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Sommario

Con l’ampio impiego odierno di sistemi informatici per archiviare dati, preoccupa la
diffusione di software malevoli con cui i cyber-criminali ne cercano ricatti (“ransom”):
attraverso i crypto ransomware, essi possono cifrare i file della vittima e richiedere un
pagamento per il ripristino; con gli exfiltration ransomware, possono rubare i file e mi-
nacciare di diffonderli.
Di conseguenza, esiste anche un campo di ricerca nel loro contrasto. Nessuna soluzione
è perfetta, e quella analizzata in questa tesi, il ”Data Flooding against Ransomware”,
consiste nel rallentare il malware, creando file-esca (“flooding”) e competendo con esso
nell’uso delle risorse computazionali, per dare più tempo a una persona di agire fisi-
camente sulla macchina (per esempio, spegnendola). Inoltre, usando delle copie degli
stessi file dell’utente come esche, è possibile eseguire un successivo ripristino, riducendo
la quantità di dati persi nell’attacco.

Il lavoro qui presentato parte dall’analisi di uno strumento sperimentale e open-source
per il contrasto dei ransomware, Ranflood, per espanderlo con nuove tecniche.
Ranflood è un software che implementa tre diverse strategie di flooding ; l’aggiunta con-
siste in una quarta, nonché in nuove idee per migliorarne l’efficienza: essa è basata sullo
Shamir’s Secret Sharing, un protocollo che permette di dividere un segreto in più fram-
menti, e di ricostruirlo a patto che se ne possiedano più di una certa soglia prestabilita.
Se contro i crypto ransomware i frammenti possono agire da esche, contro gli exfiltration
ransomware si riduce ulteriormente il rischio di danni alla vittima, poiché l’attaccante
non può riassemblare un file originale senza aver trovato abbastanza pezzi.
Attraverso i parametri di soglia minima e numero di frammenti creati, oltre che con
altri parametri, è possibile dare un indirizzo diverso all’esecuzione del flooding. Dovendo
pensare a diversi casi d’uso, e in particolare a due diversi tipi di ransomware, il giusto
modo di configurarli dipende dalle esigenze principali di ogni situazione, creando un co-
promesso più o meno bilanciato tra di esse. In tal senso, in test effettuati cercano di
dare delle risposte a vari scenari diversi basandosi su delle metriche astratte dai dati per
adattarsi alle proprie necessità.

La tesi, dunque, prima illustra l’architettura del software Ranflood e le basi matem-
atiche dello Shamir’s secret sharing : del primo si analizzano soprattutto la soluzione
client-daemon e la distribuzione di task di input/output su più thread; del secondo, si
passa dai polinomi, ai campi finiti, all’algoritmo. A seguire, si mettono insieme i con-
cetti, entrando nel dettaglio con l’implementazione e le scelte effettuate: si mostrano le
valutazioni iniziali che hanno portato a varie scelte, come quella dell’implementazione
di Shamir’s secret sharing, nonché quelle sulla struttura con cui integrarsi con la base
preesistente di Ranflood. Per finire, si illustrano analisi computazionali ed esperimenti,
da cui vengono poi tratte delle osservazioni - per lo più intuitive - sulla validità della
strategia implementata per il suo scopo e sulla sua efficienza, pensando anche agli ambiti
reali, e su possibili modi di migliorarla.
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Abstract

With the large usage of data storage system, among cybercriminals also increases the
employment of crpyto and exfiltration ransomwares. At the same time, scientific research
is always working on solutions to contrast them, and Data Flooding against Ransomware
is one of these.
Our work focused on one open-source project in particular implementing it, Ranflood,
trying to expand it with a new, novel flooding strategy based on the Shamir’s Secret
Sharing, to address both crypto and exfiltration threats. Developed in 1979 to make a
secret only available when a quorum of its parts is gathered together, Shamir’s secret
sharing is hereby applied to split a file in more parts, such that they constitute a flood
against crypto ransomwares, and to make the original content only retrievable when
enough of them are obtained, such that the exfiltration is less likely to succeed, while
the victim can hopefully restore his data.
This thesis goes through the mathematical details, the analysis of Ranflood, and then
the implementation of our strategy, the made choices, computational analysis, intuitive
tests and following conclusions.
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Chapter 1

Introduction

In a world where every individual accesses a computer daily, to store his personal data,
or pictures, or files he’s working on, or just his favourite applications, and where he
communicates via internet with servers all over the world retaining information on hun-
dreds, thousands, millions people, inevitably some others try to exploit such systems for
a profit. Among the several categories of cyberattacks, ransomwares are certainly well-
known due to the recurring news about their employment even against large institutions
or firms, but also minor attempts against common users happen frequently.
Many solutions to prevent attacks are constantly being developed, but none is perfect,
like in the whole IT field, being ever-evolving. What we’re going to discuss in this thesis
is a novel method to try and contrast ransomwares; we will explain the ideas behind
it and go through an implementation of ours, and then reason about its advantages,
disadvantages and best applications.

1.1 Ransomwares

To start with, by ransomware we intend a malware, i.e. a malicious software, which
is, somehow, installed on a victim’s machine and allows an attacker to extort a gain
from him (that is, the ”ransom”). In its most basic form, it starts encrypting (some
or all) system’s files, so that the victim is forced to pay a certain amount of money to
get the encryption key and be able to restore the environment - this is called a crypto
ransomware. More precisely, different ransomwares could behave differently: some could
limit themselves to annoy the victim’s personal files, so that he can still use the com-
puter, but won’t be able to access them and, probably, to launch some applications; in
this case, one or more text files will probably be put in commonly used directories (e.g.
the desktop) to make him know how to pay the ransom; others could make the entire
system unusable, showing a custom screen, on startup, with the instructions.
How a malware can be installed there, at the moment, is not of our concern: it could ex-
ploit any system’s, network’s or web’s vulnerability, or just the user’s lack of attention,
e.g. when involuntarily visiting the wrong page or clicking the wrong button (placed
there maliciously by cybercriminals).

However, this isn’t their only working mechanism; particularly concerning is becom-
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ing the exfiltration type of ransomware, which (also) steals the encrypted data, so that
the “ransom”’s payment is instead required to prevent its diffusion. This kind of attack
is probably even more dangerous, seeing that, once the collected data has been sent to
the remote server controlled by the attacker - hence the “exfiltration” -, there’s no guar-
antee that it will be deleted after the payment; indeed, requests for money or something
else could be going on for much longer, putting even a greater pressure than data loss.
Moreover, the theft could be of high concern for big data centers, having access to many
people’s personal, sensitive details, or for institutions handling classified information,
such as armies, governments, research centers.
These malwares could threaten the victim both on the data encryption and exfiltration
sides, but cybercriminals often only focus on the latter, being easier to perpetrate and
of higher impact: in fact, crypto ransomwares can come with difficulties such as the
transmission of the encryption key, or possible problems in restoring the victim’s sys-
tem, costing them time, worsened reputation or other risks.

1.2 Countermeasures

As always, “prevention is better than cure” in this context. Given the large amount of
means a ransoware can use to spread, there are many actions one could or should take
to avoid attacks in the first place.
From the common user’s or employee’s point of view, being informed and conscious is
the first step, allowing to mistrust dangerous interactions, and also using security pro-
tections, filters or antiviruses helps in dodging spam attempts. A company (of any size),
especially if handling many people’s information, should apply more sophisticated tech-
niques, network firewalls, intrusion detection systems, etc. Other common measures, for
anybody, are keeping software updated, using the least needed privilege in configurations
and when performing any action; especially for ransomwares, then, an attack’s impact
can be largely reduced by efficient, periodical backups, especially for sensitive data.
Nonetheless, being able to act even after an infection has started can reduce damages.
After a ransomware has been launched, common measures to take immediately would be
to physically disconnect the machine from the network (to avoid any attempt to spread
the attack), suspend, hibernate or shut it down, even though this could result in cor-
rupted data, and the malware could also persist after a restart - at least, it would allow
to access the computer or disk in an isolated environment, or to perform a restoration,
if only a few, less relevant files have been encrypted, or if recent backups are available.
Furthermore, in case of (data) exfiltration acting as fast as possible would be of even
greater importance - even removing the access to the network.

Anyway, one of the focuses of both research and private software solutions consists in
gaining time to take the action by slowing down the attack. The tool we present here-
inafter, to which we contributed by applying our research, Ranflood [2], accomplishes
this through Data Flooding against Ransomware (DFaR [9]).
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1.2.1 Flooding and Ranflood

As the name implies, DFaR consists in flooding a file system - or specific folders -, by
creating new files, with the intent of slowing down the ransomware both by making it
encrypt useless files (instead of the sensitive ones) and by concurring with it in the re-
sources usage, i.e. loading the CPU with tasks and increasing the input/output usage,
for the disk. Note that a similar approach could be implemented on a network, to hinder
data exfiltration to the remote server, although not being neither the object of Ranflood
nor of our research.

Ranflood is an open-source project (available on GitHub [2]), written in Java to en-
sure high compatibility across devices and developed under a research of the University
of Bologna (on which two papers exist [9][10]). It currently implements flooding through
three different strategies, which the user can select accordingly: Random creates random
files, On-the-fly and Shadow create both copies of existing files, with the difference that
the latter uses a more sophisticated method based on tar archives (more on strategies
and Ranflood later, in 2.1). The last two also allow to restore lost files using the created
copies, if anyone survived the infection.

1.3 Our contribution

Our research also focuses on flooding against ransomware, introducing a new strategy
based on Shamir’s secret sharing, an algorithm allowing to split a secret in more parts
such that, if enough of them are combined together, the secret can be reassembled. In
our case, the secrets are the files to encrypt against the ransomware, so that their parts
can be used to flood the environment.
We anticipate that, due to the encryption overhead of the algorithm, it can’t be as fast as
a straight copy - performed by the aforementioned strategies -; however, our work can be
taken as a starting point on this not so widely known secret-sharing protocol, especially
when applied to files and to ransomware mitigation, given the lack of other research on
the topic. Moreover, besides flooding against crypto ransomwares, our method could be
of particular interest against exfiltration ransomwares, which would gain less information
by stealing encrypted files they can’t decrypt.
Our work, as we will see throughout this thesis, consisted of a research on ransomwares,
flooding and Shamir’s secret sharing (section 2.2), and a study of the Ranflood software
(2.1), all followed by the combination of these, made of theory and suppositions (3.1),
practice, through the implementation itself (3.2), analysis and tests (3.3), and consid-
erations on the developed solution, either presented during the implementation or in
conclusion (4) chapter.
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Chapter 2

Background

In this chapter we’ll explain more in detail the concepts our work is based on. In particu-
lar, our development required an initial study of the Ranflood software (2.1) - in order to
align our implementation with its purposes and philosophy - and of the Shamir’s Secret
Sharing protocol (2.2) - to understand how to use it at its best.

