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Abstract

The scope of this thesis is studying a new approach to the Wheeler-DeWitt equation,
consisting in a Born-Oppenheimer decomposition of the “Universe wave function” and
a generalised description of the gravitational sector through the Wigner function. This
new approach is more general than the standard one since it can be applied to mixed
state which may arise, in the early Universe, as the consequence of the interaction with
some hidden sector (trans-plankian) of the theory.
The gravity wave function gets transformed according to Wigner-Weyl, different solu-
tions to the gravity equation are studied and their association with the Wigner function
calculated. The form of the Wigner function which solves the gravity equation then
affects the form of the matter (inflaton) equation. In the semi-classical limit the matter
equation takes the form of a Schrodinger (or Schwinger-Tomonaga) equation, and the
time can be defined in it. In the Born-Oppenheimer approach, non-adiabatic next-to-
leading order corrections emerge in the gravitational and in the matter equation. Such
corrections have a quantum-gravitational origin in this context. The study of the Wigner
function indeed is useful to keep track of the quantum effect of gravity, and to better
understand their role in the matter-gravity system.
The above study is applied in particular for two different sets of initial condition for
the gravitational wavefunction: the first one is the Hartle-Hawking (HH) initial con-
dition which describe the Universe as a superposition of expanding and contracting
solutions, the second one is the Vilenkin initial condition, which describe an expanding
Universe. For both cases different approximation methods and procedures are analyzed.
The Vilenkin solution, in particular, has been shown to generate quantum-corrections to
the definition of time inside the matter equation, which can be described as the presence
of an “early-Universe virtual fluid” possibly affecting the slow-roll parameters of and the
spectral indices of the primordial spectre.
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Introduction

Quantum Cosmology studies how the quantum effects can affect the evolution and the
features of the Universe. Certainly, our knowledge of cosmology is based on the theory
of General Relativity, but we expect that Quantum Mechanics/Quantum Field Theory
had a fundamental role during the early stages of the Universe. In particular, since the
Cosmic Microwave Background (CMB) measurement, it has become evident how the
quantum behaviour of matter is relevant for the study of the Universe. Quantum Cos-
mology is the theory where General Relativity and Quantum Mechanics are intertwined,
in particular searching for a quantum origin of our Universe.
The theory of inflation is a bridge between “classical” Cosmology and Quantum Mechan-
ics, and nowadays is the most accepted theory to explain the behaviour and the evolution
of the Universe in its early stages, with a period of accelerated expansion, Inflation, which
may be originated by the presence of a nearly homogeneous scalar field, the inflaton and
occurred in the early stages of the Universe history at very-high energies, and therefor
we expect that, in this regime, new and unknown physics may be taken into account.
Inflation can eventually provide insights to the solution of some of the biggest problems
of modern physics, such as the formulation of quantum gravity. Indeed, in the early
stages of the inflationary expansion, quantum gravity could have affected the spectrum
of the fluctuations, leading in principle to tiny observational effects to test candidate
quantum theories of gravity.
The study of the quantum effects on the evolution of the Universe had a turn 50 years
ago, when John Archibald Wheeler e Bryce DeWitt proposed the canonical quantiza-
tion of General Relativity, introducing their famous “Wheeler-DeWitt equation” [12],
thanks to which they were able to introduce the wavefunction of the Universe. The
whole Universe was then considered as a quantum object, whose state was described
by their equation. This was one of the first and more conservative attempts to de-
scribe quantum mechanically the gravitational interaction, and since its formulation, the
Wheeler-DeWitt (WdW) equation has been studied by numerous physicists, searching
for a most complete description of the quantum effects on the Universe evolution.
A very well-known method to study theWdW equation consists in the Born-Oppheniemer
(BO) decomposition of the Universe wavefunction [4] [24] [34] into a gravity wavefunction,
which depends on the cosmological factor, and a matter wavefunction, which describes
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the modes of the inflaton field or other matter fields. This procedure leads to the sepa-
ration of the WdW equation into a gravitational equation and a matter equation.
Anyway, in the WdW equation the time variable is not present, so the resulting matter
equation will not have a definite time inside itself. This is the consequence of time-
reparametrisation invariance of General Relativity. However, time can emerge into the
matter equation in the semi-classical limit for gravity, when the cosmological factor fol-
lows its classical trajectory. In this way the matter equation becomes equivalent to the
time-dependent Schrodinger (Schwinger-Tomonaga) equation, and apart from tiny equa-
tion corrections, one recovers the standard results of Quantum Field Theory on curved
(classical) space-time.
Let us note that time can be introduced in this semi-classical limit, and since the matter
equation depends on the solution of gravitational equation, usually some approximation
is needed to obtain the gravity wavefunction. Commonly the WKB approximation is
used to solve the gravity equation, since this could be the most efficient way to study
both the semi-classical limit and the emergence of quantum corrections in the matter
equation.
Recently, an alternative procedure has been proposed to introduce “time” in the matter
equation. It consist in transforming the gravity wavefunction according to Wigner-Weyl
and then substituting the gravity wavefunction with a Wigner function in the matter
equation. This procedure allows to better describe the quantum effects of gravity, and to
generalize the BO decomposition to mixture of states of the gravitational wavefunction.
In this thesis we study the matter (inflaton) equation resulting for different choices of
the Wigner function for the gravitational sector, corresponding to diverse initial condi-
tions and describing pure and mixed states. Finally, a new way to evaluate the quantum
gravitational corrections in the matter equation is proposed.
The appearence of quantum-gravitational corrections in the matter equation are associ-
ated with the definition of time. This could lead to the appearance of a “virtual fluid”
in the early Universe, whose effect becomes negligible for increasing scalar factor, but
may still contribute with non-negligible effects on the early stage of Universe/inflation.
Studying the continuity equation of this virtual fluid, it is possible to see how its presence
could affect the potential of the scalar (inflaton) field.
Further, modifications of the evolution of the scale factor could have consequences on
the values of the slow-roll parameter of the inflationary theory, thus leading to small
variations of the spectrum of the quantum perturbations described by the Mukhanov-
Sasaki equation. This result is an example of how quantum-gravitational effects affect
the observables related to inflation, in particular those which describe the anisotropies
present in the CMB, and such effects may be relevant to discriminate between different
models of the early Universe.
The thesis is organized as follows:

• In Chapter 1 we first recall the basic properties of the Friedmann-Robertson-Walker
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spacetime and the problems of the Standard cosmological model which motivate
the necessity of an inflationary phase. We then briefly discuss a model of inflaton
made of a scalar homogeneous field with a nearly constant potential. Lastly we
comment the quantum-cosmological perturbation theory and the Mukhanov-Sasaki
equation.

• In Chapter 2 we study theWheeler-DeWitt equation through the Born-Oppenheimer
decomposition, obtaining a gravitational equation and a matter equation. We then
introduce the Wigner function and study the gravitational equation for the gravita-
tional Wigner function, with Hartle-Hawking initial conditions. Lastly, we overview
the quantum theory of measurement and the concept of decoherence in quantum
cosmology.

• In Chapter 3 we study the matter equation which is obtained by considering the
Wigner function for the Hartle-Hawking case found in Chapter 2. The classical
and semi-classical approach are analyzed, showing how the time emerges in both
limits, and seeing that the matter equation consistently reduces to the Schrodinger
equation in both cases.

• In Chapter 4 we start from the Vilenkin wave function for gravity, find its associated
Wigner function and then we study the matter equation in this case. It is shown
how the Wigner solution can be coarse-grained and the effects of this procedure
are studied. Furthermore, a new approach is illustrated to estimate the matter
equation accounting for the quantum gravitational corrections. Lastly we comment
on the cosmological effects produced by these quantum corrections.
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Chapter 1

The cosmological model

1.1 The FLRW metric

Modern cosmology is built upon two foundational principles that define the intrinsic
nature of our Universe. The first principle, known as the Copernican Principle, asserts
that:
“We do not occupy a special or privileged position within the Universe.”
This implies that the Universe would appear similar to any other observers as it does
to us. While this principle has limited practical application, it sets the stage for further
exploration. However, it is the Cosmological Principle that carries significant weight:
“The Universe is homogeneous and isotropic.”
In this context, isotropy is recognized as an observational fact, while homogeneity is de-
duced from the assumption that isotropy is observer-independent, as for the Copernican
Principle. Essentially, these principles outline the symmetries of our Universe. Let’s
delve into these seemingly straightforward symmetries.
When observing the night sky, it is evident that it lacks isotropy: our solar system mainly
consists of empty space with scattered celestial bodies, forming constellations, clusters,
and the Milky Way. Nevertheless, we speculate that if we could detect all matter in
the Universe, its average distribution (over a sufficiently large portion of the night sky)
would be consistent in all directions. Thus, isotropy is more an assumption than an
observation.
It is essential to note that what we perceive in the night sky isn’t the instantaneous state
of the Universe but rather an image formed by light cones reaching us at the time of ob-
servation. Asserting that the Universe is homogeneous and isotropic implies the existence
of a time t at which the Universe is uniform and symmetric on each time slice Σt. The
matter distribution on each Σt influences light propagation, highlighting the necessity
for experimental validation of the entire framework. Additionally, signals traveling along
light cones may have originated at different times ∆t in the past from various distances
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∆s, requiring separate methods to determine either ∆t or ∆s to validate specific models.
Consequently, the Cosmological Principle serves as a fundamental assumption upon
which explicit models of the Universe are constructed and subsequently tested. Specifi-
cally, we should anticipate a minimum scale beyond which the Universe exhibits homo-
geneity. However, for the sake of discussion, let’s consider an idealized scenario where
galaxies form a uniform (perfect) fluid filling all of space.

1.1.1 The FLRW metric satisfies the Copernican and Cosmo-
logical Principles

The configuration of the cosmological metric finds some of its parameters determined
by the postulation of Killing vectors, which delineate the directions amenable to the ap-
plication of metric symmetries. Specifically, we will now encounter three spatial Killing
vectors that induce spatial translations, thus characterizing homogeneity, along with
three additional spatial Killing vectors responsible for rotations, thus defining isotropy.
We must also recall that isotropy with regard to any arbitrary point equates to homo-
geneity.
Moreover, it is notable that we do not possess a time-like Killing vector in this context,
as we seek to describe a dynamically evolving Universe. This insight stems from the
groundbreaking observations made by Edwin Hubble and Milton Humason in 1929, re-
vealing that galaxies at greater distances from us exhibit accelerated recession.
The request of having a metric which would describe an homogeneus and isotropic Uni-
verse, which at the same time would also fit for the case of an expanding Universe, led
Friedmann, Robertson, Walker, and Lemâıtre to build the FLRW metric [6], representing
a cornerstone in the characterization of the cosmological model:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin(θ)2dϕ2)

]
(1.1)

where {t, r, θ, ϕ} are the comoving coordinates, a(t) is the cosmic-scale factor, which
embeds the effect of the expanding Universe, Rcurv ≡ a(t)|k|−1/2 is the curvature radius,
and k = −1, 0, 1 is the curvature scalar which, how we will see, will determine, beside
the geometric propriety of the space-time, also the evolutionary destiny of the Universe.
Depending on the value of the curvature scalar, we can introduce new coordinates such
that the topology of the hypersurface Σt is apparent from its line element dσ2:

• Flat Universe: for k = 0, the coordinate r is very similar to the usual radial
coordinate in R(3):

dσ2 = dr2 + r2dΩ2 = dx2 + dy2 + dz2,

and Σt is flat (zero spatial curvature).
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• Closed Universe: for k = +1, the proper radius R(3) is bounded from above and

r = sin(X) → dσ2 = dX2 + sin2(X)dΩ2,

and Σt is a 3-dimensional sphere.

• Open Universe: for k = −1, one can write

r = sinh(ψ) → dσ2 = dψ2 + sinh2(ψ)dΩ2,

and Σt is a 3-dimensional hyperboloid.

Finally, the meaning of the coordinate r is very different from that in the Schwarzschild
space-time. If we write our metric as:

ds2 = −dt2 + a2(t)dσ2

we can see that in the FLRW metric the areal radius rA is given by:

rA = a(t)r

and the area of surfaces of constant r therefore depends on time. Likewise, the proper
distance between two points is given by:

dR = a(t)
dr√

1− kr2
= a(t)dR(3)

where R(3) is the proper distance on a surface Σt, and this quantity can be bounded.
Observations suggest that the distance between galaxies increases in time, whereas their
typical size remains the same. We can therefore claim that the Universe is expanding,
with the furthest galaxies moving faster away from us, like dots on an inflating balloon.
This picture can be mathematically modeled by a modified FLRW metric which locally
(around matter sources such as a galaxy) looks like the Schwarzschild metric: local
lengths are mostly affected by the localized sources and do not appreciably change in
time, whereas the distance between sources increases because of the increasing scale
factor. This picture is still debated sometimes, and is the topic of the so-called Einstein-
Straus problem in General Relativity.

1.1.2 The Universe as a Perfect Fluid

As we wrote above, we can make a series of simplifying assumptions about the behaviour
of the elements that constitute our Universe, such assuming the Universe is filled with a
perfect fluid of matter and energy. Its energy-momentum tensor then can be written in
the following, diagonal, form:

T µ
ν = diag{−ρ, p, p, p} (1.2)
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where ρ is the energy density and p is the pressure, and we can write them as time-
dependent quantities ρ(t), p(t) that satisfy the continuity equation to which a perfect
fluid is subject:

∇µT
µ
ν = 0. (1.3)

The 00-component of this equation yields to the condition of energy conservation:

∇µT
µ
0 = −∂0T 0

0 −
3∑

i=1

Γi
i0(T

0
0 − T i

i) = ρ̇+ 3H(ρ+ p) = 0 (1.4)

where the dot stands with the differentiation respect to the cosmological (proper) time,
Γi
jk is the well-known Christoffel symbol and H ≡ ȧ/a is the Hubble constant, which

measures the rate of expansion of the Universe.
The continuity equation (1.4) can be written in the following form:

d

dt
(a3ρ) = −p d

dt
(a3) (1.5)

and, assuming an equation of state, ω, for the fluid:

p = ωρ. (1.6)

When ω is constant, then the energy-conservation equation implies:

ρ̇

ρ
= 3(1 + ω)

ȧ

a
→ ρ = a3(1+ω). (1.7)

The simplest components of cosmic fluids are dust (pressure-less matter, or non-relativistic
matter almost exactly at rest with the cosmic frame) and radiation (massless matter, or
highly-relativistic matter), and we can reproduce their behaviour by a proper choice of
the parameter ω:

• Dust: in this case no force is present, beside gravity, and we must choose ω = 0
so that the fluid it is pressure-less (p = 0). In this case, solving the continuity
equation, we find the following expression for ρ from (1.7):

ρdust ∝ a−3 =
E

V
(1.8)

which reflects the fact that the energy is proportional to the proper mass of dust
particles, E = n · m0, where n is the particle density, and it scales with volume,
i.e. like V ∝ a× a× a.
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• Radiation: in the case of radiation, the mass of the particles is negligible, and
that reflects on the energy-momentum tensor, which is traceless:

T = ρ+ 3p = 0

so we can conclude that:

p =
1

3
ρ→ ω =

1

3
, (1.9)

and

ρrad ∝ a−4 =
E

V
. (1.10)

This result can be understood by noting that the number density scales again like
V ∝ a3, and photon energy also redshifts according to

E ∝ a−1. (1.11)

For a long time it was thought that we now live in a matter (dust)-dominated Universe,
whereas in the early stages, the Universe dynamics was controlled by radiation, since
the density of the latter increases faster (going backward in time). We now know that
the Universe expansion is presently accelerating (ä > 0), which is not compatible neither
with the effect of dust or radiation. So we must search for a new energy source, which
could explain the late inflationary behaviour of the Universe,

• Vacuum or dark energy: among possible sources driving cosmic acceleration,
we include the fluid with equation of state:

ρ = −p = Λ

8πGN

, ω = −1, ρΛ ∝ const. (1.12)

where Λ is the so-called “Cosmological constant”, and was initially introduced by
Einstein on the l.h.s of his equations to search for static solutions of the Universe:

Rµν −
1

2
gµνR + Λgµν = 8πGNTµν .

Einstein himself later describes this attempt as its “biggest blunder”, but nowa-
days it seems fundamental to explain the accelerated behaviour we observe for our
Universe.

1.1.3 Friedman Equations

Studying the Einstein equation in the context of the FLRW metric, two fundamental
equations, known as Friedman equations are found [30]:

G00 = 8πGNT00 → 3

[(
ȧ

a

)2

+
k

a2

]
= 8πGNρ (1.13)
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and

Gii = 8πGNTii → 3
ä

a
= −4πGN(ρ+ 3p). (1.14)

The first equation (1.13), is a constraint, which selects the possible combinations of ini-
tial conditions a(t0) = a0 and ȧ(t0) = ȧ0 for the truly dynamical (second order) equation
(1.14) for the scale factor a = a(t), given a specific matter content. However, the con-
straint is preserved at all times, as can be seen by deriving Eq.(1.13) with respect to
time and using the continuity equation (1.7) to obtain (1.14). So in the end, for a fluid
satisfying the continuity equation (1.7), it is easier to just solve for the constraint (1.13)
at all times t ≥ t0.
We can introduce a new parameter to rewrite the Friedman equations: the density pa-
rameter Ω:

Ω =
ρ

ρcritical
=

8πGN

3H2
ρ (1.15)

where

ρcritical ≡
3H2

8πGN

(1.16)

it is the so-called critical energy density and represents the energy density of a flat
Universe (k=0).
We can rewrite the first Friedman equation (1.13) as:

Ω− 1 =
k

H2a2
(1.17)

and the following observations can be made:

• If ρ < ρcritical, then Ω < 1, k = −1 which corresponds to a Open Universe
scenario,

• If ρ = ρcritical, then leads to Ω = 1, k = 0 which corresponds to a Flat Universe
scenario,

• If ρ > ρcritical, then leads to Ω > 1, k = 1 which corresponds to a Closed Universe
scenario.

The spatial curvature k and the equation of state of the fluid which dominates the energy
budget of the Universe then determine the evolution of the scale factor (see Figure
1.1, which displays the cosmic evolution in the matter-domination case, and similar
behaviours would also occur for radiation). Observations suggest that our Universe is
very close to the critical density. For a flat, matter dominated Universe, one has ρ ∝ a−3,
thanks to which we can wrote the following law for a:

ȧ

a
∼ a−3 → a3/2 ∼ t. (1.18)
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Figure 1.1: The time dependence of the scale factor for open, closed and critical matter-
dominated cosmological models.

For a flat, but radiation dominated Universe, one has ρrad ∝ a−4, and we can conclude
that:

ȧ

a
∼ a−4 → a2 ∼ t. (1.19)

Finally, for a flat and empty Universe, with only a positive vacuum energy present, one
can write ρcritical = Λ and obtains the exact solution:

ȧ

a
∼ Λ

3
→ a ∼ eH0t (1.20)

where H0 is now a true cosmological constant.

1.1.4 The flatness problem

As we saw in the previous section, the quantity ȧ is decreasing in time for the case of a
dust/radiation dominated Universe. As we can see from (1.15), for radiation and dust
domination, the quantity |Ω− 1| grows with time:

• radiation domination: |Ω− 1| ∝ t,

• dust domination: |Ω− 1| ∝ t2/3.

This means that any deviation from the critical density (Ω = 1) present in the early
Universe, would have been immensely amplified. Since today the observed value of the
Ω parameter is very close to one, one could quantify the maximal deviation from flatness
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that should be present when our Universe originated at t = ti. We can simply compute
this quantity by mean of the relation:

|Ωi − 1|
|Ω0 − 1|

=

(
ȧ0
ȧi

)2

(1.21)

where the subscription 0 stands for the value measured today.
A rough estimation of the ȧ0/ȧi can be done considering the initial instant i as the
Plank time tpl, the time at which the Universe was at a temperature Tpl, and further
considering:

a ∼ T−1, ȧ ∼ a

t
(1.22)

and so we obtain: (
ȧ0
ȧi

)2

=
tpl
t0

Tpl
T0

∼ 10−43

1017
1032 (1.23)

with a final result |Ωi − 1| < 10−52.
This is a very fine tuned and unnatural initial condition, and this question is addressed
as the flatness problem. One could say that, for some unknown reasons, our universe
emerged from the Planck era with a density very close to the critical one. But, this
statement is unsatisfactory because the case Ω = Ωc describes an unstable Universe with
respect to the generic case Ω ̸= Ωc.

