
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Exploring rich dark sectors for dark matter
and neutrino masses with phenomenology

at ICARUS

Supervisor:

Prof. Silvia Pascoli

Co-supervisor:

Dr. Alessandro Granelli

Submitted by:

Giuseppe Cordella

Academic Year 2022/2023



Abstract

In this master’s thesis, realisations of rich dark sector models are proposed as a solution
to the problems of dark matter and neutrino mass generation. In these models, sub-GeV
dark photons Z ′ can decay into final states with both visible and invisible particles. A
variable number of heavy neutral particles ψi is postulated, which can be treated as dark
matter (DM) candidates or heavy neutral leptons giving rise to neutrino masses via seesaw
mechanism. After providing extensive context, the full mass spectrum is studied with
the aim of reconstructing the Yukawa couplings from observed neutrino parameters. The
models are then interpreted as variations of inelastic DM (iDM) and the case is made
for their testability at ICARUS experiment, in its current operation in the Fermilab
Short-Baseline Neutrino program, through the decay chain Z ′ → ψ1(ψ2 → ψ1`

+`−),
with the Z ′ produced in rare neutral kaon decays. The parameter space region probed
by this experiment is confronted with the cosmological range required for iDM. A Monte
Carlo simulation (written using the Pythia generator and a combination of Mathematica
and Python codes) was run to calculate the expected number of events in the detector.
The simulation accounts for production, propagation and decay in the laboratory frame,
taking into account the calculated decay rates and the geometry of the experimental
setup.
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Introduction

Despite its outstanding successes, the Standard Model of particle physics has proved it-
self unsatisfactory on two main fronts, namely the problem of dark matter and neutrino
physics.
Dark matter is a reasonable hypothesis, arisen in cosmology, that justifies a number of
astrophysical observations, namely the mass distribution of galaxies and galaxy clusters
and the temperature fluctuations of the cosmic microwave background. The accepted
cosmology paradigm, based on General Relativity, leads to the conclusion that less than
5% of the energy content of our Universe comes from visible sources, while the rest is to
be split between a form of energy responsible for the accelerated expansion of the Uni-
verse (dark energy) and an invisible massive source (dark matter). The Standard Model
does not include any convincing particle candidate for the latter.
As for neutrinos, they can be probably considered the least understood elementary parti-
cles: their mass is still unknown, although it is known that it cannot be zero for all three
known species, and we have no evidence on whether they are identical to or different
from their antiparticles (i.e. whether their nature is that of Majorana or Dirac fermions).
These two questions are actually intertwined and both theoretical and experimental ef-
forts are directed towards providing answers beyond the Standard Model.
Dark sectors lie at the crossroads between the aforementioned unsolved problems in as-
troparticle physics, and they are potentially capable of addressing several other issues,
like low-energy anomalies and baryogenesis. They constitute a flexible theoretical frame-
work with a fair economy of hypotheses, which invariably includes a particle content in
the mass range going from a few MeV to a few GeV, communicating very feebly with
the known Standard Model particles. One of their greatest advantages is that the energy
range is at current reach of many experiments, even though detection events have to be
rare by construction, and discerning signals from backgrounds is a significant challenge
most of the time.
This work is aimed towards exploring next-to-minimal dark sector models, which contain
an additional U(1)D gauge symmetry and a varying number of neutral fermions. On
the theoretical side, we compute the mass spectrum of the new fermions and system-
atically discuss the conditions for implementing a seesaw mechanism that explains the
observed neutrino mass-squared differences, compatibly with flavour mixing angles. On
a phenomenological perspective, we derive the decay rates in view of testing the param-
eter space in a realistic setting, represented by the ICARUS experiment at Fermilab. In
particular, we examine the region of cosmological interest to establish a benchmark and
run a Monte Carlo simulation of the production, propagation and decay of dark sector
particles in this setting, whose final result is the expected number of events.
Chapter 1 presents an overview of dark matter, presenting dark sectors as an alterna-
tive to the WIMP paradigm in the thermal picture. Chapter 2 then motivates them as
providing the missing pieces to other beyond Standard Model puzzles and gives a review
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of portals, i.e. the terms in the Lagrangian that provide communication with the Stan-
dard Model, focusing on a basic example of kinetic mixing model. Chapter 3 deals with
the theory of rich dark sector models. First, the semi-visible dark photon models are
presented and neutrino mass generation is discussed. Then we motivate their relevance
for dark matter, reviewing the studies in this regard. In the last chapter we discuss the
phenomenology at ICARUS and clarify how the neutral mesons produced in beam dump
experiments can be used to test our models.
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Chapter 1

The particle physics approach to
dark matter

This chapter serves as a brief overview of the extensive field of study that is Dark Matter
(DM), from the point of view of particle physics. After stating the main problems we face
within our current understanding of matter at galactic scale and beyond, we will narrow
the scope of the proposed solutions down to the framework of particles, and in particular
to those in the mass range between the keV and the tens of GeV, which can be included
in the standard thermal history of the Universe. Justification for following this road will
be provided, which will hopefully convince the reader of the rising attractiveness of this
approach over the others. The theoretical discussion will be integrated with a summary
of the experimental attempts at finding said particles, which employ different techniques
to explore the parameter spaces of the proposed models.

1.1 Observational evidence for dark matter

One of the most fascinating tasks in contemporary physics is to clarify the origin and
composition of the matter content of the Universe. Since the last century it has become
increasingly clearer that ordinary, visible matter, made mostly of baryons, is neither the
only component, nor the most abundant.
Astrophysics is what first sparked interest in the question. Historically, observations
of the motion of celestial bodies in the Solar System which were inconsistent with the
understanding of the time either lead to the discovery of previously unseen objects (like
the planet Neptune), or prompted the formulation of a new theory (General Relativity).
Moving to galaxies and clusters, new inconsistencies arose. The name ‘dark matter’ was
famously used in its contemporary sense by F. Zwicky in 1933 [1]: he observed the velocity
dispersion of galaxies in the Coma cluster and concluded that the mass density of the
visible matter in it was too low to keep the cluster gravitationally bound. Some kind of
additional matter, which interacted with the ordinary one through gravity alone, could
explain the missing mass.
This was confirmed in the 1970s by the measurements of galaxy rotation curves (among
others, one should mention V. Rubin’s distinguished works [2]). In short, Newton’s law
of universal gravitation predicts that the velocity v of a star at a distance r from the
center of a galaxy should be

v =

√
GM

r
, (1.1)
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Figure 1.1: Superposition of the rotation curves of twenty-one Sc galaxies, with varying
luminosities and radii. Figure taken from [2].

Figure 1.2: Bullet cluster 1E065-558, colour image (Magellan telescopes, left) and X-ray
image (Chandra observatory, right). The white bar indicates 200 kpc at the distance
of the cluster. Reconstructed gravitational lensing is contoured in green. Figure taken
from [3].

where G is Newton’s gravitational constant, and M is the mass within the orbit, which
can be considered constant at the outer rim of the (visible) galactic disk. This r−1/2

behaviour is not observed; rather, the velocity stays roughly constant as a function of the
distance, as illustrated in figure 1.1. This can be explained by an increase of the mass
M ∝ r, that is to say, by the presence of invisible matter. Elaborating the data, with the
aid of N -body simulations, it appears that this matter is distributed, with various pos-
sible density profiles, as a spherical halo extending around ten times beyond the visible
galactic disk.
Additional evidence comes from gravitational lensing, i.e. the bending of light trajectories
in the presence of a large mass, as described by General Relativity. In 1995 the Bullet
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Figure 1.3: The temperature anisotropies of the CMB as observed by Planck. Tiny
fluctuations correspond to density variations ultimately responsible for the structure of
the Universe. Image: ESA and the Planck Collaboration.

cluster was observed, and a misalignment between the X-ray contour, coming from inter-
galactic ionised gas, and the gravitational field profile, tracked by gravitational lensing,
was found [3] (fig. 1.3). The interpretation of data showed that its two subclusters are
drifting away from each other, with the baryonic gas components moving slower than the
dark component, due to the electromagnetic interaction of the gas particles.
As for cosmology, the current parametrisation of the Big Bang model must include a mat-
ter component alongside the visible one to account for the observed Cosmic Microwave
Background (CMB) temperature anisotropies [4], as well as to justify the large-scale struc-
ture of the Universe resulting from surveys of the sky. This final piece of evidence leads
us away from identifying (all of) the invisible matter with neutrinos. Indeed, neutrinos
would seem to be a good suspect: they do interact only gravitationally over astronomical
distances, being otherwise almost collisionless apart from the short-range weak interac-
tion. Nonetheless, cosmic neutrinos are too fast to account for the observed density of
large-scale structures [5]. The only solution, if we are to interpret DM in terms of par-
ticles, as we shall try throughout this work, is to turn to physics beyond the Standard
Model and concoct new, plausible particle models to test. However, it is fair to say that
DM could be constituted of more than one component, and that even the possibility to
partially explain the above phenomena through alternative routes, like modified theories
of gravity, is not ruled out completely.
Data from Planck collaboration (2018) sets DM as the second biggest contribution to the
energy density of the Universe with 26%, compared to 69% for Dark Energy and 5% for
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Figure 1.4: A mind-map diagram of the possible solutions to the dark matter problem.
Figure taken from [6].

baryonic (ordinary) matter [4]. These three components make up the ΛCDM model,1

which reasonably explains the CMB, the distribution of galaxies, the relative abundances
of light elements and the accelerating expansion of the Universe.

1.2 Properties of particle candidates

Generally speaking, the particles constituting DM can be seen as a leftover from the events
occurred in the early stages of the Universe. The fields that describe them, through some
mechanism, achieved a nontrivial configuration, with a relic density we can deduce today
from observations. We will make the case for one such mechanism in the following section.
For now, we list all the key properties that a good DM candidate should possess.

• It should be electrically neutral or with a tiny charge.

1Λ stands for cosmological constant, the term in Einstein field equations identified with a form of
Dark Energy, and CDM is for cold dark matter, i.e. DM slow enough to explain the observed structures.
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• It should have no colour charge.

• Self-interactions should be fairly weak (due to DM being collisionless).

• It should be nonrelativistic (or nearly so in the case of a sub-eV component).

• It should be stable, or at least long-lived.

Besides satisfying these conditions, candidates are required to be compatible with Big
Bang nucleosynthesis, stellar evolution and gamma ray observations, and, of course, they
must be testable.
Basic quantum mechanical considerations lead to lower bounds for bosonic and fermionic
DM particle masses. The smallest known distance scale at which DM is gravitationally
bound is that of dwarf galaxies. Stellar kinematics shows that, for the reasons clarified in
section 1.1, a dwarf galaxy should have a spherical DM halo of radius Rhalo ∼ 1 kpc; the
average velocity of orbiting bodies at the edge, deduced from Newton’s law of gravitation
as in (1.1), is v ∼ 100 km/s.
For bosonic DM, the only bound for the stability of the halo is the uncertainty principle
∆x∆p & 1. Taking ∆x ∼ 2Rhalo and ∆p ∼ mBv, where mB is the mass of the candidate
boson, we get

mB & 10−22 eV. (1.2)

A tighter bound exists for fermionic DM, due to the Pauli exclusion principle. The mass
of the halo can be written in terms of its volume and density as Mhalo = V ρF. Expressing
the density in terms of the phase space distribution function f(p) of fermion gas, in
nonrelativistic regime, we get

Mhalo = mFV

∫
f(p) d3p ≤ mFV

∫
d3p = mFV (mFv)3, (1.3)

where mF is the mass of the candidate fermion. The inequality is made using the fact
that no more than one fermion can occupy the same momentum eigenstate. Using the
volume of a sphere of radius Rhalo, and Mhalo ∼ 105M�, we get mF & 10 eV. More
refined estimates [7] tighten this constraint to

mF & 0.1 keV. (1.4)

This is known as the Tremaine-Gunn bound; astrophysical considerations suggest more
severe bounds [8].
As for the upper bound, for composite DM coming in clumps, the integrity of bound
compact systems like globular clusters upon interaction with DM requires the mass of
the clumps not to exceed 103M�, or 1070 eV [9]. This gives an enormous mass range to
deal with. In any case, elementary DM particles cannot be heavier than the Planck mass
mP ∼ 1028 eV, at which quantum effects of gravity become significant.

1.3 The thermal picture

The most frequently invoked mechanism for the origin of DM relics is thermal freeze
out. There are multiple reasons for that. First, it is the same mechanism that all
Standard Model particles (SM particles, from now on) are believed to have undergone;
this provides useful milestones to the reconstructed history of the Universe. Second,
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as we will see in 1.3.3, the mass range is limited to an area which is already object of
extensive research, both theoretical and experimental. Candidates in this window nicely
fit into extensions of the Standard Model that were developed for reasons other than
DM, and seem to solve more than one problem. Finally, it is particularly interesting to
see how experiments designed for apparently unrelated searches can in fact have thermal
range DM signatures. This section is devoted to reviewing the basics of the freeze out
mechanism, and to restricting the mass range of thermal DM candidates, through order
of magnitude estimates.
Rolling back time, the expansion of the Universe suggests that, in its early history, it was
much hotter and denser than it is now. Particles were close together, to the point that free
motion was severely limited by the frequent collisions, which also disrupted any bound
state. The picture is that of a plasma of elementary particles in thermal equilibrium, at
temperature T . As the Universe expanded, it also cooled down, leaving more room to
the particles and slowing them down. When the interaction probability among specific
particle species, described by the cross section σ, dropped below a threshold fixed by the
expansion of the Universe, those species are left to freely stream, and are therefore said
to freeze out of the thermal bath.
To translate this idea into mathematical terms, we need two quantities. The first is the
interaction rate

Γ = n(T )〈σv〉T , (1.5)

where n is the number density of the particle species under examination, v is the relative
velocity in the collision process, and the angular bracket denotes a thermal average. The
interaction rate has to be compared with the expansion rate, which, for the standard
cosmological model, is given by the Hubble parameter

H =
ȧ(t)

a(t)
, (1.6)

where a(t) is the scale factor from Robertson-Walker metric. Equating these two quan-
tities, we can find the approximate decoupling instant.
If we then plug this relation into an evolution equation, which expresses the number den-
sity as a function of time, we can find the density at freeze out. The latter can be directly
related to the density at present time through the scale factor cubed, and compared to
the observed abundance of the species. The cross section is left as an unknown, and
is therefore what we will extract from this calculation. Then, using standard assump-
tions from scattering theory, the mass of the particle can be deduced. Schematically, to
estimate the thermal DM candidate mass, the three ingredients to be put together are:

• the evolution equation (Boltzmann equation),

• the freeze out condition Γ ∼ H,

• the observed DM density (in terms of the parameter ΩDMh
2 ∼ 0.1).2

We shall deal with this task in the ensuing subsections, following the standard reasoning
found in textbooks such as [10] and [11].

2Data from the Planck collaboration [4] sets ΩDMh
2 = 0.315±0.007; h is the reduced Hubble constant.
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1.3.1 Boltzmann equation for the early universe

In the kinetic theory of gases, the statistical behaviour of a thermodynamic system whose
components can get out of equilibrium is described by the Boltzmann equation

L[f(x, p)] = C[f(x, p)], (1.7)

where f is the phase space distribution function. L is the Liouville operator, describing
the evolution of phase space volumes under Hamiltonian flow, and C is the collision
operator, which keeps track of particle interactions. The general-relativistic expression
for L[f(x, p)] is

L[f(x, p)] = pα
∂f

∂xα
− Γαβγp

βpγ
∂f

∂pα
. (1.8)

For a Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe, this reduces to

L[f(t, E)] = E
∂f

∂t
−H|p|2 ∂f

∂E
, (1.9)

by virtue of spatial homogeneity and isotropy. Dividing by the energy and integrating over
momentum space, assuming any exponentially decaying distribution, we get an expression
in terms of the number density:∫

d3p
L[f(t, E)]

E
=
∂n

∂t
+ 3Hn. (1.10)

Let us deal with the collision operator. Since we have to account for the interactions of
one particle species, which will decouple from the thermal bath, with other particles in
the system, we assign a subscript χ to the quantities referring to that species, and latin
letters to the rest. Considering a process χ + a + b + · · · → i + j + . . . , the collision
operator, divided by Eχ and integrated over the momenta to match the steps done for
the Liouville operator, has a rather cumbersome appearance:∫

d3pχ
C[f(t, E)]

Eχ
= −

∫
dΠχ dΠa dΠb . . . dΠi dΠj . . .