2.1 Ranflood

Ranflood is an open-source software, written in Java, with the purpose of addressing the
action of ransomwares in a generic and configurable way. Although its features and ideas
have been presented in the two papers dedicated to it [9] [10], they’re not all been im-
plemented yet: in this thesis we will also talk about what’s currently missing. Ranflood
is based on the concept of Data Flooding against Ransomware (DFaR), i.e. it tries to
flood the file system (or some selected folders) with files, slowing down the execution
of the malware by both luring it to read and encrypt useless, bait files and concurring
with it for the IO access, hindering its actions on the disk. In Ranflood, flooding can be
performed with three possible strategies: Random creates files containing random bytes;
On-the-fly and Shadow, in different ways, spread copies of existing files.

The software follows the client-daemon pattern, and is thus composed of a daemon,
thought to be always running, and a command which can be issued by an user to make
it perform an action. This architecture allows a modular approach, making it possible
for the client to start, stop or monitor a flooding session at run-time, and to configure it
via the available parameters. Furthermore, there can clearly be more clients. Because of
the client-daemon pattern, we can define Ranflood a drop-in solution to ransomwares.

The project aims at covering all phases of a threat: detection, mitigation and restoration.
The detection phase is the one still missing in the implementation, but the modularity
of the client-daemon approach makes it easy to integrate any other external detection
software, making it act as a client to start a flooding when needed.
In the future, however, as presented in the papers, these strategies could also serve this
purpose by applying an honey-potting technique: basically, a new research could try to
recognize a suspicious activity by monitoring generated files, as the user wouldn’t nor-
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mally open them. Moreover, taking advantage of the drop-in implementation, Ranflood
could avoid the common problem of honey-potting of being invasive in the user’s system:
to reduce the intrusiveness of decoy files, one could periodically flood a limited number
of folders, monitor them and eventually restore the original environment.
The mitigation phase is the most obvious one, consisting in the flooding itself.
Lastly, the restoration phase, that can only be performed with the copy-based strategies
(On-the-fly and Shadow) due to their nature, removes the generated files and only keeps
one in case the original one was corrupted.

The choice of the Java language is linked with the high availability of Ranflood, eas-
ily operable on any platform supporting the Java Virtual Machine (native binaries [3]
are already available for Linux, Windows, macOS thanks to the GraalVM5 compiler
[12]).

2.1.1 Architecture

For a better understanding of our contribution, this section we will give a deeper insight
on the software architecture.
Regarding the flooding strategies, and in particular the two copy-based ones (On-the-fly
and Shadow), they require a preliminary snapshooting : a snapshot of a directory saves,
inside a database indexed on its path, the current state of its content - On-the-fly saves
the checksum of each file contained in it, directly or in any subdirectory, while Shadow
saves the directory itself, compressed as a tar archive.
A snapshot of a path serves two purposes: in first place, in the middle of a flooding to
contrast an ongoing ransomware attack, it allows to avoid creating copies of a file if its
hash has changed in the mean time, meaning that it has already gone corrupted and it’s
better to focus on the others; secondly, in the restoration phase, it allows to identify the
corrupted copies and pick an intact one to recreate the original file.
Of course the Random strategy would have no use for snapshots.

As we saw before, Ranflood is formed of a client and a daemon: since the first is a
simple command-line tool (which could include a graphical interface, in the future) to
issue commands for the latter, via socket (using the ZeroMQ library [15]), the whole
logic of the program is inside the daemon.
From an abstract point of view, the daemon is made of two components: the engine and
the task manager.
The engine, precisely, implements its core functionalities of flooding and snapshooting.
In the code, these two are represented by the Flooder and Snapshooter interfaces, ex-
posing the methods, respectively, to start or stop a flood and to take snapshots, besides
removing and listing existing ones; each strategy, then, is an implementation of Flooder.
The daemon, so, according to its parameters - configurable in a settings file (in the .ini
format) -, creates an instance of each flooder, making it available to execute the received
commands.

For optimization purposes, given the high amount of input/output access required, a
TaskManager is used to manage the execution on multiple threads, playing the role of
the proactor according to the Proactor pattern. In fact, any operation of writing (or
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copying) to a file from a flooder is not executed immediately; instead, a Task is created
for that single write operation, and added to the TaskManager ’s scheduling: in this way,
the flooder can rapidly visit each target path, while tasks are gradually launched on
different IO threads.
The Proactor pattern also has the advantage of not being slowed down by a task’s error,
since one’s execution is decoupled from it’s dispatching.
Additionally, any task, failed or not, is repeated indefinitely until the flooding is stopped;
exactly, each ongoing flooding is represented itself by a Flood Task, so that the TaskMan-
ager can receive from each the write tasks it created during its execution.
Since all tasks reside in main memory, even if an user’s file has been lost, copies of it can
still be created (starting from their cached content).

Figure 2.1: Model of Ranflood’s architecture. Image from Ranflood’s paper [10].

The figure above summarizes Ranflood ’s structure: the daemon, core of the applica-
tion, made of snapshooters and flooders (the engine) and the Task Manager (the proactor
for IO tasks), executes commands and is configured according to a settings file and, via
interprocess communication, to a client ’s commands.
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2.1.2 fileChecker

The restoration phase, after an attack, is performed by the fileChecker tool, actually a
separate program from the core Ranflood, although being in the same repository.
Its functioning isn’t as complex as for the mitigation phase. Put simply, as we already
spoke of how flooding works and further details aren’t necessary at the moment, cur-
rently fileChecker checks the state of a directory’s content, comparing their checksums
with previous snapshots, and produces a report, also taking in account the presence of
generated copies. Since the restoration phase doesn’t take place in a context of emer-
gency like the mitigation, it doesn’t necessarily need multithreading or tasks and other
patterns seen in the Ranflood daemon, if not just for minor improvements.

2.2 Shamir’s Secret Sharing (theory)

Shamir’s secret sharing (SSS ) is a secret sharing algorithm for dividing a private in-
formation (the secret) in parts (which we’ll also call shares or shards) and distributing
them (a threshold). The secret cannot be reassembled unless a sufficient number of (any
of) them is collected together. It was first proposed in 1979 by Adi Shamir [11] (the S
in RSA, which he co-invented). [21]
Beyond our novel use of it to contrast ransomwares, a “secret sharing” protocol also
finds its utility in making something only accessible when enough parts are in reach:
e.g. to split a password among some people and make it possible to perform a sensitive
operation of some kind only when enough of them agree to it; in some terms, this is
similar to how we use it against exfiltration, to retain ransomwares from obtaining user’s
data if they haven’t collected enough pieces.

SSS has the property of information-theoretic security, meaning that even if an attacker
steals some shares, it is impossible for the attacker to reconstruct the secret unless they
have stolen the quorum number of shares [21].
For this thesis, we define n as the number of shards a secret is split into, and k the
minimum number of (distinct) shards required in order to reassemble the secret.

2.2.1 Mathematical principle

Shamir’s secret sharing is based on the uniqueness of the Lagrange interpolating polyno-
mial : given k (distinct) coordinate pairs a1, a2, ..., ak, there is only one polynomial, f(x),
of degree k − 1 passing through all of them (consequently, having k − 2 turning points).
Moreover, once fixed, one can choose other n − k (distinct) points (with n >= k) on
the formed curve, ak+1, ak+2, ..., an: now, any subset of k out of the n points a1, a2, ..., an
allows to obtain the polynomial via interpolation. [20]
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Figure 2.2: Lagrange polynomial of degree 4, with k = 5 points and 3 turning points

In the above example, a polynomial of degree k − 1 = 4 was obtained, via interpo-
lation, starting from k = 5 red points; later, one could have n = 6 > k = 5 points by
picking anyone on the curve (e.g. where x = 5).

2.2.2 Algorithm

There isn’t a standard implementation of SSS, but the general idea follows the following
steps:

1. once the parameters have been fixed, we define:

(a) s ∈ N the secret to encrypt

(b) n, k ∈ N : k <= n, respectively, the number of shards to create and the
minimum number for being able to re-obtain s

2. generate the k coefficients of the polynomial f of degree k − 1 (a0, a1, ..., ak):

(a) a0 = s

(b) ai: randomly chosen

3. calculate the n points pi = (i, f(i)), for i = 1, 2, ..., n

Note that f passes through the secret (point (0, s)), since its first coefficient is s.
Also, thanks to interpolation, it suffices to have k of the n points in order to reassemble
it, being f of degree k − 1.
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In reality, SSS should be implemented using a finite field (like for elliptic curves), for a
few reasons.
First of all, performing operations in Q or R, since interpolation requires the use of di-
visions, can lead to computation errors, due to underflow or overflow. Moreover, there
wouldn’t be perfect secrecy, because an attacker could gain some information about s
with less than k shards (e.g., that s is even [22] - we omit the proof here, being unnec-
essary for the understanding of this thesis).

2.2.3 Modular arithmetic

A finite field, denoted as Fpr , is an algebraic structure composed by a set of q = pr ele-
ments (where p, r ∈ N, p is prime and r > 0) and two operations with certain properties.
q is called order of the finite field.
The most widely known example is when r = 1, since Fp is the set of residue classes
modulo p, which can also be seen as follows:

• the p elements are represented by the integers 0, 1, ..., p− 1;

• the two operations are modular addition and modular multiplication;

• each operation has its own identity element, in order, 0 and 1;

• besides the other properties (closure, associativity, identity, commutativity), there
exists an inverse element for each x ∈ Fp, with respect to each operation, that is,
∃y, z ∈ Fp : x + y = 0 ∧ x · z = 1; using the inverses, we can define the opposite

operation of multiplication in Fpr , and express
a

b
as a · b−1.

Putting it together with the aforementioned algorithm, the way modular arithmetic is
used is in the fact that each x and y of a coordinate pair is actually an element of Fq,
and each coefficient of the polynomial is too.
So, among the other parameters to choose for SSS, we need a finite field of a sufficiently
large order, such that

q > n ∧ q > s (2.1)

Specifically, we require:

1. q > s, in order to be able to store the integer representing the secret (otherwise,
we wouldn’t be able to express it with the available elements)

2. q > n, in order to be able to create enough distinct shards (otherwise, since shard
i is represented by the point with x = i ∈ N, with i = 1, 2, ..., n, there wouldn’t be
enough elements in Fq to express all the distinct xi)

Finally, the selected finite field is a public parameter of the protocol.
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Chapter 3

Our contribution

After having taken a look at the background knowledge on the software and at some
mathematical principles, in this chapter we will show how Shamir’s secret sharing was
applied to expand the Ranflood software. First, in section 3.1 we will reveal the theory
behind our work, and explain what lead some of our decisions; then, in section 3.2 we
will illustrate the implementation in deep; finally, in section 3.3, we will analyze the
performance and try to find intuitive measurements.

3.1 Theory

3.1.1 Shamir’s Secret Sharing (our model)

In order to choose the correct model for our implementation of Shamir’s secret sharing,
it’s important to first of all take note of our needs, i.e. how we’re going to use it. After
having understood how the protocol works, in section 2.2, the main requirement to keep
in mind is that, as we showed in section 2.2.3 with formula 2.1,

q > s ∧ q > n

An intuitive approach would be using a set of remainder classes modulo a prime q, choos-
ing q as upper bound for both the size of a secret and the number of shards one can
split it into. Unfortunately, this wouldn’t be so immediate to apply to encrypt a file of
arbitrary dimensions; moreover, the integer representation of a sequence of bytes isn’t
much compact, and performing modulo operations with it becomes slow as it increases -
for reference, a 2048 bits integer, like a common size for n in RSA, correspond to about
257 bytes. Then one must assume that, whatever the size of q is, a file of size b bytes
has to be divided into ⌈b/q⌉ pieces, so that each of them can be split with SSS separately.

