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Abstract

In this work it is presented a study on the sine-Gordon model thermodynamic Bethe
Ansatz (TBA) equations, with particular emphasis on its underlying mathematical struc-
tures and diagrammatic encoding.

After an outline of sine-Gordon model foundations and main features, it is proposed
an in-depth review of the TBA system derivation up to its 'raw' formulation. Some
Fourier-space identities are introduced in order to simplify the equations and bring them
in their 'universal' form. This is done for all the rational values of the sine-Gordon pa-
rameter. The 'universal' TBA equations enjoy a diagrammatic representation that casts
light on the inherent mathematical structures of the theory. The Y -system formulation
is also considered at re�ectionless points: possible generalizations are discussed.
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Introduction

Mathematical structures are at the very root of physics. Math does not only represent
the optimal language in which physics is written, but allows to unveil deeper meanings
and further signi�cance. Arguably, all modern physics is testimony to that and, in
particular, statistical �eld theory. In this theoretical framework, statistical mechanics
and quantum �eld theory are perceived as indissolubly bounded one to another in a deep
mathematical way.

An instance of this is represented by the thermodynamic Bethe Ansatz (TBA): a
method able to gift a thermodynamic description to quantum �eld theory. From its �rst
formulation in [1], through its early developments and up to very recent days it has yet
not ceased to �nd interesting applications and to stimulate new discussions. The topic,
in fact, is far from being closed.
Consider, as an example, the sine-Gordon model. This is one of the more widely re-
searched models for both its applications and theoretical features. Many of its aspects
are known: this is also due to its property of being an integrable theory, showcasing an
in�nite set of mutually commuting charges. Regarding its thermodynamic description,
the TBA method can be applied to relate its �nite-temperature thermodynamics to its
�nite-volume ground state energy. This relies on a set of highly non-trivial equations
known simply as TBA equations. A system of non-linear integral equations (NLIE) [2]
stemming from light-cone lattice approaches can also be formulated, con�rming the re-
sults arising in the TBA method. The crucial point is that the TBA system is known
only for some special values of the model's coupling constant. In [3] it is conjectured a
general form (Y -system) for all the values of the sine-Gordon parameter, but no formal
proof is provided. A step forward is represented by the recent works [4][5], where the
'universal' form of the TBA system is discussed and a further generalized hydrodynamic
description is provided. However, the question of whether the two lastly-mentioned for-
mulations are compatible is still open.
The key to this problem might reside in the rich and fascinating mathematical structure
of these equations. In fact, their derivation relies on a set of identities inherently satis�ed
by the scattering amplitudes of the theory. These are able to link the sine-Gordon model
to a pure mathematical description in terms of much abstract algebras. When brought
to the surface, it allows to test the intimate structures that lie within the model, possibly
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allowing for further insights.
Also, similar structures seem to appear in other theories. For instance, very recently
[6], a generalization to higher-spin models is proposed where the familiar mathematical
architecture of the sine-Gordon model appears. (On reverse, the sine-Gordon model may
be deemed as a particular example of this wider class of theories).

The aim of this thesis work is that of providing a solid background to this so present
discussion. The main features of TBA systems are presented, with a particular atten-
tion to the sine-Gordon model (at the center of recent developments). However, the
description is kept as general as possible, allowing for wider applications. Also some
contributions are added to the up-to-date discussion, in order to complete the general
framework.

The presentation is organized as follows:

� Chapter �1 opens on a presentation of the main features of the 2-dimensional
sine-Gordon model. Starting from its classical formulation, the famous soliton, an-
tisoliton and breather solutions are seen to arise from the classical �eld equations of
motion. When undergoing quantization, these build up the massive particle content
of the theory. Crucial properties may be understood by means of the equivalence
with the massive Thirring model: among others, the attractive/repulsive regimes
of the theory and the O(2) symmetry of the model. Capitalizing on the results ob-
tained, a review of scattering theory is subsequently presented, up to the derivation
of the sine-Gordon S-matrix.

� Chapter �2 revolves around the general formulation of the TBA system. The
celebrated Zamolodchikov mirror argument is presented, followed by an in-depth
analysis of Bethe-Yang equations, both for the coordinate and algebraic Bethe
Ansatz. The thermodynamic limit of the equations is then discussed, up to the
so-called 'raw' TBA equations.

� Chapter �3 presents the 'universal' form of TBA equations, where their mathemat-
ical structure is brought to the surface. They are obtained for all the values of the
coupling through sets of pivotal identities, adapted here to the sine-Gordon model.

� Chapter �4 closes the discussion presenting the Y -system formulation for the sine-
Gordon model at 're�ectionless points'. Some general features of the system are
swiftly named and the derivation is subsequently generalized to 'integer points'.
Further outlooks are quickly mentioned.
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Chapter 1

Foundations of the sine-Gordon model

This opening chapter is dedicated to presenting an essential framework for the 2-
dimensional sine-Gordon model, on which this master thesis mainly focuses.

Widely acknowledged as one of the most studied and researched models, it �nds
applications ranging from partial di�erential equation theory to condensed matter and
particle physics [7][8][9][10][11][12]. Attempting to summarize its successes in few words
proves challenging, therefore only a basic outline of its fundamental features is provided
here.

The aim is to sketch the foundations of this model's theoretical framework: sub-
sequent sections delve into further developments, as this entire work showcases the 2-
dimensional sine-Gordon model as a paradigmatic example.

1.1 Classical sine-Gordon model

Before delving into the rich quantum formulation of the theory, a concise analysis of
its classical features may o�er some valuable insights. While a thorough development is
beyond the scope of this section, the few characteristics discussed here aim to provide a
solid foundation for the subsequent presentation.

1.1.1 Lagrangian formulation

The 2-dimensional sine-Gordon model is a theory that involves a single real scalar
�eld ϕ(x, t) in (1 + 1)-dimensions, described by the minkowskian lagrangian density

L cl
sG[ϕ, ∂νϕ] =

1

2
(∂νϕ)(∂νϕ)−U [ϕ] =

1

2
(∂νϕ)(∂νϕ) +

µ2

β2
(cos(βϕ)− 1) , (1.1)

where the parameters µ and β are both real.
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Then, the lagrangian �eld equation of motion takes the form

∂ν∂νϕ+
µ2

β
sin(βϕ) = 0 , (1.2)

whence the name of the model. Key observation is that this �eld equation is non-linear,
thus new solutions can not be constructed simply by linear combination.

Both the above enjoy the discrete symmetries

ϕ→ −ϕ (1.3)

and

ϕ→ ϕ+
2πk

β
, k ∈ Z . (1.4)

Consistently with Eq.(1.4), the potential U [ϕ] shows an in�nite series of degenerate
minima ϕ(x, t) = 2πk

β
, k ∈ Z.

An expansion about the con�guration of minimum energy ϕ(x, t) = 0 can give a rough

physical interpretation of the parameters' meaning. Since U [ϕ] = 1
2
µ2ϕ2− µ2β2

4!
ϕ4 + . . . ,

µ may be seen as the inverse wavelength (mass) associated with the spectrum of small
oscillations about the minimum (ϕ particle excitations), while β regulates the interactions
between them.

More signi�cantly, given the structure of the potential, all �nite-energy �eld con�gu-
rations ϕ(x, t) can be divided into an in�nite number of topological sectors [13, �2.5][14,
�16.3]. Each of them is speci�ed by a conserved pair of integer numbers (k1, k2), labeling

the asymptotic values of the �eld at spatial in�nity ϕ(−∞, t) def
= 2πk1

β
, ϕ(+∞, t) def

= 2πk2
β
.

Then, a topological charge can be de�ned:

Q = k2 − k1 =
β

2π

� +∞

−∞
dx

∂ϕ

∂x
. (1.5)

Q is left invariant by transformations of the kind in Eq.(1.4) and can be used to charac-
terize these topological excitations ϕ(x, t).

1.1.2 Classical solitons

An expression for the most fundamental topological excitations, those carrying charge
Q = ±1 (thus interpolating between two adjacent minima), can be derived directly from
the �eld equation, Eq.(1.2). By initially looking for static solutions, a mechanical analogy
can be constructed [13, �2.3], so that the desired expression can be obtained integrating
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β

x0
t
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x

ϕS̄
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β
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Figure 1.1: Sketch of the sine-Gordon (a) soliton (Eq.(1.6a)) and (b) antisoliton
(Eq.(1.6b)) solutions. The �eld periodicity of 2π

β
is here subtended. The velocity u

is chosen to be positive, so that the curves drawn for increasing time values appear to
be 'right-moving'.

by quadrature. Then, it is su�cient to apply a Lorentz boost to get the traveling (with
velocity u and without dispersion) solutions

ϕS(x, t) =
4

β
arctan

(
exp

(
µ
x− x0 − ut√

1− u2

))
(1.6a)

ϕS̄(x, t) = −
4

β
arctan

(
exp

(
µ
x− x0 − ut√

1− u2

))
, (1.6b)

known respectively as soliton (Eq.(1.6a), Q = +1) and antisoliton (Eq.(1.6b), Q = −1).
Their mathematical behaviors are represented in Fig.(1.1). These �nite-energy �eld
con�gurations show two pivotal features:

� at any time instant, their energy density is localised, allowing for a particle inter-
pretation with rest mass (the same for the soliton and the antisoliton since the two
solutions are related by the symmetry in Eq.(1.3))

M cl =
8µ

β2
. (1.7)
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� in a scattering process, these solutions behave in a 'transparent' way. More pre-
cisely, there exist exact solutions of Eq.(1.2) like ϕSS̄(x, t) (and similarly for ϕSS(x, t)
and ϕS̄S̄(x, t)) that behave as

ϕSS̄(x, t) ∼
t→−∞

ϕS

(
µ
x− x0 + u(t+ ∆

2
)

√
1− u2

)
+ ϕS̄

(
µ
x− x0 − u(t+ ∆

2
)

√
1− u2

)
(1.8a)

ϕSS̄(x, t) ∼
t→+∞

ϕS

(
µ
x− x0 + u(t− ∆

2
)

√
1− u2

)
+ ϕS̄

(
µ
x− x0 − u(t− ∆

2
)

√
1− u2

)
, (1.8b)

thus corresponding to a soliton-antisoliton pair with same shape and velocities in
initial and �nal con�guration: the only residual e�ect of the collision is a time
delay ∆.

Other exact solutions of Eq.(1.2) exist. A fundamental one is the so-called doublet
or breather, carrying Q = 0 and of the form

ϕB(v)(x, t) =
4

β
arctan

(
sin

(
µ vt√

1+v2

)
v cosh

(
µ x√

1+v2

)) . (1.9)

The breather solution is periodic in time: its mathematical behavior is represented for
half a period in Fig.(1.2). By a transformation of the parameter v → −iu, the breather is
mapped into the aforementioned ϕSS̄(x, t) solution. This indicates that the breather may
be interpreted as a bound solution of a soliton-antisoliton pair, oscillating with respect
to one another periodically in time.

x

ϕB(v)

4
β
arctan

(
1
v

)2πβ

t

Figure 1.2: Sketch of the sine-Gordon breather solution: di�erent curves are drawn for
increasing time values for half a period. For a better legibility, the �eld periodicity of 2π

β

is here subtended again. Already at a graphical level, comparing with Fig(1.1), it may
be possible to guess the composite nature of this solution.
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Similarly, more complicated multi-solitons solutions may be generated out of simpler
ones applying Bäcklund transformations [15]. Through the inverse scattering method, it
is possible to prove that the solutions both show a localised energy density and behave
transparently in scattering processes.

All the solutions of the classical sine-Gordon equation are, thus, known. They carry
an in�nite number of conserved quantities: the sine-Gordon model is classically integrable
[16][17][18].

1.2 Quantum sine-Gordon model

The classical relativistic �eld theory discussed earlier (�1.1) can undergo quantization,
albeit in a highly nontrivial way. Both semiclassical and exact results exist, that are able
to bridge the classical and quantum formulation of the sine-Gordon model. Of great
signi�cance is understanding how the classical features persist through quantization.
This section will emphasize the most noteworthy accomplishments.

1.2.1 Lagrangian formulation

One way of de�ning a quantum �eld theory (QFT) is through local �elds (the other
way being through scattering theory of asymptotic particles (�1.2.4)), i.e. by explicitly
writing a lagrangian. This is feasible for the 2-dimensional sine-Gordon model, whose
lagrangian density takes the form

LsG =
1

2
(∂νΦ)(∂νΦ) +

µ2

β2
: cos(βΦ): . (1.10)

The classical lagrangian formulation (�1.1.1) aids in clarifying the notations adopted (the
colons denoting normal ordering, equivalent to renormalization of the theory).

By studying the theory ground state through the Rayleigh-Ritz variational method,
it has been shown [19] that its energy becomes unbounded from below when β2 ≥ 8π.
The sine-Gordon model is, thus, sensible only for 0 < β2 < 8π.

For later convenience, a new parameter can be introduced

p =
β2

8π − β2
, (1.11)

which, consistently with previous observations, is de�ned in the range 0 < p < +∞.

The lagrangian in Eq.(1.10) still enjoys the discrete symmetries in Eqs.(1.3)(1.4) and
shows in�nitely many degenerate minima, giving rise to spontaneous symmetry breaking:
a vacuum sector of states can be de�ned around any of these minima.
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The topological charge in Eq.(1.5) turns into a (superselection) quantum number for
the particle states of the theory

Q =
β

2π

� +∞

−∞
dx

∂Φ

∂x
. (1.12)

States with di�erent topological quantum numbers are orthogonal and can not evolve
into one another, for Q is a conserved hermitian operator.

This model may be seen as a perturbation of a 2-dimensional free massless scalar
boson, c = 1 conformal �eld theory (CFT). When compacti�ed on a cylindrical spacetime
(the reasons behind this compacti�cation become evident in later sections (��2.1,2.2))

(x, t) ∈ [0, L]× R , (1.13)

the lagrangian of the latter can be written as

LCFT =
1

8π

� L

0

dx (∂νΦ)(∂νΦ) . (1.14)

Quasiperiodic boundary conditions can be imposed in the form Φ(x + L, t) = Φ(x, t) +
2πmR, where the �eld winds m times while circling once around the cylinder [20, �6.3.5].
This also induces a quantization of the �eld conjugate momentum in integer (n) multiples
of 1

R
. It is then possible to de�ne vertex operators V(n,m), which are Kac-Moody primary

�elds of left and right conformal dimensions ∆ = 1
2

(
n
R
+ 1

2
mR

)2
and ∆̄ = 1

2

(
n
R
− 1

2
mR

)2
,

so that the perturbed lagrangian

L = LCFT + λ

� L

0

dx (V(1,0) + V(−1,0)), (1.15)

through the mapping

λ→ µ2

2β2
R→

√
4π

β
Φ→

√
4πΦ , (1.16)

coincides with the sine-Gordon lagrangian

LsG =

� L

0

dx

(
1

2
(∂νΦ)(∂νΦ) +

µ2

β2
: cos(βΦ):

)
(1.17)

[21, �1.3].
Of paramount importance is the fact that this CFT deformation proves to be inte-

grable, i.e. it admits an in�nite number of mutually commuting local conserved charges.
Consequently, the classical integrability of the sine-Gordon model (�1.1.2) persists as
quantum integrability after quantization [22].
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1.2.2 Quantum solitons

The mass spectrum of the 2-dimensional sine-Gordon model has been found by semi-
classical methods [23][24].

Starting from the classical (anti)soliton solution (Eq.(1.6)), it may be observed that,
in its rest frame, it is a static solution, thus a minimum of the potential functional. The
essential idea [13, ��5,7.1.1] is to realize quantization through perturbation theory in
a weak-coupling (i.e. small quantum �uctuations) approximation: to leading order,
this amounts to building a tower of harmonic oscillator states around the potential
functional local minimum. An (anti)soliton sector of topological quantum number Q =
(−)1 is constructed in this way and the quantum corrections to the classical particle
mass (Eq.(1.7)) read

M =M cl − µ

π
+O(β2) . (1.18)

The quantization of the classical breather solutions (Eq.(1.9)) requires a more re-
�ned treatment due to their periodicity in time. The core idea is to repeatedly apply
a stationary phase approximation to the propagator path integral around the family of
classical periodic orbits: this is at the basis of the WKB method [13, ��6,7.1.2]. The ath

quantum breather is, thus, found to be a particle carrying topological quantum number
Q = 0 of mass

Ma = 2M sin

(
π

2
pa

)
a = 1, . . . , NB , (1.19)

whereM denotes the (anti)soliton mass (Eq.(1.18)), p the sine-Gordon parameter de�ned
in Eq.(1.11) and ⌊x⌋ the integer part of x. For a given value of p, there can be at most
NB =

⌊
1
p

⌋
breather species (NB = 1

p
−1 when p ∈ N): this condition stems from existence

requirements of the semiclassical period. Eq.(1.19) proves to be exact.
Perturbation theory in a weak-coupling approximation reveals that the 'elementary'

Φ boson of mass µ (also of topological quantum number Q = 0) can be identi�ed with the
lowest breather. More in general, a loosely bound state of a such particles corresponds
to the ath breather [13, �7.2].

Still, breathers can be considered as bound states of a soliton and an antisoliton,
similarly to what seen in the classical formulation of the theory. The subsequent sections
(��1.2.3,1.2.4) will provide a more solid basis for this interpretation.

1.2.3 Massive Thirring model equivalence

The 2-dimensional massive Thirring model is a theory describing a current-current
self-interaction of a massive Dirac fermion in (1 + 1) dimensions. Its dynamics is deter-
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mined by the lagrangian density

LmT = Ψ̄(iγν∂ν − µf )Ψ−
1

2
g(Ψ̄γνΨ)(Ψ̄γνΨ) , (1.20)

where γν denotes the Dirac matrices, mf the (renormalized) fermionic mass parameter,
jν = Ψ̄γνΨ the fermionic currents (obeying Ward identities) and g the interaction pa-
rameter.

The massless (µf = 0) Thirring model is well known to be exactly solvable [25],
thus allowing Eq.(1.20) to be treated perturbatively in µf . The same can be done
for Eq.(1.10) w.r.t. µ2 (as the sine-Gordon model can be seen as a deformation of an
integrable c = 1 CFT (�1.2.1)) and the two perturbative series can be compared. The
correlation functions of the perturbing operator Ψ̄Ψ remarkably prove to coincide with
those of : cos(βΦ): at any order, once the following identi�cations are made between the
two theories

4π

β2
= 1 +

g

π
, i.e.

π

2

(
1

p
− 1

)
= g (1.21a)

− β

2π
ϵµν∂νΦ = jµ (1.21b)

µ2

β2
: cos(βΦ):= −µf Ψ̄Ψ (1.21c)

[19]. Thus, the sine-Gordon model is found to be equivalent to the massive Thirring
model, more precisely to its charge-zero sector, since Ψ̄Ψ has fermionic charge zero.

The fermionic charge is de�ned in general as

Q =

� +∞

−∞
dx j0 =

� +∞

−∞
dx Ψ̄γ0Ψ . (1.22)

Through Eq.(1.21b), it can be seen to coincide with the quantum topological charge of
Eq.(1.12), further sustaining an identi�cation between the massive Thirring (anti)fermion
(Q = (−)1) and the quantum sine-Gordon (anti)soliton (Q = (−)1). Indeed, without the
use of perturbation theory, it is possible to explicitly de�ne sine-Gordon soliton creation
and annihilation operators, which are proven to satisfy the anticommutation relations
and the �eld equations of the massive Thirring model [26].

This remarkable equivalence may be exploited to deepen the understanding of the
sine-Gordon model.
By extracting the sign of the static limit force from the lagrangian in Eq.(1.20), it can
be tested the attractive/repulsive nature of the fermion-antifermion interaction. Corre-
spondingly, by Eq.(1.21a), it is found that (Fig.(1.3))
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1
p

NB

1 2 30

1
2
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regime
free
point

attractive
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Figure 1.3: Sine-Gordon regimes and number of breather species NB as a function of 1
p
.

� if 0 < p < 1 (g > 0), then the soliton-antisoliton interaction is attractive, i.e. bound
states can be formed. This is in accordance to the semiclassical result in Eq.(1.19),
for which there exist NB =

⌊
1
p

⌋
breather species (NB = 1

p
− 1 when p ∈ 1

N). As

p→ 0+ (g → +∞), the attraction intensi�es resulting in a high number of bound
states, the values p = 1

n
, n ∈ N being the thresholds where a new bound states

appears; as p→ 1− (g → 0+), the force intensity decreases, along with the number
of breather species, until eventually only one is left.

� if p = 1 (g = 0), then no interaction is present, i.e. it's a free point (the massive
Thirring lagrangian (Eq.1.20) becomes a free fermion lagrangian). Correspond-
ingly, the breather that last remains in the limit p → 1− (g → 0+), at this value
of the sine-Gordon parameter, shows a mass M1 = 2M (Eq.(1.19)): this can be
interpreted as a free soliton-antisoliton pair, thus not as a breather bound state.

� if 1 < p < +∞ (g < 0), then the soliton-antisoliton interaction is repulsive, i.e.
there can be no bound states. As a consequence, in this repulsive regime the
sine-Gordon spectrum is composed only by the soliton and the antisoliton.

As last notice on the sine-Gordon ≡ massive Thirring equivalence, it may be argued
that, through the latter, a hidden O(2) invariance of the former is revealed. Though it
can be explicitly shown by recasting Eq.(1.10) by making use of the disorder operator
[27], some insights may already be obtained exploiting this remarkable equivalence.
Starting from the lagrangian in Eq.(1.20), it enjoys the U(1) symmetry

Ψ→ exp(iα)Ψ . (1.23)

This is basically O(2) symmetry, where the combinations 1
2
(Ψ+Ψ∗) and 1

2i
(Ψ−Ψ∗) act

as an O(2) doublet. By means of the sine-Gordon ≡ massive Thirring equivalence, if A

and Ā stand for the soliton and the antisoliton respectively, then A1
def
= 1

2
(A + Ā) and

A2
def
= 1

2i
(A− Ā) form a doublet under the sine-Gordon O(2) hidden symmetry[

A1

A2

]
→ R(α)

[
A1

A2

]
, withR(α) ∈ O(2) . (1.24)
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This observation is crucial for de�ning a S-matrix theory for the sine-Gordon model
(�1.2.4).

1.2.4 Scattering theory

In principle, a QFT can be completely de�ned through its S-matrix, i.e. through the
description of the scattering of its particle content: this approach is indeed followed for
QFTs lacking a lagrangian formulation. Even when the latter is known, the connection
between the two formulations is far from trivial, with integrability playing a pivotal role.

The 2-dimensional sine-Gordon model exhibits both the features of allowing a la-
grangian formulation and enjoying quantum integrability (�1.2.1). Thus, the aim is to
outline the derivation of the S-matrix for this theory, building upon the previously pre-
sented properties.

S-matrix, an introduction

For any given massive theory with a short range interaction it is possible to de�ne
asymptotic states, where the particles are considered distant enough to neglect their
interaction. As a consequence, the particles appearing in such states can not be virtual
particles and are considered on-shell, i.e. with momentum satisfying

pµi pi µ = m2
i , (1.25)

where mi denotes the asymptotic mass of the ith particle. In spacetime dimension 2, this
allows for the convenient parametrization in terms of the rapidity ϑ

p0i = mi coshϑ p1i = mi sinhϑ . (1.26)

The most fundamental asymptotic state is the vacuum |0⟩.
Then, single-particle states |A(ϑ)⟩, speci�ed by both ϑ and a set containing the

mass and all the internal quantum numbers A, will be constructed out of the vacuum
by the action of some vertex operators ZA(ϑ) (generalizations of a creation/destruction
operators) known as Faddeev-Zamolodchikov operators

|A(ϑ)⟩ = Z†
A(ϑ) |0⟩ . (1.27)

By Eq.(1.26), these states form an irreducible representation of the (1 + 1)-dimensional
Poincaré group with casimir m2.

