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Sommario

Questa tesi indaga l’applicazione dei Large Language Models (LLM) nel cam-

po dell’analisi dei dati derivati dalla Spettroscopia Fotoelettronica a Raggi

X (XPS). In collaborazione con Applied Materials Inc., lo studio utilizza

GPT-4, accessibile attraverso ChatGPT, per valutarne le capacità e i limiti

nel consultare vaste basi di conoscenza ed estrarre informazioni specifiche

dalla letteratura scientifica. L’obiettivo è valutare il potenziale degli LLM

nell’assistere gli ingegneri dei materiali nell’interpretazione di dati complessi

ottenuti dalla XPS, fondamentale per la produzione di dispositivi a semi-

conduttore. Il primo capitolo fornisce una panoramica sull’evoluzione degli

LLM, discutendo le architetture chiave e gli sviluppi nel campo. Il secondo

capitolo introduce la Spettroscopia Fotoelettronica a Raggi X, spiegando i

principi della tecnica, la generazione dei fotoelettroni, gli spostamenti chimi-

ci e le sfide nell’analisi degli spettri XPS. Il terzo capitolo dettaglia il setup

sperimentale, inclusa la selezione degli articoli di ricerca, i metodi di estra-

zione dei dati e le sfide affrontate durante lo studio. Infine, il quarto capitolo

presenta i risultati degli esperimenti, discutendo le prestazioni dell’LLM nel-

l’estrazione degli spostamenti chimici da articoli singoli e multipli, e conclude

con riflessioni sulle capacità e i limiti degli LLM nell’analisi dei dati XPS,

nonché potenziali future direzioni di ricerca in questo campo.
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Introduction

This thesis explores the integration of Large Language Models (LLMs)

into the analysis of X-ray Photoelectron Spectroscopy (XPS) data, assessing

their capabilities and limitations in querying knowledge bases and extracting

chemical shift information from research papers. The goal is to evaluate

the potential of LLMs to assist material engineers in interpreting complex

XPS data. This work has been conducted in collaboration with Applied

Materials Inc., an American corporation that supplies equipment, services,

and software for the manufacture of semiconductor chips for electronics.

Material engineering for semiconductor devices requires precise measure-

ments of uneven and ultra-thin (often less than a nanometer thick) layers

of material through the use of various surface analysis techniques, includ-

ing XPS, a widely used method for determining the elemental composition

and chemical states present on a material’s surface. The complexity of these

measurements and the vast diversity of processes, materials, and experiments

makes the volume and intricacy of past knowledge largely unavailable to ma-

terial engineers, who must rely on their expertise and the available literature

to interpret the data.

Artificial Intelligence (AI) and LLMs have experienced remarkable ad-

vancements in recent years, revolutionizing the way we interact with tech-

nology. These sophisticated models, trained on vast amounts of text data,

have shown exceptional capabilities in Natural Language Processing (NLP),

advancing the automation of various natural language tasks such as text

summarization [1], question answering [2], and language translation [3].
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4 Introduction

Remarkably, the largest LLMs, have demonstrated a strong ability to

generalize across multiple tasks [4, 5], leveraging their extensive training to

achieve high performance on assignments they were not explicitly optimized

for. Moreover, these massive models have exhibited emergent capabilities [6]

that were not present in smaller models and seemingly arose from scaling up

the model’s size.

These rapid developments have sparked significant interest in integrating

LLMs into several fields, including software development [7, 8], chemistry

[9, 10], medicine [11, 12] and financial analysis [13], to take advantage of

their language understanding and generation abilities. Similarly, in material

science, an LLM-powered assistant able to select relevant information from

multiple existing sources and synthesize it to extract considerations applica-

ble to novel materials, could significantly accelerate the development cycle

of semiconductor devices.

While the potential applications are vast, it is crucial to thoroughly eval-

uate the capabilities and limitations of LLMs within specific domains before

deploying them: these models can exhibit inconsistencies, hallucinations and

biases [14, 15] stemming from the data they were trained on or gaps in their

knowledge. The experiments conducted aim to evaluate the model’s perfor-

mance in understanding complex scientific discussions, responding to specific

informational requests, and processing and presenting data extracted from

academic articles. By investigating the effectiveness of LLMs in this specific

domain, this study provides valuable insights into their potential applica-

tions in material science and contributes to the broader understanding of

their capabilities and limitations.