1.1.5 CMB and the horizon problem

Different experiments have verified the presence of a nearly uniform radiation pervading
the Universe, known as the Cosmic Microwave Background (CMB). It is believed that
this radiation emerged in the early stages of the Universe, when the decoupling of matter
and radiation occurred at the last scattering surface (LSS), allowing photons to travel
freely.
By solving the Friedman equation in presence of matter (dust) and radiation fluids, one
easily realises that the Universe was significantly denser and hotter in its early stages.
At the onset of matter domination the Universe was opaque: energy density was high
and electrons where not bounded by nuclei. Photons interacting with charged particles
(protons and electrons) had a very short free path and such a primordial plasma was
in thermal equilibrium. When energy dropped below 0.3eV , neutral hydrogen atoms
formed and photons could free stream, constituting the oldest detectable light signals
observable today, characterized by a temperature of approximately 3K. In principle,
only gravitational waves we could observe today may be originated in preceding epochs.
Considering this picture of the early Universe, the uniformity (or more precisely, the
isotropy from our point of observation) of the CMB seems unjustifiable within the stan-
dard Big Bang scenario. When observing opposite directions in the celestial sphere, the
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CMB reaching us is isotropic, but comes from casually disconnected regions. So the
fundamental question arises of how this is possible without assuming very fine tuned
or unnatural initial conditions for our Universe. Deriving for the FLRW metric the
definition of light cones we have:

ds2 = 0 → dr =
dt

a
. (1.24)

Suppose we place ourselves at r = 0 and integrate the above expression (along the light-
cone) from t = −ts, the time of the last photon-scattering, until now (t = 0). We thus
find the comoving distance travelled by a CMB photon:

rs =

∫ rs

0

dr ∼
∫ 0

−ts

dt

a(t)
=

∫ a0

a(−ts)

da

a2H
. (1.25)

In a Universe dominated by matter, we have seen that H ∼ H0(a0/a)
3, so

rs ∼
1

2H0a30
(a20 − a2s) ∼

1

2H0a0

where H0 is the value fo the Hubble constant today.
If then we compute the corrisponding proper distance travelled by that photon from the
last-scattering epoch to now, we find

R = a0rs =
1

2H0

(1.26)

This distance is the radius of the LSS today, while rs is the comoving radius of the LSS.
We can also note that H−1 is approximately the so-called particle horizon RH

RH =
1

H(−ts)
∼ ts (1.27)

which physically represents the size of a casually connected region in an expanding
Universe. In comoving coordinates the size of casually connected region is rH = (aH)−1,
and at the time of last scattering rlsH = (alsHls)

−1. If we now compare rlsH with a region
on the LSS subtended by an angle ∆θ we find:

rlsH = rs∆θ → ∆θ =
rlsH
rs

≈ a0H0

alsHls

=

(
a0
als

)1/2

∼ 103/2 ∼ 1.8◦. (1.28)

Thus only the distances on the LSS subtended by an angle less than ∼ 1.8◦ are in casual
contact. We conclude that photons of CMB are isotropic despite being originated by
(apparently) casually disconnected regions.
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1.2 Inflaton and Inflation

The Flatness and Horizon problem have a common origin: the fact, for dust or radiation
dominated Universe, to have a factor ȧ−1 = (aH)−1 that grows with time. This also
mean that they can be simultaneously solved by imposing the condition thanks to which
(aH)−1 decreases in time. This condition can be written as:

d

dt
(aH)−1 < 0 → ä > 0.

So an accelerating stage during the primordial phases of the evolution of the Universe
might be able to solve the flatness and horizon problems. From the second Friedman
equation (1.14) we learn that the condition for an accelerating Universe ä > 0 is satisfied
by the request:

ρ+ 3p < 0 → p < −ρ/3 → ω < −1

3
. (1.29)

An accelerating period is obtainable only if the overall pressure p of the Universe is
negative: p < −ρ/3, satisfied by the condition ω < 1/3 from the continuity equation
(1.4). From the cosmological models we have described, neither a radiation-dominated
phase nor a matter-dominated phase (for which p = ρ/3 and p = 0, respectively) satisfy
such a condition. A possible model satisfying the condition (1.29) is that of a vacuum
energy-dominated Universe with p = −ρ = −Λ = constant, and the resulting evolution
is known as de Sitter phase. Indeed, if one considers a generic value for the parameter
ω, (1.25) gives us the following expression of the comoving distance rs:

rs ∼
∫ a0

a(−ts)

da

aȧ
=

2

1 + 3ω

(
a

1
2
(1+3ω)

0 − a
1
2
(1+3ω)

s

)
→ +∞

for as → 0; 1 + 3ω < 0

(1.30)

and in the particular case of a vacuum dominated (de Sitter) Universe, we will have:

a(t) ∝ eH0t → rs ∼
eH0ts

H0

→ +∞ for ts → +∞. (1.31)

Having an increasing particle horizon, every point on the LSS can be in causal contact
assuming that the primordial phase of accelerated expansion lasts enough.
This early phase of accelerated expansion is called inflation.

1.2.1 Euler-Lagrange analysis for the action of an inflaton field

Previously we have described the various advantages of having a period of accelerated
expansion, and showed that the latter required p < −ρ/3. Now, we would like to show
that this condition can be attained by means of a simple homogeneous scalar field. We
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shall call this field the inflaton ϕ.
The action of the inflaton field reads [31]:

Sϕ =

∫
Ω

d4x
√
−gL =

1

2

∫
Ω

d4x
√
−g[∂µϕ∂µϕ− 2V (ϕ)] (1.32)

where
√
−g = a3 in the FLRW metric (1.1).

Now considering the Euler-Lagrange equations for the Lagrangian (1.32):

∂µ
δ(
√
−gL)

δ∂µϕ
− δ(

√
−gL)
δϕ

= 0 (1.33)

we can find:

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
+ V ′(ϕ) = 0 (1.34)

where V ′(ϕ) = (dV (ϕ)/dϕ) and ∇2ϕ = 0 due to homogeneity. We note in particular the
appearance of a term +3Hϕ̇, known as friction term, which originates from the fact that
the scalar field rolling down its potential suffers a friction due to the expansion of the
Universe.
We can write the energy-momentum tensor for the scalar field:

Tµν = ∂µϕ∂νϕ− gµνL (1.35)

and write the corresponding energy density ρϕ and pressure pϕ as:

T00 = ρϕ =
ϕ̇2

2
+ V (ϕ), (1.36)

Tii = pϕ =
ϕ̇2

2
− V (ϕ). (1.37)

One now could consider a small departure from homogeneity

ϕ(x, t) = ϕ0(t) + δϕ(x, t) (1.38)

where ϕ0(t) is the ‘classical’ homogeneous inflaton, while δϕ(x, t) represents the quantum
fluctuations around ϕ0(t).
If we assume that the potential term is much larger with respect to the kinetic term of
the scalar field, V (ϕ) >> ϕ̇2, we satisfy the following condition:

pϕ ∼ −ρϕ. (1.39)

We then realize that a scalar field whose potential energy dominates over the kinetic
term gives inflation. So, inflation is driven by the vacuum energy of the inflaton field.
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It is useful to express the inflationary evolution in terms of the so-called “slow-roll pa-
rameters”, which can be easily related to the conditions necessary for the Universe to
undergo inflation. The first one is ϵ1, which is equivalent to the condition V (ϕ) >> ϕ̇2:

ϵ1 =
ϕ̇2

V (ϕ)
∼ − Ḣ

H2
<< 1 (1.40)

where in the last relation we exploited the relation coming from (1.34).
In order to solve the horizon and flatness problems, inflation must last for a sufficiently
long period of time, so the field acceleration must be small compered to the friction term:

|ϕ̈| << |3Hϕ̇|

and this property can be described by another slow-roll parameter, η:

η = − ϕ̈

Hϕ̇
<< 1 (1.41)

which can be re-expressed in terms of the second derivative of the inflaton potential
V (ϕ):

ηV = −
m2

pV
′′(ϕ)

6V (ϕ)
(1.42)

such that η = ηV − ϵ1.

1.2.2 The case of a constant potential in a mini-superspace

Consider now the simple case of a mini-superspace, containing only two degrees of free-
dom associated with a minimally-coupled homogeneous scalar field, that we identify with
the inflaton ϕ. In this context, we can write an action [23]:

S̃ =
1

2

∫
Ω

d4x
√
−g
[
m2

pR− ∂µϕ∂
µϕ− 2V (ϕ)

]
(1.43)

where R is the Ricci scalar and mp = (8πGN)
− 1

2 is the Plank mass.
Now we would write the FLRW metric (1.1) in the ADM decomposition [25] that slices
our space-time into homogeneous (space-like) hypersurfaces:

ds2 = gµνdx
µdxν = −(N2 −NiN

i)dt2 + 2Nidx
idt+ a2(t)(dx2 + dy2 + dz2) (1.44)

where N = N(t) is the lapse function and N i = [Nx(t), Ny(t), N z(t)] are the three
shift functions which encodes the displacements on the homogeneous space-like surfaces
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Σ = Σ(t) identified by the fixed time parameter t.
In this contest, we can decompose the Hamiltonian of our system as

H = NHS +N iHi

where HS is the super-Hamiltonian, which generates diffeomorphism along the syn-
chronous time τ in the direction n⃗ = d

dτ
orthogonal to the hypersurfaces Σ(t), and Hi

are the super-momenta, which generate spatial diffeomorphism along the hypersurfaces
Σ(t), such that, for every tensor T :

{T,Hi} = L∂iT. (1.45)

We assume that the basis vector ∂i are also Killing vectors, so:

{T,Hi} = {T,HG
i +Hϕ

i } = L∂iT = 0. (1.46)

Indeed, for the metric (1.44), the gravitational super-momenta

HG
i ∝ G0i = 0 (1.47)

and the matter super-momenta, for a scalar field ϕ:

Hϕ
i ∝ ∂iϕ = 0 (1.48)

vanish identically, so (1.46) becomes an empty identity. In order to proceed we can pick
N i = 0 for all the shift functions, such that each point on the surface Σ(t) cannot be
identified with respect to the others, and so our system becomes essentially 1-dimensional,
with only the parameter t which can be used to label different points. This is not a
proper gauge, since {N i, Hi} = 0 trivially, but the choice N i = 0 is preserved by the
Hamiltoninan evolution, so it is compatible with the dynamics.
Also, we will perform a change of variables following the procedure displayed by Louko
in [28]

N̄ ≡ aN, q ≡ a2

and so our metric becomes

ds2 = −N̄
2

q
dt2 + q(t)(dx2 + dy2 + dz2) (1.49)

and we must also observe that now our Hamiltonian is decomposed as

H =
N̄
√
q
HS. (1.50)

18



From the above metric redefinition, we can compute the Ricci’s scalar as:

R =
3

N̄2

(
q̈ − q̇ ˙̄N

N̄
+
q̇2

2q

)
(1.51)

where the dot indicates a derivative respect to t. Now, for simplicity, we can limit ourself
to the case of constant potential V (ϕ) = Λ, and Λ plays the role of the cosmological
constant.
Then we can compute the action, having care of redefining mp →

√
6mp and adding a

vanishing boundary term in order to delete the dependence of the action by terms q̈ and
˙̄N , obtaining:

S ≡ S̃

V
=

1

2

∫ t2

t1

dtN̄q

[
m2

p

2N̄2

(
q̈ − q̇ ˙̄N

N̄
+
q̇2

2q

)
+
qϕ̇2

N̄2
− 2Λ

]

=
1

2

∫ t2

t1

dtN̄q

[
m2

p

2N̄2

(
q̈ − q̇ ˙̄N

N̄
+
q̇2

2q

)
+
qϕ̇2

N̄2
− 2Λ

]
−m2

p

d

dt

(
q̇q

2N̄

)
=

1

2

∫ t2

t1

dt

[
−m2

p

q̇2

4N̄
+
q2ϕ̇2

N̄
− 2N̄qΛ

]
.

(1.52)

and so, we get the Lagrangian:

L =
1

2

[
−m2

p

q̇2

4N̄
+
q2ϕ̇2

N̄
− 2N̄qΛ

]
. (1.53)

From here, we can proceed with the Hamiltonian analysis1.

1.2.3 Hamiltonian analysis

Now, from the Hamiltonian formalism, we can introduce the momenta:

πN =
∂L

∂Ṅ
= 0, (1.54)

πϕ =
∂L

∂ϕ̇
=
q2ϕ̇

N
, (1.55)

πq =
∂L

∂q̇
= −m2

p

q̇

4N
. (1.56)

Inverting the above relations, we can find:

ϕ̇ =
Nπϕ
q2

, (1.57)

1From now on, we will keep writing N̄ as N for simplicity.
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q̇ = −4Nπq
m2

p

. (1.58)

Now we can insert the relations (1.58) and (1.57) inside the Lagrangian (1.53), and so
write the canonical Hamiltonian of our system as:

H = πNṄ + πq q̇ + πϕϕ̇− L

= −
4Nπ2

q

m2
p

+
Nπ2

ϕ

q2
− 1

2

[
−
4Nπ2

q

m2
p

+
Nπ2

ϕ

q2
− 2NqΛ

]
=

N
√
q

[
−
2π2

q

√
q

m2
p

+
π2
ϕ

2q3/2
+ q3/2Λ

]
≡ N

√
q
HS

(1.59)

where HS is the super-Hamiltonian, which yields the constraint for the physical points.
Indeed, Eq. (1.54) is a primary constraint, so it must be conserved under the Hamiltonian
evolution. This yields to the Hamiltonian constraint:

0 = {πN , H} =
∂H

∂N
=
HS√
q

(1.60)

this is the full theoretical background we need to quantize the system.
Before proceeding with the quantization, we want to rewrite our Hamiltonian (1.59) in
terms of conformal time η. Since (1.54) is a primary constraint, N plays the role of a
Lagrangian multiplier, and we can impose the gauge condition N = q that brings us the
conformal time η = t and the Hamiltonian becomes:

H = −
2qπ2

q

m2
p

+
π2
ϕ

2q
+ q2Λ (1.61)

where we have

πq = −m2
p

q′

4q
, πϕ = qϕ′

and we point out that the time is the conformal time η with the choice N = q, and
differentiation with respect to η will be indicated with the prime (′) symbol.
Let us consider the Friedman equation (1.13), with k = 0 and ρ = Λ. Selecting the
conformal-time with the gauge-choice N = q, we can find the behaviour of q′. From
the definition of the energy-momentum tensor of the inflaton field Tµν (1.35) and the
current FLRW metric in ADM decomposition (1.44), we have the following form for the
component T00

2:
T00 = g0αT

α
0 = qρ = qΛ

2As we said in the previous section, we are considering the condition which leads to inflation in our
computations, so we are neglecting the kinetic contribution of ϕ
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with the Ricci scalar R given by (1.51) and the component 00 of the Ricci tensor that
can be computed to be:

R00 = − 3

2q

(
q′′ − q

′2

q

)
. (1.62)

We then we have that (1.13) becomes3:(
q′

q

)2

=
8qΛ

m2
p

(1.63)

that, finally, gives us the following classical relation for q′:

q′ = ±
(
8q3Λ

m2
p

) 1
2

. (1.64)

Comparing this last result with the expression found from the Hamiltonian relations
(1.58), considering again the conformal time condition N = q, we can find the following
expression for the classical value of πq:

πq = ±
(
qΛm2

p

2

) 1
2

. (1.65)

In terms of comoving distance, the particle horizon corresponds to the conformal time
measured since the Big Bang:

RH = a(η)

∫ η

η0

dη = a(t)

∫ t

0

dt′

a(t′)
= a(t)

∫ r

o

dr′ (1.66)

where the Big Bang is at t = 0. This can be seen also substituting our choices N = a,
Ni = 0 inside the metric (1.44).
We can show that, under the condition to be in a flat, vacuum dominated, de Sitter
Universe, we can write the cosmological factor a in the form

a(t) ∼ eH0t

and so we can find from (1.66) the relation:

RH ∼ −H−1
0 (1.67)

and so, as a consequence, we can express the conformal time η as:

η = − 1

H0a(η)
,

or, in terms of Louko variable, as:

η = − 1

H0

√
q(η)

. (1.68)

3we recall once again that we rescaled the value of the Plank mass mp →
√
6mp
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1.3 The theory of cosmological perturbations

So far we have studied the properties of a strictly homogeneous and isotropic cosmol-
ogy. To obtain a complete description of the Universe we need to take into account
also inhomogeneities. From the theory of inflation, it is believed that these primordial
inhomogeneities where the cause of the formation of large scale structures, which then
started growing because of gravitational instability. This means that inhomogeneities
were much smaller in the past and therefore for most of their evolution they can be
treated as linear perturbations. But what is their origin? It is believed that the origin of
these perturbations is quantum fluctuations originated during the in inflationary period.
So another point of interest for the inflationary model, is that inflation can be addressed
as the source of primordial perturbations. The perturbations one must consider in the
cosmological scenario are of three types (scalar, vectorial, and tensorial), and their dy-
namics is studied via the SVT decomposition. The vectorial perturbations usually are
not important during inflation, since they rapidly decay in an expanding background,
so one essentially calculates the evolution of the scalar and tensorial ones. Scalar and
tensor perturbations during inflation can be described in terms of a Mukhanov-Sasaki
field.

1.3.1 Scalar perturbations

Starting from the Lagrangian density of the minimally coupled (scalar) inflaton field
inside the action (1.52), we can generalize it considering the presence of inhomogeneous
modes of the scalar field, that will seed the scalar fluctuations. These will be described
in terms of a single, Mukhanov-Sasaki (MS) field v(q, η), and each Fourier mode of this
field will be indicated by vk(x⃗, η), with k ̸= 0, as k = 0 can be included the homogeneous
mode of the inflaton, ϕ. The total action takes the form [21]:

L =

[
−
m2

pq
′2

8q3
+
ϕ

′2

2q
− Λ

]
+
∑
k ̸=0

Lk (1.69)

where Lk is the Lagrangian density of the inhomogeneous mode k for the MS field v(x⃗, η),
and can be written as:

Lk =
1

2

(
v

′2
k + ω2

kv
2
k

)
(1.70)

with

ω2
k = k2 − z′′

z
. (1.71)

We note that the expression (1.70) describes the action of a time dependent harmonic
oscillator. The time dependent frequency term for the scalar, z′′/z, is defined in terms
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of the homogeneous (classical) degrees of freedom by [21], [7]:

z ≡ √
qϵ1 with ϵ1 = − H ′

√
qH2

= −d ln(H
2)

d ln(q)
with H =

q′

2q3/2
(1.72)

so we can estimate z′′/z:

z′′

z
= qH2

[
2− ϵ1 + ϵ2

(
3

2
+
ϵ2
4
− ϵ1

2
+
ϵ3
2

)]
≡ qH2fMS(ϵi) (1.73)

where ϵi+1 = 2qϵ−1
i dϵi/dq.

The infinite set of ϵi form the so-called hierarchy of “Hubble flow functions” of slow-roll
parameters. It is important to note that, depending on the model of inflation, other
hierarchies are commonly used, and they are associated with the evolution of different
(homogeneous) degrees of freedom.
From the Lagrangian (1.69), we can find the following equation of motion in momentum
space:

v′′k +

(
k2 − z′′

z

)
vk = 0 (1.74)

known as Mukhanov-Sasaki equation.
The Mukhanov-Sasaki field can be related to the inflationary observables. The scalar
perturbations of the metric are described by the “comoving curvature perturbation” R:

R =
v

z
. (1.75)

In the following R is assumed to be a Guassian random field with Fourier-transform Rk

[13]:

Rk =

∫
d3xR(x⃗)eik⃗x⃗. (1.76)

We can compute the two-point correlation function for Rk :

⟨RkRk′⟩ = (2π)3δ(k − k′)|R(k)|2. (1.77)

The power spectrum PR(k) encodes the full information about the curvature perturba-
tion, if they are Gaussian distributed. This can be computed as:

PR(k) =
k3|Rk|2

2π2
(1.78)

which, on scales larger than the Hubble radius (−kη << 1) , takes the form:

PR(k) =
3

4M2
pπ

2

(
H2

ϵ1

)
k=q1/2H

. (1.79)
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Indeed, the spectral index of the power spectrum (1.78), for the perturbation modes
outside the horizon (1.79), is a quantity which can be related with CMB observations
and is defined as [33]:

ns − 1 =
d ln(PR(k))

d ln(k)
= −2ϵ1 − ϵ2 +O(ϵ21) (1.80)

Where we exploited the definitin of the slow-roll parameter ϵ2:

ϵ2 = 2
d ln(ϵ1)

d ln(q)
. (1.81)

The spectral index ns − 1 measures the deviation from the scale invariance of the power
spectrum.

1.3.2 Tensor perturbations

The case of tensorial perturbations is similar to that of scalar perturbations. We start
from the perturbation of the FLRW metric [7]:

ds2 = q(t)[dη2 + (hij + σij)dx
idxj] (1.82)

where the quantity hij(η, x⃗) describes tensorial perturbations, and represents the gravi-
tational waves.
At quadratic order in tensor perturbations, the action takes the form [13]:

S(2) =

∫
dηd3x

[
(h′ij)

2 − (∇⃗hij)2
]
. (1.83)

We can define the tensorial MS field as [9]:

vλk =
q1/2mp

2
hλk

which obeys a MS-like equation:

v
′′λ
k +

[
k2 −

(
q′′

2q
− q

′2

4q3/2

)]
vλk = 0.