Similarly, multi-particle asymptotic states can be de�ned in the form

|A1(ϑA1) . . . AN(ϑAN
)⟩ = Z†

A1
(ϑA1) . . . Z

†
AN

(ϑAN
) |0⟩ . (1.28)

Let's suppose to have two asymptotic states: one (|i⟩) at t = −∞ describing the
initial state of the system and one (|f⟩) at t = +∞ describing the �nal state of the
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A1(ϑA1)

. . .

AM(ϑAM
)

B1(ϑB1)

. . .

BN(ϑBN
)

SB1...BN
A1...AM

t

x

|i⟩ = |A1(ϑA1) . . . AM(ϑAM
)⟩

|f⟩ = |B1(ϑB1) . . . BN(ϑBN
)⟩

Figure 1.4: Depiction of a M → N scattering process in 2 spacetime dimensions. Each
oriented line may be thought of as a particle world line, even if the aim of the �gure is
that of presenting a schematic representation, rather than an accurate one.

system, after the interaction has taken place. Then, by the superposition principle of
quantum mechanics, it exists a linear operator (time evolution operator) that maps the
initial state into the �nal state:

|f⟩ = S−1 |i⟩ . (1.29)

If the initial state describesM particles (|i⟩ = |A1(ϑA1) . . . AM(ϑAM
)⟩) and the �nal state

describes N particles (|f⟩ = |B1(ϑB1) . . . BN(ϑBN
)⟩), then the S-matrix is de�ned with

entries
|A1(ϑA1) . . . AM(ϑAM

)⟩ = SB1...BN
A1...AM

|B1(ϑB1) . . . BN(ϑBN
)⟩ , (1.30)

which are related to the probability of the scattering event. A pictorial representa-
tion is shown in Fig.(1.4). For the scattering to be nontrivial, the rapidity orders
ϑA1 ≥ ϑA2 ≥ · · · ≥ ϑAM

and ϑB1 ≤ ϑB2 ≤ · · · ≤ ϑBN
are subtended.

In order to obtain a sensible theory, the S-matrix must be constrained by some general
requirements.

Essential principles such as probability conservation and causality turn into unitarity,
analyticity and crossing invariance conditions on the scattering operator [28][29].

Also, for the theory to be relativistic, Lorentz invariance should be imposed, poten-
tially alongside other internal symmetries. The way in which these symmetries act on
any massive QFT is regulated by the Coleman-Mandula theorem [30], which imposes
severe constraints on the S-matrix. As a particular case, it is found that, in (1 + d)
dimensions with d > 1, the existence of one conserved charge of (Lorentz) tensor rank
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larger than 2 implies a trivial S-matrix, i.e. S = I1. Very roughly, the reason is that in
such spacetimes the symmetries allow to translate di�erently particles of di�erent mo-
menta, establishing the equivalence between a scattering and an event where the particles
move freely without crossing their trajectories. However, this does not prevent theories
in (1 + 1) dimensions to present a more interesting dynamics, which is the reason why
the 2-dimensional formulation of the sine-Gordon model is considered in this work.

Nevertheless, the integrability of the theory can further condition the form of the S-
matrix in a drastic way. One of the most noteworthy results in this regard is the Parke
theorem [32], which may be summarized as follows:

Theorem 1.1 (Parke). Given a massive local QFT (i.e. a quantum relativistic scattering
theory of massive particles) in (1+1) dimensions, if it admits two conserved charges Q+

and Q− such that

1. do not transform under the Lorentz group as scalars nor vectors, but as higher-rank
tensors: Q± → Q′

± = Λ±q±Q±, with Λ ∈ O(1+3), q+ and q− odd and q+ ≥ q− > 1
(in parity invariant theories for any Q+ it exists the parity conjugated Q− with
q+ = q− > 1, so that only one charge is su�cient)

2. can be written as integrals of the time component of local conserved current densi-
ties, i.e. Q± =

� +∞
−∞ dx j0±, with ∂µj

µ
± = 0

3. mutually commute: [Q+, Q−] = 0

4. do not annihilate any nontrivial linear combination of particles in a multiplet

then, in any scattering event,

1. there can be no particle production, i.e. the number of particles of given mass m
is conserved, being the same in the initial and the �nal asymptotic state: particles
can at most exchange quantum numbers inside a multiplet

2. the set of �nal momenta of the particles coincides with that of initial momenta,
namely the scattering process is elastic

3. the S-matrix factorizes, i.e., if it describes a N → N scattering process, then it can
be obtained out of products of 1

2
N(N − 1) S-matrices describing 2 → 2 scattering

processes

1Still, there exist cases for which the hypotheses of the Coleman-Mandula theorem do not apply, thus
allowing for nontrivial dynamics in spatial dimensions higher than 1. One notable example is represented
by supersymmetric theories, for which a superalgebras generalization, the Haag-�opusza«ski-Sohnius
theorem [31], holds.
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ϑ1

ϑ2

ϑ3
ϑ4

i j k l

m n o p

=

ϑ1

ϑ2

ϑ3

ϑ4

i j k l

mn o p

α
β
δ

γε

ζ

ι

η

t

x

Smnop
ijkl (ϑ1, ϑ2, ϑ3, ϑ4) =

=
∑

αβγδεζηι

Smn
ζι (ϑ3, ϑ4)S

op
βδ(ϑ1, ϑ2)S

ιβ
αη(ϑ1, ϑ4)S

ηδ
γl (ϑ2, ϑ4)S

ζα
iε (ϑ1, ϑ3)S

εγ
jk (ϑ2, ϑ3)

Figure 1.5: Pictorial representation of an elastic 4 → 4 S-matrix possible factorization.
As per results 1 . and 2 . of Th.(1.1), there is the same number of particles in the initial
and �nal state and the set of rapidities {ϑi}4i=1 is conserved in the scattering (a color
scheme is used to highlight this point). The letters in black are indices that take values
in the set of labels identifying the particles of the theory: indeed the scattering is in
general nontrivial since particles of the same mass can exchange rapidities or be replaced
by other particles of the same mass (i.e. the indices may be di�erent along the same
line). Finally, it is explicitly written the decomposition of the 4→ 4 S-matrix as a sum
of products of six 2→ 2 S-matrices, as allowed by the Parke theorem. It may be noticed
that this is not the sole possibility. For instance, without altering the asymptotic states
rapidity order, the line ϑ2 in the diagram on the right may be shifted left until it crosses
the Sηβ

αι scattering point. Then the right-hand side of the decomposition would look
like Smn

ζι S
ιo
αηS

ηp
δl S

δβ
αγS

ζα
iε S

εγ
jk (summing on the repeated greek indices and omitting rapidity

dependency for simplicity).
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For an integrable theory like the 2-dimensional sine-Gordon model, that enjoys both
the elasticity (reminiscent of the 'transparency' of scattering at classical level (�1.1.2))
and the factorizability (for an example, Fig.(1.5)) granted by the Parke theorem, it is
su�cient to study its 2→ 2 S-matrices in order to reconstruct the full scattering theory.

It may be noticed that the factorizability result of Th.(1.1) does not come with
any prescription for ordering the products. Indeed, the �nal scattering matrix must be
independent of this choice, yielding as consistency condition the celebrated cubic identity
known as Yang-Baxter equation [33]. This equation appears also in the description of
other systems, such as integrable 2-dimensional lattice models [34], allowing for powerful
insights. Plus, it is known that its solutions are proportional to the R-matrix of some
quantum group [35][36][37][38].

Still another proportionality factor is left ambiguous by the conditions just brie�y
summarized. It is known as Castillejo-Dalitz-Dyson (CDD) factor [39] and it can be �xed
only through dynamical requirements. In the sine-Gordon model case, it is trivial (the
S-matrix is 'minimal'), but that's not true in general. They in�uence the dynamics of the
theory (i.e. change its lagrangian formulation), without modifying its particle content.
No simple poles of the 2→ 2 S-matrix are added in the 'physical strip' 0 < Im(ϑ) < π,
which would correspond to bound states when on the imaginary ϑ-axis Re(ϑ) = 0.

However, such bound states can be already present in the minimal part of the 2→ 2
S-matrix. In this case, the scattering amplitudes involving them should also be com-
puted. This poses bound states (BS) on the same footing of asymptotic states (AS),
generating further relations. Known as bootstrap equations, they allow to obtain the
AS-BS and BS-BS amplitudes in terms of the AS-AS amplitudes (or viceversa).

It is convenient to encapsulate all the information about the general structure of the
scattering theory in a special algebraic construction: the Faddeev-Zamolodchikov algebra
[41, �2].

Thanks to elasticity and factorization, it may be seen that the 2→ 2 S-matrices enter
the commutation relations of the Faddeev-Zamolodchikov operators, �rstly introduced
in Eq.(1.27). In fact, exchanging two of them would be equivalent to realize a scattering
between the two corresponding particles.
To make this more intuitive, it is possible to introduce some slight changes of notation.
Let the particles (i.e. the Faddeev-Zamolodchikov operators) be represented by special
noncommutative symbols A(ϑ), B(ϑ), C(ϑ),. . . , with each uppercase letter standing for a
di�erent particle species and ϑ denoting the particle rapidity. The multi-particle asymp-
totic states of Eq.(1.28) can then be identi�ed with products of such symbols, arranged
in the order of their appearance along the spatial direction (i.e. of increasing/decreasing
rapidities as per previous conventions). Rearranging the products by means of a number
of subsequent commutations of neighboring particles corresponds to introducing 2 → 2
collisions, leading to commutation rules for these symbols. Let the scattering operator
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be de�ned as in Eq.(1.29). Then, for instance, if particles A and B have di�erent masses,
exchanging them would yield

A(ϑ1)B(ϑ2) = ST [AB](ϑ1, ϑ2)B(ϑ2)A(ϑ1) , (1.31)

where ST [AB] denotes the transmission amplitude of AB → AB. By Parke theorem
(Th.1.1), the re�ection amplitude SR[AB] would be zero in this case, thus it does not
appear on the right-hand side of the commutation relation. For identical particles there's
no distinction between transmission and re�ection amplitudes, so it can be simply written

A(ϑ1)A(ϑ2) = S0[AA](ϑ1, ϑ2)A(ϑ2)A(ϑ1) . (1.32)

However, if particles A and B have the same mass, then

A(ϑ1)B(ϑ2) = ST [AB](ϑ1, ϑ2)B(ϑ2)A(ϑ1) + SR[AB](ϑ1, ϑ2)A(ϑ2)B(ϑ1) , (1.33)

where, if there existed other particles of the same mass, corresponding terms should have
been added.

Consistency relations for this algebra can be seen to yield conditions of the S-matrix,
such as unitarity and the Yang-Baxter equation.

To conclude this introductory and far from exhaustive paragraph on S-matrices (for a
full development in (1+1) dimensions, [40]), it is important to notice that the scattering
theory obtained through the imposition of the constraints above will be compatible with
a possible lagrangian formulation of the theory (at least once the CDD ambiguities are
�xed). However, in principle the equivalence may be not fully established: di�erent
lagrangians might show the same compatibility. The two descriptions have to be linked
to the conformal theory valid in the vicinity of the critical point (UV limit) in order to
assert their complete correspondence (CFT perturbation↔ factorized scattering theory).
This is where TBA becomes essential (�2).

S-matrix, constraints

Prior to presenting the �nal form of the sine-Gordon S-matrix (as obtained in [41,
�3]), it may be worthwhile to explicitly write the constraints that it must satisfy, also
adding some visual aids (Fig.(1.6)) to the previous discussion.

Starting by Lorentz invariance, as Lorentz boosts shift rapidities by a constant, the
2→ 2 (elastic) S-matrix only depends on rapidities di�erences

Skl
ij (ϑ1, ϑ2) = Skl

ij (ϑ1 − ϑ2) , (1.34)

where the di�erence ϑ1 − ϑ2 will often be denoted as ϑ12 or simply as ϑ when no other
particular speci�cation is required. The indices take values in the set of labels identifying
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the particles of the theory.
The general requirements of C (charge conjugation), P (parity) and T (time reversal)
invariance read respectively

Skl
ij (ϑ) = S k̄l̄

īj̄ (ϑ) Skl
ij (ϑ) = Slk

ji (ϑ) Skl
ij (ϑ) = Sji

lk(ϑ) , (1.35)

with ī denoting the antiparticle state of i.
For what concerns the analytic structure, the 2 → 2 S-matrix is a meromorphic

function of ϑ (polynomially bounded), the 'physical strip' being de�ned by the interval
0 ≤ Im(ϑ) ≤ π (Fig.(1.6a)). It can possibly present isolated poles only on the imaginary
ϑ-axis Re(ϑ) = 0, where the real analyticity condition assures that the S-matrix takes
real values

Skl
ij (i Im(ϑ)) ∈ R . (1.36)

Then, the unitarity of the scattering operator implies that

Sαβ
ij (ϑ)Skl

αβ(−ϑ) = δki δ
l
j , (1.37)

where a sum on the greek indices is subtended.
The crossing symmetry, instead, is obtained by requiring that amplitudes in di�erent

'channels' are described by the same S-matrix. This yields

Skl
ij (ϑ) = Slj̄

k̄i
(iπ − ϑ) . (1.38)

Of paramount importance is the Yang-Baxter equation (Fig.(1.6b)) that explicitly
reads

Slm
βγ (ϑ23)S

γn
αk(ϑ13)S

βα
ij (ϑ12) = Smn

αβ (ϑ12)S
lα
iγ (ϑ13)S

γβ
jk (ϑ23) . (1.39)

As anticipated, this implies that the S-matrix is proportional to the R-matrix of some
quantum group

S(ϑ) = f(ϑ)R(ϑ) . (1.40)

Some few words on R-matrices will be spent in subsequent sections (�2.3, App.A)
Delving more into the details of the sine-Gordon model, it has been noticed that this

theory admits an O(2) doublet, made of particles A1 and A2 which are combinations of
the soliton and the antisoliton (Eq.(1.24)). Their S-matrix is then constrained by the
(hidden) O(2) symmetry, taking the form

Skl
ij (ϑ) = δijδ

klS1(ϑ) + δliδ
k
jS2(ϑ) + δki δ

l
jS3(ϑ) , (1.41)

where the functions S1(ϑ), S2(ϑ) and S3(ϑ) represent respectively the processes of anni-
hilation, transmission and re�ection during the scattering of A1 and A2 (Fig.(1.6c)).

Collecting together all these constraints, the 2 → 2 S-matrix for the particles in
the doublet can be written exactly (up to a multiplicative factor), thus yielding also
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(a) Analyticity, unitarity, crossing symmetry. It is represented here the physical strip 0 ≤
Im(ϑ) ≤ π, where the S-matrix is meromorphic. Some bound states are depicted as poles on
the imaginary axis. The points connected by the darker line are related by unitarity, while
the ones connected by the lighter line are related by crossing symmetry.
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Figure 1.6: Pictorial representation of the sine-Gordon S-matrix constraints.
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the scattering information regarding the soliton A = A1 + iA2 and the antisoliton Ā =
A1 − iA2.

To obtain 2→ 2 S-matrices involving breathers (when present) it is, then, su�cient
to follow the bootstrap program by subsequent applications of the bootstrap equation
(Fig.(1.6d))

Sli
il(ϑ) = Slk

kl(ϑ− iūk̄jī)S
lj
jl(ϑ+ iūj̄

īk
) , (1.42)

with ū = π − u, ukij denoting the (imaginary part) of the rapidity corresponding to the
k bound state pole in the scattering ij → ij.

In this way, all the 2→ 2 S-matrices can be obtained, granting by factorizability the
knowledge of the full scattering theory.

S-matrix, sine-Gordon model

The Faddeev-Zamolodchikov algebra for the soliton (A) and the antisoliton (Ā) sym-
bols reads

A(ϑ1)A(ϑ2) = S0(ϑ12)A(ϑ2)A(ϑ1) (1.43a)

A(ϑ1)Ā(ϑ2) = ST (ϑ12)Ā(ϑ2)A(ϑ1) + SR(ϑ12)A(ϑ2)Ā(ϑ1) (1.43b)

Ā(ϑ1)Ā(ϑ2) = S0(ϑ12)Ā(ϑ2)Ā(ϑ1) , (1.43c)

where the same amplitude S0 appears on both the soliton-soliton and antisoliton-antisoliton
scattering because of the charge conjugation symmetry of the model. These amplitudes
can be collected into one matrix of the form

S(ϑ) =


S0(ϑ)

ST (ϑ) SR(ϑ)
SR(ϑ) ST (ϑ)

S0(ϑ)

 (1.44)

They are found to be [41, �3, (γ ≡ 8πp)]

S0(ϑ) =
+∞∏
n=0

Γ( 1
πp
((2n+ 1)π − iϑ))

Γ( 1
πp
((2n+ 1)π + iϑ))

Γ( 1
πp
(πp+ (2n+ 1)π − iϑ))

Γ( 1
πp
(πp+ (2n+ 1)π + iϑ))

·

·
Γ( 1

πp
((2n+ 2)π + iϑ))

Γ( 1
πp
((2n+ 2)π − iϑ))

Γ( 1
πp
(πp+ (2n)π + iϑ))

Γ( 1
πp
(πp+ (2n)π − iϑ))

=− eχ(ϑ) ,

(1.45)

with

χ(ϑ) =

� +∞

−∞
dk

ei
ϑ
π
k

k

sinh p−1
2
k

2 sinh p
2
k cosh 1

2
k
, (1.46)
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and

ST (ϑ) =
sinh ϑ

p

sinh iπ−ϑ
p

S0(ϑ) (1.47)

SR(ϑ) =
sinh iπ

p

sinh iπ−ϑ
p

S0(ϑ) . (1.48)

When de�ning [42]

a(ϑ) = sinh
iπ − ϑ
p

, b(ϑ) = sinh
ϑ

p
, c(ϑ) = sinh

iπ

p
, (1.49)

the matrix in Eq.(1.44) can be written as

S(ϑ) =
S0(ϑ)

a(ϑ)
R(ϑ) , (1.50)

with R(ϑ) denoting the Uq(su2) spin 1/2 R-matrix in the principal gradation with q = ei
π
α

(where α is de�ned in Eq.(2.41)) and spectral parameter ϑ
p

R(ϑ) =


a(ϑ)

b(ϑ) c(ϑ)
c(ϑ) b(ϑ)

a(ϑ)

 . (1.51)

This is the same form of the R-matrix of the 6-vertex lattice model, profoundly related
with the XXZ 1

2
spin chain model (App.A).

Then, the amplitudes involving the breathers Ba can also be obtained. Indeed, when
0 < p < 1, the amplitudes in Eqs.(1.45)(1.47)(1.48) show a set of NB =

⌊
1
p

⌋
(NB = 1

p
− 1

when p ∈ 1
N) simple poles in the physical strip, which is compatible with the presence

of breather bound states of masses given in Eq.(1.19)2. The Faddeev-Zamolodchikov
algebra should be completed with

A(ϑ1)Ba(ϑ2) = Sa(ϑ12)Ba(ϑ2)A(ϑ1) (1.52a)

Ā(ϑ1)Ba(ϑ2) = Sa(ϑ12)Ba(ϑ2)Ā(ϑ1) (1.52b)

Ba(ϑ1)Bb(ϑ2) = Sab(ϑ12)Bb(ϑ2)Ba(ϑ1) , (1.52c)

2When looking at the term Γ( 1
πp (πp+ (2n)π + iϑ)) in Eq.(1.45), it may be clearly see that it shows

simple poles at ϑpolen = inπp, n = 0, 1, . . . , which fall in the physical strip 0 < Im(ϑ) < π for 0 < p < 1
n ,

n ≥ 1, so that there are at most NB =
⌊
1
p

⌋
(NB = 1

p − 1 when 1
p ∈ N) bound states. The pre-factors

in Eqs.(1.47)(1.48) give the crossing-symmetric poles ϑpolen = iπ − inπp and additional poles fall out of
the physical strip.
The masses of these bound states may be computed by evaluating the residues of the conveniently-

de�ned amplitudes S±(ϑ) = SR(ϑ)± ST (ϑ).
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where a, b = 1, . . . , NB and the amplitudes are found to be [41, �3, (γ ≡ 8πp)]

Sa(ϑ) =
sinhϑ + i cos 1

2
aπp

sinhϑ − i cos 1
2
aπp

a−1∏
l=1

sin2
(
1
4
(a− 2l)πp− π

4
+ iϑ

2

)
sin2

(
1
4
(a− 2l)πp− π

4
− iϑ

2

) (1.53)

Sab(ϑ) =
sinhϑ + i sin 1

2
(a+ b)πp

sinhϑ − i sin 1
2
(a+ b)πp

sinhϑ + i sin 1
2
(a− b)πp

sinhϑ − i sin 1
2
(a− b)πp

·

·
min{a,b}−1∏

l=1

sin2
(
1
4
(−|a− b| − 2l)πp− π

4
+ iϑ

2

)
cos2

(
1
4
(a+ b− 2l)πp− π

4
+ iϑ

2

)
sin2

(
1
4
(−|a− b| − 2l)πp− π

4
− iϑ

2

)
cos2

(
1
4
(a+ b− 2l)πp− π

4
− iϑ

2

) .
(1.54)

Some special values of the sine-Gordon parameter (Eq.(1.11)) may be considered
inside this general description.

Of particular interest are the points for which p ∈ 1
N − {1}, where the theory entails

NB = 1
p
−1 breather species along with the soliton and the antisoliton. It may be noticed

that, for these special values, the re�ection amplitude of Eq.(1.48) vanishes: they are
named re�ectionless points. Then, the matrix in Eq.(1.44) becomes diagonal. This
means that, in any scattering event, the particles (the soliton and the antisoliton) can
not exchange their quantum numbers even if in the same (O(2)) multiplet: not just the
global set of momenta (Th.(1.1)), but also the momentum and the quantum numbers of
each individual particle are left unchanged by the collision.
For these features, the scattering at the re�ectionless points is said to be diagonal or
purely elastic.

Subsequent sections delve deeper into the structures behind the sine-Gordon scatter-
ing theory for the re�ectionless points and other particular values of p (�3.1).
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Chapter 2

Thermodynamic Bethe Ansatz

The thermodynamic Bethe Ansatz (TBA) is a powerful method that essentially pro-
vides an integrable model with a thermodynamic description, �nding numerous instances
of implementation [43].

Firstly introduced in the study of the Lieb-Liniger model (Bose gas with δ-function
interactions) [1], the TBA was quickly adapted to lattice integrable models [44] and gen-
eralized to relativistic theories [45][46][47][48].
The core idea is that of studying in the thermodynamic limit the momenta and energy
distributions of particles, as provided by the Bethe Ansatz description. This results in
a set of nonlinear integral equations for the (pseudo)particles' roots (and holes) distri-
butions at thermodynamic equilibrium: the TBA equations. If solved, they allow to
compute the main thermodynamic functions for the theory. Simply starting by the S-
matrix formulation, the TBA provides an expression for the model's free energy at �nite
temperature, which turns out to be related to the ground state energy of the associated
integrable �eld theory at �nite volume. Regarding the latter as an integrable deforma-
tion of a conformal �eld theory (CFT) [49], its high-energy (UV) limit can be studied,
�rmly connecting the starting scattering theory to CFT perturbation.

Here it is provided a hopefully accessible overview of the derivation of this equations'
system, up to its most fundamental formulation: the 'raw' TBA, as it is often called.
Strong of the knowledge previously presented (�1), this chapter keeps the sine-Gordon
model under particular consideration, even if the TBA method can be applied to many
other models. Then, rather than explicitly or numerically solve the TBA equations,
subsequent sections delve deeper into their fascinating structure.

