developed by the INFN electronics laboratory

121

CHAPTER 5. RESOLUTION MEASUREMENTS 122

of Bologna. In detail, it provides two MCX connectors on either side directly linked
to the FMC connector pins assigned for TDC B differential input channels: 62 and
63 (the same applies for TDC A). The card also hosts an IDC34 connector and two
VHDCI connectors (like the one mounted on the ALICE-TOF TRM).

4. Si5341-D evaluation board: this card generates precise clock signals, running at
a configurable frequency. In our case, such a board is configured to supply two
sub-LVDS18 signals.

5. Electromagnetic trombone: it is a programmable delay line with a range from 0 to
625 ps and a resolution of 0.5 ps. The micro terminal, placed on top of the device,
is used to modify the delay supplied on the input signals.

Figure 5.1: Experimental setup built for the resolution measurement of TDC B.

To explain better the setup workflow, Figure 5.2 shows a scheme of how the setup is
organized for TDC B configuration and readout, matching Figure 5.1. As mentioned, the
Si5341-D EVB board generates two sub-LVDS18 signals, with a common voltage of 0.9
mV compatible with the TDC manual indications. These two differential signals have
different directions in the setup:

• Signal1 (red) feeds the two inputs of the electromagnetic trombone using two
SMA to SMA cables.

• Signal2 (blue) is sent to the mezzanine adapter using two SMA to MCX cables.
The generated clock signal is sent to the TDC B channel input 62, using the adapter
plugged into the FMC connector.

Then, Signal1 passes through the electromagnetic trombone acquiring the configured
delay time plus an offset due to the trombone mechanism. The delayed Signal1 is sent
to the other two MCX connectors of the mezzanine (using two SMA to MCX cables),
which are linked to the TDC B input channel 63. The explained signal-generation mecha-
nism is also valid for TDC A, considering always the differential input channels 62 and 63.

CHAPTER 5. RESOLUTION MEASUREMENTS 123

Therefore, the setup structure is designed to measure the arrival time of both Signal1
and Signal2 clocks. The difference between these two measurements defines the fixed
time interval, to perform the resolution estimation. The configuration and readout of
both the PicoTDCs are triggered by the developed user main programs, exploiting the
Ethernet connection with the local host.

Figure 5.2: Test setup scheme for resolution test of the PicoTDCs mounted on PicoTDC
board.

CHAPTER 5. RESOLUTION MEASUREMENTS 124

5.1.1 Si5341-D evaluation board

Figure 5.3: Evaluation board that features the Si5341-D frequency generator, highlighted
in green. The USB connector and the connected outputs are highlighted with different
colors.

The board, used for the experimental setup, is produced by Skyworks Solutions and
hosts the Si5341-D frequency generator (highlighted in green in Figure 5.3). This chip
can generate differential output clock frequencies from 100 Hz up to 1028 MHz, starting
from the input of a crystal oscillator, supplied on board and running at a frequency of
48 MHz [63] [64]. The Si5341-D chip is designed to produce precise single-ended and
differential clock outputs, ensuring a 90 fs jitter phase.

The evaluation board is powered up through a USB connector (highlighted in purple
in Figure 5.3) and provides as output 10 possible SMA female connectors, directly routed
to the chip. Furthermore, the USB connection is used for chip configuration, to set
the desired frequency and voltage standard (LVCMOS, LVDS, sub-LVDS ecc.) for each
enabled output. The ClockBuilder Pro software application works as a configuration user
interface for the board and the chip. This software was designed for Windows OS, so a
further Windows machine was employed to prepare the setup.

As shown in Figure 5.3, our setup uses the outputs OUT3B and OUT3 for the
Signal1, sent to the electromagnetic trombone, while OUT4B and OUT4 are exploited
for Signal2, sent directly to the mezzanine adapter. The label N and P stands for the
negative and positive polarities of the outputs. Finally, the board configuration provides
2 sub-LVDS18 clock signals running with a frequency of 100 KHz.

CHAPTER 5. RESOLUTION MEASUREMENTS 125

5.1.2 Electromagnetic trombone

Figure 5.4: Electromagnetic trombone internal structure [65].

The electromagnetic trombone is the XT-200 programmable delay line, produced
by Colby Instrument. This device is based on a single unit called ”electromechanical
trombone”, which uses a stepper motor mechanism to set a longer or shorter path for an
input electric signal. The added path length induces a delay in the input signal, which is
then provided to the output connector.

The XT-200 can be configured for a specific delay value from 0 to 625 ps, considering
a step resolution of 0.5 ps and a wideband signal frequency input from DC to 18 GHz
[65]. In our experimental setup, the delay value can be modified through a further device,
called MT-100A MicroTerminal and connected directly to the XT-200 through an RS-232
serial port. The signals instead are routed in and out of the device through female SMA
connectors.

Since we needed to delay a differential signal, the XT-200 features two input channels
instrumented with an ”electromechanical trombone” unit. Therefore, as shown in Figure
5.4, both the negative (N) and positive (P) polarities signals, describing Signal1, pass
through a delay line, getting out with a delay equal to an offset plus the configured delay.