Without going in further details, we can also report here the formulas for the power
spectrum of the tensorial perturbations for single field inflaton:

PT (k) =
2

3π2

(
V (ϕ)

m4
p

)
k=q1/2H

(1.84)
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and of the spectral index nt, analogous of ns − 1:

nt =
d ln(PT (k))

d ln(k)
= −2ϵ1. (1.85)

Lastly, we note that the results obtained so far for the scalar and tensor perturbations
allow to calculate a consistency relation which holds for the models of inflation driven
by one-single field ϕ. On using such a consistency relation one can express the so-called
tensor to scalar ratio r, which is proven to be:

r =
PT

Pr

= −8nt = 16ϵ1 (1.86)

which is proportional to the slow-roll parameter ϵ1, and because of the relation between
r and nt, r = −8nt is also known as consistency relation.
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Chapter 2

Wheeler-DeWitt equation

2.1 Quantization procedure and Born-Oppenheimer

approximation

The constraint (1.60) sets points corresponding to physical configurations in the phase
space apart from those which are not. In quantum theory, we need to distinguish between
physical states on Hilbert space, for which we can assign a unique probability amplitude,
to those not uniquely identifiable. Isometric spaces cannot be identified uniquely by
means of their points, therefore their are not physical and is impossible to assign a
unique probability amplitude for the states of the Hilbert spaces associated with them.
So we assume we removed all the possible isometric configuration and proceed with
the quantization of the system. We can quantize the constraint (1.60) by the Dirac
prescription, i.e. substituting πq → −iℏ ∂

∂q
(and the same for πϕ) into it, and applying

the Gupta-Bleuler condition
Ĥs |ψphys⟩ = 0.

Here, the operator Ĥs arises when we substitute the phase space variables by the cor-
responding operators and choose some particular operator ordering, while |ψphys⟩ is a
quantum state of the Universe. We choose a particular simple ordering, such that in the
end we obtain1:[

2qℏ2

m2
p

∂2

∂q2
− ℏ2

2q

∂2

∂ϕ2
+ q2Λ

]
Ψ(a, ϕ) ≡

[
2qℏ2

m2
p

∂2

∂q2
+ Ĥϕ

]
Ψ(a, ϕ) = 0. (2.1)

This is the quantum equivalent of the Hamiltonian constraint, which is satisfied only by
physical states in Hilbert space, and corresponds to Wheeler-DeWitt equation for the
wave function of the Universe Ψ(q, ϕ). Let us note that different orderings usually affect
the small q behaviour of the solutions of (2.1).

1we took the freedom to rescale Hs by a factor
√
q
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We start our analysis by noting that the (2.1) is not separable because of the term ℏ2
2q

∂2

∂ϕ2 ,
and despite it quite-easy form it is not exactly solvable in general. Then we should apply
an approximation to this equation in order to find an approximate solution. In particular,
the Born-Oppenheimer factorization (BO) [4] seems well-suited. The BO approximation
consists in separating the total wave function Ψ(q, ϕ) into a “slow/heavy” part and a
“fast/ light” part as:

Ψ(q, ϕ) = ψ(q)χ(q, ϕ), (2.2)

where the light part χ(q, ϕ) is not further separable. The resulting BO approximation
was introduced in order to find a solution for the Schrodinger equation in a system
with “heavy/slow” atoms/molecules and “fast/light” electrons. For such systems, the
evolution of the fast degrees of freedom depends (almost) adiabatically on the slow ones.
The BO approximation has been applied to the study of inflaton-gravity system by many
years now [34] [24] [14] [22]. Indeed here the “heavy/slow” part is associated with the
gravitational part, and the “light/fast” is associated with the matter part. This can be
done since the Plank’s mass is really much heavier than any other matter mass [27].
We can therefore rescale the wave-functions by the so-called geometric phase, namely:

χ→ χ̃(q, ϕ) = χe−i
∫ q Adq′ ; ψ → ψ̃(q) = ψei

∫ q Adq′ with iA = ⟨χ|∂qχ⟩

such that χ̃ψ̃ = χψ and

⟨χ̃|∂χ̃
∂q

⟩ = −iA⟨χ|χ⟩+ iA = 0. (2.3)

Contracting (2.1) by ⟨χ̃|, and after some manipulations, we obtain coupled equations for
the gravitational and the matter wave functions. Indeed, from:

⟨χ̃|
(
2qℏ2

m2
p

∂2

∂q2
+ Ĥϕ

)
ψ̃(q)|χ̃⟩ = 0,

we get the gravitational equation[
2qℏ2

m2
p

∂2

∂q2
+ ⟨Ĥϕ⟩

]
ψ̃ = −2qℏ2

m2
p

⟨∂2q ⟩ ψ̃ (2.4)

while considering

(1 − |χ̃⟩ ⟨χ̃|)
(
2qℏ2

m2
p

∂2

∂q2
+ Ĥϕ

)
ψ̃(q) |χ̃⟩ = 0

we get the matter equation

4qℏ2

m2
p

∂qψ̃∂qχ̃+ ψ̃(Ĥϕ − ⟨Ĥϕ⟩)χ̃ = −2qℏ2

m2
p

ψ̃
[
∂2q − ⟨∂2q ⟩

]
χ̃, (2.5)

where ⟨Ô⟩ = ⟨χ̃|Ô|χ̃⟩ and ⟨χ̃|χ̃⟩ = 1.
The equations (2.4) and (2.5) are equivalent to the Wheeler-DeWitt equation (2.1).
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Notice that on the l.h.s. we have adiabatic contributions, while in the r.h.s. we have
non-adiabatic contributions which are associated with quantum gravitational effects.
Furthermore, we note that both the equations (2.4) and (2.5) are still not separable, so
in general are not exactly solvable, and we need further mathematical treatment for these
equations. As first approach, we will ignore the non-adiabatic effects on the r.h.s. of
(2.4) and (2.5), which means essentially performing the BO approximation. Since we are
considering a constant potential Λ in order to reproduce the slow-roll condition during
inflation, we will treat the inflaton kinetic contribution in the gravitational equation as
negligible2. So we can rewrite (2.4) as:[

2ℏ2

m2
p

∂2

∂q2
+ qΛ

]
ψ̃ = 0 (2.6)

and (2.5) as:
4qℏ2

m2
p

∂qψ̃∂qχ̃+ ψ̃(Ĥϕ − ⟨Ĥϕ⟩)χ̃ = 0. (2.7)

Let us note that the gravitational equation can be solved by the WKB approach, since
gravity is generally assumed to behave nearly classically. On then substituting the gravi-
tational wave function in the inflaton (matter) equation, one can define a time evolution,
and the matter equation then becomes a time-dependent Schrodinger equation for the
homogeneous inflaton.
Indeed, let’s consider a solution for (2.6) in the WKB form [14] :

ψ̃ = Wq exp

{
i

ℏ

∫ q

dq′
mp(q

′Λ)1/2√
2

}
= Wq exp

{
i

ℏ

∫ q

dq′πq′

}
(2.8)

with Wq ∼ (m2
pqΛ/2)

−1/4 = π
−1/2
q and where the relation with πq comes from (1.65).

Inserting now the solution (2.8) inside the matter equation (2.7) we find:

iℏ
(
8q3Λ

m2
p

)1/2

∂qχ̃+ (Ĥϕ − ⟨Ĥϕ⟩)χ̃ ≈ 0. (2.9)

We notice that, from (1.64):

q′ = ±
(
8q3Λ

m2
p

)1/2

and from the fact that q′∂q = ∂η, we can introduce the (conformal) time η in our theory.
In particular we can choose the negative solution of (1.64). In this way, (2.9) becomes:

−iℏ∂ηχ̃+ (Ĥϕ − ⟨Ĥϕ⟩)χ̃ ≈ 0. (2.10)

2We will neglect the inflaton kinetic term explicitly for the gravitational equation, while we will keep
it in the matter equation.
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Then, rephasing the wave function χ̃ by:

χ̃→ χ̃ exp

{
i

ℏ

∫ η

dη′ ⟨Ĥϕ⟩
}

we find that (2.10) is nothing else that the Schwinger-Tomonaga (or Schrodinger) equa-
tion:

−iℏ∂ηχ̃+ Ĥϕχ̃ ≈ 0. (2.11)

Let us note that a tiny O(m−2
p ) quantum gravitational correction, which we shall neglect

as we did for the terms on the r.h.s., still may appear. In order for “time” to be intro-
duced, the gravitational quantum state must behave quasi-classically, since “time” is a
classical parameter. If the gravitational wave function describes an highly non-classical
state, time cannot be properly defined.
Henceforth, we shall consider a different approach, which consists of introducing the
Wigner function for the gravitational sector in order to study how time then emerges.
Using the Wigner function instead of the gravitational wave function is relevant since by
the Wigner function one may describe a quantum system which is not in a pure state,
and thus this approach is more general.
A gravitational state being not pure (or mixed) may be the consequence of an interaction
of gravity with some hidden sector (before or during inflation) which is not observable
and can be traced over. In general, however, we expect that the two approaches (the
one with the wave function and with the Wigner function) must lead to the same result
for pure states.
Moreover, the classical limit for gravity clearly emerges withing the Wigner approach.

2.2 The Wigner function

In quantum mechanics the measurement of some quantity brings out a probabilistic
value, so classical measures are different to quantum ones.
Quantum mechanics describes a microscopic system in terms of a state vector |ψ⟩ or a
(probability) density operator ρ̂. For a given pure state |ψ⟩, indeed, one can construct
a density matrix operator ρ̂ = |ψ⟩ ⟨ψ|, and express it in the position representation
⟨x|ρ̂|x′⟩ = ⟨x|ψ⟩ ⟨ψ|x′⟩, or in the momentum representation ⟨p|ρ̂|p′⟩ = ⟨p|ψ⟩ ⟨ψ|p′⟩.
One could also define the density matrix for a quantum system in mixed state, as
ρ̂ =

∑
j cj |ψj⟩ ⟨ψj|, where cj specifies the fraction of the ensemble in the pure state

|ψj⟩, or in other words the probability p = |c2j | to find the ensemble in the state |ψj⟩
after a measurement.
However, the density matrix operator must satisfy three conditions to give a good de-
scription of the quantum system to which it refers [2]:

Tr(ρ̂) = 1, (2.12)
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ρ̂ = ρ̂†, (2.13)

⟨u|ρ̂|u⟩ ≥ 0 ∀u. (2.14)

These properties of ρ̂ reflect the properties of a probability distribution, like the addition
to 1 (from (2.12)), the real nature of probability (from (2.13)) and the existence only of
probabilities ≥ 0 (from (2.14)). Other descriptions of a quantum system should in the
same way take into account the properties (2.12), (2.13) and (2.14).
Anyway, |ψ⟩ and ρ̂ remain abstract objects and it is difficult to read off their proper-
ties. However, there exists a representation of quantum mechanics which expresses the
properties of a (quantum) system, in a way more similar to the classical description.
This representation lives in the phase space and is based on the definition of the Wigner
function. As we will see, the Wigner function is a (quasi-)probability distribution, an
object that could be used to describe a quantum system instead of using the density
matrix ρ̂, and which lives “between” the momenta and the position representation.
Suppose you want to describe the “motion” of a particle from x′ = x− s

2
to x′′ = x+ s

2
,

where s = x′′ − x′ is the “quantum jump”. The quantum jump can be described by the
matrix element ⟨x+ s

2
|ρ̂|x− s

2
⟩ in position representation, which represents the correla-

tion between the points x− s
2
and x+ s

2
given a certain state for the system, described by

the density matrix ρ̂. Operating a Fourier transform on “s”, brings us from a distribution
in configuration space to a distribution in the phase space. So we get [32]:

W (x, p) =

∫ +∞

−∞
dse−i psℏ ⟨x+ s

2
|ρ̂|x− s

2
⟩ (2.15)

that is our Wigner function3. Indeed, we went from a matrix element ⟨x′′|ρ̂|x′⟩ which
depends on two positions, to a function which depends on the Fourier variable associated
with the “jump”, p, and the center of the jump x. So we are now in the phase space. It
is also possible to go from a matrix element in the position representation to a Wigner
function in the following way [11]:

W (x, p) =

∫ +∞

−∞
dkei

qk
ℏ ⟨p+ k

2
|ρ̂|p− k

2
⟩ . (2.16)

Both x and p are c-numbers, and not operators, so our Wigner function depends on two
classical variables, and has properties analogous to any classical probability distribution
on the phase space. Indeed, it can be shown that Wigner function (as other phase space
distributions) allows to compute quantum mechanical expectation integrating over the
classical variables, similarly to classical statistical mechanics. Integrating the Wigner

3in other notations, the Wigner function has an additional factor of (2πℏ)−1 in front of it, that here
is ignored
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function over the position variable, one gets the probability distribution for momentum,
and vice versa: ∫ +∞

−∞
W (x, p)dp = ⟨x|ρ̂|x⟩ ≡ W (x);∫ +∞

−∞
W (x, p)dx = ⟨p|ρ̂|p⟩ ≡ W (p).

(2.17)

Lastly, if we have pure states, such that ρ̂ = |ψ⟩ ⟨ψ|, we can write our Wigner function
as:

W (x, p) =

∫ +∞

−∞
e−i psℏ ψ∗

(
x− s

2

)
ψ

(
x+

s

2

)
ds (2.18)

where ψ(x) = ⟨x|ψ⟩ is the position representation of |ψ⟩. So we can see that the gener-
alization of Wigner function for pure and mixed states is really straightforward.
Similarly, one can define the Wigner representation of any operator R̂, other than ρ̂,
which is given by:

R̂W (q, p) =

∫ +∞

−∞
dse−i psℏ ⟨x+ s

2
|R̂|x− s

2
⟩ . (2.19)

The average of a dynamical variable R in the state ρ is given by ⟨R⟩ = Tr(ρR). If we
want to express the trace of a product of two operators in terms of the Wigner function
we can start from the position representation:

Tr(ρR) =

∫ ∫
⟨q|ρ|q′⟩ ⟨q′|R|q⟩ dqdq′

and then we can express the matrix element in the Wigner representation, finding:

⟨R⟩ = Tr(ρR) =

∫ ∫
W (q, p)RW (q, p)dqdp. (2.20)

One can see now how the properties (2.12), (2.13) and (2.14) for the density matrix ρ̂
are reflected as properties of the Wigner function.
The property (2.12) becomes the following property for the Wigner function:∫ ∫

W (q, p)dqdp =

∫
⟨q|ρ̂|q⟩ dq = 1 (2.21)

so it becomes a condition of normalization in the phase space for the Wigner distribution.
The second property (2.13), corresponds to the fact that W (q, p) is a real function. The
third property (2.14), however, does not imply the non-negativity of the Wigner function.
Indeed, as we said before, the Wigner function is a quasi-probability distribution, and
it can take also negative values. It is convenient to replace the property (2.14) with a
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generalization, which states that for any pair of state operators ρ, ρ′ that satisfy the
properties (2.12), (2.13) and (2.14), the trace of their product obeys the inequality

0 ≤ Tr(ρρ′) ≤ 1.

So, in the case of the Wigner function, we can generalise the result (2.20) where, instead
of a generic operator R, we can consider a second Wigner distributionW ′(q, p) associated
to the density matrix ρ′:

0 ≤ Tr(ρρ′) =

∫ ∫
W (q, p)W ′(q, p)dqdp ≤ 1 (2.22)

and in particular, for ρ′ = ρ, we have∫ ∫
|W (q, p)|2dqdp ≤ 1

that can be interpreted as the requirement for the Wigner function to be not too sharply
peaked4.
We have shown that it is possible to describe a quantum system via the Wigner prob-
ability distribution W (q, p), and that this new description is completely equivalent to
that based on the density matrix ρ, but with the advantage that the Wigner function
is defined on the phase space, and we can potentially see how the quantum correlation
between the variables (p, q) can affect the behaviour of our physical system.

2.3 Wigner function for gravitational equation

Starting from the gravitational wave equation (2.6), and limiting ourself to the homoge-
neous part of the gravitational wave function, we can write the Wigner function for ψ̃
[24] :

W (q, pq) ≡
∫ +∞

−∞
dse

i
ℏpsψ̃∗

−ψ̃+ (2.23)

where ψ̃± = ψ̃(q±), q± = q ± s/2 and p is related to the (classical) conjugate momenta
of the spatial parameter q.
Let us note that the Wigner function allows to calculate quantum expectation values
using a formalism analogous to that of (classical) statistical mechanics, and it is very
useful in search for the classical limit.
The gravitational wave function must have positive argument and therefore for a fixed
s only varies in the interval [−2q; 2q]. Since q = a2 > 0, our integration range gets

4This can be better visualized if we used the definition with (2πℏ)−1 in front of the Wigner function.
In this case, indeed, the last condition becomes

∫ ∫
|W (q, p)|2dqdp ≤ (2πℏ)−1
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restricted to [0; 2q]. However, for the case of interest, we will assume q >> 1, and the
wave function ψ̃ has negligible support for q < 0, and thus extending the interval [0; 2q]
to ]∞,+∞[ is a reasonable approximation.
A straight method of calculating (2.23) consists in solving the equation for the gravita-
tional wave function and then evaluating the integral (2.23) to obtain the corresponding
Wigner function. This is what is performed in [18], with the gravitational wave func-
tion obtained with the WKB method. What we will do instead is to obtain the exact
equations satisfied by (2.23), then use some approximation scheme to obtain the Wigner
function of the system directly from their resolution, and lastly compare the result with
the one from [18].
By substituting q → q+ into (2.6), multiplying by exp( iℏps)ψ̃

∗
− and then integrating over

s one finds: ∫ +∞

−∞
dse

i
ℏpsψ̃∗

−

[
2ℏ2

m2
p

(∂+)
2 + ⟨Ĥϕ

q
⟩
+

]
ψ̃+ = 0 (2.24)

where ⟨Ô⟩± ≡ ⟨χ̃(q±, ϕ)|Ô|χ̃(q±, ϕ)⟩ and ∂± ≡ ∂q± .

We can do the same for ψ̃∗, substituting q → q− and multiplying by exp( iℏps)ψ̃+ to
obtain: ∫ +∞

−∞
dse

i
ℏpsψ̃+

[
2ℏ2

m2
p

(∂−)
2 + ⟨Ĥϕ

q
⟩
−

]
ψ̃∗
− = 0. (2.25)

Then, on summing and subtracting (2.24) with (2.25), we obtain:∫ +∞

−∞
dse

i
ℏps

{
2ℏ2

m2
p

(∂2+ ± ∂2−) +

(
⟨Ĥϕ

q
⟩
+

± ⟨Ĥϕ

q
⟩
−

)}
ψ̃∗
−ψ̃+ = 0 (2.26)

where we used the fact that q+ and q− are independent variables.
Let us note that, using the chain rule, we can write the previous integrand as a function
of a and s, and:

∂2+ + ∂2− =
∂2q + 4∂2s

2
and ∂2+ − ∂2− = 2∂q∂s.

Integrating by parts and remembering that the gravitational wave functions are zero at
the boundaries, we can find the following relations:∫ +∞

−∞
dse

i
ℏps∂(n)s ψ̃∗

−ψ̃+ =

(
− i

ℏ
p

)n

W (a, p) (2.27)

and ∫ +∞

−∞
dse

i
ℏpssnψ̃∗

−ψ̃+ = (−iℏ)n∂(n)p W (a, p). (2.28)

Therefor, on now Taylor expanding the expectation values of the inflaton Hamiltonian
in (2.26) for s → 0 (see [32] and Appendix A in the present work) and using (2.27), we
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obtain the following two equations (for + and − respectively):

ℏ2

m2
p

∂2qW − 4p2

m2
p

W +
∞∑
n=0

[
((−1)n + 1)

(iℏ)n

2nn!

dn ⟨Hϕ

q
⟩

dqn
∂(n)p W

]
= 0 (2.29)

and

−4iℏp
m2

p

∂qW +
∞∑
n=0

[
((−1)n − 1)

(iℏ)n

2nn!

dn ⟨Hϕ

q
⟩

dqn
∂(n)p W

]
= 0. (2.30)

Notice that the last equation corresponds to a quantum Liouville equation. Its classical
counterpart asserts that the phase-space distribution function is constant along the tra-
jectories of the system. Its quantum formulation states that the expectation values of a
quantum quantity evolve following:

dρ̂

dt
= 0 =

∂ρ̂

∂t
+
i

ℏ
[Ĥ, ρ̂] → d ⟨Â⟩

dt
= ⟨∂Â

∂t
⟩+ i

ℏ
⟨[Ĥ, Â]⟩ (2.31)

for a generic operator Â, where ⟨Â⟩ = Tr(Âρ̂).
If now we substitute

⟨Hϕ

q
⟩ = qΛ

we obtain specific forms for (2.29) and (2.30), respectively:

ℏ2

m2
p

∂2qW − 4p2

m2
p

W + 2qΛW = 0 (2.32)

and

−4iℏp
m2

p

∂qW − iℏΛ(∂pW ) = 0. (2.33)

The Wigner function must satisfy the above equations simultaneously. From (2.33) we
can find the relation

∂qW = −
m2

p

2
Λ(∂p2W ) (2.34)

which has the simple solution

W = W (x) ≡ W

(
q − 2p2

m2
pΛ

)
. (2.35)

Eq. (2.32) then simply becomes

ℏ2∂2qW − 4p2W + 2m2
pΛqW = ℏ2∂2xW − 4p2W − λqW = 0 (2.36)
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where we have defined λ ≡ 2m2
pΛ an x becomes x = q − 4p2/λ.

