
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Department of Computer Science and Engineering
Second Cycle Degree in Artificial Intelligence

Efficient Distributed Learning
with PowerSGD

Supervisors
Dott. Thijs Vogels
Prof. Martin Jaggi
Prof. Zeynep Kiziltan

Candidate
Omar G. Younis

Academic Year 2023-2024

Contents

1 Introduction 6
1.1 Dissertation organization . 7

2 Background 9
2.1 Deep learning . 9

2.1.1 What is learning? . 9
2.1.2 Gradient-based learning . 10
2.1.3 Artificial neural networks . 12
2.1.4 Computing the gradient of a neural network 13
2.1.5 Training phases . 14

2.2 Distributed learning . 14
2.2.1 Data parallelism . 15
2.2.2 Model parallelism . 16
2.2.3 Synchronous vs. asynchronous methods 16
2.2.4 Communication primitives . 17
2.2.5 Federated learning . 17
2.2.6 Compression algorithms . 18
2.2.7 PowerSGD . 18

2.3 PyTorch . 22
2.3.1 Autograd: automatic differentiation 25
2.3.2 Building neural networks . 25
2.3.3 Training the network . 25
2.3.4 Distributed package . 26
2.3.5 PyTorch’s PowerSGD . 27

2.4 Orthogonalization algorithms . 28
2.4.1 Gram-Schmidt . 28
2.4.2 QR decomposition . 28

3 Related work 30
3.1 Compression algorithms . 30
3.2 The gradient is limited in rank . 31
3.3 Error feedback . 32
3.4 DALL-E: practical use of PowerSGD 32

2

4 Contributions 34
4.1 Novel approaches . 34

4.1.1 Optimizing PowerSGD implementation 34
4.1.2 PowerSGD variants . 35

4.2 Experimental results . 37
4.2.1 Timing orthogonalization methods 37
4.2.2 Timing training phases . 38
4.2.3 Variants benchmark . 40
4.2.4 Discussion of results . 44

5 Conclusions 47
5.1 Summary . 47
5.2 Future work . 48

Bibliography 50

A CUDA basics 54
A.1 Introduction . 54
A.2 Performance considerations . 56
A.3 Reduction pattern . 57
A.4 QR factorization implementation . 58

B PyTorch internals 61
B.1 Repository structure . 61

B.1.1 torch . 61
B.1.2 ATen . 62

B.2 Operation bindings . 63
B.2.1 Adding operations to PyTorch 63

3

Acknowledgements

This dissertation owes its completion to the invaluable contributions of numerous peo-
ple. It is with sincere gratitude that I acknowledge each of them here:

• Thijs Vogels deserves special recognition as one of the smartest people I have
had the privilege to meet. He provided friendly supervision throughout the entire
project, yet the knowledge I gained from him goes far beyond what is written in
this dissertation.

• Martin Jaggi for hosting me, for supporting my work financially, and for creating
and coordinating a wonderful environment.

• Zeynep Kiziltan for the comprehensive writing guidance, and for accepting being
the local supervisor of this dissertation despite my unusual situation.

• Can Balioglu from Meta for guiding me in contributing to PyTorch and reviewing
my code.

• Scott Gray from OpenAI for sharing his extraordinary knowledge of CUDA pro-
gramming.

Lastly, I extend my heartfelt gratitude to all individuals who have been part of my life.
Thank you.

4

Abstract

Deep learning models are becoming more complex and require a lot of computational
resources, which are often only available by combining multiple devices such as GPUs.
However, distributing the workload to these devices poses many engineering challenges.
One of the main challenges is ensuring that communication between the devices is fast
enough, even when scaling on multiple nodes. Our experimental study shows that,
in some scenarios, communication becomes the major bottleneck, and adding more
devices makes the training slower instead of faster. To address this issue, researchers
have proposed compression algorithms that are designed to reduce the size of data that
needs to be communicated (usually gradient) while retaining as much information as
possible. For the compression algorithm to be effective, it must be sufficiently fast to
save time in communication, and the compression must be accurate enough that it
doesn’t negatively affect training.

Our dissertation focuses on the state-of-the-art gradient compression algorithm, Pow-
erSGD, and how we have improved it in both speed and accuracy. Specifically, we
made compression around 20 times faster, making it effective for wider use cases. We
also improved the accuracy of the gradient compression without affecting speed, which
led to the training process converging twice as fast compared to standard PowerSGD,
for the scenario we tested on. To make these improvements available to the community,
we contributed to PyTorch 1.11 and published all the code used for the experiments
and our improved PowerSGD versions on GitHub12.

1https://github.com/younik/powersgd-cuda
2https://github.com/younik/async-optim

5

Chapter 1

Introduction

Recently, there has been a significant shift towards training increasingly large deep
learning models, utilizing vast datasets [1, 2]. This trend demands substantial compu-
tational resources involving the use of expensive hardware. For instance, the training
of GPT-4 reportedly used around 25 000 A100 GPUs, incurring a cost of approximately
$60 million in computational expenses and taking nearly 100 days to complete1. Such
figures underscore the importance of efficient training methodologies for these massive
models.

A key area of research in this context is distributed learning, which explores strategies
for training models across multiple devices, predominantly GPUs [3]. Scaling up a
model from a single device to many is a complex task, requiring careful consideration
of numerous design elements [4]. In this dissertation, we focus on distributed data-
parallel, a specific parallelism paradigm, where the batch data is distributed across
devices to speed up forward and backward passes. During the training process, it is
essential to communicate the gradients between devices to obtain an average of them.
he gradient has the same size as the weights, and for large models, billions of floating-
point numbers need to be communicated at each training step. As the model scales to
many devices, communication becomes slower and often becomes a significant bottle-
neck, leading to devices idling while waiting for the communication cycle to complete
[5]. In such scenarios, the speedup gained by distributing the workload across multiple
nodes is lower than the increased communication time resulting from increasing the
number of nodes, making the distributed settings ineffective at speeding up training.

To address this challenge, researchers have proposed various solutions, such as compres-
sion algorithms [5, 6, 7], which we focus on in this dissertation. These are a category
of functions designed to reduce the size of data that needs to be communicated while
retaining as much information as possible, thus speeding up the training process by al-
leviating the communication bottleneck. For these algorithms to be effective, they need

1https://www.semianalysis.com/p/gpt-4-architecture-infrastructure

6

1 – Introduction

to be fast enough to ensure that the time saved during communication outweighs the
time spent in compressing the data. At the same time, the compression process mustn’t
negatively affect the learning process and performance. For instance, SignSGD [5] is
one of the simplest compression methods, which communicates only the sign of each
floating-point value. Although it typically reduces the data by a factor of 32 and re-
sults in faster training, the accuracy of compression is very low, usually hurting the
training performances. Another solution studied in the literature is Top-K [7], which
communicates only the higher k floating-point numbers of the gradient. Although it
achieves a great approximation accuracy for proper value k, the compression algorithm
is usually too slow for most scenarios. The state-of-the-art compression algorithm is
PowerSGD [8], which approximates the gradient using low-rank decomposition. It
uses the power iteration algorithm to converge to the low-rank approximation, making
it faster during compression.

In this dissertation, we improve PowerSGD, in both compression speed and accu-
racy. Firstly, we have analyzed PyTorch’s PowerSGD implementation, finding the
orthogonalization process as a major bottleneck during compression. We have stud-
ied different orthogonalization techniques and developed a custom CUDA kernel that
exploits the typical shape of the matrix to orthogonalize in PowerSGD. We thus
improved the PyTorch implementation of PowerSGD, resulting in a 20-fold increase
in the speed of the compression process. We have incorporated these changes into
the PyTorch codebase, making them available to the library users from version 1.11
onwards.

Moreover, we have made significant improvements to the PowerSGD algorithm,
which has enhanced the compression process’s accuracy without affecting its speed.
During our analysis, we observed that the compression error norm increased while
training, indicating that we could improve the compression accuracy further. To ad-
dress this, we experimented with several algorithmic variants to reduce the compression
error. We found two promising solutions. The first uses the local compression error to
update the weights, which we named Nesterov error feedback due to its similarity to the
Nesterov momentum. The second variant takes advantage of the idle communication
channel during forward and backward passes. As a result, we can communicate infor-
mation without affecting training speed. By communicating part of the error feedback
during these stages, we achieved 2x faster training convergence compared to standard
PowerSGD. We provide detailed information on the algorithm variations in Section
4.1.2 and have made all implementations and experiments open-source.

1.1 Dissertation organization

We organized the dissertation as follows:

7

1 – Introduction

Background: In Chapter 2 we introduce fundamental concepts essential for com-
prehending our contributions. This includes a concise overview of deep learning, with
a particular focus on distributed settings. Additionally, we cover the fundamentals
of PyTorch, emphasizing the library’s distributed functionalities. To conclude the
chapter, we explore two distinct algorithms for matrix orthogonalization, providing a
foundational understanding of their application in our research.

Related works: In Chapter 3, we provide a detailed overview of relevant research
papers that contextualize our work. This includes other compression algorithms, and
theoretical insights on PowerSGD improvements. Additionally, we present a research
paper that uses PowerSGD to train a model on 64 GPUs, which provides practical
engineering tricks.

Contributions: In Chapter 4, we present the specifics of our contributions, struc-
turing the chapter into two main sections: methods and experimental results. The
methods section is dedicated to outlining our enhancements to PowerSGD, and ex-
plaining several innovative variants that we have conceptualized. In the experimental
results section, we construct a detailed model that illustrates how the timing of vari-
ous training phases scales with the expansion of node numbers in a typical distributed
setting. This is followed by a comprehensive benchmarking of our implementations.
To conclude, we analyze our developed variants against the standard PowerSGD al-
gorithm, demonstrating the efficacy and results of our improvements.

Conclusions: In the concluding chapter 5 of the dissertation, we provide a sum-
mary of our findings, emphasizing their significance and relevance. Furthermore, we
propose several avenues for future research, identifying gaps in the current knowledge
that our work has not covered.

Appendix: Finally, in the appendix, we provide a comprehensive introduction to
parallel programming using CUDA. Additionally, we delve into the details of PyTorch,
explaining its internal mechanisms. The chapter concludes with a detailed guide on
integrating custom operations into PyTorch.

8

Chapter 2

Background

We present here key concepts necessary for understanding our contributions such as
distributed deep learning and the PyTorch distributed package.

2.1 Deep learning
Deep learning is a subset of machine learning inspired by the structure and function
of the brain. With the goal of learning complex functions, it has revolutionized our
approach to complex problems in various fields. For example, deep learning plays a
crucial role in guiding drug discovery[9], powering self-driving vehicles[10], assisting in
climate prediction models[11], optimizing energy use in power grids[12], and improving
quality assurance processes in manufacturing lines[13][14].

At the core of machine learning is the concept of learning from data. This approach
involves training algorithms on vast datasets, allowing them to learn and make predic-
tions or decisions based on patterns they discern. Thus, unlike traditional program-
ming, where rules are explicitly set by humans, machine learning algorithms develop
their own rules by analyzing and interpreting data, making it applicable to complex
problems where hand-crafting rules are unfeasible.

Deep learning specifically uses artificial neural networks to process the data. We will
formalize neural networks in section 2.1.3. This chapter aims to introduce the funda-
mental concepts behind deep learning, starting from the basics of learning and delving
into gradient-based optimization for deep learning.