After formulating such observations, we started doing some research and analysis of
already existing implementations of SSS, preferably in Java, to find the one best fitting
our needs. As expected, many have the limitations imposed by the size of the prime
number q of their choice, not allowing the encryption of larger secrets, nor the splitting
in a larger number of shards. Some also suggest, as an alternative, to first encrypt the
secret with a symmetric key encryption algorithm and then use SSS on the key only:
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while this could be effective to make it accessible only in presence a quorum of shards
holders, it doesn’t fit our case.
To cite some examples, an implementation on GitHub in Go [6] limits secrets to 2127− 1
bits, using a prime number of 128 bits, while ssss [7], available as apt package, has a
limit of 1024 bits, so could have a similar implementation (though we didn’t check its
code).
Of course, as we said, one could extend such implementation by repeating SSS on a single
file multiple times, however what we found much more interesting were other projects
which, besides implementing the mechanism to accept inputs of arbitrary length, use the
finite field GF (256). It is the case of the security tool Vault by HashiCorp [5] (in Go),
and of the GitHub repository codahale/shamir [4], which, being in Java, we used directly
in our work. We will now see in detail what GF (256) is, and why it’s a reasonable choice
given it’s high efficiency.

F28 (also known as GF (256), where Galois Field (GF ) is synonym of finite field, and
256 describes the same GF as 28) is a finite field of order 28. Being used in our imple-
mentation, the x and y coordinates of each point, as well as polynomials’ coefficients,
are elements of F28 .

Such choice isn’t trivial in computer science. The possible values of a byte are 256
and, being these in a small number (with respect to the possible values of an integer),
their operations can be implemented in very efficient ways:

• the “unary” operations (i.e. with a fixed operand) of logarithm base 2 and ex-
ponentiation of 2 only have 256 possible outputs, which can be pre-computed and
stored in lookup tables (actually, the lookup table for exponentiation has size 2 ·256,
to also avoid the operation of modulo in case of overflow - e.g. we can more easily
calculate log2(a+ b), with a, b ∈ [0, 256[, even if a+ b >= 256);

• the operations of addition and subtraction are just equivalent to a xor (we’ll see
why later);

• the multiplication takes advantage of the same lookup tables, as

a · b = 2log2(ab) = 2log2(a)+log2(b)

(with a sum in N, not a xor);

• dividing is the same as multiplying by an inverse, and

b−1 = 2log2(b
−1) = 2255−log2(b)

(since −log2(b) is 255− log2(b) in GF (256)).

It’s not a coincidence that GF (256) is also used (among others) in the internal opera-
tions of AES, which works on single bytes and can gain significantly better performances
thanks to its efficiency.

Visualizing F28 isn’t as simple as it is for a finite field with a prime number of elements -
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a set of remainder classes -, though (a useful source which helped us understanding it is
at [8]). An element t of F28 is indeed a polynomial of degree 8, whose coefficients’ values
are in F2 (that is, one of {0, 1}):

t = a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 (3.1)

For this reason, t can be seen as a vector of coefficients, just like a byte is a vector of
bits, and so can be represented in a single byte where a0 is the least significant bit.
Hence, the operations of addition and multiplication are those defined on polynomials,
with the further constraint that for each coefficient we must take the remainder modulo
2 - thus the addition is a bit-wise xor.
Finally, even the whole polynomial t is taken under a modulo, in the same way that p
is the modulo in Fp. In this case, the modulo is, of course, a polynomial m, of degree 8,
such that t mod m is always of degree less than 8. m is called a reduction polynomial.
The choice of m is only an implementation detail, since it doesn’t influence the structure
of the finite field - that’s why all fields of order 256 are called GF (256), having the same
structure. The only requirement here is that m must be prime (just like the modulo p),
in order for the algebraic structure to be defined a field (i.e. there exists an inverse for
each of its elements) - for a polynomial to be prime it means that it can’t be factored in
lower degree ones.

A generator g must also be chosen, that is an element which, by repeatedly multiplying
by itself, takes all non-zero values of the finite field, until it wraps back to itself when
g256 = g. In fact, the non-zero elements of a finite field also form a multiplicative group
[19].
In the same way as m, the choice of g is arbitrary as well. A generator is required to
populate the lookup tables, just by exploiting its property, applying repeated multiplica-
tions on it in order to obtain all elements.

Our implementation uses the same reduction polynomial (0x11b, i.e. x8+x4+x3+x+1)
and same generator (0x03, i.e. x+ 1) as AES.

3.1.1.1 Security

After having shown how it works, we can now make some considerations on Shamir’s
secret sharing’s security.
We already anticipated that it has perfect secrecy, in 2.2, if modular arithmetic is used.
Consequently, no information on the secret can be gained with less than k shards, and it
would have to be considered lost. In fact, while given k (distinct) points there’s only one
function of degree k−1 passing through them - the Lagrange interpolating polynomial -,
given only k − 1 points a different interpolating polynomial would be yielded according
to which additional k-th is chosen; thus, it would be theoretically impossible to guess
the secret : additionally, recovering a shard’s coordinate pair is equivalent to recovering
that of the secret.

Another valid observation would be that, when using SSS repeatedly, supposing of know-
ing that two different secrets s1, s2 were split using the same polynomial f (and, conse-
quently, have themselves the same value, or the unique interpolating polynomial wouldn’t

14



be the same), their shards are also the same, or at least all lie on f : this implies that
one could retrieve both s1 = s2 with only k parts (instead of 2k when reassembling each
individually) and, more surprisingly, even combining a few shards from s1 with others
from s2, provided that they’re k (let’s say, k1 from s1 and k2 = k − k1 from s2).
Another interesting case would be when s1, s2 use two different polynomials f1, f2, but
f1, f2 are somehow related, e.g. f2 is f1 plus a constant element: this equally requires
knowing that they are correlated, as well as knowing what the correlation is.

To know the likeliness of obtaining the same curve twice, we can calculate the prob-
ability of such event, related to the GF (256) we chose. More precisely, we are looking
for the probability of picking a certain polynomial f of degree k−1, that is to say having
k coefficients a0, a1, ..., ak−1 ∈ GF (256); furthermore, thanks to the Lagrange interpolat-
ing polynomial, f can also be calculated after picking k points p1, p2, ..., pk which, like
in the algorithm in 2.2.2, have the form pi = (i, yi), with yi being a random element of
GF (256): both events are equivalent to be looking for a specific, ordered, sequence of k
elements of GF (256).
Assuming an uniform distribution of our random number generator, any byte (i.e. an

element of GF (256)) can be chosen randomly with a probability of
1

256
. It follows that

the probability for a polynomial to be generated is

P [f ] = (
1

256
)k (3.2)

This formula can also show the number of possible polynomials one can obtain when
having only k′ < k shards, by replacing k with k − k′. With k′ fixed shards, in fact,
k − k′ could have any values, thus showing how hard guessing is:

P [f ] = (
1

256
)k−k′ , 0 < k′ ≤ k (3.3)

Since the probability grows exponentially relatively to k (which is actually the only
variable), it can be largely reduced by slightly increasing it, and thus the probability of
a conflict can be reduced as well. However, considering that, for our case, we need to
use SSS on possibly massive amounts of bytes of several files (each individual byte of
any split file), it could be useful to also determine at least an approximation of a good
choice for k.
The birthday (paradox ) problem [17] tells us that collisions are more likely than one could
imagine: the generalized problem, specifically, for a random variable n(d) uniformly
distributed over d values, consists in calculating the number of events that must occur
in order for two of them to have the same outcome [18]. The following formula [16] holds
for all d <= 1018, and is conjectured to hold for all d ∈ N:

n(d) = ⌈
√
2d ln 2 +

3− 2 ln 2

6
+

9− 4 ln 22

72
√
2d ln 2

− 2 ln 22

135d
⌉ (3.4)

In the following table are some example results for possible values of d = 256k:
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Results of applying d(256k) and
d(256k)

106
for different values of k

k d(256k) (bytes)
d(256k)

106
(MB)

7 3.16× 108 3.16× 102

9 8.09× 1010 8.09× 104

11 2.07× 1013 2.07× 107

The results show that, with k = 7, after splitting 316 MegaBytes of data there’s a
50% probability of the problem to happen, which could not be so unlikely when flooding
a large system, but using k = 9 and k = 11 already allows to raise the required threshold
to 80.911 GigaBytes and 20.7 TeraBytes respectively.

Although posing ourselves such concerns during our research, they weren’t directly ad-
dressed in our implementation, for a few reasons (which also apply to some other choices).
First of all, security concerns, of course, only apply to exfiltration, where ideally the vic-
tim want the attacker to decrypt and retrieve as little data as possible. In second place,
the main purpose of a flooding is to be faster than the ransomware, as much as possi-
ble, and even in case of exfiltration it’s a relevant strategy - although further research
is needed to find the best balance between flooding speed and encryption security to
minimize damage (also refer to the testing section 3.3).
Finally, additional experiments are required to show the feasibility of certain attacks
to SSS. Provided that an attacker, once retrieved some shards, can attempt any brute-
force operation on them offline, we don’t know how hard it would be to identify shards
s1, s2, ..., sl and s′1, s

′
2, ..., s

′
m related, respectively, to two bytes b1, b2 splitted with the

same polynomial f : one approach, for example, could be to find and associate all b1’s
and b2’s shards when they don’t have any conflicting ones, e.g.

s1 = s′1 ∧ s2 = s′2 ∧ ∀i = 2, 3, ..., l.∀j = 2, 3, ...,m.(si.x ̸= sj.x
′)

(as a function can only have one y value for a given x).
Moreover, in favour of the attacker, statistical analysis could help him further and, de-
spite saying that a secret is unrecoverable with less than k shards, it could also allow
deducing some bytes (secrets), knowing some information on them, e.g. having a more
likely expected value.

3.2 Implementation

With Ranflood’s architecture in mind, we tried to add our new functionalities being as
little intrusive as possible, keeping the project’s structure. Mainly, we introduced two
new strategies based on Shamir’s secret sharing, for two different purposes, named SSS-
Ransomware and SSS-Exfiltration. In this section, we will show the integration of SSS
in Ranflood from the lower implementation levels up to the Flooder and the tasks (3.2.2).
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3.2.1 Shamir’s secret sharing (implementation)

As we mentioned, codahale’s library [4] was imported directly in the repository. Fur-
thermore, partly because we did our first experiments in a separate project, partly to
separate the concerns between the flooding execution and the logic of SSS, we built an
additional wrapper library for codahale/shamir, to make the access from the flooder more
straightforward, so that it could only concentrate on IO operations and tasks.