5.2 Data acquisition and analysis

The data acquisition was performed using the user main programs developed for
PicoTDCs configuration and readout: PicoTOF and PicoRead. Setting the signals
generation system, explained in section 5.1, and configuring the electromagnetic trom-
bone for different delays, a dataset of 107 events was collected for each specific delay
value. A total of 9 datasets were collected for each TDC, covering the delay range of the
electromagnetic trombone from 0 to 600 ps. A final analysis was performed to estimate
the effective TDC resolution for a single-channel time measurement.

CHAPTER 5. RESOLUTION MEASUREMENTS 126

5.2.1 DAQ workflow

The data acquisition was based on 2-channel time measurements for a single PicoTDC.
The Si5341-D evaluation board generated the first two differential clock signals, with a
chosen frequency of 100 KHz. Then, the trombone set a given delay for both polarities
of one among the two generated signals. Finally, the signals fed channels 63 and 62, as
given by the adapter schematic plugged into the FMC connector.

As the first step, before starting the acquisition, the connected PicoTDC must have
a specific configuration to match the firmware and the readout software requirements.
Therefore, the developed user program provided a default configuration with the following
instructions:

• Single Port Readout mode was set, as the readout user program was developed to
read data only from port 0 of the connected TDC.

• A readout rate of 160 MHz and the Sync strobe mode were set to match the features
of the IPbus slave used for the port 0 readout.

• The PicoTDC was also configured to provide both data measurements using fine
(3.05 ps) or normal binning (12.2 ps) (depending on how the channels would be
enabled using ”ch en” or ”en all” options)

Besides these default conditions, the TDC configuration was modified using the PicoTOF
implemented options, shown in subsection 4.3.1. Therefore, the following commands were
set on the terminal command line, before calling the ”init” option for the initialization
of the related TDC:

• --triggered: it was set as the PicoRead software, designed for the readout,
implements internally a software trigger. Furthermore, the PicoRead was thought
to receive frames data pattern for a triggered event, as the one shown in subsection
4.3.2.

• --lw 400 360: setting a trigger latency of 400× Tclk board = 10µs and a trigger
window of 360 × Tclk board = 9µs, where Tclk board = 25ns is the period of the 40
MHz clock that feeds the TDCs. Such an option matched the trigger latency with
the period provided for the generated TDCs input.

• --falling edge n: it was set to allow TDC time measurement only on the
rising edge of the generated clock signals.

• --ch en -fine 62 63: it enabled TDC input channels 62 and 63, considering
the fine resolution mode and a time measurement performed on the rising edge of
the generated clock signals.

Figure 5.5 shows an example of a TDC-triggered event in which Signal1 and Signal2
are the 100 KHz clock signals feeding TDC channels 62 and 63. The trigger is a 25 ns pulse
signal pulled by the PicoRead software, and the TDC was configured to sample only
the rising edge of the signals. Therefore, only the Signal1 and Signal2 rising edges
are provided when Trigger window = ’1’ and the delay, obtained by the difference
between the two TDC measurements (as highlighted in red in Figure 5.5), is the final
observable. By setting the trigger latency to 10 µs and the trigger window to 9 µs, an
event can be considered valid if only one measurement per channel is performed, as both

CHAPTER 5. RESOLUTION MEASUREMENTS 127

Figure 5.5: Signals waveforms within a valid TDC-triggered event for the defined config-
uration.

Signal1 and Signal2 have a frequency of 100 KHz and two measurements are needed
to have a time difference.

After setting the TDC configuration, the setup was ready to acquire data using the
PicoRead user program. The data acquisition conceived a dataset of 107 triggered events
for each configured delay. To almost cover the dynamic range of the electromagnetic
trombone, 9 different delays were configured within the 0-600 ps time range collecting
a total of 9 datasets for each TDC. Starting from the 0 ps value and considering a 100
ps shift, 7 different delays were chosen up to 600 ps, while two additional delays of 10
ps and 20 ps were used to test the PicoTDC 2-channel measurement for smaller time
differences. Therefore, as mentioned in section 4.3, the acquisition started considering
the chip connected to the setup and repeating the following option commands line for
each of the 9 delay values:

• --chip A or --chip B: selecting the connected chip for the readout.

• --events 10000000: it was set to send 107 software triggers to the selected
TDC and collect each event, with or without TDC measurements.

• --output file.ptdat: it saved the collected acquired data of an event using
the header format explained in subsection 4.3.2. The data were saved in a file with
”ptdat” extension.

Each delay acquisition took ∼2 hours, showing reliable operations of the DAQ system
both at software and firmware levels, without any communication interruption or timeout.
In the end, 9 ”ptdat” extension files were obtained for each TDC, corresponding to the
9 configured delay values.

5.2.2 Analysis and results

The TDC output for each channel separator corresponds to a sequence of 32-bit
words as the one explained in subsection 4.3.2. Therefore, the analysis individually
considers each of the 9 datasets acquired for each TDC and it is based on a selection
mechanism for events showing a word sequence as the one in Figure 5.6 (obtained using
the ”dump” option of the PicoRead user program). Since, by TDC configuration and
setup characteristics, all the valid triggered events provide only one measurement per
TDC input channel, all the events in which one or both channels did not acquire data
are considered invalid and must be dropped.