2.1.1 What is learning?
We formalize here the concept of learning in the context of machine learning. We start
by defining the concepts of hypothesis space.

Hypothesis space: the set of functions that the learning algorithm can choose from

9

2 – Background

to solve a given problem. Mathematically, this set can be denoted as H, where each
function h ∈ H, h : X → Y maps inputs in the set X to outputs in the set Y , de-
pending on the data and goal. For example, in image classifications, the inputs are the
images while the outputs are the labels.

Data distribution: refers to the theoretical probability distribution of the data. In
the case of the classification task, it is the probability distribution P (X, Y), where X
represents the features or inputs and Y represents the outputs or labels.

Loss function: A function L : Y × Y → R that provide a distance measure in
the Y space.

With these definitions, we can define learning as the process of finding the h ∈ H
that approximates the true distribution of data as closely as possible. Formally, the
goal is to find h∗:

h∗ = argmin
h∈H

Ex,y∼P [L(h(x), y)] (2.1)

However, P (X, Y) is unknown, but we have at our disposal a dataset D ∼ P (X, Y).
Thus a learning algorithm is a function A : D → H. The algorithm takes the dataset
D as input and outputs a hypothesis h ∈ H that ideally minimizes the expected value
of equation 2.1.

One may think of minimizing the sum of the losses on the dataset:

h∗ = argmin
h∈H

1
|D|

∑
x,y∈D

L(h(x), y) (2.2)

however, when H is a sufficiently broad set, this can overfit the dataset with the result
of an h function that doesn’t generalize well, i.e. have poor performances on new data,
even with perfect performances on D. For this reason, we usually divide D in two
different datasets, one used for the learning algorithm and one to have an unbiased
estimation of the expected performances of our hypothesis. Moreover, to avoid the
problem of overfitting the dataset, we should restrict the set H using various tech-
niques that are out of the scope of this dissertation.

In summary, learning in AI is about finding a function within a hypothesis space
that best approximates the true data distribution, as measured by some loss function.
This is achieved through a learning algorithm, which adjusts the model in response to
the data it is exposed to, aiming for good generalization while avoiding overfitting or
underfitting.

2.1.2 Gradient-based learning
Gradient-based optimization[15] is the key in training many machine learning algo-
rithms. It refers to a set of techniques that use gradient information to minimize or

10

2 – Background

maximize an objective function, typically the loss function in the context of machine
learning. As a learning algorithm, the process aims to find a good performing h ∈ H
on a given task.

For simplicity, from this chapter we will restrict ourselves to the case H is a parame-
terized function h(x, θ). This is indeed an infinite set of functions mapping from X to
Y . To make it clearer the role of x as input and θ as parameter, we will write h(x, θ)
as hθ(x).

The gradient of a function at a point is a vector that points in the direction of the
steepest ascent. In machine learning, we are interested in minimizing the loss, thus
in the steepest descent, which can be proved to be the negative of the gradient. The
gradient is calculated with respect to the parameters of the model, and it provides the
direction to adjust the parameters θ to reduce the loss.

∇θEx,y∼P [L(hθ(x), y)] = Ex,y∼P [∇hL(hθ(x), y)∇θhθ(x)] (2.3)

As done for equation 2.2, we can estimate the gradient averaging the gradient of the
losses on the training dataset. While the basic gradient descent algorithm updates pa-
rameters using the entire dataset (batch gradient descent), this can be computationally
expensive for large datasets. Two popular variants address this issue:

Stochastic Gradient Descent (SGD): Instead of using the entire dataset, SGD
updates parameters using a single data point at a time for estimating the gradient.
This introduces more variance in the parameter updates but can lead to faster conver-
gence on large datasets.

Mini-batch Gradient Descent: This approach strikes a balance between batch and
stochastic gradient descent by using a small, randomly selected subset of the data (a
mini-batch) for each update. It is the most commonly used variant in practice.

With an estimation of the gradient, the basic idea is straightforward: iteratively ad-
just the parameters in the direction that most reduces the loss. The updates to the
parameters at each iteration are governed by the equation:

θnew = θold − η∇θJ(θ), (2.4)

where η is the learning rate, and ∇θJ(θ) is the estimation of the gradient of equation
2.3.

The learning rate η is a crucial hyperparameter. A learning rate that is too high
can cause the algorithm to overshoot the minimum and possibly diverge, while a rate
that is too low can lead to slow convergence.

Gradient-based optimization faces several challenges, such as avoiding local minima,

11

2 – Background

dealing with the vanishing or exploding gradient problem, and choosing an appropri-
ate learning rate. Advanced techniques such as momentum, adaptive learning rates
(e.g., Adam, RMSprop), and second-order methods (e.g., Newton’s method) have been
developed to address these challenges, making the optimization process more effective
and efficient. Even if often used in practice, these methods are out of scope of this
short introduction on gradient-based optimization.

2.1.3 Artificial neural networks

Deep learning[16] uses artificial neural network as a function space. They are com-
posed of interconnected units called neurons, which are organized into layers. We
explained here, specifically the feedforward neural network architecture, which for sim-
plicity doesn’t contemplate for recursive connection. Thus, each layer processes infor-
mation and passes it on to the next layer. We have three main types of layers:

Input Layer (Layer 1): This layer takes the raw input data. Each neuron in this
layer corresponds to a feature in the input data. Thus, the number of neurons in this
layer is fixed by the type of data.

Hidden Layers (Layers 2 to N-1): These layers perform the bulk of the com-
putation in a neural network. Each neuron in a hidden layer receives inputs from the
previous layer, applies a transformation, and passes the result to the next layer. The
number of hidden layers and the number of neurons in each layer can be chosen arbi-
trary. Increasing it increase the size of the hypothesis space H.

Output Layer (Layer N): The final layer produces the network’s output. Again, the
number of neurons for this layer depends by the task.

Specifically, let a1 be the input of the network, thus the value of the first layer. Every
hidden layer i, process the input in this way:

zi = Wi · ai−1 + bi ∀i = 2, ..., N (2.5)
ai = σ(zi) ∀i = 2, ..., N − 1 (2.6)

Where Wi and bi are, respectively, a matrix and a vector of parameters and σ is a
non-linearity function which must be differentiable almost everywhere. The output
layer process the aN−1 only linearly with equation 2.5.

There is a lot more to discuss regarding artificial neural networks, and numerous books
have been dedicated to this topic. For the purpose of this dissertation, we will concen-
trate on what is important to compression algorithm. Therefore, in the next section,
we will provide a more detailed explanation of the gradient of neural networks.

12

2 – Background

Figure 2.1. Representation of a neural network. In yellow, the neurons of the input
layer (1), in orange the output layer (3), and in blue the hidden layers (2). The network
is fully connected, i.e. each neuron is connected to every neuron of the next layer.

2.1.4 Computing the gradient of a neural network
To apply gradient descent algorithm on artificial neural networks, we need to compute
the gradient of the loss with respect to the parameters. Thus, given the chain rule of
gradient, as showed in equation 2.3, we need to compute the gradient of the neural
network output with respect to its parameters ∇θhθ(x). Specifically, the gradient of
the output of each layer with respect ot its parameters is:

∂ai

∂θi
= ∂ai

∂zi

∂zi

∂θi
∀i = 2, ..., N − 1 (2.7)

∂ai

∂zi
= σ′(zi) ∀i = 2, ..., N − 1 (2.8)

∂zi

∂θi
=
[

∂zi

∂Wi
,

∂zi

∂bi

]
= [ai−1, 1] ∀i = 2, ..., N (2.9)

Notice that for the output layer, there is no activation function, thus we only need
∂zN

∂θN
. However, we are interested in ∂zN

∂θi
, for every layer i, since we need to compute

the gradient over the output. Again, we can use chain rule to derive it:

∂zN

∂θi
= ∂zN

∂θN

(
∂θN

∂aN−1

∂aN−1

∂zN−1

∂zN−1

∂θN−1

)
...

(
∂θi+1

∂ai

∂ai

∂zi

∂zi

∂θi

)
∀i = 2, ..., N − 1 (2.10)

As we can see from equation 2.10, to compute ∂zN

∂θi
, we can reuse computation of ∂zN

∂θi+1
.

Thus, to compute the gradients efficiently with respect to all parameters, we may start

13

2 – Background

from computing the gradient of the last layer N , proceed with N − 1 reusing the
previous computation and move backwards until the first layer. For this reason, this
algorithm is known as backpropagation[17].

In general, neural networks can be more intricate than the fully connected explained
here. Thus, computing the gradient may become very hard; we want an automatic
way for doing it. Nowadays, several programming library exists that automate the
process. At their core, they use a computational graph, an essential concept in deep
learning. At its core, a computational graph is a representation of mathematical oper-
ations involved in the neural network. Each node in the graph represents an operation
or variable, while edges depict the dependency between these operations. Every atomic
operation has a gradient function associated; thus with the gradient rules we can com-
pute the gradient of the whole computational graph. We call this process automatic
differentiation or AutoGrad[18].

2.1.5 Training phases
We aim here to summarize the phases of training a neural network.

Forward propagation: in forward propagation, random sampled input data is fed
into the neural network. Each neuron computes a weighted sum of its inputs and
applies an activation function to produce an output. This process continues layer by
layer until the final output is generated.

Loss computation: the network’s performance is evaluated by a loss function, which
quantifies the difference between the predicted output and the actual target values.
Common loss functions include mean squared error for regression tasks and cross-
entropy for classification tasks.

Backward propagation: we then compute the gradient of the loss function with
respect to each weight, by using the chain rule of calculus and propagating backward
through the network. The gradient identifies how changes to weights impact the loss.

Weight updating: Finally, the weights are updated to minimize the loss. This is
typically done using optimization algorithms like stochastic gradient descent. The
learning rate, a hyperparameter, determines the size of the weight updates.

All these steps are looped several times and constitute the learning process.

2.2 Distributed learning
With the increasing size of datasets and complexity of models, the field of deep learning
has become more computational demanding. To satisfy the computational needs, we

14

2 – Background

need to efficiently exploit multiple devices, such as GPUs. Distributed learning is
a paradigm that involves dividing the learning process across multiple computational
nodes. This approach is essential for handling large-scale data and complex models that
are beyond the capacity of a single machine. In fact, distributed learning primarily
arise from two challenges: memory and time. As models and datasets grow larger, it
becomes impractical to store them on a single machine. Similarly, processing datasets
with models becomes slower as we scale them up. Distributed learning addresses these
challenges by leveraging the power of multiple machines, enabling the handling of larger
datasets and models.

2.2.1 Data parallelism

Data parallelism is a distributed learning strategy where the input data is partitioned
across multiple machines. Each machine holds a slice of the batch sampled from the
dataset and a complete copy of the model. During the backward pass phase, each device
computes gradients based on its subset of data. These gradients are then aggregated
across all machines to update the model. Averaging the gradients produce the gradient
of the average losses (as in single device scenario), for linearity of the gradient operator.
This approach is particularly effective for large datasets as it allows parallel processing
of data, speeding up the training process.