3.2.1.1 codahale/shamir

The imported library is only made of two files: GF256 and Scheme.
GF256 implements the finite field GF (256) exactly as we discussed above, with the
efficient operations on its elements, including lookup tables, plus other functions for
polynomials over GF (256). The class offers methods to:

• get the degree of a polynomial;

• evaluate it at a given x;

• generate a random polynomial, i.e. get a random array of bytes (a polynomial can
be represented as an array of coefficients, and in this context each coefficient is an
element of GF (256));

• interpolate a set of points, using Lagrangian interpolation, to retrieve the interpo-
lating polynomial f and return f(0), i.e. the secret.

Some of these functions will be showed in the testing section, for analysis purposes (3.3).

On the other hand, Scheme fundamentally implements the two SSS functions of split()
and join().
split() takes in input a sequence of bytes as the secret(s) to encrypt and applies the
SSS splitting algorithm to each byte st: it gets a random polynomial ft of degree k − 1,
passing through the point (0, st), so that any k distinct points on it can be used to re-
obtain it (through interpolation), and finally calculates n pairs of coordinates, obtained
by evaluating ft(x) for x = 1, ..., n. After having done this for each input byte, the return
value is a Map (named parts) of n entries, as pairs of an integer key and a sequence of
bytes: the key indicates each of the x = 1, ..., n coordinates used (since each byte st was
split using the same n and k), while parts[x] contains a sequence (array) of bytes, where
parts[x][y] is the y-th shard of st, i.e. ft(x) = y.
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Algorithm 1 SSS split function

function split(s[])
parts← [n][|s|]
for t← 0 to |s| do

f ← GF256.generate(k − 1, s[t])
for x← 1 to n do

parts[x][t]← GF256.eval(f, x)
end for

end for
return parts

end function

On the contrary, join() takes a Map of parts to calculate and return s. Again, this
is done byte by byte, so parts has the same format as in split() and s is a sequence of
bytes as well, each associated with its own interpolation function. Note that one can use
join() even with less than n points (but it’ll only work with at least k).

Algorithm 2 SSS join function

function join(parts[][])
s← [length(parts)] // outer dimension size
for t← 0 to |s| do

points← [length(parts)][2]
for x← 1 to length(parts) do

points[x][0]← parts[x].key
points[x][1]← parts[x].value[t]

end for
s[t]← GF256.interpolate(points)

end for
return s

end function

The following table shows an example of what would be the variables’ structure when
applying a split or join function, on a secret s made of 3 bytes, in order, s0, s1, s2, and
using n = 5 and k = 4. Here, in the split phase, for each st, a random function ft
is calculated (of degree k − 1 = 3), together with the n points ft(x), for x = 1, ..., 5;
hence, the returned parts contains 5 sequences, each of 3 bytes (being the length of the
secret). In the join phase, instead, supposing we have at least 4 parts, for example
(1, parts[1]), (2, parts[2]), (3, parts[3]), (5, parts[5]), it’s possible to retrieve, individually,
each ft via interpolation, and then re-calculate s = {s0, s1, s2} = {f0(0), f1(0), f2(0)}.
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SSS with secret of 3 bytes, n = 5, k = 4
secret interpolating /

random function
parts[1] parts[2] parts[3] parts[4] parts[5]

s0 f0 f0(1) f0(2) f0(3) f0(4) f0(5)
s1 f1 f1(1) f1(2) f1(3) f1(4) f1(5)
s2 f2 f2(1) f2(2) f2(3) f2(4) f2(5)

3.2.1.2 sssfile wrapper

The wrapper library for codahale/shamir, called sssfile, revolves around two classes,
OriginalF ile and ShardF ile. Given the invertible and symmetrical nature of SSS’s
split/join operations, they can both be obtained from each other, depending on the
situation’s needs.
OriginalF ile can store the information required to split an existing file, namely: the
SSS parameters n, k, plus an additional generation (that we’ll see later); the file’s path
and hash; for its shards, a list of either parts - i.e. their byte contents - or paths where
they were written.
ShardF ile, on the other hand, makes it possible to interface with a file where a shard
was written. In fact, a shard file’s content is organized in precise sections, in the follow-
ing order:

A shard file’s sections
content size

0 fixed header signature, chose arbitrarily
(0x123456789ABCDEF0)

8B

1 n int’s size (4B)
2 k int, 4B
3 generation long’s size (8B)
4 original file’s hash (SHA− 1) 20B
5 this part’s hash (SHA− 1) 20B
6 length of the original file’s path int, 4B
7 original file’s path variable
8 this part variable

Note that, until the length of the original file’s path, all sections have fixed size. The
purpose of each will be made clear in the rest of this thesis, through its concrete usage.

Original files and shard files can be obtained, from sssfile, via its access classes
SSSSplitter and SSSRestorer (respectively for the split and join operations).

3.2.1.2.1 SSSSplitter

An SSSSplitter can be instantiated with fixed n and k, and later used to return the
OriginalF ile object relative to a given path, of which it immediately obtains and stores
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the shards using the codahale/shamir library. The original file then allows to retrieve the
content (in bytes) of each of its shards, so that one can write it to a file: this is done with
an iterator, so all shards ’ contents don’t have to be created all at once. Note that, with
the said approach, changing the parameters n, k implies creating a new SSSSplitter.

The generation field is used to distinguish between splitting sessions, so that the same
original file can be encrypted multiple times even reusing the same n,k: it follows that it
should never be repeated, so a timestamp is used at the moment (as nanoseconds since
the epoch).
In fact, when applying SSS to the same file more than once - either with the same or
new n,k -, each time new, random polynomials are chosen to divide it in parts. This
would represent a problem when trying to restore it: if shards originated from different
splitting sessions are mixed together, by joining them one would obtain back different
polynomials than the ones used to encrypt the original bytes, and thus wrong secrets.
While one wouldn’t put together shards from different original files - provided that, in
our model, we include the original hash inside each shard -, neither files split with differ-
ent n and k - again, because we include them in each one -, the generation parameter is
also needed for the additional flexibility of being able to reuse all combinations of these
parameters. Using a timestamp as generation value also allows to bypass daemon’s
restarts: timestamps will be different anyway between daemon lifecycles.
Finally, an original’s file hash is taken as parameter in the creation of an OriginalF ile
object, given the complexity of computing an hash, and the fact that Ranflood often
already does that - as we will see.

Noticeably, the SSSSplitter doesn’t perform any unnecessary expensive operation, as,
beyond receiving the hash in input, also avoids any I/O operation, requiring also the
original file’s bytes content. Such choice aims at optimizing performances in conjuction
with the rest of the Ranflood software, which already takes care of such computations.
The same can’t be said for the SSSRestorer, where we care less about efficiency, not
being to execute in a critical moment, but also because it works differently, more au-
tonomously rather than in conjunction with the whole Ranflood ’s architecture.

3.2.1.2.2 SSSRestorer

When trying to restore a directory’s content, an SSSRestorer can be instantiated using
its path. Indeed, this phase requires an initial, thorough scan of all the files in contains,
recursively, as shard files related to the same splitting operation can’t be trivially found
and put together, because their contents have to be checked first; at the same time, this
is a more flexible method, allowing, for instance, to change a shard ’s filename or even
path (we’ll discuss this in the conclusion, not being our focus).
So, a custom structure that extends a LinkedHashMap (i.e. an HashMap with eased
sequential access) is used to sort files, saving each group of related shards in a different
OriginalF ile object (as we said, this can contain a list of its shards ’ paths). In fact,
when a shard is recognized - using its header signature -, it’s “added” to the structure
in a custom way, identifying its original file through an hash code that takes in account
both the original file’s hash (which was saved in each shard) and the generation (so that
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there can be multiple OriginalF iles, for the same path but different splitting sessions).
The said hash code is thus the same used in the (linked) hash map to index its elements
(original files).

To recap, the scanning must be performed all at once initially, for a given directory;
of course it could take quite some time, for large file structures. Afterwards, symmetri-
cally to the splitting phase, one can use the SSSRestorer to iterate through successfully
retrieved original files and their content, so that they can be written back. Since an orig-
inal file also contains references to its shards, one can also remove them, being useless
after their source file has been restored.

One could also notice that it is only required to find k shards for each original file;
unfortunately we don’t have a smarter way to group parts than to visit and look into
each one’s sections, especially when wanting to be flexible and allow shards to change
filename or path. Also, a thorough scan is able to report on the whole situation, showing
statistics on found shards and making it possible to later remove them.

3.2.2 SSS in Ranflood

Now that we’ve discussed all the theory and the lower level implementation details, we
can dive deep in the integration of SSS with Ranflood, which, as we said, is accomplished
through the two new flooding strategies SSSRansomware and SSSExfiltration.
From the client’s point of view, they appear exactly like the others, as choices for a
flooding strategy; the settings.ini file (for the daemon) also has two new sections. How-
ever, in the daemon’s implementation, they actually refer to the same SSSFlooder class
implementing the Flooder interface, just with different parameters.
Additionally, given the property of SSS of making it possible to reassemble a secret (file)
from its parts, the SSS flooders provide the option to delete a file once it’s been split.
This is particularly useful against exfiltration, so that the attacker can only retrieve it by
stealing enough related shards, while it’s only counter-acting with crypto ransomwares,
against which our only mitigation measure is creating as many files as possible. Hence,
by default this parameter is set to true and false, respectively for exfiltration and ran-
somware mode.

3.2.2.1 OnTheFly flooder

SSSFlooder was initially branched from the OnTheF lyF looder, which, given a direc-
tory path, uses a snapshot (specified by the client ’s command) to recursively create a
WriteCopy task for any of its files which were not corrupted (i.e. having still the correct
checksum).
The existence of a previously taken snapshot is hence a prerequisite, and it allows to
skip the copy of already corrupted files in favour of the good ones, to maximize the
chances of their restoration. The snapshooting phase, through the daemon parameter
ExcludeFolderNames, can also be configured to skip some directories, so that, if a
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checksum isn’t saved for them, neither their files will be used for a flooding, not having
a snapshot entry.
Lastly, a single WriteCopy task, as the name indicates, creates exact copies (three, to be
fair) of a file, with a filename obtained from the original one by adding a random adjective
out of about 1000 present in a dictionary (the Nomen est Omen library [13]). Consid-
ering that, like we said in 2.1.1, such tasks are repeatedly added to the TaskManager,
after some iterations a copy with any possible adjective should be created (if no error
occurs, e.g. end of memory).

3.2.3 SSS flooder

SSSFlooder uses almost the same directory inspection as OnTheF lyF looder, changing
mainly the tasks’ behaviour.
In first place, it inspects the input directory recursively, reading each file’s content and
using it to create a WriteSSSFileTask. Each task, then, is responsible for splitting it
and writing each shard to a new file.

The SSSFlooder main loop, differently from the OnTheF lyF looder, also works on a
file if a snapshooter was not specified, or if it doesn’t have a checksum available for it:
due to the self-contained nature of the SSS shards, in fact, it’s not necessary, as their
sections already provide the needed functionalities, even including the original file’s hash
(as we saw earlier). For this reason, the folders excluded from the flooding (specified in
settings.ini), here, are checked befor starting the recursion inside a subdirectory of the
current path, as the snapshooter can no longer be relied on for them.