2.1 Zamolodchikov mirror argument

Let's open the discussion by clarifying the program behind the TBA method. The
procedure's roots reside in the connection between free energy at �nite temperature and
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ground state energy at �nite volume: the two can be bridged thanks to the celebrated
Zamolodchikov mirror argument [45, (R ≡ L′)].

Consider a 2-dimensional (euclidean) theory de�ned on a �at torus, i.e. with periodic
boundary conditions imposed for both dimensions. This speci�es two orthogonal geodesic
circumferences, CL′ along the x-direction and CL along the y-direction, of lengths L′ and
L respectively: they act as generators for the toroidal geometry (Fig.(2.1)).
The relativistic invariance of the theory allows, then, two possible quantization schemes
or 'channels', depending on the choice of space and (euclidean) time directions. Regard-
ing the y-direction as the time direction, the states on CL′ , belonging to the Hilbert space
HL′ , evolve by the hamiltonian

HL′ =
1

2π

�
CL′

dxTyy , (2.1)

where Tµν denotes the stress-energy tensor of the theory. Alternatively, the time direction
can be chosen along the (−x)-direction (the minus sign to preserve the frame orientation),
so that the evolution of the states on CL, living in the Hilbert space HL, is described by
the hamiltonian

HL =
1

2π

�
CL

dy Txx . (2.2)

When considering the partition function of the theory Z (L,L′), it can be equivalently
expressed in the two channels as

Z (L,L′) = Tr
HL′

e−LHL′ = Tr
HL

e−L′HL . (2.3)

CL′
CL

x

y

Figure 2.1: Sketch of the toroidal geometry at the basis of Zamolodchikov mirror argu-
ment.
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The limit L → +∞ can be studied, showing di�erent physical interpretations for the
two quantization schemes. In the �rst channel this corresponds to relax the time period-
icity hypothesis: the partition function is dominated by the ground state energy E0(L

′)
contribution

Z (L,L′) ∼
L→+∞

e−LE0(L′) . (2.4)

In the second channel it coincides, instead, with the thermodynamic limit: the partition
function reads

Z (L,L′) ∼
L→+∞

e−L′Lf(L′) , (2.5)

where f(L′) denotes the free energy density at inverse temperature L′ = 1
T
(and at

vanishing chemical potentials). Comparing the last two equations, it can be obtained
the fundamental relation

E0(L
′) = L′f(L′) . (2.6)

This result connects the �nite-temperature free energy density to the �nite-volume
ground state energy, i.e. the thermodynamics and the vacuum energy of the theory.

In this context, the TBA arises as a method to investigate the thermodynamics of
the states on CL. Through Eq.(2.6), the ground state energy of HL′ can be deduced.

It is of interest, then, to study the scaling behavior of the latter [46][47].
Once possible bulk terms are subtracted, the vacuum energy reads

E0(L
′) = −πc̃(ℓ)

6L′ . (2.7)

c̃(ℓ) is the �nite-size scaling function of the theory, depending on the dimensionless
scaling parameter ℓ1. Besides the length L′, the other independent length scale of the
massive theory is provided by the correlation length Lc =

1
m
, related to the mass m of the

lightest particle. So, it is possible to de�ne ℓ = L′

Lc
: the conformal limit (i.e. the limit in

which the correlation length diverges, the massless UV limit of the theory) corresponds
to ℓ→ 0. In this limit,

E0(L
′) −→

ℓ→0
−πce�

6L′ =
2π

L′

(
∆min + ∆̄min −

c

12

)
, (2.8)

where c is the central charge of the CFT (ce� being the e�ective central charge), while
∆min and ∆̄min denote the left and right dimensions of the lowest operator. This means
that, from the knowledge of the ground state energy, it can be extracted information
regarding the CFT reached in the UV limit of the theory along the renormalization
group �ow.

1Here considered real, it is worth mentioning that analytic continuations for imaginary values of the
scaling parameter have been shown to reproduce the excited state energies for some models [50].
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Further developments are also possible. For instance, a perturbation of the CFT
obtained can be realized in order to obtain the massive QFT corresponding to the starting
theory. When the latter is a scattering theory, this allows to fully establish an equivalence
with a quantum �eld formulation.

For instance, in the case of the sine-Gordon model at re�ectionless points, it is found
that, following the program just outlined, the central charge in the UV limit of the scat-
tering theory of �1.2.4 is c = 1 [47], corroborating the correspondence to the lagrangian
formulation of ��1.2.1,1.2.3.

It may be noticed that these latter results rely heavily on Zamolodchikov mirror
argument (Eq.(2.6)), so on the possibility of obtaining a thermodynamic description (i.e.
the �nite-temperature free energy density) of the (scattering) theory on CL. Crucially,
that's what the TBA aims to provide. The subsequent sections (��2.2-2.5) are dedicated
to its derivation, showcasing the sine-Gordon model as a paradigmatic example.

2.2 Periodic boundary conditions

Consider, more in detail, a massive elastic factorizable scattering theory (at �nite
temperature) on a space of length L with periodic boundary conditions (CL in Fig.(2.1)).
Given a system of N particles (possibly of di�erent species), the space periodicity in-
duces a quantization of their momenta: the equations obtained, known as Bethe-Yang
equations, result in the momenta and energy distributions of the particles, which can be
subsequently studied in the thermodynamic limit N,L→ +∞, with the ratio N/L kept
�xed (�2.4).

The Bethe-Yang equations are, thus, at the core of the TBA. To gain a clearer insight
into these equations, let's start by considering the special case of diagonal scattering
theory. The derivation of the diagonal Bethe-Yang equations goes under the name of
coordinate Bethe Ansatz.

2.2.1 Diagonal Bethe-Yang equations

In a purely elastic scattering theory, all particle momenta are asymptotically con-
served: any re�ection scattering amplitude vanishes, forbidding the exchange of quan-
tum numbers (even in the same multiplet) during a collision event. Intuitively, in such
instances the asymptotic particle momentum may be considered as part of the quantum
numbers characterizing it, so that identical particles are meant to have identical mo-
menta. Of course, this allows for a simpler description than in the non-diagonal case.
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Suppose that the theory entails di�erent particle species and, as previously intro-
duced, consider on CL a system of N particles, Ns of which are of species s (mass ms),
N =

∑
sNs. Being prepared to take the limit L→ +∞, in the space of all possible con-

�gurations of these particles there can be found regions in which their positions {xi}Ni=1

are widely separated, so that |xi−xj| ≫ Lc. The particle interactions become negligible
and these can be regarded as e�ectively free regions. O�-mass-shell e�ects can also be
neglected, thus allowing for an asymptotic wave function description of the system. Such
wave function, called Bethe wave function [51], results to be proportional to that of free
particles (i.e. plane waves of well-de�ned momenta {pi}Ni=1)

ψ(x1, . . . , xN) = ei
∑N

j=1 xjpj
∑
σ∈PN

BσΘσ . (2.9)

Here the second sum runs over the N ! permutations σ in the permutation group of N
elements PN , corresponding to a decomposition of the con�guration space of the particles
based on all the possible orderings. The latter are speci�ed by

Θσ =

{
1 , if xσ(1) < · · · < xσ(N)

0 , otherwise
, (2.10)

while the coe�cients Bσ are wave amplitudes depending on particle momenta (i.e. ra-
pidities {ϑi}Ni=1, by Eq.(1.26)).
For the periodicity of the space dimension, the Bethe wave function enjoys the symmetry

ψ(x1, . . . , xi + L, . . . , xN) = ±ψ(x1, . . . , xi, . . . , xN) , (2.11)

where the sign depends, as usual, on the statistics obeyed by the ith particle. This
may be interpreted as obtained by taking the ith particle and repeatedly exchanging its
position order with the neighboring particle along the circumference CL until the starting
con�guration is recovered (Fig.(2.2)).

L

ith

Figure 2.2: Depiction of the Bethe wave function (anti)symmetrization: the ith particle
is moved around the circumference until it returns to its starting position. In the process,
it scatters with the other particles, but the same Bethe wave function (up to a phase)
must be recovered as soon as the system reaches its initial asymptotic con�guration.
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When considering a transition between two adjacent con�guration space free regions the
scattering theory provides conditions to connect the two asymptotic wave functions. If
the permutations σ and σ′ di�er only by the exchange of the indices i and j with xi and
xj adjacent in the space ordering, then

Bσ′ = Sij(ϑij)Bσ , (2.12)

where just two indices are enough to denote the entries of the S-matrix, the latter being
diagonal. This implies that

ψ(x1, . . . , xi + L, . . . , xN) = eimiL sinhϑi

N∏
j=0
j ̸=i

Sij(ϑij)ψ(x1, . . . , xi, . . . , xN) . (2.13)

Inserting it in the left-hand side of Eq.(2.11), the Bethe-Yang equations (i.e. a set of
quantization conditions for the asymptotic particle real rapidities ϑi) are obtained in the
form

eimiL sinhϑi

N∏
j=1
j ̸=i

Sij(ϑij) = ±1 , (2.14)

or (taking the logarithm on both sides)

miL sinhϑi − i
N∑
j=1
j ̸=i

logSij(ϑij) = 2πzi , (2.15)

with N integer/half-odd integer numbers zi, i = 1, . . . , N . The latter may be thought of
as specifying the admissible rapidities, since the set of rapidities solution of the Bethe-
Yang equations is in correspondence with them (the left-hand side of Eq.(2.15) is assumed
to de�ne a monotonic function). Thus, they are interpreted as quantum occupation
numbers.

Further selection rules have to be taken into account when identical particles are
present: depending on their statistics, the wave function describing the system should
be either symmetrized or antisymmetryzed in the exchange of their rapidities. Recalling
that identical particles also share identical rapidities, and that the unitarity condition
for the S-matrix (Eq.(1.37)) requires that S2

ii(0) = 1, this leaves only two possible cases.
One option is represented by

Sii(0) = −1 , (2.16)

meaning that the Bethe wave function is antisymmetric in the identical particles' co-
ordinates. This is compatible with Fermi-Dirac statistics, meaning that fermions can
occupy each rapidity value in any number. In a sense, they behave as bosons, so they
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are referred to as of 'bosonic type'. On the other hand, Bose-Einstein statistics would
result incompatible, meaning that bosons can not share the same rapidity in the �rst
place. This reminds of a sort of exclusion principle, so they are regarded as of 'fermionic
type'.
The other possibility is given by

Sii(0) = +1 , (2.17)

forcing the Bethe wave function to be symmetric in the identical particles' coordinates.
It is easy to understand that in this case the situation is inverted w.r.t. the previous
one. Particles obeying Fermi-Dirac statistics are to be intended as of 'fermionic type',
while if they obey Bose-Einstein statistics then they are of 'bosonic type'.
Notice, in particular, that the integer/half-odd integer numbers appearing in the Bethe-
Yang equations can assume any value for particles of bosonic type, but have to be all
di�erent for particles of fermionic type. This is a distinction that in�uences the form of
the entropy of the system, once the thermodynamic limit is considered.

Bethe-Yang equations, sine-Gordon model at re�ectionless points

As noticed at the end of �1.2.4, the sine-Gordon model at re�ectionless points p ∈ 1
N ,

p ̸= 1, describes a diagonal scattering theory, for which the coordinate Bethe Ansatz
method can be applied.

The particle content of the theory at these points is composed by the soliton, the
antisoliton and by a number NB = 1

p
− 1 of di�erent breather species.

By looking at the form of their identical-particles scattering matrices (Eqs.(1.45)(1.54)
specialized at ϑ = 0), it can be immediately noticed that, even if (anti)solitons are
fermions and breathers are bosons (�1.2.3), they all are of fermionic type by the de�ni-
tions above (this holds in general at any value of the sine-Gordon parameter p).
Then, following the coordinate Bethe Ansatz, consider a system of N such particles, NS

of which are solitons (mass M), NS̄ antisolitons (mass M), while NBa , a = 1, . . . , NB, of
them are of the same species as the ath breather (mass Ma), N = NS +NS̄ +

∑NB

a=1NBa .
The diagonal Bethe-Yang equations obtained are di�erent, depending on whether the
ith particle is a (anti)soliton or a breather: in the �rst case the scattering amplitudes of
Eqs.(1.45)(1.47)(1.53) should be considered when exchanging particles along CL; in the
second case the ones in Eqs.(1.53)(1.54) instead. The resulting equations read

1 = eiMaL sinhϑ
(Ba)
i

NB∏
b=1

NBb∏
j=1

a=b⇒j ̸=i

Sab(ϑ
(Ba)
i − ϑ(Bb)

j )

NS̄∏
k=1

Sa(ϑ
(Ba)
i − ϑ(S̄)

k )·

·
NS∏
l=1

Sa(ϑ
(Ba)
i − ϑ(S)

l ) (2.18a)
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−1 = eiML sinhϑ
(S)
i

NB∏
a=1

NBa∏
j=1

Sa(ϑ
(S)
i − ϑ

(Ba)
j )

NS̄∏
k=1

ST (ϑ
(S)
i − ϑ

(S̄)
k )

NS∏
l=1
l ̸=i

S0(ϑ
(S)
i − ϑ

(S)
l ) (2.18b)

−1 = eiML sinhϑ
(S̄)
i

NB∏
a=1

NBa∏
j=1

Sa(ϑ
(S̄)
i − ϑ

(Ba)
j )

NS̄∏
k=1
k ̸=i

S0(ϑ
(S̄)
i − ϑ

(S̄)
k )

NS∏
l=1

ST (ϑ
(S̄)
i − ϑ

(S)
l ) ,

(2.18c)

for a = 1, . . . , NB, i = 1, . . . , NBa , in Eq.(2.18a), for i = 1, . . . , NS in Eq.(2.18b) and for
i = 1, . . . , NS̄ in Eq.(2.18c).
It may be noticed that at re�ectionless points the amplitudes in Eqs.(1.45)(1.47) coincide
up to a sign. Supposing that NS and NS̄ are either both even (upper sign in Eq.(2.19b))
or both odd (lower sign in Eq.(2.19b))2, de�ne NS̃ = NS +NS̄, so that (S̃) can be used
to denote both a soliton or an antisoliton. For simplicity, the ' ˜ ' symbol will often be
subtended in what follows. Then, after few passages,

− 1 = eiMaL sinhϑ
(Ba)
i

NB∏
b=1

NBb∏
j=1

Sab(ϑ
(Ba)
i − ϑ(Bb)

j )

NS∏
k=1

Sa(ϑ
(Ba)
i − ϑ(S)

k ) (2.19a)

± 1 = eiML sinhϑ
(S)
i

NB∏
a=1

NBa∏
j=1

Sa(ϑ
(S)
i − ϑ

(Ba)
j )

NS∏
k=1

S0(ϑ
(S)
i − ϑ

(S)
k ) , (2.19b)

or (recalling the de�nition of χ(ϑ), Eqs.(1.45)(1.46))

2πz
(Ba)
i =MaL sinhϑ

(Ba)
i − i

NB∑
b=1

NBb∑
j=1

logSab(ϑ
(Ba)
i − ϑ(Bb)

j )− i
NS∑
k=1

logSa(ϑ
(Ba)
i − ϑ(S)

k )

(2.20a)

2πz
(S)
i =ML sinhϑ

(S)
i − i

NB∑
a=1

NBa∑
j=1

logSa(ϑ
(S)
i − ϑ

(Ba)
j )− i

NS∑
k=1

χ(ϑ
(S)
i − ϑ

(S)
k ) , (2.20b)

for a = 1, . . . , NB, i = 1, . . . , NBa in Eqs.(2.19a)(2.20a) and for i = 1, . . . , NS in
Eqs.(2.19b)(2.20b).
These are the Yang-Baxter equations for the sine-Gordon model at re�ectionless points.

2Since the thermodynamic limit is soon to be studied, the number of (anti)solitons on CL may be
selected as stated above, in such a way that the total topological charge of the system is even (equivalent
to an even-sites �nite spin chain description (�2.3.1, Eq.(2.42))). Still possible di�erent choices lead to
other sectors of the theory [21][52].
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As already mentioned, the derivation of this set of equations is greatly simpli�ed
by the pure elasticity of the scattering theory. At re�ectionless points, the sine-Gordon
soliton and antisoliton show a vanishing re�ection amplitude (Eq.(1.48)). This means
that the two particle species decouple, even if part of the same O(2) multiplet. In other
words, when taking an (anti)soliton around CL to realize the boundary conditions, it
never changes to the particle of opposite charge after scattering.
The behavior is profoundly di�erent outside of the re�ectionless points, hence the neces-
sity of a way to 'disentangle' the soliton and the antisoliton, to diagonalize their S-matrix
on new eigenstates: this is the aim of the algebraic Bethe Ansatz method.

2.3 Algebraic Bethe Ansatz

The algebraic Bethe Ansatz is a powerful technique that originates within the context
of quantum integrability (for a review, [53] and references therein). Its natural language
would be that of spin chain models, for which it was initially formulated. Nevertheless,
it has already been noticed the deep connection that can be established between such
models and the sine-Gordon model (Eqs.(1.50)(1.51)). Here, it will be provided a for-
mulation of the algebraic Bethe Ansatz method more �nalized at the issues raised in
previous sections.

2.3.1 Non-diagonal Bethe-Yang equations

The aim is still that of obtaining Bethe-Yang equations, as stemming from momentum
quantization induced by periodic boundary conditions for the space CL. So, retracing the
steps followed for the coordinate Bethe Ansatz, a similar description can be obtained.
The crucial di�erence is that the scattering theory is now considered elastic and factor-
izable, but not purely elastic: in presence of particle multiplets, the resulting equation
(Eq.(2.14)) does not contain isolated amplitudes (as S0 for Eq.(2.19b)), but traces of
products of entire non-diagonal S-matrices. More explicitly, if the ith particle is inside a
multiplet and the system contains N = N1+N2 particles, with N1 outside and N2 inside
that same multiplet, the Bethe-Yang equation for the ith particle reads

eimiL sinhϑi

N1∏
j=1

Sij(ϑi − ϑj) Tr
Vi

N2∏
k=1
k ̸=i

S[ik](ϑi − ϑk) = ±1 , (2.21)

where S[ik] denotes the S-matrix describing the scattering between particles of the
multiplet in which the ith and kth particles are contained, while Vi is the Hilbert space
in which the ith particle lives: HL

def
= H1 ⊗H2

def
= H1 ⊗ V1 ⊗ · · · ⊗ Vi ⊗ · · · ⊗ VN2 . The

algebraic Bethe Ansatz aids in the computation of these traces.
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Very roughly, the essential idea is that of enlarging the Hilbert space of the circum-
ference multiplet particles H2 with an auxiliary space Va, where a labels possible internal
degrees of the space added. This allows to decouple the interactions in the physical space
(ith-kth), considering the ones with the auxiliary space only (ath-kth). Intuitively, this
may be thought as being equivalent to consider a new probe particle of rapidity ϑ, which
is taken along the circumference, scattering with the others. In this way,

eimiL sinhϑ

N1∏
j=1

Sij(ϑ− ϑj) Tr
Va

N2∏
k=1

S[ak](ϑ− ϑk) = ±1 , (2.22)

or, exploiting the R-matrix proportionality of Eq.(1.40),

eimiL sinhϑ

N1∏
j=1

Sij(ϑ− ϑj)

N2∏
k=1

f(ϑ− ϑk) Tr
Va

N2∏
k=1

R[ak](ϑ− ϑk) = ±1 . (2.23)

These R-matrices may be regarded simply as operatorsR[ak](ϑ−ϑk) : Va⊗Vk → Va⊗Vk.
Their product may be used to de�ne a new operator T [a](ϑ|ϑ⃗) : Va⊗H2 → Va⊗H2 (with

ϑ⃗ collecting all the rapidities {ϑk}N2
k=1), called monodromy matrix3, so that

eimiL sinhϑ

N1∏
j=1

Sij(ϑ− ϑj)

N2∏
k=1

f(ϑ− ϑk) Tr
Va

T [a](ϑ|ϑ⃗) = ±1 . (2.24)

Due to its form, it may be thought as a matrix in End(Va) with entries given by operators
acting on H2. What remains is, then, to evaluate its trace (whose presence, let's recall
it, descends directly from the periodic boundary conditions), named transfer matrix.
This can be done by formulating an Ansatz for eigenstates of the monodromy matrix
diagonal operators

|Ψ(u⃗)⟩ = B̂(u1) . . . B̂(uM ) |Θ⟩ (2.25)

(the use of a similar notation to Eq.(2.9) is to underline the common Ansatz nature of
the two equations, still they are well distinct mathematical entities). Here |Θ⟩ denotes
a reference state, a sort of pseudo-vacuum for H2. The operators B̂(ul) act on it just as
creation operators, adding M ≤ N2 massless particle excitations of (possibly complex)
rapidity {ul}M

l=1 (collected in a vector u⃗): they are called elementary magnons. These
describe the di�erent possible internal states of the N2 particles in the same multiplet
and can be exploited to diagonalize the scattering of the latter.
It is su�cient to work out the commutation relations between the elementary magnon

3More precisely, the monodromy matrix is usually de�ned as a product of Lax operators T [a](ϑ) =∏N2

k=1 L[ka](ϑ), being related with R-matrices by L[ka](ϑ) = R[ak](ϑ−ϑk) for some constants {ϑk}N2

k=1.
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operators and the entries of the monodromy matrix and impose that the Ansatz of
Eq.(2.25) is actually an eigenstate. The former descend directly from the Yang-Baxter
equation and, once applied, the latter condition completes the Yang-Baxter equations
with relations for the newly introduced rapidities u⃗.
In short, expressing again the rapidity of the probe particle ϑ as a physical rapidity ϑi,

eimiL sinhϑi

N1∏
j=1

Sij(ϑi − ϑj) Σ(ϑi|ϑ⃗, u⃗) = ±1 (2.26a)

ς ′(um|ϑ⃗, u⃗)ς ′′(um|u⃗) = ±1 , (2.26b)

or

miL sinhϑi − i
N1∑
j=1

logSij(ϑij)− i log Σ(ϑi|ϑ⃗, u⃗) = 2πzi (2.27a)

−i log ς ′(um|ϑ⃗, u⃗)− i log ς ′′(um|u⃗) = 2πzm , (2.27b)

where Σ(ϑi|ϑ⃗, u⃗) is a short-hand notation for the eigenvalue of the diagonalized scattering,
while the second lines denote a general form of the equations for the rapidities {um}M

m=1.
As last notice, it can be observed that the N1 particles outside the multiplet are left
untouched by the algebraic Bethe Ansatz method: by Parke theorem (Th.(1.1)) their
scattering with the particles inside the multiplet is already diagonal, thus their Bethe-
Yang equations are in the form of Eq.(2.14).

Bethe-Yang equations, sine-Gordon model

Outside of re�ectionless points, the sine-Gordon scattering theory is non-diagonal for
the soliton and the antisoliton: the algebraic Bethe Ansatz method can be followed to
decouple the two particle species.