This thesis is organized in 4 chapters: Chapter 1 provides an overview

of the evolution of Large Language Models, discussing key architectures and

developments in the field. Chapter 2 introduces X-ray Photoelectron Spec-

troscopy, explaining its principles, the generation of photoelectrons, chemical

shifts, and the challenges in XPS spectrum analysis. Chapter 3 details the ex-

perimental setup, including the selection of research papers, data extraction
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methods, and the challenges encountered during the study. Finally, Chapter

4 presents the results of our experiments, discussing the performance of the

LLM in extracting chemical shift data from individual and multiple papers,

and concludes with insights into the capabilities and limitations of LLMs in

XPS data analysis, as well as potential future directions for research in this

area.
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Chapter 1

Evolution of LLMs

The field of NLP has seen a significant evolution in the last decade, the

development of techniques such as word2vec [16, 17] and GloVe [18] intro-

duced new architectures to compute word embeddings, which allowed for the

representation of words as vectors in a high-dimensional space, capturing the

semantic relationships between them. The adoption of embeddings led to

the development of pre-trained language models, early examples of which in-

clude ELMo [19], based on a bidirectional Long Short-Term Memory (LSTM)

architecture [20]. However, it was the introduction of the transformer archi-

tecture [21] that laid the foundations for the development of modern LLMs.

1.1 Transformers

Transformers are a type of neural network architecture which relies on

self-attention, a mechanism that allows the model to weigh the importance

of different parts of the input sequence in relation to each other when making

predictions, thus enabling the model to capture long-range dependencies in

the data. Using an encoder-decoder architecture, transformers create em-

beddings of the input, capturing the semantic and positional information

of the tokens in the sequence, these embeddings are then weighted by the

self-attention layers, based on the other tokens in the input sequence, to pro-

7



8 1. Evolution of LLMs

Figure 1.1: The Transformer architecture. By Yuening Jia -

DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=121340680

duce the encoded representation of the input. The decoder then uses this

representation, along with that of previous outputs, to generate the output

sequence. Transformers were shown to outperform previous state-of-the-art

models for NLP tasks.

1.1.1 Self-Attention

The attention mechanism was first introduced in models using recurrent

neural networks to select important information from the input sequence,

self-attention, the core mechanism of transformers, extends this concept al-

lowing the network to discern internal correlations between the elements of a

sequence and dynamically adjust their importance. The attention mechanism
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used in transformers is computed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1.1)

where:

• Q, K, and V are the query, key, and value matrices, respectively, ob-

tained by multiplying the input sequence’s embeddings by the weight

matrices learned by the model.

• dk is the dimension of the query and key vectors.

1.1.2 Multi-Headed Attention

Transformers further extend the self-attention mechanism by applying it

multiple times in parallel through a process called multi-headed attention,

by which the outputs of the different attention heads are concatenated and

linearly transformed to produce the final output. Thus, the model can cap-

ture different aspects of the input sequence, allowing it to obtain a more

comprehensive understanding of the data.

1.1.3 Positional Embedding

As seen in previous architectures, transformers rely on embeddings to

represent the input sequence. However, since the model does not have any

recursion or convolutions, it lacks the ability to capture the order of the

tokens within the sequence. Hence, positional information must be added to

the input through a technique known as positional embedding, which involves

creating fixed-length vectors that encode the position of each token in the

sequence, these vectors are then added to the input embeddings; in doing so

the information obtained from the positional embeddings is combined with

the semantic information of the token embeddings, allowing the model to

understand the sequential order of tokens in the input.
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1.1.4 Encoder

The encoder of a transformer is composed of a stack of identical layers,

each of which consists of two sub-layers: a multi-headed self-attention mecha-

nism and a feed-forward neural network. The self-attention module captures

the relationships between the different tokens in the input sequence, while

the feed-forward neural network processes the output of the previous module

to produce the final representation of the input. The output of the encoder

is then passed to the decoder, which generates the output sequence.