This last equation can be exactly solved by Fourier transforming:

W (q, p) =

∫ +∞

−∞
W̃ (y, p)eiyqdy (2.37)

and one can then find the following first order differential equation for W̃ :

−(ℏ2y2 + 4p2)W̃ + iλ
dW̃

dy
= 0 (2.38)

which can be solved to obtain:

W̃ = W̃0 exp

{
−i
[
ℏ2

3λ
y3 +

4p2

λ
y

]}
. (2.39)

We can now transform back this last expression (2.39), by using the relation5:∫ +∞

−∞
ei(

b
3
t3+ct2+dt) =

2π

b1/3
exp

{
i
c

b

(
2c2

3b
− d

)}
Ai

(
d− c2

b

b1/3

)
(2.40)

to obtain the Wigner function. By comparing (2.40), (2.39) and (2.37), and simply
replacing:

b = −ℏ2

λ
; (2.41)

c = 0; (2.42)

d = (q − 4p2

λ
) = x (2.43)

inside (2.40) we obtain the expression for the Wigner function:

W (q, p) = −2πλ1/3

ℏ2/3
Ai

[
−xλ

1/3

ℏ2/3

]
= −2πλ1/3

ℏ2/3
Ai

[
4p2 − λq

(λℏ)2/3

]
. (2.44)

Let us note that the argument of the Airy is in agreement with (2.35). One finally needs
to normalize the Wigner function.
Since the Airy function is normalized as [35]:∫ +∞

−∞
Ai(x)dx = 1,

5For the sake of simplicity, we fixed the initial condition W̃0 = 1
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we obtain the following correct normalization of our solution (2.44)

W (q, p) =
1

(λℏ)2/3
Ai

[
4p2 − λq

(λℏ)2/3

]
(2.45)

where we observe that the argument of the Airy function is equal to zero for:

p = ±
(
qλ

4

)1/2

= ±
(
qm2

pΛ

2

)1/2

(2.46)

that is when p is equal to its classical value πϕ (found in (1.65) from the Hamiltonian
analysis and the Friedman equation).
As we can see comparing the Wigner function (2.45) with the one reported in [18], the
same result (2.45) can be obtained by solving the Wheeler-DeWitt equation for the grav-
itational wave function ψ(q), and choosing the Hartle-Hawking (HH) initial condition,
corresponding to a Universe in a state which is a superposition of an expanding and a
contracting phase.
Let us note that the gravitational equation for a constant inflaton potential takes the
form of an Airy equation and its solutions can he written exactly as superposition of Ai
and Bi Airy’s functions.
On imposing initial condition of Vilenkin type [18] one obtains a Universe in an expand-
ing state if the wave function ψ̃(q) contains Bi. However, the Wigner integral cannot
be performed exactly, unless, as we shall see in what follows, some approximation is
considered.

2.4 The quantum theory of measurement

From observations and different experimental test of General Relativity, it has been
probed that our Universe behaves classically. In the context of classical mechanics, a
system may be described by a definite state and its evolution is described in a deter-
ministic manner. However, in the last century we have discovered that the macroscopic
world we experience as “classic” has a quantum mechanical origin in its microscopic com-
ponents. In principle, every phenomenon we observe at all scales, including the entire
Universe, should be described by quantum mechanics.
In quantum mechanics, states can be defined, but due to the Heisenberg uncertainty
principle, it is generally not possible to measure simultaneously the position and mo-
mentum of a system. Moreover, quantum mechanics is deterministic, but a probabilistic
interpretation is intrinsic in a quantum model. Given the state of some system at a par-
ticular time, such a state describes the outcomes of its measurement in a probabilistic
way.
It is obviously fundamental to reconcile, in a certain limit, the predictions of quantum
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mechanics with our classical experience. This issue is studied in the context of quantum
theory of measurement. The so-called quantum to classical transition, and how this could
occur, has been discussed by numerous authors [19] [15] [37] [5].
In the context of quantum cosmology, one attempts to apply quantum mechanics to the
early Universe. This involves the quantization of the gravitational field, and one should
predict the conditions under which the gravitational field behaves classically.
There are at least two requirements that must be satisfied for a system to be regarded as
classical. The first requirement is that interference effects are negligible. This involves
the notion of decoherence, that formally consist of cancelling the non-diagonal terms of
the density matrix, which describe interference. Note that we can still think of a system
where the knowledge of its observable features can not be determinate with absolute
precision, as it happens in classical statistical mechanics.
The second requirement is that evolution should, to a very good approximation, be de-
scribed by classical laws. This means that observables probability distributions should
be strongly peaked about their classical configuration. We shall refer to this second re-
quirement as correlation.
So we can see that the recovery of some “classical result”, or of correlation between
position and momenta, is not sufficient to consider our system as classical, since also
decoherence has a fundamental role to this scope.
In the next section, we will discuss the notion of decoherence following primarily the
approach of Zurek [37]. The fundamental concepts underlying his study are summarized
here. When a system interacts with a measuring apparatus, the states of both entities
become correlated (entangled). However, the density matrix of the pure state for the
apparatus-system ensemble contains non-zero off-diagonal elements, representing inter-
ference among various potential measurement outcomes. Only when these off-diagonal
elements become negligible, we can conclude that the measuring apparatus has defini-
tively recorded a measurement.
However, this means that the pure-state density matrix must evolve into a mixed-state
diagonal density matrix, which cannot be achieved by unitary evolution. The resolution
of this difficulty comes from the realization that the apparatus and system must nec-
essarily be in interaction with the rest of the Universe, commonly referred to as “the
environment”. If one includes the state of the environment in the initial pure-state den-
sity matrix, then one finds that the reduced density matrix, obtained by tracing out the
environment states, can evolve non-unitarily, taking an initial pure state to a final mixed
state.
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2.4.1 Decoherence with the environment-induced superselction
by Zurek

Consider a physical system S described by a set of state vectors |Sn⟩ that we are interested
in measuring and put it in interaction with a measuring apparatus A, whose state are
described by the state vectors |An⟩. Let the initial state of the system be a superposition
of states with coefficients cn, and the initial state of the apparatus be |A0⟩. Then the
initial state of the interacting system SA is:

|Ψi⟩ =
∑
n

cn |Sn⟩ |A0⟩ . (2.47)

To operate the measurement, the apparatus and the physical system must interact, and
this leads to an evolution of the interacting system to a final state:

|Ψf⟩ =
∑
n

cn |Sn⟩ |An⟩ . (2.48)

One can interpret this last result as the fact that the apparatus state |An⟩ has become
correlated with the system state |Sn⟩, that the apparatus has “measured” the system
and finds it to be in state |Sn⟩ with probability |c2n|.
However, the general formalism of quantum mechanics allows for an arbitrary change
of basis. In particular, one may introduce a new orthonormal basis for the apparatus,
defined by:

|An⟩ =
∑
m

|Ãm⟩ ⟨Ãm|An⟩ (2.49)

such that the result (2.48) could be written also as:

|Ψf⟩ =
∑
n

cn |Sn⟩
∑
m

|Ãm⟩ ⟨Ãm|An⟩ ≡
∑
m

c̃m |S̃m⟩ |Ãm⟩ (2.50)

where |S̃m⟩ are the relative states, and are defined by the upper relation.
In this new basis, it appears that the apparatus states |Ãm⟩ have become correlated with
the system states |S̃m⟩, and where the measuring apparatus finds itself in one of the
states |Ãm⟩ it has measured the system to be in the state |S̃m⟩. So what has actually
been measured?
Measuring apparatuses are macroscopic objects which are not observed in superpositions.
But what determines the choice of a particular basis?
The situation becomes even more problematic if one considers the pure-state density
matrix corresponding to the final state (2.48):

ρpure = |Ψf⟩ ⟨Ψf | =
∑
n,m

cnc
∗
m |Sn⟩ |An⟩ ⟨Sm| ⟨Am| (2.51)
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that involves nonzero off-diagonal terms.
We are searching for a solution that will set a “biunivocal correspondence” between the
system and the apparatus states, where the combined system’s final state is a definite
state in which each system state |Sn⟩ is correlated with the apparatus state |An⟩, with
probability |c2n| of finding the system in state |Sn⟩ . Such a situation can only be described
by a diagonal mixed-state density matrix of the form:

ρmixed =
∑
n

|c2n| |Sn⟩ |An⟩ ⟨Sn| ⟨An| . (2.52)

Let’s notice that (2.52) and (2.51) differ by the presence of off-diagonal terms in (2.51),
which represent interference between the different outcomes of the measurement. It is
only when these interference terms can be neglected that the combined system may be
said to be decohered.
There is no way that under unitary Schrodinger evolution the pure-state density matrix
(2.51) will evolve into the mixed-state density matrix (2.52). It is for this reason that
we need an “interpretation” for quantum mechanics measurement, and one is forced to
introduce the “second stage” of the measurement process: namely, the “collapse” of the
wave function. This is the process thanks which one is able to projects the state vector
(2.48), a superposition of states, down onto just one of the states of the superposition.
We are capable to (almost) diagonalize our density matrix. To resolve this issue, we can
apply the so-called “environment-induced superselection” approach pioneered by Zurek
[37] [19].
The key point introduced by Zurek is that no macroscopic system can realistically be
considered as closed and isolated from the rest of the Universe (with the possible excep-
tion of the entire Universe itself, and we will discuss this later), that we can consider as
our “environment”.
Then it can be argued that it is the inevitable interaction with the external environment
which leads to a continuous “measuring” or “monitoring” of a macroscopic system and
it is this that causes the wave function to “collapse”. More precisely, the environment
causes the off-diagonal terms in ρpure to become negligible respect the diagonal element,
and that it is well-approximated by ρmixed. This is what we mean for decoherence.
So let’s consider again the system which results from the interaction of the measuring
appartus A and the physical system S, but now we consider also the external environ-
ment E described by the state-vectors |En⟩. Let the initial state of this total system
SAE be the state |Φi⟩:

|Φi⟩ =
∑
n

cn |Sn⟩ |A0⟩ |E0⟩ (2.53)

and similarly to what we have previously discussed, let the total system evolve into the
final state:

|Φf⟩ =
∑
n

cn |Sn⟩ |An⟩ |En⟩ . (2.54)
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In this model, not only have the system and apparatus become correlated with each
other, but they have also become correlated with the environment.
One is not interested, however, in the state of the environment, and it should be traced
out in the calculation of any quantities of interest. The object of relevance, therefore, is
the reduced density matrix ρ̃, obtained by tracing over the environment states:

ρ̃ = TrE |Φf⟩ ⟨Φf | =
∑
n,m

cnc
∗
m ⟨En|Em⟩ |Sn⟩ |An⟩ ⟨Sm| ⟨Am| . (2.55)

Let us note that the density matrix |Φf⟩ ⟨Φf | still evolves unitarily, but the reduced
density matrix ρ̃ does not, so now it is possible to make it evolve from an initial pure
state into a final mixed one. However, the environment induced decoherence does not
explain why the density matrix of the system becomes diagonal, since the density matrix
is always diagonal in some basis, but rather points out some preferred basis, and shows
that the density matrix inexorably becomes diagonal in that basis. So what is such a
preferred-basis?
To eliminate the non-diagonal matrix element in ρ̃, the product ⟨En|Em⟩ must be the
smallest possible for n ̸= m. For Zurek, this depends significantly on the specific nature
of the interaction between the system and its surrounding environment. Essentially, one
can define a “pointer observable” as any observable that commutes with the Hamilto-
nian describing the system-environment interaction. A preferred set of states, known as
“pointer basis,” comprises the eigenstates of this pointer observable. If the system is in
one of these eigenstates, its state remains undisturbed by interactions with the environ-
ment. Conversely, if the system is not in an eigenstate of the pointer observable, it will
evolve in some new state due to interactions with the environment. Let us note that su-
perpositions of states within the pointer basis are not observable because, as previously
discussed, interference between such states is eliminated by the environment. This mech-
anism is called “environment-induced superselection”, coined by Zurek. Consequently,
we identify these as the “definite states” introduced earlier, representing relatively stable
states free from interference.
It is worth noting that the environment plays a dual role in the measurement pro-
cess: it induces decoherence, and determines the preferred basis. In a typical model
of the measurement process, the environment interacts with the system through a spe-
cific quantity, such as position (that for us is represented by q, or a). As a result,
the system-environment interaction Hamiltonian commutes with position, making the
pointer basis equivalent to the position basis. Consequently, the density matrix diago-
nalizes in the position basis. Indeed, this will generally be true in many situations of
interest, not just measurement situations. Fields generally couple to each other through
their configuration-space coordinates, and not their momenta.
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2.4.2 Decoherence in quantum cosmology

Now we return to the topic in which we are more interested, trying to apply a mechanism
of decoherence in the context of quantum cosmology. We will focus on the previously
introduced Zurek’s method, which anyway requires an external environment to decohere
the quantum states, and since in quantum cosmology we are interested in the study
the Universe as a unique quantum object, it is problematic to identify some external-
environment that could help us in the decoherence. What we can do, is to regard some
of the variables describing the Universe as the system, and the rest as environment.
The environment should be some kind of large reservoir into which information about
correlations can be dissipated. It should, therefore, have a large number of modes. Since
minisuperspace usually involves the homogeneous modes of the fields, the inhomogeneous
modes, which have so far been ignored, are a natural candidate for the environment. One
can use the inhomogeneous modes of either gravitational or matter fields. So we can trace
over this unobserved modes to get a decoherence term to our density matrix, and recover
a classical limit of our model. In the following, we will apply an effective procedure to
our Wigner function to display how this could work.

A side look on the coarse-grained Wigner function

What we will do in the next chapter is to try to find the form of the matter equation
coming from the Born-Oppenheimer decomposition of the WdW equation, and using
the Wigner function (2.45) associated with the gravitational equation (2.6) inside (2.5),
(some approximations are used).
It is important to remind what is the physical meaning of the Wigner function and how
we should interpret its form (2.45). The Wigner function is a quasi-probability distri-
bution [20] and we should interpret its peaks as the possible outcomes of measurement
of the physical variables, beside the difficulties in the interpretation of negative-valued
peaks. So, roughly speaking, the position of the peaks in the (p, q) phase-space are asso-
ciated with the correlation between the variables, and so we need them to be close to the
classical trajectory to recover the classical limit for quantum scale factor. In this context,
the dependence of the Wigner function on the Airy function displayed in (2.45), which
is a highly-oscillating function, is relevant. We can plot a 2-D graph of it in Figure 2.1.
The highly-oscillating behaviour is also originated by the fact that we are considering a
solution associated with the Hartle-Hawking (HH) initial condition in (2.45), so a Uni-
verse wavefunction which is a superposition of an expanding Universe and a contracting
Universe. In this scenario the two solutions produce an “interference” that results in the
highly-oscillating behaviour . The fact that the Wigner solution (2.45) is symmetric in
p is a consequence of the superposition.
The highly oscillating behaviour of the Wigner function can be alleviated by the ef-

fect of the previously cited quantum decoherence, produced by the interaction with the
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Figure 2.1: 2D graph of the Wigner function (2.45) with λ, ℏ = 1.

environment. A way to apply this procedure is to “trace over unobservables” (TOU)
[17] degrees of freedom, that in our context may be, for example, the inhomogeneous
degrees of freedom of the matter fields present in the early Universe. A decoherence
factor that multiplies the density matrix ρ, suppressing the off-diagonal terms, may be
used to mimic the effect of tracing over unobservable degrees of freedom.
As we already mentioned, an additional effect of this is to effectively operate a coarse-
graining over the oscillations of the Wigner function. The average over some “grains” of
the domain with another distribution, eventually letting opposite sign oscillations delete
each other, pave the way to the classical limit. In this way indeed, we could automat-
ically delete the peaks displaced from the classical trajectory, remaining with just one
peak on the classical solution. In principle, we should look only at the coarse-grained
Wigner function to describe the quantum behaviour of the gravitational sector (scale
factor) in the presence of unobservables degrees of freedom.
Decoherence is necessary to reproduce the classical limit, but at the same time we re-
quire our Wigner function to have sharp peaks. The presence of sharp peaks around
the classical trajectory indicates a strong correlation between the phase space variables.
The amount of coarse-graining will determine different amounts of decoherence and cor-
relation. In general a “gentle” coarse-graining is a good compromise between the two
condition we just exposed. This is possible by a wise choice in the values of the param-
eters that will define our coarse-graining procedure.
As shown in [18], the process of TOU leads to the multiplication of the density matrix
ρ0(p, q) by a decoherence factor e−α(q̄)(q−q′)2 ,where q̄ = q + q′, which leads to the new
density matrix ρ′(p, q):

ρ′(p, q) = ρ0(p, q)e
−α(q)(q−q′)2 . (2.56)
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The decohered density matrix ρ′(p, q) can be Wigner-transformed to give a new distribu-
tion W ′(q, p) which replaces the original Wigner W0(q, p). The effect of the decoherence
factor is given by:

W ′(q, p) =
1√
α(q)π

∫
dkW0(q, k)e

− (p−k)2

ℏ2α(q) . (2.57)

This shows that the effect of the TOU on the Wigner function is equivalent to averaging
the momenta over a scale

√
α. The distribution in (2.57) can be identified with a Husimi

distribution6 on the variable p . The Husimi distribution is indeed equal to a Gaussian
smoothing of the Wigner function [2] [10] which, differently from the Wigner distribution
itself, is positive definite by construction. Let us note that any strongly pronounced
feature of the Husimi distribution will also show up in the Wigner function, although
the latter may also contain unphysical structures (peaks).
The necessity to have sharp peaks and at the same time decoherence will constraint the
choice of the value for α. Classical correlation require to satisfy the relation (2.46):

|p| ∼
(
qλ

4

)1/2

(2.58)

and, in order to the new distribution W ′(q, p) to have sharp peaks, we will require that
p >

√
α, so:

√
α < |p| ∼

(
qλ

4

)1/2

. (2.59)

On the other hand, the coarse-graining integral requires at least an averaging over few
oscillations of the W0(q, p) distribution, and this implies that:

√
α >

1

|p|
∼
(
qλ

4

)−1/2

. (2.60)

In Figure 2.2 we plotted the distributionW ′(p, q) for different values of α. We can notice
the presence of two peaks in correspondence of the classical trajectory p = ±pcl, and the
presence of a large negative peak at p = 0. Increasing the value of α, the peaks become
broader and lower. We can observe that the coarse-graining procedure gives peaks on
the classical value of p, reproducing (in a certain limit) the classical behaviour of the
system.
The form of α is the consequence of the choice of some form of “cutoff”, i.e. how the

environment to trace over is defined. As an example, Halliwell [19] introduced a cutoff
which depends on the value of the scalar factor, taking in consideration that modes

6The Husimi distribution must be on both the variables (q, p), so this is not a proper form of the
Husimi distribution, but it is a distribution with the form of the Husimi in the variable p
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Figure 2.2: Numerical evaluation of the distributions in the variable p, with fixed λ, ℏ = 1,
q = 36 and different values of α: A. Wigner function in p without coarse grain; B. Wigner
function coarse-grained with α = 1/6; C. Wigner function coarse-grained with α = 1; D.
Wigner function coarse-grained with α = 4
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outside the horizon are not observable and summing over them in TOU. He estimated:

α(q) =
H3

0

12q1/2
(2.61)

with H0 being the Hubble constant. Many other choices can be made on the cutoff and
many other form for α could be found in the literature, as the ones from Morikawa [29]
or Kiefer [26] et. others. In particular, the factors α(q) with a dependence on q−1/2,
like the Halliwell and the Morikawa ones, respect the conditions (2.59) and (2.60) for a
“correct” scale of coarse-graining, while other behaviours for α(q), like the one presented
by Kiefer, does not respect those conditions.
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Chapter 3

The matter equation for the
Hartle-Hawking Wigner

Now that we have found the solution for the gravitational wave function, we can start
to approach the matter equation (2.5). It is in this context that we should be able to
reach a matter PDE that will consent us to introduce the time in our theory, and we
will show that indeed the correct “classical” limit could be found as the matter obeys
to a Schrodinger-like (or Schwinger-Tomonaga) equation, apart from tiny quantum-
gravitational corrections.
Starting from (2.5), once again we replace q → q+, multiply by ψ̃∗

− and integrate over
s. In contrast with the case of the gravitational equation, we should also integrate over
p and get rid of the p dependence, and since we are interested in studying the solution
that describes an expanding Universe, the integration range I+ can be restricted to the
positive values of p:∫

I+
dp

∫ +∞

−∞
dse

i
ℏpsψ̃∗

−

[
4qℏ2

m2
p

(∂+ψ̃+)(∂+χ̃+) + ψ̃+(Hϕ,+ − ⟨Hϕ⟩+)χ̃+

]
(3.1)

where we have chosen the expanding (I+) branch.
Taylor expanding the matter wave function in the limit s→ 0, we find for its derivative:

∂+χ̃+ =

(
1

2
∂q + ∂s

)(
χ̃+ ∂qχ̃

s

2
+ ∂2q χ̃

s2

8
+ . . .