Let's start by the usual setup of N particles on CL, NS of which of soliton and
antisoliton species (here and in what follows (S) is to be intended as (S̃) de�ned in
previous sections, denoting both solitons and antisolitons), NBa of which of ath breather
species, N = NS +

∑NB

a=1NBa .
Momentum quantization by periodic boundary conditions results in

1 = eiMaL sinhϑ
(Ba)
i

NB∏
b=1

NBb∏
j=1

a=b⇒j ̸=i

Sab(ϑ
(Ba)
i − ϑ(Bb)

j )

NS∏
k=1

Sa(ϑ
(Ba)
i − ϑ(S)

k ) (2.28a)

−1 = eiML sinhϑ
(S)
i

NB∏
a=1

NBa∏
j=1

Sa(ϑ
(S)
i − ϑ

(Ba)
j ) Tr

Vi

NS∏
k=1
k ̸=i

S(ϑ
(S)
i − ϑ

(S)
k ) , (2.28b)
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for a = 1, . . . , NB, i = 1, . . . , NBa in Eq.(2.28a) and for i = 1, . . . , NS in Eq.(2.28b).
It may be already noticed that Eq.(2.28a) coincides with Eq.(2.18a): when present, the
breathers do not enter any multiplet and their scattering is diagonal. For what concerns
Eq.(2.28b), the trace of the soliton-antisolition S-matrix (Eq.(1.44)) should be computed.

Following the steps of the algebraic Bethe Ansatz, an auxiliary space Va = C2 is
introduced, so that (subtending the labels (S) for simplicity and making use of Eq.(1.50))

Tr
C2

NS∏
k=1
k ̸=i

S(ϑ− ϑk) =

NS∏
k=1

S0(ϑ− ϑk)

a(ϑ− ϑk)
Tr
C2

NS∏
k=1

R(ϑ− ϑk) =

NS∏
k=1

S0(ϑ− ϑk)

a(ϑ− ϑk)
Tr
C2

T (ϑ|ϑ⃗) , (2.29)

where the R- matrix is the one of Eq.(1.51) and the monodromy matrix may be written
as

T (ϑ|ϑ⃗) =

[
Â(ϑ|ϑ⃗) B̂(ϑ|ϑ⃗)
Ĉ(ϑ|ϑ⃗) D̂(ϑ|ϑ⃗)

]
. (2.30)

The eigenstate Ansatz may be formulated with the help of the operators appearing as
monodromy matrix entries. It reads

∣∣∣Ψ(ϑ⃗, u⃗)
〉
=

M∏
l=1

B̂(ul|ϑ⃗) |Θ⟩ , (2.31)

with

Ĉ(ϑ|ϑ⃗) |Θ⟩ =0 (2.32a)

Â(ϑ|ϑ⃗) |Θ⟩ =
NS∏
k=1

a(ϑ− ϑk) |Θ⟩ (2.32b)

D̂(ϑ|ϑ⃗) |Θ⟩ =
NS∏
k=1

b(ϑ− ϑk) |Θ⟩ . (2.32c)

The commutation relations for Â(ϑ|ϑ⃗), B̂(ϑ|ϑ⃗), Ĉ(ϑ|ϑ⃗), D̂(ϑ|ϑ⃗) may be worked out di-
rectly from the R-matrix Yang-Baxter equation. Denoting with P the (transposition)
matrix

P =


1

1
1

1

 (2.33)

and de�ning Ř(ϑ)
def
= PR(ϑ), it may be formulated in general as (App.A)

Ř(ϑ1 − ϑ2)(T (ϑ1|ϑ⃗)⊗ T (ϑ2|ϑ⃗)) = (T (ϑ2|ϑ⃗)⊗ T (ϑ1|ϑ⃗))Ř(ϑ1 − ϑ2) , (2.34)
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whence, introducing the ratios

s(ϑ) =
a(ϑ)

b(ϑ)
, s̃(ϑ) = −c(ϑ)

b(ϑ)
, (2.35)

the more useful (for this derivation) commutation relations read

B̂(ϑ1|ϑ⃗)B̂(ϑ2|ϑ⃗) = B̂(ϑ2|ϑ⃗)B̂(ϑ1|ϑ⃗) (2.36a)

Â(ϑ1|ϑ⃗)B̂(ϑ2|ϑ⃗) = s(ϑ2 − ϑ1)B̂(ϑ2|ϑ⃗)Â(ϑ1|ϑ⃗) + s̃(ϑ2 − ϑ1)B̂(ϑ1|ϑ⃗)Â(ϑ2|ϑ⃗) (2.36b)

D̂(ϑ1|ϑ⃗)B̂(ϑ2|ϑ⃗) = s(ϑ1 − ϑ2)B̂(ϑ2|ϑ⃗)D̂(ϑ1|ϑ⃗) + s̃(ϑ1 − ϑ2)B̂(ϑ1|ϑ⃗)D̂(ϑ2|ϑ⃗) . (2.36c)

Applying these, it may be seen that the transfer matrix

Tr
C2

T (ϑ|ϑ⃗) = Â(ϑ|ϑ⃗) + D̂(ϑ|ϑ⃗) (2.37)

acts on the eigenstate Ansatz of Eq.(2.31) as

t(ϑ|ϑ⃗, u⃗) = (Â(ϑ|ϑ⃗) + D̂(ϑ|ϑ⃗))
∣∣∣Ψ(ϑ⃗, u⃗)

〉
= (w.t.) + (u.t.) . (2.38)

The 'wanted terms' (w.t.) are those for which the state
∣∣∣Ψ(ϑ⃗, u⃗)

〉
actually behaves as a

transfer matrix eigenstate

(w.t.) =

(NS∏
k=1

a(ϑ− ϑk)
M∏
l=1

s(ul − ϑ) +
NS∏
k=1

b(ϑ− ϑk)
M∏
l=1

s(ϑ− ul)
) ∣∣∣Ψ(ϑ⃗, u⃗)

〉
, (2.39)

while the 'unwanted terms' show a di�erent form

(u.t.) =−
M∑

m=1

s̃(ϑ− um) ·

·
(NS∏

k=1

a(um − ϑk)
M∏
l=1
l ̸=m

s(ul − um)−
NS∏
k=1

b(um − ϑk)
M∏
l=1
l ̸=m

s(um − ul)
)
·

· B̂(ϑ|ϑ⃗)
M∏
n=1
n̸=m

B̂(un|ϑ⃗) |Θ⟩ .

(2.40)

The latter disappear when the term in round brackets on the right-hand side of Eq.(2.40)
vanishes. This happens when the elementary magnon rapidities, after the shift

um → um + iβ−1 , β =
2α

πp
, α =

1
1
p
−NB

, (2.41)
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satisfy (possibly up to a sign, chosen here accordingly to fn.(2, p.33))

NS∏
k=1

sinh π
2α
(βum − βϑk + i)

sinh π
2α
(βum − βϑk − i)

= −
M∏
l=1

sinh π
2α
(βum − βul + 2i)

sinh π
2α
(βum − βul − 2i)

, (2.42)

for m = 1, . . . ,M .
Of the upmost importance is that these equations are in correspondence with the Bethe-
Yang equations for the XXZ 1

2
spin chain model [44, Eq.(2.8), (N ≡ NS), (θ ≡ π

α
),

(x ≡ βu)], once again highlighting the strong connection between the two models (and
allowing for the description of �2.4.2).
Then, the transfer matrix eigenvalue, under the same elementary magnon rapidity shift
of Eq.(2.41) and speci�ed for a physical (S) rapidity, may be written as

t

(
ϑi

∣∣∣∣ϑ⃗, u⃗+ iβ−1

)
= (−1)1+(NB+1)M

NS∏
k=1

a(ϑi − ϑk)
M∏
l=1

sinh π
2α
(βul − βϑi − i)

sinh π
2α
(βul − βϑi + i)

, (2.43)

so that, provided that Eq.(2.42) holds, the (anti)soliton scattering is diagonalized as

Σ

(
ϑi

∣∣∣∣ϑ⃗, u⃗+ iβ−1

)
=

NS∏
k=1

S0(ϑi − ϑk)

a(ϑi − ϑk)
t

(
ϑi

∣∣∣∣ϑ⃗, u⃗+ iβ−1

)
=

= (−1)1+(NB+1)M
NS∏
k=1

S0(ϑi − ϑk)
M∏
l=1

sinh π
2α
(βul − βϑi − i)

sinh π
2α
(βul − βϑi + i)

.

(2.44)

Finally, introducing the notation

ςn(ϑ) =
sinh π

2α
(ϑ− in)

sinh π
2α
(ϑ+ in)

, (2.45)

the sine-Gordon model Bethe-Yang equations read

−1 = eiMaL sinhϑ
(Ba)
i

NB∏
b=1

NBb∏
j=1

Sab(ϑ
(Ba)
i − ϑ(Bb)

j )

NS∏
k=1

Sa(ϑ
(Ba)
i − ϑ(S)

k ) (2.46a)

(−1)(NB+1)M =eiML sinhϑ
(S)
i

NB∏
a=1

NBa∏
j=1

Sa(ϑ
(S)
i − ϑ

(Ba)
j ) ·

·
NS∏
k=1

S0(ϑ
(S)
i − ϑ

(S)
k )

M∏
l=1

ς+1(β(u
(M)
l − ϑ(S))) (2.46b)

−1 =

NS∏
k=1

ς+1(β(u
(M)
m − ϑ(S)

k ))
M∏
l=1

ς−1
+2 (β(u

(M)
m − u(M)

l )) (2.46c)

39



or

2πz
(Ba)
i =MaL sinhϑ

(Ba)
i − i

NB∑
b=1

NBb∑
j=1

logSab(ϑ
(Ba)
i − ϑ(Bb)

j )− i
NS∑
k=1

logSa(ϑ
(Ba)
i − ϑ(S)

k )

(2.47a)

2πz
(S)
i =ML sinhϑ

(S)
i − i

NB∑
a=1

NBa∑
j=1

logSa(ϑ
(S)
i − ϑ

(Ba)
j )− i

NS∑
k=1

χ(ϑ
(S)
i − ϑ

(S)
k )+

− i
M∑
l=1

log ς+1(β(u
(M)
l − ϑ(S)

i )) (2.47b)

2πz
(M)
i =− i

NS∑
k=1

log ς+1(β(u
(M)
m − ϑ(S)

k )) + i

M∑
l=1

log ς+2(β(u
(M)
m − u(M)

l )) , (2.47c)

for a = 1, . . . , NB, i = 1, . . . , NBa in Eqs.(2.46a)(2.47a), for i = 1, . . . , NS in Eqs.(2.46b)
(2.47b) and for m = 1, . . . ,M in Eqs.(2.46c)(2.47c).
This is a rather general formulation for the sine-Gordon Bethe-Yang equations, since
it holds for any value of the sine-Gordon parameter. In fact, some particular cases
can be read directly from Eqs.(2.46)(2.47): the equations for re�ectionless points p ∈
1
N−{1} (where the coordinate Bethe Ansatz is su�cient (�2.2.1, Eq.(2.20))) are recovered
disregarding all the elementary magnon terms and, similarly, those for p > 1 (considered
in later sections (�3.2.2)) are obtained omitting the breather terms. For this reason, the
following sections focus on this general formulation.

2.4 Thermodynamic limit

Once the Bethe-Yang equations have been obtained, they should be studied in the
thermodynamic limit (TL). As anticipated, in the setup of �2.2 this correspond to con-
sider the limit N,L → +∞, where both N and L show the same asymptotic growth:
N ∼

TL
L. When applying it, a new set of equations (the TBA equations) for the thermo-

dynamic distributions of rapidities is obtained, whence all the thermodynamics may be
deduced.

This section is centered on the analysis of the rapidities behavior in the TL, closely
following [45][46][47][43].

2.4.1 Rapidity densities

Let's start by considering real rapidities, i.e. the ones belonging to the physical parti-
cles on CL, previously denoted as {ϑi}Ni=1. Even if the TL treatment of complex rapidities
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shows a�nities, still it requires a more delicate approach, presented in the following sec-
tion (�2.4.2).

As the number of particles increases, the Bethe-Yang rapidities solutions become
denser and denser (|ϑi+1 − ϑi| ∼

TL

1
mL

). It is, thus, convenient to introduce rapidity

densities to study the TL and use them to de�ne the state of the system.
Divide the real rapidity space in intervals ∆ϑ, small enough to let such densities vary
on orders of many rapidity intervals, but large enough to possibly accommodate a high
number of rapidity solutions. The density of states for the particles of species s can be
de�ned as

ρ(s)(ϑ) =
(# of possible s states with ϑ < rapidity < ϑ+∆ϑ)

L∆ϑ
. (2.48)

This can be further specialized as a sum of a density for occupied states and a density
for unoccupied states

ρ(s)(ϑ) = ρ(s)r (ϑ) + ρ
(s)
h (ϑ) . (2.49)

As stated above (�2.2.1), the integer/half-odd integer numbers zi appearing in the Bethe-
Yang equations can be interpreted as quantum occupation numbers for the rapidities ϑi

and are in correspondence with them: the rapidity-dependent side of the Bethe-Yang
equations de�nes a (decreasing or increasing) monotonic function. Once considered the
statistics of the species s particles and their type, the set of all the allowed quantum
numbers can exceed the set of rapidities for the particles on CL. The term 'root' is
used to denote the Bethe-Yang rapidity solutions for which the corresponding state is
actually occupied. When the opposite happens, they are called 'holes'. It is starting from
the number of roots (holes) in a given rapidity interval that the roots (holes) density
appearing in Eq.(2.49) can be de�ned in a similar form to Eq.(2.48):

ρ(s)r (ϑ) =
(# of ϑ < roots < ϑ+∆ϑ)

L∆ϑ
(2.50)

ρ
(s)
h (ϑ) =

(# of ϑ < holes < ϑ+∆ϑ)
L∆ϑ

. (2.51)

Further useful quantities in the TL description are the so-called pseudoenergies, nat-
urally arising in the thermodynamic functions' expressions (�2.4.3). Distinguishing be-
tween particles of bosonic (upper sign) and fermionic (lower sign) type, they are de�ned
as

ε(s)(ϑ) = log
ρ(s)(ϑ)± ρ(s)r (ϑ)

ρ
(s)
r (ϑ)

, i.e.
ρ
(s)
r (ϑ)

ρ(s)(ϑ)
=

exp(−ε(s)(ϑ))
1∓ exp(−ε(s)(ϑ))

, (2.52)

whence their names.
It is worthwhile to introduce a notation for their combination

L(s)(ϑ) = ∓ log(1∓ exp(−ε(s)(ϑ))) . (2.53)
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2.4.2 Bethe strings hypothesis

Some more attention should be paid when dealing with possibly complex rapidities
{um}M

m=1. Since elementary magnons are introduced to decouple the internal structure of
particle multiplets, they are but pseudoparticles, whose rapidity can indeed be complex.

Consider more in detail the second line of Eq.(2.26), describing the Bethe-Yang equa-
tions for the magnon rapidities. As the number of physical particles is taken to +∞, the
�rst term ς ′(um|ϑ⃗, u⃗), which depends on the set of physical rapidities, diverges. In order
to still get a �nite right-hand side in the equation, this divergence should be compen-
sated by the second term ς ′′(um|u⃗), which depends on the set of pseudoparticles rapidities
only. Thus, the latter organize themselves into particular con�gurations in the complex
ϑ plane: the Bethe strings. They can be thought as bound states of elementary magnons,
thus magnon strings or simply magnons.
The form of such con�gurations will become more apparent once considering an instance
of application. For the moment, it is enough to state that each Bethe string can be
identi�ed by a real rapidity value, the string center: intuitively, it corresponds to the
magnon rapidity. Then, rapidity densities can be introduced for string centers, just like
done in the previous section.

Notice that the reasoning followed is not quite rigorous. As the thermodynamic limit
is considered, the number of elementary magnons also increases, possibly compensating
the divergence of the �rst term. There exist solutions that do not approach Bethe
string con�gurations in the thermodynamic limit, even if rather atypical. Nevertheless,
the measurable contributions to the thermodynamic functions are mainly due to string
complexes. It is, thus, reasonable to formulate the 'string hypothesis', i.e. that all
the thermodynamically relevant Bethe-Yang solutions are in the form of Bethe string
con�gurations.

Bethe strings, sine-Gordon model

In the case of the sine-Gordon model, the string hypothesis can be borrowed directly
from the XXZ 1

2
spin chain model. As observed above, the elementary magnon Bethe-

Yang Eq.(2.42) is in perfect correspondence with the one for the spin chain elementary
magnons (with the addition of inhomogeneities). It is, thus, su�cient to parallel the
derivation of [44, (p0 ≡ α)].

Looking at Eq.(2.42), it may be immediately noticed that it enjoys a periodicity in
the elementary magnon rapidities

um → um + i2αβ−1 = um + iπp , (2.54)

so that solutions shifted by the above period can be identi�ed. Also, if um is a solution,
its complex conjugate ūm is a solution too. This means that they are symmetric either
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w.r.t the real axis or w.r.t the Im(u) = iπp
2
axis (identi�ed with the Im(u) = −iπp

2
axis

by periodicity).
Following the Bethe string argument, it may be seen that, in the limit NS → +∞, the
right-hand side of Eq.(2.42) should develop poles. These are obtained when the elemen-
tary magnon rapidities organize themselves in groups sharing a common real abscissa
and distanced in the imaginary ordinates by ∆u = i2β−1 = iπpα−1: the magnon strings.
Each string entails n (string length) elementary magnon rapidities and can be of two
types v = ± (string parity), the latter depending on the symmetry described previously.
In short, in the thermodynamic limit, strings consist of sets

u
(n)+

c, l = u(n)+
c + i

πp

2α
(n + 1− 2l) mod iπp (2.55a)

u
(n)−

c, l = u(n)−
c + i

πp

2α
(n + 1− 2l) + i

πp

2
mod iπp (2.55b)

i.e.
u
(n)v

c, l = u(n)v

c + i
πp

2α
(n + 1− 2l) + δv ,− i

πp

2
mod iπp , (2.56)

where l = 1, . . . , n , while u(n)v

c ∈ R denotes the string (of length n and parity v) center
(δi,j standing for the Kronecker δ-symbol as usual). They are shown in Fig.(2.3).
The study of magnon strings reveals much more. The parameter α can always be uniquely
expressed as a simple continued fraction (�nite for α ∈ Q, in�nite otherwise). For the

Re(u)

i Im(u)

iπp
2

−iπp
2

u
(4)+

c

u
(4)+

c, 1

u
(4)+

c, 2

u
(4)+

c, 3

u
(4)+

c, 4 u
(3)−

c′,1

u
(3)−

c′,2

u
(3)−

c′

u
(3)−

c′,2

u
(3)−

c′,3 }
iπp
α

Figure 2.3: Sketch of Bethe strings in the rapidity complex plane. From left to right,
are represented (for one period): a +string of length 4; a +string of length 3; a −string
of length 4; a −string of length 3; a +string of length 5; a −string of length 2. In some
cases, the notation of Eq.(2.56) is explicitly illustrated. Notice that the string center (in
black) can both belong to the magnon string or not: in either case, it is real by de�nition.
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sine-Gordon parameter this means that (recalling the de�nition of α (Eq.(2.41)))

p =
1

NB +
1

α

=
1

NB +
1

ν1 +
1

ν2 + . . .

= c.f.{NB, ν1, ν2, . . . } (2.57)

where it is considered 1 ≤ α /∈ 1
N and where νi ∈ N are positive integers, with the label

i identifying the 'level' of the continued fraction. νi represents the number of magnon
species at level i, so that the sum of such integers results in the total number of magnon
species NM for a particular value of the sine-Gordon parameter: the magnon species can,
thus, be denoted as Mk, k = 1, . . . , NM . Some further quantities can be de�ned as

(auxiliary real numbers): p0 = α, p1 = 1, pi = pi−2 − pi−1νi−1 (2.58a)

(magnon species up to level i): m0 = 0, mi =
i∑

j=1

νj (2.58b)

(auxiliary integer numbers): y−1 = 0, y0 = 1, yi = yi−2 + yi−1νi (2.58c)

(auxiliary integer numbers): r (i) : mr (i) ≤ i < mr (i)+1 . (2.58d)

It is clear that νi =
⌊ pi−1

pi

⌋
. More importantly, the length nk and parity vk of each magnon

species Mk can be determined as

nk = yi−1 + (k − mi)yi : mi ≤ k < mi+1 (2.59a)

v1 = +1, vm1 = −1, vk = e
πi
⌊

nk−1

p0

⌋
. (2.59b)

These are exactly the dimensions and parities of the irreducible highest-weight represen-
tations of the quantum algebra Uq(su2), q = ei

π
α (App.B) [54][55], deepening even further

the connection �rstly established in Eq.(1.50).

2.4.3 Thermodynamics

The rapidity densities introduced thus far (for the rapidities of physical particles and
of Bethe string centers, both real and denoted simply as ϑ in what follows) allow to
de�ne the thermodynamic functions for the system in the TL (where ∆ϑ→

TL
dϑ).

Starting from the energy density, it is obtained from the sum of the energies of all the
particles on CL. Recalling the parametrization of Eq.(1.26),

E [ρ(s)r (ϑ)] =
1

L

∑
i

mi coshϑi =
∑
s

m(s) 1

L

∑
i

coshϑ
(s)
i →

TL

→
TL

∑
s

m(s)

� +∞

−∞
dϑρ(s)r (ϑ) coshϑ

(2.60)

44



Notice that magnons do not contribute to the energy.
For what concerns the entropy per unit length, it may be observed that, in every rapidity
interval (suitably chosen as per considerations in �2.4.1), the number of roots and holes
distributions of species s that correspond to a given state is

ωB[ρ
(s)(ϑ), ρ(s)r (ϑ)] =

(ρ(s)(ϑ)L∆ϑ+ ρ
(s)
r (ϑ)L∆ϑ− 1)!

(ρ
(s)
r (ϑ)L∆ϑ)!(ρ

(s)
h (ϑ)L∆ϑ)!

(2.61)

if the species is of bosonic type, while takes the form

ωF [ρ(s)(ϑ), ρ(s)r (ϑ)] =
(ρ(s)(ϑ)L∆ϑ)!

(ρ
(s)
r (ϑ)L∆ϑ)!(ρ

(s)
h (ϑ)L∆ϑ)!

(2.62)

if the species is of fermionic type. Then, applying the Stirling approximation, the entropy
per unit length reads

S[ρ(s)(ϑ), ρ(s)r (ϑ)] =

=
∑
s∈B

1

L

∑
∆ϑ

logωB[ρ
(s)(ϑ), ρ(s)r (ϑ)] +

∑
s∈F

1

L

∑
∆ϑ

logωF [ρ(s)(ϑ), ρ(s)r (ϑ)]→
TL

→
TL

∑
s∈B

� +∞

−∞
dϑ

(
−ρ(s)(ϑ) log ρ(s)(ϑ)− ρ(s)r (ϑ) log ρ(s)r (ϑ)+

+ (ρ(s)(ϑ) + ρ(s)r (ϑ)) log(ρ(s)(ϑ) + ρ(s)r (ϑ))
)
+

+
∑
s∈F

� +∞

−∞
dϑ

(
ρ(s)(ϑ) log ρ(s)(ϑ)− ρ(s)r (ϑ) log ρ(s)r (ϑ)+

− (ρ(s)(ϑ)− ρ(s)r (ϑ)) log(ρ(s)(ϑ)− ρ(s)r (ϑ))
)

(2.63)

In the entropy evaluation, the contribution of magnons should be considered: indeed
they are related to internal states of the multiplet particles, thus in�uencing the �nal
form for S.
From the two above, the Helmholtz free energy density can be de�ned as usual as

F [ρ(s)(ϑ), ρ(s)r (ϑ)] = E − TS , (2.64)

with temperature given by T = 1
L′ (�2.1).