× (2π)4δ(4)(pχ + pa + pb + . . . − pi − pj − . . . )
×
[
|Mχ+a+b+...→i+j+...|2fafb . . . fχ(1± fi)(1± fj) . . .
−|Mi+j+...→χ+a+b+...|2fifj . . . (1± fχ)(1± fa)(1± fb) . . .

]
. (1.11)

Here we recognise:

• the Lorentz-invariant measure for the k-th species dΠk = gk
d3pk

(2π)32Ek
, where gk quan-

tifies the internal degrees of freedom;

• the S-matrix element M for both the direct and the inverse process;

• Bose enhancing and Fermi blocking factors (1± fk) dependent on the statistics.

We can get a simplified expression by making the following assumptions:

1. time-reversal (or CP) symmetry is retained (so that the S-matrix element squared
is the same for both time directions);
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2. all processes save for 2→ 2 are suppressed;

3. we take all species to be in kinetic equilibrium, and to follow Maxwell-Boltzmann

distribution fk ∝ e
µk−Ek
T , where µk is the chemical potential (so that 1± fk = 1 for

each k).

This way we obtain, using the integers 1 to 4 as labels for readability,∫
d3p1

C[f1(t, E)]

E1

= −
∫

dΠ1 dΠ2 dΠ3 dΠ4

× (2π)4δ(4)(p1 + p2 − p3 − p4)|M|2 (f1f2 − f3f4) . (1.12)

Defining neq
k as the number density of the k-th species at chemical equilibrium (µk =

0), and therefore at full thermodynamic equilibrium, and applying energy conservation,
(1.12) becomes ∫

d3p1
C[f1(t, E)]

E1

= −neq
1 n

eq
2 〈σv〉

(
n1n2

neq
1 n

eq
2

− n3n4

neq
3 n

eq
4

)
, (1.13)

where we have identified the thermally averaged cross section

〈σv〉 =
1

neq
1 n

eq
2

∫
dΠ1 dΠ2 dΠ3 dΠ4(2π)4δ(4)(p1 + p2 − p3 − p4)|M|2. (1.14)

The final step requires two further hypotheses:

4. the process is an annihilation χχ̄ → ψψ̄, where χ is the DM particle, and ψ a SM
particle (the bar denotes antiparticles);

5. the products ψ, ψ̄ are in chemical equilibrium, and therefore in full thermodynamic
equilibrium, with the bath.

Putting together (1.13) and (1.10) through (1.7), we get the final form of our evolution
equation for the DM particle density n (we drop the subscript 1):

∂n

∂t
+ 3Hn = −〈σv〉

(
n2 − n2

eq

)
. (1.15)

The term containing the Hubble parameter accounts for the expansion of the Universe.
The right-hand side expresses the balance between the direct and inverse reactions, and
vanishes if there is equilibrium or no interaction.

1.3.2 Estimate of the annihilation cross section

Equation (1.15) has no closed-form analytic solution. However, there exist both a viable
partial-wave expansion and precise numerical solutions. For the scope of this section,
which is demonstrating how the cross section is evaluated, we will neglect the temperature
dependence of 〈σv〉 (s-wave approximation).
We would like to recast the evolution equation in terms of the variable x ≡ m/T , with m
the mass of the DM particle, and of the unknown function Y ≡ n/s, with s the entropy
per unit volume. Y is sometimes called the comoving abundance and has the purpose
of factoring out the dependence on the scale factor a, as both n and s scale as a−3. We
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start by noticing that the left-hand side of (1.15) can be written simply as sdY
dt

, using
entropy conservation d

dt
(sa3) = 0. Then, to relate time to the temperature (and then to

x), we use the fact that, for a radiation-dominated universe,3

H =

√
8πG

3
ρrad '

√
8πG

3

√
π2g∗
30

T 2 ' 1.66
√
g∗
T 2

mP

, (1.16)

where ρrad is the energy density and g∗ is the number of effectively massless degrees of
freedom, which enters the formula for ρrad. The number g∗ counts the different particle
species assigning statistical weights 1 to baryons and 7/8 to fermions. It can also account
for relativistic species at different temperatures, like neutrinos after they decouple from
the thermal bath, with appropriate weights. From (1.16), together with the relation
a ∝
√
t, again specific of radiation domination epoch, we get

t ' 0.3 g−1/2
∗

mP

T 2
. (1.17)

With these relations at hand, the evolution equation becomes

dY

dx
= −x 〈σv〉

H(T = m)
s
(
Y 2 − Y 2

eq

)
. (1.18)

We use the following expression for the entropy density, which can be considered domi-
nated by the contribution of relativistic species:

s =
2π2

45
g∗sT

3, (1.19)

where g∗s again counts the particle species, but with a different weight due to the relation
s ∝ T 3 (as opposed to ρrad ∝ T 4). We then set

λ ≡ x
〈σv〉
H

s

∣∣∣∣
x=1

= 0.264
g∗s
g∗
mPm〈σv〉, (1.20)

which we take to be constant by virtue of the s-wave approximation. To further simplify
equation (1.18), we notice that, long after the freeze-out instant (x � xF, where xF is
set by imposing Γ = H), the comoving abundance of DM particles is much larger than it
was when DM was in the thermal bath. Indeed, contrary to what happens for hot relics,
the equilibrium abundance follows the nonrelativistic behaviour Yeq ∝ x3/2e−x, and is
therefore quickly suppressed after freeze out. This means that we can neglect Yeq at the
right-hand side.
Finally, we get, at late times,

dY

dx
' − λ

x2
Y 2. (1.21)

Integrating from xF to infinity (present time),

1

Y∞
− 1

YF

=
λ

xF

. (1.22)

Typically, YF � Y∞, so that

Y∞ '
xF

λ
. (1.23)

3The epoch we are considering for thermal freeze out. Indeed, going backwards in time, the Universe
dynamics gets dominated by massless species, as ρrad ∝ a−4 whereas ρmatter ∝ a−3 for massive species.
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One can estimate the value of xF to be around 10, for instance solving (1.18) also at
early times x� xF and matching the solutions in the two domains. To complete, we can
compute the present-day DM density ρDM = ms0Y∞, using the value s0 = 2970 cm−3 for
the entropy density, and from that the density parameter ΩDM. Imposing the observed
value ΩDMh

2 ∼ 0.1, the cross section is found to be around 10−26 cm3/s.
More precise calculations, which include a dependence of 〈σv〉 on the relative velocity
(actually necessary for consistency with CMB constraints), set the desired range to

〈σv〉 ' (2− 3)× 10−26 cm3/s. (1.24)

1.3.3 Lee-Weinberg bound and possible workarounds

The result (1.24) has been widely used as a justification for the WIMP (weakly-interacting
massive particle) paradigm. As we are about to show, the preferred mass range for ther-
mal DM nicely intersects with that of the lightest particles of supersymmetric extensions
of the SM. This correspondence, known as the WIMP miracle, has bent the attention of
the particle physics community towards these models for decades, as SUSY solves both
theoretical issues, like the long-standing hierarchy problem, and the observational DM
questions.
We start by considering a generic tree-level process χχ̄→ ff̄ , where f is a SM fermion,
mediated by a gauge boson V , which couples with the DM particles through a coupling
gχ, and with the SM fermions through gf :

χ

χ̄

f

f̄

gχ gf

V

Neglecting the fermion mass, in the nonrelativistic limit we get

σ '
∫

dΩCM
1

v

|M|2
32π2s

(1.25)

where ΩCM is the scattering solid angle in the center of mass frame and v is the relative
velocity; the center of mass energy s can be approximated, again in the nonrelativistic
limit, as

s = E2
CM = 4m2

χ +O(mχT ). (1.26)

This results in the thermal average being, roughly,

〈σv〉 ' |M|2
32πm2

χ

. (1.27)

Now, if χ is a Dirac fermion, and V a vector mediator of mass mV , the spin-averaged
S-matrix element squared is given by

|M|2 ' g2
χg

2
f

32m4
χ

(s−m2
V )

2 . (1.28)
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If mV > mχ (so that the process χχ̄→ V V is excluded), then (1.27) becomes

〈σv〉 ∼
g2
χg

2
fm

2
χ

πm4
V

, (1.29)

and this theoretical expression may be compared with the order of magnitude given by
(1.24), which, changing units, can be written as 10−9 GeV−2. This gives both an upper
and lower bound for thermal candidates.
It can be shown that, requiring unitarity, an upper bound exists around 100 TeV. As
for the lower bound, the standard picture assumes weak-scale couplings, leading to the
electroweak scale for the DM candidate (and mediator) mass:

mχ & 1 GeV. (1.30)

This was discovered by Lee and Weinberg [12], and separately by other authors.
As we stated above, this range nicely overlaps with the territory of the lightest super-
symmetric particle (LSP), which, in most SUSY models, is a neutral fermion with a mass
around the TeV scale. Such particles should be quite easy to detect, but no positive evi-
dence of their existence was produced at LHC (or in any other experiment). This failure
has fuelled the search for alternative explanations, which relax some of the hypotheses
used in the above derivations.
One interesting idea is to consider interactions that are weaker than the weak scale. Ad-
justing the couplings in (1.29), we see that this allows for a lighter mediator; the latter
would have evaded experimental detection due to the small statistics caused by the tiny
couplings. This explanation, aptly named Feebly Interacting Particles (FIPs), leaves the
DM candidate mass free, down to the keV scale, below which it would be in tension with
the CDM picture. FIPs are easily embedded in Dark Sectors, that will be dealt with
in chapter 2. The Dark Sectors framework can include annihilation channels which are
more complicated than the one illustrated above, giving rise to a diverse phenomenology.
We might as well tune the masses in (1.28) to obtain a resonant behaviour and a subse-
quent change in relic density, but that would require a natural explanation. An enhance-
ment in the cross section is we consider a Majorana fermion as mediator (〈σv〉 ∝ 1/m2

V ).
Another proposal is considering cosmological circumstances that could have brought ΩDM

to its current value. It could be that DM annihilation stopped before the calculated freeze
out time due to an asymmetry between DM particles and antiparticles, which requires
a mechanism to generate it similar to baryogenesis. Or, the cosmic DM density could
have dropped due to some entropy release after freeze out. We shall not explore these
possibilities in the following, instead focusing on the particle contents and annihilation
mechanisms in BSM pictures.

1.4 Experimental searches for thermal candidates

The search for new particles at the mass scale dictated by the WIMP paradigm and below
proceeds essentially along three main roads, corresponding to the ways DM candidates
can interact with SM particles:

• direct detection, in which one looks at the recoil of SM targets in large detectors
due to interactions with the DM halo;
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Figure 1.5: The three DM detection channels. The red arrows denote the time axis, and
therefore the direction in which the diagram should be read.

• indirect detection, in which the SM products of the same DM annihilation processes
of the early universe are looked for in regions of the sky where a large DM density
is expected;

• collider/terrestrial searches, in which the DM candidate is produced starting from
SM particles by the means of particle accelerators.

We will briefly review how these searches are usually conducted for WIMPs and lighter
thermal candidates.

1.4.1 Direct detection

The idea at the foundation of direct searches is that galactic DM permeates Earth and
may scatter off suitable targets, with an incoming velocity due to both its intrinsic motion
and the revolution of the solar system around the center of the galaxy.

WIMP searches

The obvious choice of targets for WIMPs is atomic nuclei, as first proposed in [13], [14].
The collision of a DM particle of mass mχ onto a nucleus of mass mN , causes a momentum
transfer q ' mχv. The recoil energy of the nucleus is

ER =
q2

2mN

' 50 keV
( mχ

100 GeV

)2
(

100 GeV

mN

)
. (1.31)

From standard scattering theory, the interaction rate for a flux of particles Φ entering a
detector containing Nt targets is given by

R = NtΦσ =
Mdet

mN

nχvσ, (1.32)

where Mdet is the total mass of the detector. Differentiating with respect to the recoil
energy and taking the thermal average in the velocity range available to the detector, we
get

dR

dER

=
ρχMdet

mχmN

∫ vmax

vmin

vf̃(v, t)
dσ

dER

d3v. (1.33)
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We will briefly analyse all the terms appearing in this formula. A full discussion is in [15]
and references therein.

Astrophysical observables. The local DM density ρχ is roughly 0.3 g/cm3, with
uncertainties related to the profile of the galactic halo. The velocity distribution f̃(v, t)
is a Maxwell-Boltzmann distribution boosted to the lab frame. This involves both the
velocity v� of the Sun with respect to the halo (' 220 km/s) and the velocity of the
Earth v⊕ with respect to the Sun. So we can perform a Galileian transformation and
expand,

f̃(v, t) = f(v + v� + v⊕) ' f(v + v�) + ε cosω(t− t0)
df

dε
(v + v�), (1.34)

where ε is the ratio of the component of v⊕ in the direction of v� to the modulus |v�|,
while ω = 2π/year. This means that the interaction rate has a constant component as
well as an annual modulation, a small but measurable signal. The final astrophysical
property is vmax, identified with the escape velocity, measured to be around 500 to 600
km/s [16].

Detector properties. Apart from the detector mass, which must be sized according
to the desired event rate, the crucial quantity is vmin. This can be related, through
kinematical considerations concerning the DM-nucleus collision, to the threshold recoil
energy Eth that the detector is capable of measuring, via

vmin =

√
mNEth

2µ2
, µ =

µχµN
µχ + µN

. (1.35)

Cross section. The differential cross section can be obtained taking an effective op-
erator approach. Consider a process like the one in section 1.3.3, this time with an
intermediate scalar φ for an easy example. The low-energy (q � mφ) 4-fermion vertex
corresponding to the UV-complete diagram

χ

χ̄

f

f̄

gχ gf

φ

has a coupling strength geff = gχgf/m
2
φ. In our case the SM particles will be quarks; since

the scattering events are expected not to resolve the hadronic structure, though, we need
to map quark fields Q onto nucleon fields p, n, by summing the couplings of χ with each
quark flavour weighted over the fraction of the nucleon mass it accounts for. This way
we obtain the coupling strengths of χ to protons fp and neutrons fn, which are usually
the same. Then, we sum over all nucleons (Z protons and A−Z neutrons) to obtain the
matrix element for the DM-nucleus scattering process. Lorentz invariance of the matrix
element and the Dirac equation restrict the ways the effective operator can depend on
the momenta and lead to a scalar fermion bilinear for the nucleus NN multiplied by a
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nuclear form factor F (q), which can be modelled starting from experimental data. This
means that the matrix element takes the form

M = [Zfp + (A− Z)fn]χχNNF (q). (1.36)

In the non-relativistic limit, N sN s′ ' 2mNξ
s†ξs

′
, where the ξ are the numerical two-

component spinors entering the free-particle solutions to Dirac equation, and an anal-
ogous expression holds for χχ. Summing over the spins and plugging the obtained
non-relativistic matrix element squared into Fermi’s golden rule, we obtain the spin-
independent cross section:

dσ

dER

=
2mN

πv2
[Zfp + (A− Z)fn]2 F 2(q). (1.37)

If fp = fn, σ ∝ A2: the heavier the nucleus, the higher the cross section, and DM interacts
coherently with the whole nucleus.
This is the simplest form of DM-nucleus scattering cross section. It is independent of the
recoil energy, leaving the only dependence on ER in (1.33) in the distribution function.
Explicit dependence of the cross section on ER can be obtained if the contribution of q
to geff cannot be neglected, and/or if a more complicated χ bilinear enters the effective
operator. The form of χ and N bilinears can also lead to spin-dependent interactions.
Using e.g. Leff ∝ χγµγ

5χQγµγ5Q, one gets

dσ

dER

=
16mN

πv2
G2

FJ(J + 1)Λ2F 2
SD(q), (1.38)

where J is the nuclear spin, GF the Fermi constant, Λ ≡ 1
J

(fp〈Sp〉+fn〈Sn〉), and we have
a different form factor.