Model copy Model copy Model copy

Node 1 Node 2 Node 3

Dataset

Figure 2.2. Illustration of the distributed learning scenario. Icons from flaticon.com

15

2 – Background

2.2.2 Model parallelism

In contrast to data parallelism, model parallelism involves splitting the model itself
across multiple nodes. Each node is responsible for a portion of the model, processing
different layers or parts of the neural network. This approach is useful for very large
models that cannot fit into the memory of a single machine. We have two primary
methods:

Horizontal parallelism: This involves dividing each tensor into several slices. Rather
than storing the entire tensor on a single node, each fragment (or shard) of the tensor
is allocated to a specific node. Each shard is processed independently and concurrently
across different nodes. The outcomes from each shard are then synchronized at the end
of the process. This method became more popular with big transformers architectures,
as multi-head attention provide a natural way to shard the weights.

Vertical parallelism: In this approach, the model is split along its vertical axis,
which corresponds to its layers. The division is such that only one or a few layers of
the model are assigned to each node. This setup allows each node to process different
stages of the pipeline concurrently, handling a smaller portion of the batch. This is
called ’vertical parallelism’ because the splitting is based on the layers of the model.
Since every layer needs the output of the preceding one as input, this method doesn’t
fully exploit parallelism of the nodes . However, more advanced techniques are used to
increase throughput of this method.

2.2.3 Synchronous vs. asynchronous methods

In distributed learning, synchronization refers to how the data or model updates are
shared across the machines. We divide the methods in two categories: synchronous
and asynchronous.

In synchronous distributed learning, all machines must complete their portion of
the task before any model update is performed. This is the most common scenario as
it ensures consistency in the model updates but can lead to idle time, as all machines
must wait for the slowest one.

Asynchronous methods allow machines to update the model independently with-
out waiting for others. This approach can speed up the training process but may lead
to stability issues and problems when updates are made based on outdated information.
However, this may speed up considerably training in settings where nodes has different
update speed. This family of approaches are particularly prominent in reinforcement
learning, with algorithm such A3C[19] and IMPALA[20].

16

2 – Background

2.2.4 Communication primitives

We explain here basics operations that are used to communicate data across different
nodes.

Broadcast involves a single source node sending data to all other nodes in the net-
work. In distributed learning, broadcasting is essential when sharing updated model
parameters or algorithms from a central server to all worker nodes, ensuring each node
operates with the most current information.

Gather is the process where data is collected from all nodes in the network and
brought together at a single receiver node. In distributed learning, gathering is of-
ten used to accumulate information (like trajectories in reinforcement learning) from
various worker nodes to a central server for model updating. The AllGather variant
ensures that all nodes obtain the information at the end of the process.

Reduce is the communication process where data from all nodes is combined into
a single one through a specific operation (like summing or averaging). In the context
of distributed learning, reducing is important for aggregating gradients or error terms
across nodes. The AllReduce variant ensures that all nodes obtain the aggregate data
at the end of the process.

Scatter is the opposite of gather. In this method, distinct pieces of data are dis-
tributed from one source node to multiple receiver nodes. In distributed learning,
scattering is used to distribute subsets of a large dataset or model to different worker
nodes for parallel processing.

2.2.5 Federated learning

Federated learning[21] is a specific instance of distributed learning that is worth to
mention for its interesting applications. It differs from other distributed learning ap-
proaches for its focus on privacy. In this settings, we have multiple nodes controlled by
different actors, each with a different dataset that must remain private and not shared
with others. However, the final goal is still to train a global model that can leverage
the joint datasets. This makes federated learning a challenging tasks as it has to deal
with non identically independently distributed and unbalanced data while preventing
data leakage during the learning process and ensuring the robustness of the aggregated
model against potential adversarial attacks. Some promising applications include:

Healthcare: Federated learning allows hospitals and research institutions to col-
laborate on developing predictive models without sharing sensitive data about their
patients.

Finance: Banks and financial institutions can use federated learning to detect fraud

17

2 – Background

and manage risk while maintaining the confidentiality of client data.

Smartphones: Companies like Google use federated learning to train vision and lan-
guage models without uploading personal data to their servers.

2.2.6 Compression algorithms
As introduced earlier in this section, training a model in a distributed setting requires
to communicate the gradient to the other nodes multiple times. The gradient of a
model has the same size of the model, thus big models requires a large bandwidth to
share the gradients. This can be a bottleneck in training loops, slowing down the whole
learning process. When this is the case, a compression algorithm can be used.

Formally, a compression algorithm is a function C : X → Y , where X is the space
of the data that we want to compress and Y is the resulting space. We also define a
decompression function associated with C, DC : Y → X. To be useful, compression
and decompression algorithms should satisfy the following conditions:

Quality of reconstruction: The compression data must Introduce a metric to evalu-
ate the quality of compression. More formally, the reconstruction error must be below
a threshold, depending on the applications:

||x − DC(C(x))|| < ϵ (2.11)

Efficiency: The algorithm should be efficient in terms of computation. Specifically, if
the time spent to compress the data is larger than the time saved to communicate, the
compression algorithm becomes ineffective.

Unbiasedness of reconstruction: For many applications we need the reconstruction
to be unbiased. More formally:

EP [DC(C(x))] = x (2.12)

where P is the probability distribution that generated x.

2.2.7 PowerSGD
We present now a specific compression algorithm named PowerSGD[8] that will be
the focal point of this dissertation.

The main idea of PowerSGD is to compress the gradient using low-rank approximation.
More formally, for a matrix A of size (n, m), the k-rank approximator, is the matrix
Ak of size same size such that:

Ak = argmin
X

||A − X||F , with rank(X) = k (2.13)

18

2 – Background

where ||.||F is the Frobenius norm.

A common method to achieve low-rank approximation is using singular value decom-
position to decompose the matrix A as follows:

A = UΣV T (2.14)

Where:

• U ∈ Rnxn is an orthogonal matrix containing the left singular vectors.

• Σ ∈ Rnxm is a diagonal matrix with singular values σ1 ≥ σ2 ≥ · · · ≥ σr.

• V ∈ Rmxm is an orthogonal matrix containing the right singular vectors.

To approximate A, we take the first k largest singular values and the corresponding
singular vectors:

Ak = UkΣkV T
k (2.15)

Where:

• Uk contains the first k columns of U .

• Σk is a diagonal matrix with the top k singular values.

• V T
K contains the first k rows of V T .

However, singular value decomposition can be very slow to compute for big matrices,
as its computational complexity is in O(min(nm2, n2m)).

PowerIteration

The power iteration algorithm is an algorithm used to approximate the dominant eigen-
value and the corresponding eigenvector of a matrix. It’s particularly useful when
dealing with large matrices where methods like singular value decomposition are not
feasible, since it has time complexity in O(n + m). Moreover, it can better exploit
parallelization in hardware for linear algebra operations like GPUs.

Assumptions: The matrix A has a dominant eigenvalue, i.e., there exists an eigenvalue
λ1 such that |λ1| > |λi| for all i /= 1. Moreover, the initial guess for the eigenvector q0
is not orthogonal to the dominant eigenvector.

Algorithm Steps:

1. Start with a normalized random vector q0 ∈ Rm.

2. For some iterations i = 1, 2, 3, . . .:

2a Compute pi = Aqi−1.

19

2 – Background

2b Normalize pi: pi = pi

∥pi∥ .

2c Compute qi = AT pi

2d Normalize qi: qi = qi

∥qi∥ .

3. Return q = qi as the approximation of first eigenvector of A, and p = pi as the
approximation of first eigenvector of AT .

The rate of convergence depends on the ratio |λ2|
|λ1| , where λ1 and λ2 are, respectively,

the first and the second dominant eigenvalue. Moreover, notice that to estimate the
second eigenvector, it is sufficient the first eigenvector component from the matrix and
repeat the algorithm with the new matrix, i.e. A(2) = A − λ1(p · qT), where λ1 can be
estimated as λ1 = ∥Aq∥.

PowerSGD

The key idea of PowerSGD is to exploit PowerIteration to efficiently aggregate data
(usually gradients) in distributed learning. Specifically, let’s have L nodes, each of
them having a local matrix A0, A1, ..., AL. Our goal is to approximate the sum (or the
mean): A = A0 + A1 + ... + AL. We present here two variants of PowerSGD.

Variant 1

1. Start with a random vector q0 ∈ Rm, via broadcast, each node obtains this vector.

2. Each node initializes a local approximation of A, Ã = 0

3. For some iterations i = 1, . . . , k:

3a Each node normalizes qi: qi = qi

∥qi∥ .

3b Each node l computes p(l)
i = Alqi−1.

3c Using AllReduce, every node get pi = p(0)
i + ... + p(L)

i .
3d Each node normalizes pi: pi = pi

∥pi∥ .

3e Each node l computes q(l)
i = AT

l pi

3f Using AllReduce, every node get qi = q(0)
i + ... + q(L)

i .
3g Each node adds the current approximation to the local buffer: Ã = Ã+pi ·qT

i .
3h Each node l removes the current approximation from the matrix to compress:

Al = Al − pi · qT
i .

4. Return Ã as the approximation of A0 + A1 + ... + AL.

Variant 2

20

2 – Background

1. Start with a random matrix Q ∈ Rm×k, via broadcast, each node obtains this
vector.

2. Each node orthogonalize the matrix Q.

3. Each node l computes P(l) = AlQ.

4. Using AllReduce, every node get P = P(0) + ... + P(L).

5. Each node orthogonalize P.

6. Each node l computes Q(l) = AT
l P.

7. Using AllReduce, every node get Q = Q(0) + ... + Q(L).

8. Return P · QT as the approximation of A0 + A1 + ... + AL.

In both algorithms k adjust the precision of the compression at the cost of slowing the
algorithm. This compression algorithm reduce the communication data, since every
nodes sends only n × k + m × k numbers instead of n × m and n, m are typically very
large numbers, while k is a small constant.

Both variants work for linearity of matrix multiplication. For example, in Variant
1, at step 2c:

pi = p(0)
i + ...p(L)

i = A0qi−1 + ...+ = ALqi−1 = (A0 + ... + AL)qi−1 (2.16)

making the algorithm equivalent to a PowerIteration step on the matrix A0 + ... + AL.

Warm start

To enhance the accuracy of the PowerSGD approximation, the algorithm warm-start
the initial value of Q, i.e. it uses the last Q value from previous iteration to initialize
the current one. Remember that the compression algorithm is employed repeatedly
during training, at each backward propagation phase, as detailed in section 2.1.5. The
rationale behind this method is based on the premise that gradients change gradually
throughout the training process. Therefore, the eigenvectors from one training step to
the next are likely to have only minor differences. Consequently, we can effectively use
the Q value from the preceding step as the starting point for the subsequent step. If
the gradient has changed little compared to previous step, starting with the last Q is
similar to continuing from where the PowerIteration algorithm left off in the previous
step, leading to a more precise approximation.

Error feedback

The PowerSGD compression algorithm is biased:

E [D(C(A0 + ... + AL))] /= A0 + ... + AL (2.17)

21

2 – Background

where C and D represent, respectively, the compression and decompression operators.
For this reason, error feedback is used in PowerSGD, resulting in the following algo-
rithm:

Compression with error feedback

1. Each node l initialize the error el as zero.

2. At every iteration i = 1, 2, . . . of the training loop:

2a Each node l adds the error to the gradient to sum: Al = Al + el.
2b PowerSGD is used, obtaining Ã.
2c The error is updated as el = Al − Ã.

The use of error-feedback makes PowerSGD unbiased leading to better optimization
outcomes when using PowerSGD to compress gradients in a learning algorithm.