At thermodynamic equilibrium, the latter function reaches an extremum point: the
rapidity densities should be varied until such a point is reached, always imposing Bethe-
Yang equations as constraints. The resulting extremum conditions are the TBA equa-
tions (more on these passages in �2.5). They yield an expression for the free energy
density to which each particle species contributes with a term

F (s)(L′) = − 1

2πL′

� +∞

−∞
dϑL(s)(ϑ)m(s) coshϑ , (2.65)
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where L(s)(ϑ) is de�ned in Eq.(2.53). For the Zamolodchikov mirror argument (�2.1),
this is related with the ground state energy at �nite volume for the theory seen in the
other channel (Eq.(2.6)). Thus, by Eq.(2.7), it can be seen that the �nite-size scaling
function receives contributions from each particle species in the form

c̃(s)(ℓ) =
3ℓ

π2

� +∞

−∞
dϑL(s)(ϑ)m(s) coshϑ . (2.66)

Of course, this can be further specialized in the limit of high (UV) or low (IR) ener-
gies. As discussed, in the �rst case this is connected to the central charge of the CFT
of which the scattering theory represents an integrable perturbation (Eq.(2.8)): in the
sine-Gordon model case, it is found that c = 1 [47].

It is clear that the results above depend on the form of the rapidity densities satisfying
the free energy extremum conditions (through the pseudoenergies and their logarithms).
Starting from the Bethe-Yang equations in the TL, the next section is centered on the
derivation of such equations in their most direct formulation: the 'raw' TBA equations.
Both cases of bosonic and fermionic type particles are taken into exam, in order to
present a derivation as general as possible. For the sine-Gordon model, however, the
particles are all of fermionic type, so just this case is su�cient.

2.5 Raw TBA equations

Consider the system of Bethe-Yang equations in its most general form (Eqs.(2.15)(2.27)).
When regarding elementary magnon terms as generalized scattering amplitudes, these
equations may be roughly written as

miL sinhϑi − i
N ′∑
j=1

logSij(ϑij) = 2πzi , (2.67)

for i = 1, . . . , N ′, where now N ′ entails both physical particles and pseudoparticles. A
more precise analysis is presented for the sine-Gordon model at the end of the current
section. Nevertheless, the one above is indeed a general formulation that, when necessary,
may be specialized with due attention.
This set of equations may be divided in subgroups sharing the same particle species and
the index i may be reassigned in such a way that the ϑ

(s)
i (representing string center

rapidities in case of pseudoparticles) are in increasing order within a given subgroup:

m
(s)
i L sinhϑ

(s)
i − i

N ′∑
j=1

logSij(ϑ
(s)
i − ϑ

(s′)
j ) = 2πz

(s)
i , (2.68)
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with ϑ
(s)
i ≤ ϑ

(s)
i+1 for i = 1, . . . , Ns, ∀s. When taking two neighboring equations, sub-

tracting them and dividing by 2πL∆ϑ, with ∆ϑ = ϑi+1 − ϑi, it is obtained that

m
(s)
i

2π

∆sinhϑ
(s)
i

∆ϑ
+

1

L

N ′∑
j=1

1

2πi

∆ logSij(ϑ
(s)
i − ϑ

(s′)
j )

∆ϑ
=

∆z
(s)
i

L∆ϑ
, (2.69)

with the usual ranges for the labels (subtended in what follows). As stated in previous
sections, in the TL the rapidities become denser on the real axis (∆ϑ →

TL
dϑ), allowing

for the introduction of rapidity densities. It's easy to see that: di�erence quotients turn
into derivatives; the sum over rapidities may be written as an integral with roots density
as integration kernel; the right-hand side of the equation coincides with the de�nition
for the states density (Eq.(2.48)), up to a sign when the monotonic ϑi ↔ zi relation is
decreasing and not increasing.
Thus, introducing the kernels

K(ss′)(ϑ) =
1

2πi

d logS(ss′)(ϑ)

dϑ
(2.70)

and assuming the following convention for function convolution

(f ∗ g)(x) =
� +∞

−∞
dyf(x− y)g(y) , (2.71)

the TL Bethe-Yang equations are in the form

m(s)

2π
coshϑ−

∑
s′

(K(ss′) ∗ ρ(s′)r )(ϑ) = η(s)ρ(s)(ϑ) , (2.72)

where the signs η(s) ∈ {+1,−1} are introduced to guarantee the rapidity densities pos-
itivity. Clearly, this is a set of integral equations for the rapidity densities, that act as
constraints in the free energy density extremization.
Proceeding with the latter, given the expressions for the thermodynamic functions de-
scribed in the previous section (Eqs.(2.60)(2.63)(2.64)), the extremum conditions read

m(s)R coshϑ = ε(s)(ϑ) +
∑
s′

δρ(s
′)(ϑ)

δρ
(s)
r (ϑ)

L(s′)(ϑ) , (2.73)

where R denotes the radius of CL (i.e. L
def
= 2πR), while the pseudoenergies ε(s)(ϑ) and

their logarithms L(s)(ϑ) are de�ned in Eqs.(2.52)(2.53). The functional derivatives can
be computed regarding Eq.(2.72) as de�nitions for the states densities (i.e. constraint
relations). This �nally yields the set of raw TBA equations

m(s)R coshϑ = ε(s)(ϑ) +
∑
s′

(η(s
′)K(ss′) ∗ L(s′))(ϑ) . (2.74)
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Raw TBA equations, sine-Gordon model

The previous derivation overlooks many details in favor of a general validity. In order
to recover some speci�c features, let's delve deeper into the details of the sine-Gordon
model.

Its Bethe-Yang equations are presented in Eqs.(2.46)(2.47). Before proceeding on the
line of the general derivation above, it is worthwhile to spend some words on the magnon
terms of the equations.
As per the Bethe string hypothesis (�2.4.2), in the TL elementary magnons organize
themselves into magnon strings (or simply magnons) of species Mk, k = 1, . . . , NM ,
NM =

∑
j νj (Eq.(2.57)), with length nk (Eq.(2.59a)) and parity vk (Eq.(2.59b)): the

magnon rapidities are assumed in the form of Eq.(2.56). If for each magnon species Mk

there exist NMk
strings, products over elementary magnons may be written in general as

M∏
l=1

f(ul)→
TL

NM∏
k=1

NMk∏
c=1

nk∏
l=1

f(u
(nk)

vk

c, l ) . (2.75)

This can be applied to Eqs.(2.46b)(2.46c). After some calculations, it may be veri�ed
that

n∏
l=1

ς+1(β(−ϑ+ u
(n)v

c, l )) = ς+ n(β(−ϑ+ u(n)v

c ) + δv ,− iα) (2.76a)

n∏
l=1

n ′∏
m=1

ς+2(β(u
(n)v

c, l − u
(n ′)v′

c′,m )) =
n + n ′ −2

(2)

∏
l =|n − n ′|

ς+ l (β(u
(n)v

c − u(n ′)v′

c′ ) + (δv ,− − δv ′,−)iα) ·

· ς+(l +2)(β(u
(n)v

c − u(n ′)v′

c′ ) + (δv ,− − δv ′,−)iα) , (2.76b)

where the symbol (2)

∏
is used here to indicate that the product indices have to be

increased by 2 for each term. Recall also that u
(n)v

c denotes the length n parity v string
center: being a real rapidity on par with ϑ, it is denoted as ϑ

(n)v

c in what follows. Then,
introducing for simplicity the notation

S(k,c)(k′,c′) = β

(
ϑ(nk)

vk
c − ϑ(nk′ )

vk′

c′ + δvk vk′ ,− i
πp

2

)
, (2.77)

under the TL Bethe string hypothesis, the Bethe-Yang equations for the sine-Gordon
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model may be written as

2πz(Ba)(ϑ(Ba)) =MaL sinhϑ(Ba)+

− i
NB∑
b=1

NBb∑
i=1

logSab(ϑ
(Ba) − ϑ(Bb)

i )+

− i
NS∑
j=1

logSa(ϑ
(Ba) − ϑ(S)

j ) (2.78a)

2πz(S)(ϑ(S)) =ML sinhϑ(S)+

− i
NB∑
a=1

NBa∑
i=1

logSa(ϑ
(S) − ϑ(Ba)

i )+

− i
NS∑
j=1

χ(ϑ(S) − ϑ(S)
j )+

− i
NM∑
k=1

NMk∑
c=1

log ς+ nk

(
β

(
ϑ(nk)

vk
c − ϑ(S) + δvk,− i

πp

2

))
(2.78b)

2πz(Mk)(ϑ(nk)
vk

c ) =− i
NS∑
j=1

log ς+ nk

(
β

(
ϑ(nk)

vk
c − ϑ(S)

j + δvk,− i
πp

2

))
+

+ i

NM∑
k′=1

NMk′∑
c′=1

(
(1− δnk,nk′

) log ς+|nk − nk′ |(S(k,c)(k′,c′))+

+ 2

min{nk,n ′
k}−1∑

l kk′=1

log ς+(|nk − nk′ |+2 l kk′ )(S(k,c)(k′,c′))+

+ log ς+(nk + nk′ )
(S(k,c)(k′,c′))

)
, (2.78c)

for ϑ(Ba) ∈ {ϑ(Ba)
i }NBa

i=1 , a = 1, . . . , NB in Eq.(2.78a), for ϑ(S) ∈ {ϑ(S)
i }

NS
i=1 in Eq.(2.78b)

and for c = 1, . . . , NMk
, k = 1, . . . , NM in Eq.(2.78c).

It is apparent, now, that the magnon terms depend only on the (real) string center
rapidity. Thus, it is possible to introduce the rapidity densities for each particle species
(�2.4.1) and follow the general steps outlined above.
De�ning the kernels

K(BaBb)(ϑ) =
1

2πi

d

dϑ
logSab(ϑ) (2.79a)

K(SBa)(ϑ) =
1

2πi

d

dϑ
logSa(ϑ) (2.79b)
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K(SS)(ϑ) =
1

2πi

d

dϑ
χ(ϑ) (2.79c)

K(SMk)(ϑ) =κ(ϑ; nk, vk) (2.79d)

K(MkMk′ )(ϑ) =− (1− δnk,nk′
)κ(ϑ; |nk− nk′ |, vk · vk′)+

− 2

min{nk,nk′}−1∑
l kk′=1

κ(ϑ; |nk− nk′ |+ 2 l kk′ , vk · vk′)+

− κ(ϑ; nk + nk′ , vk · vk′) (2.79e)

with

κ(ϑ; nk, vk) =
1

2πi

d

dϑ
log ς− nk

(βϑ) (2.80)

and following the notations presented above, the �nal set of sine-Gordon raw TBA equa-
tions reads

M(Ba)(ϑ) =ε(Ba)(ϑ)+

+

NB∑
b=1

(η(Bb)K(BaBb) ∗ L(Bb))(ϑ)+

+ (η(S)K(SBa) ∗ L(S))(ϑ) (2.81a)

M(S)(ϑ) =ε(S)(ϑ)+

+

NB∑
a=1

(η(Ba)K(SBa) ∗ L(Ba))(ϑ)+

+ (η(S)K(SS) ∗ L(S))(ϑ)+

+

NM∑
k=1

(η(Mk)K(SMk) ∗ L(Mk))

(
ϑ+ δvk,− i

πp

2

)
(2.81b)

M(Mk)(ϑ) =ε(Mk)(ϑ)+

+ (η(S)K(SMk) ∗ L(S))

(
ϑ+ δvk,− i

πp

2

)
+

+

NM∑
k′=1

(η(Mk′ )K(MkMk′ ) ∗ L(Mk′ ))

(
ϑ+ δvk vk′ ,− i

πp

2

)
(2.81c)

with (the so-called 'driving terms')

M(Ba)(ϑ) =MaR cosh(ϑ) (2.82a)

M(S)(ϑ) =MR cosh(ϑ) (2.82b)

M(Mk)(ϑ) = 0 (2.82c)
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for a = 1, . . . , NB in Eqs.(2.81a)(2.82a) and for k = 1, . . . , NM in Eqs.(2.81c)(2.82c).
Recall that the signs η are introduced in order to assure the rapidity densities positivity in
Eq.(2.72): it is not di�cult to see that they have to be positive for solitons and breathers
(thanks to the presence of the mass term), while for magnons they vary depending on
the species [44]

η(S) =+ 1 (2.83a)

η(Ba) =+ 1 , for a = 1, . . . , NB (2.83b)

η(Mk) =− (−1)r(k) , for k = 1, . . . , NM (2.83c)

(with r (k) being de�ned in Eq.(2.58d)).
The system of Eq.(2.81) is written for a general value of the sine-Gordon parameter,
allowing for possible specializations.

Focusing on the structure of these equations, some further observations can be made.
It may be noticed that, crucially, their derivation relies uniquely on the knowledge of the
scattering theory: the only information required concerns the mass spectrum and the
scattering amplitudes in the Ks' de�nitions. Thus, it may be expected that the TBA
equations could re�ect somehow a similar 'mathematical architecture' of the starting S-
matrix theory. This point is at the core of the discussion presented in following sections.
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Chapter 3

Universal TBA equations

What's 'raw' in Eq.(2.74) (or in Eq.(2.81) for the sine-Gordon model)? The reasons
behind this informal label are actually quite deep.

As discussed in previous sections, these equations are at the basis of integrable models'
thermodynamic descriptions, further allowing to bridge a given factorizable scattering
theory (�1.2.4) with its �eld theory formulation (�2.1). They may be read as a set of
nonlinear integral equations for the pseudoenergies (de�ned starting from roots and holes
distributions in Eq.(2.52)). The set of raw TBA equations showcases a situation where
all the pseudoenergies appear in each equation through logarithmic terms of Eq.(2.53),
thus de�ning a very non-trivially coupled system.
However, it may be easily seen that these equations hinge solely on the scattering theory
knowledge. If the latter shows an inherent mathematical structure, the TBA equations
should be able to mirror it somehow. Indeed, this is what has been �rstly found for
re�ectionless ADE scattering theories (i.e. related to simply-laced a�ne Lie algebras in
the {ADE} series) in [48] and further developed in [56][57][58][59][60]. The raw TBA
system can be rearranged, so to highlight the underlying mathematical structure. The
new form is often referred to as 'universal' TBA equations.

This chapter, key in the current work, presents a formulation of universal TBA equa-
tions for the sine-Gordon model. After a quick mention of the scattering theory structures
described above, these equations are derived for all the model's regimes. As done pre-
viously, the discussion is kept general as much as possible, before specializing it to the
case of interest.

3.1 Scattering theory structures

The mathematical structure of integrable theories is quite a deep and rich topic,
which proves di�cult to be summarized in few words. Therefore, this section aims to
provide just a swift overview, essential for subsequent developments. App.C is meant
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to represent a short handy reference for the more frequently mentioned mathematical
objects. For a more detailed discussion on these subjects, [14][20].

Let's start by connecting with the previous discussion on scattering theories. In �1.2.4
are presented the main constitutive features of such theories and their close relation to
conformal perturbation theory.
If the (unperturbed) CFTs are based on Kac-Moody algebras1 [61], then they can enjoy a
coset construction [62][63], where the underlying symmetries are highlighted. Of particu-
lar interest are the cases where the conformal families of the CFT are classi�ed according
to an algebra in the {ADE} series [64]: these are the simply-laced Lie algebras An, Dn,
En2. When this happens, it is possible to perturb the theory by a relevant operator still
preserving integrability [49]. The Lorentz spins of the perturbed CFT integrals of mo-
tion show, then, the remarkable pattern of being the exponents of one such Lie algebra,
modulo its Coxeter number. The theory constructed is related to a central extension of
the starting algebra: a simply-laced a�ne Lie algebra. For instance, this is explicit in
the Lagrangian of a�ne Toda �eld theories3 (for a review, [65]).
The diagonal scattering theories related to such CFT perturbations [46] also show re-
markable patterns, connecting them to a�ne Lie algebras. These are features of the
'minimal' part of the scattering matrix, thus being independent on CDD factors. Very
schematically,

� the number of particles in the G-related scattering theory corresponds to the rank
rG of the algebra.

� recalling that scattering amplitudes are meromorphic functions of rapidity di�er-
ence, their poles are all equally spaced by∆ϑ = i2πh−1

G along the imaginary rapidity
axis. The symbol hG denotes here the Coxeter number of G.

� the mass spectrum can be seen as building the components of the Perron-Frobenius
eigenvector of the G-associated Dynkin diagram incidence matrix IG

4.

1Stated in a very basic way, this happens when a CFT enjoys additional symmetries besides the
conformal one: the Kac-Moody algebra stems from commutation relations of the operators from the
currents' mode expansion, in a similar way to what happens for the Virasoro algebra with the stress-
energy tensor.

2More precisely, of the last type only the Lie algebras E6, E7 and E8 are present, while the case A2n

requires the special reduction Tn
def
= A2n/Z2 [59].

3The sine-Gordon model can be viewed as a complex-parameter analytic continuation of one of such
theories, the sinh-Gordon model.

4In short, that's a positive eigenvector related to the highest eigenvalue. The incidence matrix
encodes the root structure of the algebra, featuring 0 or 1 entries depending on whether the roots are
orthogonal or not. The Dynkin diagram is a graphical representation of the incidence matrix (App.C).
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These patterns clearly highlight how that of simply-laced Lie algebras is the natural
language to describe the physics of scattering theories. Let's stress, however, that what
stated above refers to diagonal ADE theories only. Crucial generalizations are found in
[59][60], but much more attention has to be paid in case of other theories. Still, this
language is so powerful that it is worth to stretch slightly the notations, adapting to new
meanings.

Scattering theory structures, sine-Gordon model

To get a better grasp on the concepts presented above, let's see how they apply
to the sine-Gordon model, focusing on di�erent values of the sine-Gordon parameter
(Eq.(1.11)).

Being diagonal, the re�ectionless points 0 < p < 1, p ∈ 1
N are well suited to display

the patterns discussed.

Let's recall that for these couplings there exist NB = 1
p
− 1

def
= n − 2 breather bound

states (the regime is attractive, as depicted in Fig.(1.3)), while the magnons do not need
to be introduced (the scattering is already diagonal (�2.2.1)). With the soliton and the
antisoliton this adds up to a total of n = rDn

di�erent particles.
The simple poles in the physical strip of S0(ϑ) are found to be evenly spaced by ∆ϑ =

iπp = i2π(2n− 2)−1 = i2πh−1
Dn

def
= i2πh−1 along the imaginary axis, as explained in fn.(2,

p.24).
Also, the simple application of trigonometric identities reveals that the masses of Eqs.
(1.18)(1.19) satisfy the relations

2 cos

(
π

h

)
Ma =Ma−1 +Ma+1 , for 1 ≤ a ≤ NB − 1 (3.1a)

2 cos

(
π

h

)
MNB

=MNB−1 + 2M (3.1b)

2 cos

(
π

h

)
M =MNB

. (3.1c)

These masses can be organized in a vector with n components {Mi}ni=1 = {M1, . . . ,MNB
,

M,M} which is evidently the Perron-Frobeniuns eigenvector of a Dn Dynkin diagram
incidence matrix:

n∑
j=1

[IDn
]i,jMj = 2 cos

(
π

h

)
Mi , (3.2)
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with

IDn
=



1 . . .
1 1 . . .

1
. . .

...
...

. . . . . . . . .
...

...
...

. . . 1

. . . 1 1 1

. . . 1

. . . 1

 1 2 3 n−3 n−2

n−1

n

. . . . (3.3)

This depiction shows that each node of the Dynkin diagram may be thought to as cor-
responding to a di�erent particle (mass) of the theory, with links encoding the relations
between them via the common eigenvalue term.
It is, then, clear that the sine-Gordon model at re�ectionless points is a D 1

p
+1 scattering

theory.
The structure changes when leaving the re�ectionless points. When looking at points

in the repulsive regime p > 1, breathers vanish from the mass spectrum leaving only
the soliton-antisoliton doublet (and magnons). A diagram for the masses would result
in just a single node in this case.

Also di�erent is the behavior for the points 0 < p < 1, p ∈ Q− 1
N . These are attractive

non-diagonal points with a �nite number of magnons.
Recalling the continued fraction expression of Eq.(2.57), they can be written in general

as p = 1
NB+ 1

α

def
= 1

(n−1)+ 1
α

, with α > 1, α ∈ Q− 1
N . It is recovered a number NB

def
= n− 1

of breather species, whose corresponding simple poles are again evenly spaced by ∆ϑ =
i2πp. However, this number can be related in general to no Lie algebra Coxeter number.
Furthermore, looking at the mass spectrum, it is composed by n di�erent masses (the
soliton and the antisoliton sharing the same mass), for which Eq.(3.1) generalizes to

2 cos

(
πp

2

)
Ma =Ma−1 +Ma+1 , for 1 ≤ a ≤ NB − 1 (3.4a)

2 cos

(
πp

2

)
MNB

=MNB−1 + 2 cos

(
π(α− 1)p

2α

)
(3.4b)

2 cos

(
πp

2α

)
M =MNB

. (3.4c)

This roughly reminds of the structure of a (not simply-laced) Bn Dynkin diagram inci-
dence matrix, albeit just for the position of its nonzero entries. In fact, posing Mn =M ,
the vector built from the mass spectrum satis�es

n∑
j=1

[Ĭ]i,jMj =

{
2 cos

(
πp
2

)
Mi , for 1 ≤ i ≤ n− 1

2 cos
(
πp
2α

)
Mn , for i = n

, (3.5)
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with

Ĭ =



1 . . .
1 1 . . .

1
. . .

...
...

. . . . . . . . .
...

...
. . . 1

. . . 1 2 cos
(π(α−1)p

2α

)
. . . 1

 1 2 3 n−2 n−1 n

. . . ,

(3.6)
but the latter is no incidence matrix in general (let alone in the Dn form), as well as the
former is no (Perron-Frobenius) eigenvector.

So, it is left open the question on whether the Dn-like structure of the sine-Gordon
scattering theory is just an accident of the particular re�ectionless points or not. Espe-
cially when re�ected on the TBA equations' structure, this has great physical implica-
tions.

3.2 Sine-Gordon model universal TBA equations

As argued above, the TBA equations should present similar structures. The core idea
is that of making them emerge rearranging the system, by means of pivotal identities for
the kernels in Eq.(2.70) (Eq.(2.79) for the sine-Gordon model).