The analysis program is designed to scan all the 107 events stored in the ”ptdat” file,
searching for events providing only 2 hit time measurements in the frames sequence of

CHAPTER 5. RESOLUTION MEASUREMENTS 128

separator 0xFC000000 (highlighted in yellow in Figure 5.6). As a further condition, it
selects the events that show only one hit for both channels 14 and 15, which correspond
to the TDC input channels 62 and 63 used in the setup. As a final result, ∼106 invalid
events were dropped providing a final dataset for the TDC time resolution estimation of
∼9×106 valid events.

Figure 5.6: TDC 32-bit words sequence provided for each valid triggered event.

Among all the 32-bit words describing an event, only the TDC time measurements
were extracted by the analysis program. As the valid event definition considers a pair
of time measurements acquired for channels 62 and 63, a time difference is obtained for
each valid event identifying the time delay induced by the electromagnetic trombone. To
estimate the final TDC resolution, the ROOT analysis tool is used to produce a histogram
filled with the measured time differences for each configured delay. A Gaussian fit was
applied to each histogram using the following PDF1:

f(x) =
Const

2σ
√
π
e−

(x−µ)2

2σ2 , (5.1)

in which the Const variable is the Gaussian area, while the mean µ and the standard
deviation σ represent the measured time difference and the estimated resolution for a
2-channel time measurement.

To obtain the offset generated by the electromagnetic trombone, a first 0 ps delay
measurement was performed. Figure 5.7 shows the 2 histograms found for TDC A and
B, in which the 2-channel time differences are set on the x-axis, in TDC bin units, and the
y-axis shows the entries per bin. The fit almost reproduces the shape of the histograms
and the measurements obtained are shown in Table 5.1, not considering the related errors
as they are negligible.

The time difference between the measurements of 2 different TDC channels provides
the resolution:

σtime(2ch) =
√
σ2
ch1 + σ2

ch2, (5.2)

where the single TDC channel measurements are considered independent, so their reso-
lutions are summed in quadrature. Since each TDC channel provides the same binning,
the following assumption is considered:

σch1 = σch2 = σtime(1ch) (5.3)

and the final resolution σtime(1ch) for a single-channel time measurement is derived from
equation 5.2 as:

σtime(1ch) =
σtime(2ch)√

2
, (5.4)

1Probability Density Function

CHAPTER 5. RESOLUTION MEASUREMENTS 129

Figure 5.7: Trombone offset measurements for TDC A and TDC B.

in which the σtime(2ch) values are displayed in the third column of Table 5.1. The final offset
and the σtime(1ch) resolution estimates, converted into ps units, are shown in the last two
columns of the table. These conversions were made by multiplying the measured mean
and the estimated σtime(1ch) values by the TDC binning factor of 3.05 ps. Although the
same setup was used for offset measurement for both TDC A and TDC B, the measured
offsets differ because the TDC channels were not calibrated to the same value before the
data acquisition began.

TDC Mean
(TDC bin)

Resolution
(TDC bin)

Set delay
(ps)

Measured
offset (ps)

Estimated
resolution
σtime(1ch) (ps)

A 1889.14 1.39 0 5761.88 2.99
B 1878.78 1.50 0 5730.28 3.23

Table 5.1: Fit results of the TDC A and B offset measurements (errors are negligible).

Taking the measured offsets as references, the same process was repeated for all the
other 8 datasets, finding the histograms of Figure 5.8 for TDC A and Figure 5.9 for TDC
B. Then all the estimated values found using the Gaussian fit are shown in Tables 5.2
and 5.3, where the related errors were not considered as negligible.

CHAPTER 5. RESOLUTION MEASUREMENTS 130

Figure 5.8: Histograms obtained for TDC A, considering different configured delays.

CHAPTER 5. RESOLUTION MEASUREMENTS 131

Figure 5.9: Histograms obtained for TDC B, considering different configured delays.

CHAPTER 5. RESOLUTION MEASUREMENTS 132

Mean
(TDC bin)

Resolution
(TDC bin)

Set delay
(ps)

Measured
delay (ps)

Estimated
resolution
σtime(1ch) (ps)

1892.58 1.40 10 10.49 3.01
1895.76 1.42 20 20.19 3.06
1922.26 1.43 100 101.02 3.07
1955.01 1.46 200 200.90 3.16
1987.96 1.44 300 301.40 3.10
2020.90 1.31 400 401.86 2.83
2053.51 0.97 500 501.33 2.10
2086.44 1.27 600 601.77 2.75

Table 5.2: Estimated values found by fitting the measurements done with TDCA (errors
are negligible).

Mean
(TDC bin)

Resolution
(TDC bin)

Set delay
(ps)

Measured
delay (ps)

Estimated
resolution
σtime(1ch) (ps)

1881.63 1.51 10 8.69 3.25
1884.90 1.49 20 18.67 3.21
1911.81 1.49 100 100.74 3.21
1944.53 1.50 200 200.54 3.23
1977.40 1.47 300 300.79 3.16
2010.26 1.24 400 401.01 2.67
2042.86 0.94 500 500.44 2.03
2075.75 1.18 600 600.76 2.55

Table 5.3: Estimated values found by fitting the measurements done with TDCB (errors
are negligible).

