
Alma Mater Studiorum - Università di Bologna

SCUOLA DI INGEGNERIA
DIPARTIMENTO di

INGEGNERIA ELETTRICA, ELETTRONICA E INFORMAZIONE
”Guglielmo Marconi”

DEI

Master Degree in Automation Engineering

Robotic Manipulation of Deformable Linear
Objects: A Model-Free Control Using
Reinforcement Learning Algorithms

Master Degree Thesis
in

Autonomous and Mobile Robotics

Supervisor:
Prof. Gianluca Palli

Co-Supervisor:
Kevin Galassi

Candidate:
Mohamed Aboraya

Academic Year
2022/2023
III Session

fff

ii

Abstract

This thesis focuses on the robotic manipulation of deformable linear objects
(DLOs) in applications such as assembling deformable wire harnesses and
cables in manufacturing. Addressing the limitations in existing studies, this
research presents a comprehensive investigation into the perception of DLOs
using both single-arm and dual-arm robots. DLOs pose challenges in both
perception and manipulation for automated robotic systems due to their lack
of distinctive features and intrinsic deformability. The research explores the
modeling of DLOs and employs reinforcement learning techniques to tackle
tasks such as unknotting, untangling, and shape control. The goal is to
contribute to the understanding and application of reinforcement learning in
solving challenges related to DLO manipulation. In this work we investigate
a new observation method of DLOs and compare its efficiency in relative
to the one that is popular in the litrature (images). Then also we see the
significance of using different reinforcement learning methods with these
observation methods. The use of an RL model like SAC to control a the DLO
through a better action space that allows the agent to adabt easily with the
environment. Also, the use of an observation space that is more reliable than
the images while the robot is interacting with that environment. Finally we
present a reliable reward function that can be used for training the agent on
the tasks such as achieving a target configuration and a target orientation.
The use of this reward function not only has a positive effect on the new
observation space investigated here, but also on the one that is popular in
the literature.

iii

fff

iv

Contents

1 Introduction 2

2 Training Environment 8
1 Pick and Place simulation . 9
2 DLO Model . 13
3 Observation Space . 14
4 Action Space . 17
5 Reward Function . 18

3 Reinforcement Learning Algorithm 21

4 Results 27
1 Results on The Evaluations 27
2 Results on Episode Length . 28
3 Results on The Rollout and The Networks 28

5 Conclusion and Future work 32

v

List of Figures

1.1 Example of manipulation of DLOs a)[7], b) authors, c)[8], d)[9] 3

1.2 The three main approaches in machine learning: Supervise
learning, Unsupervised learning and Reinforcement learning. . 4

1.3 Flowchart of an RL algorithm [10] 5

1.4 Example of environment with Dense (Left) and Sparse (right)
rewards . 7

2.1 Image observation diagram . 15

2.2 Tensor observation diagram 15

2.3 scheme for multi-input observation architecture with the NN,
either in case of MLPs, or in case of CNNs 16

2.4 Example of action space using image (Left) and using tensor
of points (right) . 18

3.1 Diagram indicates difference between On-Policy and Off-Policy
methods . 22

3.2 Diagram indicates difference between model-free and model-
based approaches . 23

4.1 figures show the mean evaluation reward after each learning
step. a) the upper figure is for the type of observation in
images. b) the lower figure is for the type of observation in
tensors . 28

4.2 figures show the mean episode length after each learning step.
a) the upper figure is for the type of observation in images. b)
the lower figure is for the type of observation in tensors 29

4.3 figures show the mean reward of a rollout after each learning
step. a) the upper figure is for the type of observation in
images. b) the lower figure is for the type of observation in
tensors . 30

vi

4.4 figures show the mean episode length after each learning step
in a rollout. a) the upper figure is for the type of observation
in images. b) the lower figure is for the type of observation in
tensors . 30

4.5 figures show the actor loss after each learning step. a) the
upper figure is for the type of observation in images. b) the
lower figure is for the type of observation in tensors 31

4.6 figures show the critic loss after each learning step. a) the
upper figure is for the type of observation in images. b) the
lower figure is for the type of observation in tensors 31

vii

fff

viii

fff

1

Chapter 1

Introduction

The global goal of engineering research is to reach general methods that
leverage physical objects to solve real-world problems. An example of a
complex task that now it’s gaining more interesting in the industries are
the manipulation of deformable linear objects (DLOs) such as cables or
wires. These materials are used in various application such as aereospace or
automotive and are a valuable and important part of the costs of the final
product. Unfortunately, there exist very few automatic solutions that can
be used to address the problem, therefore this field of research it’s been very
explored in the last years. In this thesis, it’s been evaluated how to address
the problem of cable manipulation from a machine learning perspective, in
particular the proposed solution is based on a reinforcement learning.

1.1 DLO modeling

The manipulation of deformable linear objects (DLOs) has always been a major
interest of many researchers and engineers. A huge problem in this area is the
modeling of deformable linear objects that posses the main characteristics of
the real world counterparts. In addition, in the literature, they are usually
categorized as uniparametric deformable objects [1]. DLOs is part of a
generic class of deformable linear objects that consists of wires, cables, strings,
ropes, and elastic tubes. They are commonly found in industrial scenarios
such as automotive [2] [3], and aerospace [4] industries. DLOs currently
represent a complex task for automated robotic systems, both at perception
and manipulation levels. Perceiving DLOs presents difficulties due to their
inherent lack of distinctive features and deformable characteristics. DLOs
are characterized by small dimensions in terms of diameters [5], making an
additional challenge concerning their 3-D perception capabilities with most

2

sensors. Unlike dealing with deformable sheets which has larger density in
their 3d perception capabilities. From the manipulation side, the DLOs
intrinsic deformability results in a high dimensional state space with complex
nonlinear dynamics[6]. More information about the model used in the thesis
can be found in sec.2 of the chapter relative to the reinforcement learning
environment.