Plugging typical numbers into (1.33) we get an integrated number of events of the order

R

Mdet

∼ 0.13
events

kg · year

(
A

100

)( σ0

10−38 cm2

)
×
( 〈v〉

220 km · s−1

)( ρ0

0.3 GeV · cm−3

)
. (1.39)

This relation can be used to estimate how big the detector should be and for how long
the experiment should run. Upcoming detectors will reach tens and hundreds of tons in
mass.
The signatures of nuclear recoils include heat, light and electrical currents due to electron
displacements. Current experiments employ single- or two-phase noble gas tanks. One
main difficulty, since nuclear recoils are extremely rare events, is the reduction of back-
grounds, including natural radioactivity from the earth, cosmic rays, secondary particles
and neutrinos.
Other searches involve the annual modulation. In particular, a variation in signal be-
tween June and December was observed by the DAMA experiment [17], but that result
conflicts with subsequent experiments (e.g. [18]), sparking interest in models which tried
to accommodate the discrepancy (see also section 3.1.1).
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FIP/dark sector searches

The typical energy threshold for recoil experiments is a few keV. Then, according to
equation (1.31), if mχ gets lighter than the tens of GeV scale, ER is below the threshold
and one should really look for alternative methods. All these other possibilities involve
many-body effects, and we list them below. Again, we will not focus on the details, for
which the reader can consult [19].

Electron recoils. Electrons are much lighter than nucleons, and therefore move faster.
Considering the electrons in a bound state with the nuclei, the single electron has a
Compton wavelength of roughly one Bohr radius RBohr = 1/(αme), which corresponds to
a momentum ke ' αme and a velocity ve ' α. The electron is in an energy eigenstate;
to move to the momentum eigenstates requires the dispersion relation in the material,
hence the many-body effects coming into play. We report an estimate for the scattering
rate [19], with σ0 ' 10−37 cm2, mχ = 10 MeV and Nt ' 1025:

R

Mdet

∼ 50− 100
events

kg · day
. (1.40)

Compared to nuclear recoils, these numbers look extremely promising, but lower energy
thresholds imply that controlling backgrounds is much more challenging. Existing exper-
iments (e.g. XENON10/100 [20] and DarkSide [21]) have been shown to be sensitive to
these searches.

Migdal effect. When a DM particle scatters off a nucleus, electrons will follow the
recoiling nucleus with a lag. This causes ionisation and excitation of the surrounding
medium which can be detected [22].

Scattering in a lattice. If mχ is low enough, it can cause excitations in semiconductor
targets provided it can clear the ∼ 1 eV band gap [23].

Phonon couplings. Another effect of DM-nuclei interactions can be the collective dis-
placement of the atoms in a lattice. This is particularly relevant for sub-MeV candidates,
as the momentum transfer is so low that phonons are the relevant degrees of freedom [24].

1.4.2 Indirect detection

Indirect searches looks for DM annihilation products in astrophysical objects, where DM
is expected to reach a sufficiently high density. The inner parts of the Galaxy are a
particularly favourable environment for this to happen, and we can look, e.g., at neutral
probes in the directions around the galactic center. Detailed discussion about indirect
DM detection can be found in [25], [26], [27] and references therein.

WIMP searches

The kind of SM particle we can look for depends on the annihilation process itself. We
can have either primary annihilation products, which are expected to be easier to detect
as they exhibit spikes in their spectrum, or secondary ones, which have continuous spectra
as they result from subsequent decays of the primary particles.
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Photons. The production of photons from annihilation can proceed in three main ways,
each with its own spectral signature: loop-level direct annihilation, final- or intermediate-
state radiation, and meson decay from hadronisation. Sources include the galactic centre,
dwarf galaxies, distant clusters and diffuse gamma-ray background.
The photon flux detectable by on-earth or satellite-bound telescopes is quantified as

dNγ

dE dt dA
=

1

4π
J
∑
i

〈σiv〉
2m2

χ

dNi

dEγ
. (1.41)

This formula can be essentially divided in two parts.

• The J factor

J =

∫
∆Ω

dΩ

∫
l.o.s.

ρ2
χ(`,Ω) d`, (1.42)

contains all the astrophysical properties, namely the location of sources, the velocity
distribution and the DM profile; ` is the distance along the line of sight (l.o.s.), ∆Ω
the angle subtended by the observed object (or the aperture of the telescope). The
highest J factor is that of the galactic centre (up to ∼ 1025 GeV2/cm5), but stellar
activity is a significant background; this can be contrasted with dwarf galaxies,
which are dimmer but have lower J factors.

• The remaining factor depends on particle physics properties: we have a sum, over
the annihilation channels, of the thermally averaged cross sections, divided by the
mass of the DM particles, multiplied by the spectrum of the photons produced in
the processes. A factor 1/2 accounts for the fact that in most models photons are
produced in pairs.

Antimatter. Antiparticles are an excellent DM tracer, as they are not commonly pro-
duced in astrophysical processes. Experiments dedicated to cosmic ray detection, both
on earth and on satellites, are usually capable of distinguishing antimatter. Besides an-
tideuterium, which would be a clear DM activity signal as no known process is able to
produce it, our attention goes to positron and antiproton excesses.
Positrons from DM annihilation can be either primary or secondary. They undergo sub-
stantial energy loss as they travel around the Galaxy, so the interesting sources are the
closest ones (. 100 pc). Famously, a positron excess was measured by PAMELA [28],
and later confirmed by AMS-02 [29]. However, a probable explanation is emission from
nearby pulsars [30].
AMS-02 also reported antiproton excesses [31], one of which is in the 10-20 GeV range
and has no definitive astrophysical explanation. If interpreted as coming from DM anni-
hilation, it was shown to fit very nicely with the relic density [32].

Neutrinos. Another promising DM annihilation probe is neutrinos. They can be pro-
duced in a variety of ways (direct production, hadronic decays and lepton decays) and a
number of neutrino telescopes are in operation around the world. However, their cross
sections are much smaller, giving weaker bounds with respect to other galactic and ex-
tragalactic probes.
A different source of neutrinos from DM annihilation is the Sun. If a WIMP interacts
with a nucleus in the Sun, it can scatter at a velocity smaller than the escape velocity,
remaining trapped. This way a DM overdensity can form, leading to efficient annihilation
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processes inside the Sun, whose SM products either stay trapped (if charged), or escape.
The latter is the case of neutrinos, which therefore constitute the possible signature of
solar DM annihilation. The flux of neutrinos produced in this way,

dΦ

dE
=

Γann

4πR2

∑
i

BRi
dNi

dE
, (1.43)

depends on the annihilation rate Γann for the DM-nucleus interaction (analogous to the
interaction rate for direct detection from section 1.4.1),4 on the energy spectrum dNi/ dE
for each decay channel of the primary products, and on the earth to sun distance R. The
more unstable the primary is, the higher the energy of the neutrinos it decays into will
be; hard spectra are more constrained than weak ones, as their cross section is higher and
backgrounds are lower. A comparison can be made with bounds from direct searches:
while for spin-independent interactions solar WIMPs give weaker bounds than direct
detection, for spin-dependent interactions the two are competing [33].

FIP/dark sector searches

In the sub-GeV mass range, the prime probes for DM annihilation are neutrinos, since
their interactions are easily accommodated within dark sector models. The same con-
siderations we made for WIMPs are valid here, especially for what concerns primary
neutrino production χχ̄ → νν̄. This is a 2-body process with a very clear signature,
namely a narrow line at Eν = mχ.
If χ is a Majorana particle (see section 2.2) and we assume the same branching ratio for
the three neutrino flavours, (1.41) yields, for one flavour,

dΦ

dEν
∝ J

1

3

〈σv〉
2

δ(Eν −mχ). (1.44)

Since we are dealing with sub-GeV neutrinos, the challenge in identifying DM annihila-
tion events in the Sun is given by the backgrounds, which come from a variety of neutrino
sources. This includes geoneutrinos, as well as reactor, atmospheric and supernova neu-
trinos. For those experiments that cannot distinguish neutrinos from antineutrinos, like
water Cherenkov detectors, also solar neutrinos, invisible muon decays and muon-induced
spallation products constitute backgrounds.

1.4.3 Collider and terrestrial searches

The class of searches we will review here is based on the aim of producing DM ourselves
and observe its signature in appropriate detectors. Collider physics attempts to do so
by smashing together accelerated SM particles (electron-positron pairs, reaching around
1 TeV in the center-of-mass frame, or hadrons, capping at 14 TeV at LHC) and then
collecting the interaction products in multi-purpose detectors. The typical DM signatures
we look for are missing energy and momentum in the direction transverse to the particle
beam. A process whose only products are DM particles would leave no trace in the
detectors. Instead, the collision may also produce a single gluon, resulting in a monojet

4Some care must be taken as, in the case at hand, the density ρχ is not simply given by the measured
local DM density of 0.3 g/cm3, but by the equilibrium density inside the sun, which takes into account
the capture rate and annihilation rate on varying the density of the nuclei.
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and missing energy, or a neutral gauge boson, resulting in a monophoton or mono-Z
plus missing energy signature. Any competing process which produces neutrinos is a
background, as neutrinos escape detection and results in missing energy as well. As we
previously stated, no WIMPs have been produced this way, and this put tight bounds on
SUSY models.
Moving to lower DM mass scales, an alternative to colliders is beam dump experiments.
The setup slightly changes: an accelerated proton (or electron) beam is made to hit a
dense target, producing mesons like π±, π0, K±, K0 and so on. The meson beam is
focused via magnetic holes (if charged) and the products of the meson decays are then
collected in detectors. While these experiments are suited for the observation of neutrino
oscillations, they can also be used to probe dark sectors. Indeed, if enough energy is
available, the decay of a neutral meson, say π0 → γγ, may result instead in π0 → γZ ′,
where Z ′ is a massive dark photon, mediating interactions in a secluded sector (more on
that in the next chapters). The dark photon can then decay to a DM particle pair:

π0

γ χ

χ̄

Z ′

In the detector, the DM interacts very weakly with electrons or nucleons, through the
same channels described in section 1.4.1. The recoils are difficult to tell apart from those
related to neutrino-target interactions, so the neutrino flux from the other meson decays
should always be suppressed, although this is unlikely to be the case in current fixed-
target experiments, which are mainly dedicated to neutrino physics. Chapter 4 deals with
a modified version of this setup, where a dark sector particle produced from Z ′ decay
enters the detector and decays, in turn, to DM and a SM lepton pair; the leptons are
then expected to leave a recognisable signature.
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Chapter 2

Extending the Standard Model:
dark sectors

The Standard Model of particle physics is one of the tremendous scientific conquests
of the last century, consistently describing the quantum world together with the Lorentz
invariance from special relativity. Its greatest confirmed predictions include the discovery
of quarks, weak neutral currents, W and Z bosons, and the Higgs boson. Nonetheless,
besides the obvious exclusion of gravity, the SM fails to account for a variety of phenomena
currently at our empirical reach, among which the existence of neutrino masses stands
out. We will review how this problem can be tackled in section 2.2.
This will prepare the ground for the introduction of Dark Sectors models, which add
new particles that do not interact directly with the SM ones, but require some sort of
‘messenger’ particle to communicate. We will provide motivation for specific realisations
of dark sectors, see how they address the shortcomings of the SM, and discuss their
phenomenology.

2.1 A brief review of the Standard Model

Let us start by examining the mathematical structure of the SM, as found in textbooks
like [34] and in the extensive Particle Data Group review [35]. Its formulation follows the
guiding principle of symmetry in the Lagrangian formalism: a gauge group is introduced,
together with a particle content, and the form of interaction terms follows from requiring
the invariance of the Lagrangian under the gauge group. Mass terms are forbidden by
the gauge symmetry itself, thus some mass generation mechanism must be included.

Gauge group

The internal, local symmetry group we consider is SU(3)C × SU(2)L × U(1)Y . It is
the product group of the gauge symmetries of quantum chromodynamics (SU(3)C) and
electroweak theory (SU(2)L × U(1)Y ). To make the kinetic term iψγµ∂µψ of a generic
fermion ψ invariant under a gauge transformation we introduce the following covariant
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derivatives:

SU(3)C : Dµ ≡ ∂µ + i
gs
2
Ga
µλ

a, (2.1)

SU(2)L : Dµ ≡ ∂µ + i
g

2
W i
µσ

i, (2.2)

U(1)Y : Dµ ≡ ∂µ + i
g′

2
Y Bµ, (2.3)

where λa denotes the eight Gell-Mann matrices, which generate SU(3), and σi denotes
the three Pauli matrices, which generate SU(2). This defines the gluons Ga

µ, mediating
the strong interaction with coupling gs, and the gauge bosons W i

µ and Bµ, that serve as
the high-energy mediators for the unified electroweak interaction, with couplings g and
g′. While the SU(3)C and SU(2)L coupling strengths are universal, the U(1)Y depends
on the weak hypercharge Y of the specific fermion. Kinetic terms for the gauge bosons
are added to the Lagrangian to describe their propagation:

L ⊃ −1

4
Ga
µνG

µν
a −

1

4
W i
µνW

µν
i −

1

4
BµνB

µν , (2.4)

where the quantities with two Lorentz indices are the field strengths; for a gauge boson
V a
µ associated to a group whose structure constants are fabc, and whose coupling is gV ,

the field strength is defined as

F a
µν ≡ ∂µV

a
ν − ∂νV a

µ − gV fabcVµ bVµ c. (2.5)

Barring the abelian U(1)Y , these terms also include the cubic and quartic interactions
among gauge bosons of the same subgroup.

Higgs mechanism

As anticipated, mass terms for the gauge bosons m2
V V

a
µ V

µ
a are manifestly incompatible

with gauge invariance. However, we do need to introduce massive mediators for the
electroweak sector to make contact with reality. Indeed, the UV completion of Fermi
theory calls for a massive intermediate boson to open up the 4-fermion vertex and make
sense of the low-energy observations of the weak interaction (e.g. muon decay). A viable
solution involves spontaneous symmetry breaking (SSB), i.e. a scenario in which, while
the Lagrangian (and therefore the underlying physical laws) stays gauge-invariant, the
vacuum state of some specific field no longer respects the symmetry.
The field we are referring to, in the SM, is the scalar Higgs boson. We define it as the
complex SU(2)L doublet

H =

(
H−

H0

)
. (2.6)

The Lagrangian will then contain a Higgs sector, including a kinetic term, a mass term
and a quartic self-interaction, all allowed by gauge invariance:

L ⊃ (DµH)†DµH − µ2H†H − λ(H†H)2. (2.7)

The first term contain the covariant derivative with respect to the electroweak gauge
group (containing the terms from both (2.2) and (2.3)). The last two terms form the
Higgs potential

V (H) = µ2H†H + λ(H†H)2. (2.8)
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Now, if µ2 ≥ 0, the vacuum state, meaning the state for which V (H) is minimum, is
simply the null configuration H = 0. Expanding H around this minimum does not break
any symmetry. If instead µ2 < 0, the origin of C2 becomes a maximum and the minimum
points are on the sphere, centred at the origin, of radius

√
−µ2/2λ. We can choose, fixing

the SU(2)L gauge to the so-called unitary gauge, to set the vacuum expectation value
(vev) of the Higgs doublet to

〈H〉 =

(
0
v√
2

)
, v ≡

√
−µ2

λ
, (2.9)

and expand H in (2.7) around this value as

H =
1√
2

(
0

v + h(x)

)
. (2.10)

This partially breaks SU(2)L × U(1)Y , leaving a subgroup U(1)em, the symmetry as-
sociated to electromagnetic interaction, unbroken. According to Goldstone’s theorem,
the theory must then possess three massless scalar bosons (Nambu-Goldstone bosons, or
NGBs), one for each broken generator of the electroweak gauge group. By a suitable
field redefinition, it can be shown that the NGBs come to form the longitudinal degrees
of freedom of the weak interaction mediators W±

µ and Zµ, leaving the photon field Aµ
transversal:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.11)

Zµ = cWW
3
µ − sWBµ, (2.12)

Aµ = sWW
3
µ + cWBµ, (2.13)

with cW and sW respectively denoting the cosine and sine of the Weinberg angle θW,
derived from the couplings through the relations

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (2.14)

Their masses, obtained again from the expansion of (2.7) around the Higgs vev, are given
by

mW =
gv

2
, mZ =

√
g2 + g′2

2
v, mA = 0. (2.15)

Particle content

We now discuss the elementary fermions in our model, which account for the known
matter particles in our Universe. We have quarks, which couple to the full gauge group,
and leptons, which couple only to the electroweak subgroup. Quarks and leptons can
be classified as SU(2)L representations. A striking feature of the SU(2)L interaction
is that it is chiral: left-handed fermions are a different representation (doublet) than
right-handed fermions (singlet). Furthermore, we distinguish three generations of quarks
and leptons, according to their interaction channels, providing the quantum numbers
collectively known as flavour. The full particle content is:

Q1
L =

(
uL
dL

)
, uR, dR, Q2

L =
(
cL
sL

)
, cR, sR, Q3

L =
(
tL
bL

)
, tR, bR,

L1
L =

(
νe
e

)
, eR, L2

L =
(
νµ
µ

)
, µR, L3

L =
(
ντ
τ

)
, τR.