The fit performed almost reproduces the histogram found for each configured delay,
estimating the 2 channel time differences shown in the ”Mean” column of Tables 5.2
and 5.3. The ”Measured delay” column, shown in both the tables, contains instead the
estimated delay values obtained using the following equation:

Measured delay = (Meandelay −Meanoffset)× LSb, (5.5)

in which Meandelay is the mean value for a specific delay measurement and Meanoffset

is the estimated value for the offset induced by the trombone (LSb = 3.05 ps). The
measured delays, for both the PicoTDCs, are in excellent agreement with the expected
ones, demonstrating the good performance of the PicoTDC board and the DAQ system.
With the exception of the two lowest values of Table 5.3, they are in agreement within 2
ps with the expected values.

The estimated 1-channel resolution σtime(1ch) is always provided by the Equation 5.4,
and the values, estimated for all the configured delays, are shown in the last column
of the Tables 5.2 for TDC A and 5.3 for TDC B. To understand better the TDC A
and B performances over the 0-600 ps delay range, the graphs, in Figure 5.10, plot the
σtime(1ch) estimated values as a function of the measured 2-channel time differences, both

CHAPTER 5. RESOLUTION MEASUREMENTS 133

converted to ps units. Starting from the offset measurement, it is clear how the estimated
resolutions float around a specific value, which can be inferred considering the average of
all the resolutions and associated with its standard deviation:

• TDCA: σtime(1ch) = 2.90±0.33 ps, where the worst estimated resolution is σtime(1ch) =
3.16 ps.

• TDC B: σtime(1ch) = 2.95±0.43 ps, where the worst estimated resolution is σtime(1ch) =
3.25 ps.

These results confirmed the excellent performance of both PicoTDCs integrated on board,
improving the previous results obtained by the ALICE group using an external test
PicoTDC card plugged into an FPGA-based board.
In conclusion, the PicoTDC board meets the requirements as a test environment for the
future development of the TRM2 card. At the same time, the designed DAQ system
ensures stable and reliable operations at both software and firmware levels, making it
a valuable resource for test beams or laboratory analysis implying generic sensors and
related front-end electronics.

CHAPTER 5. RESOLUTION MEASUREMENTS 134

Figure 5.10: Plots for TDC A and TDC B, showing the estimated 1-channel TDC reso-
lution as a function of the measured 2-channel time differences.

Conclusion

In this thesis, I presented an Ethernet-based DAQ system to evaluate a PicoTDC
test board as a test environment for the development of the new TDC Readout Module
(TRM2), which will be installed on the ALICE-TOF detector to replace damaged TRM
cards during LHC Run 3 and Run 4. The INFN electronics laboratory and the ALICE
group of Bologna designed the PicoTDC board with a specific hardware layout including
two PicoTDCs and a PolarFire FPGA, as the main components selected for the TRM2
card design. The PicoTDCs are 64-channel TDCs with a configurable binning of 12.2 ps
or 3.05 ps, and the PolarFire is a flash memory FPGA used to implement the PicoTDC
board control and readout.

This project implemented the FPGA firmware architecture and related software, based
on the IPbus protocol, to control the configuration and readout of both PicoTDCs. Since
the IPbus communicates over Ethernet protocol, the firmware structure relies on a 1 Gb/s
Ethernet solution and features specific logic VHDL modules to handle Ethernet frame
transfer. Each frame contains specific IPbus packets that identify the final transactions
for the on-chip IPbus, set at the bottom of the hierarchical firmware design. The on-chip
IPbus implements a master-slave structure with 12 IPbus slaves that handle the board
features and the PicoTDCs operations. Finally, C++ software front-end libraries were
developed, through the µHAL IPbus back-end library, to control the operation of each
IPbus slave and design a general-purpose software interactive interface controlled by the
Control Hub software application. Both firmware and software support the UDP/IP layer
model, which transfers information nested in the Ethernet frame structure over a wide
network of devices.

To test the reliability of the designed DAQ system and to measure the board perfor-
mances, a PicoTDC resolution measurement was performed employing a programmable
delay line with 0.5 ps resolution. Two TDC channels were fed with 2 synchronous 100
KHz signals, shifted by a configurable time delay within the 0-600 ps range. The analysis
showed excellent compatibility between the measured time differences and the configured
time delays. Finally, a single channel resolution of (2.95 ± 0.43) ps was estimated for
both the PicoTDC ASICs considering their finest binning. The developed firmware and
software proved reliable during all 36 hours of measurement, providing 18 datasets of 107

events each.
In conclusion, the DAQ system ensures stable operation for the board, providing the

expected PicoTDC performance and evaluating the system as a good tool for test beams
and laboratory analysis with different sensors and front-end electronics. Furthermore, all
the tests done with the board confirmed the choice of components and the learning from
this thesis is now informing the design of the new TRM2 card.