Analysis

We report here some analysis from the original paper showing the effectiveness of
PowerSGD. Specifically, we show in Table 1.1 a comparison of test accuracy between
standard SGD and PowerSGD. In Table 1.2, we show the effectiveness of warm-start
comparing PowerSGD compression algorithm to SVD low-rank approximation. For
both experiments, the authors used a ResNet18 on the CIFAR10 dataset. On the
same task, we show the effectiveness of error feedback on the final accuracy in figure
2.3.

Table 2.1. PowerSGD (variant 2) test ac-
curacy compared to plain SGD learning algo-
rithm. PowerSGD with k = 2 matches SGD
on test accuracy.

Algorithm Accuracy Data
SGD 94.3% 1023 MB
Rank-1 PowerSGD 93.6% 4 MB
Rank-2 PowerSGD 94.4% 8 MB

Table 2.2. SVD rank-2 approximation
vs. PowerSGD. Warm-start improves
test accuracy, even matching the perfor-
mance of SVD approximation.

Algorithm Accuracy
Best approximation 94.4%
Warm start (default) 94.4%
Without warm start 94.0%

2.3 PyTorch
PyTorch[22] is a powerful, open-source machine learning library for Python. It is
widely adopted for its flexibility, ease of use, and as a valuable tool in both research
and development of deep learning models. PyTorch stands out for its dynamic compu-
tation graph and efficient memory usage. Moreover, PyTorch provides seamless GPU

22

2 – Background

Figure 2.3. The comparison between PowerSGD with error feedback and without
it reveals significant differences. Although rank-4 PowerSGD with error feedback
reaches the same test accuracy as full-precision SGD, PowerSGD without error
feedback fails to achieve comparable accuracy. Notably, both experiments employed
the identical learning rate, which was specifically optimized for full-precision SGD.

integration, enabling faster computations and model training.

The fundamental unit of PyTorch is the tensor. Tensors in PyTorch are array-like
data structures that are able to run on multiple devices, notably CPUs and GPUs.
Running tensor on GPU accelerates the computation of many linear algebra opera-
tions, as GPU are specialized hardware for that. Tensors can store data of various
types and support a wide range of operations, making them ideal for neural networks.

Another important concept is the automatic differentiation capabilities. PyTorch pro-
vides automatic differentiation for all operations on tensors, making gradient computa-
tion straightforward. Importantly the computational graph is built at runtime, letting
the computation be dynamic. PyTorch keeps track of all operations on tensors for
which gradients are to be calculated.

Installing PyTorch

To install PyTorch we can use the Python package manager:

pip install torch

23

2 – Background

Tensor creation

We show here how to create new tensors specifying the values to fill and generating
them randomly.
After importing :

import torch

To create a tensor from a list:

tensor = torch.tensor([1, 2, 3])

To create a 2 × 3 tensor filled with zeros:

zeros = torch.zeros(2, 3)

To create a 2 × 3 tensor filled with random numbers

random_tensor = torch.rand(20, 30)

Access elements of tensors

We can access element to the tensors using indexing syntax:

random_tensor[0, 2] # access element at row 0 and column 2
random_tensor[0] # access first row
random_tensor[:, 0] # access first column
random_tensor[1:6, 0:2] # slice a submatrix

Operations on tensors

We can use the basic arithmetic operations on tensor, like element-wise multiplication:

result = tensor * tensor

Or linear algebra operations like the dot product:

result = torch.dot(tensor, random_tensor)

Moreover tensor can be reshaped:

reshaped = random_tensor.view(30, 20)

However, notice that the resulting tensor point to the same data of the original tensor
in memory. This means that changing the data inplace will affect also the other tensor
data.

24

2 – Background

2.3.1 Autograd: automatic differentiation
PyTorch’s provides automatic differentiation for all operations on tensors. In this way,
computing the gradient for tensors is straightforward:

Create a tensor and enable autograd
tensor = torch.tensor([1., 2., 3.], requires_grad=True)

Perform some operations
y = torch.dot(tensor, tensor)

Compute gradients
y.backward()

Gradients are stored in the ‘.grad’ attribute
print(tensor.grad)

2.3.2 Building neural networks
PyTorch provides a module to help create and train neural networks:

import torch.nn as nn
import torch.nn.functional as F

class SimpleNet(nn.Module):
def __init__(self):

super(SimpleNet, self).__init__()
self.fc1 = nn.Linear(256, 128)
self.fc2 = nn.Linear(128, 10)

def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x

2.3.3 Training the network
Training a network typically involves a forward pass, loss computation, backward pass,
and updating the model parameters, as explained in 2.1.5. PyTorch ease updating the
model parameters providing some common optimizers, like SGD:

Example of a training loop
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
loss_function = nn.MSELoss()
model = SimpleNet()
train_loader = torch.utils.data.DataLoader(...)

25

2 – Background

for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = loss_function(output, target)
loss.backward()
optimizer.step()

2.3.4 Distributed package
PyTorch provides a distributed package, which is essential for distributed training of
models across multiple nodes. Moreover, it abstracts many of the complexities of dis-
tributed computing, making it accessible to developers who may not be experts in
parallel computing.
We highlight some important features:

Distributed data parallel: This allows the distribution of data across multiple nodes,
ensuring that each node processes a subset of the data. This unlock data parallelism
resulting in reduction in training time as the workload is shared across multiple pro-
cessing units.

Model parallelism: Apart from data parallelism, PyTorch also supports model par-
allelism. In fact, the model can be split across multiple nodes, allowing for the training
of very large models.

Multiple backend support: PyTorch’s distributed package supports and abstract
multiple backends like NCCL, Gloo, and MPI. This variety allows users to choose the
most suitable backend based on their hardware and specific needs.

Collective operations: PyTorch’s distributed package supports the common col-
lective primitives listed in section 2.2.4 as easy-to-use functions.

Communication hooks: Finally, PyTorch provides algorithms for compressing data
and an easy API to compress gradients while training a model.

We show here a simple example on using PyTorch distributed package. This code
should be run in every nodes, with the correct number vlaue for rank (node id) and
world size:

import torch

torch.distributed.init_process_group("nccl", rank=..., world_size=...)

tensor = torch.rand(2, 3)

26

2 – Background

result = torch.distributed.all_reduce(tensor)
now result contains the sum of tensor among all nodes

model = SimpleNet()
model = nn.parallel.DistributedDataParallel(model)
now the model can be trained in the distributed setting using the same code as single device case!

2.3.5 PyTorch’s PowerSGD
PowerSGD is implemented in the PyTorch’s distributed package using the second
variant algorithm. Thanks to the library abstraction, using PowerSGD for training
is straightforward:

import torch
import torch.nn as nn
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook

torch.distributed.init_process_group("nccl", rank=..., world_size=...)

model = SimpleNet()
model = nn.parallel.DistributedDataParallel(model)
state = powerSGD_hook.PowerSGDState(

process_group=None,
matrix_approximation_rank=1,
start_powerSGD_iter=100,

)
model.register_comm_hook(state, powerSGD_hook.powerSGD_hook)
now the model can be trained seamlessly using PowerSGD!

We outline some key features of PyTorch implementation:

• The implementation uses the Gram-Schmidt method for orthogonalizing matrices.

• The algorithm selectively compresses matrices, acting only on those which meet
a pre-defined threshold for minimum compression rate.

• The implementation doesn’t compress gradients during the initial iterations, as
these are crucial and sensitive to the final performance.

• By default, the implementation compresses the gradient of each layer separately.
However, an alternative approach is also available: it flattens and stacks the net-
work’s gradients into a single matrix before compression. Although this method
may be faster, it does not leverage specific gradient properties, potentially leading
to a decrease in accuracy.

27

2 – Background

2.4 Orthogonalization algorithms

2.4.1 Gram-Schmidt
The Gram-Schmidt algorithm is a method used in linear algebra for orthonormalizing
a set of vectors in a space. We focus on the application of the method to orthogonalize
a matrix.

Specifically, in order to orthogonalize the matrix A:

1. For every row ai of matrix A:

1a For every previous row aj (if any), subtract the projection: ai = ai−(ai ·aj)aj

1b Normalize ai = ai

∥ai∥

At the end of the process, the matrix A will be orthogonalized:

AAT = I (2.18)

Notice that the algorithm is inherently sequential, as each step of the loop depends on
the outcomes of the previous steps.

2.4.2 QR decomposition
QR factorization decomposes a given matrix A into the product of two matrices, Q
and R:

A = QR (2.19)

where Q is an orthogonal matrix and R is an upper triangular matrix.

Householder reflection

A Householder reflection is a linear transformation that reflects a vector with respect
to a hyperplane. The transformation can be represented by a Householder matrix H,
which is defined as:

H = I − 2vvT (2.20)

where I is the identity matrix, and v is a unit vector orthogonal to the reflection
hyperplane.

Construction of the householder matrix

1. Given a vector x in the matrix we wish to transform, and a target vector e, v is
chosen as x − λe, where λ is the norm of x if x and e are not collinear, and −λ
otherwise. This choice of v ensures that the reflection sends x to a scalar multiple
of e.

2. Normalize v so that vT v = 1. This is important for the matrix H to be orthogonal.

28

2 – Background

Application in QR decomposition

1. Start with the matrix A that we want to decompose.

2. For each column i of A:

2a Construct a Householder matrix Hi that zeroes out all elements below the
diagonal.

2b Apply Hi to A to get a new matrix Ai, i.e., Ai = HiAi−1 where A0 = A.
2c After applying this process to each column, the matrix A is transformed into

an upper triangular matrix R.

3. The product of the Householder matrices Hi gives the orthogonal matrix Q, i.e.,
Q = H1H2...Hn.

4. The final QR decomposition is A = QR, where Q is orthogonal, and R is upper
triangular.

29

Chapter 3

Related work

We present in this chapter some works that are related this dissertation.

3.1 Compression algorithms
We present here the most popular compression algorithms studied in the literature.
We also provide a visual comparison of these algorithms in Figure 3.1.

SignSGD[5]: this method focuses on compressing data based on the sign (positive
or negative) of each data element. It is straightforward and fast, making it time-
efficient for large gradients. However, it is a biased compressor. Moreover, the quality
of compression can be low depending on the gradient.

SignSGD + norm[6]: this approach extends the SignSGD algorithm by also con-
sidering the norm (magnitude) of the whole gradient. Thus, during reconstruction,
the matrix of signs is multiplied by the L1-norm. In this way, this algorithm is more
informative than the basic SignSGD, leading to better data representation.

Top-K algorithm[7]: this algorithm selects the top-K elements based on the magni-
tude for compression, ensuring that the most significant elements are retained, often
leading to high-quality data reconstruction. However, it is a biased compression algo-
rithm.

Random K algorithm[7]: It is the natural unbiased counterpart of the top-K al-
gorithm. Instead of selecting the top K elements, it randomly selects K elements.
However, the randomness can lead to the omission of significant data elements, affect-
ing the quality of compressed data.

Random block algorithm[7]: This method is very similar to the previous one. How-
ever, it is more efficient as it accesses a contiguous block of memory.

30

3 – Related work

Figure 3.1. Representation of different compression algorithms.
Image from PowerSGD paper by Vogels et al.

PowerSGD[8]: introduced by Vogels et al., this compression algorithm approximates
the gradient with a low-rank approximation. This approach is explained in detail in
Section 2.2.7 and it generally provides a more precise gradient estimation.