)
= ∂qχ̃+ ∂2q χ̃

s

2
+ . . . , (3.2)

while the derivative of the product of the gravitational wave functions is:

∂+

(
ψ̃∗
−ψ̃+

)
=

1

2
∂q

(
ψ̃∗
−ψ̃+

)
+ ∂s

(
ψ̃∗
−ψ̃+

)
. (3.3)

Now using the relations (2.27), (2.28) we can find:∫
dse

i
ℏps (∂qχ̃) ∂s

(
ψ̃∗
−ψ̃+

)
= −i p

ℏ
(∂qχ̃)W ∼ ℏ−1, (3.4)
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∫
dse

i
ℏps (∂qχ̃)

1

2
∂q

(
ψ̃∗
−ψ̃+

)
=

1

2
(∂qχ̃) (∂qW ) ∼ ℏ0, (3.5)∫

dse
i
ℏps
(
∂2q χ̃
) 1
2
s∂s

(
ψ̃∗
−ψ̃+

)
= −1

2

(
∂2q χ̃
)
(W + p∂pW ) ∼ ℏ0, (3.6)∫

dse
i
ℏps
(
∂2q χ̃
) 1
4
s∂q

(
ψ̃∗
−ψ̃+

)
=

1

4

(
∂2q χ̃
)
(−iℏ) d

2W

dpdq
∼ ℏ1, (3.7)

higher powers of s in (3.2) contribute higher powers of ℏ to the first contribution in (3.1)
(because of (2.28)) and can be neglected for the moment.
Let us note that, for ℏ small and close to the classical limit, the expression (3.2) seems
justified. Let us however note the order of magnitude of the terms (3.4), (3.5), (3.6), (3.7)
should be checked a posteriori. The introduction of time is necessarily associated with
the classical limit for gravity. Therefore, while quantum corrections could be present,
the classical behaviour must dominate over quantum fluctuations. Indeed in the very
early Universe, the quantum fluctuations of the metric are large and time cannot be
consistently defined.
The remaining term proportional to (Hϕ,+−⟨Hϕ⟩+) in (3.1) can be Taylor expanded for
s→ 0 in a similar way of (3.2), and we obtain:∫ +∞

−∞
dse

i
ℏps
(
ψ̃∗
−ψ̃+

) (
Hϕ,+ − ⟨Hϕ⟩+

)
χ̃+

= [(Hϕ − ⟨Hϕ⟩) χ̃]W (q, p)− 1

2
∂q [(Hϕ − ⟨Hϕ⟩)χ̃] iℏ∂pW (q, p) + . . .

(3.8)

Now we will see two different approach to the problem, which consist in the “classical”
and “semiclassical” approach to the matter equation.

3.1 The classical approach for the matter equation

Following the procedure exposed in [20], we can work with the relation:

lim
α→0

1

|α|
Ai

(
x

|α|

)
= δ(x) +

α3

3
δ(3)(x) + . . . (3.9)

in our case α = (λℏ)2/3, which goes to zero in the classical limit with ℏ → 0. The
classical limit is realized at the Leading Order (LO) of (3.9), which can be written as:

lim
(λℏ)2/3→0

1

(λℏ)2/3
Ai

(
4p2 − λq

(λℏ)2/3

)
= δ(4p2 − λq) +O(h2). (3.10)

We can notice that we obtain a Dirac delta with support on the classical solution of the
Friedman equation (1.13), which correspond to the classical value of the momenta of
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the inflaton field (2.46) under the condition V (ϕ) >> ϕ
′2. Indeed, we defined λ in the

gravitational equation, where we considered the kinetical term of ϕ small enough to be

ignored, so in this way λ =
2⟨Hϕ⟩
q2

m2
p, and:

p = ±
√
λq

4
= ±

√
m2

p ⟨Hϕ⟩
2q

which is exactly our classical value of the momenta pcl, and we can also rewrite our Dirac
delta as δ(4p2 − 2m2

p ⟨Hϕ⟩).
Now, given the Dirac’s delta properties, we can express the classical limit of the Wigner
function as

Wcl = δ

(
4p2 −

2m2
p ⟨Hϕ⟩
q

)
=

δ

(
p−

√
m2

p⟨Hϕ⟩
2q

)
+ δ

(
p+

√
m2

p⟨Hϕ⟩
2q

)
√

2m2
p⟨Hϕ⟩
q

(3.11)

and inserting this last expression inside the relation (3.4), we obtain:

−
∫
I+
dp
ip

ℏ
(∂qχ̃)W = − i

2ℏ
∂qχ̃. (3.12)

For the considerations made at the beginning of this subsection, we can now rewrite the
relation (2.34) in the following way:

∂qWcl = − λ

8p
(∂pWcl) = −

m2
p

4qp
⟨Hϕ⟩ (∂pWcl)

and use it to find the contribution from (3.5):∫
I+
dp

1

2
(∂qχ̃)(∂qWcl) = −

∫
I+
dp

1

2
(∂qχ̃)

(
m2

p

4qp
⟨Hϕ⟩ ∂pWcl

)
= −(∂qχ̃) ⟨Hϕ⟩

m2
p

8qp
Wcl|I+ −

∫
I+
dp

1

2
(∂qχ̃)

(
m2

p

4qp2
⟨Hϕ⟩Wcl

)
= −(∂qχ̃) ⟨Hϕ⟩

m2
p

16qp3cl
= − ∂qχ̃

8qpcl

(3.13)

where the boundary terms vanish and we have taken the Dirac delta “positive” solution

pcl =

√
m2

p⟨Hϕ⟩
2

.

Moving on, we have for Eq. (3.6)

−
∫
I+
dp

1

2
(∂2q χ̃)(Wcl + p∂pWcl) = − 1

4pcl
∂2q χ̃

(
1 + pWcl|I+ − 1

)
= 0 (3.14)
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where, once again, boundary terms vanish.
Lastly, we find that the expression (3.7) is next to next leading order for ℏ → 0 and so
can be neglected compared to other dominant contributions. The remaining contribution
in (3.8) can be written as:∫

I+
dp [(Hϕ − ⟨Hϕ⟩) χ̃]W (q, p)− 1

2
∂q [(Hϕ − ⟨Hϕ⟩) χ̃] iℏ∂pW (q, p)

=
(Hϕ − ⟨Hϕ⟩) χ̃

2pcl
− 1

2
∂q [(Hϕ − ⟨Hϕ⟩)χ̃] iℏWcl|I+

(3.15)

where the last contribution is a boundary term which vanishes.
Summing all the contributions up to order ℏ2, and multiplying by 2pcl, we finally obtain:

− iℏ
m2

p

4qpcl∂qχ̃− ℏ2

m2
p

∂qχ̃+ (Hϕ − ⟨Hϕ⟩)χ̃ = 0 (3.16)

and we observe that the time parameter η is now present. Indeed, the Wigner function
is peaked on the classical trajectory for the scale factor and the quantities which depend
on q must be calculated on such a trajectory. Morover, we can define the time parameter
derivative by the chain rule:

∂

∂t
= q′

∂

∂q
(3.17)

where the expression of q′ is the classical “velocity” corresponding to (1.58). To identify
the associated time variable τ with the conformal time η we must fix the gauge N = q,
such that (1.58) becomes:

q′ = −4pq

m2
p

(3.18)

and we have:

−iℏλ
m2

p

∂qχ̃ ≡ i
ℏλ
4pq

∂ηχ̃. (3.19)

What we find is that (3.16), with the definition of conformal time, ignoring contributions
beyond ℏ order, and rescaling the matter wave function χ̃ [25]:

χ̃→ χ = χ̃e
i
ℏ
∫ η⟨Ĥϕ⟩dη (3.20)

is nothing else that the Schrodinger (or Schwinger-Tomonaga) equation for the homoge-
neous inflaton:

iℏ
∂χ

dη
≈ Ĥϕχ (3.21)

which describes the quantum behaviour of the “fast/light” matter wave function. The
contributions at order ℏ2 are quantum gravitational corrections to the matter wave equa-
tion. Such corrections include the non-adiabatic effects and the quantum fluctuations
arising from the introduction of time.
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3.2 The “semiclassical” approach to the matter equa-

tion

It is now worth investigating what happens to the matter equation if the limit ℏ → 0
for the Wigner function is not taken. In such a case the Wigner function is essentially
different from a Dirac delta and is “spread” around the classical trajectory . One may
there expects different results and larger quantum gravitational effects.
If we insert the exact solution of gravitational equation for Wigner function (2.45) inside
the relation (3.4), (3.5), (3.6), (3.7) one finds, for Eq.(3.4):

−
∫
I+
dpi

p

ℏ
(∂qχ̃)

1

(λℏ)2/3
Ai(t) = − i

8ℏ
(∂qχ̃)

∫ +∞

− qλ1/3

ℏ2/3

Ai(t)dt

= i
π

8ℏ
(∂qχ̃)

[
Ai′
(
−qλ

1/3

ℏ2/3

)
Gi

(
−qλ

1/3

ℏ2/3

)
− Ai

(
−qλ

1/3

ℏ2/3

)
Gi′
(
−qλ

1/3

ℏ2/3

)]
.

(3.22)

The integral above and those which follow below are found following the procedure shown

in [35]. We indicate with t the argument of the Airy function Ai(t) = Ai
(

4p2−λq

(λℏ)2/3

)
, such

that Ai′(t) = dAi(t)
dt

. In (3.22), Gi(t) is the inhomogeneous Airy function (or Scorer
function), defined as:

Gi(t) =
1

π

∫ +∞

0

sin

(
k3

3
+ kt

)
dk.

Using the result from (2.34), we can solve (3.5) as:∫
I+
dp

1

2
(∂qχ̃)(∂qW ) = −

∫
I+
dp

1

2
(∂qχ̃)

(
λ

8p
∂pW

)
= −1

2
(∂qχ̃)

∫ +∞

− qλ1/3

ℏ2/3

dt

(
λ

4 [(λℏ)2/3t+ λq]
1/2

)(
1

(λℏ)2/3
Ai′(t)

)

= − 1

8ℏ
(∂qχ̃)

∫ +∞

0

dz
1√
z

dAi
(
z − λq

(λℏ)2/3

)
dz

= − π

4ℏ
(∂qχ̃)Ai

[
− qλ1/3

(2ℏ)2/3

]
Ai′
[
− qλ1/3

(2ℏ)2/3

]
(3.23)

where we made the change of variable z = t+ λq
(λℏ)2/3 .

Moving on, we have for Eq. (3.6)

−
∫
I+
dp

1

2
(∂2q χ̃)(W + p∂pW ) = −

∫
I+
dp

1

2
(∂2q χ̃)(W −W )− 1

2
[pW ]+∞

0 = 0 (3.24)
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where W is proportional to the Airy function, which goes to zero as its argument goes
to infinity and has a finite value for the zero argument. Since the Airy is proportional
to exp{−p2}, then limp→+∞ pW (q, p) = 0 .
Finally, we can integrate in momentum (3.7), to obtain:

−iℏ
4

(∂2q χ̃)

∫ +∞

0

dp
∂

∂p

(
∂W

∂q

)
=
iℏ
4
(∂2q χ̃)

∫ +∞

0

dp
∂

∂p

(
λ

4

∂

∂(p2)
W

)
=
iℏ
4
(∂2q χ̃)

∫ +∞

−λ1/3

ℏ2/3
q

dt
d

dt

(
λ

4

(λℏ)2/3

4

d

dt
W

)
= i

(λℏ)5/3

64
(∂2q χ̃)

1

(λℏ)2/3
[Ai′(t)]

+∞
−λ1/3

ℏ2/3
q

= −iλ ℏ
64

(∂2q χ̃)Ai
′
(
−qλ

1/3

ℏ2/3

)
.

(3.25)

Since the argument of the Airy function dependens on ℏ−2/3, and for other reasons we
will clarify in the following, we shall consider contributions due to the expansion in s
above the order O(ℏ). We will start from Eq.(3.2) and consider its expansion up to
O(ℏ3):

∂+χ̃+ =

(
1

2
∂q + ∂s

)(
χ̃+ ∂qχ̃

s

2
+ ∂2q χ̃

s2

8
+ ∂3q χ̃

s3

48
+ ∂4q χ̃

s4

384
. . .

)
= ∂qχ̃+ ∂2q χ̃

s

2
+ ∂3q χ̃

s2

8
+ ∂4q χ̃

s3

48
+ . . . ,

(3.26)

and from (3.3), we will obtain the same results in (3.4), (3.5), (3.6), (3.7), plus two new
contributions coming from the term ∂3q χ̃

s2

8
inside (3.26), that give:∫

dse
i
ℏps
(
∂3q χ̃
) s2
8
∂s

(
ψ̃∗
−ψ̃+

)
=
iℏ
4

(
∂3q χ̃
) (
∂pW +

p

2
∂2pW

)
(3.27)

and ∫
dse

i
ℏps
(
∂3q χ̃
) s2
8
∂q

(
ψ̃∗
−ψ̃+

)
=

(−iℏ)2

8

(
∂3q χ̃
) d3W
dp2dq

. (3.28)

Starting with the evaluation of the integral in dp for the contribution (3.27), we can use
integration by parts (IBP) to obtain the following result:∫ +∞

0

dp
iℏ
4

(
∂3q χ̃
) (
∂pW +

p

2
∂2pW

)
=

∫ +∞

0

dp
iℏ
4

(
∂3q χ̃
)(

∂pW − 1

2
∂pW

)
+
[p
2
∂pW

]+∞

0

=
iℏ1/3

8λ2/3
(
∂3q χ̃
)
Ai

(
−λ

1/3

ℏ2/3
q

)
(3.29)

where, in the last line, we used the same reasoning we used in (3.24).
The integral in dp of the contribution (3.28) can be evaluated by taking the useful relation
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(2.34) to obtain:

−
∫ +∞

0

dp
(iℏ)2

8

(
∂3q χ̃
) d2
dp2

(
dW

dq

)
= −

∫ +∞

0

dp
(iℏ)2

8
(∂3q χ̃)

d2

dp2

(
− λ

8p
∂pW

)
=

∫ +∞

0

dp
(iℏ)2

8
(∂3q χ̃)

d

dp

[
1

λ1/3ℏ4/3p
Ai′(t)− λ

8p

(
64p2

(λℏ)2
Ai′′(t) +

8

(λℏ)4/3
Ai′(t)

)]
=

(
∂3q χ̃
)

λ

[
pAi′′

(
4p2 − λq

(λℏ)2/3

)]+∞

0

= 0.

(3.30)

Now we need to evaluate the contributions from (3.8). By substituting the solution
(2.45) of the gravity equation for the Wigner function one finds:∫ +∞

0

dp [(Hϕ − ⟨Hϕ⟩)χ̃]W (q, p)− 1

2
∂q [(Hϕ − ⟨Hϕ⟩)χ̃] iℏ∂pW (q, p)

=

∫ +∞

−λ1/3

ℏ2/3
q

dt

[
[(Hϕ − ⟨Hϕ⟩)χ̃]

4 [(ℏλ)2/3t+ λq]
1/2
Ai(t)

]
− ∂q [(Hϕ − ⟨Hϕ⟩)χ̃]

2
i

(
ℏ
λ2

)1/3

∂tAi(t)

=
π [(Hϕ − ⟨Hϕ⟩)χ̃] (2)2/3

4(λℏ)1/3
Ai2

(
− λ1/3

(2ℏ)2/3
q

)
+
∂q [(Hϕ − ⟨Hϕ⟩)χ̃]

2
i

(
ℏ
λ2

)1/3

Ai

(
−λ

1/3

ℏ2/3
q

)
.

(3.31)

Since we are keeping contributions beyond ℏ, we must consider also terms beyond the
ones in (3.31), that is:

−
∫ +∞

0

dp
ℏ2

8
∂2q [(Hϕ − ⟨Hϕ⟩)χ̃] ∂2pW (q, p)

= −
∫ +∞

0

dp
ℏ4/3

λ2/3
∂2q [(Hϕ − ⟨Hϕ⟩)χ̃] ∂p [Ai′(t)p] = 0,

(3.32)

and we should also evaluate∫ +∞

0

dp
iℏ3

48
∂3q [(Hϕ − ⟨Hϕ⟩)χ̃] ∂3pW (q, p)

=

∫ +∞

0

dp
iℏ5/3

6λ4/3
∂3q [(Hϕ − ⟨Hϕ⟩)χ̃] ∂p

[
8p2

(λℏ)2/3
Ai′′(t) + Ai′(t)

]
= − iℏ5/3

6λ4/3
∂3q [(Hϕ − ⟨Hϕ⟩)χ̃]Ai′

(
−λ

1/3

ℏ2/3
q

)
.

(3.33)

Finally we can sum all the contributions found, properly multiplying the contributions
(3.22), (3.23), (3.25), (3.29) by the factor (4ℏ2)/(m2

p) present in (3.1) and, at the same
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time, keeping only the contributions up to order ℏ2. We finally obtain the cumbersome
equation:

πiℏq
2m2

p

[
Ai′
(
−qλ

1/3

ℏ2/3

)
Gi

(
−qλ

1/3

ℏ2/3

)
− Ai

(
−qλ

1/3

ℏ2/3

)
Gi′
(
−qλ

1/3

ℏ2/3

)
+ 2iAi

(
− qλ1/3

(2ℏ)2/3

)
Ai′
(
− qλ1/3

(2ℏ)2/3

)]
(∂qχ̃) +

π[(Hϕ − ⟨Hϕ⟩)χ̃](2)2/3

4(λℏ)1/3
Ai2

(
− λ1/3

(2ℏ)2/3
q

)
+
i∂q[(Hϕ − ⟨Hϕ⟩)χ̃]ℏ1/3

2λ2/3
Ai

(
−λ

1/3

ℏ2/3
q

)
− iℏ5/3

6λ4/3
∂3q [(Hϕ − ⟨Hϕ⟩)χ̃]Ai′

(
−λ

1/3

ℏ2/3
q

)
= 0.

(3.34)

It is evident that solving exactly this last equation in the present form is very difficult.
Further approximations are then necessary. However we can restrict our analysis to the
regime where q becomes very large. In such a regime the equation further simplifies and
and the Airy functions can be expanded in terms of elementary functions.

3.2.1 Plane wave solution in the asymptotic regime

We can make some considerations about the arguments of the Airy functions inside our
matter equation.
Since we are interested in a “semiclassical approximation”, with ℏ small in this limit
and in a phase of the expanding/inflationary Universe, where the value of the parameter
q >> 1, it is natural to consider values for the argument of the Airy function

|qλ
1/3

ℏ2/3
| >> 1.

In such a regime, the asymptotic expression for Airy’s, Scorer’s function and their deriva-
tives, based on the method of saddle point approximation [3] (displayed in Appendix B)
can be used.
In particular we shall use the following expressions [35]:

Ai(−x) = 1

π1/2x1/4

[
sin

(
2

3
x3/2 − π

4

)(
5

48
x−3/2 + . . .

)
+ cos

(
2

3
x3/2 − π

4

)(
1− 385

4608
x−3 + . . .

)]
;

(3.35)

Ai′(−x) =x
1/4

π1/2

[
sin

(
2

3
x3/2 − π

4

)(
1 +

455

4608
x−3 + . . .

)
+ cos

(
2

3
x3/2 − π

4

)(
7

48
x−3/2 + . . .

)]
;

(3.36)
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Gi(−x) = 1

π1/2x1/4

[
− sin

(
2

3
x3/2 − π

4

)(
1− 385

4608
x−3 + . . .

)
+ cos

(
2

3
x3/2 − π

4

)(
5

48
x−3/2 + . . .

)]
− 1

πx

(
1− 2

x3
+ . . .

)
;

(3.37)

Gi′(−x) = x1/4

π1/2

[
− sin

(
2

3
x3/2 − π

4

)(
7

48
x−3/2 + . . .

)
+ cos

(
2

3
x3/2 − π

4

)(
1 +

455

4608
x−3 + . . .

)]
+

1

πx2

(
1− 8

x3
+ . . .

)
;

(3.38)

where, in our case, x = qλ1/3

ℏ2/3 , which is strictly positive.
Substituting these last four expressions inside our matter equation (3.34), we can find
the following expression, where we just keep the contributions up to ℏ2 order:

− i
qℏ
2m2

p

(∂qχ̃)

{
1 +

1

i
cos

(
2

3

λ1/2q3/2

ℏ

)
+

ℏ1/2 sin
(

2
3
λ1/2q3/2

ℏ − π
4

)
π1/2λ1/4q3/4

− iℏ
6λ1/2q3/2

[
5

2
+ cos2

(
1

3

λ1/2q3/2

ℏ
− π

4

)]}
+

[Hϕ − ⟨Hϕ⟩] χ̃
4(λq)1/2

×

×
[
1 + sin

(
2

3

λ1/2q3/2

ℏ

)(
1− 205

288

ℏ2

λq3

)
− 5

12

ℏ
λ1/2q3/2

cos

(
2

3

λ1/2q3/2

ℏ

)
− 5

16

ℏ2

λq3

]

+ i∂q [(Hϕ − ⟨Hϕ⟩)χ̃]
{ℏ1/2 cos

(
2
3
λ1/2q3/2

ℏ − π
4

)
2π1/2q1/2λ3/4

+
5ℏ3/2 sin

(
2
3
λ1/2q3/2

ℏ − π
4

)
96π1/2q7/4λ5/4

}
− iℏ3/2q1/4

6π1/2λ5/4
∂3q [(Hϕ − ⟨Hϕ⟩)χ̃] sin

(
2

3

λ1/2q3/2

ℏ
− π

4

)
= 0.