(2.16)
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Right-handed neutrinos are not included, since, as far as the SM is concerned, their lack
of interactions (no weak interaction due to chirality and no electromagnetic interaction
due to absence of charge) means they have never been detected.
Kinetic terms for all the fields in (2.16) are added to the Lagrangian, and, through
covariant derivatives, their interactions with the gauge bosons are accounted for. Before
electroweak SSB, the conserved currents associated to SU(2)L × U(1)Y are given by

J iµ =
1

2
ψLγµσ

iψL, JYµ = 2
(
Jem
µ − J3

µ

)
, (2.17)

where Jem
µ is the electromagnetic current. Upon SSB, these four currents mix, according to

the field redefinitions in the previous subsubsection, giving rise to the physically observed
interactions. The hypercharge Y and weak isospin T3 are related to the electric charge
Q of each fermion via the relation:

Q = T3 +
1

2
Y. (2.18)

Yukawa interactions

Just as for gauge bosons, mass terms for (Dirac) fermions are not allowed by gauge
symmetry. Indeed, a mass term of the form

Lm,Dir = −mψψ = −m
(
ψLψR + ψRψL

)
(2.19)

contains products of SU(2)L doublets and singlets, thereby making the Lagrangian not
invariant. Nonetheless, SSB can give masses to the fermions through Yukawa interactions
with the Higgs. We write Yukawa terms for the up-type quarks, down-type quarks and
charged leptons (neutrinos are considered massless at this stage):

L ⊃ −yuQLH̃uR − ydQLHdR − yeLLHeR + h.c. (2.20)

Here we define H̃ ≡ iσ2H∗ to get the correct cancellation in hypercharge. When the
Higgs gets a vev, as in (2.10), we get mass terms of the kind specified by (2.19), with
m = yv/

√
2.

Now, expression (2.20) must be summed over generations (the y are 3 × 3 matrices),
and an important consideration is to be made. We have defined our fields in (2.16)
as eigenstates of the weak isospin, and separated them according to flavour; there is no
reason why their mass eigenstates should perfectly align, and indeed they do not. We can
set, by convention, the mass eigenstates of the up-type quarks (and of charged leptons)
to their flavour eigenstates u, c, t (e, µ, τ). Then, the matrix yd of Yukawa couplings is
nondiagonal, and the mass basis is obtained by a unitary transformation in the d, s, b
sector. The transformation matrix VCKM is known as CKM matrix (Cabibbo, Kobayashi,
Maskawa) and one can count its degrees of freedom1 to be three angles and one phase,the
latter responsible for CP violation in the weak sector.

1The independent parameters for a 3× 3 unitary matrix are 3 angles and 6 phases; rotating the fields
in a Dirac mass term by a U(1) phase for each of the 6 quark flavours leaves the term invariant, so we
subtract the 6 phases from the counting; but VCKM is invariant if all the phases are the same, so we leave
one free.
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Further considerations

We are not interested in the QCD sector for this work in particular, but perhaps it
is worth mentioning some of its features. The conserved charge for SU(3)C is colour.
Quarks, of any flavour, belong to the fundamental representation 3 while gluons belong
to the adjoint representation 8. The strong interaction exhibits asymptotic freedom: it
is weaker as the energy scale increases. This leads to having the perturbative regime at
high energies, while, on the other hand, causes quarks and gluons to always form colour-
less bound states (hadrons) at low energies. The solution to the so-called missing meson
problem, an issue related to the absence of a bound state predicted by an approximate
axial U(1) symmetry, led to the discovery of a CP-violating phase θQCD in the strong
sector.
In addition to the gauge symmetry, the SM has global symmetries. Besides the Poincaré
group, which is a fundamental symmetry for any relativistic field theory, there are four
continuous global U(1) symmetries that arise despite not being postulated in the formu-
lation of the model. The conserved charges associated to these accidental symmetries are
the baryon number B and the lepton family numbers Le,µ,τ .
To end this section, we remark that the SM has 19 free parameters, to be selected among
the quantities appearing throughout this section. The common choice is to prefer directly
observable quantities over high-energy ones: the quark and charged lepton masses, the
CKM matrix parameters, the gauge couplings, the strong CP phase, and the Higgs mass
and vev.

2.2 Neutrino masses

Experiments such as SuperKamiokande [36] in 1998 and SNO [37] in 2001 proved the
existence of neutrino oscillations beyond resonable doubt: neutrinos produced in a known
flavour eigenstate can be detected, after travelling some distance, in a different flavour.
This is explained by noticing that, in the vacuum, they propagate as eigenstates of the free
particle Hamiltonian, which depends on their mass. The mass basis, just like for quarks,
is not aligned with the flavour basis. Therefore, if the masses for the three neutrino
flavours are not all the same, a mixing occurs during propagation, with a probability
that depends on the difference between the square of the masses.
As we stated in section 2.1, the SM treats neutrinos as massless. One could think of
simply introducing right-handed neutrinos νR, considered sterile under the SM gauge
group, to write Dirac mass terms as in (2.19), and relate the mass eigenstates to the
flavour eigenstates through a mixing matrix analogous to the CKM matrix, parametrised
in terms of three angles θ12, θ23, θ13, and a CP-violating phase δ. The mass terms could
then be generated via Yukawa interaction terms with the Higgs like the ones in (2.20).
This is not the end of the story, though, since, for uncharged fermions, we can also have
Majorana mass terms:

Lm,Maj = −1

2
mψcψ + h.c. =

1

2
mψTC†ψ + h.c., (2.21)

where C = iγ0γ2 is the charge conjugation operator and ψc = Cψ
T

is the charge-
conjugated field. Indeed, whether neutrinos are Majorana or Dirac particles (i.e. the
same as their antiparticle or not) has not been settled yet. This is an important question,
since Majorana neutrinos would imply that lepton number is not a meaningful quantum

26



number: it is easily seen that (2.21) is not invariant under a U(1) rephasing of the field.
This has important consequences, for instance, in baryogenesis.
Let us see what this implies for the mixing matrix. Take the charged-current interaction
term in the SM Lagrangian:

L ⊃ − g√
2

∑
α=e,µ,τ

LαLγ
µWµν

α
L + h.c.. (2.22)

If, as we did in section 2.1, we choose the charged lepton mass basis to correspond to the
flavour basis, the neutrino mass basis should be related to the flavour basis through a
unitary matrix. This time, if neutrinos are Majorana, rephasing the fields is not harmless,
unless of course the three neutrinos are rotated with the same phase. This brings us to a
total of two relative physical phases among the neutrinos entering as independent param-
eters in the mixing matrix. The resulting PMNS matrix (Pontecorvo, Maki, Nakagawa,
Sakata) is of the form:

UPMNS =

1 0 0
0 c23 −s23

0 s23 c23

 c13 0 −s13e−iδ

0 1 0
s13e−iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


×

1 0 0
0 eiα21/2 0
0 0 eiα31/2

 , (2.23)

where cij and sij respectively denote the cosine and sine of the mixing angle θij (this
space-saving subscript notation for trigonometric functions will be adopted several times
throughout this work), while α21 and α31 are the Majorana phases.
For each neutrino species we can write a Dirac mass term and two Majorana mass terms,
one for the left-handed and one for the right-handed components:

Lm = −mDνRνL −
1

2
µLνcLνL −

1

2
µRνcRνR + h.c. (2.24)

or equivalently, after some algebra,

Lm = −1

2

(
νcL νR

)( µL mD

mD µR

)(
νL
νcR

)
+ h.c. (2.25)

The physical mass states are then obtained by diagonalising this mass matrix. In any
case, if the Majorana masses µL and µR are nonvanishing, lepton number is not conserved
and the neutrinos are Majorana.
Any mass term for neutrinos will break SU(2)L, just like for other fermions. Thus we
need a mass generation mechanism, which also accounts for the smallness of neutrino
masses, which are most likely below the eV scale.2 Introducing a Yukawa term, as in
(2.20),

L ⊃ −yνLLH̃νR + h.c. (2.26)

we get a Dirac mass term from the Higgs getting a vev. However, this results in an
extremely small Yukawa coupling yν =

√
2mν/v ∼ 10−12, which is unsatisfactory from

2KATRIN experiment [38] set mν < 0.8 eV; cosmology gives even tighter bounds for the combined
mass of the active species.
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a naturalness perspective. If we give up lepton number as a fundamental symmetry,
we can write Weinberg’s dimension-5 operator, which is compatible with the SM gauge
symmetry and gives rise to a Majorana mass term upon SSB:

−1

2
λ
LcLH̃

∗H̃†LL
Λ

SSB−−→ −λv
2

2Λ
νTLC

†νL. (2.27)

The UV completion of this model requires the ννHH vertex to be opened up by inserting
the propagator of a particle whose mass is O(Λ). Depending on the Poincaré and SU(2)L
representation of such particle, we get the different types of seesaw models.

Type I seesaw

The most studied seesaw model is type I, for which the intermediate particle is a heavy
neutral lepton (HNL), basically a right-handed neutrino NR whose mass is far greater
than SM fermion masses. The terms added to the Lagrangian are

L ⊃ yνLLH̃NR −
1

2
N c
RMRNR + h.c.. (2.28)

Restricting to one generation, we get a Majorana term (only for NR) and a Dirac term
with mass mD = yνv/

√
2. Diagonalising the mass matrix

M =

(
0 mD

mD MR

)
(2.29)

we get the two eigenvalues

m =
MR ±

√
M2

R + 4m2
D

2
'
{
MR (heavy state)

−m2
D

MR
(light state)

(2.30)

for mD � MR. Adjusting MR it is possible to get the light state mass mν to the
experimental neutrino mass scale. When all three generations come into play, we have to
diagonalise the full mass matrix, which has the form

M =

(
03×3 mD

mT
D M

)
, (2.31)

with M the (symmetric) heavy neutrino mass matrix. The seesaw formula (2.30) is
generalised by

mν = −mDM
−1mT

D +O((mDM
−1)2) (2.32)

for what concerns the light states. To see this, we can follow [39] and look at the generic
unitary matrix Ω that makes M block-diagonal, i.e.

ΩTMΩ =

(
mν 03×n

0n×3 M̃

)
. (2.33)

As with any unitary matrix, Ω can be formally written as the exponential of an antiher-
mitian matrix:

Ω = exp

(
03×3 R
−R† 0n×n

)
=

(
1− 1

2
RR† R

−R† 1− 1
2
R†R

)
+O(R3). (2.34)
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With this expansion, (2.33) gives

mD −R∗M ' 0, (2.35)

−mDR
† −R∗mT

D +R∗MR† ' mν , (2.36)

M +RTmD +mT
DR ' M̃. (2.37)

to leading order in R. From (2.35) we deduce that R∗ ' mDM
−1. Substituting into

(2.36) and (2.37), we get the seesaw formula (2.32) and M̃ 'M , completing the analogy
to the one-generation case. The matrix mν we obtain is not diagonal in general, since
we are still in the interaction basis, and can be diagonalised through the PMNS matrix
(2.23).

Casas-Ibarra parametrisation

We now present a way of expressing the Yukawa matrix yν in terms of the physical masses,
basically reversing equation (2.30), due to J. A. Casas and A. Ibarra [40]. If m̂ν and M̂−1

are the diagonalised counterparts of the light neutrino and inverse heavy neutrino mass
matrices, we can write

m̂ν = −UTmνU = −v
2

2
UTyνM̂

−1yTν U (2.38)

(we dropped the subscript from the PMNS matrix, calling it simply U). Sandwiching
this relation with

√
m̂−1
ν we obtain

1 = −v
2

2

√
m̂−1
ν UTyνM̂

−1yTν U
√
m̂−1
ν ≡ OTO. (2.39)

The matrix
O = ±i v√

2

√
M̂−1 yTν U

√
m̂−1
ν (2.40)

is therefore a complex orthogonal matrix (or semiorthogonal if rectangular). Inverting
this definition, we get the Casas-Ibarra parametrisation of the Yukawa matrix:

yν = ±i
√

2

v
U
√
m̂νOT

√
M̂. (2.41)

If UM is the matrix that diagonalises M , that is

M = U∗MM̂U †M , (2.42)

we can write

yν = ±i
√

2

v
U
√
m̂νOT

√
MU †M . (2.43)

2.3 Dark sectors and portal interactions

As stated in section 1.3.3, high-energy collider experiments produced no convincing result
for physics at the TeV scale, leading to a growing interest in new degrees of freedom at the
low-intensity frontier, in a mass range currently available to experiments (approximately
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MeV to GeV). These particles constitute dark (or hidden) sectors, which can be thought
of as either completely secluded (as described e.g. in [19]) or feebly communicating with
the SM. Focusing on the latter case, interaction with the SM is realised through operators
in the Lagrangian, known as portals, involving intermediate particles (messengers), with
couplings that are highly suppressed with respect to g and g′. The philosophy of the portal
framework is exploring a reachable parameter space without making important theory-
driven assumptions about unifying principles. This does not exclude a later embedding of
dark sectors into a theory with a broader scope. According to the Lorentz representation
of the messenger, different kinds of portals can be included in BSM extensions. We will
now review them in few words.

Vector portal. One of the most appealing messengers, particularly for light freeze-out
DM, is the dark photon or dark Z, a massive, neutral vector boson associated to a gauged
U(1)D symmetry. This field is usually made to communicate to the SM by means of a
small mixing with the neutral SM gauge bosons in the kinetic term of the Lagrangian.
The theoretical implications are reviewed in section 2.4 and in the next chapter. As for
the dark photon phenomenology, kinetic mixing allows for Z ′ production in any process
involving high-energy photons; collider and extracted beam experiments give bounds both
for visible decays (like Z ′ → e−e+) and invisible decays (such as Z ′ → χχ̄, with a missing
energy signature). The DM candidate can then be a fermion, charged under U(1)D, with
a mass not too far away from that of Z ′ to comply with cosmological bounds.

Scalar portal. A dark scalar or dark Higgs Φ, which is a singlet of the SM, may
be introduced with quartic (and possibly cubic) interactions with the SM Higgs boson,
mixing with it. While this already gives a communication channel, if Φ has a nontrivial
vacuum, upon EW and dark symmetry breaking it may gain a small Yukawa interaction
with the SM fermions, affecting their mass. This yields a generation-dependent coupling,
different from the dark photon one. Important cosmological and astrophysical bounds
exist for models involving dark scalars.

Neutrino portal. As we discussed in section 2.2, one can introduce right-handed neu-
trinos to account for neutrino masses. If the neutrino can “talk” to the dark sector
through an operator, maybe involving a sterile neutrino and a dark scalar, we obtain a
portal. This can lead to modifications of mass generation mechanisms for light neutrinos,
as we will see in section 3.2. Neutrino portals are tested in heavy neutral lepton peak
and decay searches.