135

Bibliography

[1] F. Noferini on behalf of the ALICE Collaboration, ALICE results from Run-1 and
Run-2 and perspectives for Run-3 and Run-4, J. Phys.: Conf. Ser. 1014 012010 (2018),
DOI 10.1088/1742-6596/1014/1/012010

[2] J. Liu on behalf of the ALICE collaboration, Run 3 performance of new hardware in
ALICE, PoS (2024), DOI: https://doi.org/10.22323/1.450.0052

[3] R. Stock et al., “Compression effects in relativistic nucleus nucleus collisions”, Phys.
Rev. Lett. 49 (1982), pages 1236–1239.

[4] U. Heinz, M. Jacob,An Assessment of the Results form the CERN Lead Beam Pro-
gramme, arXiv (2000), [arXiv:nucl-th/0002042v1]

[5] P. Paganini, ”Quantum Chromodynamics”, Fundamentals of Particle Physics: Un-
derstanding the Standard Model, Cambridge University Press (2023), pages 249-326.

[6] D. H. Perkins, ”Quark interactions and QCD”, Introduction to High Energy Physics,
4th ed., Cambridge University Press (2000), pages 181-191.

[7] W. Nazarewicz, QCD class, Lesson at Michigan State University (2015).

[8] M. Faǹı, Proposal of a Continuous Read-Out Implementation in the ALICE - TOF
Detector, Master Thesis, University of Bologna (2015).

[9] M. A. Stephanov, QCD phase diagram: An Overview, arXiv (2006), [arXiv:
hep-lat/0701002]

[10] S. Sarkar, H. Satz, and B. Sinha, ”The Thermodynamics of Quarks and Gluons”,
The Physics of the Quark-Gluon Plasma: Introductory Lectures, ser. Lecture Notes in
Physics. Springer Berlin Heidelberg (2009), pages 1-21, ISBN: 9783642022852

[11] H. Sazdjian, Introduction to chiral symmetry in QCD, published by EDP Science
(2016).

[12] F. Karsch, Lattice Results on QCD Thermodynamics, arXiV (2001),
[arXiv:hep-ph/0103314v1]

[13] Heng-Tong Ding, Recent lattice QCD results and phase diagram of strongly in-
teracting matter, Nuclear Physics A, volume 931 (2014), pages 52-62, available:
https://doi.org/10.1016/j.nuclphysa.2014.09.053

[14] ALICE collaboration, The ALICE experiment, A journey through QCD, arXiv
(2022), pages 1-127, [arXiv:2211.04384]

137

BIBLIOGRAPHY 138

[15] ALICE Collaboration, Enhanced production of multi-strange hadrons in high-
multiplicity proton-proton collisions, arXiv (2017), [arXiv:1606.07424v2]

[16] ALICE Collaboration, ALICE upgrades during the LHC Long Shutdown 2, arXiv
(2023), [arXiv:2302.01238v1]

[17] ALICE Collaboration et al, The ALICE experiment at the CERN LHC, Journal of
I.: 3 S08002 (2008), DOI: 10.1088/1748-0221/3/08/S08002

[18] M. Slupecki, Fast Interaction Trigger for ALICE upgrade, Nuclear Inst. and Meth.
A, vol. 1039 (2022), available:
https://doi.org/10.1016/j.nima.2022.167021.

[19] N. Pancazio (for the ALICE Collaboration), PID performance of the ALICE-TOF
detector in Run 2, arXiv (2018), [arXiv:1809.00574]

[20] R. Preghenella, The Time-Of-Flight detector of ALICE at LHC: construction, test
and commissioning with cosmic rays, Doctoral Thesis, University of Bologna (2009).

[21] A. Alici, Status and performance of the ALICE MRPC-based Time-Of-Flight detec-
tor, Journal of I.: 7 P10024 (2012), DOI: 10.1088/1748-0221/7/10/P10024

[22] D. Falchieri for the ALICE Collaboration, DRM2: the readout board for
the ALICE TOF upgrade, PoS (2018), TWEPP-17, 081. 6 p., available:
https://cds.cern.ch/record/2312286

[23] D. Falchieri for the ALICE Collaboration, DRM2: the readout board
for the ALICE TOF upgrade, TWEPP-17 Presentation (2017), available:
https://indico.cern.ch/event/608587/contributions/2614132
/attachments/1520714/2376966/twepp2017 falchieri.pdf

[24] A. Alici, P. Antonioli, A. Mati, S. Meneghini, M. Pieracci, M. Rizzi, C. Tintori, Radi-
ation tests of key components of the ALICE TOF TDC Readout Module, CERN report
(2004), available: https://cds.cern.ch/record/814086/files/p184.pdf

[25] J. Christiansen, HPTDC High Performance Time to Digital Converter, CERN
Geneva (2004), Tech. Rep., available: https://cds.cern.ch/record/
1067476

[26] ALICE Collaboration, ”Time-of-Flight detector”, ALICE upgrades during the LHC
Long Shutdown 2, CERN Geneva (2023), pages 86-91, [arXiv:2302.01238v1]

[27] CERN EP-ESE-ME, picoTDC - Picosecond Time to Digital Converter, CERN
Geneva (2024), Tech.Rep., available: https://picotdc.web.cern.ch/

[28] S. Altruda et al., PicoTDC: a flexible 64 channel TDC with picosecond resolution,
IOP Publishing 18 n. 07 (2023), DOI: 10.1088/1748-0221/18/07/P07012

[29] A. Simon, A. Oliva, ”Buck converter”, Power-Switching Converters, Taylor Francis
Group (2010), ProQuest Ebook Central, pages 16-21.