The latter are made explicit when formulating the TBA equations in Fourier space.
Here it is followed the convention

(Ff)(ξ) =
1

2π

� +∞

−∞
dϑ e−iξϑ f(ϑ) (3.7a)

(F̄f)(ϑ) =

� +∞

−∞
dϑ eiϑξ f(ξ) , (3.7b)

so that function convolutions and products of Fourier-transformed functions are related
by

(F (f ∗ g))(ξ) = 2π(Ff)(ξ) · (Fg)(ξ) (3.8a)

(F̄ (Ff ·Fg))(ϑ) = (f ∗ g)(ϑ) . (3.8b)

Adopting similar notations to Eq.(2.74) (with the only introduction of the symbolM(s)(ϑ)
= m(s)R coshϑ to denote the driving term for particle species s), the raw TBA equations
in Fourier space can be written in general as

FM(s)(ξ) = Fε(s)(ξ) +
∑
s′

η(s
′) 2πFK(ss′)(ξ)FL(s′)(ξ) . (3.9)
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For the sine-Gordon model (Eq.(2.81)), this explicitly reads

FM(Ba)(ξ) =Fε(Ba)(ξ)+

+

NB∑
b=1

η(Bb) 2πFK(BaBb)(ξ)FL(Bb)(ξ)+

+ η(S) 2πFK(SBa)(ξ)FL(S)(ξ) (3.10a)

FM(S)(ξ) =Fε(S)(ξ)+

+

NB∑
a=1

η(Ba) 2πFK(SBa)(ξ)FL(Ba)(ξ)+

+ η(S) 2πFK(SS)(ξ)FL(S)(ξ)+

+

NM∑
k=1

η(Mk) 2πFK(SMk)(ξ)FL(Mk)(ξ) (3.10b)

FM(Mk)(ξ) =Fε(Mk)(ξ)+

+ η(S) 2πFK(SMk)(ξ)FL(S)(ξ)+

+

NM∑
k′=1

η(Mk′ ) 2πFK(MkMk′ )(ξ)FL(Mk′ )(ξ) , (3.10c)

for a = 1, . . . , NB in Eq.(3.10a) and for k = 1, . . . , NM in Eq.(3.10c). The M-driving
terms are de�ned in Eq.(2.82), while the η-signs in Eq.(2.83). Lengthy but straightfor-
ward calculations (some observations may be found in App.D) show that the Fourier
transform of the K-kernels may be written as

FK(BaBb)(ξ) =
1

2π

(
δa,b − 2

cosh π
2
(1− pa)ξ sinh π

2
pbξ cosh π

2
pξ

sinh π
2
pξ cosh π

2
ξ

)
(3.11a)

FK(SBa)(ξ) =− 1

2π

sinh π
2
paξ cosh π

2
pξ

sinh π
2
pξ cosh π

2
ξ

(3.11b)

FK(SS)(ξ) =− 1

2π

sinh π
2
(1− p)ξ

2 sinh π
2
pξ cosh π

2
ξ

(3.11c)

FKSMk(ξ) =Fκ(ξ; nk, vk) (3.11d)

FK(MkMk′ )(ξ) =− (1− δnk,nk′
) Fκ(ξ; |nk− nk′ |, vk · vk′)+

− 2

min{nk,nk′}−1∑
l kk′=1

Fκ(ξ; |nk− nk′|+ 2 l kk′ , vk · vk′)+

−Fκ(ξ; nk + nk′ , vk · vk′) , (3.11e)
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with

Fκ(ξ; n ,+) =
(1− δ0,n mod(0,α))

2π

sinh(n mod(0, 2α)− α)β−1ξ

sinhαβ−1ξ
(3.12a)

Fκ(ξ; n ,−) =
(1− δ0,n mod(0,α))

2π

sinh(n mod(−α, α))β−1ξ

sinhαβ−1ξ
. (3.12b)

Of course, the above equations have to be specialized for the di�erent regimes of the
sine-Gordon model, but this is the most complete formulation and it may be assumed
as starting point for the subsequent derivation. Of interest are, in general, the rational
points p ∈ Q, for which the (pseudo)particle content of the theory is �nite.

3.2.1 Re�ectionless points

Let's start from the well-known re�ectionless points 0 < p < 1, p ∈ 1
N . These are the

values of the sine-Gordon parameter for which, as discussed in �3.1, the theory shows a
D 1

p
+1 structure. Thus, this is just a particular case of the more general universal TBA

formulation for diagonal ADE scattering theories.

Given a theory connected to the a�ne Lie algebra G in the {ADE} series (with n par-
ticles, Coxeter number h and Dynkin diagram incidence matrix IG), it holds a fundamen-
tal matrix identity for the Fourier space K-kernels. Let's address it as 'Zamolodchikov
identity': it is in the form

[I− 2πFK]−1(ξ) = I− 1

2 cosh π
h
ξ
IG . (3.13)

Here, I denotes the identity matrix, while [2πFK](ξ) stands for a n × n matrix whose
(i, j) entry [2πFK]i,j(ξ) is given by 2πFK(ss′)(ξ), s and s′ being the species corre-
sponding respectively to the ith and jth Dynkin diagram nodes. This relation, which
clearly resolves the scattering theory in the corresponding simply-laced Lie algebra, ap-
peared �rst in [48], while in [59] is presented a very elegant way of proving it. The
essential idea is that of formulating the scattering amplitudes of the theory so that the
underlying algebraic structure is already manifest: this allows to extract some identities
that, suitably manipulated, result in Eq.(3.13).

This relation can indeed be applied to the raw TBA system, greatly simplifying it and
making the inherent mathematical architecture emerge. The general Eq.(3.9) (changing
to Dynkin diagram indices) can be written as

(F (ε+ L−M)i)(ξ) =

rG∑
j=1

[I− 2πFK]i,j(ξ)FLj(ξ) , (3.14)
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where, being all the particles of the theory massive, the η-signs are all positive. It is
su�cient to multiply by the right-hand side of Eq.(3.13) to get

FMi(ξ) = Fεi(ξ) +

rG∑
j=1

[IG]i,j
1

2 cosh π
h
ξ
(F (M− ε− L)j)(ξ) , (3.15)

or, posing φ̃0(ξ)
def
= 1

2 cosh π
h
ξ
with anti-Fourier transform φ0(ϑ)

def
= (F̄ φ̃)(ϑ) = h

2 cosh h
2
ϑ
,

Mi(ϑ) = εi(ϑ) +

rG∑
j=1

[IG]i,j (φ0 ∗ (M− ε− L)j)(ϑ) . (3.16)

This is the universal form of the TBA system for diagonal ADE scattering theories. From
here, it is manifest that the equations for the pseudoenergies are coupled following the
structure of the Dynkin diagram incidence matrix: a much more clear situation when
compared with the raw TBA system. Even more, it is actually possible to start with
a given algebraic structure and proceed the other way around to the formulation of a
theory with the above universal TBA.

For later convenience, it may be introduced a generalized notation for universal TBA

equations. Let {φ̃i(ξ)}i∈Λ and {φ̃self
i (ξ)}i∈Λ′ (with anti-Fourier transform (F̄ φ̃i)(ϑ)

def
=

φi(ϑ) and (F̄ φ̃self
i )(ξ)

def
= φself

i (ϑ)) denote two sets of kernels, which can be absorbed
into the entries of a matrix [Ĭ(φ̃)](ξ). Notice that the latter is not a Dynkin diagram
incidence matrix in general, but it may be used nevertheless to encode a (n-nodes) graph.
Also, let {σMi

}ni=1 and {σεi}ni=1 stand for two sets of numbers with values in {0, 1}.
It is, then, clear that Eqs.(3.16)(3.15) adhere to the form

FMi(ξ) = Fεi(ξ) +
n∑

j=1

[Ĭ(φ̃)]i,j(ξ) FWj(ξ) (3.17)

or

Mi(ϑ) = εi(ϑ) +
n∑

j=1

([Ĭ(φ)]i,j ∗Wj)(ϑ) , (3.18)

with
Wi(ϑ) = (M−ε− L)i(ϑ) , (3.19)

when identifying {φ̃i(ξ)}i∈Λ = {φ̃0} (the second set of kernels being absent), {σMi
}ni=1 =

{σεi}ni=1 = {1, 1, . . . , 1}, [Ĭ(φ̃)](ξ) = IG ·φ̃0(ξ) and n = rG.
In Eqs.(3.17)(3.18) are relaxed the strict requirements of ADE Dynkin diagram in-

cidence matrices in favor of an increased adaptability. Still, it is retained the powerful
encoding of TBA systems in a graphical way.
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Returning to the sine-Gordon model at re�ectionless points (p = (NB+1)−1, i.e. α =
1), as anticipated it consists in an application of this general discussion. Nevertheless, it
may be useful to better appreciate the formalism.

In this case, the scattering theory is connected to a Dn Lie algebra, whose rank and
Coxeter number are respectively rDn

= n and hDn
= 2 n−2, with n = 1

p
+1. Following the

derivation presented, it is possible to write the Zamolodchikov identity of Eq.(3.13) with
IDn

as Dynkin diagram incidence matrix. With the use of trigonometric identities and
some patience, it may even be proven directly, without invoking more general features.
Associating particle species to graph node indices (in an ordered way) as

{B1, B2, . . . , BNB
, S, S̄} 7→ {1, 2, . . . , n−2, n−1, n} (3.20)

and de�ning the kernel

φ̃0(ξ) =
1

2 cosh π
2
pξ

, (3.21)

(i.e. {φ̃i(ξ)}i∈Λ = {φ̃0}, {φ̃
self
i (ξ)}i∈Λ′ = ∅) the Zamolodchikov identities explicitly read

2πFK1,j− φ̃0 2πFK2,j = − φ̃0 δ2,j (3.22a)

2πFKi,j− φ̃0 2πFKi - 1,j− φ̃0 2πFKi+ 1,j = − φ̃0 δi - 1,j − φ̃0 δi+ 1,j (3.22b)

2πFKn - 2,j− φ̃0 2πFKn - 3,j− φ̃0 2πFKn - 1,j =

= − φ̃0 δn - 3,j − φ̃0 δn - 1,j − φ̃0 δn,j (3.22c)

2πFKn - 1,j− φ̃0 2πFKn - 2,j = − φ̃0 δn - 2,j (3.22d)

2πFKn,j− φ̃0 2πFKn - 2,j = − φ̃0 δn - 2,j , (3.22e)

for 2 ≤ i < n - 2 in Eq.(3.22b); the ξ dependency is here subtended for simplicity.
Applying these to the raw TBA system of Eq.(3.10) (where only breathers and the

(anti)soliton are present), it yields as expected Eq.(3.15), i.e. Eq.(3.17) with

{σMi
}ni=1 = {1, 1, . . . , 1} (3.23a)

{σεi}ni=1 = {1, 1, . . . , 1} (3.23b)

and

Ĭ(φ̃) = IDn
· φ̃0 =



φ̃0 . . .
φ̃0 φ̃0 . . .

φ̃0
. . .

...
...

. . . . . . . . .
...

...
...

. . . φ̃0

. . . φ̃0 φ̃0 φ̃0

. . . φ̃0

. . . φ̃0


, (3.24)
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B1 B2 B3 BNB−1 BNB

S

S̄

. . .

Figure 3.1: Structure of the TBA equations for the sine-Gordon model at re�ectionless
points. Each massive particle species is represented with a full dot: if the related equa-
tions are coupled through the kernel φ̃0, there exist a link connecting them with 0 + 1
lines. Since the incidence matrix of Eq.(3.24) is symmetric, the links are not oriented.

B1

S

S̄

(a) p = 1
2

B1 B2

S

S̄

(b) p = 1
3

B1 B2 B3

S

S̄

(c) p = 1
4

Figure 3.2: Structure of the TBA equations for the sine-Gordon model at some re�ec-
tionless points. Notice how, as p decreases, the diagram prologues, since new breather
species become accessible (Fig.(1.3)).

with diagrammatic representation in Fig.(3.1) (some instances of application may be
found in Fig.(3.2)).

Explicitly,

M(B1) = ε(B1) + φ0 ∗W(B2) (3.25a)

M(Ba) = ε(Ba) + φ0 ∗W(Ba−1)+φ0 ∗W(Ba+1) (3.25b)

M(BNB
) = ε(BNB

) + (ΘNB>1)φ0 ∗W(BNB−1) +φ0 ∗W(S) +φ0 ∗W(S̄) (3.25c)

M(S) = ε(S) + φ0 ∗W(BNB
) (3.25d)

M(S̄) = ε(S̄) + φ0 ∗W(BNB
) (3.25e)

for a = 2, . . . , NB − 1 in Eq.(3.25b), while Eq.(3.25a) is present if NB > 1 (i.e. for the
re�ectionless p < 1

2
). Θ denotes here the Heaviside-Θ symbol. Again, the ϑ dependence

is subtended.
The structure of these equations is well encoded in graphs such as that of Fig.(3.1).
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3.2.2 Repulsive points

Another class of sine-Gordon parameter values is characterized by p > 1, p ∈ Q. They
are repulsive points, featuring no breather particles and a �nite number of magnons. This
means that, looking at the continued fraction expression of Eq.(2.57), p = α, with a �nite
continued fraction that extends up to a level λ, i.e. 1

α
= c.f.{ν1, ν2, . . . , νλ}.

The aim is again that of reducing the raw TBA system into a universal form similar
to Eq.(3.17), through the application of some pivotal identities. However, new features
appear in this case: clearly, the sine-Gordon scattering theory is not diagonal at these
values, so di�erences w.r.t the previous re�ectionless points are expected.

To see this better, let's start analyzing the particular sub-case of p ∈ N− {1}. They
are points for which the continued fraction extends only up to the �rst level λ = 1:

p =
1

NB +
1

α

=
1

0 +
1

ν1

= ν1 . (3.26)

The particle content of the theory in this case entails the (anti)soliton (which, on the
line of �2.3 discussion, is treated as a unique doublet) and NM = α = ν1 = m1 magnons
(recall Eq.(2.58)).

Thus, it is expected that the universal TBA equations can be encoded on a graph
with m1+1 nodes. Let's establish the correspondence to graph nodes indices as

{S,M1,M2, . . . ,Mm1} 7→ {1, 2, 3, . . . , n} . (3.27)

What remains is to derive a set of identities, which are able to simplify the raw TBA
system. To this aim, it is possible to rely on the intimate connection between the sine-
Gordon model and the XXZ 1

2
spin chain model. Concerning the latter, in [44, Eq.(3.8),

(aj ≡ K1,j+1), (Ti,j ≡ Ki+1,j+1), (si ≡ φi), (di ≡ φself
i )] appear fundamental relations

that are addressed here as 'Takahashi-Suzuki identities'. They are actually formulated
for a case that would correspond to a positive real non-rational p, but, through lengthy
calculations, they can be veri�ed and adapted to the current case. Introducing the kernel

φ̃1(ξ) =
1

2 cosh π
2
ξ
, (3.28)

(i.e. {φ̃i(ξ)}i∈Λ = {φ̃1}, {φ̃
self
i (ξ)}i∈Λ′ = ∅) the result reads

2πFK1,j+ φ̃1 2πFK2,j = − φ̃1 δ2,j + (δ0,m1 −2) φ̃1 δ3,j (3.29a)

2πFK2,j−(1− δ0,m1 −2) φ̃1 2πFK3,j =

= − φ̃1 δ1,j + (1− δ0,m1 −2) φ̃1 δ3,j − (1− δ0,m1 −3) φ̃1 δ4,j (3.29b)
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2πFKi,j− φ̃1 2πFKi - 1,j− φ̃1 2πFKi+ 1,j =

= φ̃1 δi - 1,j + φ̃1 δi+ 1,j − (δi,n - 2) φ̃1 δn,j (3.29c)

2πFKn - 1,j− φ̃1 2πFKn - 2,j = φ̃1 2πFKn - 2,j (3.29d)

2πFKn,j+ φ̃1 2πFKn - 2,j = − φ̃1 2πFKn - 2,j , (3.29e)

for 2 < i < n - 2 in Eq.(3.29c), which holds if m1 ̸= 2, 3 (otherwise see Eqs.(3.29a)(3.29b)
respectively) while Eq.(3.29d) holds if m1 ̸= 2 (otherwise see Eq.(3.29b)).

The raw TBA system equations can, then, be combined to obtain terms in the left-
hand side of Eq.(3.29), thus allowing to apply these Takahashi-Suzuki identities. Notice
that, di�erently from the re�ectionless case, the η-signs depend on particle species as in
Eq.(2.83) and are not all positive (ηi = (−1)δi,1+δi,n): they should be treated carefully.
After few passages, this yields a universal TBA system in the form of Eq.(3.17) with

{σMi
}ni=1 = {0, 0, . . . , 0} (3.30a)

{σεi}ni=1 = {0, 1, 1, . . . , 1, 0} (3.30b)

and

Ĭ(φ̃) =



− φ̃1 . . .
φ̃1 φ̃1 . . .

φ̃1
. . .

...
...

. . . . . . . . .
...

...
...

. . . φ̃1

. . . φ̃1 φ̃1 φ̃1

. . . φ̃1

. . . − φ̃1


. (3.31)

The latter is encoded in a diagrammatic form in Fig.(3.3), with some exempli�cations
in Fig.(3.4)).

Some comments are in order.
It may be observed that the structure obtained vaguely resembles the one at re�ectionless
points: even if breathers are absent, the magnons seem to help recovering a similar
overall behavior. However, albeit for the positions of the non-zero entries, Eq.(3.31)
clearly is not in the form of an ADE Dynkin diagram incidence matrix because of the
appearance of negative entries. A clever way to fully recover such a Dynkin structure
would be that of absorbing the η-signs in the pseudoenergy de�nitions: when doing so,
[Ĭ(φ̃1)](ξ)→ − IDm1 +1 φ̃1(ξ) (a swift elaboration of this point is to be found in �4.1.2).
Still, Eqs.(3.30a)(3.30b) show that some driving terms and pseudoenergies disappear
from the right-hand side of the universal TBA equations, even if the L-terms (depending
on the pseudoenergies, Eq.(2.53)) remain. This marks a di�erence with the re�ectionless
case.
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S M1 M2 Mm1−3 Mm1−2

Mm1−1

Mm1

. . .↼
↽ ⇀⇁

Figure 3.3: Structure of the TBA equations for the sine-Gordon model at integer points.
As for the re�ectionless points, full dots represent massive particle species, while empty
circles stands for the massless ones (i.e.) magnons. However, a white dot is added on
those nodes for which the σM-number (Eq.(3.30a)) is zero instead of one (this does not
make any di�erence for the magnons since their driving term is absent anyway, but
for the (anti)soliton it is relevant). Similarly, a null σε (Eq.(3.30b)) is represented by a
white dot put above the correspondent node. Then, if two equations are coupled through
the kernel φ̃1, there exist a link connecting them with 1 + 1 lines. Some of these links
are oriented since the matrix of Eq.(3.31) features also negative entries: by standard
notation, the arrows point towards the node whose corresponding matrix line shows the
negative entry.

S

M1

M2

↼↽

⇀⇁

(a) p = 2

S M1

M2

M3

↼
↽ ⇀⇁

(b) p = 3

S M1 M2

M3

M4

↼
↽ ⇀⇁

(c) p = 4

Figure 3.4: Examples of diagrams at some integer values of the sine-Gordon parameter.
Thanks to the encoding described in Fig.(3.3), it is possible to read [Ĭ(φ̃)](ξ) for these
cases simply looking at the diagrams above. Observe that, as more magnon species
are introduced, they are added to the diagram, without inducing changes in the overall
structure.
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Collecting all the above, it is possible to write the universal TBA system for the
sine-Gordon model at integer points as follows:

M(S) = ε(S) − φ1 ∗W(M1) +(δ0,m1 −2)φ1 ∗W(M2) (3.32a)

M(M1) = ε(M1) + φ1 ∗W(S) +(1− δ0,m1 −2)φ1 ∗W(M2) +(δ0,m1 −3)φ1 ∗W(M3) (3.32b)

M(Mk) = ε(Mk) + φ1 ∗W(Mk−1) +φ1 ∗W(Mk+1) (3.32c)

M(Mm1 −2) = ε(Mm1 −2) + φ1 ∗W(Mm1 −3) +φ1 ∗W(Mm1 −1) +φ1 ∗W(Mm1 ) (3.32d)

M(Mm1 −1) = ε(Mm1 −1) + φ1 ∗W(Mm1 −2) (3.32e)

M(Mm1 ) = ε(Mm1 ) − φ1 ∗W(Mm1 −2) , (3.32f)

for 1 < k < m1−2 in Eq.(3.32c), while Eq.(3.32d) holds if m1 ̸= 2, 3 (otherwise see
Eqs.(3.32a)(3.32b)) and Eq.(3.32e) holds if m1 ̸= 2 (otherwise see Eq.(3.32b)). Let's
recall that theW-terms are de�ned in Eq.(3.19) and in the above equations is subtended
the ϑ dependency (as it is often done also in subsequent formulas).

Generalizations

Before proceeding with a wider formulation of the above to include all rational re-
pulsive points, it is worth spending few words on another remarkable result.

Very recently [6], a generalization of Eq.(3.32) has been obtained. This work concerns
minimal scattering theories with quantum Uq(su2) symmetry, such as the sine-Gordon
model is (Eq.1.51), but constructed (just out of general principles requirements (�1.2.4))
in higher spin representations. As emerged in the present discussion (�2.3), the sine-
Gordon theory is based on a spin 1/2 representation: when specializing the results of [6]
to this value, indeed Eq.(3.32) is obtained.

What's really remarkable is that the conclusions reached in the elegant [6] are spin-
independent. Focusing on repulsive regimes (in particular, the analogue of integer points
discussed above), a set of Takahashi-Suzuki identities is obtained exactly in the form of
Eq.(3.29), where the spin appears as a parameter. As a consequence, the universal TBA
system shows the same structure, i.e. it is a common description of di�erent theories:
from the here-discussed sine-Gordon model, to the similarly famous 'sausage model' (spin
1) [66][67] and to completely new theories (spin 3/2 and greater).

In [6] is also present a numerical analysis of the UV behavior, following the program
of �2.1. The two theories just explicitly named are found to be UV-completed (i.e. their
renormalization group �ow reach a well de�ned CFT at high energies), while other ones
are subject to a Hagedorn transition [68]. While this exceeds the scope of the current
work, let's just mention that possible explanations to this behavior might reside in the
universal TBA diagrammatic structure.
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Shifting again the focus on the sine-Gordon model, it is possible to extend the previous
description to a more general case p > 1, p ∈ Q. This corresponds to consider sine-
Gordon parameter continued fractions with no breather and up to level λ ≥ 1:

p =
1

NB +
1

α

=
1

0 +
1

ν1 +
1

· · ·+ 1

νλ

= α = c.f.{0, ν1, . . . , νλ} . (3.33)

There exist, then, NM = mλ magnons, besides the (anti)soliton.
Again, the formulation of a universal TBA system relies on the suitable identities

that allows to simplify the raw TBA system: these are generalizations of Eq.(3.29). As
�rst step, on the line of Eq.(3.27), it is convenient to de�ne the mapping to diagram
nodes as

{S,M1,M2, . . . ,Mmλ
} 7→ {1, 2, 3, . . . , n} . (3.34)

The non-trivial step is to deal with the kernels of Eqs.(3.11c)(3.11d)(3.11e) and to work
out the much needed identities. The main inspiration comes from [44] and from the
results obtained in the p integer sub-case. De�ne the universal kernels

φ̃i(ξ) =
1

2 cosh β−1 p
i
ξ

(3.35a)

φ̃self
i (ξ) =

cosh β−1(p
i
− p

i+1
)ξ

2 cosh β−1 p
i
ξ cosh β−1 p

i+1
ξ
, (3.35b)

for i ∈ Λ
def
= {1, . . . , λ} in Eq.(3.35a) and for i ∈ Λ′ def

= {1, . . . , λ− 1} in Eq.(3.35b). By
Eqs.(2.41)(2.58) it may be seen that the naming of the previously-de�ned φ̃0 and φ̃1 are
consistent with the notation above. The calculations are quite cumbersome, but it is
possible to write the Takahashi-Suzuki identities for this case as

2πFK1,j+(1− δ0,m1 −1) φ̃1 2πFK2,j+(δ0,m1 −1) φ̃2 2πFK2,j =

= −(1− δ0,m1 −1) φ̃1 δ2,j + (δ0,m1 −1) φ̃
self
1 δ1,j − (δ0,m1 −1) φ̃2 δ2,j (3.36a)

2πFK2,j−(δ0,m1 −2) φ̃
self
1 2πFK2,j−(Θm1>2) φ̃1 2πFK3,j−(δ0,m1 −1) φ̃2 2πFK3,j =

= −(1− 2δ0,m1 −1) φ̃1 δ1,j + (δ0,m1 −2) φ̃
self
1 δ2,j + (Θm1>2) φ̃1 δ3,j+

− (1−Θm1>2) φ̃2 δ3,j − (δ0,mλ −3) φ̃2 δ4,j (3.36b)

2πFKi,j−(1− 2δi,mk−1
) φ̃k 2πFKi - 1,j− φ̃k 2πFKi+ 1,j =

= (−1)k+1 φ̃k δi - 1,j + (−1)k+1 φ̃k δi+ 1,j (3.36c)

2πFKi,j−(1− 2δi,mk−1
) φ̃k 2πFKi - 1,j− φ̃self

k 2πFKi,j− φ̃k+1 2πFKi+ 1,j =

= (−1)k+1 φ̃k δi - 1,j + (−1)k+1 φ̃self
k δi,j − (−1)k+1 φ̃k+1 δi+ 1,j (3.36d)
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2πFKn−2,j−(1− 2δn - 2,mk−1
) φ̃λ 2πFKn - 3,j− φ̃λ 2πFKn - 1,j =

= (−1)λ+1 φ̃λ δn - 3,j + (−1)λ+1 φ̃λ δn - 1,j − (−1)λ+1 φ̃λ δn,j (3.36e)

2πFKn - 1,j− φ̃λ 2πFKn - 2,j = (−1)λ+1 φ̃λ δn - 2,j (3.36f)

2πFKn,j+ φ̃λ 2πFKn - 2,j = −(−1)λ+1 φ̃λ δn - 2,j , (3.36g)

for 1 < mk−1 ≤ i ≤ mk−2, i ̸= n - 2 in Eq.(3.36c) and for 1 < i = mk−1, k ̸= λ
in Eq.(3.36d), while Eq.(3.36e) holds if mλ ̸= 3 (otherwise see Eq.(3.36b)). Also it is
implicitly assumed that mλ ̸= 2, since the set of Takahashi-Suzuki identities has already
be presented in Eq.(3.29) for this case.