Additionally, as mentioned, the SSSFlooder permits to delete a file once it has been
split. After its content has been read and passed to the newly created SSS task, a new
RemoveF ileTask is created to handle its removal. This is a single-use task (more in
3.2.3.1), i.e. it’s only executed once, in order to avoid unwanted behaviours. A normal
task, in fact, would be run cyclically, so, in this case, any newly created file with the same
name would be later deleted; this could interfere with any other program still running
on the infected machine and creating files, as well as with our own flooders, since each
strategy has some way of generating filenames which could yield the same one multiple
times (especially when combining them).
A limitation of using our single-use tasks is that, in the current implementation, they
aren’t executed again in case of error: since one should consider many possible reasons
for it to occur and different solutions as well, we chose to give priority to avoiding the
said conflicts.
We actually considered the option to recreate an original file from inside aWriteSSSFileTask
when not enough shards aren’t written successfully; the main problem with it is that a
write task’s execution will still be retried sooner or later, but a single-use task won’t,
meaning that the removal won’t happen again on the re-created file in case of successful
split, defying its purpose. In a more accurate scenario, actually, since the removal task
is added and thus launched after the splitting task, in case of error of the latter the file
will already be present at the moment of recreating it, but it will be deleted soon after.
Finally, due to their repetition, a splitting task could recreate the file even if it had al-
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ready been split successfully in a previous iteration, so a more sophisticated mechanism
would be needed to track such cases anyway.
Moreover, a common case in which writing a shard throws an exception is when the disk
is full: is such case, clearly, neither recreating the original file would be possible.

The following pseudo-code simplifies what we just described:

Algorithm 3 SSSFlooder main loop

sssSplitter ← SSSSplitter
function createTasks(path, excludedDirs)

if path.isDirectory() then
if path ̸∈ excludedDirs then

for file ∈ path do
createTasks(file)

end for
end if

else
bytes← readF ile(path)
signature← getSignature(bytes)
if not usingSnapshooter or (snapshooter.getSignature(path) ==

signature) then
createSSSTask(path, bytes, signature, sssSplitter)
if removeOriginals then

createRemoveTask(path)
end if

end if
end if

end function

When run, a WriteSSSFileTask splits a file into its parts - with sssfile - and im-
mediately writes them to new files. The writings of all shards relative to a file are thus
executed inside the same task.
Shards filenames are obtained from a filenames generator singleton class, providing a
static method to get (almost) unique names. Specifically, the method, given a filename
with or without an extension, adds a numerical counter to the end of the filename - or
before the extension, if present -, and increases it as long as the resulting filename is
already associated with another file:
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function getUniquePath(path)
name← path.substr(0, path.indexOf(′.′))
ext← path.substr(path.indexOf(′.′), path.length())
repeat

counter ← counter + 1
until file(name+ counter + ext).exists()
return name+ counter + ext

end function

The counter, being of type long, allows 264 ≈ 2× 1019 distinct filenames.
The main concern with SSS is to be certain that all shards get written to different files,
or at least k, so that the secret is still retrievable. Using a static class for all SSS tasks
ensures their names don’t overlap. While some other entity could overwrite the created
shards, such conflict won’t presumably happen by hand of another strategy - e.g. exe-
cuted in combination with SSS -, since others put a random adjective at the end of a
filename, instead of a number.
We don’t handle, though, the case where the counter overflows back to 0. At least,
checking a personal computer of ours relieved us, since we found out it only contained,
in total, about 2 × 106 files (running on Debian 12 ). When trying to understand the
maximum, approximate amount of shards that might be created, the number of found
files should fundamentally be multiplied by n - how many times each one is split -, which,
using the maximum n = 255, yields 5× 108 shards in total.
There are other variables though: each SSS task is executed cyclically until the flooding
is stopped, always adding new files, and also Ranflood, being a daemon and thus thought
to be run indefinitely without being restarted, might start many floods in its lifecycle.
Furthermore, running more floodings in sequence or at the same time would result in
continuously copying and splitting the generated files as well - unless snapshots are used,
which only allow to operate on those files whose checksum was taken in advance. On
the other hand, a flooding isn’t so fast and won’t likely work so much, plus the specified
excluded directories could make ignore many files.
In short, we considered our choice adequate for our experiments, knowing anyway that,
in case of necessity, the implementation could be trivially modified to extend filenames’
limits, e.g. with longer counters (more numbers put in sequence).

3.2.3.1 On structural choices

While deciding on how to integrate SSS with Ranflood, we considered the already exist-
ing software’s structure and tried to adapt ourselves to it and to change it as little as
possible. After having understood the proactor ’s (2.1.1) execution flow, our major con-
cern was on the best place to split a file, write its shards and eventually delete it. Likely,
IO operations had to handled inside tasks, to exploit its main advantage of managing
multithreading.

Our first approach has been to split the file inside the SSSFlooder loop and pass each of
its parts content to a different WriteF ileTask (not WriteSSSFileTask). This was the
most intuitive, as it imitated more the OnTheF ly flooder. However, while the last one
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always writes the same content, by making copies, the first one creates a different content
for each shard : considering (as we saw in 2.1.1) that a task persists in main memory
together with its parameters (particularly, the content to write for a WriteF ileTask),
if On-the-fly already requires B bytes of main memory in order to perform a flood from
copies of B bytes, this implementation of SSS would require n×B bytes. For instance,
what On− the−fly does with 3 GB of data could result in SSS using 300 GB of RAM,
clearly leading to out-of-memory exceptions or to being forced to reduce its range.
Nonetheless, we wouldn’t like to change the flooder’s behaviour to overcome such limita-
tion. In fact, as discussed in Ranflood ’s papers [9] [10], this is a wanted trade-off between
memory and mitigation effectiveness: without caching its content, one would have to read
a file each time, but this - or any other already created copy - could have been encrypted
by the ransomware in the mean time, so duplicating it would still cotribute to the flood-
ing but without a possibility of restoration.

Consequently, we opted for “shifting” the whole chain of execution towards the tasks. In
the current implementation - which we already explained in the previous section - each
original file is assigned a single task, handling both the splitting and the writing of its
parts. In this way, the memory occupancy is the same as for On-the-fly, i.e. equal to the
total read bytes.
We also changed the handling of filenames. In the first case, each was chosen in the
SSSFlooder and passed as task’s parameter, implying that a shard was always written
with the given content to the given path. Considering that a task is scheduled cyclically
(2.1.1) - with the same parameters -, the behaviour was similar to that of On-the-fly, in
the fact that it continuously rewrites the same file - which is positive for restoration if it
had been encrypted by the ransomware. Now, each time a file’s task is executed, this is
also split in parts differently - since it happens by calling sssfile, which generates them
randomly with the given n, k - and filenames where to write them are different as well.
While being the most intuitive approach here (to use the same filenames, one would have
to cache them), it also has some interesting implications.
At the moment, when a file’s task is repeated, new shards will be crated in addition to
those of the previous generation: while, then, a file - if not encrypted in the meantime
by the malware - was being overwritten with its same content, now new ones are created,
contributing to the flood, feeding the ransomware with more work and creating more
content useful for restoration. On the other side, a new execution requires repeating SSS
operations, which are actually quite expensive (for performance, refer to 3.3.2).
However, decentralizing the splitting towards the tasks also allows the main loop to
more quickly iterate through files and soon create their tasks, delegating their later,
computationally-heavy execution to the IO threads. Reading immediately as many non-
corrupted bytes as possible also grants an advantage on the ransomware, since they get
safely cached in main memory.

The last question to discuss in this paragraph is about the original file’s removal. As
mentioned in 3.2.3, the SSSFlooder, right after the SSS tasks, creates a new task for it,
which is single-use for the said reasons.
Ranflood didn’t implement single-use tasks, so we had to add them, possibly in the less
intrusive way. Here we include the main execution of the TaskManager, to better explain
our slight modification later:
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flooder
tasks← newList()
function getNextTask

tasks.addAll(flooder.getTasks())
return tasks.remove(0)

end function
function signalExecution

if flooder ̸= null then
current← getNextTask
getNextTask.run()

end if
end function

This is a simplified version, since the TaskManager, to handle multiple flooders at the
same time, cyclically takes from each one all of its task and adds them to its schedule. In
the given pseudo-code, then, there’s a single flooder’s instance, and a list of tasks. The
TaskManager’s execution is started through its signalExecution(): at every iteration,
the tasks created by the flooder (or the flooders) are retrieved, and the first one in the
queue is run.
What we changed was also retrieving single-use tasks together with the “normal” ones,
so that they get inserted in the same scheduling. getNextTasks(), so, became:

function getNextTask
tasks.addAll(flooder.getTasks())
tasks.addAll(flooder.getSingleUseTasks())
return tasks.remove(0)

end function

At the same time, each flooder now has to expose two different methods, one for re-
trieving the old tasks and one for the single-use ones. While, for compatibility, the old
strategies return an empty list, SSSFlooder stores his in two different, internal lists,
and the single-use one gets cleared anytime the getSingleUseTasks() is called:

tasks← newList()
singleUseTasks← newList()
function getSingleUseTasks

res← singleUseTasks
singleUseTasks.clear()
return res

end function

Additionally, getTasks() (and getSingleUseTasks()) initially had as return type a list
of WriteF ileTask, but we changed it in a list of FileTask: now it’s more general but
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didn’t have any implications in the code; we did so since the RemoveF ileTask inher-
its from FileTask but not from WriteF ileTask, purely for coherence in naming reasons.

3.2.3.2 SSS snapshooter

Its snapshooter, the SSSSnapshooter, actually implements its methods pointing to those
of the OnTheF lySnapshooter, and even from the point of view of client and daemon’s
settings it doesn’t exist and they’re considered to be the same. In fact, its same imple-
mentation, based on files’ checksums, is what we needed, with the implied advantage of
skipping operations on already corrupted files; however, the other reason the OnTheF ly
strategy needed it, i.e. for later restoration, is not of our concern, since our shards al-
ready keep the original file’s hash.
Shards actually only needed something to unequivocally group together those belonging
to the same splitting session, so using the file’s hash, beyond working for this purpose,
also gives the benefit of making them self-contained. As pointed out in the Ranflood
papers [9] [10], the single point of failure constituted by the snapshots database files is
among the software’s possible improvements, hence our decision to also address it while
implementing SSS. The risk, in fact, would be that of losing the snapshots files to the
ransomware, debilitating the flooding counter-action.
There are also other sections, in a shard, which could act as identifiers, but each could
suffer from some rare cases, so keeping them all makes the model more robust - while also
providing other benefits. Specifically, generation is currently a timestamp, but we aren’t
sure its value is always different, especially with multithreading; the file path, instead,
isn’t a very stable option, as it could create conflicts in case of file’s moved around, using
the same name in turn: this could also happen on behalf of the ransomware, which often
also changes a file’s name or parent directory after encrypting it, or of a flooder, which
surely creates files (or changes them, as the SSS one does).

3.2.3.3 SSSFlooder parameters

The options available in settings.ini for the two strategies are identical, but can be
configured separately. Currently, they are: ShardsCreated, that is, n; ShardsNeeded, k;
RemoveOriginals for removing original files after having split them; ExcludeFolderNames
for the directories to ignore. n and k, at initialization, are clamped to the allowed limits,
i.e. 2 ≤ k ≤ n ≤ 255.