Pseudoscalar portal. The only known non-renormalisable portal involves axions or
axion-like particles (ALP) as messengers. The EFT Lagrangian couples the axion only
to the gluons, but the UV completion may also couple it to SM fermions, as can happen
for more generic pseudoscalars. Both are compatible with thermal freeze-out, with the
ALP picture offering more flexibility. Lab searches are mostly model-independent, being
only based on the couplings; astrophysical searches include haloscopes and helioscopes.
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2.4 Minimal kinetic mixing model

To illustrate the workings of portals, we will now show the implications of extending
the SM with a kinetically-mixed dark photon. Following e.g. [41], we augment the SM
symmetry group by introducing a new abelian symmetry denoted as U(1)D. Any particle
charged under U(1)D will be called “dark”. We define a covariant derivative for the
subgroup SU(2)L × U(1)Y × U(1)D,

Dµ ≡ ∂µ − i
g

2
W i
µσi − ig′Y Bµ − igDYDXµ, (2.44)

and write out the kinetic terms for the gauge fields, including a term inducing a small
mixing between the fields B and X:3

Lgauge = −1

4
W i
µνW

µν
i −

1

4
BµνB

µν − 1

4
XµνX

µν − ε

2
BµνX

µν . (2.45)

The mixing term can be thought of as coming from a vacuum polarisation diagram in
the UV-complete theory, with a loop of new heavy fermions coupled to both gauge fields,
capable of turning one boson into another. From this consideration we get the typical
value of ε to be around 10−3. It can be helpful to set ε ≡ sinχ, so that

√
1− ε2 = cosχ,

ε√
1− ε2

= tanχ. (2.46)

Transforming the B and X fields, according to the relation(
Bµ

Xµ

)
=

(
1√

1−ε2 0

− ε√
1−ε2 1

)(
B̃µ

X̃µ

)
(2.47)

we get the canonical kinetic Lagrangian:

Lgauge = −1

4
W i
µνW

µν
i −

1

4
B̃µνB̃

µν − 1

4
X̃µνX̃

µν . (2.48)

This operation lets us find the propagators of the low-energy degrees of freedom, trans-
ferring the effect of the kinetic mixing to the mass and interaction terms. In particular,
off-diagonal mass terms are generated. We can, however, exploit the invariance of (2.48)
under rotations to diagonalise the mass Lagrangian and get the propagating, physical
degrees of freedom, as explained below.
We take (2.7) and expand it around the Higgs vev, obtaining the mass terms:

(DµH)†DµH ⊃ g2v2

4
W+
µ W

−µ +
g2v2

8
W 3
µW

µ
3 +

g′2v2

8
BµB

µ − gg′v2

4
W 3
µB

µ, (2.49)

where W±
µ is given by (2.11). We then add a mass term m2

XXµX
µ/2 for the X boson,

with no hypothesis about its origin as of yet.4 Focusing on the terms involving B, W3

and X, we get (omitting Lorentz indices)

Lm,gauge ⊃
1

2

(
B W3 X

)
g′2v2

4
−gg′v2

4
0

−gg′v2

4
g2v2

4
0

0 0 m2
X



B

W3

X

 . (2.50)

3Mixing X with Wi in this way would be impossible because W i
µν is not gauge-invariant by itself,

being the field strength of a nonabelian gauge theory.
4Interaction with a dark scalar is often invoked. Another possibility is a Stückelberg mass.
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Applying the transformation (2.47), which we write, using (2.46), as B
W3

X

 = E

 B̃

W̃3

X̃

 ≡
c−1

χ 0 0
0 1 0
−tχ 0 1

 B̃

W̃3

X̃

 , (2.51)

to (2.50), we get the mass Lagrangian in the new basis:

Lm, gauge⊃
(mSM

Z )2

2

(
B̃ W̃3 X̃

)
sW+µ2s2χ

c2χ
− sWcW

cχ
−µ2tχ

− sWcW
cχ

c2
W 0

−µ2tχ 0 µ2



B̃

W̃3

X̃

. (2.52)

Here, mSM
Z is the SM value given by (2.15) and µ ≡ mX/m

SM
Z . Now we can proceed with

the diagonalisation, and we do so by an orthogonal transformation given by the product
of three rotations:

• first, we rotate by the angle χ in the B̃ − X̃ plane;

• then, we do the usual Weinberg rotation as in (2.12) and (2.13), in the B̃ − W̃3

plane;

• finally, we rotate the obtained block-diagonal matrix0 0 0
0 1 sWtχ
0 sWtχ

µ2

c2χ
+ s2

Wt
2
χ


in the W̃3 − X̃ plane by an angle β given by

tan 2β =
2s2

Wt
2
χ

1− µ2

c2χ
+ s2

Wt
2
χ

. (2.53)

This way we end up with a zero eigenvalue, which we identify with the photon mass, and
with

m2
Z = (mSM

Z )2 (1 + sWtχtβ) , m2
Z′ = (mSM

Z )2

(
1− sWtχ

tβ

)
. (2.54)

To summarise, we have moved from the original UV basis (B,W3, X) to the low-energy
basis (A,Z, Z ′), according to the relation B

W3

X

 = E R(χ)R(θW)R(β)

A
Z
Z ′

 . (2.55)

This yields 
B = cWA− (cβsW + sβtχ)Z + (sβsW − cβtχ)Z ′

W = sW + cβcWZ − sβcWZ
′

X =
sβ
c2χ
Z +

cβ
c2χ
Z ′

(2.56)
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To write out the interaction terms, it is useful to express the SM states (ASM, ZSM) in
terms of the new ones. To do so, we can simply apply R(θW)−1 to and obtain{

ASM = A− sβcWtχZ − cβcWtχZ
′

ZSM = (cβ + sβsWtχ)Z + (−sβ + cβsWtχ)Z ′
(2.57)

This way we can just substitute for the new degrees of freedom in the interaction La-
grangian:

Lint ⊃ eASM
µ Jµem +

g

2cW

ZSM
µ JµNC + gDXµJ

µ
D =

eAµJ
µ
em +

Zµ

[(
cβ
cW

+ sβtWtχ

)
g

2
JµNC +

sβ
cχ
gDJ

µ
D

]
+

Z ′µ

[
−cβcWtχeJ

µ
em +

(
− sβ
cW

+ cβtWtχ

)
g

2
JµNC +

cβ
cχ
gDJ

µ
D

]
. (2.58)

The angle β is controlled by the mass ratio µ of X to ZSM through (2.53). Due to
the smallness of ε, and therefore of χ, however, we can treat β in turn as small in any
case. This means that the relevant terms in (2.58), for what concerns the communication
between the SM and the hidden sector, are those that couple Z ′ to the electromagnetic and
neutral currents (of which the dominant term is the electromagnetic one); on the other
hand, while the dark current is in fact coupled to the Z boson, the coupling strength
is suppressed by a sβ factor. To make things easier in the following we can redefine
ε ≡ cβcWtχ, so that the dominant portal to the dark sector is simply given by −εeZ ′µJµem.
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Chapter 3

Rich dark sector models

This chapter draws heavily on the work of A. Abdullahi et al. [42]. Their collection of
rich dark sector models is motivated by the current strong bounds on both visible and
invisible dark photon decays, and by the historical significance of non-minimal fermion
models in the results of experiments probing Dark Matter.
We will start by outlining how the models are built, subsequently adding heavy Weyl
fermions and finding the mass spectrum and phenomenological parameters at each de-
gree of complexity. To make contact with relevant earlier proposals for DM, which we
will also touch upon, a dark C symmetry will be introduced among other hypotheses.
Section 3.2 will be devoted to the mass generation mechanism of light neutrinos with
minimal additions to the Lagrangian.
Finally, section 3.3 will deal with how well non-minimal dark sectors adapt to the DM
problem, presenting the parameter range that better reproduces the measured DM abun-
dance.

3.1 Semi-visible dark photon models

The minimal kinetic mixing model presented in section 2.4 can lead, for the dark pho-
ton, to visible decays through the SM currents Jµem and JµNC, as well as invisible decays
through the dark current JµD, for which we have made no assumptions so far. A third
possibility, which evades experimental constraints, is semi-visible decay, containing both
SM charged particles and dark fermions in the final state. This can be achieved in DS
models containing more than one generation of HNFs, with varying masses, which allows
intermediate dark states between the parent Z ′ and the final visible states with missing
energy.
We will be studying models with n fermions, entering a dark current of the kind

JµD =
n∑

i,j=1

ψi
(
Vijγ

µ + Aijγ
µγ5
)
ψj, (3.1)

where we separate the vector and axial-vector couplings to account for potentially chiral
vertices. Non-renormalisable interactions can also be considered in principle. The dark
photon is taken to be heavier than all HNFs, so that it cannot end up in the final states
of HNF decays, which will all be three-body. Invisible HNF decays are also excluded.
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3.1.1 Two HNFs and inelastic dark matter

Starting from the dark photon Lagrangian in section 2.4, we add two Weyl fermions χL,
χR of opposite parity. We assign the respective U(1)D charges QL, QR as well as both
Dirac and Majorana mass terms, obtaining the following terms:

L2HNF = χLi
(
/∂ − igDQL /Z

′)χL + χcRi
(
/∂ + igDQR /Z

′)χcR
− 1

2

[(
χcL χR

)(µL mχ

mχ µR

)(
χL
χcR

)
+ h.c.

]
. (3.2)

Majorana masses break U(1)D, so we could assume they come from the vev of a (secluded)
dark Higgs interacting with the HNFs. Allowing for a relative Majorana phase ϕ between
the two fermions, the transformation that diagonalises the mass matrix M is given by

M̂ ≡
(
m1 0
0 m2

)
= UTMU, U =

(
cos θ − sin θ
sin θ cos θ

)(
eiϕ 0
0 1

)
, (3.3)

with

tan 2θ = −mχ

∆µ
, ∆µ ≡ µR − µL

2
. (3.4)

The masses obtained this way are

m1 = e2iϕ
(
µ−

√
m2
χ + (∆µ)2

)
, (3.5)

m2 = µ+
√
m2
χ + (∆µ)2. (3.6)

Now, the Lagrangian in (3.2) is written in terms of left-handed Weyl fermions. To
construct the Majorana mass eigenstates of mass mi, i = 1, 2, we take the eigenstates ψiL
resulting from the rotation in (3.3) and define

ψi = ψiL + ψciL. (3.7)

The dark current, written in terms of these states, assumes the form

JµD =
QA −QV cos 2θ

2
ψ2γ

µγ5ψ2 +
QA +QV cos 2θ

2
ψ1γ

µγ5ψ1+

iQV sin 2θ sinϕψ2γ
µψ1 +QV sin 2θ cosϕψ2γ

µγ5ψ1, (3.8)

where QV ≡ (QL +QR)/2 and QA ≡ (QL −QR)/2.

C symmetry and mass spectrum

The Lagrangian (3.2) can be made invariant under charge conjugation. Such transfor-
mation acts on the quantised Weyl fermions as

CχLC† = ηcχ
c
R, CχRC† = ηcχ

c
L, (3.9)

with ηc a phase factor that we can set to 1. Recalling that ψc = Cψ
T

, it is straightforward
to see that the eigenbasis of the C operator, which acts on the solutions of the Dirac
equation, is given by

χ+ =
χL + χcR√

2
, χ− = eiϕ

χL − χcR√
2

. (3.10)
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The intrinsic C-parity of its eigenstates and of the dark photon can be fixed as

C(χ±) = ±1, C(Z ′µ) = −1. (3.11)

With this choices, L2HNF is invariant under C provided that QA = 0 (which also ensures
anomaly cancellation) in the limit ∆µ→ 0. Indeed, in the basis given in (3.10), we have

L2HNF = χ+i/∂χ+ + χ−i/∂χ−

+ gDZ
′
µ

[
QA

2

(
χ+γ

µγ5χ+ + χ−γ
µγ5χ−

)
+ iQV χ+γ

µχ−

]
−
[

1

2

(
χc− χc+

)(e−2iϕ (µ−mχ) −e−iϕ∆µ
−e−iϕ∆µ µ+mχ

)(
χ−
χ+

)
+ h.c.

]
(3.12)

and we can immediately see that the mass matrix is diagonal in the C-symmetric limit, as
if, in performing the transformation (3.10), we had already acted with U , with maximal
mixing (θ → π/4, via (3.4)). Then, if we choose ϕ = π/2, we get

m1 = mχ − µ, m2 = mχ + µ. (3.13)

Both mass terms are positive for mχ > µ. The two eigenstates χ± can be thought of as
a pseudo-Dirac pair with a mass splitting equal to 2µ.
On a side note, the C-parity assignment (3.11) for the dark photon makes it so that the
kinetic mixing term ∝ FµνX

µν is not invariant under C, unless we identify this “dark” C
with the SM charge conjugation, causing it to act nontrivially on both the SM and the
dark sector.

Benchmarks 1 — iDM

Inelastic Dark Matter (iDM for short) was first theorised [43] as a way of reconciling
the results of experiments DAMA and CDMS, the former compatible with the effect of
a standard WIMP, the latter disproving it completely. The main difference between the
two experiments was the target nuclei: DAMA used NaI (heavier) targets, while CDMS
employed Ge (lighter) targets. The proposed solution had to produce different behaviours
on varying the nucleus mass.
The aim of iDM models is therefore to negate the possibility of elastic scattering of DM
halo particles off lighter nuclei. The simplest realisation is obtained with two states χ±,
with mχ− < mχ+ , such that only χ+ can interact with the targets. If χ− is the DM
candidate, then it can scatter only by transitioning to χ+. The threshold velocity for
this to happen can be shown to depend on the nuclear mass: the lighter the nuclei, the
stronger the constraint.
If we impose, in the two-HNF model at hand, that QA = 0, ∆µ→ 0 (and, for simplicity,
QV = 1), we immediately see that the dark current (3.8) becomes completely off-diagonal,
reducing to just

JµiDM = iψ2γ
µψ1 + h.c. (3.14)

The heavier state χ+ acts as a coannihilator in the early universe to keep χ− particles
in the thermal bath, and allows the upscattering of χ− off targets above the nuclear
mass threshold. This way we get a basic iDM model, depending on the parameters m1,
∆21 = (m2 −m1)/m1, r = m1/mZ′ , αD and ε. This simple explanation for the DAMA
puzzle has been ruled out by direct detection experiments [44].
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3.1.2 Three HNFs and mixed-iDM

If we add one completely sterile Weyl fermion ηL to the two-HNF Lagrangian, we obtain

L3HNF = L2HNF + ηLi/∂ηL −
[
µ′L
2
ηcLηL + ΛLηcLχL + ΛRηcLχ

c
R + h.c.

]
. (3.15)

From here, we can choose to impose the C symmetry for the dark HNFs χL, χR, or
leave the Lagrangian as it is. In the former case, depending on the mass gaps, we can
get either an iDM variant where the heavier state is a pseudo-Dirac pair (mixed-iDM,
BP2) or a hierarchical spectrum with definite C-parities (BP4). In the latter case, we
get a hierarchical spectrum with mixed C-parities (BP5). In both scenarios we have to
renounce C conservation for the sterile state, due to the odd number of Weyl fermions.

C symmetry and mass spectrum

Moving to the (ηL, χ−, χ+) basis, with χ−, χ+ given by (3.10), we get the mass matrix

M =

 µ′L −e−iϕ∆Λ Λ
−e−iϕ∆Λ −e−2iϕ (µ−mχ) −e−iϕ∆µ

Λ −e−iϕ∆µ µ+mχ

 , (3.16)

where Λ ≡ (ΛL + ΛR)/
√

2 and ∆Λ ≡ (ΛR −ΛL)/
√

2. C conservation for the dark pair is
obtained in the limit where both ∆µ → 0 and ∆Λ → 0. Assigning positive C-parity to
ηL, we can rotate by an angle α in the C-even eigenspace (from χ+ to ηL) to diagonalise
the mass matrix. The angle is given by

tan 2α =
Λ

m
, m ≡ mχ + µ− µ′L. (3.17)

The mass eigenstates are

ψ1 = cαηL + sαχ+, m1 = µ′L −m
sin2 α

cos 2α
; (3.18)

ψ2 = χ−, m2 = mχ − µ; (3.19)

ψ3 = −sαηL + cαχ+, m3 = µ′L +m
cos2 α

cos 2α
; (3.20)

where we set ϕ = π/2 to flip the sign of the mass of the C-odd state as we did in the
two-HNF case. Next, we check what happens to the dark current in the C-symmetric
limit. If we proceed with the construction of Majorana fields as in (3.7), set QV = 1,
QA = 0, and choose the remaining Majorana phase in such a way that the interaction
terms are real, we get

Jµ3HNF = sinαψ2γ
µψ1 + cosαψ2γ

µψ3 + h.c. (3.21)

The current is fully off-diagonal, thanks to η not being coupled to the dark photon, and to
the χ± interactions themselves being off-diagonal, as we saw from (3.12) in the ∆µ→ 0
limit.