(3.39)

We can further simplify this last equation in the regime in which the value of x is very
large, and neglect the quantum corrections of order x−n. These corrections become
negligible for values of x ≥ 103. We can estimate for which values of q this occurs. If
we take the natural units in which ℏ = 1, and the value of the nearly constant inflaton
potential is [8]:

Λ = (6 · 10−2)6m4
pr

where we considered r = 10−4 which is the upper limit for the “tensor to scalar ratio”
(at 95% CL as measured by Plank 2018 [1]). Thus the value of λ is:

λ = 2m2
pΛ ≈ 10−11m6

p.
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Now we can compute the value of q for which the contribution proportional to x−n can
be ignored:

x =
qλ1/3

ℏ2/3
≥ 103 → q ≥ 103ℏ2/3

(10−11m6
p)

1/3
∼ 5 · 106m−2

p . (3.40)

Some clarifications are now in order: in (1.52) we have absorbed a squared length L2

inside q = a2, such that actually they have the dimensions of a squared length [q] =
[a]2 = [lp]

2, and since [mp] = [lp]
−1, this explains the dimensions of the result in (3.40).

Therefor the equation (3.39), for values of q ≥ 5 · 106m−2
p , takes the form 1:

−i qℏ
2m2

p

(∂qχ̃)

[
1 +

1

i
cos

(
2

3

λ1/2q3/2

ℏ

)]
+

[Hϕ − ⟨Hϕ⟩] χ̃
4(λq)1/2

[
1 + sin

(
2

3

λ1/2q3/2

ℏ

)]
= 0

(3.41)

where the only corrections of quantum origin come from the terms 1
i
cos
(

2
3
λ1/2q3/2

ℏ

)
,

sin
(

2
3
λ1/2q3/2

ℏ

)
. Now we can change variables to this last equation, and introduce the

variable η, that in the classical approximation is the conformal time. By multiplying the
equation by a factor 8p = 4(λq)1/2 and, on using again the relations (3.17) and (3.18),
we can rewrite equation (3.41) as:

−iℏ(∂ηχ̃)
[
1 +

1

i
cos

(
2

3

λ1/2q3/2

ℏ

)]
+ (Hϕ − ⟨Hϕ⟩)

[
1 + sin

(
2

3

λ1/2q3/2

ℏ

)]
χ̃ = 0. (3.42)

Now we can try to solve the differential equation:

i(∂ηχ̃) = ℏ−1

[
1 + sin

(
2
3
x3/2

)
1 + 1

i
cos
(
2
3
x3/2

)] (Hϕ − ⟨Hϕ⟩)χ̃. (3.43)

Before proceeding, we point out that the time variable η has the same mathematical
definition that the conformal time for the de Sitter Universe. Let us note, however, that
the corrections to the matter equation evaluated from the asymptotic expansion of the
Airy function, are encoded in the quantum gravitational oscillating contribution

1 + sin
(
2
3
x3/2

)
1− i cos

(
2
3
x3/2

) ,
where the oscillations are very large and very fast. The definition of time in the matter
equation is not straightforward since the quantum effects are large. We will return on

1The reader could notice that we discarded the term ∂3q [(Hϕ − ⟨Hϕ⟩)χ̃] despite the fact it was
multiplied by a function Ai′(t), and in the asymptotic expansion (3.36) this term is proportional to
x1/4. The reason behind this choice is due to the fact that, after the multiplication by the factor
8p = 4(λq)1/2, the term becomes proportional to (q3∂3q )/(x

9/4), and so it is evident how this contribution
becomes negligible in the large x regime.
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this point later.
Classically the Louko variable q and the conformal time η are related by:

q =

(
− 1

H0η

)2

(3.44)

where H0 is the Hubble constant during inflation.
Considering the form of our inflaton Hamiltonian Hϕ, we observe that the contribution
coming from the constant inflaton potential Λ disappears, and we remain with:

(Hϕ − ⟨Hϕ⟩) = −ℏ2

2q
(∂2ϕ − ⟨∂2ϕ⟩)

such that our Schrodinger equation (3.43) becomes

i(∂ηχ̃) = − ℏ
2q

[
1 + sin

(
2
3
x3/2

)
1 + 1

i
cos
(
2
3
x3/2

)](∂2ϕ − ⟨∂2ϕ⟩)χ ≡ − ℏ
2q
m(η)(∂2ϕ − ⟨∂2ϕ⟩)χ, (3.45)

in which we have defined m(η) as

m(η) ≡
1 + sin

(
−2

3
λ1/2

ℏH3
0η

3

)
1 + 1

i
cos
(
−2

3
λ1/2

ℏH3
0η

3

) (3.46)

and where we have substituted q3/2 = −(H0η)
−3 from the relation (3.44).

This is a non-hermitian Schrodinger equation, dependent on the parameter η. We can
note that, despite the fact we have a non-hermitian equation (given by the complex
factor m(η)), the following relation holds:

d

dη
⟨χ̃|χ̃⟩ = i

ℏ
2q
m(η)(⟨∂2ϕ⟩ − ⟨∂2ϕ⟩) + h.c. = 0 (3.47)

and then the norm ⟨χ̃|χ̃⟩ is constant, conserved, and can be arbitrarily set to one.
Moreover, we can recover the relation (2.3).
Then, from (3.45), we can observe that the ⟨∂2ϕ⟩ contribution could be also removed by
rescaling χ̃, in a similar way as we did for the classical limit in (3.20). In this case one
can “rephase”2 χ̃ function in the following way:

χ̃ = eiζχ (3.48)

with ζ is defined in such a way that:

∂ζ

∂η
= − ℏ

2q

[
1 + sin

(
2
3
x3/2

)
1 + 1

i
cos
(
2
3
x3/2

)] ⟨∂2ϕ⟩χ. (3.49)

2Let us note that this is note a proper rephase, since ψ is a complex function
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In this way, Eq. (3.43) becomes:

i(∂ηχ) = − ℏ
2q

[
1 + sin

(
2
3
x3/2

)
1 + 1

i
cos
(
2
3
x3/2

)]∂2ϕχ. (3.50)

This is indeed a non-hermitian Schrodinger equation, with Hamiltonian

H̄ϕ ≡ m(η)
π̂ϕ

2

2q(η)
. (3.51)

A set of solutions of the equation (3.45) can be obtained from the ansatz:

χ(η, ϕ) ∼ eiβϕ+f(η) (3.52)

where β is a real free parameter.
Now we can substitute (3.52) in (3.50), to obtain the following differential equation for
f(η):

f ′(η) = − iℏ
2q
m(η)β2 (3.53)

where the prime symbol represent a derivative w.r.t η.
The solution of Eq.(3.53) is:

f(η) = −iℏ
2
β2

∫ η

η0

m(η′)

q(η′)
dη′. (3.54)

In conclusion, we can write our matter wave function in the following form:

χ(ϕ, η)β = eiβϕexp

{
−iℏ

2
β2

∫ η

η0

m(η′)

q(η′)
dη′
}
. (3.55)

Taking back the definition (3.46), we can write m(η) as:

m(η) =
1 + sin

(
2
3
x3/2(η)

)
1− i · cos

(
2
3
x3/2(η)

) =
1 + sin

(
2
3
x3/2(η)

)
1 + cos2

(
2
3
x3/2(η)

) + i
cos
(
2
3
x3/2(η)

)
+ 1

2
sin
(
4
3
x3/2(η)

)
1 + cos2

(
2
3
x3/2(η)

)
≡ Re(m(η)) + i · Im(m(η))

(3.56)

and so the exponent in our χ wave function (3.55) has an imaginary part (ϕ-independent),
as a consequence of the non-hermitianicity of the Hamiltonian H̄ϕ defined by (3.51). We
should also point out that normalised matter wave function is χ̃(ϕ, η) in (3.48). One has:

⟨χ̃(η, ϕ)|χ̃(η, ϕ)⟩ = 1 = ⟨χ(η, ϕ)|χ(η, ϕ)⟩ e−2·Im{ζ} → ⟨χ(η, ϕ)|χ(η, ϕ)⟩ = e2·Im{ζ} (3.57)

in which we have decomposed ζ as ζ = Re{ζ}+ i · Im{ζ}.
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3.2.2 The emergence of a classical time with a coarse-graining
of the perturbation

We can see that the matter equation in (3.41) has an highly oscillating behaviour be-
cause of the term m(η) that multiplies the inflaton Hamiltonian Hϕ. Because of the large
quantum effects, the definition of time is not straightforward. The variable q(η), that in
the classical case of the de Sitter Universe is given by (H0η)

−2 as we shown (3.44), could
be affected by quantum effects.
As shown in [34], factors likem(η)/q(η) that give the oscillatory behavior to our Hamilto-
nian H̄ϕ may be present in the matter equation in quantum cosmology, large oscillations
may be dumped with a coarse-graining procedure which consists in averaging the matter
equation over a period ∆q (which is much shorter than the Plank length). This pro-
cedure may be justified since typical oscillations related to matter (inflaton) are much
slower that those (trans-plankian) associated with the gravitational wavefunction. In-
flaton evolution may be “insensitive” to such trans-plankian oscillations, and we may
coarse-grain them.
Indeed if we take the matter equation (3.41) and, just for dimensional convenience, we
rewrite it in terms of the scale factor a, and multiply both sides of the equation by a
factor a2, we obtain:

−iℏa
4λ1/2

m2
p

[
1− i cos

(
2λ1/2a3

3ℏ

)]
(∂aχ̃) = −a2

[
1 + sin

(
2λ1/2a3

3ℏ

)]
[Hϕ − ⟨Hϕ⟩] χ̃ = 0.

(3.58)

We can now average the terms a2
[
1− i cos

(
2λ1/2a3

3ℏ

)]
and a2

[
1− i cos

[
2λ1/2a3

3ℏ

)]
respec-

tively on the l.h.s. and r.h.s. of the last equation, over a period of oscillation ∆a given
approximately by:

∆a ≈ ℏπ
λ1/2a2

. (3.59)

Let us note that, for ”a” large enough, the period becomes smaller than the Plank length:

∆a ∼ 10−1m−1
p < lp

and we can average the oscillating terms I(a) = a2f
(

2λ1/2a3

3ℏ

)
(where f(x) could be both

sin(x) or −i cos(x)) over a period ∆a in the following way:

I(a) = 1

∆a

∫ a+∆a

a

a′2f

(
2λ1/2a3

3ℏ

)
da′ =

λ1/2a2

ℏπ

∫ a+∆a

a

a′2f

(
2λ1/2a3

3ℏ

)
da′.

On defining a new integration variable t =
(

2λ1/2a′3

3ℏ

)
, one may write

I(a) = a2

2π

∫ 2π

0

dtf(t). (3.60)
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This particular form of our integral I(a) can be now evaluated in the complex plane by
using Jordan’s Lemma and the Residue Theorem. On setting z = exp{it} one has:

cos(t) =
1

2

(
z +

1

z

)
,

sin(t) =
1

2i

(
z − 1

z

)
,

dt = −idz
z

and the integral (3.60) becomes:

I(η) = − a2

4π

∮
z2 + z ± 1

z2
dz (3.61)

where the sign + is for the contribution i cos(t) on the l.h.s, and viceversa the sign − is
for the contribution sin(t) on the r.h.s.
The function inside the integral has a unique pole of second order in z = 0, which lies
inside the integration path (a circumference of radius 1 centered in the origin of the
complex plane). With the residue theorem, we can compute the integral (3.61) in the
following way:

I(η) = − a2

4π
· (2πi)

[
Res

(
z2 + z ± 1

z2

)
z=0

]
. (3.62)

The residue of order two can be computed as:

lim
z→0

d

dz

(
z2 + z ± 1

z2
(z − 0)2

)
= 1 (3.63)

and the final result is:

I(η) = −ia
2

2
. (3.64)

We can see that the contribution of the oscillating terms is equal on both sides of the
matter equation (3.58), so they cancel, and we obtain the final form:

iℏ
a2λ1/2

m2
p

(∂aχ̃) = [Hϕ − ⟨Hϕ⟩] χ̃. (3.65)

that is nothing else that the matter equation we found in the classical limit for the
Wigner equation in (3.16).
Let us note that in the procedure described above we have neglected the dependence on
a for χ̃. On accounting properly for such a dependence, one expects deviations from the
above result of order ∆a, obtained by Taylor expanding the integrands close to the first
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extremum of the integral.
So we can conclude that a time can still be defined in the matter equation, and that it
coincides with the conformal time for the de Sitter Universe.
The Eq.(3.65) has “plane wave” solutions of the form:

χcl(η, ϕ) = exp{iβϕ− i
ℏH2

0β
2

6
(η3 − η30)}. (3.66)
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Chapter 4

The Vilenkin solution

We have seen in the previous chapter that, from the WDW equation with the Born-
Oppenheimer decomposition, we obtain a gravitational equation (2.4) and a matter
equation (2.5) and that we can find the coupled differential equations for the Wigner-
Weyl transform of the gravitational wave function.
By solving these equations for a simplified inflaton Hamiltonian, we where able only to
find the Wigner function associated with the HH solution of the gravitational equation.
Such a solution describes a Universe in the quantum superposition of the expanding and
contracting phase. This is exactly the reason for the large quantum gravitational effects
which emerge in the matter equation.
Anyway, the classical Universe is better described by an expanding state. The solution
for the gravitational wave function which accounts only for the expanding phase is the
Vilenkin solution.
In what follows we calculate an approximate expression of the Vilenkin solution of the
gravitational equation (2.4), and then search for the associated Wigner function. As we
observed in section 2.3, an analytic form of the Wigner function for the exact Vilenkin
solution is unknown, and this is one of the reasons why we studied the exact HH case
first. Due to large interference effect, the HH case lead to other problems which could
be mitigated by a coarse-graining procedure. In this chapter we search for the Wigner
function in the case of the Vilenkin solution, calculated with the asymptotic form of the
Airy’s functions, like the ones reported in (3.35)-(3.38).
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4.1 Vilenkin wave function for gravity and its Wigner

function

The gravitational equation for the gravity wave function ψ̃ (2.4) is:[
2qℏ2

m2
p

∂2

∂q2
+ ⟨Ĥϕ⟩

]
ψ̃ = −2qℏ2

m2
p

⟨∂2q ⟩ ψ̃. (4.1)

If we neglect the term on the r.h.s and the kinetic term of the inflaton inside ⟨Ĥϕ⟩
(since they are sub-leading terms in the context of inflation), we are left with only the
contribution of the potential of the scalar field, and (4.1) takes the form:[

2qℏ2

m2
p

∂2

∂q2
+
m2

pΛ

2ℏ2
q

]
ψ̃ = 0. (4.2)

For this equation, we can write exactly the Vilenkin solution ψ̃V (see [18] or [34] for more
details) as:

ψ̃V = −iAi

[
−
(
λ

4ℏ2

) 1
3

q

]
+Bi

[
−
(
λ

4ℏ2

) 1
3

q

]

= −iAi

[
−
(
λ

4ℏ2

) 1
3

a2

]
+Bi

[
−
(
λ

4ℏ2

) 1
3

a2

]
.

(4.3)

In order to calculate the Wigner-Weyl transform of this last solution, and express Ai(−x)
and Bi(−x) in their asymptotic forms, we restrict to the limit of large a, q, as we did in
the previous chapter.
We can express the function Ai(−x) in the large x limit with (3.35), while for Bi(−x)
in the same limit we can find the following form [35]:

Bi(−x) ∼ − 1

π1/2x1/4
sin

(
2

3
x3/2 − π

4

)
(4.4)

where we kept just the leading terms in x for both Ai(−x) and Bi(−x).
Substituting x =

[(
λ
4ℏ2
) 1

3 a2
]
, we can rewrite the solution ψ̃V in (4.3) as:

ψ̃V ≈ −i · ℏ1/6

π1/2λ1/12a1/2

[
cos

(
2

3

λ1/2

ℏ
a3 − π

4

)
− i · sin

(
2

3

λ1/2

ℏ
a3 − π

4

)]
= −i · ℏ1/6

π1/2λ1/12a1/2
exp

{
−i
(
2

3

λ1/2

ℏ
a3 − π

4

)}
.

(4.5)
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We can use this last approximate solution to find the associated Wigner function, starting
from its definition1:

W (a, pa) ≡
∫ +∞

−∞
dse

2ipas
ℏ ψ̃∗

−ψ̃+

remembering that ψ̃± = ψ̃(a ± s), with s representing the “quantum jump” between
different states. More explicitly, the Wigner function for ψ̃V results from the following
integral:

W (a, pa)V ∝
∫ +∞

−∞
dse

2ipas
ℏ exp

{
i

(
2

3

λ1/2

ℏ
(a3 − s3 − 3a2s+ 3as2

)
− i

π

4

}
× exp

{
−i
(
2

3

λ1/2

ℏ
(a3 + s3 + 3a2s+ 3as2

)
+ i

π

4

}
=

∫ +∞

−∞
dse

2ipas
ℏ exp

{
−2iλ1/2

ℏ

(
s3

3
+ a2s

)}
.

(4.6)

Let us note that we omitted the term a−1/2 in front of the asymptotic form of the Ai[x]
and Bi[x]. This is justified by the fact that the factor a−1/2 is sub-leading in the large a
limit.
We can easily recognize that (4.6) is an Airy function, in its integral form:

Ai(z) =
1

2π

∫ +∞

−∞
ds exp

{
i

(
s3

3
+ zs

)}
and thus we can obtain the following Airy function:

W (a, pa)V ∝ Ai

[
22/3λ1/2

(λℏ)2/3
(λ1/2a2 − pa)

]
. (4.7)

In terms of the Louko variables q, pq, the Wigner function takes the following form:

W (q, pq)V ∝ Ai

[
25/3(λq)1/2

(λℏ)2/3

(
λ1/2q1/2

2
− pq

)]
(4.8)

where a2 = q and

pa =
∂L
∂a′

=
∂L
∂q′

∂q′

∂a′
= pq

∂q

∂a
= 2

√
qpq

and henceforth, we will use p to indicate pq for simplicity.
On comparing this last form for the Vilenkin Wigner with the one found previously for
the HH solution (2.45), we can see that in (4.8) the argument of the Airy is zero in the

1We are still considering coherent states, so we can use the simplified form for the Wigner-Weyl
transform
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point p = λ1/2q1/2

2
= pcl, while in the HH Airy’s argument is null for p = ±λ1/2q1/2

2
= ±pcl,

therefor the Vilenkin Wigner function is peaked on the positive solution p = pcl, as should
since it is associated with the solution of an expanding Universe, while the presence of the
term p2 in the argument of (2.45) makes the Wigner peak around p = ±pcl, describing
the superposition of an expanding and contracting Universe.

4.2 The matter equation for Vilenkin

Let us now calculate the matter equation from the Wigner function (4.8). We shall
repeat the same procedure as the HH case, but due to the fact that we are considering
the case of an expanding Universe, we shall integrate on the entire real axis.
The contribution (3.22), in our current case, takes the form:

−
∫ +∞

−∞
dpi

p

ℏ
(∂qχ̃)Ai

[
25/3(λq)1/2

(λℏ)2/3

(
λ1/2q1/2

2
− p

)]
= − iλ2/3

25/3ℏ1/3(λq)1/2
(∂qχ̃)

∫ +∞

−∞
dk

[
− (λℏ)2/3

25/3(λq)1/2
k +

(λq)1/2

2

]
Ai(k)

= −i(λℏ)
2/3

28/3ℏ
(∂qχ̃)

(4.9)

where on the second line we changed variable

k =

[
25/3(λq)1/2

(λℏ)2/3

(
λ1/2q1/2

2
− p

)]
and, for the final result, we exploited the fact that the Airy function is a normalized
function and that [35]: ∫ +∞

−∞
dk k · Ai(k) = 0.

This last result, in particular, comes from the limit [16]:

lim
ϵ→0

∫ +∞

−∞
dk k · Ai(k) exp{−ϵk2} = 0.

Proceeding with the evaluation of the contribution (3.23), we find:∫ +∞

−∞
dp

1

2
(∂qχ̃)(∂qW )

=

∫ +∞

−∞
dp

1

2
(∂qχ̃)Ai

′
[
25/3(λq)1/2

(λℏ)2/3

(
λ1/2q1/2

2
− p

)](
22/3λ

(λℏ)2/3
− 22/3λ1/2

q1/2(λℏ)2/3
p

)
=
λ1/6ℏ2/3

211/3q3/2
(∂qχ̃)

∫ +∞

−∞
dkAi[k] =

λ1/6ℏ2/3

211/3q3/2
(∂qχ̃)

(4.10)

64



where we have once again changed variable to k and the term on the second line
Ai′[k] 22/3λ

(λℏ)2/3 goes to zero because, after the integration, we have a result proportional

to [Ai(z)]+∞
−∞ that is null, while the second term multiplying Ai′(z) can be integrated by

parts, leading to a null result [Ai(z) · z]+∞
−∞. The integral in the last line can be evaluated

by using the normalization condition of the Airy function.
The contribution (3.24) can be evaluated with a similar reasoning and is null as well.
The last contribution we must consider comes from the integral (3.25), and gives us the
following result:

−iℏ
4

(∂2q χ̃)

∫ +∞

−∞
dp

∂

∂p

(
∂W

∂q

)
=
iℏ
4
(∂2q χ̃)

∫ +∞

−∞
dp

∂

∂p

(
λ

8p

∂

∂p
W

)
= −iℏ q

1/2λ5/6

210/3ℏ2/3
(∂2q χ̃)

∫ +∞

−∞
dp

∂

∂p

(
1

p
Ai′
[
22/3λ1/3q

ℏ2/3
− 25/3q1/2

λ1/6ℏ2/3

])
= −iℏ1/3 qλ

2/3

25/3
(∂2q χ̃)

∫ +∞

−∞
dz

∂

∂z

(
Ai′[z]

zℏ2/3 − 22/3λ1/3q

)
= −iℏ1/3 qλ

2/3

25/3
(
∂2q χ̃
) [ Ai′[z]

zℏ2/3 − 22/3λ1/3q

]+∞

−∞
= 0.