1.1.5 Decoder

The decoder of a transformer is similar to the encoder, with the addi-

tion of a third sub-layer, which performs multi-headed attention over the

encoder’s output, this enables the decoder to integrate information from the

encoder with its own outputs from the previous time step, thus generating the

output sequence autoregressively. Additionally, by masking the self-attention

module, the decoder is only allowed to perform self-attention on the tokens

that precede the current position in the sequence, ensuring that only the in-

formation available at the time of prediction is used to generate the output.

1.2 LLM Architectures

Transformers have played a foundational role in the development of LLMs,

primarily due to their ability to scale efficiently with increasing data and

computational resources, enabling models to scale to billions of parameters

and effectively capture the complexity of natural language data. The per-

formance of LLMs has thus seen significant progress with the development

of ever-larger models. While transformers are fundamentally an encoder-

decoder model, researchers have experimented with different architectures

derived from the original transformer, thus Large Language Models can be

classified, depending on the underlying architecture, in three main categories:
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Figure 1.2: LLM evolutionary tree [22].

• Encoder-only models

• Encoder-decoder models

• Decoder-only models

1.2.1 Encoder-Only Models

Encoder-only models focus on encoding the input text into a meaningful

representation, but do not include a decoding component; they are largely

trained using a technique called Masked Language Modeling (MLM), where

a percentage of the input is masked, and the model is trained to predict

the original tokens. One of the first examples of transformer-based models

is BERT (Bidirectional Encoder Representations from Transformers) [23],

an encoder-only model, which brought significant improvements over previ-
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ous state-of-the-art techniques. Following BERT’s success, several models,

such as ALBERT [24], have built upon this architecture improving its per-

formance. Despite these advancements, the application of encoder-only con-

figurations in LLMs has seen a decline, since the lack of a decoder module

limits the model’s ability to generate text.

1.2.2 Encoder-Decoder Models

LLMs built on the encoder-decoder architecture are based entirely on the

traditional transformer model, with the encoder applying self-attention to the

input and the decoder generating the output in an autoregressive manner.

The most notable examples of this architecture are T5 [25] and BART [26].

1.2.3 Decoder-Only Models

The decoder-only architecture is currently the most popular for building

LLMs, in this configuration the model is trained to sequentially generate text

attending to previous tokens, without the need for an encoder module. The

most famous example of this architecture is the GPT (Generative Pre-trained

Transformer) family of models, including the GPT-3.5 subfamily and the

more recent GPT-4 [27], respectively powering the free and plus versions of

OpenAI’s ChatGPT. The decoder-only architecture has been widely adopted

in other models, such as Anthropic’s Claude and Meta’s LLaMA [28], showing

impressive performance across a wide range of benchmarks.

For the purposes of this work, the model used is GPT-4, accessed through

the ChatGPT plus subscription. The decision to employ GPT-4 was based on

its state-of-the-art performance in understanding and generating human-like

text and its training on a diverse and extensive corpus, including a wide range

of scientific materials. Furthermore, GPT-4 has shown better capabilities

in various reasoning tasks, compared to other models [29], making it an

interesting candidate for this study.



Chapter 2

X-ray Photoelectron

Spectroscopy

X-ray Photoelectron Spectroscopy (XPS) is a surface sensitive analytical

technique, based on the photoelectric effect, in which X-rays are used to

irradiate a material, causing the emission of photoelectrons from the surface

atoms and allowing for the measurement of their kinetic energies. The main

characteristic of XPS is its ability to provide information about the elemental

composition, chemical state, and electronic state of the elements present on

the surface of a material.

2.1 Generation of photoelectrons

When a material is exposed to an electromagnetic radiation, such as X-

rays, electrons within its atoms absorb the incident radiation. This absorp-

tion can cause the electrons to gain sufficient energy to overcome the bind-

ing forces holding them within their respective orbitals; this phenomenon,

known as the photoelectric effect, results in the ejection of electrons from the

material’s surface. The kinetic energy of the emitted electrons, also called

photoelectrons, is directly related to the energy of the X-ray photons used

to eject them, and the binding energy of the electrons within the material;

13



14 2. X-ray Photoelectron Spectroscopy

Figure 2.1: Schematic representation of the XPS system.

such relationship is expressed by the following equation [30]:

EB = hv − Ek − φ (2.1)

where:

• EB is the binding energy of the electron within the material.

• hv is the energy of the X-ray photon used to eject the electron.

• EK is the kinetic energy of the emitted photoelectron.