37



Benchmarks 2 — mixed-iDM

In the limit tan 2α� 1, i.e. Λ/m� 1, the splittings in the model are

m3 −m1 ' m+
2Λ2

m
, (3.22)

m3 −m2 '
Λ2

m
+ 2µ. (3.23)

Taking µ small enough, we can treat ψ2 and ψ3 as forming a pseudo-Dirac fermion Ψ2,
provided coherence between the two is kept long enough. In this case, the mostly-sterile
Majorana state ψ1 can be treated as a DM candidate, while Ψ2 acts as the coannihilator,
recovering an iDM model. The dark current is given by

Jµmixed−iDM = sinαΨ2γ
µψ1 + cosαΨ2γ

µΨ2 + h.c.. (3.24)

If we express the masses in (3.18)–(3.20) in terms of the paramenters tan 2α and ∆21 ≡
(m2 −m1)/m1, and expand up to O(tan2 2α), we get

m1 ' µ′L −
1

4
(∆21µ

′
L + 2µ) tan2 2α, (3.25)

m2 ' µ′L (1 + ∆21)− 1

4
(1 + ∆21) (∆21µ

′
L + 2µ) tan2 2α, (3.26)

m3 ' µ′L (1 + ∆21) + 2µ− 1

4
∆21 (∆21µ

′
L + 2µ) tan2 2α. (3.27)

Such expressions can be further simplified by taking µ → 0, which amounts to choosing
opposite (or vanishing) Majorana terms for χL and χR:

m1 ' µ′L

(
1− 1

4
∆21 tan2 2α

)
, (3.28)

m2 ' µ′L

(
1− 1

4
∆21 tan2 2α

)
(1 + ∆21) , (3.29)

m3 ' µ′L

(
1− 1

4

∆21

1 + ∆21

tan2 2α

)
(1 + ∆21) . (3.30)

This way, the mass splitting ∆32 ≡ (m3−m2)/m2 between ψ2 and ψ3 is suppressed with
respect to ∆21:

∆32 '
1

4

∆21

(1 + ∆21)
tan2 2α. (3.31)

Benchmarks 4 — three Majorana fermions with dark C symmetry

For sizeable mixings, we get a model with a triple of Majorana fermions, which can be
employed as HNLs to generate neutrino masses through seesaw mechanism [45]. The
limit tan 2α� 1 provides a mild hierarchical spectrum with the asymptotic behaviour:

m1 ' µ′L − Λ =
1

1 + ∆21

(µ′L − 2µ) , (3.32)

m2 ' µ′L − 2µ, (3.33)

m3 ' µ′L + Λ =

(
1 +

∆21

1 + ∆21

)
µ′L +

µ

1 + ∆21

. (3.34)

Sending µ→ 0 as we did for BP2, we get

∆32 '
∆21

(1 + ∆21)
. (3.35)
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Benchmark 5 — three Majorana fermions

If we do not impose C conservation, the eigenvalues of the mass matrix become quite
involved as they are the solution to a complete cubic equation. A more pronounced
hierarchy can be produced by tweaking the parameters. The dark current keeps the
diagonal terms, so fully invisible decays are possible if no further assumptions are made.
Again, the model can be used to generate neutrino masses.

3.1.3 Four HNFs and inelastic Dirac DM

Adding another sterile state ηR to the Lagrangian in (3.15), we obtain

L4HNF = L2HNF + ηLi/∂ηL + ηcRi/∂η
c
R−[

1

2
mηηLη

c
R +

1

2
mηηcRηL +

µ′R
2
ηRη

c
R + Λ′LηRχL + Λ′Rη

c
Rχ

c
R

+
µ′L
2
ηcLηL + ΛLηcLχL + ΛRηcLχ

c
R + h.c.

]
. (3.36)

In this case, we have two families of HNF: dark (χ, charged under U(1)D) and sterile (η,
completely uncharged).

C symmetry and mass spectrum

Acting with C on (3.36), using (3.9), we immediately see that requiring C-symmetry
entails that ΛL = Λ′R, Λ′L = ΛR. Defining the C-parity eigenstates η± in the sterile sector
as we did for χ±, we move to the (η−, η+, χ−, χ+) basis. In the C-symmetric limit we
get the following mass matrix:

M =


mη − µ′ 0 Λ− 0

0 mη + µ′ 0 Λ+

Λ− 0 mχ − µ 0
0 Λ+ 0 mχ + µ

 , (3.37)

where

µ′ ≡ µR − µL
2

, Λ± ≡
Λ′L + ΛR

2
± ΛL + Λ′R

2
→ ΛR ± ΛL. (3.38)

The sign for the C-odd states gets flipped due to the choice of Majorana phases as usual.
As expected, the C-even and C-odd sectors decouple. To diagonalise we perform two
independent rotations, one for each C-parity eigenspace, by angles β± given by

tan 2β± = ±2Λ±
∆±

, ∆± = ± (mχ −mη) + µ− µ′. (3.39)
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The mass spectrum is then given by

ψ1 = cβ−η− + sβ−χ−, m1 = mη − µ′ + ∆−
sin2 β−
cos 2β−

; (3.40)

ψ2 = cβ+η+ + sβ+χ+, m2 = mη + µ′ −∆+
sin2 β−
cos 2β−

; (3.41)

ψ3 = −sβ−η− + cβ−χ−, m3 = mχ − µ−∆−
sin2 β−
cos 2β−

; (3.42)

ψ4 = −sβ+η+ + cβ+χ+. m4 = mχ + µ−∆+
sin2 β−
cos 2β−

. (3.43)

With the usual choices for dark charges, the dark current takes the form

Jµ4HNF = cβ+cβ−ψ4γ
µψ3 + sβ+cβ−ψ4γ

µψ1 + sβ−cβ+ψ3γ
µψ2 + sβ+sβ−ψ2γ

µψ1 + h.c. (3.44)

If µ, µ′ and Λ± are sufficiently small with respect to mχ and mη, we obtain two pseudo-
Dirac particles.

Benchmark 3 — i2DM

If we set µ = µ′ = 0, and therefore ∆+ = −∆− ≡ ∆, for small values of β±, the mass
splittings behave as follows:

m4 −m3 ∼ m2 −m1 ∼ ∆
(
β2

+ − β2
−
)
. (3.45)

If also β+ = β− ≡ β, which is equivalent to Λ+ = ±Λ−, we recover an exact Dirac pair.
This final model is known as inelastic Dirac dark matter [46] and works the same as iDM,
but with Dirac fermions Ψ1 (from the sum of ψ1 and ψ2, the mostly sterile DM candidate)
and Ψ2 (from ψ3 and ψ4, the mostly dark coannihilator) in place of Majorana. In terms
of these combinations, the dark current becomes

Jµi2DM = s2
βΨ1γ

µΨ1 + sβcβ
(
Ψ2γ

µΨ1 + h.c.
)

+ c2
βΨ2γ

µΨ2. (3.46)

3.2 Light neutrino mass generation

The HNFs introduced in the previous section can be given Yukawa interaction terms
with the SM neutrinos. This makes the HNFs unstable and therefore unsuited as DM
candidates, but gives us the opportunity to establish a seesaw mechanism and generate
mass terms for light neutrinos, as explained in section 2.2. Conversely, one can choose to
forbid the Yukawa terms, e.g. postulating a Z2 symmetry for all the DS fermions (which
in turn can be attributed to the conservation of lepton number [47]), and propose the
HNF as DM particles. The flexibility of the model lets us do either or both.
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Rank of the mass matrix

Let us take a preliminary look at what happens in the different scenarios by inspecting
the full mass matrix, which has the general form we presented in section 2.2:

M =

(
03×3 mD

mT
D M

)
. (3.47)

Recall that mD denotes the Dirac mass matrix resulting from Yukawa terms when the
scalars of the theory get a vev, and M is the n×n mass matrix for the n HNF (this time
we are not assuming M to be diagonal from the start, even though it will not matter in
the end). Depending on which elements of M and mD are nonvanishing, we get different
models recurring in the literature. As we are about to show, for what concerns the
light neutrino mass generation, it is more convenient to have a nonvanishing Majorana
mass term for the HNF that lack Yukawa interactions with the light states. Indeed,
this increases the rank of the matrix allowing for more nonzero eigenvalues. This is best
exemplified by comparing an Inverted Seesaw-like (ISS) scenario, which assigns in fact
a nonzero Majorana mass µ for the stable HNF, against an Extended Seesaw-like (ESS)
scenario, which does not. The ISS result is the same as the general and C-conserving
models from the previous section.
For n = 2 we get (crosses denote nonzero Yukawa terms):1

MISS =


0 0 0 0 ×
0 0 0 0 ×
0 0 0 0 ×
0 0 0 µ Λ
× × × Λ 0

 MESS =


0 0 0 0 ×
0 0 0 0 ×
0 0 0 0 ×
0 0 0 0 Λ
× × × Λ MR

 (3.48)

By inspection, rank(MISS) = 3, so the zero eigenvalue of MISS has algebraic multiplicity
ma(0) = 2 and the seesaw mechanism gives mass to only one light neutrino (in addition
to the heavy ones). On the other hand rank(MESS) = 2, so ma(0) = 3 and the model is
incapable of accounting for light neutrino masses.
We have a more promising situation for n = 3:

MISS =


0 0 0 0 × ×
0 0 0 0 × ×
0 0 0 0 × ×
0 0 0 µ Λ1 Λ2

× × × Λ1 0 0
× × × Λ2 0 0

 MESS =


0 0 0 0 × ×
0 0 0 0 × ×
0 0 0 0 × ×
0 0 0 0 Λ1 Λ2

× × × Λ1 MR1 0
× × × Λ2 0 MR2

 (3.49)

Here, assuming that the nonzero Yukawa couplings form a submatrix of maximum rank,
we have rank(MISS) = 5 and the seesaw gives mass to two of the light neutrinos. It
is then possible to compare the obtained masses with the experimental values of the
mass-squared differences, with the aim of reconstructing the Yukawa structure through
a bottom-up approach. This is not possible in the ESS-like case, since rank(MESS) = 4
and two light neutrinos stay massless.
The n = 4 case is analogous for the ISS-like models, while for the ESS-like models the

1Notice that the order of the HNF entries is inverted (“sterile” first and “dark” last) with respect to
the usual order found in literature, to make the rank of the matrices more readable.
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rank is even lower, as we add another HNL with no Majorana term, ending up again with
no mass for the light neutrinos.
In all cases, the terms on the diagonal of the heavy neutrino submatrix M are decisive,
so in the following we will assume M to be diagonal, and define the Yukawa couplings in
the hybrid basis (να, ψi), where α = e, µ, τ is the weak flavour index for the SM neutrinos
and i = 1, . . . , n is the mass eigenstate index for the HNFs.
Of course, if we forgo the aim of also providing a DM candidate, the Yukawa submatrix
can have all nonzero entries, increasing the rank of M to the point where it is always
possible to give mass to two or three of the SM neutrinos.

Yukawa structure

To reconstruct natural Yukawa couplings for our models, we will use Casas-Ibarra formula
(2.41), whose factors can be organised as follows:

• measured parameters, i.e. the PMNS matrix U and the square root of the light neu-
trino mass matrix m̂ν , whose entries we take from [48] (assuming normal ordering,
with the lightest neutrino being massless), and the Higgs vev v = 246 GeV;

• the arbitrary semiorthogonal matrix OT , which we parametrise in terms of complex
angles;

• the square root of the HNF mass matrix M̂ , with mψ1 chosen in the MeV to GeV
range and heavier states roughly one order of magnitude above that.

As we have seen above, the n = 2 case does not allow for the simultaneous generation
of light neutrino masses and the presence of a DM candidate. The most general 3 × 2
complex semiorthogonal matrix can be parametrised as

O =

(
0 cosω ξ sinω
0 − sinω ξ cosω

)
, (3.50)

where ξ = ±1 and ω = a+ ib is a complex angle. If we turn off the rotational component
by sending a→ 0, and consider the asymptotic behaviour for b� 1, we get

O ∼
(

0 1 iξ
0 −i ξ

)
eb

2
. (3.51)

For the considered mass range, we get

|yν | ∼

10−10−10−8 10−10−10−9

10−10−10−8 10−10−10−8

10−10−10−8 10−10−10−8

 eb

2
. (3.52)

With b < 20− 24 we get perturbative Yukawa couplings (αyν = |yν |2/4π < 1).
In the n = 3 case, the general parametrisation for an orthogonal complex matrix is

O = ±

1 0 0
0 cωx sωx
0 −sωx cωx

 cωy 0 sωy
0 1 0
−sωy 0 cωy

 cωz sωz 0
−sωz cωz 0

0 0 1

 . (3.53)
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The first column of the Yukawa matrix can be set to zero if sωy + cωysωz = 0, which is
trivially achieved if ωy, ωz = 0. In this case,

yα1 = 0, yα2 = cωx + sωx , yα3 = −sωx + cωx . (3.54)

The sterile HNF mass mψ1 does not enter the computation. Taking mψ2 ' mψ3 in the
desired range, we obtain

|yα2| ' |yα3| ∼
ebx

2

(
10−10 − 10−8

)
(3.55)

and again we get perturbative Yukawa couplings (possibly with a phase between yα2 and
yα3) choosing bx < 20− 24.
The n = 4 case is analogous to n = 3, since O is 4× 3 and can be expressed just like the
result of (3.53) with a row of zeroes on top. This just adds a zero column to yν , yielding

yα1 = yα2 = 0, |yα3| ' |yα4| ∼
ebx

2

(
10−10 − 10−8

)
. (3.56)

3.3 Thermal target for iDM

There is fairly wide literature (e.g. [49] and references therein) devoted to the calculation
of a thermal target, by which we mean a region in parameter space in which the observed
DM abundance is obtained from the model at hand. This target requires a minimum
interaction rate between DM and the SM, for which the pure inelastic dark matter model
is particularly well suited. Indeed, as we hinted at the end of section 3.1.1, we can
hypothesise that inelastic collisions with SM particles, which constitute the mechanism
solving direct detection discrepancies, be also responsible for the leading annihilation
process (coannihilation) in the early universe, via the s-channel diagram2

ψ1

ψ2

f

f̄

gD εgf

Z ′

Being the heavier species ψ2 subject to Boltzmann suppression during freeze-out, the
annihilation rate for this process must be high enough to compensate, and this is possible
to achieve with the freedom we have in choosing gD.
The instability of the heavier state also shuts off completely indirect detection at late
time, evading experimental bounds from that searching area. In particular, the bound
from CMB on s-wave annihilation, which excludes thermal DM lighter than ∼ 10 GeV,
is lifted and we can consider the velocity-independent coannihilation cross section [50]

σv(ψ1ψ2 → e+e+) ' 4πε2αemαD (mψ1 +mψ2)
2[

(mψ1 +mψ2)
2 −m2

Z′
]2

+m2
Z′Γ

2
Z′

, (3.57)

2We are excluding secluded annihilation, i.e. the process ψiψi → Z ′Z ′ through t-channel exchange of
ψj , by taking the dark photon heavier than both ψ1 and ψ2.
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where Γ2
Z′ is the width of the dark photon. A resonant behaviour is obtained for mZ′ =

mψ1 +mψ2 , so most studies consider Z ′ heavy enough to avoid it.
The method by which one obtains the thermal target was basically outlined in section
1.3. A system of coupled Boltzmann equations (1.18) for ψ1 and ψ2 must be solved,
taking into account also the ψ2 depletion due to it decaying to ψ1. While we refer the
reader to [50] for all the details, we find it appropriate to display here the form of the
Boltzmann system:

dYψ1,ψ2

dx
= −λA

x2

(
Yψ1Yψ2 − Y eq

ψ1
Y eq
ψ2

)
± xλD

(
Yψ2 −

Y eq
ψ2

Y eq
ψ1

Yψ1

)