(4.11)

where we used the relation in (2.34) ∂qW = − λ
8p
(∂pW ), and we have changed variable

z =
22/3λ1/3q

ℏ2/3
− 25/3q1/2

λ1/6ℏ2/3
.

The contribution coming from [(Hϕ − ⟨Hϕ⟩)χ̃], in (3.31) can be evaluated as follows:∫ +∞

−∞
dp [(Hϕ − ⟨Hϕ⟩)χ̃]Ai

[
25/3(λq)1/2

(λℏ)2/3

(
λ1/2q1/2

2
− p

)]
=

(λℏ)2/3

25/3(λq)1/2
[(Hϕ − ⟨Hϕ⟩)χ̃]

(4.12)
and the continuation:

−iℏ
2

∫ +∞

−∞
dp∂q [(Hϕ − ⟨Hϕ⟩)χ̃] ∂p

{
Ai

[
25/3(λq)1/2

(λℏ)2/3

(
λ1/2q1/2

2
− p

)]}
= 0. (4.13)

Now we can properly collect all the contributions computed and reconstruct the matter
equation, and find the following form:

−iℏ2λ
1/2q3/2

m2
p

∂qχ̃

[
1 +

iℏ
2λ1/2q3/2

]
+ [Hϕ − ⟨Hϕ⟩] χ̃ = 0. (4.14)

That’s exactly the same result we obtained with the classical approach to the matter
equation and the HH Wigner function in (3.16). Indeed we note that the factor multi-
plying ∂qχ̃:

2λ1/2q3/2

m2
p

∂qχ̃

[
1 +

iℏ
2λ1/2q3/2

]
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Figure 4.1: Contour Plot for the Vilenkin Wigner in the range q = [0, 15] (vertical axis),
p = [0, 5] (horizontal axis), where λ, ℏ are fixed to 1.

contains the definition of the classical “velocity” q′ = 2λ1/2q3/2

m2
p

which consistently defines

“time” in our theory, and inside the square bracket there is an additional imaginary
contribution that becomes negligible in the limit of large q, in particular:

ℏ
2λ1/2q3/2

< 1 for q > 104m−2
p .

4.3 Coarse-graining with the Husimi function

At the end of Chapter 2 we introduced the concept of coarse-graining by the Husimi
distribution, and we explained that the presence of the term p2 inside the argument of
the Wigner function for the HH solution prevents from finding an analytic expression for
it. We therefore estimated the Husimi distribution numerically. As we discussed earlier,
the term p2 is the consequence of the property of the HH solution to describe a Universe
which is a superposition of contracting and expanding phase. Now, by considering the
Vilenkin solution, we are describing a Universe which only expands, and this is probably
a better description of the Universe we live in. For the Vilenkin case we find a Wigner
function proportional to an Airy function with an argument which only depends on p.
This allows to calculate the coarse-grained form of the Wigner function.
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Let’s remind a possible form of the coarse-grained Wigner function (2.57):

C(q, p) = 1√
α(q)π

∫ +∞

−∞
dkW0(q, k)e

− (p−k)2

ℏ2α(q) .

If W0(q, k) is the Wigner function for the Vilenkin solution (4.8) (with a contour plot
displayed in Figure 4.1), we find the following integral:

C(q, p) = 1√
α(q)π

∫ +∞

−∞
dkAi

[
25/3(λq)1/2

(λℏ)2/3

(
λ1/2q1/2

2
− k

)]
e
− (p−k)2

ℏ2α(q) (4.15)

and with the change of variable (k − p)/(ℏα1/2) = x, it becomes:

C(q, p) = 1√
π

∫ +∞

−∞
dxAi

[
25/3ℏ1/3(αq)1/2

λ1/6

(
λ1/2q1/2

2ℏα1/2
− p

ℏα1/2
− x

)]
e−x2

. (4.16)

If we define the quantities:

m ≡ λ1/6

25/3ℏ1/3(αq)1/2
(4.17)

and

y ≡ λ1/2q1/2

2ℏα1/2
− p

ℏα1/2
(4.18)

we can rewrite (4.16) as:

C(q, p) = 1√
π

∫ +∞

−∞
dxAi

[
1

m
(y − x)

]
e−x2

. (4.19)

Now we can recognize that (4.19) is a particular Airy transform [36], which can be
integrated to give [35]:∫ +∞

−∞
dxAi

[
1

m
(y − x)

]
e−x2

=
√
π exp

{
1

4m3

(
y +

1

24m3

)}
Ai

(
y

m
+

1

16m4

)
. (4.20)

Using this latter result we can write (4.19) as:

C(q, p) = exp

{
8ℏ(qα)3/2

λ1/2

(
λ1/2q1/2

2ℏα1/2
− p

ℏα1/2
+

4ℏ(qα)3/2

3λ1/2

)}
× Ai

[(
(qλ)1/2

2
− p

)(
25/3q1/2

λ1/6ℏ2/3

)
+

28/3ℏ4/3(qα)2

λ2/3

]
.

(4.21)

The plots of the coarse-grained Wigner function for different values for α are shown in
Fig.4.2. We can see that increasing the value of α (so increasing the coarse graining
effects) we average over more and more oscillations and the principal peak moves closer
the classical trajectory, and becomes lower and more spread.
Now we can use the solution (4.21) in the matter equation.
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Figure 4.2: Numerical evaluation of the distributions in the variable p, with fixed λ, ℏ = 1,

q = 36 and different values of α to fix 8ℏ(qα)3/2
λ1/2 . The classical trajectory here is placed

at p = 3. In the first picture (high-left) we have 8ℏ(qα)3/2
λ1/2 = 1, in the second picture

(high-right) 8ℏ(qα)3/2
λ1/2 = 6, and in the last picture 8ℏ(qα)3/2

λ1/2 = 36.
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4.3.1 Matter equation with the coarse-grained Wigner

As we explained previously, by coarse-graining one averages on the rapid oscillations of
the Wigner function, smoothing the oscillatory behaviour and leaving the principal peak.
In order to compute the corresponding matter equation, we must compute the integrals
(4.9), (4.10) and (4.12) substituting W (q, p) with its coarse-grained version C(q, p) on
(4.21). We start with (4.9):

− i

ℏ
(∂qχ̃)

∫ +∞

−∞
pC(q, p)dp

= − i

ℏ
(∂qχ̃)

∫ +∞

−∞
p exp

{
8ℏ(qα)3/2

λ1/2

(
λ1/2q1/2

2ℏ2α1/2
− p

ℏ2α1/2
+

4ℏ(qα)3/2

3λ1/2

)}
× Ai

[(
(qλ)1/2

2
− p

)(
25/3q1/2

λ1/6ℏ2/3

)
+

28/3ℏ4/3(qα)2

λ2/3

] (4.22)

To compute this integral, we recognize the definition of an Airy transform of the function
p exp{ikp}. The Airy transform, Φβ(y), of the function exp{ikp} is [36]:

Φβ(y) =

∫ +∞

−∞
exp{ikp}Ai

[
y − p

β

]
= β exp

{
iky + i

k3β3

3

}
. (4.23)

We can apply the Lemma [35]:

Lemma:If the Airy transform of the function f(x) is Φβ(y), then the Airy transform
of the function xf(x) is:

Aβ[xf(x)] = xΦβ(y)− β3Φ′′
β(y) (4.24)

where the prime symbols ′ stands for the differentiation with respect to y.
We can compute the Airy transform in (4.22) on using (4.23) and the Lemma (4.24), by
identifying:

y =
(qλ)1/2

2
, β =

λ1/6ℏ2/3

25/3q1/2
, k = i

8q3/2α

λ1/2
.

We then obtain the result:

− i

h
(∂qχ̃)

∫ +∞

−∞
pC(q, p)dp = − iλ2/3

28/3ℏ1/3
(∂qχ̃) (4.25)

where the exponential that appears in the Airy transform (4.23) is cancelled by the p-
independent part of the exponential in C(q, p). Let us note that we get back the same
result we found in (4.9).
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Proceeding with the computation of (4.10):

1

2
(∂qχ̃)

∫ +∞

−∞
∂qC(q, p)dp

=
1

2
(∂qχ̃)

∫ +∞

−∞
exp

{
4q2α− 8q3/2αp

λ1/2
+

32ℏ2(qα)3

3λ4

}
Ai

[
22/3qλ

(λℏ)2/3
− 25/3(qλ)1/2p

(λℏ)2/3
+

28/3ℏ4/3(qα)2

λ2/3

]
×
[
8qα+ 4q2α′ − 12αq1/2p

λ1/2
− 8α′q3/2p

λ1/2
+

32q2ℏ2α3

λ
+

32q3ℏ2α2α′

λ

]
dp

+
1

2
(∂qχ̃)

∫ +∞

−∞
exp

{
4q2α− 8q3/2αp

λ1/2
+

32ℏ2(qα)3

3λ4

}
Ai′
[
22/3qλ

(λℏ)2/3
− 25/3(qλ)1/2p

(λℏ)2/3
+

28/3ℏ4/3(qα)2

λ2/3

]
×
[
22/3λ1/3

ℏ2/3
− 22/3p

ℏ2/3λ1/6q1/2
+

211/3qℏ4/3α2

λ2/3
+

211/3q2ℏ4/3αα′

λ2/3

]
dp

(4.26)

where Ai′[z] is the Airy derivative (with respect to its argument) and α′(q) is the deriva-
tive with respect to q.
Let’s note that we have divided the last integral in two parts, the first part is I1:

I1 ≡
1

2
(∂qχ̃)

∫ +∞

−∞
exp

{
4q2α− 8q3/2αp

λ1/2
+

32ℏ2(qα)3

3λ4

}
× Ai

[
22/3qλ

(λℏ)2/3
− 25/3(qλ)1/2p

(λℏ)2/3
+

28/3ℏ4/3(qα)2

λ2/3

]
×
[
8qα+ 4q2α′ − 12αq1/2p

λ1/2
− 8α′q3/2p

λ1/2
+

32q2ℏ2α3

λ
+

32q3ℏ2α2α′

λ

]
dp

(4.27)

which can be evaluated to obtain:

I1 =

[
q1/2ℏ2/3αλ1/6

25/3
+

27/3q3/2ℏ2/3α3

λ5/6
+

27/3q5/2ℏ2/3α2α′

λ5/6

]
∂qχ̃. (4.28)

The second integral is:

I2 ≡+
1

2
(∂qχ̃)

∫ +∞

−∞
exp

{
4q2α− 8q3/2αp

λ1/2
+

32ℏ2(qα)3

3λ4

}
× Ai′

[
22/3qλ

(λℏ)2/3
− 25/3(qλ)1/2p

(λℏ)2/3
+

28/3ℏ4/3(qα)2

λ2/3

]
×
[
22/3λ1/3

ℏ2/3
− 22/3p

ℏ2/3λ1/6q1/2
+

211/3qℏ4/3α2

λ2/3
+

211/3q2ℏ4/3αα′

λ2/3

]
dp

(4.29)

where we can compute a change of variable:

z =
22/3qλ1/3

ℏ2/3
− 25/3q1/2p

λ1/6ℏ2/3
+

28/3ℏ4/3(qα)2

λ2/3
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and integrate by parts, to get:

I2 =− ℏ2/3λ1/6

28/3q1/2
(∂qχ̃) exp

{
−16q3ℏ2α3

3λ

}∫ +∞

−∞
exp

{
24/3qℏ2/3αz

λ1/3

}
×
[
21/3zℏ2/3α

λ1/3
+ 2qα +

24q2ℏ2α3

λ
+

1

2q
+

32q3ℏ2α2α′

λ

]
Ai[z]dz.

(4.30)

Using the Airy transform (4.23), we find:

− ℏ2/3λ1/6

28/3q1/2
(∂qχ̃) exp

{
−16q3ℏ2α3

3λ

}∫ +∞

−∞
exp

{
24/3qℏ2/3αz

λ1/3

}
32q3ℏ2α2α′

λ
Ai[z]dz

= −27/3q5/2ℏ2/3α2α′

λ5/6
∂qχ̃.

In the remaining integral, we can change variable:

x = −21/3zℏ2/3α
λ1/3

+ 2qα+
24q2ℏ2α3

λ
+

1

2q

and obtain the final form for I2:

I2 = −27/3q5/2ℏ2/3α2α′

λ5/6
∂qχ̃+

λ1/2

8q1/2α
(∂qχ̃) exp

{
−27q3ℏ2α3

3λ
+ 4q2α + 1

}∫ +∞

−∞
exp{−2qx}

× Ai

[
λ1/3

21/3ℏ2/3α

(
−x+ 2qα +

24q2ℏ2α3

λ
+

1

2q

)][
x− 4qα− 48q2ℏ2α3

λ
− 1

q

]
dx.

(4.31)

Now we recognize an integral similar to I1, containing a combination of an integral of
the kind (4.22) and an Airy transform (4.23), where:

y = 2qα+
24q2ℏ2α3

λ
+

1

2q
, β =

21/3ℏ2/3α
λ1/3

, k = 2iq.

We thus find the final result for I2:

I2 = −
[
λ1/6q1/2ℏ2/3α

25/3
+

27/3q3/2ℏ2/3α3

λ5/6
− ℏ2/3λ1/6

211/3q3/2
+

27/3q5/2ℏ2/3α2α′

λ5/6

]
∂qχ̃. (4.32)

On now summing the results of I1 and I2 in (4.28) and (4.32) we obtain the final result
of (4.26):

I1 + I2 =
ℏ2/3λ1/6

211/3q3/2
∂qχ̃ (4.33)

71



where is noteworthy the fact that this is the same result we found in (4.10), starting
from a very different Wigner function.
Ignoring the contribution (3.24) for the same reasons explained previously, we can now
consider (4.11):

−iℏ
4

(∂2q χ̃)

∫ +∞

−∞
dp

∂

∂p

(
∂C
∂q

)
=
iℏ
4
(∂2q χ̃)

∫ +∞

−∞
dp

∂

∂p

(
λ

8p

∂

∂p
C
)

= −iℏ1/3 qλ
2/3

25/3
(∂2q χ̃)

∫ +∞

−∞
dz

∂

∂z

[
1

zℏ2/3 − 22/3λ1/3q

(
exp

{
8(qℏ2α2)

λ1/2

(
λ1/6z

25/3q1/2ℏ1/3α1/2
+

4qℏ2α2

3λ1/2

)}
× Ai′[z] + 24/3qλ2/3α exp

{
8qℏ2α2

λ1/2

(
λ1/6z

25/3q1/2ℏ1/3α1/2
+

4qℏ2α2

3λ1/2

)}
Ai[z]

)]
= −iℏ1/3 qλ

2/3

25/3
(∂2q χ̃)

[
1

zℏ2/3 − 22/3λ1/3q

(
exp

{
8(qℏ2α2)

λ1/2

(
λ1/6z

25/3q1/2ℏ1/3α1/2
+

4qℏ2α2

3λ1/2

)}
Ai′[z]

+ 24/3qλ2/3α exp

{
8qℏ2α2

λ1/2

(
λ1/6z

25/3q1/2ℏ1/3α1/2
+

4qℏ2α2

3λ1/2

)}
Ai[z]

)]+∞

−∞
= 0

(4.34)

where we have followed a procedure similar to that described for (4.11).
Finally, we must compute the contribution proportional to the Hamiltonian, to obtain:∫ +∞

−∞
dp [(Hϕ − ⟨Hϕ⟩)χ̃] C(q, p) =

λ1/6ℏ2/3

25/3q1/2
(Hϕ − ⟨Hϕ⟩)χ̃ (4.35)

solved recognizing the form of the Airy transform (4.23). The result is identical to that
found for (4.12) without coarse-graining. Moreover, this result is also independent from
the “weight” over the oscillations α, since it does not appear in any part of the final
result.
So in the end we find the same results we got for the matter equation without coarse-
graining, and we can rewrite the same matter equation:

−iℏ2λ
1/2q3/2

m2
p

∂qχ̃

[
1 +

iℏ
2λ1/2q3/2

]
+ [Hϕ − ⟨Hϕ⟩] χ̃ = 0. (4.36)

So, once again, we were able to reproduce exactly the classical behaviour we would have
if we just consider the Wigner as a Dirac’s delta peaked on the classical trajectory.

4.4 The “p2” matter equation with coarse-grained

Wigner

When we introduced the coarse-graining procedure as result of the TOU method, we
found the Husimi distribution in p, that is nothing else that a Gaussian-smoothed version
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of the Wigner function. Such a coarse-grained Wigner is similar to the Gaussian probabil-
ity distribution, and by increasing the value of the factor α, the coarse-grained Wigner
becomes a normalized, positive definite, distribution, centered on the value p = pcl,
which spreads as α grows. So we can effectively think to the coarse-grained Wigner as
a probability distribution in phase space that, at high values of α, becomes essentially a
Gaussian with mean p = pcl and standard deviation dependent on α.
The definition of time in the matter equation is related to the integral ∼

∫ +∞
−∞ pWdp.

We calculate such integral in different cases. While for HH the integral, due to large
interference effects, led to non-negligible quantum (oscillatory) effects, and the semiclas-
sical limit could be obtained only by averaging over such oscillations, for the other cases
the resulting matter equation was the same and consistently reproduced the classical
limit. This occurred in the “pure” Vilenkin-case and also for the coarse-grained Wigner
function. This result is peculiar since the final matter equation seems to be independent
on the shape of the Wigner function.
Let us note that obtaining the classical limit in the pure Vilenkin case was expected.
Indeed if gravity (scale factor) is described by a pure state, time can be introduced in
the matter equation à la Born-Oppenheimer, and the same result is obtained. The intro-
duction of time employing the Wigner function is necessary if gravity cannot be defined
by a pure state (that is the case of a coarse-grained Wigner function). In such cases one
would expect slightly different forms for the matter equation.
Let us note that the procedure for obtaining the final form of the matter equation con-
sists in performing an integration over p. While such an integration indeed reproduces
the correct result in the classical limit and for the Vilenkin case, one may agree that dif-
ferent integrations would lead to different results, non of them being a priori justifiable.
In what follows we investigate the consequences of performing an integration over dp2

or, similarly, on integral ∼
∫ +∞
−∞ pdp of both sides of the matter equation.

In the classical limit, when the Wigner is a Dirac delta, the correct matter equation
is certainly reproduced and it is worth studying how the matter equation varies in the
other cases.
Let’s start right with the evaluation of (4.22). By multiplying the integrand by p, we
find:

− i

ℏ
(∂qχ̃)

∫ +∞

−∞
p2C(q, p)dp

= − i

ℏ
(∂qχ̃)

∫ +∞

−∞
p2 exp

{
8ℏ(qα)3/2

λ1/2

(
λ1/2q1/2

2ℏα1/2
− p

ℏα1/2
+

4ℏ(qα)3/2

3λ1/2

)}
× Ai

[(
(qλ)1/2

2
− p

)(
25/3q1/2

λ1/6ℏ2/3

)
+

28/3ℏ4/3(qα)2

λ2/3

]
dp

(4.37)

73



and in in order to evaluate this contribution, we use the lemma of the Airy transform
(4.24), finding that:

Φβ(y) = β exp

{
iky + i

k3β3

3

}
,

y =
(qλ)1/2

2
+

2q3/2β2

ℏ2λ1/2
, k = i

8q3/2β

ℏ2λ1/2
, β =

λ1/6ℏ2/3

25/3q1/2

and the integral (4.37) can be evaluated as:

− i

ℏ
(∂qχ̃)

[
y
(
yΦβ(y)− β3Φ′′

β(y)
)
− β3

(
yΦβ(y)− β3Φ′′

β(y)
)′′]

= − i

ℏ
(∂qχ̃)

(
y2 + 2yβ3k2 − 2ikβ3 + β6k4

)
Φβ(y)

= − i

ℏ1/3
(∂qχ̃)

(
q1/2λ7/6

211/3
+
λ1/6ℏ2α
25/3q1/2

)
.