The reason for having two separate SSS flooders is that, although offering similar func-
tionalities, in the critical moment of a ransomware infection it could be useful to have
two different solutions ready to use, whose parameters have already been tweaked for
different scenarios according to one’s defense strategy (either manually or with the de-
fault settings). Crypto and exfiltration ransomwares have truthfully distinct goals and so
distinct weaknesses: while the former should be slowed down by both creating as many
files as possible and keeping disk and cpu busy, the latter, beyond that, should also be
retained from gaining any information on what it’s trying to steal.
Aside from the RemoveOriginals option, then, lower k is preferable against a ransomware,
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so that one can restore the original file even when many shards have gone corrupted,
actually collapsing to the OnTheF ly strategy, whereas larger k, against exfiltration, re-
duces attacker’s chance to reassemble the stolen data.

To sum up, default options reflect our observation and thus are: for SSSRansomware,
n = 200, k = 2 and don’t remove original files; for SSSExfiltration, n = 150, k = 6
and remove original files. Their choice is explained in the testing section (3.3).

Since these parameters are quite technical and default ones are defined, we think that
the average Ranflood ’s user is unlikely to want to change them, especially after the de-
fault ones will be assigned through more accurate experiments. For this reason, we also
modified the IniParser class provided in the software’s repository, responsible for read-
ing the daemon’s configuration from the settings.ini, to make sure that it allowed not to
specify a parameter: this only required to make it return null for a missing parameter
instead of throwing an error. Such change doesn’t seem to have any other side effects,
since every other flooder already checked not to receive null values, while we specifically
implemented ours to use the default values in such case.

As a final point, despite our guidelines to pick optimal parameters, further research
may reveal which combination n and k best fits each of the two distinct scenarios: e.g.
one could investigate which is the best balance between concentrating on splitting too
much the same file, with a large n, rising the risk of malware accessing many others
still intact, and splitting each too carelessly, thus covering a wider area but allowing the
infection to take out an original file more easily.

3.2.3.4 SSS in fileChecker

To recap, fileChecker is the tool, complementary to Ranflood, to restore an environment
after a flooding and an infection. It initially featured the two commands save and check,
to be used in sequence, on a folder, to first retrieve the checksums of files and then check
which ones weren’t corrupted or can be re-obtained thanks to the copies generated via
On-the-fly or Shadow.

To implement the restoration phase of the SSS flooder, we added the subcommand
restore. As parameters, similarly to the other two, it requires paths where to store the
produced logs, and can use a checksums file (created by save), although it’s not neces-
sary, since shards are self-contained and already include their original hash, as we saw.
Additionally, one can optionally specify to remove shards files once they’ve been used,
and to receive more (debugging) logs, produced directly by sssfile, optionally printable
to another logfile.

restore doesn’t perform anything relevant, besides handling and collecting logs. Most
of the logic is inside sssfile, exactly as we showed in 3.2.1.2.2. The command, in fact,
first instantiates an SSSRestorer and calls its scanning method on the input directory,
then iterates on the OriginalF ile objects it retrieved: for each, writes it to a file and,
in case of success and if the user requested it, deletes its shards. Like for the splitting
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phase, sssfile doesn’t perform any IO operation itself, but only returns the content of a
file; unlike the former, though, it reads files in the scanning phase.

The most relevant part in the restore code is that which handles the writing to files,
avoiding conflicts and first checking if the retrieved content is correct.
While the reassembled file’s hash is immediately checked inside sssfile against the one
saved in its shards, restore also compares it with the one in the checksum file, if avail-
able. A case in which this could be helpful is when files have been changed - not by
the ransomware - after the snapshot, or when they were deleted but new ones with the
same names were created later. On the contrary, the same happens when a file has been
encrypted, and SSSFlooded split it anyway because a snapshooter wasn’t used and it
wasn’t able to know whether it was still valid or not, in that moment. This is a double-
edged perk of SSSFlooder, and the user will have to find out himself if some file has
become useless because encrypted.
The restored file is created with a different name in some cases, specifically: if its sig-
nature doesn’t match the one in the checksum file, but it does with the one saved in
the shards, indicating the problem with just described; if a file with such name already
exists, as it could have just been created by the user - after the attack - or be relevant
anyway. However, if the same-name, already existing file has the same signature of the
restored one, the latter is just ignored (and, in case, its shards deleted), meaning that it
had already been restored or was never lost at first.
The creation of an unique file is handled through the same getUniquePath() function
(3.2.3). In this case, the risk of making its counter overflow appears much reduced:
fileChecker is a single-execution command and not a daemon, and original files are
only in proportion of 1 : (n×generations) with shards (even though ransomwares could
mess them up) - where generations indicates the number of generations in which the
specific file was split.

Finally, every relevant information is collected and printed in a report file, in the json
format.

3.3 Testing

The strategy we developed is quite strange, compared to the already present ones: it
adds some bytes originating from original files unlike Random, but they aren’t proper
copies of them, unlike On-the-fly and Shadow. SSS actually performs some kind of
encryption before writing contents, differently from straight copies, so we doubted since
the beginning of our research its performance would be any similar to other strategies.

And in fact, tests reveal they aren’t at all. They were run on our personal machines,
allocating 6 GB for the Java Virtual Machine. Our simple testing session consisted in
using the same Random flooder to create random files in a folder, then try and run the
following flooders, each four times:

• SSSRansomware using snapshots;
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• SSSRansomware without snapshots;

• SSSExfiltration with snapshots;

• SSSExfiltration without snapshots;

• OnTheF ly (of course with snapshots);

The SSS ones used the default parameters. Random was only run for 2000 ms and each
flooder for 500 ms, as our machine didn’t have enough memory to perform larger scale
tests.
In such conditions, while OnTheF ly produced a few thousands new files (2000− 4000)
from a starting set of 6000− 8000 (variable numbers through tests), SSS could only run
a few iterations (sometimes only 1) and generate a few hundreds (200 − 600): a single
split, in fact, could require about 1 second, for files of more than 500 Kilobytes.
Actually, we weren’t using yet the parameters found out through the experiments we are
going to show hereby, but, as said, splitting a file still requires some time additionally
to the IO overhead, while copy-based strategies don’t have to perform any additional
operations.

Even without running proper tests, in case of success, their reliability could still have
been supported by the more formal ones run for Ranflood [9].
However, being SSS much inferior in flooding efficiency, we can’t apply them; instead,
also with the limited time we had, we concentrated our efforts on calculating the abso-
lute efficiency in terms of bytes created per second, and on trying to understand if our
strategy could still be applied to some cases.
In the following subsections, then, we go even deeper into the implementation to analyze
the computational efficiency of our code; then, we use the acquired knowledge to tweak
SSS parameters and finally compare them to possibly real scenarios.

3.3.1 Computational analysis

Any flooding strategy, after performing some operations to manipulate data, has to re-
quest the IO access to write files, and also ransomwares need it in order to read their
contents and then write it, after having encrypted it - or, in case of a pure exfiltration
ransomware, it only reads it; thus, to compare our flooder most of all with ransomwares,
we can leave out the constant overhead of IO and focus on comparing their respective
“some operations” parts.

In order to do that, we need to recall the implementation of the codahale/shamir li-
brary, so we can calculate its computational efficiency.

The split algorithm (1) features a loop on each byte of the secret, inside which two
operations are performed: a call to GF256.generate(), to generate a random polynomial
of degree k − 1, and another loop on n, to evaluate it on each shard ’s x coordinate, for
the current secret ’s byte.
Hence, we hereby show the pseudo-code for GF256.generate() and GF256.evaluate()
(which uses Horner ’s method):
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Algorithm 4 polynomial generation in GF (256)

function generate(degree, secret)
f ← byte[degree+ 1]
repeat

f ← randomBytes()
until degree(f)! = degree
f [0]← secret
return f

end function

As function to get a sequence of random bytes (randomBytes()), the one in
java.security.SecureRandom was used. It is linear in the bytes array size, since (ac-
cording to Java’s documentation [1]) it gets a random number for each element, using
the following constant function:

(seed⊕ 0x5DEECE66DL) & ((1L << 48)− 1)

As we can see, this is called again until the fetched random polynomial is of the correct
degree; since it suffices that the most significant byte is not 0, “in most cases” (assuming
the random function has uniform distribution) the loop will only be run once (precisely,
with a probability of 255/256). Hence, generate() has complexity

O(degree)

For clarification, before returning, generate sets the least significant byte to secret, in-
dicating that the polynomial has value secret in correspondence of x = 0 (intersecating
the y axis), as we saw through the SSS algorithm.

Algorithm 5 polynomial evaluation in GF (256)

function eval(p[], x)
result← 0
for coeff ← p.size TO 1 do

result← (result ∗ x) + coeff
end for
return result

end function

eval() is also linear, since it only iterates through constant mathematical operations:
its complexity is

O(p.size)

We recall that mathematical operations in GF (256) are very efficient, and actually all
constant.

To put it all together, in split (1) the generate() function is invoked with degree k,
so its complexity is O(k), and eval() is O(k) too, since the generated polynomial has
degree k (and so is the corresponding representation in bytes coefficients), meaning that
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the inner for loop, run n times, has complexity O(n× k). Iterating |s| times (size of the
secret s, in bytes), the complexity of split is

O((n× k + k)× |s|) (3.5)

For simplification sake, however, we will usually only consider the complexity of a
single byte:

O(n× k) (3.6)

The +k addition was also simplified, being irrelevant in the big-O notation - although
it was worth mentioning, as it may be significative in a later calculation.

For completeness, we also analyzed the join() function (2), which reassembles a set
of parts. It has a for loop too, running, for each of the secret ’s bytes, a linear inner
loop on the part ’s array’s size, followed by the call to GF256.interpolate(); we omit the
implementation of the latter, being the Lagrangian interpolation, and affirm that it takes
in input a list of points and has a complexity of O(points.size2), due to its nested double
loop.
In join(), interpolate() is invoked using a secret ’s byte’s shards - for each byte in se-
cret. Considering that the number of parts, for a successful reconstruction, needs to be
between k and n, the complexity, for a single byte, is

o(k2) ∩O(n2) (3.7)

This calculation immediately indicates that a very simple optimization could signifi-
cantly increase fileChecker’s joining speed: cutting the array of retrieved shard files to
only k elements (instead of using all of them, which could be n, in an ideal case) could
significantly impact the performance, especially with an high imbalance between the two
parameters.
Although not being as important as the mitigation phase, where being faster than the
ransomware is the priority, we included this improvement in our implementation when
noticed it.

For what concerns the split phase, it can be said that its complexity depends on k
and n as well: the main intuition, enforced by our tests - shown in the next section
(3.3.2) - is that their product has to be kept as low as possible, so when preferring to
increase a parameter one should try to decrease the other one.