The universal TBA equations (in Fourier space) are, then, found to be structured as
in Eq.(3.17) with

{σMi
}ni=1 = {0, 0, . . . , 0} (3.37a)

{σεi}ni=1 = {0, 1, 1, . . . , 1, 0} (3.37b)

and with [Ĭ(φ̃)](ξ) being composed by blocks on the diagonal in the form
− φ̃1 . . .

φ̃1 φ̃1 . . .

φ̃1
. . .

...
...

. . . . . .



− φ̃self

1 − φ̃2 . . .
− φ̃2 φ̃2 . . .

φ̃2
. . .

...
...

. . . . . .




. . . . . .
...

...
. . . φ̃i . . .
. . . φ̃i φ̃i . . .

. . . φ̃i
. . .

...
...

. . . . . .





. . . . . .
...

...
. . . φ̃i . . .

. . . φ̃i φ̃self
i φ̃i+1 . . .

. . . − φ̃i+1
. . .

...
...

. . . . . .



. . . . . .

...
...

...
. . . φ̃λ

. . . φ̃λ φ̃λ φ̃λ

. . . φ̃λ

. . . − φ̃λ

 .

(3.38)

The �rst line of Eq.(3.38) refers to two possibilities for the entries [(S), (M1), (M2), . . . ]:
on the left is the general block, while the case on the right holds if m1 = 1 (supposing
λ > 1, otherwise see Eq.(3.31)). Next in order are the blocks for [. . . , (Mk−1), (Mk),
(Mk+1), . . . ] with 1 < m i−1 ≤ k ≤ m i−2, k ̸= NM − 2 (second line, left), [. . . , (Mmi −2),
(Mmi −1), (Mmi

), . . . ] with i ̸= λ (second line right) and [. . . , (Mmλ −2), (Mmλ −1), (Mmλ
)]
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S M1 M2

Mmi −2 Mmi −1 Mmi

Mk−1 Mk Mk+1

Mmλ−3 Mmλ−2

Mmλ−1

Mmλ

. . .

. . .

. . . . . .

. . . . . .

. . .
↼
↽

↼
↽
⇀
⇁

⇀
⇁

⇀
⇁

Figure 3.5: Building blocks for sine-Gordon universal TBA diagram at repulsive points:
each of them is in correspondence with the matrix blocks of Eq.(3.38) (the assumptions
on the labels are the same therein). With respect to Fig.(3.3), similar conventions are
followed, but some new features are present here: two nodes are connected with i + 1
lines to denote the coupling of the equations through φ̃i; similarly, loops with i + 1
lines stand for ± φ̃self

i , being drawn upwards (downwards) for the positive (negative)
sign; the conventions on directed links are maintained, now allowing for doubly negative
entries, represented with arrows in both directions. These notations are highly inspired
by [69][4][5].
Some examples of application of these blocks to the description of TBA structures are
listed in Fig.(3.6).

68



S M1 M2 M3 M4 M5 M6

M7

M8

↼
↽

⇀
⇁

⇀
⇁ ⇀

⇁

(a) p = 24
7

S M1 M2 M3 M4 M5

M6

M7

↼
↽

⇀
⇁

⇀
⇁ ⇀

⇁

(b) p = 15
4

S M1 M2 M3 M4

M5

M6

↼
↽

⇀
⇁

⇀
⇁ ⇀

⇁

(c) p = 11
4

S M1 M2 M3

M4

M5

⇀↼
⇁↽

⇀
⇁ ⇀

⇁

(d) p = 7
4

Figure 3.6: Universal TBA structure for the sine-Gordon model at p = 24
7

=
c.f.{0, 3, 2, 3}, p = 15

4
= c.f.{0, 3, 1, 3}, p = 11

4
= c.f.{0, 2, 1, 3}, p = 7

4
= c.f.{0, 1, 1, 3}.

The notations explained in Fig.(3.5) are adopted here. Additionally, magnons belonging
to the same level are grouped more closely together and share a common color, in order
to grant a better legibility. It may be noticed from these examples that, as magnons are
subtracted from a level i, the corresponding loop seems to 'move back' until trespassing
into the precedent level i − 1. This behavior is shown here for the second level (ending
up on the last �rst level magnon) and for the �rst level (ending up on the (anti)soliton).
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(last line). The diagrammatic encoding is discussed in Fig.(3.5), while some examples
are proposed in Fig.(3.6).

A striking feature of Eq.(3.38) is that it shows diagonal elements, i.e. loops in a
diagrammatic language: they describe TBA equations which are self-coupled.

As done in previous cases, the complete formulation of the TBA system is presented
here (implicitly supposing λ > 1, otherwise refer to Eq.(3.32)):

M(S) =ε(S) − (δ0,m1 −1)φ
self
1 ∗W(S)−(1− δ0,m1 −1)φ1 ∗W(M1)+

− (δ0,m1 −1)φ2 ∗W(M1) (3.39a)

M(M1) =ε(M1) + (1− 2δ0,m1 −1)φ1 ∗W(S) +(δ0,m1 −2)φ
self
1 ∗W(M1) +

+ (Θm1>2)φ1 ∗W(M2) +(1−Θm1>2)φ2 ∗W(M2) +

+ (δ0,mλ −3)φ2 ∗W(M3) (3.39b)

M(Mk) =ε(Mk) + (1− 2δk,mi−1
)φi ∗W(Mk−1) +φi ∗W(Mk+1) (3.39c)

M(Mk) =ε(Mk) + (1− 2δk,mi−1
)φi ∗W(Mk−1) +φself

i ∗W(Mk) +

+ φi+1 ∗W(Mk+1) (3.39d)

M(Mmλ −2) =ε(Mmλ −2) + φ1 ∗W(Mmλ −3) +φ1 ∗W(Mmλ −1) +φ1 ∗W(Mmλ
) (3.39e)

M(Mmλ −1) =ε(Mmλ −1) + φ1 ∗W(Mmλ −2) (3.39f)

M(Mmλ
) =ε(Mmλ

) − φ1 ∗W(Mmλ −2) , (3.39g)

for 1 < m i−1 ≤ k ≤ m i−2, k ̸= mλ−2 in Eq.(3.39c) and for 1 < k = m i−1, i ̸= λ in
Eq.(3.39d), while Eq.(3.39e) holds if mλ ̸= 3 (otherwise see Eq.(3.39b)).
This 'verbose' system of equations is very e�ciently encoded into diagrams in the form
of Fig.(3.5), whence the power of graphical formalism.

3.2.3 Attractive non-diagonal points

Still some rational values of p (arguably the most interesting ones) have to be con-
sidered in the current discussion. They are the attractive points 0 < p < 1, p ∈ Q− 1

N ,
for which the scattering is non-diagonal. In this case, the sine-Gordon parameter is
expressed as a continued fraction in the form

p =
1

NB +
1

α

=
1

NB +
1

ν1 +
1

· · ·+ 1

νλ

= c.f.{NB, ν1, . . . , νλ} , (3.40)

where, di�erently from the repulsive case, NB ̸= 0. Both breathers and magnons are
present along with the (anti)soliton: it is expected to obtain a universal TBA description
where the two previous cases (��3.2.1,3.2.2) are 'sewed' together.

70



As customary, let's introduce the correspondence between (pseudo)particle species
and graph nodes. Since the theory entails NB + 1 + NM particles, the diagram will
feature the same number n of nodes as per the association

{B1, B2, . . . , BNB
, S,M1,M2, . . . ,Mmλ

} 7→
7→ {1, 2, . . . , NB, NB + 1, NB + 2, NB + 3, . . . , n} .

(3.41)

This allows to formulate 'Zamolodchikov-Takahashi-Suzuki' identities adopting graph
indices instead of particle labels. Once introduced the universal kernels in the same form
of Eq.(3.35)

φ̃i(ξ) =
1

2 cosh β−1 p
i
ξ

(3.42a)

φ̃self
i (ξ) =

cosh β−1(p
i
− p

i+1
)ξ

2 cosh β−1 p
i
ξ cosh β−1 p

i+1
ξ
, (3.42b)

for i ∈ Λ
def
= {0, . . . , λ} in Eq.(3.42a) and for i ∈ Λ′ def

= {0, . . . , λ − 1} in Eq.(3.42b), it
may be obtained that

2πFK1,j− φ̃0 2πFK2,j = − φ̃0 δ2,j (3.43a)

2πFKi,j− φ̃0 2πFKi - 1,j− φ̃0 2πFKi+ 1,j = − φ̃0 δi - 1,j − φ̃0 δi+ 1,j (3.43b)

2πFKNB,j−(ΘNB>1) φ̃0 2πFKNB - 1,j− φ̃
self
0 2πFKNB,j =

= −(ΘNB>1) φ̃NB − 1,j− φ̃
self
0 δNB,j − φ̃1 δNB + 1,j (3.43c)

2πFKNB + 1,j−(ΘNB>0) φ̃1 2πFKNB,j+(1− δ0,m1 −1) φ̃1 2πFKNB + 2,j+

+ (δ0,m1 −1) φ̃2 2πFKNB + 2,j =

= −(ΘNB>0) φ̃1 δNB,j + (δ0,m1 −1) φ̃
self
1 δNB + 1,j+

− (1− δ0,m1 −1) φ̃1 2πFKNB + 2,j−(δ0,m1 −1) φ̃2 2πFKNB + 2,j+

+ (1− 2δ0,NB
)(δ0,mλ −2) φ̃1 2πFKNB + 3,j (3.43d)

2πFKNB + 2,j−(δ0,m1 −2) φ̃
self
1 2πFKNB + 2,j−(Θm1>2) φ̃1 2πFKNB + 3,j+

− (δ0,m1 −1) φ̃2 2πFKNB + 3,j =

= −(1− 2δ0,m1 −1) φ̃1 δNB + 1,j + (δ0,m1 −2) φ̃
self
1 δNB + 2,j + (Θm1>2) φ̃1 δNB + 3,j+

− (1−Θm1>2) φ̃2 δNB + 3,j − (δ0,mλ −3) φ̃2 δNB + 4,j (3.43e)

2πFKi,j−(1− 2δi,NB + 1+mk−1
) φ̃k 2πFKi - 1,j− φ̃k 2πFKi+ 1,j =

= (−1)k+1 φ̃k δi - 1,j + (−1)k+1 φ̃k δi+ 1,j (3.43f)

2πFKNB +mk,j−(1− 2δmk −1,mk−1
) φ̃k 2πFKNB - 1+mk,j− φ̃

self
k 2πFKNB +mk,j+

− φ̃k+1 2πFKNB + 1+mk,j =

= (−1)k+1 φ̃k δNB - 1+mk,j + (−1)k+1 φ̃self
k δNB +mk,j − (−1)k+1 φ̃k+1 δNB + 1+mk,j (3.43g)
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2πFKn−2,j−(1− 2δn - 2,mk−1
) φ̃λ 2πFKn - 3,j− φ̃λ 2πFKn - 1,j =

= (−1)λ+1 φ̃λ δn - 3,j + (−1)λ+1 φ̃λ δn - 1,j − (−1)λ+1 φ̃λ δn,j (3.43h)

2πFKn - 1,j− φ̃λ 2πFKn - 2,j = (−1)λ+1 φ̃λ δn - 2,j (3.43i)

2πFKn,j+ φ̃λ 2πFKn−2,j = −(−1)λ+1 φ̃λ δn - 2,j , (3.43j)

where it has been implicitly assumed NM > 0 (otherwise the re�ectionless description
holds). It may be noticed that Eqs.(3.43a)(3.43b) are the Zamolodchikov identities
of Eqs.(3.22a)(3.22b), while Eqs.(3.43e)-(3.43j) are the Takahashi-Suzuki identities of
Eqs.(3.36b)-(3.36g) slightly modi�ed to include integer p s (Eq.(3.29))(the indices in these
equations assume values as explained previously). Visible changes come, instead, with
Eqs.(3.43c)(3.43d), which now 'sew' together the two sets of identities.
Even if quite extended, Eq.(3.43) represents a quite general and transparent way to
obtain the sine-Gordon universal TBA system out of the raw one. As explained, they
can be directly applied to yield the universal formulation.
However, in the recent [5] it is proposed an alternative procedure based (quite elegantly)
on a matrix formalism, in the fashion of Eq.(3.13). The raw TBA system is put in the
form −−−−−−−−−−−−→

(F (ε+ L−M))(ξ) = [I− η 2πFK](ξ)
−−→
F L(ξ) (3.44)

and the universal TBA system is obtained multiplying by the auxiliary matrix

J =



[I− η(B′) 2πFK(BB′)]−1

1

[I− η(M ′) 2πFK(MM ′)]−1


, (3.45)

whose entries, besides those explicitly written, are all zero but for JNB + 1,NB + 2(ξ) = φ̃1(ξ),
JNB + 1,NB(ξ) = −ΘNB>0 φ̃1(ξ) and JNB + 1,NB + 3(ξ) = φ̃1(ξ). It is su�cient, then, to further
simplify some of the equations obtained to get to the desired result.
It is possible to show that this procedure is equivalent to the application of the identities
suggested in this work. Even if more re�ned, the former is less explicit than Eq.(3.43).

By either method, the form of Eq.(3.17) is reached for the sine-Gordon TBA system.
The σ-numbers are speci�ed as

{σMi
}NBi=1 = {1, 1, . . . , 1} {σMi

}ni=NB + 1 = {0, 0, . . . , 0} (3.46a)

{σεi}NBi=1 = {1, 1, . . . , 1} {σεi}ni=NB + 1 = {1, 1, . . . , 1} , (3.46b)
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while [Ĭ(φ̃)](ξ) is made up by the following blocks on the diagonal
φ̃0 . . .

φ̃0 φ̃0 . . .

φ̃0
. . .

...
...

. . . . . .




. . . . . .
...

...
...

...
. . . φ̃0 . . .

. . . φ̃0 φ̃self
0 φ̃1 . . .

. . . φ̃1 − φ̃1 . . .

. . . φ̃1 φ̃1 . . .

. . . φ̃1
. . .

...
...

...
...

. . . . . .





. . . . . .
...

...
...

...
. . . φ̃0 . . .

. . . φ̃0 φ̃self
0 φ̃1 . . .

. . . φ̃1 − φ̃self
1 − φ̃2 . . .

. . . − φ̃2 φ̃2 . . .

. . . φ̃2
. . .

...
...

...
...

. . . . . .




. . . . . .
...

...
. . . φ̃i . . .
. . . φ̃i φ̃i . . .

. . . φ̃i
. . .

...
...

. . . . . .





. . . . . .
...

...
. . . φ̃i . . .

. . . φ̃i φ̃self
i φ̃i+1 . . .

. . . − φ̃i+1
. . .

...
...

. . . . . .



. . . . . .

...
...

...
. . . φ̃λ

. . . φ̃λ φ̃λ φ̃λ

. . . φ̃λ

. . . − φ̃λ




. . . . . .

...
...

...
. . . φ̃1

. . . φ̃1 − φ̃1 −(1− 2δ0,NB
) φ̃1

. . . φ̃1

. . . − φ̃λ

 .

(3.47)
The �rst line of Eq.(3.47) refers to the breather entries [(B1), (B2), (B3), . . . ], when NB >
0. On the second line are shown two possibilities depending on whether m1 ̸= 1 (left)
or m1 = 1 (right): they correspond to particle species [. . . , (BNB−1), (BNB

), (S), (M1),
(M2), . . . ]. The remaining lines are just the same blocks as in Eq.(3.38), but for the last
line where a slightly di�erent form (right) is to be used if mλ = 2. The diagrammatic
encoding conventions are the same as in Figs.(3.1)(3.3)(3.5) (see Fig.(3.7) for a swift
summary): the example of Fig.(3.8) may help in visually clarifying the structure outlined
above.

An interesting point is that the last breather shows a diagonal element, which in
the re�ectionless case is absent. This may be regarded as a consequence of magnons'
appearance.
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B1 B2 B3

BNB
S M1 M2 BNB

S M1 M2

Mmi −2 Mmi −1 Mmi
Mk−1 Mk Mk+1

Mmλ−3 Mmλ−2

Mmλ−1

Mmλ

BNB
S

M1

M2

. . .

. . . . . . . . . . . .

. . . . . .. . . . . .

. . . . . .

↼
↽

↼
↽
⇀
⇁

⇀
⇁

⇀
⇁

↼↽

⇀⇁↼↽

Figure 3.7: Diagrammatic representation of the Eq.(3.47) matrix blocks. The encoding
is described in Figs.(3.1)(3.3)(3.5).

B1 B2 S M1 M2 M3

M4

M5

⇀↼
⇁↽

⇀
⇁ ⇀

⇁

Figure 3.8: Universal TBA structure for the sine-Gordon model at the attractive non-
diagonal point p = 7

18
= c.f.{2, 1, 1, 3}.
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Finally, the universal TBA equations for the sine-Gordon model at attractive non-
diagonal points read

M(B1) =ε(B1) + φ0 ∗W(B2) (3.48a)

M(Ba) =ε(Ba) + φ0 ∗W(Ba−1) +φ0 ∗W(Ba+1) (3.48b)

M(BNB
) =ε(BNB

) + (ΘNB>1)φ0 ∗W(BNB−1) +φself
0 ∗W(BNB

) +φ1 ∗W(S) (3.48c)

M(S) =ε(S) + (ΘNB>0)φ1 ∗W(BNB
)−(δ0,m1 −1)φ

self
1 ∗W(S) +

− (1− δ0,m1 −1)φ1 ∗W(M1)−(δ0,m1 −1)φ2 ∗W(M2) +

+ (1− 2ΘNB>0)(δ0,mλ −2)φ1 ∗W(M2) (3.48d)

M(M1) =ε(M1) + (1− 2δ0,m1 −1)φ1 ∗W(S) +(δ0,m1 −2)φ
self
1 ∗W(M1) +

+ (Θm1>2)φ1 ∗W(M2)+(1−Θm1>2)φ2 ∗W(M2) +

+ (δ0,mλ −3)φ2 ∗W(M3) (3.48e)

M(Mk) =ε(Mk) + (1− 2δk,mi−1
)φi ∗W(Mk−1) +φi ∗W(Mk+1) (3.48f)

M(Mmi −1) =ε(Mmi −1) + (1− 2δmi −1,mi−1
)φi ∗W(Mmi −2) +φself

i ∗W(Mmi −1) +

+ φi+1 ∗W(Mmi ) (3.48g)

M(Mmλ −2) =ε(Mmλ −2) + φ1 ∗W(Mmλ −3) +φ1 ∗W(Mmλ −1) +φ1 ∗W(Mmλ
) (3.48h)

M(Mmλ −1) =ε(Mmλ −1) + φ1 ∗W(Mmλ −2) (3.48i)

M(Mmλ
) =ε(Mmλ

) − φ1 ∗W(Mmλ −2) . (3.48j)

Exactly as in the Zamolodchikov-Takahashi-Suzuki identities, it may be appreciated that
Eqs.(3.48a)(3.48b) are just Eqs.(3.25a)(3.25b) as well as Eqs.(3.48e)-(3.48j) coincide with
Eqs.(3.39b)-(3.39g) (holding under the conditions discussed therein). This aligns with
the results of [4][5].
Once again, it may be appreciated the synthesis gifted by diagrammatic representations.

However, let's remark that the graphs discussed in these sections are not just visual
notations. They hold much more meaning at a deeper level. It is not an hyperbole
stating that they build the thermodynamics of the scattering theory and are of great
importance in the study of the theory's renormalization group �ow: subsequent sections
elaborate more on this point.
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Chapter 4

Y -system and Dynkin diagrams

Strong of the knowledge of previous sections, it is illustrated here a new system of
equations, famously known as Y -system. Equivalent to the TBA formulation, that's
a set of functional equations where the underlying mathematical structure of a theory
truly becomes determinant.

Y -systems are �rstly presented in [48] for the general class of ADE scattering theo-
ries: due to their peculiar properties they allow to show the connection with the TBA
derivation in a rather manifest way. Important discussions are lead, among others, in
[56][57][58][59][60][70][3][50][71]1.
Stated plainly, Y -systems are new sets of functional equations, which can be deduced
from the TBA system by means of identities. They are shown to be completely equiv-
alent to the latter formulation, in the sense that solutions of the TBA equations also
satisfy the Y -system (they are particular solutions). Even if showing an arguably more
elaborated derivation, Y -systems also bring great advantages to the discussion. On par
with the universal TBA equations (Eqs.(3.17)(3.18)), they explicitly cast light on the in-
herent mathematical structure of the theory. Plus, they are intrinsically connected to the
renormalization group �ow analysis: Y -systems show periodicity properties that re�ect
the conformal perturbing operator dimensions. Even further, their static solutions (that
turn the system into a set of algebraic equations) are directly related to the UV limit
central charge (Eqs.(2.7)(2.8)(2.66)). However, a Y -system formulation is not known for
all the theories and much there is still to uncover about them.

The subsequent sections are meant to, at least, scratch the surface of this vast topic.
With a particular consideration for the sine-Gordon model, it is here proposed a deriva-
tion of this system in the re�ectionless (ADE) case and some considerations regarding
its generalization for other points.

1While focusing here on TBA-related aspects, Y -systems are actually related to a huge class of
mathematics and physics topics. For a comprehensive collection, see [72].
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4.1 Sine-Gordon model Y -system

Similarly to what discussed in the context of universal TBA, the main idea behind the
derivation of Y -systems is to simplify the set of raw TBA equations (Eq.(2.74)). This,
in some cases, can be done by means of an analytic continuation of the rapidity variable,
joint with the application of identities characterizing the mathematical structure of the
scattering theory. The goal is that of obtaining a cancellation of the driving terms, so
to obtain a set of functional equations in the pseudoenergies (Eq.(2.52)).

As mentioned above, a Y -system formulation is not available for all the scattering
theories. Of interest for the current discussion is the particular case of the sine-Gordon
model, for which some results can indeed be obtained.

4.1.1 Re�ectionless points

The peculiar re�ectionless points 0 < p < 1, p ∈ 1
N represent a fortunate example in

which a Y -system can be written. As discussed in previous sections (��3.1,3.2), this con-
sists in an instance of application for the more general class of ADE scattering theories.
As the latter is the context in which Y -systems �rstly entered the TBA method, it is
worthwhile to study the steps followed in this broader case [59], before specializing to
sine-Gordon re�ectionless points.