3.2 The gradient is limited in rank

Guy Gur-Ari et al. explore the dynamics of gradient descent in deep learning, demon-
strating that during the training of large-scale deep learning models, the gradient
converges rapidly to a very small subspace[23]. This subspace is defined by a few top
eigenvectors, which interestingly corresponds to the number of classes in the dataset,
for the case of classification task. The paper argues that gradient descent predomi-
nantly occurs within this small subspace.

Within this subspace, the gradient does not exhibit any special properties and appears
randomly oriented with respect to the eigenvector basis. Furthermore, they observe
that the top eigenvectors do not significantly mix with the bulk eigenvectors, even over
extended periods of training. This implies that the top subspace remains relatively
stable during training.

The findings suggest that PowerSGD is effective in approximating the gradient for
two main reasons. Firstly, the gradient typically exists within a limited subspace, al-
lowing it to be accurately approximated with a low-rank representation. Secondly,
the stability of this subspace during training justifies the effectiveness of the warm-
start technique. Since with this technique, we begin with an initial estimation of the
eigenvectors, and the subspace doesn’t change during training, this initial estimation
remains relevant and useful throughout the process. However, this also suggests that
the error may accumulate on the subspace orthogonal to the approximation, which can
hurt learning. This motivates the study on error buffer we perform in Section 4.1.2.

31

3 – Related work

3.3 Error feedback
Karimireddy et al. study the error feedback technique that we explained in Section
2.2.7[24]. This general technique is used to address the limitations of biased com-
pression algorithms, specifically SignSGD in the paper. SignSGD has issues with
convergence and generalization due to the biased nature of the sign compression oper-
ator. By incorporating the error made by the compression operator into the next step,
the paper overcomes these issues. The authors prove that adding error feedback to
SignSGD achieves the same rate of convergence as standard SGD without additional
assumptions. Extensive experiments confirm that error feedback improves both con-
vergence and generalization performance. The use of error-feedback and its properties
motivate the PowerSGD variants we introduce in Section 4.1.2.

3.4 DALL-E: practical use of PowerSGD
The paper introducing DALL-E model[25] from OpenAI uses PowerSGD to train
the big model in their distributed setting.

They customize PowerSGD to improve efficiency, which inspired the work for this
thesis. We highlight here some practical techniques they used:

Same buffer for error and gradient: In the paper, the gradient is accumulated
directly in the error buffer of PowerSGD, resulting in a significant memory saving
(remember that the gradient size, thus the error buffer size, is the same as the model
size). Since the gradient buffer is usually zeroed in training loops, this is not done in
the PyTorch implementation, where two different buffers are used, one for the gradient
and one for the error.

Parallelism with backward propagation: As we discussed in the section 2.10,
backward propagation calculates the gradient sequentially, starting from the last layer
and moving to the first. To speed up the training process, the PowerSGD com-
pression technique is employed as soon as the gradient for a particular layer becomes
available. This approach is particularly beneficial in scenarios involving model paral-
lelism, as it optimizes the use of resources. In fact, even when the entire backward pass
has not been completed, some GPUs may remain underutilized or idle. Moreover, also
communication happens per layer, as soon as compression is done, without waiting to
send the whole gradient.

Orthogonalization algorithm: Unlike PyTorch, which employs the Gram-Schmidt
algorithm for orthogonalization, they opted for the Householder algorithm. This choice
yields two significant benefits. Firstly, the Gram-Schmidt process is inherently se-
quential and thus slower, especially when compared to the Householder algorithm on
hardware capable of parallelizing tasks, such as GPUs. Secondly, the Householder

32

3 – Related work

algorithm boasts greater stability, thereby reducing numerical problems. To further
mitigate this issue, they incorporated an additional step of adding ϵI to the matrix
being orthogonalized, where ϵ represents a small value and I is the identity matrix.

33

Chapter 4

Contributions

We present in this chapter the main contributions of our work.

4.1 Novel approaches
We start by defining the different algorithmic modification we tried and we analyze
them in the next chapter.

4.1.1 Optimizing PowerSGD implementation

We optimized PyTorch’s PowerSGD implementation by changing the orthogonaliza-
tion technique from Gram-Schmidt to QR factorization. This is based on the reasonable
hypothesis that a device capable of parallel operations, such as a GPU, is available.
However, since the QR factorization doesn’t support some data types, for these cases
the orthogonalization method falls back to Gram-Schmidt. Moreover, as detailed in
Section 4.2.2, our analysis shows that Gram-Schmidt is still faster for orthogonalizing
a matrix with 2 columns or rows. Since this is a common case for PowerSGD when
doing 2-rank approximation, we also treat this specific case using the Gram-Schmidt
algorithm.

These updates have been integrated into PyTorch starting from version 1.11.

Orthogonalization kernel

To further improve performances, we develop a custom CUDA kernel for orthogonal-
ization using the Householder method. This kernel is specifically tailored for Pow-
erSGD, thus using assumptions of having as input a skewed matrix with m rows and
r columns, with r << m.

34

4 – Contributions

We published the implementation with benchmarking scripts on GitHub1.
We highlight here some features of the custom CUDA kernel:

• We devide the algorithm in two kernels: reflections and q_loop. The first
one computes the reflection vectors v, and the second one computes the final
orthogonalization result Q.

• Both kernels have a dynamic number of threads per block depending on the
number of columns r. Since the number of blocks needed must be known at
compile-time, we compile 3 versions with 256, 512, and 1024 blocks and we select
the one to run at runtime.

• Each block of the reflections kernel computes one reflection vector v.

• Each block of the q_loop kernel computes one row of the final matrix Q using
the reflection vectors v computed by the previous kernel.

• To calculate the reflection vector vj , it is essential that row j is first updated using
all preceding reflection vectors vi, where i < j. Therefore, a synchronization
method is required between blocks within the reflections kernel. We have
developed a specialized barrier system for each block to maximize throughput
and guarantee the correctness of the result.

• To improve the efficiency of the reduction operation within a block, we ensure that
threads in the same warp access to contiguous elements, even when the number
of threads is less than the number of elements.

4.1.2 PowerSGD variants
We introduce here several variants of PowerSGD that we have conceptualized, imple-
mented, and studied. These variants are inspired by the hypothesis that error feedback
might accumulate and become outdated as training progresses. This led us to ques-
tion: does error feedback indeed accumulate and become obsolete over the course of
training? If so, how does this impact performance? Can we develop better algorithms
to mitigate this potential issue?

All variants are implemented in PyTorch; we publish their implementation on GitHub2.

Decaying error feedback

These variants address the issue of obsolete gradient by applying a decay factor λ.
Thus, for a user-defined λ ∈ [0, 1], the algorithm is updated as follows:

1https://github.com/younik/powersgd-cuda
2https://github.com/younik/async-optim

35

4 – Contributions

1. Each node l, initialize as zero the error el.

2. At every iteration i = 1, 2, . . . of the training loop:

2a Each node l adds the error to the gradient to sum: Al = Al + λel.
2b PowerSGD is used, obtaining Ã.
2c The error is updated as el = Al − Ã.

Nesterov error feedback

The basic idea behind this variant is to allow different nodes to temporarily diverge
on the model before computing the gradient. More specifically, before computing the
gradient, each node l moves the local weights of the model towards the local error of
the previous iteration:

1. User defines λ, each node l initialize as zero the error el.

2. At every iteration i = 1, 2, . . . of the training loop:

2a Move towards the negative error feedback: wl = w − λel

2b Apply forward and backward passes using the set of weights wl

2c Restore original weights: w = wl + λel (w equal for each node)
2d Average gradient using PowerSGD, obtaining new el

2e Update weights with the gradient

Notice that this method computes the gradient over a different set of weights for
each node. This may be an interesting behavior to study as can potentially enhance
generalization, steering the final model toward convergence at a flat minimum. It is
widely recognized that flat minima tend to offer superior generalization capabilities,
see for example Hochreiter et al. [26].

Asynchronous communication

We also implement some variants with the scope of exploiting the communication
channel while it is idle during the other phases of training. In fact, communication
can happen in parallel while the nodes are busy with other computation tasks. Thus,
in this variant, after each node receives the compressed version of the gradient, it also
communicates the uncompressed error feedback buffer. Since no compression is applied
to the error feedback, its transmission over the network requires a considerable amount
of time. However, we do not wait for the communication to end until the next iteration,
where we need error feedback. Also, notice that in this case, the error buffer will be
the same for all nodes. Therefore, it could be integrated after communication with
PowerSGD. However, to eliminate the need for an additional buffer, this step is not
undertaken. In summary, the algorithm executes the following steps:

36

4 – Contributions

1. Each node l, initialize as zero the error el.

2. At every iteration i = 1, 2, . . . of the training loop:

2a If i /= 1, wait for the error buffer el to be ready.
2b Each node l adds the error to the gradient to sum: Al = Al + el.
2c PowerSGD is used, obtaining Ã.
2d The error is updated as el = Al − Ã.
2e AllReduce on el is started as asynchronous operation

We also developed a similar variant where we refined the process by transmitting only
a portion of the error feedback instead of the entire buffer. To minimize delays during
step 2a, the size of the slice is dynamically adjusted. Specifically, if the error buffer is
not ready yet, we halve the size of the slice for the subsequent iteration. Moreover, at
every iteration, we shift the slice window to ensure communication of the entire error
buffer.

4.2 Experimental results
We proceed here to present experimental results.

For our experiments, we utilized the EPFL ICCluster with a single NVIDIA V100
GPU, except for experiments that required multiple nodes. For those, we utilized the
Google Cloud Platform, using a V100 per node. For reproducibility purposes, we have
published all of our scripts on GitHub.3.

4.2.1 Timing orthogonalization methods
We start by evaluating various orthogonalization algorithms, a crucial component of
the second variant of PowerSGD, which is the implementation of PyTorch. In par-
ticular, we assess the performance of the Gram-Schmidt algorithm, PyTorch’s QR
factorization, and our custom orthogonalization kernel, detailed in Section 4.1.1. We
conducted tests across a range of plausible sizes for PowerSGD, varying the number of
rows from 2 to 128 and the number of columns from 256 to 4096, exploring all powers
of two within these ranges. The findings of these evaluations are presented in Table
4.2.1, while the benchmarking scripts are available on GitHub3.

The custom CUDA kernel we developed significantly outperforms the traditional Gram-
Schmidt method, being up to 27 times faster. Moreover, when compared to PyTorch’s
QR implementation, our kernel demonstrates an astounding improvement, operating

3https://github.com/younik/powersgd-cuda

37

4 – Contributions

up to 300 times more rapidly. Luckily, starting with version 1.9, PyTorch has en-
hanced the efficiency of their QR implementation, aligning it with the speed of our
custom kernel, for big matrices. Consequently, to accelerate the PowerSGD com-
pression process, we transitioned from the Gram-Schmidt method to QR factorization.
In Figure 4.1, we present a comparison of the timings for these two distinct methods,
observing how they vary with changes in rank. QR factorization method demonstrates
superior scalability with increasing rank, resulting in a training step that is four times
faster when the rank is set to 16.

2 4 6 8 10 12 14 16
Rank

10

20

30

40

50

60

70

80

M
illi

se
co

nd
s

ResNet18 training step time
Gram-Schmidt
PyTorch's QR

Figure 4.1. Training step duration in milliseconds for ResNet18 on CIFAR10 using
PowerSGD with two orthogonalization techniques: Gram-Schmidt method and
PyTorch’s QR factorization (after v1.9). Training is conducted on a single, thus
excluding communication overheads.