(a) unknotting a robe (b) untangling a wire harness

(c) shape control of a cable (d) shape control of a rope

Figure 1.1: Example of manipulation of DLOs a)[7], b) authors, c)[8], d)[9]

1.2 Reinforcement Learning techniques

Reinforcement learning is one of the three main machine learning approaches
that are currently used nowadays, alongside supervised learning and unsuper-
vised learning as in Figure 1.2. In supervised learning a function that maps
some input to output is being learnt by considering a dataset of samples that
include the inputs and their corresponding outputs (labels). The AI model,
represented by a neural network, is trained on that dataset with respect to a
loss function to minimize. The training process is considered successful if it
can correctly predict the output (label), especially in an unseen set of input.
In contrast to supervised learning, unsupervised learning involves extracting
patterns or structures from input data without explicit feedback or labeled
outputs. Instead of being provided with labeled examples, the algorithm must
infer the underlying structure or distribution within the data on its own. This
can involve tasks such as clustering, where similar data points are grouped
together, or dimensionality reduction, which aims to capture the most relevant
features of the data while reducing its complexity. Unsupervised learning
is particularly useful for tasks where labeled data is scarce or expensive to

3

Figure 1.2: The three main approaches in machine learning: Supervise
learning, Unsupervised learning and Reinforcement learning.

obtain, and it plays a crucial role in tasks such as anomaly detection, data
compression, and exploratory data analysis.

In the case of reinforcement learning (RL), we consider an agent that
is actively interacting with an environment. Through its interactions, it is
possible that it may influence the environment that it operates in. At each
action, the agent receives a reward based on its behavior and the new goal
of the optimization, it’s now to maximize the expected reward through the
interaction with the environment. The “dataset” we need to consider, are
the actions our agent took and the accumulated rewards it got by taking
those actions. Another challenge here is that the dataset is dynamic. For
instance, the agent acts in a certain way, then the collection of some data
of the actions that the agent executed and then performing an optimization
(e.g. do more of the actions that led to a successful result). But as a result of
this optimization, the behavior of the agent is changed. Thus, a collection
of the data is needed to evaluate the agent performance. Using the Fig 1.3
as reference, the agent performs an action At, as it is the learning entity
that makes decision and takes actions in the environment. The external
system with which the agent interacts is the environment, which responds
to the agent’s action, providing feedback in the form of rewards Rt and new
states St. Where the state St is the representation of the current situation
or configuration of the environment. The Acton At it the set of possible
moves or decisions that the agent can take in a given state. The reward Rt

is a numerical value that the environment provides to the agent as feedback
based on the action taken in a particular state. The agent’s objective is to
maximize the cumulative reward over time. The strategy or mapping from

4

Figure 1.3: Flowchart of an RL algorithm [10]

states to actions is called a policy, that policy is used by the agent to make
decisions. The goal is to learn an optimal policy that leads to maximum
rewards. Another aspect that is always used in RL is the value function,
which is a function that estimates the expected cumulative reward of being in
a particular state or taking a specific action. It helps the agent to evaluate the
desirability of different states or actions. The learning process of the agent is
by trail and error, adjusting its policy or value function based on the feedback
received from the environment in the form of rewards. This trial and error
makes the agent face a dilemma of choosing between exploring new actions
to discover their effects and exploiting known actions to maximize immediate
rewards. RL problems are often formulated as Markov Decision Processes
(MDPs), which consist of states, actions, transition probabilities, rewards,
and a discount factor. A single run or sequence of interactions between the
agent and the environment, starting from an initial state and ending in a
terminal state is called an episode.

Reinforcement Learning is known to be more sample inefficient, where a
“sample” is considered a single interaction with the environment, in fact rein-
forcement learning needs a lot of samples/interactions with the environment
to be able to solve a task. This sample-efficiency can in part be explained by
the fact that humans can leverage a lot of their previous knowledge (priors)
when they encounter a new task. A human can for example reuse some of
the knowledge and skills of previous games and/or concepts they already ac-
quired from other experiences throughout their life. An RL-agent in contrast,
starts the learning process without any assumptions. Another Problem to be
considered with RL is the exploration-exploitation trade-off. Whenever an
RL-agent is trained, the agent always needs some time to explore, it needs
to explore the action space by executing actions that it hasn’t taken before,
in order to discover how to solve the problem. On the contrary, the agent
can’t always take random actions, because these random actions might lead
to nothing. Sometimes we want the agent to leverage what it has already
learned to try and optimize further. This exploration-exploitation trade-off
needs to be automated to strike a good balance between letting the agent

5

explore and taking actions for which it already knows what they will lead to.
A further fundamental problem with RL is the so called Sparse-reward prob-
lem. As the name implies, this problem occurs when our RL-agent receives
sparsly reward during the interaction with the environment, meaning that it
won’t receive a reward for all the state visited. Differently, in a dense-reward
scenario, the agent will receive a reward different from zero for each action.
Considering the mountain car environment [11] in OpenAI Gym which is a
classic reinforcement learning problem that involves a car positioned between
two hills Figure 1.4b.

The goal is to enable the car to reach the flag at the top of the right hill.
The state space is continous and defined by two variables, the position and
the velocity, and the action space is also continous, representing the force
applied to the car with range from -1 to 1. The reward for this example is
sparse-reward as the agent recieves a reward of -1 for each time step until the
episode terminates. The goal of that reward design is to encourage the agent
to reach the flag at the top of the right hill as quickly as possible. Reaching
the flag yeilds a reward of 0. The episode terminates if the care’s position
exceeds some value 0.6. The car dynamics are simulated based on physics.
When the agent applies force it moves the car, the gravity and friction affect
its motion. Starting state is a random position with zero velocity. The agent
must learn to apply the right amount of force in the right direction to move
the car up the left hill and reach the flag on the right hill. however the
challenge lies in the fact that the car’s engine is not strong enough to reach
the flag directly, so the agent needs to learn to build momentum by going
back and forth between the hills.

An example of an environment with a dense reward function is the
”pendulum-v0” environment in Open-AI Gym Figure 1.4a. The agent in that
environment controls a pendulum, and the goal is to swing it up and balance
it at the upright position. The state space is continuous and consists of the
pendulum’s angle an angular velocity. The action space is also continuous,
representing the torque applied to the pendulum. The reward function is
dense and is designed to encourage the agent to balance the pendulum. The
agent receives negative rewards based on the angular distance from the upright
position and the angular velocity. The goal is to maximize the cumulative
reward over time. The episode terminates after a specified number of steps.
The dynamics are governed by the physics of a simple pendulum The starting
state for this system is random at the beginning of the episode. The agent
needs to learn a policy that applies torque in a way that minimizes the angular
distance from the upright position and stabilizes the pendulum. The dense
reward function provides more informative feedback to the agent, allowing it
to learn a nuanced strategy for controlling the pendulum.