± λS

x2
Y eq
f

(
Yψ2 −

Y eq
ψ2

Y eq
ψ1

Yψ1

)
, (3.58)

with

λA =
s(mψ2)

H(mψ2)
〈σv(ψ1ψ2 → ff̄)〉, (3.59)

λS =
s(mψ2)

H(mψ2)
〈σv(ψ2f → ψ1f)〉, (3.60)

λD =
〈Γ(ψ2 → ψ1ff̄)〉

H(mψ2)
. (3.61)

The value we are interested in is Y ∞ψ1
at freeze-out instant xF ' 20, which enters the

expression of the relic abundance

Ωψ1 =
mψ1s0Y

∞
ψ1

ρcr

. (3.62)

The obtained value is then equated to the observed ΩDMh
2 = 0.12 (from [4]). This gives

a hypersurface in the parameter space, which can be parametrised as y = y(mψ1), where

y ≡ ε2αD

(
mψ1

mZ′

)4

(3.63)

as suggested by the parameter dependence in (3.57) for relatively small mass differences
∆21. The high dimensionality of the parameter space can be taken care of by slicing it for
specific values of αD and ∆21 and considering the y = y(mψ1) curves for various choices
of n ≡ mZ′/mψ1 . This was done in [49], of which we present the results in figure 3.1.
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Figure 1: Thermal targets (⌦DMh2 = 0.12 [23]) for the inelastic DM model. We show

various DM mass di↵erences �/m�1 = [0, 0.05, 0.1, 0.2, 0.3, 0.4] (di↵erent panels) and var-

ious mediator mass ratios mA0/m�1 = [2.5, 3, 4, 7, 10] (di↵erent lines in each panel). For

the line labelled ‘close to resonance’ the mediator mass is set to mA0 = 2.01 m�1 +�. The

model-independent LEP bound [41] on the kinetic mixing parameter ✏ constrains values

of ✏ ⇡ 3 ⇥ 10�2 away from the Z resonance and hence results in a di↵erent limit on y for

di↵ering ratios of mA0/m�1 .

– 7 –

Figure 3.1: Calculated thermal targets for the iDM model, at various mass differences ∆ ≡
∆21mψ1 and mediator mass ratios mZ′/mχ1 ≡ n (the usual notation for DM candidates
χi is employed instead of ψi). Model-independent LEP bounds on the kinetic mixing ε
are shaded in grey. Figure taken from [49].
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Chapter 4

Dark photon phenomenology at
ICARUS

The final part of this thesis work consists in a preliminary analysis for an experimental
test of the previously analysed rich dark sector models. The context is a terrestrial search
for dark sector interactions at Fermilab, using the data from the Short-Baseline Neutrino
program. In particular, we will consider the production and semi-visible decay chain
of dark photons, and calculate the expected event rate in the ICARUS-T600 detector.
Section 4.1 deals with the predictions related to the physics of the model alone. In section
4.2 a brief review of the experiment history and design is given, while section 4.3 contains
the rough prediction of the total event rate for the considered process.

4.1 Processes involving the dark photon

This section deals with the task of extracting phenomenological consequences from the
models presented in section 3.1. In particular, we will show how dark photons may be
produced in extracted beams, and calculate its semi-visible decay rates. For the latter,
we will use textbook techniques of QFT at tree level. Kinematic formulae relevant for
the two-body and three-body decays are taken from [35]. The calculations will be carried
out first in the two-HNF model from section 3.1.1. This way, we can highlight the effects
of the Majorana nature of ψ1 and ψ2, of the relative Majorana phase ϕ, and of the dark
charges, all of which are turned off to some degree in the other models. How the results
get modified to obtain the different benchmark points will be discussed at the end. The
calculations should be general enough to be easily adapted to competing models involving
dark vector bosons and Majorana neutrinos.

4.1.1 Z ′ production

In beam-dump experiments, a high-intensity proton beam is made to hit an extended fixed
target. The resulting secondary particles, in particular mesons, pass through an empty
volume, where they propagate until they decay into lighter states. While this setup is
usually employed to generate a neutrino beam through the decay of charged meson (e.g.
π+ → µ+νµ), a fair amount of photons from decays of neutral mesons is produced (e.g.
π0 → γγ). If kinetic mixing comes into play and the meson mass is high enough, the
meson can actually decay to γZ ′, with a branching ratio depending on the magnitude
of the kinetic mixing ε. Now, while the meson production is mediated by the strong
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interaction and a sizeable amount of mesons is guaranteed per collision, the meson decays
into photons are mostly loop-level electromagnetic, with low branching ratios (excluding
the neutral pion for which the 2γ branch is dominant). The production of Z ′ is therefore
suppressed both by ε and because of the alternative decay channels. However, the rarity
of such decays is compensated by the sheer amount of meson-producing collisions at the
target.
An argument for considering kaons, in the weak eigenstate K0

L, is the following: they are
the longest-lived neutral meson produced in beam-dump facilities, with mean life [51]

τK0
L

= (5.116± 0.021)× 10−8 s, (4.1)

meaning they decay fairly away from the target, with low backgrounds from other sources.
The corresponding mass eigenstate has mK0 ' 498 MeV, meaning that, while being light
enough to be produced from high-intensity beams, they are still able to decay to on-shell
O(100) MeV dark photons.
The branching ratio for the γZ ′ channel is computed to be [52]

BRK0
L→γZ′ ' 10−3ε2

(
1− m2

Z′

m2
K0

)3

. (4.2)

4.1.2 Z ′ → ψiψj

Under the assumption that mZ′ > mψi for all i, we proceed with the tree-level calculation
for the unpolarised decay rate of Z ′ into a pair of heavy Majorana neutrinos, through a
dark current like the one in (3.8), whose general expression is

JµD = Vijψiγ
µψj + Aijψiγ

µγ5ψj. (4.3)

Majorana fermions have only one set of creation and annihilation operators {a†k, ak} unlike

Dirac fermions, which have two: {b†k, bk} for particles and {c†k, ck} for antiparticles. This
leads to different contractions with external states. If ψi and ψj were Dirac fermions, the
normal-mode decomposition, written schematically as

ψ ∼
∑
k

(
bkuk + c†kvk

)
(4.4)

would give, for the process Z ′ → ψiψj,〈
ψiψj

∣∣ (ψiΓψj + ψjΓψi
)
|0〉 = 〈0|uiΓvj |0〉 , (4.5)

and 〈0|ujΓvi |0〉 for the conjugate process Z ′ → ψjψi.
1 Here instead we will consider ψi

and ψj to be Majorana fields, decomposed as

ψ ∼
∑
k

(
akuk + a†kvk

)
, (4.6)

and therefore the contraction with external states for the process Z ′ → ψiψj gives

〈ψiψj|
(
ψiΓψj + ψjΓψi

)
|0〉 = 〈0| (uiΓvj + ujΓvi) |0〉 . (4.7)

1The symbol Γ is used as a shorthand for the relevant product of gamma matrices with its coefficient.
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The case with one Dirac fermion and one Majorana fermion is analogous to the one with
two Dirac fermions.
Translating this to the language of Feynman rules, the S-matrix element for the tree-level
process

Z ′(p)→ ψi(ki) + ψj(kj)

where ψi and ψj are Majorana fermions, is given by the sum of the following two diagrams:

Z ′

ψi

ψj

Z ′

ψi

ψj

iM = u(ki)igDεµ(p)γµ
(
Vij + Aijγ

5
)
v(kj) + (i↔ j). (4.8)

We then take the modulus squared, sum over the final spins and average over the initial
polarisation states. In doing this, the mixed terms from the two diagrams cancel against
each other, although this is not trivial: one has to work out the spin sums using the
additional formulae valid only for Majorana fermions (as found e.g. in [53]).
This leads to

|M|2 =
1

3
g2
D

(
−gµν +

pµpν

m2
Z′

)
tr
[
( /kj −mj) γµ

(
V ∗ij + A∗ijγ

5
)

× ( /ki +mi) γν
(
Vij + Aijγ

5
)]

+ (i↔ j). (4.9)

Using standard trace identities, and getting rid of p using momentum conservation (p =
ki + kj), we come to the expression

|M|2 =
8

3
g2
D

{(
|Vij|2 + |Aij|2

)[
2ki ·kj +

(
m2
i +m2

j

)
ki ·kj + 2m2

im
2
j

m2
Z′

]

+
(
|Vij|2 − |Aij|2

)[
4mimj −

(
m2
i +m2

j + 2ki ·kj
)
mimj

m2
Z′

]}
. (4.10)

Fermi’s golden rule for the 2-body decay reads

dΓ =
1

32π2
|M|2 |ki|

m2
Z′

dΩ. (4.11)

Being the Z ′ unpolarised, we have no dependence on the angles in its rest frame. Two-
body kinematics gives

|ki| = |kj| =
[(m2

Z′ − (m1 +m2)2) (m2
Z′ − (m1 −m2)2)]

2mZ′
. (4.12)

Expressing the dot product as

ki · kj =
(ki + kj)

2 − k2
i − k2

j

2
=
m2
Z′ −m2

i −m2
j

2
, (4.13)
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we arrive, after some algebra, at the general result

ΓZ′→ψiψj =
g2
D

6π
mZ′

√√√√[1−
(
mi −mj

mZ′

)2
][

1−
(
mi +mj

mZ′

)2
]

×
{(
|Vij|2+|Aij|2

) [
1− 1

2

m2
i +m

2
j

m2
Z′
− 1

2

(
m2
i−m2

j

m2
Z′

)2
]

+ 3
(
|Vij|2−|Aij|2

) mimj

m2
Z′

}
. (4.14)

For i 6= j, the coefficients in (3.8) give

ΓZ′→ψ2ψ1 =
(gDQV s2θ)

2

6π
mZ′

×

√√√√[1−
(
mψ2−mψ1

mZ′

)2
][

1−
(
mψ2 +mψ1

mZ′

)2
]

×
[

1− 1

2

m2
ψ2

+m2
ψ1

m2
Z′

− 1

2

(
m2
ψ2
−m2

ψ1

m2
Z′

)2

− 3c2ϕ
mψ2mψ1

mZ′

]
, (4.15)

whereas, for i = j,

ΓZ′→ψiψi =
g2
D (QA ±QV c2θ)

2

24π
mZ′

(
1− 4

m2
ψi

m2
Z′

)3/2

, (4.16)

where the upper sign refers to ψ2 and the lower sign to ψ1.

Benchmarks

In the iDM model from section 3.1.1, we set θ = π/4, φ = π/2, QA = 0, which kills off the
diagonal terms, and thus the decay (4.16). The axial coupling is also turned off. Setting
QV = 1, (4.15) becomes, in terms of the relevant parameters (ri ≡ mψi/mZ′),

Γ
(iDM)
Z′→ψ2ψ1

=
2

3
αDmZ′

[
1 + 2r1 −

3

2
∆21 (∆21 + 2) r2

1 +O(r3
1)

]
. (4.17)

We now turn to the 3HNF models, from section 3.1.2. The mixed-iDM model, using (3.24)
for JµD, contains the Dirac fermion Ψ2, which means that the decay rate gets halved with
respect to the full Majorana case. This time we also have the i = j case, for which we
modify (4.16) accordingly:

Γ
(mixed−iDM)
Z′→Ψ2ψ1

=
1

2
sαΓ

(iDM)
Z′→ψ2ψ1

, (4.18)

Γ
(mixed−iDM)
Z′→Ψ2Ψ2

=
1

3
cααDmZ′

(
1− 4r2

2

)3/2
. (4.19)

The result for the three Majorana fermion models (BP4, BP5), as well as that for the
i2DM model (BP3) can be deduced in a similar fashion from the general case.
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4.1.3 Z ′-mediated ψ2 → ψ1`
−`+

We set out to calculate the three-body decay of the heavier Majorana state ψ2 into the
lighter one ψ1 and a SM lepton-antilepton pair, at tree level. Following the reasoning of
the previous section for what concerns the Majorana nature of fermions, and assuming a
small momentum transfer from ψ2 to the lepton pair (q � mZ′), we see that the matrix
element for the process

ψ2(p)→ ψ1(k1) + `−(k2) + `+(k3)

is given by the sum of the diagrams:

ψ2

ψ1

`−

`+

Z ′

ψ2

ψ1

`−

`+

Z ′

iM = u(k1) igDγ
µ
(
V12 + A12γ

5
)
u(p)

( −i
m2
Z′

)
u(k2) iεeγµ v(k3)

+ v(p) igDγ
µ
(
V12 + A12γ

5
)
v(k1)

( −i
m2
Z′

)
u(k2) iεeγµ v(k3). (4.20)

Taking the modulus squared and summing over the final spins and averaging over the
initial ones, we get

|M|2 =
1

2

(gDεe)
2

m4
Z′

tr [( /k3 −m`) γµ ( /k2 +m`) γν ]

×
{

tr
[(
/p+m2

)
γµ
(
V ∗12 + A∗12γ

5
)

( /k1 +m1) γν
(
V12 + A12γ

5
)]

+ tr
[
( /k1 −m1) γµ

(
V ∗12 + A∗12γ

5
) (
/p−m2

)
γν
(
V12 + A12γ

5
)]}

. (4.21)

Just like in the previous calculation, the mixed terms get cancelled. Using standard trace
identities we are led to

|M|2 =
32 (gDεe)

2

m4
Z′

×
{(
|V12|2+|A12|2

)[
(p·k3)(k1 ·k2) + (p·k2)(k1 ·k3) +m2

`(p·k1)
]

+
(
|V12|2−|A12|2

)[
−mψ1mψ2(k2 ·k3 + 2m2

`)
]}
. (4.22)

To simplify, we set m` = 0. Substituting the coefficients in (3.8) for V12 and A12 we get

|M|2 =
32 (gDεeQV sin 2θ)2

m4
Z′

f(p, k1, k2, k3), (4.23)

where

f(p, k1, k2, k3) = (p·k3)(k1 ·k2) + (p·k2)(k1 ·k3) + cos 2ϕmψ1mψ2(k2 ·k3). (4.24)
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The dot products can be expressed in terms of the Dalitz variables

m2
ij ≡ (ki + kj)

2, i, j = 1, 2, 3 (4.25)

and of the Majorana fermion masses mψ1 , mψ2 , to obtain

f(m12,m23,m13) =
1

4

[(
m2

12 −m2
ψ1

) (
m2
ψ2
−m2

12

)
+
(
m2

13 −m2
ψ1

) (
m2
ψ2
−m2

13

)
+ 2 cos 2ϕmψ1mψ2m

2
23

]
. (4.26)

Next, we use momentum conservation, in the form

m2
12 +m2

23 +m2
13 = m2

ψ1
+m2

ψ2
, (4.27)

to get rid of m13 in (4.26):

f(m12,m23) =
1

4

[
−2m4

12 −m4
23 − 2m2

12m
2
23 + 2

(
m2
ψ1

+m2
ψ2

)
m2

12

+
(
m2
ψ1

+m2
ψ2

+ 2 cos 2ϕmψ1mψ2

)
m2

23 + 2m2
ψ1
m2
ψ2

]
. (4.28)

We are now ready to use Fermi’s golden rule for the differential width in terms of the
Dalitz variables:

dΓ =
1

(2π)3

1

32m3
ψ2

|M|2 dm2
12 dm2

23. (4.29)

To simplify the notation, we set

r ≡ mψ1

mψ2

, x ≡ m2
12

m2
ψ2

, y ≡ m2
23

m2
ψ2

. (4.30)

Now (4.29) reads

dΓ =
(gDεeQV sin 2θ)2

32π3m4
Z′

m5
ψ2

[
−2x2 − y2 − 2xy

+ 2(1 + r2)x+ (1 + r2 + 2 cos 2ϕ r)y + 2r2
]

dx dy. (4.31)

The last step involves integration over the Dalitz plot. The bounds of integration are

xmin = r2, xmax = 1, (4.32)

ymin = 0, ymax = 1−x− r2

x
+ r2. (4.33)

The final result is given in terms of the mass ratio r:

Γψ2→ψ1`−`+ =
(gDεeQV sin 2θ)2

192π3m4
Z′

m5
ψ2

[
1 + 4r2 + 24r4 ln r

+ 2 cos 2ϕ
(
r + 9r3 + 12r3 ln r

)
+O(r5)

]
. (4.34)
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Figure 4.1: Artist cutaway view of the ICARUS-T600 detector. Figure taken from [54].