• φ is a constant value known as the spectrometer work function.

This equation forms the basis for the XPS technique: it enables a de-

tailed analysis of the material’s surface as provided by the XPS spectrum,

which records the intensities of photoelectrons as a function of their binding

or kinetic energy, revealing the elemental composition and chemical states

on the surface of the sample trough the characteristic peaks in the spectrum.

A typical XPS spectrum is a plot of the number of electrons detected at
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Figure 2.2: XPS spectrum of the 2p electrons of an Si sample.

a specific binding energy, usually focusing on regions surrounding selected

electronic transitions, thus only capturing electrons ejected from specific

atomic orbitals; distinct peaks in the spectrum correlate to characteristic

electron configurations of different elements. This spectral signature enables

the identification and quantification of elements present on the surface of the

material. Figure 2.2 shows an example of an XPS spectrum with multiple

peaks at different binding energies, suggesting the presence of silicon atoms

at different oxidation states.
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2.2 Chemical Shifts

The binding energy of a core electron is primarily determined by the

electrostatic interaction between it and the nucleus, however it may also be

influenced by the chemical environment of the atom from which it originates

[31]; indeed, the effective nuclear charge experienced by an electron, and thus

its binding energy, can be altered by the electrostatic shielding provided by

other electrons in the atom, including the valence electrons, as well as the

removal or addition of electronic charge through processes such as oxidation

or reduction. This means that, depending on the chemical bonds formed

by an atom, the nuclear charge experienced by its core electrons may vary.

Hence, when the bonds between atoms in a material change, the binding

energy of the innermost electrons can also be altered, these variations in

binding energy, caused by changes in chemical state, are known as chemical

shifts. Chemical shifts are generally computed as the difference between the

binding energy of an electron in a given chemical state and that of the same

type of electron in a reference state, typically a pure element or a standard

compound.

2.3 XPS Spectrum Analysis

Interpreting data from an XPS spectrum can be a challenging task that

demands a deep understanding of both the underlying physics and chemistry.

The process of identifying the elements present in the material and determin-

ing their chemical states requires a thorough analysis of the spectral data,

including the position and shape of the peaks, as well as the chemical shifts

that may be present. This data is often compared with known references from

scientific literature or software tools that provide databases of XPS spectra

for different elements and chemical states. The interpretation of XPS spec-

tra is further complicated by the presence of overlapping peaks, which can

make it difficult to distinguish between different elements or chemical states.

To address this issue, researchers often combine XPS data with other mea-
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surements, to provide a more comprehensive understanding of the material’s

surface. This process is often time-consuming, requiring researchers to con-

sult a vast amount of scientific literature to correctly interpret the data.

Automating the analysis of XPS spectra through the use of LLMs could sig-

nificantly reduce the time and effort required to extract pertinent findings

and synthesize diverse data sets, thereby enhancing the precision of spectral

analysis and contributing to deeper insights and more reliable conclusions.
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Chapter 3

Experimental Setup

The goal of this study was to assess how effectively Large Language Mod-

els could comprehend and extract relevant data from research papers within

the domain of X-ray Photoelectron Spectroscopy. Specifically, the exper-

iments performed aimed to evaluate the ability of LLMs to identify and

extract information on chemical shifts observed in the analyzed samples.

Understanding how well current state-of-the-art technologies perform in this

specific domain could provide valuable insights into their strengths and limi-

tations, and thus guide the development of more specialized tools and models

optimized for XPS data analysis.

Such tools could significantly enhance the efficiency and accuracy of spec-

tral analysis, ultimately advancing research and applications in material sci-

ence. Furthermore, evaluating the performance of LLMs in this context

contributes to the broader understanding of their capabilities and poten-

tial, informing future innovations and improvements in artificial intelligence

technologies. This section describes the methodology used to conduct the ex-

periments and evaluate the performance of the LLMs in extracting chemical

shift data from XPS research papers.

19



20 3. Experimental Setup

3.1 Experimental Design

The experiments were designed to evaluate the capabilities and limita-

tions of an LLM-powered chatbot in extracting chemical shift data from

XPS research papers. The primary focus was on the model’s ability to com-

prehend intricate scientific discussions, respond to specific informational re-

quests, and its proficiency in processing and presenting data extracted from

academic articles. To this end the LLM was engaged in a series of conver-

sations, each initiated by providing it with one or more research papers in

PDF format, and tasked with extracting specific pieces of information from

the given documents.