6

(a) Pendulum demo (b) Mountain car demo

Figure 1.4: Example of environment with Dense (Left) and Sparse (right)
rewards

7

Chapter 2

Training Environment

The first element of a reinforcement learning based application is the definition
of the environment. The environment is fundamental since it’s define how the
agent can interact with the world and define the reward based on the agent’s
action. From a practical implementation perspective, nowadays, the Open AI-
gym[12] library is become the standard frameworks used for this application,
and it is used to create the interactive environment for the simulation and
the learning process of the RL-Agent. It’s worth noticing that we could
design a whole environment without the Open AI-gym framework, however
gym provides a generic stable interface that can be easily integrated with
other different RL- libraries. It offers a standardized interface for interacting
with environments, which makes it easier to compare and reproduce results
across different algorithms and research papers. Reproducibility and sharing
of an environment created in OpenAI Gym is easy and well-known in the
research community, enabling others to reproduce your results and build
upon your work. Also, some RL libraries like stable-baseline[13], RLlib or
tf-agents[14] can be easily integrated with OpenAI-Gym environments and
basic to advanced RL algorithms can be used to train the agents with ease
(without coding from scratch).

OpenAI Gym is an open-source toolkit developed by OpenAI that pro-
vides a standardized environment for developing and testing reinforcement
learning algorithms. It offers a variety of environments with different tasks
and challenges, making it a popular choice for researchers, educators, and
developers interested in reinforcement learning. OpenAI Gym defines a set of
environment, each representing a specific task or problem for reinforcement
learning. Examples include classic control problems like Cartpole or Moun-
tainCar and more complex environment based on the Atari 2600 games. Gym
provides a simple interface for interacting with environments, making it easy
to experiment with different algorithms. This interface includes methods for

8

taking actions, receiving observations, and obtaining rewards. Environments
in Open-AI Gym have well-defined observation spaces, which represent the
information available to the agent at each time step. Observations can be
continuous or discrete. Similarly, environments have action spaces that define
the possible actions an agent can take. Actions can also be continuous or
discrete. The reward system is a critical component in reinforcement learning,
and OpenAI Gym provides a reward mechanism to evaluate the performance
of agents. The goal of reinforcement learning is often to design agents that
maximize cumulative rewards over time. Open-AI Gym is widely used as a
benchmark for testing and comparing different reinforcement learning algo-
rithms. This allows researchers and developers to access the performance
of their methods on standardized tasks. The Users can create custom envi-
ronments by implementing the Gym’s environment interface. This flexibility
makes it easy to adapt the toolkit to new problems or experimental setups. It
provides a variety of reinforcement learning algorithms as well as baseline for
benchmarking. This allows users to compare their custom algorithms with
established ones. The toolkit is compatible with popular reinforcement learn-
ing libraries, such as TensorFlow[15] and PyTorch[16], making it convenient
for users to integrate their favorite machine learning frameworks. Open-AI
Gym has extensive documentation, tutorials, and an active community. This
makes it accessible for users at various levels of expertise, from beginners to
experienced researchers.

To create a custom environment, we just need to override existing function
signatures in the gym with our environment’s definition. These functions that
we necessarily need to override are:

• init (): This function initializes the environment with default val-
ues.

• reset(): This function is for resetting the environment to the default
settings.

• step(): This function executes how the environment will change once
the agent takes an action. Usually, the reward function is also incorpo-
rated or called within step().

• render(): For rendering the environment.

1 Pick and Place simulation

In this research, we tackle the problem of a robotic pick and place of a
deformable linear object in which the robot has to decide which action to

9

perform to straight a cable or a rope. Since The environment is following the
same structure of the environments in Open-AI Gym, then in this section we
shall shed the light on how the aspects of this structure is formulated.

The initialization of the environment in the Algorithm 1 starts with loading
the parameters of the model dynamics.

The controller for the dynamics has the following parameters, the maxi-
mum number of steps for moving to target position is 1000, the maximum
displacement to consider at the moving node is 0.01,the maximum workspace
before calling the reset function is (2.0, 2.0) for planar motion, and the
maximum moving velocity is 0.1. The position controller is necessary in the
simulation since the RL agent chooses only the final displacement of the
chosen node as an action in each step executed in the environment. The
parameters for this position controller are a proportional gain Kp = 700,
integral gain Ki = 500, feedforward gain Kf = 0.75, duration of the force
profile in seconds fflen = 0.2, the time step size in seconds for the force profile
ffδt = 0.0005, the maximum number of steps for moving to target position is
1000, the maximum displacement to consider at the moving node is 0.1,the
maximum workspace before calling the reset function is (2.0, 2.0) for planar
motion. After loading the parameters the DLO model is constructed and
initialized to a random shape with a randomness parameter σ which in this
case has a value of 0.3. Then the target position is chosen to be some shape
which is selected at random out of 4 shapes which are horizontal, vertical,
and two diagonal angles. Finally the definition of the observation space and
the action space, which is mandatory for this custom environment that is
constructed based on the standard structure of OpenAI Gym.

The step function 2 in this simulation is then used for the interaction
between the agent and the simulated environment. When the agent supplies
the action to this function the action is scaled from the normalized input
(usually all the action elements are between zero and one), and the model is
moved based on this action which is a selection of a specific node to be moved
for some distance in each direction of the planar surface on which the DLO is
set. Consequently to this action there is a new observation that is returned
from the step function as a feedback to the agent, in addition a reward is
returned also from the function to be used by the RL algorithm to evaluate
the agent action. At the end there is a condition to check if the environment
should be terminated because we reached the final goal or near that goal by
some tolerance.

The reset function 3 is to reset the simulated model, update the target
shape and set the settings to the default parameters as it was in the initilization
function. The reset function returns the initial state/obseravation to start
the episode. the function is always called after the end of the episode.