Benchmarks

To specialise the result in (4.34) to the various models from section 3.1, we set θ = π/4,
ϕ = π/2, QA = 0, QV = 1, and use the relevant formulae for the dark current. For the
models involving Dirac or pseudo-Dirac fermions, either in the final or initial state, the
decay rates get halved. For the iDM and mixed-iDM cases, we obtain (ri ≡ mψi/mZ′):

ΓiDM
ψ2→ψ1`−`+ =

αDαemε
2

12π
r4

1mψ1 (1 + ∆21)5 [1 + 4 (1 + ∆21)−2 + o
(
(1 + ∆21)−4

)]
, (4.35)

Γmixed−iDM
Ψ2→ψ1`−`+

=
1

2
sαΓiDM

ψ2→ψ1`−`+ . (4.36)

Similar results hold for the other benchmark points.

4.2 ICARUS at the Fermilab Short-Baseline Neu-

trino program

ICARUS (Imaging Cosmic And Rare Underground Signals) [54] [55] is the first large-scale
experiment based on LAr-TPC (Liquid Argon Time Projection Chamber) technology. As
such, it can observe neutrino interactions at energies from few keV to hundreds of GeV,
providing 3D imaging and calorimetric reconstruction of incoming ionising particles.
The ICARUS-T600 detector is composed of two modules, essentially huge tanks (3.6 ×
3.9× 19.6 m3 each) filled with liquid argon (760 tons total, of which 476 available for in-
teractions), whose inside is instrumented with charged wires arranged along three planes,
generating a uniform 500 V/cm electric field. When a weakly interacting neutral particle
strikes an Ar atom, charged particles are released, which in turn ionises nearby atoms,
creating a streak of electrons that drifts towards the nearest wire, generating signal. The
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Figure 4.2: View of the ICARUS detector inner TPC during its overhaul, with the cathode
plane on the left and the wire planes, along with the PMTs, on the right. Photo: CERN.

drifting time is also measured, using PMT-captured scintillation from the interactions as
a trigger. The result is a complete 3D reconstruction of the event.
Proposed originally by C. Rubbia back in 1977, the experiment was first run at LNGS
from 2010 to 2013, where it observed neutrino oscillations, particularly as part of the
CNGS project alongside OPERA. It then underwent a period of overhaul at CERN, and
was then transported overseas to Fermilab, where it is now part of the Short Baseline
Neutrino program along with SBND and MicroBooNE, and has been taking measure-
ments since 2021. ICARUS T-600 is exposed to both the Booster neutrino beam (BNB)
and the neutrino at the Main Injector (NuMI) beam. The main goal at Fermilab is to
study the sterile neutrino hypothesis and clarify the low-energy anomalies from LSND
and MiniBooNE.
We now give some quantitative details for the analysis in the next section. The BNB
consists of an 8 GeV proton beam impinging on a beryllium target, with all the SBN
detectors, among which ICARUS is the farthest away (600 m from target), located along
the beam axis. On the other hand, the NuMI beam is produced by striking 120 GeV
protons on a graphite target, and the detectors are all off-axis, with ICARUS being 803 m
away from the target at an angle of 0.097 rad (5.5◦). The active volume for each chamber
is 2.67× 2.86× 17.00 m3.

4.3 Calculation of the expected number of events

To estimate the number of heavy neutral particles from the semi-visible dark photon
model that can produce a signal inside ICARUS, we first considered the meson produc-
tion from the BNB and the NuMI beam. By the arguments outlined in section 4.1.1,
we restricted our analysis to the K0

L, and considered the decay chain K0
L → γZ ′, then

Z ′ → ψ2ψ1, with ψ2 entering the detector and decaying to ψ1e
+e−, with the electron-
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Figure 4.3: Map of the Fermilab SBN experiments, aerial (left) and elevation (right)
view, centered at the BNB target. Figure taken from [56].

positron pair capable of leaving tracks. The multiple decay stages, together with the
geometry of the experiment, required a careful simulation of the decay events and prop-
agation to get any meaningful result. The procedure we used is inspired by [56], which
uses kaons at Fermilab to test a model involving a dark scalar.

Algorithm description

The master formula for the event rate is the following:

R = εdetNpot
ρNAL

A
σpAP . (4.37)

It can be broken down into three parts.

• The terms which depend on the experimental setup include the detector efficiency
εdet, the number of protons on target (per year) Npot, the density of the target ρ
and its length L, while A is the target mass number. For our simulations, we used
εdet ' 10%, Npot ' 5.7 × 1020/year, ρNuMI = 1.78 g/cm3 (POCO graphite) and
ρBNB = 1.85 g/cm3 (beryllium).

• The total cross sections σpA for the proton-nucleus collision were calculated through
a Pythia [57] Monte Carlo simulation, with 106 events. By default, for collisions
involving nuclei, the Pythia engine employs the Angantyr model [58]. The result
was (3.640± 0.003)× 102 mb for the NuMI beam and (2.716± 0.002)× 102 mb for
the BNB.

• The symbol P denotes the probability that the produced K0
L actually generates a ψ2

decay inside ICARUS. To estimate it, a combination of Python and Mathematica

scripts were used to manipulate the Pythia output, consisting in the 4-momenta of
the outgoing kaons.
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Figure 4.4: Schematic drawing of the semi-visible dark photon production and decay
at Fermilab (not to scale). The red rectangle denotes the beam target, while the blue
rectangle represents the active volume of ICARUS.

Let us go into some more detail about the calculation of P , which can be expressed as
the product

P = YK0
L
BRK0

L→γZ′fdetfin. (4.38)

Here, YK0
L

is the average kaon yield per collision, estimated by Pythia to be around 0.92
for the NuMI beam and 0.34 for the BNB. The branching ratio is given by (4.2). Clearly,
we are assuming that no other decay channels are available for Z ′ and ψ2 besides those
calculated in sections 4.1.2 and 4.1.3. The last two factors require a separate treatment.
The factor fdet is the fraction of kaons, assumed to have branched to γZ ′, and therefore
bound to go down the full decay chain, resulting in a ψ2 hitting the active detector
volume. To get this number, we first have to calculate, for each kaon, the position r2 at
which the ψ2 is generated and its velocity β2 ≡ βψ2|lab (in units of c) in the laboratory
frame. The position can be expressed as

r2 = r0 + β̂K |lab`1 + β̂Z′|lab`2, (4.39)

where the hatted quantities denote unit vectors, while `1 and `2 respectively denote the
travel distances of the K0

L and Z ′. With the exception of r0, which points at the beam
target and is taken as the origin of the coordinate system (with the laboratory z axis in
the direction of the beam), all other quantities in (4.39) are statistically simulated. In
particular, the velocity vectors βi are first generated in a random direction2 n̂∗i (a star
denotes that the quantity is taken in the rest frame of the parent particle), then boosted
to the lab frame, according to the following equations:

β∗Z′ =
p∗Z′
E∗Z′

=
m2
K −m2

Z′

m2
K +m2

Z′
n̂1, (4.40)

β1 ≡ βZ′ |lab =
1

1 + β∗Z′ · β0

[
β∗Z′
γ0

+ β0 +
γ0

γ0 + 1
(β∗Z′ · β0)β0

]
, (4.41)

β∗ψ2
=

p∗ψ2

E∗ψ2

=
[(m2

Z′ − (mψ2 +mψ1)
2)(m2

Z′ − (mψ2 −mψ1)
2)]1/2

m2
Z′ −m2

ψ1
+m2

ψ2

n̂2, (4.42)

β2 ≡ βψ2 |lab =
1

1 + β∗ψ2
· β1

[
β∗ψ2

γ1

+ β1 +
γ1

γ1 + 1

(
β∗ψ2
· β1

)
β1

]
, (4.43)

2The two-body decay of an unpolarised parent is isotropic in the CM frame, as noted in section 4.1.2.

55



where as usual γi = (1 − βi)−1/2. The free paths `i are extracted from an exponential
distribution with mean µi = γiβiτi, where τi = 1/Γi is the mean lifetime. Once both r2

and β2 are obtained, we let Mathematica intersect the flight path of ψ2, described by the
equations

x− x2

β2x

=
y − y2

β2y

=
z − z2

β2z

, (4.44)

with the surface of a rectangular parallelepiped representing the active volume of ICARUS,
placed according to the experimental geometry. The ratio between the number of valid
intersections and the number of kaons we started with gives fdet.
As for the final factor in (4.38), fin is the fraction of ψ2 hitting the detector which actually
decay inside, possibly leaving a signature. The probability of this happening is given by

P (r2,β2) = exp

(
−Lin(r2, β̂2)

γ2β2τ2

)
− exp

(
−Lout(r2, β̂2)

γ2β2τ2

)
, (4.45)

where Lin and Lout are the distances between r2 and the intersection points. Since the
statistics at this point was very low, we decided to take the mean value of P as an estimate
for fin.

Benchmark points and results

A study of the parameter space (αD, ε,mψ1 , n,∆21), where n ≡ 1/r1 = mZ′/mψ1 , was
made to find which points could give higher statistics. In particular, the average ψ2 decay
position was considered, and compared with the centre of the detector. Encouraging
results were found for αD = 0.1, which is high enough for efficient coannihilation in the
early universe (as described in section 3.3). For the benchmark point given by ε = 10−3,
mψ1 = 20 MeV, n = 20, ∆21 = 0.1, we found

RBNB ' 2× 102/year RNuMI ' 8× 102/year. (4.46)

Figures 4.5 and 4.6 show the average decay distance from the centre of the detector, using
respectively the BNB and the NuMI beam, with the different colours identifying 100 m
bands. The warmest colour indicates that, choosing the parameters in that region, on
average, the decay takes place within 100 m from the detector. The benchmark point is
optimistically chosen within one such band (subfigures 4.5(a) and 4.6(b)). Incidentally, it
is apparent that the ψ2 decays resulting from the BNB secondaries are closer to the target
than those associated to the NuMI beam, giving rise to larger bands in the figures. This
can be attributed to the combination of two factors: the lower velocities of intermediate
particles which diminish relativistic time dilation, and thus their lifetime, and the detector
being closer to the target. This enhancement partially compensates the suppressions due
to both the lower meson yield and the more restricted phase space.
We compare the results of this survey of the parameter space to the analysis of the thermal
target in [49], by looking at the plots in subfigures 4.5(b-f) and 4.6(b-f). We superimposed
the y = y(mψ1) curves (the thermal target for n = 2) from figure 3.1 for clarity. It is
apparent that the intersection with the y = y(mψ1) curve (the thermal target) is very
narrow, in the bottom left quadrant, and models with a lower mass difference ∆21 are
more easily probed. Unless theoretical motivations are given for favouring that area, from
our analysis it seems that matching ICARUS and thermal ranges is unlikely. Naturally,
a more accurate job can be done by solving the Boltzmann equations and numerically
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comparing the thermal target hypersurface with the preferred ICARUS range.
A further refinement could be finding the energy spectrum for the decay products and
comparing it to the energy threshold of the detector and background signals. We are also
neglecting secondary collisions in the targets, which can significantly enhance the meson
yield. Another possibility of expanding our analysis is considering the stopped kaons at
the end of the decay pipe, which would give tracks in a distinct direction.
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Figure 4.5: Average distance between the ψ2 decay events and the centre of the ICARUS
detector, using the Booster Neutrino Beam (BNB). Coloured contours delimit 100 m re-
gions up to 800 m, with the warmest colour denoting decays within 100 m from ICARUS.
Benchmark used for simulation (a) and thermal benchmarks (b-f), with the n = 2.5 ther-
mal target curve reconstructed from [49].
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Figure 4.6: Average distance between the ψ2 decay events and the centre of the ICARUS
detector, using the Neutrino at the Main Injector (NuMI) beam. Coloured contours
delimit 100 m regions up to 800 m, with the warmest colour denoting decays within 100
m from ICARUS. Benchmark used for simulation (a) and thermal benchmarks (b-f), with
the n = 2.5 thermal target curve reconstructed from [49].
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Conclusions

Throughout this work, we have presented a collection of non-minimal dark sector models
and analysed its multiple applications. We reviewed the sub-GeV dark sector solution
to the problem of dark matter, its theoretical motivations and its current and possible
experimental tests, observing that, in its various realisations, it can also provide explana-
tion to several other unsolved problems: neutrino masses through the seesaw mechanism,
baryon asymmetry through leptogenesis, low energy anomalies.
In particular, the semi-visible dark photon model, motivated by the existing experimental
bounds on visible and invisible dark photon events, was shown to provide both a viable
DM candidate and a seesaw mechanism that explains the measured mass-squared differ-
ences for atmospheric and solar neutrinos. This is achieved by introducing new heavy
Majorana fermions, also in the MeV-GeV scale and postulating a Z2 or lepton parity
symmetry for some of them, while letting others interact via Yukawa terms with the
SM neutrinos, which become neutrino mass terms upon spontaneous symmetry breaking.
We showed how one can obtain perturbative Yukawa couplings, in an inverted seesaw
scenario, starting from our experimental knowledge of neutrino masses (with the hypoth-
esis that the lightest mass eigenstate is actually massless) and working bottom-up using
Casas-Ibarra parametrisation.
The semi-visible decay of the dark photon was then examined quantitatively and em-
bedded in a realistic context. In the models considered, it consists of the two stages
Z ′ → ψ2ψ1, ψ2 → ψ1`

−`+, where the `± constitute a SM lepton-antilepton pair that
can generate a signal in a particle detector. After calculating the decay rates, we ran a
simulation of the production, decay and detection at ICARUS, in its current operation as
part of the Fermilab short-baseline neutrino program. The neutral mesons produced in
the fixed-target collisions may indeed decay to dark photons, leaving a distinct signature.
Using K0

L mesons generated with Pythia and modelling the propagation and decay chain
with Python and Mathematica scripts, a sample of events in the LArTPC was computed.
From that, a total number of about 103 events per year was deduced for the considered
benchmark point, considering both the NuMI beam and the BNB collisions. If one is to
interpret the lighter state ψ1 as inelastic DM, the region in the parameter space corre-
sponding to the observed abundance was shown to have a rather small overlap with the
range available for observations at ICARUS, hinting at this scenario being fine-tuned.
However, deeper analysis is needed to deem iDM tests as too fortuitous for this kind of
experiment. The Monte Carlo simulation itself is intended to be refined and expanded
for other present and upcoming beam dump experiments.
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[58] C. Bierlich, G. Gustafson, L. Lönnblad, and H. Shah. JHEP, 2018(134), 2018.

[59] P. A. Zyla et al. [Particle Data Group].

[60] Y. Cui, D. E. Morrissey, D. Poland, and L. Randall. JHEP, 05(076), 2009.

[61] C. Antel et al. Eur. Phys. J. C, 83(1122), 2023.

[62] P. Agrawal et al. Eur. Phys. J. C, 81(1015), 2021.

[63] M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi. The Physics of the Dark Photon.
Springer Cham, 2020.

[64] P. Ballett, T. Boschi, and S. Pascoli. JHEP, 2020(111), 2020.

[65] P. Minkowski. Phys. Lett. B, 67(4):421–428, 1977.

[66] P. Ballett, M. Hostert, and S. Pascoli. Phys. Rev. D, 101, 2020.

[67] H. Zhang. Phys. Lett. B, 714(2-5):262–266, 2012.

[68] S. Pascoli. CERN Yellow Rep. School Proc. 6, pages 213–259, 2019.

64