4.2.2 Timing training phases
We conducted timing analyses for various phases of training in a distributed environ-
ment. This involved altering both the batch size and the number of nodes used. For
these tests, we specifically employed a VGG19 model and utilized the Google Cloud
Platform, which was equipped with V100 GPUs.

We report in the following our findings.

Forward pass: The forward pass refers to the process of computing the output of
the neural network from a given batch of inputs. In this phase, there is no need for
inter-node communication, which means that the duration of the forward pass remains
consistent regardless of the number of nodes involved. However, when implementing
data parallelism, the input batch is typically divided among the available nodes. Con-
sequently, as the number of nodes increases, the batch size allocated to each node

38

4 – Contributions

decreases. We report timings for batch size of 128, 256, 512, and 1024 in figure 4.2, on
the left. Evidently, the timing for the step function grows linearly with the batch size.

Backward pass: The backward pass is a phase in which backpropagation occurs,
leading to the computation of local gradients. As for the forward pass, this stage does
not involve communication between nodes, resulting in a time complexity that remains
constant relative to the number of nodes. However, the duration varies linearly in
relation to the batch size. In Figure 4.2, we present the outcomes of our experiments,
which were conducted using the same batch sizes as employed in the forward pass tim-
ings.

Update phase: This phase involves updating the weights, a process typically in-

200 300 400 500 600 700 800 900 1000
Batch size

10

20

30

40

50

M
illi

se
co

nd
s

Forward time - VGG19

200 300 400 500 600 700 800 900 1000
Batch size

20

40

60

80

100
M

illi
se

co
nd

s

Backward time - VGG19

Figure 4.2. Left: Forward phase duration (in milliseconds) as a function of varying
batch sizes (128, 256, 512, 1024). Right: Backward phase duration (in milliseconds) for
the same range of batch sizes. In both scenarios, the timing exhibits a linear increase
with respect to the batch size.

variant to the number of nodes and batch size. However, its time depends on the
chosen type of optimizer.

Communication: The communication phase is the stage where gradients are trans-
mitted across the network. In algorithms such as PowerSGD, this phase intertwines
communication with compression. Consequently, both aspects – communication and
compression – are considered when measuring the duration of this phase. The size of
the gradients remains constant regardless of batch size variations; therefore, the time
taken for this phase is primarily influenced by changes in the number of nodes involved.
As in reduction operations the nodes aggregate data following a tree structure, we ex-
pect the the communication time to scale logarithmically with respect to the number
of nodes. This is consistent with the results that we report in Figure 4.3.

Finally, in Figure 4.4, we present a comparative analysis of the time taken for a com-
plete training loop by SGD and PowerSGD. This comparison is made by varying the
number of nodes while maintaining a total batch size of 1024 on a VGG19 architecture.

39

4 – Contributions

2 4 6 8 10 12 14 16
Number of nodes

12

14

16

18

20

M
illi

se
co

nd
s

PowerSGD communication time - VGG19

2 4 6 8 10 12 14 16
Number of nodes

75

100

125

150

175

200

225

250

M
illi

se
co

nd
s

SGD communication time - VGG19

Figure 4.3. Left: Compression and communication time (in milliseconds) for Pow-
erSGD while varying the number of nodes (2, 4, 8, 16). Right: Communication time
(in milliseconds) for communicating the whole gradient without compression for the
same range of nodes. In both scenarios, the timing exhibits a logarithmic increase
with respect to the number of nodes. However, notice that PowerSGD is around
10x faster than standard SGD without compression.

Remarkably, PowerSGD demonstrates superior speed efficiency, outperforming even
with as few as two nodes. Surprisingly, the use of a greater number of nodes with data
parallelism in standard SGD results in a deceleration of the training process. This
slowdown is attributed primarily to the time consumed in communication, despite the
forward and backward passes benefit of the distributed workload.

4.2.3 Variants benchmark
We proceed now to study the PowerSGD variants that we introduced in Section 4.1.2.
Their implementations along with the training scripts are available on GitHub4.

Firstly, we investigate whether the error buffer accumulates over time and potentially
becomes outdated, affecting the training process. For this scope, we observe the dy-
namics of the error buffer while training a ResNet18 model on the CIFAR10 dataset.
For this analysis, we display the norm of the error buffer as it evolves throughout the
training period. This norm is a critical measure, indicating the magnitude of the error
buffer at various stages of training. The results are shown in Figure 4.5 along with a
graph depicting the loss during the same training period. Interestingly, we observe a
pattern where the norm of the error buffer initially increases as the training progresses.
This increase continues until the model reaches a point of convergence and finally de-
creases after. This decrease is attributed to the fact that the gradient approaches zero
as the model converges. This phenomenon raises important questions about the impact
of the error buffer in neural network training.

4https://github.com/younik/async-optim

40

4 – Contributions

0 50 100 150 200

powersgd, n=8

powersgd, n=4

powersgd, n=2

sgd, n=8

sgd, n=4

sgd, n=2
variable

forward

backward

communication

step

Times (batch size = 1024)

value

in
de

x

Figure 4.4. Comparison of the duration of various phases in the training loop between
PowerSGD and SGD when applied to a VGG19 model with a batch size of 1024. We
evaluate the performance across different numbers of nodes, specifically 2, 4, and 8. It
is observed that, unlike PowerSGD, SGD does not gain any significant advantages from
distributed data-parallel settings. Furthermore, PowerSGD consistently outperforms
SGD by achieving faster training times in all three tested scenarios.

Decaying error feedback

Given that error feedback seems to accumulate during training, we test the variants
were we decay it accordingly to λ, as explained in Section 4.1.2. As the method is
invariant to the number of nodes, we test on a single node compressing the gradient
as in the distributed setting. We focus on evaluating the performance of ResNet18
during its training phase on the CIFAR10 dataset, particularly examining the impact
of varying the hyperparameter λ within the range of 0 to 1. For each distinct value of
λ, we tune the learning rate to optimize the training process. We plot the results in
Figure 4.6. Our findings reveal a gradual and consistent improvement in the model’s
performance as λ increases from 0 to 1. Notably, the model achieves its best results at
λ = 1, which clearly indicates the positive influence of error feedback on the model’s
performance. This trend underscores the significance of error feedback in enhancing
the learning efficiency.

41

4 – Contributions

10 20 30 40 50
Epoch

10

20

30

40

50

60

Er
ro

r n
or

m

ResNet18 compression error (batch_size = 128, rank = 1)
with error feedback

10 20 30 40 50
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

ResNet18 loss (batch_size = 128, rank = 1)

with error feedback
without error feedback

Figure 4.5. Does error buffer become outdated? We investigate if an error buffer
accumulates and potentially becomes outdated training a ResNet18 on CIFAR10. On
the left, we show the norm of the error buffer during training. On the right, is the
loss during training. The norm of the error buffer increases during training until we
converge, and then it finally starts decreasing since the gradient is almost zero.

5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

ResNet18 loss (batch_size = 128, rank = 1)

lambda=0, lr=0.2
lambda=0.25, lr=0.2
lambda=0.5, lr=0.2
lambda=0.75, lr=0.2
lambda=0.9, lr=0.4
lambda=0.95, lr=0.2
lambda=0.98, lr=0.2
lambda=0.99, lr=0.2
lambda=1, lr=0.1

Figure 4.6. Loss of ResNet18 during training on CIFAR10. We test different values
for λ, from 0 to 1 and we tune the learning rate for each of them. The results show a
smooth transition from λ = 0 to λ = 1, where the latter achieves better results. This
shows that error feedback improves performance.

Nesterov error feedback

We continue by analyzing the performances of the Nesterov error feedback variant in-
troduced in Section 4.1.2. Our analysis focuses on the accuracy of a VGG19 network
applied to the CIFAR10 dataset, utilizing a total batch size of 1024 across 4 nodes.
As each node computes the gradient with different weight values, the method is sen-
sible to the number of nodes. We vary the hyperparameters λ and tune the learning
rate for each of them. We compare the method with plain PowerSGD and show the
results in Figure 4.7. The Nesterov error feedback variant with λ = 0.05 outperforms

42

4 – Contributions

PowerSGD during training; however, they both converge around the same value of
accuracy. Moreover, the Nesterov error feedback variant can be unstable with high
values of λ.

25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

VGG19 test accuracy (batch_size = 1024, rank = 1, nodes = 4)

powersgd lr=0.2
powersgd-nesterov-0.01 lr=0.1
powersgd-nesterov-0.05 lr=0.1
powersgd-nesterov-0.1 lr=0.1

Figure 4.7. Nesterov error feedback variant analysis using a VGG19 on CIFAR10,
using a total batch size of 1024 across 4 nodes. We plot the test accuracy over the
training epochs. The Nesterov error feedback variant with λ = 0.05 outperforms
PowerSGD; however, it can be unstable depending on λ.

Asynchronous communication

We now compare different algorithms: SGD, Asynchronous SGD, PowerSGD, and
two unique asynchronous variants of PowerSGD. These variants are distinguished
by their error transmission methods; the first variant transmits the entire error buffer,
while the second sends only a fraction (one-quarter) of it. With Asynchronous SGD, we
refer to a variant of SGD, where the algorithm starts the next forward and backward
passes while the gradient is communicated over the network, resulting in a one-step
delay of weight updates. To evaluate their performance, the test accuracy over time for
the VGG19 neural network architecture was plotted in Figure 4.8 using the CIFAR10
dataset, with a total batch size of 1024 across 4 nodes.

The study reveals that PowerSGD demonstrated a significant edge over traditional
SGD when the training time is taken into account. This shows that PowerSGD is
more efficient in reaching higher accuracy in a shorter period. Among the PowerSGD
variants, the adaptive asynchronous PowerSGD stood out, showing notable improve-
ments over the standard PowerSGD model. This indicates that reducing the error is
important to enhance learning efficiency. On the other hand, the non-adaptive variant
of PowerSGD, which communicates the entire error buffer, shows performance on par

43

4 – Contributions

with the standard SGD. This outcome could be attributed to the overhead caused by
the transmission of the full error buffer.

These findings highlight the potential of asynchronous methods in improving neu-
ral network training, especially in distributed environments. They also underscore
the importance of balancing communication overhead with computational efficiency to
optimize the performance of training.

0 250 500 750 1000 1250 1500 1750 2000
Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

VGG19 test accuracy on CIFAR10 (batch_size = 1024, rank = 1)

sgd
async-sgd
powersgd
powersgd-async
powersgd-async-cut-4

Figure 4.8. Comparison of SGD, Asynchronous SGD, PowerSGD, and two asyn-
chronous variants of PowerSGD. The first variant transmits the full error, while
the second sends only a quarter of it. We plotted the test accuracy over time for
VGG19 on the CIFAR10 dataset, utilizing 4 nodes. The results showed that Pow-
erSGD significantly outperforms SGD when training time is considered. Among the
variants, the adaptive asynchronous PowerSGD showed further improvements over
the standard PowerSGD. In contrast, the non-adaptive variant, which communicates
the entire error buffer, displayed performance comparable to SGD, as its process is
hampered by full error communication.