10

Algorithm 1 PickAndPlaceEnv Constructor

0: procedure init (params, max attempt=100, env param=None, ren-
der=False)

1: super(PickAndPlaceEnv) {Initialize superclass}
2: max attempt← max attempt
3: attempt← 0
4: GNN RL MODEL Path← os.path.dirname(os.path.dirname(os.path.abspath(file)))

5: params path← os.path.join(GNN RL MODEL Path, ”params”, params)
6: with open(params path) as file:
7: param dict← yaml.load(file, Loader=yaml.FullLoader)
8: n nodes← param dict[’model’][’nodes’]
9: max disp← 0.5
10: sigma← 0.3
11: model← DLOModel(params=params path, rendering=rendering)
12: target pos← generate target shape(random int(low = 0, high = 4))
13: model.free(verbose=verbose, skip=100, steady state threshold=0.00005)

14: action space← Box(low=0, high=1, shape=(3,), dtype=float32)
15: observation space← Dict({’node poses’: Box(low=-inf, high=inf, shape=(Nnodes+2, 2)),
15: ’target poses’: Box(low=-inf, high=inf, shape=(model.nodes+2, 2))})
15: end procedure=0

11

Algorithm 2 PickAndPlaceEnv Step Method

0: procedure step(action)
1: attempt← attempt + 1
2: old pos← pos.copy()
3: {Compute scaled action from normalized input}
4: scaled action← {′node id′ : round(action[0] * (n nodes - 1)),
5: ’dx’: action[1] * max disp * 2 - max disp,
6: ’dy’: action[2] * max disp * 2 - max disp}
7: moving node← scaled action[’node id’]
8: dx← scaled action[’dx’]
9: dy← scaled action[’dy’]
10: if render: then
11: expected target pos← old pos[moving node] + np.array([dx, dy])
12: end if
13: {Apply control action}
14: model.move idx(node idx=scaled action[’node id’], dx=dx, dy=dy)
15: pos← model.pos[:,:2].copy()
16: {Collect the new Obs / Reward / Info}
17: observation← get obs()
18: reward← get reward()
19: info← get info()
20: {check if the target shape is reached}
21: truncated← False
22: terminated← False
23: if reward < 0.2: then
24: terminated← True
25: reward← 20
26: attempt← 0
27: else if attempt >= max attempt: then
28: truncated← True
29: attempt← 0
30: end if
31: return observation, reward, terminated, truncated, info
31: end procedure=0

12

Algorithm 3 PickAndPlaceEnv Reset Method

0: procedure reset(seed=None)
1: if seed is not None: then
2: seed(seed)
3: end if
4: target pos← generate target shape()
5: model.reset(time=True, shape=True, sigma=sigma)
6: model.free(verbose=verbose, skip=100, steady state threshold=0.00005)

7: free evolution()
8: pos← model.pos[:, 0:2].copy()
9: attempt← 0
10: info← get info()
11: return get obs(), info
11: end procedure=0

2 DLO Model

Deformable Objects are complex mechanical objects to model, usual technique
involve the use of a system of masses connected by spring and dampers. Based
on this concept both DLOs and planar objects has been successfully modeled
and used in learning application as clothes [17]. The simiulation model used
in this research is build based on the work of [18]. Where the model is a
nonlinear series of linear system (mass-spring-damper). The masses of the
nodes in the model are connected by a series of springs that reflect the internal
stiffness of the cable as in eq2.2. In addition the bending stiffness between
the segments of the DLO is modeled by placing a torsional spring at each
node as in eq2.3. Stability of the model is improved by adding viscous friction
proportional to the velocity of the node, which is included as a damping
term. The generic dynamics in eq2.1 for each node shows the evolution of
the second order system. Here p is the node position coordinates, kd is a
damping constant, f s

i is the force due to the axial effects, and f b
i are the

forces due to the bending effects. The axial force in 2.2 shows the interaction
of spring forces between a node the succissive on. where link i is known for
current length which is li and an initial length l0i . the unit vecto of node i is
represented by ui and βi is calculate in eq.2.4. The model is very close to the
real-world problem, even though it is a little bit different in the sense that
the physical design of the robot has a gripper, which usually interacts with a
segment of the robot. The decision to perform actions at a single point is not
the case for the real-world problem but this is a valid assumptions with our

13

Nnodes 20
Kd 100
Kb 0.01
Ks 999.0
l 0.5 m
m 0.2 Kg
δ 0.001
Kf 0.05

Table 2.1: Cable model parameters used for the experiments

MDP hidden state.
At each iteration of time dt, the forces in eq.2.2 and eq.2.3 acting on each

mass are evaluated using the updated position that is calculated through the
integration of the acceleration, it’s possible to obtain the new position of each
mass.

The final dynamics of the DLO are defined by its parameters that were
empirically calculated. The parameters used can be found in Tb.2.1

mip̈i = −kdṗi + f s
i + f b

i (2.1)

f s
i = −ks(li − l0i)ui + ks(li+1 − l0i+1)ui+1 (2.2)

f b
i = kb

βi−1

li sin βi−1

ui × (ui−1 × ui)

−kb
βi

liβi

ui × (ui × ui+1)

−kb
βi

ii+1 sin βi

ui+1 × (ui × ui+1)

+kb
βi+1

li+1 sin βi+1

ui+1 × (ui+1 × ui+1) (2.3)

βi = arctan
∥ui+1 × ui∥
⟨ui+1, ui⟩

(2.4)

3 Observation Space

The observation space represent the information the agent can be used to
learn to solve the environment. In the literature the observation space that is

14

Figure 2.1: Image observation diagram

Figure 2.2: Tensor observation diagram

commonly adopted are images where the images are used with convolutional
neural networks to estimate the best action to achieve the best next state.
Images are commonly used because of the availability of camera devices with
diverse characteristics and settings that offer high-resolution data. Apart
from camera, there are different types of devices that are used to perceive the
DLOs like photoreflectors, or capacitive-based tactile sensors, and force/torque
sensors, however these types yield comparatively less rich data than camera-
based sensors. In the presented work there are two types of perceptions that
are studied and evaluated. The first one is the actual RGB image that is used
as an observation for the environment, which can be associated with some
perception problems like occlusion. The second one is a graph edges which
are selected based on topological reasoning. In figure 2.1 you can refer to the
former observation type and for the later you can refer to the figure 2.2.