[30] Texas Instruments, Fundamental Theory of PMOS Low-Dropout Voltage Regulators,
application report (2018).

BIBLIOGRAPHY 139

[31] Microchip Technology Inc., PolarFire FPGA Product Overview, product report
(2021).

[32] Microchip Technology Inc. and its subsidiares, PolarFire FPGA Packaging and Pin
Descriptions User Guide, product report (2024).

[33] Texas Instruments, TCA9416 Ultra-Low-Voltage I2C Translator with Rise Time Ac-
celerators, product data sheet (2021).

[34] Microchip Technology Inc., ”Appendix 1: MAC Layers in the OSI Reference Model
and Standard Ethernet Interfaces”, UG0687 User Guide PolarFire FPGA 1G Ethernet
Solutions, pages 17-20, guide revision 5.0.

[35] Cisco systems, Serial-GMII Specification, specification revision 1.8 (2005).

[36] AMD, Technical Information Portal, ”RGMII Interface Proto-
cols”, GMII to RGMII Product Guide (PG160) (2022), available:
https://docs.amd.com/r/en-US/pg160-gmii-to-rgmii/RGMII-Inter
face-Protocols

[37] Microchip Technology Inc., VSC8541-02 and VSC8541-05 data sheet Single Port
Gigabit Ethernet Copper PHY with GMII/RGMII/MII/RMII Interfaces, product data
sheet revision 4.2.

[38] C. Ghabrous Larrea, K. Harder, D. Newbold, D. Sankey, A. Rose, A. Thea and T.
Williams, IPbus: a flexible Ethernet-based control system for xTCA hardware (2015),
JINST 10 no.02, C02019., DOI: 10.1088/1748-0221/10/02/C02019

[39] OpenCores, WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores, specification revision B.3 (2002).

[40] CERN, IPbus user guide, On-chip bus, available:
https://ipbus.web.cern.ch/doc/user/html/firmware/bus.html

[41] Microchip Technology Inc., Developer Help, Introduction to TCP/IP
(Part 2) - Five Layer Model and Applications (2023), available:
https://developerhelp.microchip.com/xwiki/bin/view/applicati
ons/tcp-ip/five-layer-model-and-apps/

[42] P. Brooks, Ethernet/IP - Industrial Protocol, Reasearch Gate (2001), vol.2, pages
505 - 514, DOI: DOI:10.1109/ETFA.2001.997725

[43] Microchip Technology Inc., ”Appendix 2: Ethernet Frame Format”, UG0687 User
Guide PolarFire FPGA 1G Ethernet Solutions, pages 21-23, Guide revision 5.0.

[44] J. Postel, RFC 791 - Internet Protocol, Internet Engineering Task Force (1981),
available: https://tools.ietf.org/html/rfc791

[45] R. Frazier et al., The IPbus Protocol, an IP-based control protocol for ATCA/µTCA,
IPbus version 2.0. (2013).

[46] CERN , GitHub, ipbus/ipbus-firmware, available:
https://github.com/ipbus/ipbus-firmware

BIBLIOGRAPHY 140

[47] D. Porret, Gitlab, ”firmware”, picoTDC/Picotdc Demo, available:
https://gitlab.cern.ch:8443/picoTDC/picotdc-demo/-/tree/mas
ter/firmware?ref type=heads

[48] S. Geminiani, D. Falchieri, M. Giacalone, J. Succi, Baltig,
”Firmware PicoTDCboard”, geminian/PicoTDCboard, available:
https://baltig.infn.it/geminian/picotdcboard/-/tree/main/Fir-
mware PicoTDCBoard?ref type=heads

[49] Microchip Technology Inc., PolarFire Family Clocking Resources, product guide
(2023).

[50] Microchip Technology Inc., ”Implementing 1G Ethernet Solutions”, UG0687 User
Guide PolarFire FPGA 1G Ethernet Solutions, pages 9-12, guide revision 5.0.

[51] Microchip Technology Inc., ”RGMII to GMII Converter”, Microchip Technology,
available: https://onlinedocs.microchip.com/pr/GUID-53092BEF-DC
EB-4741-9EFC-5843AA55C657-en-US-3/index.html?GUID-70978CEE-7
307-4E21-AE4F-8A64B5E894C3

[52] Microchip Technology Inc., CoreTSE v3.2, product handbook (2022).

[53] Arm Ltd., AMBA APB Protocol Specification, protocol specification (2023), avail-
able: https://developer.arm.com/documentation/ihi0024/latest/

[54] Microchip Technology Inc., CoreABC v4.1, product handbook (2022).

[55] Microchip Technology Inc., CoreAPB3 v3.8, product handbook (2022).

[56] Microchip Technology Inc., CoreFIFO v3.0, product handbook (2021).