(4.38)

Now we can proceed evaluating the new contribution that comes from (4.26), leading to:

1

2
(∂qχ̃)

∫ +∞

−∞
p∂qC(q, p)dp = − λ

16
(∂qχ̃)

∫ +∞

−∞
p
∂pC
p

(q, p)dp

= − λ

16
(∂qχ̃)

[
exp

{
8ℏ(qα)3/2

λ1/2

(
λ1/2q1/2

2ℏα1/2
− p

ℏα1/2
+

4ℏ(qα)3/2

3λ1/2

)}

× Ai

[(
(qλ)1/2

2
− p

)(
25/3q1/2

λ1/6ℏ2/3

)
+

28/3ℏ4/3(qα)2

λ2/3

]]p=+∞

p=−∞

= 0

(4.39)

where we have used the relation ∂qW = −[λ/(8p)]∂pW that comes from the gravitational
equation (2.29).
For this case we can also compute the contribution coming from (3.24), finding the
following result:

−
∫ +∞

−∞
dp

1

2
(∂2q χ̃)(pC + p2∂pC) = −

∫ +∞

−∞
dp

1

2
(∂2q χ̃)(pC − 2pC)− 1

2

[
p2C
]+∞
−∞

=

∫ +∞

−∞
dp

1

2
(∂2q χ̃)pC =

(λℏ)2/3

211/3
(∂2q χ̃).

(4.40)

The contribution (4.34) now becomes:

−iℏ
4

(∂2q χ̃)

∫ +∞

−∞
dpp

∂

∂p

(
∂C
∂q

)
=
iℏ
4
(∂2q χ̃)

∫ +∞

−∞
dpp

∂

∂p

(
λ

8p

∂

∂p
C
)

=
iℏ
4
(∂2q χ̃)

∫ +∞

−∞
dp

(
− λ

8p

∂

∂p
C +

λ

8

∂2

∂p2
C
)

=
iℏ
4
(∂2q χ̃)

∫ +∞

−∞
dp

(
∂

∂q
C +

λ

8

∂2

∂p2
C
)
.

(4.41)
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In the first part of the integral, with ∂
∂q
C, we have exploited the gravitational equation

(2.4). The resulting contribution is of the same form of (4.26), and can be evaluate it in
the same way, leading to:

iℏ
4
(∂2q χ̃)

∫ +∞

−∞
dp

(
∂

∂q
C
)

= i
ℏ5/3λ1/6

214/3q3/2
(∂2q χ̃). (4.42)

The remaining part of the integral (4.41), with ∂2

∂p2
C, becomes:

iℏ
4
(∂2q χ̃)

∫ +∞

−∞
dp

(
λ

8

∂2

∂p2
C
)

=
iℏλ
32

(∂2q χ̃)

[
∂

∂p
C
]+∞

−∞
= 0. (4.43)

So we have that the result of the integral (4.41) is simply given by (4.42).
The result of the contribution from (4.35), is:∫ +∞

−∞
dp [(Hϕ − ⟨Hϕ⟩)χ̃] pC(q, p) =

λ2/3ℏ2/3

28/3
[(Hϕ − ⟨Hϕ⟩)χ̃] (4.44)

where we recognize that the integral is of the same kind of (4.22) and (4.40).
The second contribution from the matter Hamiltonian is:

− iℏ
2
∂q [(Hϕ − ⟨Hϕ⟩)χ̃]

∫
dpp∂pC =

iℏ
2
∂q [(Hϕ − ⟨Hϕ⟩)χ̃]

∫
dpC

= i
ℏ5/3λ1/6

28/3q1/2
∂q [(Hϕ − ⟨Hϕ⟩)χ̃]

(4.45)

where we integrated by part and evaluated the resulting integral by using the same result
found in (4.35).
Now we can put all these contribution together to obtain the new matter equation:

− iℏ
[
2q3/2λ1/2

m2
p

+
8q1/2ℏ2α
λ1/2m2

p

]
∂qχ̃+ i

[
ℏ3

m2
pλ

1/2q1/2
− 2i

ℏ2q
m2

p

]
∂2q χ̃

+ (Hϕ − ⟨Hϕ⟩)χ̃+ i
ℏ

q1/2λ1/2
∂q [(Hϕ − ⟨Hϕ⟩)χ̃] = 0.

(4.46)

Let us note that the term multiplying ∂qχ̃ contains a first contribution proportional to the
classical velocity and necessary to introduce the conformal time in the matter equation,
plus a higher-order contribution proportional to α that becomes small in the large q
limit. This contribution cancels when α = 0 (as it should for a Vilenkin pure state),
but for α ̸= 0 is non-negligible. It is related to the spread of the coarse-grained Wigner
function and can be naturally interpreted as quantum gravitational effects. Let us also
note that the factor α can be dependent to q and this modifies the time dependence of
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such quantum corrections.
Finally, if we can keep the leading, hermitian terms of the last equation, recalling also
that the terms ∂2q χ̃ and ∂q [(Hϕ − ⟨Hϕ⟩)χ̃] are sub-leading in the context of inflation, we
are left with the new version of the matter equation, of the form:

−iℏ
[
2q3/2λ1/2

m2
p

+
8q1/2ℏ2α
λ1/2m2

p

]
∂qχ̃+ (Hϕ − ⟨Hϕ⟩)χ̃ = 0. (4.47)

4.4.1 What would happen for a “p3” matter equation?

Having computed the matter equation in the “p2” case, it is normal to ask why we have
chosen to perform such an integral, and what happens for the “pn>2” choice. So, it is
worth calculating the “p3” matter equation, and verify if it will produce the same kind
of matter equation, with a NLO term for ∂qχ̃ which has the same behaviour of the one
found in (4.47), plus NNLO contributions which become rapidly negligible in the high-q
limit.
We will consider the contribution from (4.37), with p3 instead of p2, which can be solved
by the application of the Lemma (4.24) in the following way:

− i

ℏ
(∂qχ̃)

∫ +∞

−∞
p3C(q, p)dp = −i

[
qλ5/3

214/3ℏ1/3
+

3λ2/3αℏ5/3

211/3
− λ2/3ℏ5/3

217/3q2

]
(∂qχ̃). (4.48)

Then we can compute the contribution coming from (4.44) with p2 instead of p inside the
integral, and we can solve it recognizing that it is the same kind of integral we computed
in (4.37):∫ +∞

−∞
dp [(Hϕ − ⟨Hϕ⟩)χ̃] p2C(q, p) =

[
ℏ2/3q1/2λ7/6

211/3
+

ℏ8/3λ1/6α
25/3q1/2

]
[(Hϕ − ⟨Hϕ⟩)χ̃] . (4.49)

We will ignore the other contributions to the matter equation for our actual scope,
knowing from previous considerations that they give contributions of higher order to the
matter equation.
Considering the contributions (4.48) and (4.49), we can follow the same procedure of the
previous case and obtain a matter equation:

−iℏ2q
3/2λ1/2

m2
p

[
1 +

2ℏ2α
qλ

+O(q−2)

]
∂qχ̃+ (Hϕ − ⟨Hϕ⟩)χ̃ = 0. (4.50)

We can see that the matter equation (4.50), at LO, is identical to the ones which gave us
the Schrodinger equation in all the other cases, and at NLO (O(qn<0)) has a correction
for the term ∂qχ̃ that, besides coefficients, is identical to the one found in (4.47), and
has the same behaviour in the high-q limit. We also obtain a further correction of order
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O(q−3), which becomes highly negligible in the regime we are considering.
So we can say that the NLO corrections to the matter equation are already reproduced
correctly in the case of the “p2” matter equation, and considering “pn>2” equations will
produce basically the same corrections, while considering the standard matter equation
(4.36), the NLO (quantum) corrections are completely lost.
Let us finally note that integration over p is necessary in order to obtain the matter
equation (which should not depend on p). The “p” dependence is a consequence of the
hybrid method used to perform the BO decomposition, using the Wigner function to
describe the gravitational sector. A rigorous treatment should consist in describing the
entire matter gravity system in terms of a density matrix and its Wigner transform. In
our “effective” approach, how the integration over p is performed is left arbitrary, however
the results obtained by integrating over p2 look consistently reproduce the classical limit.

4.4.2 Cosmological outcomes

In this section, we will investigate the potential consequences of the quantum corrections
in the matter equation emerging from the “p2” integration.

Quantum corrections as the effect of a “virtual fluid”

Let us now return to the matter equation (4.47) we found for the “p2” case:

−iℏ
[
2q3/2λ1/2

m2
p

+
8q1/2ℏ2α
λ1/2m2

p

]
∂qχ̃+ (Hϕ − ⟨Hϕ⟩)χ̃ = 0.

As we said in different occasions, the term

2q3/2λ1/2

m2
p

∂qχ̃ = q′∂qχ̃ = ∂ηχ̃

is the one that consent to reintroduce the conformal time inside our matter equa-
tion, because of the presence of the term q′. The other contribution multiplying ∂qχ̃,
(8q1/2ℏ2α)/(λ1/2m2

p), is a quantum-gravitational corrective term, that inevitably is going
to modify the term ∂ηχ̃ inside the matter equation.
One can think that this term modifies the source term of the classical Friedman equation
(1.13), and q′ is replaced by new quantum-corrected q′qc, such that:

q′qc =

[
2q3/2λ1/2

m2
p

+
8q1/2ℏ2α
λ1/2m2

p

]
. (4.51)

The modification of q′ in (4.51) has inevitably cosmological consequences, and we can
study them via the Friedman equation, considering a new form of the energy density ρqc.
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We can find the following new form for the first Friedman equation:(
q′qc
q

)2

=
8qρqc
m2

p

. (4.52)

Where ρqc is the result of a sum ρqc = ρ+ ρvirt between the previous contribution ρ = Λ
and of a new contribution ρvirt which encodes quantum gravitational corrections. We
can then interpret the new contribution ρvirt as the presence of a new “virtual” fluid
which fills the Universe, and for the nature of the corrections produced, we can imagine
it must be a fluid whose density of energy decreases with the growth of the parameter
q, and whose effects were more important in a primordial phase of the Universe, leaving
today just a tiny correction to the classical observations.
Solving (4.52) with the form of q′qc given by (4.51), we can find the following expression:

ρqc = Λ+
4ℏ2α
qm2

p

+
4ℏ4α2

q2m4
pΛ

(4.53)

and, recalling that ρqc = ρ+ ρvirt and ρ = Λ, we can conclude that:

ρvirt =
4ℏ2α
qm2

p

+O(q−2) (4.54)

where we are considering only the first-order correction in the limit of high-value q for
ρqc.
Now, since we are considering this energy contribution as if it was coming from a virtual
fluid, we can study its continuity equation, to determine its equation of state. One can
simply take back the continuity equation displayed in (1.4) with the result (1.7) coming
from the ansatz p = ωρ, and find:

ρvirt = q−
3
2
(1+ωvirt). (4.55)

Now one can compare (4.54) and (4.55), where the coarse-graining parameter α is usually
definite as inversely proportional to q [19] [29] [26](α ∝ q−nα , with nα positive). So, the
form of ρvirt from (4.54) is ρvirt ∝ q−(1+nα), and we can conclude that:

ωvirt =
2

3
nα − 1

3

and we can rewrite (4.54) as:
ρvirt = q0 · q−(nα+1). (4.56)
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Outcomes in the context of cosmological perturbations

In the first chapter we briefly illustrated the theory of of quantum-inflationary pertur-
bations, studied via the Mukhanov-Sasaki (MS) equation (1.74).
From the solutions of this equation, it is possible to obtain the features of the quantum
perturbations spectre, which can be then related to the CMB anisotropies. Such features
are defined by relations which contains the slow-roll parameters ϵ1 and ϵ2. These are
ns − 1, nt and r, that we defined in (1.80), (1.85), (1.86), that we rewrite here for more
clarity (in terms of q):

ϵ1 = − H ′
√
qH2

, ϵ2 = 2
d ln(ϵ1)

d ln(q)
,

ns − 1 = −2ϵ1 − ϵ2, nt = −2ϵ1, r = 16ϵ1.

The presence of quantum gravitational corrections alters these parameters since the
evolution of the scale factor is modified by the expression q′ = q′qc in Eq.(4.51).
One can then compute the values of the slow-roll (SR) parameters ϵ1 and ϵ2 for q

′ = q′qc.
The SR parameter ϵ1, can be first computed for the classical (de Sitter) value of H =
H0 = const., and find:

ϵ1cl = − H ′
√
qH2

= 0 (4.57)

which is the correct parameter for the de Sitter Universe. Since ϵ1cl = 0, ϵ2cl and higher-
order SR parameters are identically zero.
If one now considers the evolution modified by the virtual fluid described by the Friedman
equation q′qc, a different result for ϵ1 is found, indeed from (4.51):

H2 ∼ Λ + q0 · q−nα−1, (4.58)

then one finds:
ϵ1 ∼= −(nα + 1)

q0
Λ
q−nα−1. (4.59)

Let us notice that, without virtual fluid (q0 → 0), on recovers the classical (de Sitter)
evolution.
On now calculating ϵ2 one finds:

ϵ2 ≡ 2
d ln(ϵ1)

d ln(q)
≈ −2(nα + 1) (4.60)

which may be large. This result however is the consequence of the unperturbed de Sitter
evolution obtained without the quantum virtual fluid. A large value for ϵ2 is dynamically
related to the evolution driven by the fluid (4.53) which mimics a so called constant roll
phase.
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For realistic inflationary models one has ϵ1 = ϵ1cl ̸= 0, and the quantum corrections can
be approximately described by:

ϵ1 ∼= ϵ1cl(q)− (nα + 1)
q0
Λ
q−1−nα , (4.61)

and therefore
ϵ2 ∼= ϵ2cl + 2(nα + 1)2

q0
Λ
q−1−nα . (4.62)

Finally, one can calculate:

ns − 1 = −2ϵ1 − ϵ2 = (ns − 1)cl − 2nα(nα + 1)
q0
Λ
q−1−nα , (4.63)

nt = −2ϵ1 = −2ϵ1cl + 2(nα + 1)
q0
Λ
q−1−nα , (4.64)

r = 16ϵ1 = rcl − 16(nα + 1)
q0
Λ
q−1−nα (4.65)

Notice, that in the limit q0 → 0, the virtual fluid disappears, and the variables ns − 1,
nt and r return to their value in classical limit.
As we said, the quantities ns − 1, nt and r are parameters that describe the inflationary
quantum perturbations, and can be implemented in the study of measurement of the
CMB anisotropies.
Let us finally note that, the case we have just considered is an approximation of this
mechanism, but anyway shows that such effects exists and can be used as a starting
point for a more accurate analysis of inflation.
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Conclusions

In this thesis we studied a simplified inflationary model with an approximately con-
stant potential V (ϕ) = Λ, and by the Dirac quantization procedure of the Hamiltonian
constraints, we were able to obtain the Wheeler-DeWitt (WdW) equation. The WdW
equation has been treated by a Born-Oppenheimer decomposition, that in this contest
consists of decomposing the total Universe wave function into a gravitational component
(the “heavy” degree of freedom), and a (homogeneous) matter component for the infla-
ton field (the “light” degree of freedom). This allows us to obtain two partial differential
equations from the original WdW equation: one for gravity and one for matter.
Subsequently one of the two equations was transformed according to Wigner-Weyl, in
particular transforming the gravity wavefunction into a Wigner function, on which also
the matter equation will depend. This was done in order to study the quantum be-
haviour, and possibly the emergence of quantum perturbative effects associated with the
introduction of time, and study how that would impact on the propagation of the matter
component.
The study of the gravity solution, with Hartle-Hawking (HH) initial conditions, brought
to a form of the Wigner function proportional to an Airy function, symmetric respect
to the momenta of the scale factor and peaked on the classical trajectory p = ±pcl,
which remarks the fact that the HH initial conditions describe a Universe in a quantum
superposition of an expanding and a contracting phase. Due to its form, we saw that the
coarse-grained version of the HH Wigner function as an Husimi distribution cannot be
expressed analytically, despite the fact that a numerical evaluation displays the correct
expected behaviour.
The Wigner solution was inserted inside the matter equation, and different approxima-
tion methods have been applied. Searching for the classical limit, we showed how the
Wigner function can be approximated by a Dirac delta peaked on the classical solutions
p = ±pcl, and integrating around the positive (expanding) one, we were able to make
the time emerge in our theory, and the matter equation takes the form of a Schrodinger
equation.
Considering the contribution of the exact gravitational solution inside the matter equa-
tion, and expanding the Wigner (Airy) function for large values of the scale factor, one
obtains the appearance of a large, non-hermitian, highly-oscillating contribution to the
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matter equation. However, this contribution can be eliminated by coarse-graining the
matter equation, which is equivalent to average over fast oscillations (trans-plankian). In
this way one is able to recover the conformal time definition inside the matter equation,
showing that it can be still written as a Schrodinger equation. This coarse-graining “a
posteriori” may mimic the coarse-graining on the HH Wigner function which we could
not perform analytically.
Finally, we studied the Vilenkin solution for the gravity equation, Wigner-Weyl trans-
forming the gravity wavefunction and finding an approximate solution for the corre-
sponding Wigner function, which resulted into an Airy function peaked on the posi-
tive (expanding) classical solution for the scale factor momentum p = +pcl. This was
once again inserted into the matter equation, finding the same semi-classical limit as a
Schrodinger equation, with the emergence of conformal time. In this case the Wigner
function was also coarse-grained into an Husimi distribution, and inserting this function
inside the matter equation, we obtained the same (Schrodinger) form of the “pure” (not
coarse-grained) Wigner function. In particular, our result was independent from the
coarse-graining parameter α.
We then focused on a new approach for obtaining the matter equation with the coarse-
grained Wigner function, based in a different integration procedure. The new approach
showed the emergence of small quantum corrections in the contribution connected with
the emergence of time inside the matter equation (considering just first order approxi-
mations). Finally, we probed that considering alternative versions of this method, these
would produce substantially the same quantum perturbative effects.
The appearance of the perturbative correction has an effect on the “velocity” q′ and,
inserted into the Friedman equation, results in a time-dependent correction for the con-
stant inflaton potential Λ. This could be interpreted as the presence, in the early-stages
of the Universe, of a “virtual fluid”, which contribution is non-negligible in the early
(inflationary) epoch, but becomes almost null in the large cosmological factor regime.
The continuity equation and the behaviour of this fluid have been studied.
The presence of quantum-corrections which modify the inflationary evolution determine
a redefinition of the value for the slow-roll parameters ϵ1 and ϵ2, that in turn has con-
sequences in the estimate of ns − 1, nt and r. We showed that small corrections emerge
from this context, and this last result should be taken as an example of the effects that
could emerge when quantum-gravitational corrections are considered, and needs further
and deeper studies. Indeed, with increasingly high precision observations coming in the
next few years, such features may be relevant to discriminate between different modes
of inflation.
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Appendix A

Taylor expansion of potential energy
terms

Following [32] ,we can make use of position eigenvalue equation of the position eigenstate

U(x̂) |x⟩ = U(x) |x⟩ .
Then we have the following Taylor expansion:

U
(
x± s

2

)
=

∞∑
n=0

[
1

n!

dnU

dxn

(
±s
2

)n]
. (A.1)

Now we can multiply by (iℏ)n and by (− i
ℏ)

n (which is its inverse) and get

U
(
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2

)
=

∞∑
n=0

[
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(
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(A.2)

so we get
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Now we can substitute this last expression inside a Wigner integral and get∫
dse
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(A.4)

In the last line, we can recognize the relation (2.28), so we can rewrite it as
∞∑
n=0

[
((−1)n ± 1)

(iℏ)n

2nn!

dnU

dxn

(
∂nW

∂pn

)]
(A.5)

that are the expansions that we find in (2.29) and (2.30) for the terms ⟨H2
ϕ⟩ and ⟨∂2a⟩.
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Appendix B

Saddle point approximation for Airy
function

The saddle point approximation (SPA) is a method for deriving an asymptotic approxi-
mation to integrals of the form [3]:

I(x) =

∫
C
dtf(t)exg(t)

for the limit x→ +∞. We indicate with C the complex contour which is our integration
range and the functions f and g are analytic functions of t. the idea behind this method
is to take advantage of the analytic propriety of the f(t), g(t) functions to deform our
integration range C into a new one C ′ on which g(t) will have a constant imaginary part.
Once this has been done, we can evaluate the new integral with Laplace’s method.
Now we take the example of an Airy function Ai(x) with x > 0, we can write it as [35]:

Ai(x) =
1

2πi

∫ +i∞

−i∞
dte

t3

3
−xt. (B.1)

Now we can choose a new variable u defined as

t =
√
x+ iu with −∞ < u < +∞ (B.2)

and now we can rewrite the integral (B.1) as:

πe
2
3
x3/2

Ai(x) =

∫ +∞

0

e−u2√x cos

(
u3

3

)
du =

1

2x1/4

∫ +∞

−∞
e−v2 cos

(
v3
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)
dv. (B.3)

Then we can replace the cos
(

v3

3x3/4

)
by its expansion

πe
2
3
x3/2

Ai(x) =
1

2x1/4

∫ +∞
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e−v2

(
1− v6

18x3/2
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(B.4)
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and integrate it by parts, obtaining:

πe
2
3
x3/2

Ai(x) =
π1/2

2x1/4

(
1− 15

144x3/2
+ . . .

)
(B.5)

which gives us the asymptotic behaviour of the Airy function with positive argument.
It is worth noting that this method is really useful to evaluate the Airy function in the
x > 0 range, and it gives an increasingly better approximation for more terms considered
in the expansion (B.4) an for larger values of x, but it can’t be used as an approximation
for the whole range Airy function, since it also diverges in x = 0, so its use is only for a
limited set of cases [18].
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