Image observation can be handled efficiently with CNNs to infer most
of the information from the image. On the other hand, graph edges are
the 2D points of each node in the image assuming we are only dealing with
2D environment for the sake of simplicity, but it is originally designed to
handle the 3D case. The 2D points have more flexibility to be dealt with
since it can be handled more efficiently with MLPs to have an observation

15

Figure 2.3: scheme for multi-input observation architecture with the NN,
either in case of MLPs, or in case of CNNs

that can represent the history of previous observations in a more compact
representation. And these observations can be rendered to represent a simpler
image without bad effects like occlusion. For both types of observations,
we created a multi-input observation for the RL-agent in Figure 2.3 This
multi-input observation is a group of the target shape that the agent is
supposed to follow to achieve the task and the target shape that represents
the current state of the DLO. We also tried to make a single-input observation
by calculating the Euclidean distance between the nodes of the current shape
and their corresponding nodes in the target shape, that in the case of the
observation is a graph of 2d points. But in the case of images as an observation
the single input is a little bit involved, as the target shape is rendered to
be shown in the same image with target position and orientation that to be
reached by the end of the task. By the end of this experiment the multi-input
observation is much more efficient in improving the learning curve for the
agent.

16

4 Action Space

The action space depends entirely on the observation from the robotic system.
For instance, the image observation is always an image from a constant
robotic configuration with constant camera settings (camera matrix), and
this observation represents the workspace of the robot and the position and
the configuration of the DLO inside that space. Hence, the action space,
as in the work of Yan, Vangipuram, Abbeel, and Pinto[19], is the absolute
position of the node and the perturbation of that node in the configuration
space as defined in eq2.5. Where the absolute position can be pixel point
in the image, while the perturbation is how far that node is supposed to be
moved relative to its current position. This action space can be considered
complete in case of dealing the fabric that is supposed to have larger pixel
density in the image, but this is not the case for the DLOs as it has small
pixel density in the image, so further consideration needs to be given. The
action on the DLOs in that case is performed on the nearest node on the
DLO to the chosen (x,y) point by the agent, and it is the nearest in the sense
of Euclidean distance. This can be demonstrated in fig.2.4a, as the euclidean
distance is shown by the orange triangle, and the action that corresponds to
the nearest node on the DLO.

a = (x, y, δx, δy). (2.5)

The case when we know the nodes position from the observation that is
acquired by the RT-DLO SDK becomes easier to be handled in the action
space, because the absolute position is of each node is well known, since that
feedback gives the action position of the node in an ordered array, we can
use this to make the action space for the agent to be reduced to some extent
and become simpler than the one that is proposed for the other observation
space that is explained previously. Then the action space proposed in this
research for this type of observation is defined in eq2.6. The node to be moved
is directly chosen as explained in 2, then the perturbations in both planar
directions. An example of the mentioned action is shown in fig.2.4b, and
in that example the node is selected directly since it’s absolute position is
known to the robot’s workspace. This simpler action space has effect on the
evolution of the agent as it will be shown on the next chapter of results.

a = (nodeid, δx, δy). (2.6)

17

(a) action taken using image observation
(b) action taken using tensor of points
observation

Figure 2.4: Example of action space using image (Left) and using tensor of
points (right)

5 Reward Function

For this experiment we used multiple reward functions, some of them are
used to make the robot follow the position, orientation, and configuration
of the target shape, while others are used to make the robot follow only the
configuration of the target shape, and others are used to make the robot follow
both orientation and configuration of the target shape. The sum of absolute
differences was used to make the robot follow the position, orientation, and
configuration of the target shape. This reward function is calculated based
on the simulation model that is used during the training process, in this
model the position of the nodes is known in advance for both the current
observation and the target observation. This function is shown in equation
2.7 This function is always negative function to urge the robot to finish the
episode as soon as possible while reaching the target shape.

R = −
n∑

i=0

|xi − yi| (2.7)

The delta gain difference is another reward function that is used to improve
the learning process and it is calculated as the difference between the current
sum of absolute differences and the previous one, so the reward is then to
penalize the action if it the current absolute difference is not better than the
previous one, and to reward the action if otherwise. This function has an
order of magnitude better than absolute difference reward function in the
sense of the stability of the learning process with less standard deviation.

R =
n∑

i=0

|xi,t−1 − yi,t−1| −
n∑

i=0

|xi,t − yi,t| (2.8)

An additional reward function is been evaluated, this reward is obtained

18

by the summation of two term, a first term Pi,j which depends on the cables
position and an orientation term Oi,j which instead depend on the orientation
of the objects with respect to the target. The two term are given with a
negative sign to help the agent to solve the problem in the minor possible
steps.

reward = −Pi,j −Oi,j (2.9)

The first part in eq2.10 of this function deals with the shape of the DLO
and how far is it from the reference/target shape in terms of the relative
position between the nodes in the DLO. Based on formation control theory of
distributed systems and the rigidity condition of the formation as elaborated
in [20], when the Euclidean distance between each node and all the other
nodes in the model is well-defined as a constraint, then the condition of the
rigidity of the shape is complete. Therefore, the distance for each node with
all the other nodes is compared with the corresponding counterparts in the
target shape, the summation of the difference in these distances between the
actual shape and the target shape expresses the error in the shape formation.

Pi,j =
n∑

j=0

n∑
i=0

(|||xj − xi||2 − ||yj − yi||2|) (2.10)

The second part of this reward function in eq2.11 is concerned with the
orientation of the actual shape in relative to the current shape. It is based on
a metric which is the comparison of the absolute angle of the line connecting
the two ends of the actual DLO with the absolute angle of the corresponding
line between the two ends of the target DLO.

Oi,j = |arctan 2(x01 − xn1, x00 − xn0)− arctan 2(y01 − yn1, y00 − yn0)| (2.11)

This constraint is fine for orientation, since the shape formation is ac-
counted for in the first part. The promising results in the result chapter are
based on this reward function.