3.1.1 Selection of Research Papers

The articles used in the experiments were selected, with the help of do-

main experts, from the NIST Database for the Simulation of Electron Spectra

for Surface Analysis (SESSA) [32], containing the chemical shifts for vari-

ous samples as reported in the literature. The selection focused on papers

that presented binding energies related to the electrons in the 2p orbital of

Silicon atoms, as this element is commonly analyzed using XPS and has

well-documented chemical shifts. The chosen papers covered a range of ex-

perimental conditions, sample compositions, and chemical states, to ensure

a diverse and representative dataset for the experiments.

3.1.2 Data Extraction

The study was conducted using ChatGPT powered by the GPT-4 model,

which allows users to upload files for the chatbot to analyze. Focusing on the

chemical shifts of Silicon 2p electrons, the model was tasked with identifying

the relevant data, including the binding energies of the electrons in different

chemical states of Silicon, and presenting this information in a structured

and coherent manner.
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These conversations were conducted both with individual papers and mul-

tiple papers simultaneously, to test the extent to which the model’s con-

textual understanding could handle and integrate information from various

sources. The extracted data was then compared with the actual values re-

ported in the research papers, as well as in the SESSA database, to evaluate

the model’s performance.

3.2 Challenges and Adjustments

Throughout the course of this project, two primary challenges, involving

ChatGPT’s ability to parse PDF files and the extraction and interpretation

of chemical shifts from articles, were encountered. Identifying and addressing

these challenges enabled the project to progress effectively while providing

valuable insights into the capabilities and limitations of LLMs in scientific

data analysis. The following sections detail these challenges and the adjust-

ments made to address them.

3.2.1 PDF Parsing

Challenge:

• Inability to Extract Data: Initial attempts to upload PDFs directly

to ChatGPT led to inconsistent results. PDF files often contain com-

plex formatting, images, and non-standard text encodings. When at-

tempting to parse some of these documents directly, the chatbot would

either hallucinate, providing incorrect results, or fail to extract any

data, stating it wasn’t able to find the requested information. Figure

3.1 shows such an example: after being queried about the chemical

shifts in the document, in its response ChatGPT states it could not

find the data in the provided article, despite the information being

reported in the paper.
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Figure 3.1: Example of ChatGPT failing to extract data from a document.

Adjustment:

• Conversion Using OCR: To address this challenge, Optical Char-

acter Recognition (OCR) technology was employed. The process in-

volved converting the original PDFs into new, OCR-processed PDF

documents. These new PDFs contained the same visual content as the

originals, but with an added layer of machine-readable text. This con-

version transformed the content of the PDF files, including table data,

into selectable and searchable text within the new PDF, while main-

taining the original layout and appearance. As a result, the text be-

came accessible and readable by ChatGPT, enabling it to analyze and

extract the necessary information effectively from the articles. This

adjustment significantly improved the model’s ability to parse and in-

terpret the data from the research papers.

Future Improvements:

• Errors in OCR Conversion: While OCR allowed text extraction

from all of the selected documents, such techniques might introduce

mistakes into the parsed text, such as misrecognized characters or for-

matting errors. Future work could focus on implementing additional

verification and correction steps to minimize such mistakes, enhancing

the accuracy of the data extracted from the documents.
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• Data Preprocessing: Not all of the information contained in the

articles was relevant to the task at hand. Further preprocessing of

the text data could help filter out irrelevant information and focus

the chatbot’s attention on the key details needed for the extraction of

important data.

3.2.2 Interpreting Chemical Shifts from Articles

Challenge:

• Extracting Relevant Chemical Data: The initial prompts asked

ChatGPT to directly extract the chemical shifts from the documents.

However, several articles did not directly mention the observed shifts,

instead, they provided only the binding energy for the electrons in the

sample, along with the binding energy found for the element in the

reference state. This posed a challenge as the chatbot was unable to

autonomously infer that it could compute the chemical shifts from the

provided binding energies. Furthermore, some articles did not report

the binding energy of the reference state, making it impossible for the

chatbot to compute the chemical shifts. As a result, it would either

note that the chemical shifts were not present or report only the binding

energies extracted from the articles, as shown in Figure 3.2.