Let's remind that any ADE theory showcases an intrinsic connection with simply-
laced Lie algebra: their features are schematically listed at the beginning of �3.1. Central
to this derivation is the property for the masses of the theory's particle content to build
up the components of the Perron-Frobenius eigenvector. In fact, Eq.(3.2) holds for any
ADE scattering theory, featuring the Dynkin diagram incidence matrix of the related
simple Lie algebra (IG), its Coxeter number (hG) and the masses of the model (Mi), in
number equal to the algebra's rank (rG):

rG∑
j=1

[IG]i,jMj = 2 cos

(
π

hG

)
Mi . (4.1)

Recall also that, for the scattering kernels in Fourier space (F Ki,j(ξ)), it holds the
fundamental Zamolodchikov identity of Eq.(3.13). It is convenient to recast it in the
form

2πFKi,j(ξ) = −

[
IG

(
2 cosh

π

hG
ξ · I− IG

)−1
]
i,j

. (4.2)

Now, consider the system of raw TBA equations (Eq.(2.74)): under the notation
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currently used, it reads

Mi(ϑ) = εi(ϑ) +

rG∑
j=1

(Ki,j ∗ Lj)(ϑ) , (4.3)

for i = 1, . . . , rG (notice that the η-signs are all positive if a massive scattering theory
is assumed). It is possible to smoothly perform the analytic continuation in the rapidity
variable

ϑ→ ± i π
hG

. (4.4)

Then it can be considered the combination of raw TBA equations (adopting a short-hand
notation '(r.h.s.)' for the right-hand side of the ith equation)

Mi

(
ϑ+ i

π

hG

)
+Mi

(
ϑ− i π

hG

)
−

rG∑
j=1

[IG]i,jMj(ϑ) =

= (r.h.s.)i

(
ϑ+ i

π

hG

)
+ (r.h.s.)i

(
ϑ− i π

hG

)
−

rG∑
j=1

[IG]i,j(r.h.s.)j(ϑ) .

(4.5)

When formulated in the Fourier space, it's easy to see that, by means of Eq.(4.1), the
left-hand side of Eq.(4.5) vanishes, completely eliminating the dependence on driving
terms (if not by the same identity Eq.(4.1)). For what concerns the right-hand side, the
Zamolodchikov identity of Eq.(4.2) can be used, so that, once anti-Fourier transforms
are applied, it is possible to write

εi

(
ϑ+ i

π

hG

)
+ εi

(
ϑ− i π

hG

)
=

rG∑
j=1

[IG]i,j
(
εj(ϑ) + Lj(ϑ)

)
. (4.6)

An important point is that the combination of equations considered yields exactly the
incidence matrix IG after applying the Zamolodchikov identities. Taking the logarithm
of both sides, using for the L-terms the expression of Eq.(2.53) and de�ning the new
pseudoenergies functions

Yi(ϑ) = eεi(ϑ) , (4.7)

it is obtained the Y -system for the G ∈ {ADE} scattering theory. It reads

Yi

(
ϑ+ i

π

hG

)
Yi

(
ϑ− i π

hG

)
=

rG∏
j=1

(1 + Yj(ϑ))
[IG ]i,j , (4.8)

for i = 1, . . . , rG.
It is manifest that Eq.(4.8) has a form completely determined by the underlying Lie

algebra structure. Also, as anticipated, only the pseudoenergies enter this system, as the
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driving terms are all made vanish in the derivation steps.
Moreover, in [48] it is conjectured the remarkable periodicity

Yi

(
ϑ+ iπ

hG +2

hG

)
= YrG − i+ 1(ϑ) (4.9)

for G ∈ {A} and

Yi

(
ϑ+ iπ

hG +2

hG

)
= Yi(ϑ) (4.10)

for G ∈ {DE}2. This has been veri�ed numerically with high precision for many instances
[59][60]. It is quite meaningful, as this result can be linked with the conformal dimension
of the perturbing operator de�ning the theory's o�-critical action3 .
When, instead, approaching criticality, the Y -system turns out to be of paramount im-
portance for the evaluation of the central charge. It is found that, in the UV limit ℓ→ 0
(�2.4.3), the pseudoenergies for minimal (i.e. with trivial CDD factors) massive scat-
tering theories can be deemed as constants4 for the purpose of evaluating the �nite size
scaling function (Eq.(2.66)) [46]. This allows to write

c̃(0) =
6

π2

rG∑
i=1

L
(

1

1 + yi

)
, (4.11)

where L(x) stands for the Roger dilogarithm function [73], while yi denotes a static
solution of Eq.(4.8). This means that solving the (algebraic) Y -system in a static regime
yields precise information on the conformal central charge.

These observations alone are more than enough to motivate a study of these systems.

Let's, then, discuss the Y -system derivation for the sine-Gordon model. The steps

above can be closely followed by specifying G ≡ D 1
p
+1, i.e. rG = 1

p
+ 1

def
= n, IG = IDn

,

hG = 2
p
. With the de�nition in Eq.(4.7), the Y -system for the sine-Gordon model at

re�ectionless points reads

Yi

(
ϑ+ i

πp

2

)
Yi

(
ϑ− iπp

2

)
=

n∏
j=1

(1 + Yj(ϑ))
[IDn ]i,j , (4.12)

for i = 1, . . . , n.
Due to its manifest relation to a Dn Dynkin diagram incidence matrix, Eq.(4.12) also

2Symmetry arguments for the case G ∈ {A} actually require that Yi(ϑ) = YrG − i+ 1(ϑ), so that also
the second periodicity equation is satis�ed in this case.

3More precisely, it is given by ∆ = 1 − 1
P for G ∈ {ADE} and by ∆ = 1 − 2

P for G ≡ Tn, with
P = hG +2

hG
[59].

4They are indeed constant inside rapidity 'plateau regions': more on this can be found in [14, �20.6].
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enjoys a graphical representation, just like the one shown in Fig.(3.1). To each (full)
node of the diagram is associated a (massive) particle species, in such a way that the
equations' coupling in the above system is completely described by links between them.

4.1.2 Non-diagonal points

Once explained the derivation of ADE theories' Y -systems, the case of sine-Gordon
re�ectionless points turns out to be a straightforward application. The same can not be
said for non-diagonal points p ∈ Q− 1

N .
As discussed in previous sections, the mathematical structure inherent to the theory

becomes more complicated (�3.1) as well as the sets of identities that enjoy the scattering
kernels (Eqs.(3.36)(3.43)). Both these elements are at the root of the Y -system formu-
lation, so it may be expected that many di�culties are met. One class of sine-Gordon
parameter values for which the derivation is found to produce some good results is that
of integer points p ∈ N− {1}.

As explained in �3.2.2, for these values of the sine-Gordon parameter the theory
entails only the (anti)soliton as massive particle, since the m1 magnons are massless by
de�nition. In view of the Y -system, this means that only the (anti)soliton driving term
is di�erent from zero, slightly simplifying the derivation. Even more importantly, the set
of identities in Eq.(3.29) features only one universal kernel φ̃1(ξ) (de�ned in Eq.(3.28))
and no self-interaction kernels. These are great simpli�cations.

Recovering the index notation of Eq.(3.27), steps similar to the re�ectionless case can
be followed, starting from the analytic continuation

ϑ→ ± iπ
2
. (4.13)

This choice is only natural, when considered that it re�ects the form of φ̃1(ξ). Next a
suitable linear combination of the raw TBA equations has to be considered. Let's take
it in a form similar to Eq.(4.5)

Mi

(
ϑ+ i

π

2

)
+Mi

(
ϑ− iπ

2

)
−

n∑
j=1

[Ĭ ←]i,jMj(ϑ) =

= (r.h.s.)i

(
ϑ+ i

π

2

)
+ (r.h.s.)i

(
ϑ− iπ

2

)
−

n∑
j=1

[Ĭ ←]i,j(r.h.s.)j(ϑ) .

(4.14)

Notice that in this case not all the η-signs on the right-hand side are positive. When
imposing the vanishing of the driving terms, the only condition required is for the �rst
column to be composed of zero entries ([Ĭ ←]i,1 = 0, ∀ i), which leaves much freedom
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for the other entries. As the following choice is made

[Ĭ ←] =



−1 . . .
0 1 . . .

1
. . .

...
...

. . . . . . . . .
...

...
...

. . . 1

. . . 1 1 0

. . . 1

. . . −1


, (4.15)

the procedure of rewriting Eq.(4.14) in Fourier space yields exactly the left-hand side
of the Takahashi-Suzuki identities for the scattering kernels. This implies that, once
de�ned

[Ĭ →] =



−1 . . .
1 1 . . .

1
. . .

...
...

. . . . . . . . .
...

...
...

. . . 1

. . . 1 1 1

. . . 1

. . . −1


(4.16)

(which re�ects the right-hand side of the Eq.(3.29) with reabsorbed η-signs, i.e. the
matrix of Eq.(3.31)), taking the equations back in the rapidity space it is obtained

εi

(
ϑ+ i

π

2

)
+ εi

(
ϑ− iπ

2

)
=

n∑
j=1

(
[Ĭ ←]i,jεj(ϑ) + [Ĭ →]i,jLj(ϑ)

)
. (4.17)

Recalling Eq.(2.83) and de�ning the Y -functions as

Yi(ϑ) = eηiεi(ϑ) (4.18)

this yields the Y -system for the sine-Gordon model at integer points

Yi

(
ϑ+ i

π

2

)
Yi

(
ϑ− iπ

2

)
=

n∏
j=1

(1 + Y −1
j (ϑ))−[IDn ]i,j . (4.19)

The �nal system obtained here seems to adhere to the form shown in [70] when the
latter is specialized at integer points. Notice also the subtle generalization introduced in
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Eq.(4.18): this is consistent with the choices proposed in [56][60] and is indeed responsi-
ble for the negative exponents appearing on the right-hand side. It may also be clearly
observed that a Dn incidence matrix is fully recovered in this case. The corresponding
diagram is of Dynkin type, often depicted in the horizontal (vertical) direction to encode
the positive (negative) sign chosen in Eq.(4.18).

The possibility of further generalizations is still an open question.
As mentioned in previous sections (�3.2.2), the case presented above may be seen as a

particular instance of a class of higher-spin theories [6]. The hope is for a similar picture
to be implemented also in such cases. Indeed, the identities for the scattering kernels
are in the same form of Eq.(3.29), suggesting the possibility of a similar derivation.

For what concerns the sine-Gordon model at di�erent values of the parameter, the
procedure outlined in this section requires further study.
As for the way of analytically continue the raw TBA equations, shifts of the form ϑ →
± iβ−1 p

i
at level i of the continued fraction are to be expected. However, di�erent

kernels may appear within the same combination of raw TBA equations: this introduces
some di�culties in the derivation. Also self-coupling terms should be properly treated,
which is a highly non-trivial point.
This does not prevent some results to be obtained anyways. In [4][5] a study of the UV
(and IR) limits of the sine-Gordon Y -system is performed, further elaborating the model
in the generalized hydrodynamics context (for a didactic presentation on the topic, [74]).
Also in [3] is conjectured a general form for the Y -system at any value of the parameter.
The formulation therein is quite promising, but no formal proof has been presented yet.

The mathematical structure revealed by these theories shows a great depth of mean-
ing. The hope is to being able to explore it even deeper.
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Conclusion

Throughout this entire work the structure of the TBA equations is studied with a
particular focus on the sine-Gordon model. Besides presenting an organized review of the
most up-to-date results on the topic, observations are made regarding the formulation
of Zamolodchikov-Takahasi-Suzuki identities adapted to generic values of the parameter.
Suggestions come also in the form of Y -system description for integer values of p.

Many line of research are left open. The conjecture of [3] is still central in the current
debate. The identities presented may shed some light on the topic, but also rise some
di�culties yet to be studied. A comforting hope is given by the common structure shown
by higher-spin theories, possibly allowing for future developments.
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Appendix A

On R-matrices

R-matrices are mathematical objects that, quite profoundly, rise in the context of
(classical and quantum) integrability. The theory concerning them proves hard to be
summarized in few words. This appendix, thus, aims at �xing the basic de�nitions.

Given V complex vector space, let R simply denote an application [33]

R : C→ End(V ⊗ V )

u→ R(u)
, (A.1)

with End(X) representing the space of endomorphisms of X, u being called spectral
parameter. Now, consider the space V ⊗3 = V ⊗ V ⊗ V and de�ne Rij(u) as acting as
R(u) on the ith and the jth component, i.e.

Rij(u) ∈ End(V ⊗3) : Rij(u)|End(Vi⊗Vj) = R(u), Rij(u)|End(Vk ̸=i,j) = I , (A.2)

e.g. R12(u) = R(u)⊗ I. The following equation for R(u) is the Yang-Baxter equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) , (A.3)

which parallels Eq.(1.39).
More in general, let P ∈ End(V ⊗ V ) denote the transposition P (x ⊗ y) = y ⊗ x and
Ř(u) be

Ř(u) = PR(u) . (A.4)

When considering V ⊗m (m ≥ 2), the matrices Ři(u) may be de�ned as acting as the
identity I on all spaces but the ith and the (i+1)th (1 ≤ i ≤ m−1) where it acts as Ř(u)

Ři(u) = I⊗ · · · ⊗ I⊗ Ř(u)⊗ I⊗ · · · ⊗ I . (A.5)

Then the R-matrix satis�es the Yang-Baxter equation in the form

Ři(u)Řj(v) = Řj(v)Ři(u) , if |i− j| > 1

Ři+1(u)Ři(u+ v)Ři+1(v) = Ři(v)Ři+1(u+ v)Ři(u) , otherwise
. (A.6)
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This admits generalizations. For instance, instead of working with a �xed vector space
V , a family of vector spaces {Vi} can be considered. The Yang-Baxter equation becomes,
then, an equation in End(V1 ⊗ V2 ⊗ V3) with Rij(u) = RViVj

(u). Supposing V1 = V2 = V
and regarding End(V ⊗ V3) = End(V )⊗ End(V3) = End(V )⊗A, it is possible to write
RV V3 as

T (u) =
∑
ij

tij(u)Eij , (A.7)

with Eij in the (canonical) basis of End(V ) and tij(u) ∈ A. Then the Yang-Baxter
equation becomes

Ř(u− v)(T (u)⊗ T (v)) = (T (v)⊗ T (u))Ř(u− v) . (A.8)

This can be seen as an equation giving the commutation relations for the generators
tij(u) of the (Hopf) algebra A.

Solutions of the previous equations are known. For instance, in the case V = C2, the
4×4 matrix in Eq.(1.51) satis�es this requirements (with suitable parametrization of the
entries). Let's just mention that it can be seen to rise in the description of the 6-vertex
model, collecting the statistical weights assigned to each vertex in a 2-dimensional square
lattice with 'ice-type' rules [34]. This model is related to the XXZ 1

2
spin chain by a

remarkable mapping: the 6-vertex model transfer matrix coincides with the exponential
of the spin chain quantum hamiltonian.
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Appendix B

On Uq(su2)

The quantum algebra Uq(su2) may be interpreted as a deformation of a su2 algebra
by means of a (complex) deformation parameter q. The algebra is generated by S±, q±Sz

as per the commutation relations

[Sz, S±] = ±S± [S+, S−] =
q2S

z − q−2Sz

q − q−1

def
= [2Sz]q , (B.1)

which are manifestly reducing to those of su2 in the limit q → 1. The Casimir operator
is given in the form

C = S−S+ +

([
Sz +

1

2

]
q

)2

= S+S− +

([
Sz − 1

2

]
q

)2

. (B.2)

In relation to the discussion presented above, it is interesting to study the de�nite-
parity irreducible highest-weight representations: when q is not a root of unity, they
are in a bijective correspondence with the representations of su2. Thus, introducing a
simultaneous eigenstate of Sz and C and acting on it by means of both the Casimir and
the commutation relations, when de�ning

q = eiθ p
0
=
π

θ
, (B.3)

it is possible to show [55] that the dimension n and parity v of the representation have
to satisfy

v = exp

(
iπ

⌊
n −1

p
0

⌋) ⌊
k

p
0

⌋
+

⌊
n −k

p
0

⌋
=

⌊
n −1

p
0

⌋
. (B.4)

While the one on the left coincides exactly with the parity expression of Eq.(2.59b), the
one on the right is shown to be veri�ed [44] when the decomposition of Eq.(2.58) holds
and n satis�es Eq.(2.59a).

This means that magnon (string) parity and length are in one-to-one correspondence
with the parity and length of the irreducible highest-weight representations of Uq(su2).
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Appendix C

On Dynkin diagrams

A Lie algebra A is de�ned as a vector space gifted with Lie brackets [·, ·] : A×A → A.
That's an antisymmetric binary operator which satis�es the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for X, Y, Z ∈ A . (C.1)

Lie algebras are related with Lie groups by the exponentiation map: they may be thought
as the tangent space to the connected component of the Lie group containing the unity.
Also, they are speci�ed by a set of generators and their commutation relations. If the
algebra is of dimension d, then it admits generators {J i}di=1 such that

[J i, J j] =
d∑

k=1

if ij
k J

k . (C.2)

The numbers f ij
k are known as structure constants and are characteristic of the Lie

algebra.
The Cartan-Weyl construction allows to select the generators in a particular way. It

is possible to extract the maximal set of hermitian generators H ir
i=1 commuting one with

another, i.e.
[H i, Hj] = 0 for i, j = 1, . . . , r . (C.3)

The number r is known as rank of the Lie algebra. The choice above constructs the
Cartan subalgebra AC , which is abelian by de�nition. The d − r generators still not
de�ned can be chosen so to satisfy

[H i, Eα] = αiEα . (C.4)

The vector constructed collecting all the αs si called a 'root' for the corresponding ladder
operator Eα: it is simply denoted here as α = (α1, . . . , αr). It may be seen that roots
naturally belong to the dual of the Cartan subalgebra α ∈ A∗

C , as each of them can
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de�ne the map A ∋ H i → α(H i) = αi ∈ K (being K the �eld on which the algebra is
de�ned). From the above, it is manifest that there are d− r roots: in general, they are
linearly dependent (> r). It is possible to expand the roots with respect to a given basis.
In this way, they are deemed positive (negative) if the �rst non-zero entry is positive
(negative). Simple roots are de�ned as those roots that can not be obtained as the sum
of two positive roots. On the other hand, the highest root is the one for which the sum
of the expansion coe�cients is maximal (this sum is equal to the Coxeter number minus
one). Then, denoting as ρ the set of all roots, the full set of commutation relations for
the Cartan-Weyl basis is obtained adding

[Eα, Eβ] = (δ(α+β)∈ρ)CαβE
α+β + (δα,−β)

2

|α|2
α ·H , (C.5)

where Cα,β are constants and the following de�nitions have been introduced: α · H =∑r

i=1 α
iH i, |α|2 =

∑r

i=1 α
iαi.

Of interest is the possibility to introduce a Killing form: up to normalization,

K (X, Y ) = Tr[ad(X)ad(Y )] , (C.6)

where ad stands for the adjoint representation. The latter is the association de�ned as
A ∋ Y → ad(X)Y = [X, Y ] ∈ A. The Killing form induces a positive de�nite scalar
product in the dual space A∗

C in the form

(α, β) = K (Hα, Hβ) . (C.7)

This allows to de�ne the Cartan matrix of the algebra by means of products of simple
roots, i.e.

Aij =
2(αi, αj)

α2
j

. (C.8)

The study of the Cartan matrix allows to completely reconstruct the whole algebra, as
it depends on the relations between roots. The latter are found to show only two possible
lengths (often named long and short), while the angles between them (deduced from the
scalar product) may assume values only in the set {90, 120, 135, 150}. This allows to
encode the structure of the Lie algebra in a single Dynkin diagram: it entails a node for
each simple root (black (white) for short (long) roots) and a number of links connecting
them equal to 0, 1, 2, 3 depending on the angle. This can be further encoded into an
incidence matrix, featuring the number of links as entries. Algebras whose diagrams
show roots all of the same length are called simply laced: they are in the {ADE} series.
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Appendix D

On some functions

In order to cast the TBA equations in the universal form, the Fourier transform of
the scattering kernels (the Ks of Eqs.(2.79)) has to be evaluated. To this aim, some
observations may be useful.

Starting from the easier instance, the kernel FK(SS)(ξ) may be read directly from
the integral form of the soliton-soliton scattering amplitude in Eqs.(1.45)(1.46). The
result of Eq.(3.11c) is quickly obtained.

Slightly more attention has to be paid for evaluating the kernelsFKSBa andFKBaBb .
On suggestion of [46], it is possible to introduce functions in the form

fγ(ϑ) =
sinh 1

2
(ϑ+ iπγ)

sinh 1
2
(ϑ− iπγ)

fγ(iπ − ϑ) =
cosh 1

2
(ϑ− iπγ)

sinh 1
2
(ϑ+ iπγ)

, (D.1)

with properties

fγ(ϑ) fγ(iπ − ϑ) =
sinhϑ+ i sin πγ

sinhϑ− i sin πγ
(D.2a)

Kγ(ϑ) =
1

i

d

dϑ
log fγ(ϑ) = −

sin πγ

coshϑ− cos πγ
(D.2b)

Kγ(ϑ) =
1

i

d

dϑ
log fγ(iπ − ϑ) = −

sin πγ

coshϑ+ cos πγ
. (D.2c)

It may be observed that the scattering amplitudes involving breathers can be completely
expressed in terms of the functions of Eq.(D.1). They read

S(SBa) = f 1−pa
2

(ϑ) f 1−pa
2

(iπ − ϑ)
a−1∏
l=1

f21−(a−2l)p
2

(ϑ) (D.3a)

S(BaBb) = f (a+b)p
2

(ϑ) f (a+b)p
2

(iπ − ϑ) f (a−b)p
2

(ϑ) f (a−b)p
2

(iπ − ϑ)·

·
min{a,b}−1∏

l=1

f2(2l+|b−a|)p
2

(ϑ) f2
1+

(2l−(b+a))p
2

(ϑ) . (D.3b)
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It is, then, su�cient to compute the Fourier transform of Kγ(ϑ) and Kγ(ϑ) in order to
obtain Eqs.(3.11a)(3.11b). It is found that

F Kγ(ξ) = −
(1− δ0,|γ|mod(0,2)) signγ

2π

sinhπξ(1− (|γ|mod(0, 2)))

sinhπξ
(D.4a)

F Kγ(ξ) = −
(1− δ0,|γ|mod(0,2)) signγ

2π

sinhπξ(|γ|mod(−1, 1))
sinhπξ

(D.4b)

and the (lengthy but straightforward) application of trigonometric identities yields the
sought form for the breather scattering kernels.

Only the magnon terms remain (Eq.(2.80)). Let's just mention that, in this case,
the Fourier transformation has to be done even more carefully, since imaginary shifts
may occur in the argument of the function (depending on the magnon parity). When
denoting

ϕ(ϑ; n) = i log ς− n(βθ) = i log
sinh π

2α
(βθ + i n)

sinh π
2α
(βθ − i n)

, (D.5)

its rapidity derivative shows di�erent forms depending on the presence/absence of the
imaginary shifts. It is found that

∂ϕ(ϑ; n)
∂ϑ

=
1

p

2 sin π
α

n
cosh π

α
βϑ− cos π

α
n

(D.6a)

∂ϕ(ϑ+ iπp
2
; n)

∂ϑ
= −1

p

2 sin π
α

n
cosh π

α
βϑ+ cos π

α
n
, (D.6b)

which are not much diverse w.r.t. Eq.(D.4). Once taken care of the additional factors,
the result may be cast as in Eq.(3.12).
However, it is interesting to notice that the derivatives of Eq.(D.6) show di�erent signs
depending on the values of n , i.e. the function ϕ(ϑ; n) may increase/decrease depending
on the magnon length: this line of reasoning is at the basis of the choice of Eq.(2.83) for
the magnons.
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