19

fff

20

Chapter 3

Reinforcement Learning
Algorithm

The algorithms that were used in this research are a Proximal Policy Optimiza-
tion (PPO) [21] which is an on-policy gradient method and it is model-free,
Soft-actor critic [22] which is an Off-policy gradient method, and it is model-
free, and PlaNet [23] which is a model-based method. On-policy methods
learn the value or policy function based on the same policy that is being used
to generate the data, while the off policy method learn the value or policy
function based on a different policy than the one used to generate the data.
The agent in the on-policy method learns from its own actions while following
its current policy, which indicates that the data used for learning comes from
the behavior of the agent under its current policy. On the other hand, the
agent in off-policy method learns from experiences generated by a different
policy, often using historical data or samples generated by a different agent or
policy, the advantage here is that the agent can learn from data collected by
a different, possibly more explorative, policy. Figure 3.1 shows that difference
in graphical representation.

Regarding accounting for building an explicit model or representation of
the environment’s dynamics, including transition probabilities and rewards,
which is called model-free method, has its own characteristics as the agent
uses the learned model to simulate possible future trajectories, enabling it to
plan and make decision without directly interacting with the environment.
Model-based methods can potentially leverage the acquired model to optimize
decision-making. On the contrary, model-free methods directly learn a policy
or value function from interacting with the environment without explicitly
building a model of the environment’s dynamics, these methods focus on
learning optimal policies or value functions based on observed experiences
(state-action pairs and rewards) rather than trying to understand or represent

21

Figure 3.1: Diagram indicates difference between On-Policy and Off-Policy
methods

the underlying dynamics of the environment. The choice between model-
free and model-based methods depends on the specific characteristics of
the problem, the availability of accurate models, and the trade-off between
exploration-exploitation. Model-free methods are often preferred when the
environment is complex or when obtaining an accurate model is challenging,
while model-free methods can be advantageous when an accurate model is
available and planning is crucial for decision-making. Figure 3.2 !!! shows
that difference in a graphical representation

PPO is designed to address some of the limitations and challenges asso-
ciated with traditional policy optimization methods. It was introduced by
OpenAI and has gained popularity for its stability and efficiency. It aims
to optimize policies in reinforcement learning by iteratively updating them
to maximize the expected cumulative reward. PPO belongs to the class of
algorithms known as policy optimization methods, these methods directly
optimize the policy of an agent, which defines the probability of an agent,
which defines the probability distribution over actions given a particular
state. It prevents large policy updates that might destabilize the learning
process by introducing “trust region” approach, this helps to ensure a more
stable and controlled learning process. Additionally, it uses clipped surrogate
objective function that constraints the policy update, avoiding excessively
large policy changes, and ensuring that the policy does not deviate too far
from the previous iteration. Moreover, it uses multiple iterations of collecting
samples from the environment, computing advantages, and updating the

22

Figure 3.2: Diagram indicates difference between model-free and model-based
approaches

policy. This process is repeated to iteratively improve the policy. Compared
to some other policy optimization methods PPO is known for its stability and
sample efficiency. The use of the clipped surrogate objective and trust region
constraint contributes to this stability. Deep reinforcement learning tasks can
be solved using PPO, as it can be combined with deep neural networks to
handle high-dimensional state spaces and complex environments. PPO can
be viewed in algorithm 4.

SAC is always used for training agents to learn optimal policies in con-
tinuous action spaces. It is known for its effectiveness in handling complex
and high-dimensional environments. Earlier it was mentioned that SAC is
an off-policy algorithm, meaning that it learns from a replay buffer that
stores experiences collected from the agent’s interaction with the environ-
ment. This allows for more efficient use of past experiences. SAC employs a
variant of Q-learning called soft Q-learning, which involves minimizing the
soft value function, where that “soft” aspect refers to using a temperature
parameter that controls the degree of softness in the maximization operation.
Furthermore, another distinctive feature of SAC is the inclusion of an entropy
term in the objective function, where this entropy regularization encourages
the agent to explore more diverse and leads to a better trade-off between
exploration and exploitation. The actor-critic architecture is used in this
algorithm. The actor is responsible for selecting actions, while the critic
evaluates the value of the chosen actions, and both are neural networks that
are trained jointly. Stability of the learning is achieved through using the

23

Algorithm 4 Proximal Policy Optimization (PPO)

1: Initialize policy parameters θ
2: Set the number of iterations T
3: Set the number of policy updates per iteration K
4: Set the clipping parameter ϵ
5: for t = 1 to T do
6: for k = 1 to K do
7: Collect samples by running the policy: {(si, ai, ri)}
8: Compute advantages: A(si, ai) ≈ Q(si, ai)− V (si)
9: Compute surrogate objective:

L(θ) = Et

[
min

(
πθ(ai|si)
πθold(ai|si)

· A(si, ai), clip
(

πθ(ai|si)
πθold(ai|si)

, 1− ϵ, 1 + ϵ

)
· A(si, ai)

)]

10: Update policy using gradient ascent: θ ← θ + α∇θL(θ)
11: end for
12: end for=0

target networks, those target networks are slowly updated versions of the
main actor and critic networks, which helps in reducing the variance of the
value estimates. Similarly to the idea behind double Q-learning SAC uses two
Q-networks (critics) to estimate the state-action value function, which helps
mitigate overestimation bias in the value estimates. It can be used when the
agent learns form a fixed dataset of experience, so that making it suitable for
scenarios where data collection is expensive or limited. It can be viewed in
Algorithm 5.