Finally, this analysis underlines the difference between using GF (256) or another fi-
nite field of order not multiple of a byte’s size (28). The latter’s modulo operations,
indeed, unable to be naturally blended with the computer’s architecture, would add a
non-constant complexity to each loop’s iteration, and increase the general complexity:
addition/subtraction wouldn’t be simple xors, and, most of all, logarithm and expo-
nentiation would require the use of algorithms, rather than tables lookups - usually
proportional to the finite field’s order.
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3.3.2 Empirical performance evaluation

In this section we put in practice what we learnt through computational analysis and
validate its results through experiments.
Here, we show some sample executions of split/join, where we monitored the elapsed time
and reported the average speed as the milliseconds required to split/join a Kilobyte of
data (being time over space, lower is better) - also equivalent to s/MB -; the joins were

performed using all n shards ; the last column shows the
split

n ∗ k + k
ratio (multiplied

by 1000 for more readibility), used to find a correlation between the previous analysis
and the empirical results. Experiments were conducted trying different combinations of
values for n and k, on inputs counting 1000 bytes (1 KB) and averaging each test on
1000 attempts:

Comparison of join and split in ms/KB using different n,k

n k split (ms/KB) join (ms/KB)
split× 1000

n ∗ k + k
ratio

255 2 1.666 367.177 3.254
255 10 8.551 367.413 3.340
255 50 61.171 368.945 4.779
255 100 124.589 362.571 4.867
255 255 328.976 368.248 5.039
2 2 0.119 0.195 19.833
10 2 0.164 1.03 7.455
50 2 0.334 15.968 3.275
100 2 0.57 58.951 2.822
200 2 1.069 229.666 2.659
200 3 1.65 231.59 2.736
250 10 8.074 349.274 3.217
50 50 12.098 16.459 4.744
10 10 0.547 1.031 4.973

The split operation is the one we focused more on for the said reasons, and the first
one we’ll discuss. The observed results somehow resemble the computational cost of
O(n×k) (formula 3.6): the first five rows, showing the impact of k with a fixed n = 255,
highlight an approximately linear dependence on it (e.g. 124.589 ≈ 61.171 × (100/50),
with k = 100 and k = 50 respectively, while 328.976 ≈ 124.589×(255/100), with k = 255
and k = 100), and the same linearity appears in the following five rows, with varying
n and fixed k = 2, with respect to n. Of course, needing k ≤ n, the imbalance is
“monodirectional”, and we can only try to fix one parameter and lift the other until
n = k ∨ n = 255.
Moreover, an equal n× k product indicates not too dissimilar results: comparing 10, 10
with 50, 2 (for n, k) - having the same product 100 - and 50, 50 with 250, 10 - n×k = 2500
- shows split times not too distant from each other - considering the scale of the whole
parameters space, where a split could take from 0.119 ms/KB, using 2, 2, up to 428.976,
using 255, 255 -, although their differences aren’t exactly negligible (respectively, 0.547
against 0.334 for n× k = 100 and 12.098 against 8.074 for n× k = 2500).
We didn’t dig deeper for the meaning of such small differences, except by trying to
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understand the correlation between actual time and expected complexity through the

ratio, in the fifth column, calculated as
split

n ∗ k + k
(multiplied by 1000 for readability

purposes), following the more precise cost of formula 3.5 (leaving out the number of
bytes, since it’s constantly 1 KB).
Intuition suggests these common rules: the ratio is around 3 for not-too-small values

of n (n ≥ 10) and relatively small for k (k ≤ n

25
), around 5 for n ≥ 10 ∧ k ≥ n

25
(e.g. n = k) and significantly higher for low n’s. The first conclusion, then, (supposing
that the computational analysis is correct) are that smaller parameters, implicating less
iterations, render the algorithm more subject to minor implementation overheads, whose
impact becomes attenuated when considering a larger scale scenario. Indeed, the big-O
notation itself isn’t applicable to too small values, as its own definition is related to then
mathematical concept of limits:

f(x) = O(g(x)) ⇐⇒ ∃x0,M ∈ R|∀x ≥ x0.f(x) ≤Mg(x)

The incoherences of higher k’s, instead, are less clear, but presumably also linked to
some implementation detail (e.g. arrays allocations, for variable sizes).

The two lessons we can learn here, then, are that increasing both n and k at the same
time, of the same amount, quadratically impacts performance, while only increasing n
does it linearly, and that using too small values brings unnecessary losses (e.g. n, k = 10, 2
only requires 42% more time, i.e. 0.05 more ms/KB, than 2, 2, with n increased of 500%,
whereas 200, 2 has a fairer increase of 100% with respect to 100, 2, with n also increasing
of 100%). In practice, n ≥ 10 and k ≤ 10 seems and optimal choice, not bringing too
much implementation overhead an not increasing the costs quadratically with a large k.
Regarding the join, instead, we limit to confirm what previously said in 3.3.1. Since
we performed joins using all n parts of a file instead of the only minimum k required,
their times are visibly higher than those of splits; however only using k would make a
significant difference: if you take the example of 10, 2 (n, k), the join time is 1.03 (much
higher than the relative split time of 0.164) because 10 shards were used, but using only
2, being k = 2, would yield the same time observed with n, k = 2, 2, i.e. 0.195. In fact,
the analytical complexity here is quadratic with respect to the number of used parts, and
k instead of n constitutes a clearer improvement as far away their values are from each
other.

We also cite the official codahale/shamir ’s results, present in its repository’s Readme
[4]. Using n = 4, k = 3 and joining in the optimal way, with only k parts, they report
about 0.2 ms to split 1 KiB (1024 bytes) and 0.4 ms to join 1 KiB. We didn’t include
our tests with such parameters in the table, but we obtained similar values - anyway,
4, 3 is about twice 2, 2 (which we reported), and their times are too.

3.3.3 Practical performance evaluation

In this last section dedicated to tests, we plot the previously showed values, in addition to
other ones, to enforce our intuitions more clearly, after defining a new comparison metric.
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After evaluating SSS’s algorithm performance, the question is how fast are ransomwares
instead. Well, an AES encryption - likely to be used by a crypto ransomware - has a
linear complexity with respect to the number of input bytes, and our tests in CBC mode
and with PKCS5 padding truthfully revealed a speed around 0.003 ms/KB - taking the
average on 1000 results for 100 KB inputs.
An exfiltration ransomware, on the other hand, might be limited by the network band-
width - which, nowadays, can also be of hundreds or thousands of Megabit, or much
slower for the unluckier ones.

Despite being scary, ransomwares performances can be seen from a different perspec-
tive, when evaluated in the context of a flooding. If between the encryption (for a crypto
one) or exfiltration (for the other one) of one file and another some baits also have to
be processed, the effective ransomware’s speed, i.e. the speed at which it progresses
towards its goal of covering the whole file system, reduces: for instance, if a crypto ran-
somware can process 100 MB/s and the flooder can write 90 MB/s - no matter what’s
its frequency, i.e. if it writes many files once in 10 seconds or, constantly, a file every 0.1
s -, it results that the former can only encrypt 10 MB/s of useful data (among all the
copies), so he still makes progress, but at a slower pace; on the other hand, if the flooder
produced 200 MB/s, the malware would be overwhelmed my baits, as more and more of
them would be created while he couldn’t keep the pace and would only catch a real file
by chance once in a while.
The example is clearly quite naive, assuming that the ransomware would soon be baited
by the generated files, while one would have to consider the probability that it picks a
real file or not, in a large file system containing both types; on the other hand, further
research could find a way to push the ransomware towards precise files, e.g. by giving
them specific names, extensions, headers, contents.
Nonetheless, we still deemed this intuition relevant in order to measure our flooder ’s
performance, not having enough time to run more accurate tests for this work: it’s still
true, in fact, that creating copies faster than the malware processes files will continuously
reduce its probability of picking real files, as well as flooding more slowly than it will
only feed it a bait once in a while. The difference between flooding and encryption (or
exfiltration) speed - be it positive or negative - can likely determine a positive or negative
acceleration in the ransomware’s progression rate.

For the SSS flooder, we can define the speed at which shards are created - and thus
bytes written - as

absolute split speed = (
1

split speed
× n)MB/s (3.8)

While the previous split speed (in the previous section, in the table) only indicates
the frequency at which a single splitting is completed, the so-defined absolute split speed
focuses on the average number of bytes written (while creating shards), no matter the
frequency, equally rewarding also larger parameters values which obviously require longer
executions, but, at the same time, produce more files all at once. We precise that, while
the previous split speed was expressed as ms/KB (to highlight the single execution dura-
tion), we now take the reciprocal, in order to use the speed in terms of MB/s (equivalent
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to KB/ms). The intuition of multiplying the speed by n comes from the fact that, for 1
KB of processed data (the secret), n KB are produced (one for each part): in fact, each
part is of its same size - besides the constant shard ’s header, which we didn’t count, for
simplicity and also because its impact is attenuated with larger files.

The following plots, finally, show how the absolute split speed varies with different pa-
rameters, by either fixing n or k (as indicated in each caption). The x axis indicates the
varying parameter (n or k) and the y indicates the absolute splitting speed; the sample
points are those in red, of which are highlighted the x coordinates, and over each one a
label indicates its own relative split speed in MB/s (i.e. the reciprocal of the split speed
in the table).

Figure 3.1: Absolute splitting speed, with fixed n=255.
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Figure 3.2: Absolute splitting speed, with fixed n=150.

As we saw with the table, while n is fixed, increasing k reduces the relative split speed
- being the reciprocal of the previous split speed -, whereas the displayed labels show
decreasing values (in MB/s) as k increases. Moreover, the two plots, testing many values
from 5 up to 255, seem to underline an hyperbolic decreasing. A possible explanation
deriving from what we saw is that the split speed (ms/KB) is a quadratic function (having
complexity O(nk)), and taking its reciprocal (for the relative split speed we consider now)

multiplied by n (for the absolute speed) yields a function in the form of
1

k
(hyperbola):

1

nk
n =

1

k

From such comparison, it seems that choosing a k as low as possible is better.
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Figure 3.3: Absolute splitting speed, with fixed k=10.

Figure 3.4: Absolute splitting speed, with fixed k=2.

38



Figure 3.5: Absolute splitting speed, with fixed k=2 (higher n values).

On the other hand, it’s impressive that, with fixed k, increasing n results in more
bytes written over time, although the peak performance is for n around 150− 200 with
the tested k = 2 and k = 10, while the absolute speed starts decreasing again soon after.
A possible explanation is the aforementioned implementation overhead, which seemingly
disappears at the found values of n, while the reasons for the decreasing performance
after the peak are unclear.

The order in which plots appear almost reflects the progression of our experiments to
find the optimal values for n and k. It’s worth mentioning that, while looking for the
best performance, we also require suitable parameters for our needs: while n itself is
mostly related to the flooding impact, and thus can be more easily tweaked to improve

performance, the relation
k

n
indicates the redundancy of a file’s copies. Against a crypto

ransomware, then, low k increases redundancy and restoration chances, while against
exfiltration one must also try to reduce the attacker’s ability to reassemble victim’s se-
crets, using higher values.