4.2.4 Discussion of results
We conducted a comprehensive analysis to determine how training phase durations
scale within a typical setup, such as the Google Cloud Platform. This investigation
enables the evaluation of the efficacy of gradient compression algorithms across various
contexts and facilitates the identification of the break-even point for model scaling.

44

4 – Contributions

Our study uncovered that, contrary to expectations, the training speed of a VGG19
model does not improve significantly in a distributed setting. However, when employ-
ing PowerSGD for gradient compression, we observed notable benefits from scaling
the model across multiple devices. Moreover, the efficiency of PowerSGD directly
influences the break-even point, with faster compression leading to a higher break-even
threshold.

Thus, we analyzed the efficiency of PowerSGD, identifying the orthogonalization
process as a primary bottleneck. To address this, we conducted a comparative analysis
between two orthogonalization techniques: the Gram-Schmidt algorithm and the QR
factorization. Our experimental results unveiled a notable advantage of QR factoriza-
tion over Gram-Schmidt orthogonalization when a SIMD hardware is available and the
approximation rank is at least 4. With these findings, we modify the PyTorch code-
base to use the faster orthogonalization technique depending on the setting, making
the PowerSGD implementation around 20 times faster since version 1.11.

Furthermore, we’ve identified instances where error feedback accumulates, indicating
potential for improving compression accuracy. This observation motivated the devel-
opment and examination of novel variants of PowerSGD. Notably, the Nesterov error
feedback variant has demonstrated superior performance in terms of test metrics dur-
ing training. However, its sensitivity to the hyperparameter λ can result in training
instability. Remarkably, our asynchronous variations, which involve parallel commu-
nication of the error buffer alongside other training phases, have proven effective in
mitigating error buffer accumulation without sacrificing time efficiency. In our exper-
iments, we observed that training with asynchronous communication converges about
twice as fast as without it in comparison to standard PowerSGD.

45

4 – Contributions

shape Gram-Schmidt torch.qr custom GS/custom torch/custom
(2, 256) 124 11087 36 3 308
(2, 512) 128 11176 39 3 287
(2, 1024) 120 10923 35 3 312
(2, 2048) 126 12328 52 2 237
(2, 4096) 132 11774 50 3 235
(4, 256) 302 11671 52 6 224
(4, 512) 301 10497 51 6 206
(4, 1024) 346 11793 54 6 218
(4, 2048) 466 12098 51 9 237
(4, 4096) 461 12448 51 9 244
(8, 256) 938 12351 51 18 242
(8, 512) 954 12177 56 17 217
(8, 1024) 669 11954 51 13 234
(8, 2048) 650 12204 62 10 197
(8, 4096) 807 12500 78 10 160
(16, 256) 1366 12214 67 20 182
(16, 512) 1321 11780 73 18 161
(16, 1024) 1320 12503 89 15 140
(16, 2048) 1332 12832 113 12 114
(16, 4096) 1337 13296 144 9 92
(32, 256) 3342 14109 123 27 115
(32, 512) 2892 11872 135 21 88
(32, 1024) 2703 15903 167 16 95
(32, 2048) 2727 14239 216 13 66
(32, 4096) 2986 18132 278 11 65
(64, 256) 5991 14093 234 26 60
(64, 512) 5438 11562 259 21 45
(64, 1024) 6224 13836 322 19 43
(64, 2048) 5440 14284 429 13 33
(64, 4096) 6446 12940 562 11 23
(128, 256) 11948 15023 460 26 33
(128, 512) 11719 16406 517 23 32
(128, 1024) 11729 18203 673 17 27
(128, 2048) 11657 17731 911 13 19
(128, 4096) 12248 27551 1262 10 22

Table 4.1. Orthogonalization times in microseconds for different shapes and algo-
rithms. The Gram-Schimdt method is written in PyTorch and was the default choice
for PowerSGD. torch.qr refers to the QR function in PyTorch before the 1.9 release
and custom is our CUDA kernel. Our algorithm is up to 27 times faster than the
Gram-Schmidt method and up to 300 times faster than PyTorch’s QR implementation.

46

Chapter 5

Conclusions

We conclude the dissertation with a summary and possible extensions of our work.

5.1 Summary
In this dissertation, we have presented a comprehensive study of the PowerSGD com-
pression algorithm, a critical component in the distributed training of deep learning
models. Our work has not only contributed to the theoretical understanding of this
compression algorithms in distributed settings but has also yielded practical improve-
ments in training efficiency, as demonstrated through our experimental results.

After a brief introduction in Chapter 1, we present important concepts in machine
learning in Chapter 2, focusing on distributed learning and the engineering challenges
that come with it. In particular, we introduced different types of training parallelism,
how to implement them in PyTorch, and the role of compression algorithms distributed
training. In Chapter 3 we contextualize our work, introducing other compression algo-
rithms and a practical work that uses PowerSGD[25] to scale training of big models.

Finally, in Chapter 4, we improve PowerSGD on several aspects. . After contextual-
izing our work in Chapter 3, we improve the popular PowerSGD algorithm, making
it more efficient and accurate. Specifically, our contributions can be summarized as
follows:

PyTorch 1.11 contribution: we successfully optimized PyTorch’s PowerSGD im-
plementation, transitioning from the Gram-Schmidt to QR factorization method. This
change, coupled with the development of a custom CUDA kernel for orthogonalization,
resulted in a remarkable increase in compression speed, making PowerSGD around 20
times faster.

Enhancement of PowerSGD accuracy: we conceptualized and implemented sev-
eral innovative variants of PowerSGD that try to deal with the accumulation of the

47

5 – Conclusions

error buffer. These include decaying error feedback, Nesterov error feedback, and asyn-
chronous communication methods, each addressing specific challenges in the training
process. Notably, the latter two methods demonstrated superior performance, making
training convergence twice as fast compared to the standard PowerSGD.

Distributed setting analysis: We conducted a study where we examined different
distributed settings by simulating various scenarios with different numbers of nodes,
batch sizes, and network latencies. This comprehensive approach helped us gain in-
sights into the ideal conditions for scaling up the number of nodes while also identifying
situations where scaling may not be advantageous. Notably, training a network like
VGG19 does not benefit from distributed settings and becomes slower when increasing
the number of nodes on the Google Cloud Platform. However, by using the optimized
version of PowerSGD, we can scale the model and take advantage of utilizing mul-
tiple devices.

In conclusion, our contributions to optimizing the PowerSGD algorithm represent a
meaningful step forward in the pursuit of more efficient and scalable deep learning
training methodologies. As the demand for larger and more complex models continues
to grow, the importance of such advancements becomes more evident. The integration
of our optimizations into the PyTorch codebase aims to have a direct impact on the
broader deep learning community. We hope that our work will not only benefit current
practitioners in the field but also inspire further research in this vital area of deep
learning.

5.2 Future work
We highlight here few directions of improvements over our work.

Save error in gradient memory: To enhance the memory efficiency of PowerSGD,
a possible strategy involves eliminating the error buffer and storing the error directly
in the gradient memory. Implementing this approach can be done with custom coding.
However, integrating it into PyTorch demands careful API design because the standard
practice in PyTorch training loops involves calling the optimizer’s zero_grad, which
resets the gradient memory.

Parallelize communication: In the feedforward and backpropagation phases, the
communication channel remains idle, which inspired the asynchronous methods de-
tailed in Section 4.1.2. Conducting an exhaustive analysis of the advantages and lim-
itations of these methods could inform potential modifications to PyTorch. However,
overlapping different phases in PyTorch presents challenges. For instance, during back-
propagation, it is feasible to start transmitting the gradients of each layer as soon as
they are computed. Yet, in practice, the communication process commences only after
the completion of backpropagation. This suggests an area for improvement in PyTorch

48

5 – Conclusions

efficiency.

Study PowerSGD effect: PowerSGD modifies the learning dynamics by project-
ing the gradient into a lower-dimensional space. This alteration raises several research
questions. For instance, it prompts an investigation into the specific impacts on the
learning dynamics. Additionally, there is a need to explore whether this dimensional re-
duction can function as a regularizer, potentially enhancing the model’s generalization
capabilities.

49

Bibliography

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot
learners,” in Advances in Neural Information Processing Systems (H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33, pp. 1877–1901,
Curran Associates, Inc., 2020.

[2] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,”
arXiv preprint arXiv:2001.08361, 2020.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a. Ranzato,
A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng, “Large scale distributed deep
networks,” in Advances in Neural Information Processing Systems (F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, eds.), vol. 25, Curran Associates, Inc.,
2012.

[4] F. Iandola, M. Moskewicz, K. Ashraf, and K. Keutzer, “Firecaffe: Near-linear
acceleration of deep neural network training on compute clusters,” pp. 2592–2600,
06 2016.

[5] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient descent
and application to data-parallel distributed training of speech dnns,” in Interspeech
2014, September 2014.

[6] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signsgd:
compressed optimisation for non-convex problems,” in International Conference
on Machine Learning, 2018.

[7] N. Strom, “Scalable distributed dnn training using commodity gpu cloud comput-
ing,” in Interspeech, 2015.

[8] T. Vogels, S. P. Karimireddy, and M. Jaggi, “PowerSGD: Practical Low-Rank
Gradient Compression for Distributed Optimization,” in NeurIPS 2019 - Advances
in Neural Information Processing Systems, 2019.

50

BIBLIOGRAPHY

[9] H. Askr, E. Elgeldawi, H. Aboul Ella, Y. A. M. M. Elshaier, M. M. Gomaa, and
A. E. Hassanien, “Deep learning in drug discovery: an integrative review and
future challenges.,” Artif Intell Rev, vol. 56, no. 7, pp. 5975–6037, 2023.

[10] Q. Rao and J. Frtunikj, “Deep learning for self-driving cars: Chances and chal-
lenges,” in 2018 IEEE/ACM 1st International Workshop on Software Engineering
for AI in Autonomous Systems (SEFAIAS), pp. 35–38, 2018.

[11] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet,
S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland,
O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, and P. Battaglia, “Learning skillful
medium-range global weather forecasting,” Science, vol. 382, no. 6677, pp. 1416–
1421, 2023.

[12] S. Akhtar, M. Adeel, M. Iqbal, A. Namoun, A. Tufail, and K.-H. Kim, “Deep
learning methods utilization in electric power systems,” Energy Reports, vol. 10,
pp. 2138–2151, 2023.

[13] N. Banús, I. Boada, P. Xiberta, P. Toldrà, and N. Bustins, “Deep learning for the
quality control of thermoforming food packages,” Scientific Reports, vol. 11, no. 1,
p. 21887, 2021.

[14] Z. Kang, C. Catal, and B. Tekinerdogan, “Machine learning applications in produc-
tion lines: A systematic literature review,” Computers & Industrial Engineering,
vol. 149, p. 106773, 2020.

[15] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

[16] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA,
USA: MIT Press, 2016. http://www.deeplearningbook.org.

[17] Hecht-Nielsen, “Theory of the backpropagation neural network,” in International
1989 Joint Conference on Neural Networks, pp. 593–605 vol.1, 1989.

[18] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic
differentiation in machine learning: a survey,” Journal of Machine Learning Re-
search, vol. 18, no. 153, pp. 1–43, 2018.

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
in Proceedings of The 33rd International Conference on Machine Learning (M. F.
Balcan and K. Q. Weinberger, eds.), vol. 48 of Proceedings of Machine Learning
Research, (New York, New York, USA), pp. 1928–1937, PMLR, 20–22 Jun 2016.