PlaNet (Planning Network) is an algorithm that combines model-based
and model-free approaches. It was introduced by researchers at DeepMind.
It is designed to handle high dimensional visual inputs and efficiently learn
policies for tasks with sparse and delayed rewards. Imagination-based plan-
ning is utilized in this algorithm, where it learns a world model to simulate
possible future states and uses these simulations for planning and decision-
making. The algorithm employs a stochastic latent variable model to capture
uncertainty in the environment. The model includes a deterministic com-
ponent (deterministic transition function), and a stochastic latent variable
that capture unobservable dynamics. Additionally, it employs variational
inference to learn the latent variables, allowing it to infer the distribution of
latent variables given observations and rewards. PlaNet optimizes policies
through a form of rollout policy optimization. It generates multiple action
sequences using its learned world model and selects actions based on these

24

Algorithm 5 Soft Actor-Critic (SAC)

1: Initialize actor parameters θ, critic parameters ϕ, target parameters θ′, ϕ′

2: Initialize replay buffer D
3: Set temperature parameter α, discount factor γ, target update rate τ
4: Set maximum episodes N
5: for n = 1 to N do
6: Observe initial state s
7: for each time step do
8: Select action a from the policy πθ(s) with added noise
9: Execute a, observe next state s′ and reward r
10: Store transition (s, a, r, s′) in D
11: for each update step do
12: Sample a batch of transitions (si, ai, ri, s

′
i) from D

13: Compute target values:

yi = ri + γmin
j

Qϕ′(s′i, a
′
j)− α log(πθ(ai|si))

14: Update critic:

ϕ← ϕ− η∇ϕ
1

|D|
∑
i

[Qϕ(si, ai)− yi]
2

15: Update actor:

θ ← θ + η∇θ
1

|D|
∑
i

α log(πθ(ai|si))−Qϕ(si, ai)

16: Update target networks:

θ′ ← τθ + (1− τ)θ′, ϕ′ ← τϕ+ (1− τ)ϕ′

17: end for
18: end for
19: end for=0

25

sequences. The combination of model-free reinforcement learning with model-
based approach is achieved through the use of a policy optimization objective
to fine-tune the policy based on real interaction with the environment. The
design of that algorithm allows it to be uncertainty-aware, enabling it to
explore more effectively in environments with space and delayed rewards.
The uncertainty in the model is used to guide the exploration. Memory
buffer of past experiences is maintained in PlaNet to facilitate learning from
both real interactions and simulated experiences generated by the learned
world model. It has the capability of handling high-dimensional visual inputs,
making it suitable for tasks with image-based observations. PlaNet was
demonstrated to be effective in a range of challenging tasks, including robotic
control, and playing video games. It showcases how model-based methods
can be integrated with model-free reinforcement learning to handle complex,
high-dimensional environments and improve sample efficiency. A high-level
overview of that approach is presented in 6.

Algorithm 6 PlaNet (Simplified)

1: Initialize policy parameters θ, world model parameters ϕ, buffer D
2: Set planning horizon H, number of rollouts K, optimization steps L
3: for each iteration do
4: Collect real interactions: Dreal = {(st, at, rt)}
5: Update world model ϕ using Dreal

6: for k = 1 to K do
7: Generate rollouts using world model: Dk

sim = rollout(ϕ, θ,H)
8: Update policy θ using Dk

sim

9: end for
10: Sample batch from Dreal and Dk

sim

11: Update world model and policy using variational inference and policy
optimization

12: Store experiences in buffer: D ← D ∪ Dreal ∪ Dk
sim

13: end for=0

26

Chapter 4

Results

1 Results on The Evaluations

In this experimental research we conducted a wide range of experiments
to explore the results of using a new observation type which is a tensor of
points2.2 compared to the one that is used in most of the literature2.1 about
controlling the DLO. The aspects of this comparison can be clearly viewed
in the first 6 figures in the current chapter. These figures represent the data
collected after training an RL-agent in the framework of SAC algorithm5 to
compare between the two observations. The PPO algorithm4 was also used
to obtain similar data for our study, but it was proven that SAC is better of
such non-linear environment with large execution time. As the PPO is an
on-policy algorithm that is updated by the gradient of the action taken, it
had a tendency to fall in a local minima without a noticable improvement
in the results. On the contrary, the SAC algorithm which is an off-policy
with interchanging dynamics between exploration and exploitation of the
environment, has proven to be an asset to evaluate those observations and
get a clear view about the significance of one type over the other. The
mean reward of multiple evaluation trials was one of the metric used in
the assessment. In figure4.1 it can be shown that in the case of the tensor
observation space, the model is evolving with a trend towards a better value
which is in this case the less penalty it can achieve during an episode. On
the contrary, the model is still not confident about its actions so for the
same number of steps the metric is fluctuating without a trend and this
can be clearly seen on the red line which is a running average of the actual
values. The most minimum value of the reward is reached in the results with
the image observation, which is another indicator of the argument that the
feedback of a tensor of points is better than the image.

27

Figure 4.1: figures show the mean evaluation reward after each learning step.
a) the upper figure is for the type of observation in images. b) the lower
figure is for the type of observation in tensors

2 Results on Episode Length

The episode length during evaluation was another aspect to consider to see
if the agent is trying to finish the penalization as soon as possible and end
the episode earlier than the maximum number of steps that are allowed in
an episode. Figure4.2 shows that the tensor of points is again making a
better learning performance in this setup. one aspect of this figure is that the
running average for the lower graph (tensor of points) is better than the one
of the top graph (image observation), as it shows that the agent is trying to
finish the episode more earlier towards the end of the training steps.

3 Results on The Rollout and The Networks

The rollout mean reward can be seen in figure4.3, which shows that both types
of observation helps the model to evolve when it even does the exploration.
The rollout in SAC is the batch of episodes in which the agent is exploring
the environment with some exploitation actions also. unlike the evaluation
episodes in which the agent uses a deterministic policy, the rollout involve
some exploration to new action-state pairs. The agent reaches by the end of
the training a value in case of the tensor observation that is much lower than
the other one, and the difference is a significant one.

The episode length in the rollout is almost the same in terms of evolution

28

Figure 4.2: figures show the mean episode length after each learning step. a)
the upper figure is for the type of observation in images. b) the lower figure
is for the type of observation in tensors

shape of the two curves, but the tensor observation has reached a slightly less
lower episode length by the end of the episode.

The actor loss in figure4.5 for both cases is the same but the case for
the image observation the scale is much larger. This corresponds to the
behaviour that is noticed in the mean reward for the evaluation steps, or in
the mean reward for the rollout. As that plot and the one of the critic loss in
figure4.6 indicate that the agent sensitivity to observation space is high, and
the learning process for this problem can be elongated or saturated to some
performance based on the obsrvation space in hand.