Adjustment:

• Optimized Prompts for Computation: The adopted approach in-

volved adjusting the prompts to suggest computing the chemical shifts

from the extracted binding energies. Implementing this adjustment

required manual intervention to guide the chatbot through the cal-

culations, prompting it to first extract the binding energies and then

compute the corresponding chemical shifts.

The revised prompts were structured as follows:
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Figure 3.2: ChatGPT extracting binding energies instead of chemical shifts

“from the given article extract all of the reported Binding

Energies for Si2p electrons, then from the extracted values

compute the corresponding chemical shifts and compile a ta-

ble containing the chemical formula of the sample and the

corresponding chemical shift.”

Additionally, in cases where the reference binding energy was omitted

by the article, the prompts were adjusted to explicitly specify its value,

which had to be manually retrieved from the SESSA database.

Interestingly, it was unnecessary to explicitly provide the formulae for

these calculations, as the chatbot was able to infer the required opera-

tions, supposedly from its training data. With the adjusted prompts,

ChatGPT was able to accurately compute chemical shifts from the

given binding energies. This aligns with previous research demonstrat-

ing that well-constructed prompts improve LLM performance on vari-

ous tasks [33].



3.2 Challenges and Adjustments 25

Future Improvements:

• Refining Prompts: While the revised prompts were effective in guid-

ing ChatGPT to compute the chemical shifts, further refinement could

enhance the model’s ability to autonomously identify and interpret

chemical data from the articles. By incorporating more detailed in-

structions and contextual hints, the chatbot could be guided more ef-

fectively in recognizing relevant data.

By addressing these challenges and implementing the adjustments de-

scribed above, the experiments were able to proceed effectively, providing

insights into the capabilities and limitations of LLMs in extracting chemi-

cal shift data from XPS research papers. The adjustments made during the

course of the project have not only improved the performance of the chatbot

in processing and interpreting scientific data but have also highlighted areas

for further refinement and optimization in future studies.
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Chapter 4

Results and Conclusions

The experiments conducted in this study yielded valuable insights into

the capabilities and limitations of state-of-the-art Large Language Models in

understanding and extracting chemical shift data from research papers in the

field of X-ray Photoelectron Spectroscopy. By employing the GPT-4 model,

accessed through the ChatGPT interface, the study assessed the system’s

performance in identifying relevant information, computing chemical shifts,

and presenting the extracted data in a coherent manner.

The results demonstrated the LLM’s proficiency in comprehending com-

plex scientific discussions and accurately extracting binding energies reported

in the research papers. Furthermore, with appropriate prompting, the model

exhibited the ability to compute chemical shifts from the extracted binding

energies, leveraging its extensive knowledge to perform the necessary calcu-

lations autonomously.

However, the experiments also revealed certain limitations in the LLM’s

ability to independently identify and interpret chemical shift data from the

articles: on several occasions, the model failed to recognize the relevance

of the provided binding energies for computing chemical shifts, and, while

optimized prompts helped in some cases, there were instances where the LLM

was unable to perform the desired computations even with explicit guidance.

27
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4.1 Performance with Individual Papers

To assess the LLM’s ability to comprehend and extract chemical shift

information from XPS research papers, a total of 30 articles were selected

for analysis. These papers covered a diverse range of sample compositions,

experimental conditions, and chemical states of Silicon, providing a challeng-

ing test for the model’s understanding and data extraction capabilities. The

performance of the LLM in accurately identifying and computing the chem-

ical shifts of Silicon 2p electrons was evaluated by comparing the extracted

data with the reference values reported in the respective papers or available

in the SESSA database.

In the majority of cases, namely 25 out of 30 articles, the LLM demon-

strated an impressive ability to understand the content of the articles, ac-

curately extracting the chemical shift values for all the reported samples or

chemical states, with a high degree of accuracy. However, in some instances

the chatbot struggled to retrieve all of the binding energies and required fur-

ther guidance to correctly extract the data, this issue was prevalent in those

articles where the data was not presented in a structured manner or was

reported in different tables across the paper.