After what learnt through the previous section (3.3.2), we wanted to start our experi-
ments by understanding the general impact of varying n with fixed k and k with fixed
n. Thanks to the first plot, with n = 255 (3.3.3), we soon discovered how badly higher
k impacted performance; however, given the previous reasoning, while using k = 2 is
surely feasible and actually preferable against crypto attacks, we also needed to test
higher values in order to contrast exfiltration.
The measuring of n was hence performed with the two different fixed values k = 2 (3.3.3)
and k = 10 (3.3.3). After having observed the said peak for n around 150 − 200, we
first focused on contrasting crypto, by picking k = 2 and looking for the exact peak in
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absolute speed using steps of 10 for n (3.3.3), but the initial value of 200 was actually
the one seemingly yielding better results.
Regarding the exfiltration threat, we individuated n = 150 as peak and, finally, looked
more deeply to find a better k for it. Given that k > 10 resulted in excessive performance
losses, and k < 5 seems to low to contrast it, we tested all the values in between; specif-
ically, the decrease is approximately linear in the range [5, 8], so we also discarded k = 9
and k = 10. Among the remaining values, we arbitrarily chose k = 6 as default value
in our implementation: while increasing n seems quite inexpensive and usually conven-
ing, such low values for k are anyhow far away from those we expected from Shamir’s
secret sharing at the beginning of our research, but this analysis shows how much rising
it impacts performances, and one must find the best possible balance between flooding
speed and restoration ease to best reduce an attacker’s capacity of obtaining sensitive
information on the victim.

To summarize, the default parameters for SSSRansomware are n = 200 and k = 2,
with an absolute split speed of 187.1 MB/s, whilst for SSSExfiltration they are n = 150
and k = 6, with an absolute speed of 53.76 MB/s. Of course, given the high impact of k,
SSSRansomware is much faster.

Having defined our metrics, retrieved empirical data and found some almost-optimal
parameters, we can finally answer the question whether the SSS flooder can make any
difference.
First, a crypto ransomware with an encryption time of 0.003 ms/KB - by calculating
its reciprocal - has an encryption speed of 333 MB/s. SSSFlooder could thus, at most
(assuming again that generated files have high probabilities of being picked), about half
its speed (since 333 ≈ 187.1× 2), for an intuitive calculation - or slow it down by 44%,
more precisely. Anyway, these evaluations are only for research purposes, since copy-
based strategies, not having to perform any additional operations on data rather than
writing them, are significantly more effective against crypto. Even other improvements
for Ranflood introduced in this project, such as making the shards self-contained, could
still be included in the other strategies in the future.
The exfiltration speed, instead, would much depend on a network’s speed, which is prob-
ably very high for a server, while, for a common user, it can be only a few Megabytes,
or some tens or even hundreds, for the lucky ones (not so much in this context): the
efficacy of SSSExfiltration, with a flooding speed of 53.76 MB/s, would highly depend
on the case. Anyway against exfiltration, despite being much slower than other strategies
at flooding, the fact that the attacker can’t reassemble a secret without enough parts
could constitute an advantage in some cases.
For both ransomware types, we leave to the future proper tests in a real environment,
to verify the correctness of our choices.
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Chapter 4

Conclusion

4.1 Summary

To summarize, in this thesis we gave an insight on a the anti-ransomware solution of
Data Flooding against Ransomware, we presented our comprehension of the Shamir’s
secret sharing and of how it can be applied to it, we illustrated the Ranflood tool and,
finally, we went through the development of our implementation of SSS for Ranflood.

In the “Introduction” chapter (1), we gave the initial definitions for ransomwares, ex-
filtration ransomwares, looked at a few options to contrast them, and specifically Data
Flooding against Ransomware, and at the open-source implementation of it in Ranflood.
In the “Background” chapter (2), we gave our perspective on the objects of our first
study to approach this topic: in 2.1 we analyzed more deeply the architecture of Ranflood
(2.1.1), with its client-daemon structure and proactor pattern to manage multithread-
ing, and its complementary tool fileChecker (2.1.2), needed in the restoration phase; in
2.2 we gradually introduced Shamir’s secret sharing, from the basic concept and goals
(2.2.1), the algorithms (2.2.2) and then explaining why and how to add modular arith-
metic (2.2.3), with finite fields.
In the “Our contribution” chapter (3), we started from the background knowledge to
build our model of flooder based on SSS : in 3.1 we depicted the precise scheme of SSS
we used to handle files (3.1.1), based on the finite field GF (256) for its high efficiency
on bytes, and listed some security concerns of ours regarding it (3.1.1.1).
In 3.2 we put all in practice: in 3.2.1 we considered a few options on SSS ’s imple-
mentations and showed our classes implementing it, divided in the external repository
codahale/shamir (3.2.1.1) for the “rawer” parts and our sssfile wrapper for handling more
complex files structures (3.2.1.2), both for the splitting (3.2.1.2.1) and the restoration
phase (3.2.1.2.2); in 3.2.2 we started from the provided On-the-fly copy-based flooding
strategy (3.2.2.1) to implement our SSSFlooder (3.2.3), analyzing its optimal structure
(3.2.3.1), its limited usage of snapshots (3.2.3.2) and the parameters through which it
can be configured and how they impact the execution (3.2.3.3), and its complementary
restore command for the fileChecker (3.2.3.4).
Our implementation was concluded by some informal tests and observations, in 3.3: in
3.3.1 we performed some computational analysis on the underlying SSS operations; in
3.3.2 we validated it through some sample executions; in 3.3.3 we combined analysis and
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practice to find optimal parameters, and reasoned about the possible performance of the
SSSFlooder in real scenarios.

4.2 Future works and optimizations

Computer science and software security are ever-evolving themselves, and on the combi-
nation Shamir’s secret sharing and Data Flooding against Ransomware especially there
isn’t any research yet. Hence, any study around it might be of interest, but also im-
provements to our own solution, Ranflood, now with SSS, would be welcome.
Some fields where additional research is needed were already pointed out throughout this
thesis. Some others had already been made in the papers on Ranflood [9] [10].

We didn’t question too much the names of the shard files generated, but ransomwares
usually have some criteria to prefer some to encrypt first, e.g. their path, name, exten-
sion, headers, looking mostly for personal data and ignoring common programs.
Something is already done from the existing strategies, which append commonly tar-
geted extensions to files, while we didn’t give it much relevance in our work, for the SSS
flooder, not being our focus.
By understanding such patterns, one could apply more complex plans, by luring mal-
wares towards useless, copied files and keeping them away from the most relevant ones.

Relatively to our SSSFlooder, we already mentioned, in the context of testing, how
interesting a proper research to find the optimal parameters would be, possibly validat-
ing out choices.

Moreover, SSSFlooder could be “merged” with ShadowFlooder, exploiting its com-
pressed caching together with SSS to get the best of both aspects.

Our Shamir’s secret sharing model could also benefit from exploring different implemen-
tations, specifically different finite fields, measuring and comparing their performances.
Remaining close to the computers architecture, an idea which attracted us but we didn’t
have enough time to explore was to exploit higher powers of 2 as order q = pr, instead
of r = 8. Values multiple of 8 (i.e. resembling a byte) could possibly grant the same
performance boosts, but we suppose that they could also better exploit the full 64 bits
of today’s processors. Moreover, this would reduce the raw number of operations per-
formed (e.g. r = 16 would imply dividing the original files in pairs of bytes instead
of individual ones, performing half the operations with the finite field and presumably
halving execution times). The only thing one would have to do is (as we saw in 3.1.1)
to pick a generator to populate the look-up tables, and the sole drawback would be the
memory requirements:

size = 2r × r

8
× 2

With r = 16, each of the 2 look-up tables would be populated by 216 values, each of
dfrac168 = 2 bytes (i.e. short type integers), resulting in a required size of 262.144 KB,
still acceptable - to also get the described improvement on the second table, we should
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multiply by 3 instead of 2, as it would double its size.
However, r = 32 (type int) would already require 17 GB.
We don’t know, then, if there exists some compromise, allowing to only compute, e.g.
half of each table (by performing only one operation on each lookup).

To conclude, we state that further improving the SSSFlooder’s performance doesn’t
seem so easy. In fact, it forcefully requires shards to be the same size as the origi-
nal path, otherwise it wouldn’t be possible to retrieve it with any k of them: in other
words, each shard must keep some information about each single part of the original
file, otherwise they would be unbalanced. A consequence is that there will hardly be an
optimization, for instance, on splitting large files, unless specific research on its mathe-
matical aspects are conducted.

4.3 Observations

Throughout this thesis we posed ourselves many questions concerning security, optimiza-
tions, implementation details, common or rare use cases for our tool.
While for implementation doubts we could at least provide the best solutions according to
the information in our hands, our work is also crossing a new ground, with the unusual
combination of Shamir’s secret sharing and Data Flooding against Ransomware, and
there are many directions in which further research may improve our findings through
experimentation. On the other hand, the large number of contrasting requirements
makes such that the goal becomes to only find the best compromises between them; this
particularly applies in real scenarios, when we’d need to foresee any possible use case,
outcome, concurring process or external factor for our software.

We instead mainly focused on understanding the potential of SSS and providing a new
mean to fight crypto and exfiltration attacks.
By starting from an open-source project, we were able to take the good from it to merge
our efforts (starting from the available application design, studies and the existing tools
such as flooders, snapshooters etc.), and by contributing to it with our research, we also
shared what we learnt, in the hope to stimulate others to purse this work.

The same Adi Shamir, in his first paper on Shamir’s secret sharing (1979) [11], said
relatively to it:

“In other applications the tradeoff is not between secrecy and reliability, but
between safety and convenience of use.”

Shamir’s secret sharing, in fact, isn’t about the ”secrecy” of hiding one’s secret instead
of making it attack-proof (”security by obscurity”), nor about the high ”reliability” at
the cost of security (in his terms, think about distributing your keys to everyone so you
never lose them, but also allowing everyone to enter you house); instead, through two
parameters (a minimum threshold k and a maximum amount n) it allows to find the
best compromise between an easy to access (but also to attack) and a safe (but also easy
to lose access to) system.
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This also applies to our flooding tool, where the compromise between making a file
easily recoverable (low k) - by both the user and the cybercriminals - and hardly at-
tackable (high k required) transposes to the balance between redundancy and difficulty
of retrieval: the former is better suited for contrasting ransomwares, making it possible
to restore a file even if many of its shards were encrypted; the latter fits the exfiltration
case, where we don’t want the attacker to obtain user’s data.
Furthermore, such observations need to find an additional compromise with performance,
where increasing k for safety comes at a cost in terms of flooding speed.

On the memory and disk consumption compromises were already present in Ranflood
and are still being made: caching files contents and checksums grants better perfor-
mances in some cases, more resilience in others.
Indeed, despite the flexibility of self-contained shards, the advantages of cached infor-
mation in snapshots can hardly be overcome. Thus, the implementation of our shards,
with their sections, should mostly be seen as a more resilient alternative to them, capa-
ble of working even in more critical situations, but, for example, one can’t recognize if
a file has already been encrypted by the ransomware without a snapshot, at the moment.

In reality, when facing the urgent threat of a malware, even other security concerns
not to loose a few files become secondary, compared to the major urge to beat it in
speed and flood the file system before too much damage is suffered, and to give the user
the time to physically reach the machine: in practice, a few, rare execution errors or
files lost, despite not being irrelevant, can be justified if this significantly increases the
flooder’s performance.
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