29

Figure 4.3: figures show the mean reward of a rollout after each learning step.
a) the upper figure is for the type of observation in images. b) the lower
figure is for the type of observation in tensors

Figure 4.4: figures show the mean episode length after each learning step in a
rollout. a) the upper figure is for the type of observation in images. b) the
lower figure is for the type of observation in tensors

30

Figure 4.5: figures show the actor loss after each learning step. a) the upper
figure is for the type of observation in images. b) the lower figure is for the
type of observation in tensors

Figure 4.6: figures show the critic loss after each learning step. a) the upper
figure is for the type of observation in images. b) the lower figure is for the
type of observation in tensors

31

Chapter 5

Conclusion and Future work

The work presented here has shown that the use of a new observation space
like tensor of points that can represent the perception of the RL agent about
the environment is promising. In the mentioned results we can notice that
the RL model is very sensitive to the observation space and can perform
to better or the worst based on this information. Also the use of reward
function has its impact on that model and can make the training process for
that model eaither very lengthy and struggling or easier and straightforward.
We presented here a new reward function that splits the problem of DLO
manipulation into two parts, where one of them deals with configuration of the
DLO and the other one deals with the orientation of the DLO. This reward
function showed uplifting results for both types of observation space. It also
showed an enhanced results when both SAC and PlaNet were trained on that
reward function in relative to the other reward functions (sum of absolute
differences and delta gain). The future work is to use this reward function
with an on-policy algorithm like PPO for both types of observation. Also,
the RL agent used in this research were hardly achieving a high tolerance
results. It will be crucial to explore fine-tuning techniques for the algorithms
used here. It was due to some hardware limitations very hard to address this
problem.

32

Bibliography

[1] Jose Sanchez et al. “Robotic manipulation and sensing of deformable
objects in domestic and industrial applications: a survey”. In: The
International Journal of Robotics Research 37.7 (2018), pp. 688–716.

[2] Jerome Trommnau et al. “Overview of the state of the art in the
production process of automotive wire harnesses, current research and
future trends”. In: Procedia CIRP 81 (2019), pp. 387–392.

[3] Xin Jiang et al. “Robotized assembly of a wire harness in a car produc-
tion line”. In: Advanced Robotics 25.3-4 (2011), pp. 473–489.

[4] Ankit Shah, Lotta Blumberg, and Julie Shah. “Planning for manip-
ulation of interlinked deformable linear objects with applications to
aircraft assembly”. In: IEEE Transactions on Automation Science and
Engineering 15.4 (2018), pp. 1823–1838.

[5] Konrad P Cop et al. “New metrics for industrial depth sensors evaluation
for precise robotic applications”. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2021,
pp. 5350–5356.

[6] Naijing Lv, Jianhua Liu, and Yunyi Jia. “Dynamic modeling and control
of deformable linear objects for single-arm and dual-arm robot manip-
ulations”. In: IEEE Transactions on Robotics 38.4 (2022), pp. 2341–
2353.

[7] Wen Hao Lui and Ashutosh Saxena. “Tangled: Learning to untan-
gle ropes with rgb-d perception”. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2013, pp. 837–844.

[8] Mingrui Yu et al. “Global model learning for large deformation control
of elastic deformable linear objects: An efficient and adaptive approach”.
In: IEEE Transactions on Robotics 39.1 (2022), pp. 417–436.

[9] Robert Lee et al. “Sample-efficient learning of deformable linear object
manipulation in the real world through self-supervision”. In: IEEE
Robotics and Automation Letters 7.1 (2021), pp. 573–580.

33

[10] OpenAI. Spinning Up in Deep Reinforcement Learning. https://spinningup.openai.com/en/latest/spinningup/rlintro.html.
[Accessed: March 8, 2024].

[11] Andrew William Moore. Efficient Memory-based Learning for Robot
Control. Tech. rep. University of Cambridge, 1990.

[12] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[13] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learn-
ing Implementations”. In: Journal of Machine Learning Research 22.268
(2021), pp. 1–8. url: http://jmlr.org/papers/v22/20-1364.html.

[14] Sergio Guadarrama et al. TF-Agents: A library for Reinforcement
Learning in TensorFlow. https://github.com/tensorflow/agents.
[Online; accessed 25-June-2019]. 2018. url: https://github.com/
tensorflow/agents.

[15] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015.
url: https://www.tensorflow.org/.

[16] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. url: http://
papers.neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf.

[17] Daniel Seita et al. “Deep Imitation Learning of Sequential Fabric
Smoothing From an Algorithmic Supervisor”. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
2020, pp. 9651–9658. doi: 10.1109/IROS45743.2020.9341608.

[18] Alessio Caporali et al. “Deformable Linear Objects Manipulation with
Online Model Parameters Estimation”. In: IEEE Robotics and Automa-
tion Letters (2024).

[19] Wilson Yan et al. “Learning predictive representations for deformable
objects using contrastive estimation”. In: Conference on Robot Learning.
PMLR. 2021, pp. 564–574.

[20] Javier Alonso-Mora, Stuart Baker, and Daniela Rus. “Multi-robot for-
mation control and object transport in dynamic environments via
constrained optimization”. In: The International Journal of Robotics
Research 36.9 (2017), pp. 1000–1021.

[21] John Schulman et al. “Proximal policy optimization algorithms”. In:
arXiv preprint arXiv:1707.06347 (2017).

34

arXiv:1606.01540
http://jmlr.org/papers/v22/20-1364.html
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/IROS45743.2020.9341608

[22] Tuomas Haarnoja et al. Soft Actor-Critic: Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor. 2018. arXiv:
1801.01290 [cs.LG].

[23] Danijar Hafner et al. Learning Latent Dynamics for Planning from
Pixels. 2019. arXiv: 1811.04551 [cs.LG].

35

https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1811.04551

	Introduction
	Training Environment
	Pick and Place simulation
	DLO Model
	Observation Space
	Action Space
	Reward Function

	Reinforcement Learning Algorithm
	Results
	Results on The Evaluations
	Results on Episode Length
	Results on The Rollout and The Networks

	Conclusion and Future work