4.2 Performance with Multiple Papers

While the previous section evaluated the LLM’s ability to extract chem-

ical shift data from individual research papers, a significant challenge lies in

integrating and reconciling information from multiple sources. In the con-

text of XPS data analysis, researchers often need to consult and synthesize

findings from various studies to gain a comprehensive understanding of the

chemical shifts associated with different materials and experimental condi-

tions. To assess the LLM’s proficiency in this regard, experiments were

conducted by providing the model with two or more research papers simul-

taneously and tasking it with extracting and consolidating the chemical shift

data reported across these sources.
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The articles were selected among those that had been successfully pro-

cessed singularly and grouped based on the elements found in the studied

samples. The tests carried out with two articles showed a decline in the

model’s performance, only 11 out of 30 pairs of articles resulted in the chat-

bot successfully extracting the requested data from both files, with most

chats extracting data from only one of the papers or using only one reference

to compute the shifts, especially when one of the articles contained data from

multiple samples.

Further experiments with three articles revealed a similar trend, with the

chatbot often failing to integrate the data from all sources and sometimes

hallucinating values that were not present in the documents. These results

can likely be attributed to the limited context size of the model, which may

hinder its ability to retain and utilize information from multiple sources ef-

fectively, as well as the complexity of the task, which requires a higher level

of reasoning and integration of data across different papers.

4.3 Examples

To illustrate the LLM’s performance in analyzing research papers, some

examples of interactions with the model are presented below. These examples

showcase the chatbot’s ability to extract chemical shift data from the articles,

as well as the challenges encountered during the experiments.

Successful Extraction

In this example, ChatGPT was able to accurately extract the requested

data using the standard prompt presented in the previous chapter:

Article: Thermally grown Si3N4 thin films on Si(100): Surface and

interfacial composition

ChatGPT: This table summarizes the different chemical environments

of silicon in the samples discussed in the article, showing how the binding

energy shifts relative to pure silicon (reference Si2p energy of 99.2 eV). The
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chemical shift is calculated as the difference between the binding energy of the

species and the reference energy for elemental silicon.

Chemical

Formula

Binding

Energy (eV)

Reference

Si2p Energy

(eV)

Chemical

Shift (eV)

Si 99.2 99.2 0.0

Si (outer layer) 98.7 99.2 -0.5

Si + NH3

(300K)

99.7 99.2 +0.5

Si + N(Si)2 100.4 99.2 +1.2

Interfacial Si 100.8 99.2 +1.6

Si3N4 101.7 99.2 +2.5

Partial Extraction

During this interaction, the chatbot was able to extract all of the binding

energies reported in the article, but failed to correctly compute the chemical

shifts without additional guidance:

Article: An X-ray photoemission spectroscopy investigation of oxides

grown on AuxSi1−x layers

Prompt: from the given article Extract all of the reported Binding En-

ergies for Si2p electrons, then from the extracted values compute the corre-

sponding chemical shifts and compile a table containing the chemical formula

of the sample and the corresponding chemical shift.

ChatGPT: The chemical shift is calculated as the difference between the

oxidized and nonoxidized Si2p binding energies. For the Au0.81Si0.19 sample,

only the oxidized Si2p value is reported, and thus no chemical shift can be

computed. Here is the compiled table showing the chemical formula of each

sample and the corresponding chemical shift:
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Sample

Composition

Oxidized

Si2p (eV)

Nonoxidized

Si2p (eV)

Chemical

Shift (eV)

Au0.81Si0.19 103.3 - -

Au0.59Si0.41 103.1 98.9 4.2

Au0.45Si0.55 103.4 99.1 4.3

Au0.34Si0.66 103.2 98.8 4.4

Si(100)HT 103.5 99.1 4.4

The initial calculation of chemical shifts was flawed: the model erro-

neously subtracted non-oxidized binding energies from oxidized ones, rather

than using the reference Si(100) energy, which wasn’t extracted. To address

this issue, the chatbot was given two prompts: one to extract the binding en-

ergies and another to compute the chemical shifts using the reference Si(100)

energy. This two-step approach allowed the model to accurately determine

the chemical shifts:

Prompt: from the given article, extract all of the reported Binding En-

ergies for Si2p electrons and compile them in a table, make sure to include

all binding energies even if different ones are given for the same sample

ChatGPT: Based on the document, I’ve compiled a table listing all the

reported binding energies for Si2pelectrons from the XPS analysis of oxidized

AuxSi1-x layers. Here’s the table:

Sample

Composition

Nonoxidized

Si2p (eV)

Oxidized

Si2p (eV)

Au0.81Si0.19 - 103.3

Au0.59Si0.41 98.9 103.1

Au0.45Si0.55 99.1 103.4

Au0.34Si0.66 98.8 103.2

Si(100) 99.5 103.6

Si(100)HT 99.1 103.5

Prompt: now compute the chemical shifts for every sample using as
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reference both of the binding energies given for Si(100) and create a table out

of the results.