[57] D. Porret, Gitlab, ”software”, picoTDC/Picotdc Demo, available:
https://gitlab.cern.ch/picoTDC/picotdc-demo/-/tree/master/so
ftware?ref type=heads

[58] S. Geminiani, P. Antonioli, M. Giacalone, J. Succi, Baltig, ”Soft-
ware PicoTDCboard”, geminian/PicoTDCboard, available:
https://baltig.infn.it/geminian/picotdcboard/-/tree/main/So-
ftware PicoTDCboard?ref type=heads

[59] R. Frazier et al., Software and firmware for controlling CMS trigger and readout
hardware via gigabit Ethernet, Physics Procedia. 37 (2012), pages: 1892-1899, DOI:
10.1016/j.phpro.2012.02.516.

[60] CERN, IPbus user guide, Control Hub, available:
https://ipbus.web.cern.ch/doc/user/html/software/Control Hub-
.html

[61] CERN, IPbus user guide, IPbus software, available:
https://ipbus.web.cern.ch/doc/user/html/software/index.html

[62] G. Zanasi, Preliminary characterization measurements of CERN picoTDC, Bachelor
Thesis, University of Bologna (2023).

BIBLIOGRAPHY 141

[63] Skyworks Solutions Inc., Si5341-D Evaluation Board User’s Guide, Product user
guide (2021), available:
https://www.skyworksinc.com/-/media/Skyworks/SL/documents/pub-
lic/user-guides/Si5341-D-EVB.pdf

[64] Skyworks Solutions Inc., Si5341/40 Rev D Data Sheet, Product data sheet (2021),
available: https://www.skyworksinc.com/en/products/timing/ultra-
low-jitter-clock-generators/si5341d

[65] Colby Instruments, XT-200-Operating and Programming Manual Version 1.0, Prod-
uct manual, available: https://www.colbyinstruments.com/xt-200

Ringraziamenti

A conclusione di questo elaborato desidero menzionare tutte le persone che hanno
contribuito, in diverso modo, al raggiungimento di questo traguardo.

Innanzitutto vorrei ringraziare il Dottor Davide Falchieri, relatore di questa tesi, per
avermi seguito durante tutto il mio percorso di tirocinio, presso il laboratorio di elettronica
dell’INFN di Bologna, aiutandomi nello sviluppo del progetto firmware. Allo stesso modo
vorrei ringraziare anche il Dottor Pietro Antonioli, correlatore di questa tesi, per avermi
indirizzato e seguito nello sviluppo del relativo software per il controllo e il readout della
PicoTDC board. Vorrei inoltre ringraziare entrambi per il lavoro svolto durante tutto il
mio percorso di tesi, nel quale hanno saputo guidarmi con grande pazienza e disponibilità
rispondendo ad ogni mio quesito e dubbio. Infine, vorrei ulteriormente ringraziarli per
avermi introdotto nel mondo della ricerca scientifica, dove ho potuto apprezzare con mano
ciò che ho studiato in questi due anni di laurea magistrale confermando la mia volontà
di proseguire in questo percorso.

Vorrei ringraziare di cuore tutti i dipendenti del laboratorio di elettronica dell’INFN
sezione di Bologna, per l’accoglienza riservatami durante tutto il periodo di tirocinio.
Ringrazio ognuno di loro per i preziosi consigli e l’aiuto datomi per ultimare il progetto di
tesi. In particolare, vorrei esprimere a tutti la mia gratitudine per la pazienza dimostrata
nel rispondere a tutte le mie curiosità riguardanti l’elettronica di schede custom. Infine,
vorrei ringraziare Casimiro Baldanza per avermi illustrato il design della PicoTDC board,
da lui disegnata insieme al Dottor Davide Falchieri.

Vorrei ringraziare il Dottor Marco Giacalone per l’aiuto e il sostegno durante lo sviluppo
del software di readout e le misure di risoluzione temporale. Vorrei ulteriormente es-
primere la mia gratitudine a Lui e ai Dottori Luigi Pio Rignanese, Nicola Rubini e Bianca
Sabiu per il supporto e l’aiuto dedicatomi, durante il periodo di tesi e le mie esperienze
al CERN di Ginevra.

Vorrei esprimere una menzione particolare per Jacopo Succi, mio collega e compagno di
tesi, che ha condiviso con me ogni attimo di questo percorso universitario. Lo ringrazio
per i consigli e tutte le ”discussioni” produttive, utili al fine di aiutare entrambi a pros-
eguire nei nostri rispettivi progetti.
Vorrei inoltre ringraziare Giovanni Mastropasqua, tecnico dell’INFN, per l’aiuto e il
sostegno durante il periodo di tesi, tra un caffé e l’altro.
Inoltre, vorrei ringraziare tutte le persone e i colleghi che ho incontrato in questi cinque
anni di università, tra triennale e magistrale. Soprattutto vorrei menzionare la compagnia
di ”Baracca e Burattini”, sparsa ormai in varie parti di Italia e del mondo. Tra questi

vorrei fare una menzione speciale per Matilda Panza, che ancora oggi, insieme a Jacopo
e Giacomo Casali, è sempre pronta a sopportarmi e supportarmi.