ChatGPT: To compute the chemical shifts, we will use the binding ener-

gies of both nonoxidized and oxidized Si2p electrons from the ”Si(100)” sam-

ple as reference values. The reference values for nonoxidized and oxidized

Si2p from the Si(100) sample are 99.5 eV and 103.6 eV, respectively.

Sample Composition
Nonoxidized Si2p

Shift (eV)

Oxidized Si2p

Shift (eV)

Au0.81Si0.19 - -0.3

Au0.59Si0.41 0.6 0.5

Au0.45Si0.55 0.4 0.2

Au0.34Si0.66 0.7 0.4

Si(100) 0 0

Si(100)HT 0.4 0.1

Failed Extraction

In this example, the model was provided with two articles to analyze, but

proved unable to extract data from both sources, only managing to process

the information from one of the papers and failing to integrate the data from

the second article:

Articles:

• Fabrication of minority-carrier-limited n− Si/insulator/metal diodes

• Nondestructive Depth Profile Analysis by Changing Escape Depth of

Photoelectrons

Prompt: from the given articles find and extract all binding energies

given for Si2p electrons and compile them in a table alongside the chemical

formula of the analyzed sample. Make sure to find every binding energy in

both articles.
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ChatGPT: Here are the binding energies for Si2p electrons compiled from

the documents you provided, alongside the chemical formula of the analyzed

samples:

Chemical

Formula (Sample)

Binding

Energy (eV)
Source

Si/SiO2 103.3 eV (SiO2), 99.1

eV (Si substrate)

Nondestructive Depth

Profile Analysis by

Changing Escape Depth

of Photoelectrons

4.4 Conclusions

The research presented in this thesis has investigated the integration

of Large Language Models into the analysis of X-ray Photoelectron Spec-

troscopy data. The findings confirm that LLMs possess impressive capabili-

ties in the analysis of research articles within the field of XPS, demonstrating

their proficiency in comprehending complex scientific discussions, accurately

extracting binding energies reported in the research papers, and comput-

ing chemical shifts from the extracted data when provided with appropriate

prompting. However, our results also highlighted the current limitations of

LLMs, primarily their dependency on the quality and extent of the training

data provided.

Without sufficient domain-specific training, the models may produce less

accurate or relevant interpretations, which could lead to misleading conclu-

sions. To address these challenges and enhance the accuracy of results, it is

essential to adopt a more refined approach: other works have seen success

in improving the performance of LLMs by integrating them with external,

expert-designed tools and pre-existing specialized chatbots [34, 35]; nonethe-

less the involvement of human experts still remains crucial to ensure the

accuracy and reliability of the model’s outputs. Moreover, the development
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of more robust evaluation metrics and benchmarks is imperative for assessing

the true capabilities and limitations of LLMs in specific domains.

Significant efforts have been dedicated to constructing comprehensive

datasets to evaluate the performance of models on various tasks in fields

such as mathematics [36, 37] and logical reasoning [38, 39]. Similarly, in

the realm of XPS data analysis, the creation of standardized datasets and

evaluation protocols could play a crucial role in objectively measuring the

progress of LLMs facilitating the comparison and ranking of different models

while also providing valuable insights into the strengths and weaknesses of

the approaches employed, guiding future research and development efforts.

In conclusion, the limitations and challenges encountered in this study under-

score the importance of a cautious and informed approach to the integration

of LLMs into scientific research and data analysis.

While these models hold great promise in enhancing the efficiency and

accuracy of data processing and interpretation, their deployment must be

accompanied by rigorous evaluation and validation to ensure the reliability

and validity of the results obtained. By addressing these challenges, LLMs

can be improved and optimized for specific domains, contributing to the

advancement of scientific research and the development of innovative tools

and technologies.
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