Vorrei ringraziare i miei amici di sempre che hanno saputo accettarmi e aiutarmi durante
il mio percorso universitario, nonostante i miei difetti. In particolare, vorrei menzionare
i ragazzi e le ragazze del 98’ che mi ricordano ogni giorno come sia bello avere al proprio
fianco persone con caratteri estremamente diversi ma che si vogliono bene da sempre, a
prescindere da tutto.

Vorrei ringraziare dal profondo del mio cuore quelle che ad oggi considero le mie tre
famiglie.

In particolare, vorrei ringraziare Mirco e Claudia per avermi accolto sin da bambino
in casa loro, trattandomi come un secondo figlio e avendo sempre un occhio di riguardo
nei miei confronti.
Ringrazio Viola per la gentilezza e per il supporto, durante alcuni momenti davvero dif-
ficili del mio percorso universitario.
Infine, vorrei fare un ringraziamento speciale a Leonardo mio migliore amico e fratello.
Lo ringrazio per essere ogni giorno la persona giusta al momento giusto per le parole, i
modi di fare e la continua comprensione. Lo ringrazio per avermi mostrato come un vero
amico sia capace di soffrire delle tue sconfitte e gioire dei tuoi traguardi, sempre insieme
a te e spronandoti ogni giorno a fare del tuo meglio.

Vorrei ringraziare Sabrina e Giovanni per avermi accolto nella loro casa con gentilezza e
ospitalità.
Vorrei ringraziare Tamara per condividere con me ogni giorno la vita, attraversando le
tante difficoltà. La ringrazio per la sensibilità e l’amore che mi dimostra fin dal primo
giorno, trovando sempre un minuto per stare insieme e porre rimedio ad una brutta gior-
nata.

Ultima ma non meno importante, vorrei dedicare questa tesi alla famiglia che per me
è casa.

Vorrei ringraziare i miei zii Lella, Mauro, Fiffi e Loris, per essere dal primo giorno i
miei più grandi sostenitori. Li ringrazio per tutti quei piccoli gesti, come un abbraccio
dopo qualche delusione o un semplice messaggio, che per me sono stati salvezza e di-
mostrazione di grande amore.
Vorrei ringraziare mio cugino Enrico per tutti i momenti passati in questi anni, come due
fratelli. Lo ringrazio per la sensibilità con cui riesce a capire i miei problemi, tra una
risata e l’altra.
Vorrei ringraziare mia mamma e mio babbo, i due pilastri che hanno reso possibile questo
percorso. Li ringrazio dal profondo del cuore per credere nelle mie capacità ogni giorno,
anche quando io non ne ho la forza. Spero che queste mio lavoro e le mie parole li rendano
fieri della persona che sono diventato oggi, grazie ai loro insegnamenti e al loro amore.
Infine, vorrei ringraziare i miei due nonni Bruna e Gino che considero i miei personali eroi.
Li ringrazio per avermi accudito da sempre, cercando ogni giorno di regalarmi tranquillità
e spensieratezza in questo mondo cos̀ı confusionario.

	Introduction
	The ALICE experiment and its TOF detector
	Heavy-ion collision physics
	Introduction to Quantum Chromodynamics (QCD)
	Quark-Gluon Plasma (QGP) overwiew
	QGP probes in heavy-ions collisions

	ALICE layout and its TOF detector
	ALICE detector Layout
	The TOF detector
	Multi-gap Resistive Plate Chamber (MRPC)

	The TOF readout system
	The TOF redaout chain
	The TRM board and the HPTDC
	Implementation of the TOF continuous readout
	The picoTDC as a successor of the HPTDC: towards TRM2

	The PicoTDC board and the IPbus protocol
	PicoTDC overview
	Architecture
	Phase Locked Loop (PLL)
	Delay Locked Loop (DLL) and interpolators line
	The Data Processing Unit

	Board features overview
	Power supply section
	FPGA PolarFire
	Ethernet subsystem on board

	The IPbus communication protocol
	Introduction to xTCA architectures and IPbus
	The on-chip IPbus protocol
	IPbus protocol at software level
	Ethernet frame and IPbus packet structures

	PicoTDC board firmware project
	Firmware structure
	PolarFire_infrastructure overview
	IPbus_payload overview

	The Ethernet frame path
	The Ethernet_interface
	The CoreTSE IP core
	The TSE_converter_interface
	The UDP_engine

	IPbus slaves used for TDCs
	The TDC external signals generator
	The I2C_master
	The TDC readout slave

	Software organization for the PicoTDC board
	HAL API library and Control Hub overview
	The Control Hub application
	The HAL API library

	Libraries for connection to IPbus slaves
	The External_signals library
	The I2C_Master library
	The Configuration library
	The Readout library
	The PicoTDC library

	User main programs
	User program for TDCs configuration (PicoTOF)
	TDCs readout user program (PicoRead)

	Resolution measurements
	Experimental setup
	Si5341-D evaluation board
	Electromagnetic trombone

	Data acquisition and analysis
	DAQ workflow
	Analysis and results

	Conclusion
	Bibliography