[20] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,
V. Firoiu, T. Harley, I. Dunning, et al., “Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures,” in International conference on
machine learning, pp. 1407–1416, PMLR, 2018.

51

http://www.deeplearningbook.org

BIBLIOGRAPHY

[21] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated learning
of deep networks using model averaging,” CoRR, vol. abs/1602.05629, 2016.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in
Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035,
Curran Associates, Inc., 2019.

[23] G. Gur-Ari, D. A. Roberts, and E. Dyer, “Gradient descent happens in a tiny
subspace,” CoRR, vol. abs/1812.04754, 2018.

[24] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error feedback fixes
SignSGD and other gradient compression schemes,” in ICML - Proceedings of the
36th International Conference on Machine Learning, pp. 3252–3261, 2019.

[25] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and
I. Sutskever, “Zero-shot text-to-image generation,” in Proceedings of the 38th
International Conference on Machine Learning (M. Meila and T. Zhang, eds.),
vol. 139 of Proceedings of Machine Learning Research, pp. 8821–8831, PMLR,
18–24 Jul 2021.

[26] S. Hochreiter and J. Schmidhuber, “Flat minima,” Neural computation, vol. 9,
no. 1, pp. 1–42, 1997.

52

Appendix

53

Appendix A

CUDA basics

A.1 Introduction

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
application programming interface model created by NVIDIA. It allows software de-
velopers to use NVIDIA GPUs for general-purpose processing. The CUDA platform is
designed to work with programming languages such as C++. This enables developers
to accelerate compute-intensive applications by using the power of GPUs for paral-
lelizable tasks. CUDA provides a range of tools and libraries that simplify developing
software that runs on NVIDIA GPUs.

CUDA code is typically written in .cu files, which are a mix of C++ code and CUDA-
specific extensions. The CUDA kernels, i.e. the functions that run on the GPU, are
denoted by the __global__ keyword. CUDA kernels are launched from the host code
with a specific execution configuration that defines the grid and block dimensions. So,
let’s define these important concepts:

Grid: A grid is the collection of blocks that execute a kernel. It’s an abstraction
to organize CUDA threads in the GPU. Each block within the grid can be executed
independently and can contain a different number of threads.

Block: A block is a group of threads that execute the same kernel and share the same
memory space. Threads within a block can synchronize their execution and share data
using shared memory. The number of threads per block is a key performance-tuning
parameter in CUDA programming.

Warps: A warp is the basic unit of execution in an NVIDIA GPU. It consists of
a group of 32 threads that are executed in lockstep, i.e. at the same clock time. When
a CUDA program is run, the blocks are divided into warps, which are scheduled and
executed independently. The warp execution model exploits thread-level parallelism
and is fundamental to achieving high performance in CUDA applications.

54

A – CUDA basics

The execution model of CUDA is designed to achieve massive parallelism, as thou-
sands of threads can run in parallel. NVIDIA GPUs are built around a scalable array
of multithreaded Streaming Multiprocessors (SMs). When a CUDA program on the
host CPU invokes a kernel grid, the blocks of the grid are enumerated and distributed
to SMs with available execution capacity. The threads of a block execute concurrently
on one SM, and multiple blocks can execute concurrently on one SM. As blocks termi-
nate, new blocks are launched on the vacated SMs.

Figure A.1. Diagram illustrating the hierarchy of GPU execution models: individual
threads executed by cores, thread blocks by a streaming multiprocessor, and kernel
grids by the complete GPU unit. Image from WikiMedia.

To illustrate the CUDA syntax, let’s examine the following example:

#include <cuda_runtime.h>
#include <stdio.h>

// CUDA kernel
__global__ void setToZeroKernel(int *array) {

// each thread has its own value for blockDim, blockIdx,
// and threadIdx, each possibly 3-dimensional with x, y, z
// In this case blockDim.x == 0, blockIdx.x == 0,
// threadIdx.x spans from 0 to 255
int i = blockDim.x * blockIdx.x + threadIdx.x;

array[i] = 0;
}

int main() {

55

A – CUDA basics

const int numElements = 256;

// Allocate device memory
int *d_array = NULL;
size_t size = numElements * sizeof(int);
cudaMalloc((void **)&d_array, size);

// Launch the kernel
setToZeroKernel<<<1, numElements>>>(d_array);

// Free device memory
cudaFree(d_array);

return 0;
}

A.2 Performance considerations
When developing applications using CUDA, it’s crucial to consider various factors that
can significantly impact the performance of your program. We list here some key per-
formance considerations:

Memory hierarchy: Understand the different memory types and their access speeds:

• Global Memory: Accessible by all threads, with relatively high access latency.

• Shared Memory: On-chip and much faster than global memory, accessible by all
threads within the same block.

• Registers: Fastest memory, private to each thread.

Thus, optimize memory usage by utilizing faster memory wherever possible.

Memory coalescing: Ensure that memory accesses are coalesced. This means that
consecutive threads should access consecutive memory addresses to maximize through-
put.

Reduce memory transfer overheads: Minimize data transfers between the host
and the device, as these can be costly.

Maximize occupancy: Aim for high occupancy to ensure a large number of warps
are active. This helps in hiding latency and improves utilization of the GPU’s resources.

Minimize memory usage: Be aware of the limitations in the number of registers

56

A – CUDA basics

and shared memory size. The number of threads that can run simultaneously is limited
by the amount of registers in the GPU. Excessive usage of these resources can reduce
occupancy.

Optimize block size: Choose an appropriate block size for kernel launches. A bal-
ance must be struck between having enough threads to achieve full occupancy and not
having so many that they contend for resources.

Minimize warp divergence: Ensure that threads within a warp do not diverge
significantly, for example taking two different branches of an if-else statement. This
will make some warp idling while others are executing different instructions.

Balance workload: Distribute the workload evenly across threads.

A.3 Reduction pattern
To provide an educational illustration, we will develop a reduction kernel. This type of
function is common when we need to aggregate data across multiple threads. A classic
use case for this is calculating the dot product.

Let’s start by defining the kernel structure and initializing the shared memory used for
reduction:

__global__ void dotProductKernel(float *a, float *b, float *c, int N) {
__shared__ float cache[threadIdx.x];

}

Then, let’s incorporate the code that calculates the product of corresponding elements
on a per-thread basis:

int tid = threadIdx.x + blockIdx.x * blockDim.x;

float temp = 0;
while (tid < N) {

temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;

}

This allows each thread to operate on multiple elements if the vector is larger than
the total number of threads. Moreover, it allows to launch of the kernel with multiple
blocks.

Now, let’s store intermediate results in the shared memory and synchronize threads to
ensure all computations are done before reduction.

57

A – CUDA basics

cache[cacheIndex] = temp;
__syncthreads();

Now, we can perform the block-wise reduction:

int i = blockDim.x / 2;
while (i != 0) {

if (threadIdx.x < i)
cache[threadIdx.x] += cache[threadIdx.x + i];

__syncthreads();
i /= 2;

}

And, finally, the block-wise reduction using atomic operation:

if (cacheIndex == 0)
atomicAdd(c, cache[0]);

While the code can be optimized further, for example using warp-level primitives, this
code provides a starting point for understanding the reduction pattern. To enhance
computational efficiency, we can tailor the number of threads per block and the corre-
sponding number of blocks to the specific hardware and vector dimensions in use. This
optimization ensures the most effective allocation of computational resources, leading
to improved performance in processing tasks.

A.4 QR factorization implementation
We comment now on optimizations on our QR factorization code.

First, to write a custom dot product function relying on cub library for reduction:

#include <cub/cub.cuh>

template <int BLOCK_THREADS, typename scalar_t>
__device__ __forceinline__
scalar_t dot(scalar_t *a, scalar_t *b, uint length){

typedef cub::BlockReduce<scalar_t, BLOCK_THREADS,
cub::BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY> BlockReduce;
__shared__ typename BlockReduce::TempStorage tmp_storage;

int tx = threadIdx.x;
uint unroll = ceil((float)length / (float)BLOCK_THREADS);
uint idx = (tx & -32u)*unroll + (tx & 31);

scalar_t local_prod = 0;
for (uint i = 0; i < unroll; ++i){

58

A – CUDA basics

local_prod+= (idx<length)? a[idx]*b[idx] : (scalar_t)0;
idx += 32;

}

scalar_t reduce = BlockReduce(tmp_storage).Sum(local_prod);

__shared__ scalar_t dot;
if (tx == 0)

dot = reduce;
__syncthreads();

return dot;
}

Notice how we compute the local product of each thread: in order to optimize memory
access, we make sure warp access to a contiguous memory, as shown in Figure A.2.

Figure A.2. Illustration of the warp-unrolling technique to optimize memory access.

Moreover, as we needed to synchronize different blocks while constructing the R matrix,
we developed a custom barrier mechanism:

__device__ __forceinline__
void wait_barrier(int* barrier, int target){

if (threadIdx.x == 0){
int counter;
do {

asm volatile (
"ld.relaxed.gpu.global.s32 %0, [%1];" :
"=r"(counter): "l"(barrier));

}
while (counter < target);

}
__syncthreads();

}

59

A – CUDA basics

__device__ __forceinline__
void set_barrier(int* barrier, int value){

if(threadIdx.x == 0)
asm volatile ("st.global.cg.s32 [%0], %1;" ::
"l"(barrier), "r"(value));

}

The wait_barrier function waits until the value of the barrier is greater or equal to
the target. The synchronization logic is executed only by the first thread in the block,
which continuously reads the value of the barrier variable using the assembly instruc-
tion ld.relaxed.gpu.global.s32.

The set_barrier is used to set the value of the barrier variable. Again, only the
first thread in the block performs the action, which is writing the given value into the
barrier variable using the assembly instruction st.global.cg.s32.

60

Appendix B

PyTorch internals

B.1 Repository structure
This chapter delves into the structure of PyTorch’s repository, focusing on the aten,
c10, and torch directories, each of which plays a crucial role in the library’s function-
ality.

B.1.1 torch
The torch directory is the face of PyTorch that Python users interact with. It pro-
vides higher-level functions, neural network layers, and optimization algorithms. Key
subdirectories include:

nn: This subdirectory is crucial for building neural network models in PyTorch. It con-
tains predefined layers like convolutional, recurrent, linear, and dropout layers, which
are the building blocks of most neural network architectures. Beyond layers, nn also
offers a collection of activation functions (e.g., ReLU, Sigmoid), loss functions (e.g.,
CrossEntropyLoss, MSELoss), and other utilities necessary for constructing and man-
aging neural networks.

optim: This directory contains various optimization algorithms like SGD, Adam, RM-
Sprop, which are used to update the weights of the network during training. The com-
mon interface allows users to easily switch between different optimization strategies.

autograd: Autograd is a core feature of PyTorch that provides automatic differenti-
ation for all operations on tensors. This is essential for implementing the backprop-
agation algorithm. It keeps track of the computation graph, and when a backward
pass is triggered, it automatically computes the gradients for each tensor involved in
the computation, facilitating the optimization process. This feature enables dynamic
computation graphs, meaning the graph can change from iteration to iteration, offering
flexibility in model design.

61

B – PyTorch internals

utils: This subdirectory offers a variety of utility functions that support different
aspects of using PyTorch. It includes data loading and preprocessing utilities, which
are essential for feeding data into neural networks. It also provides functions for model
serialization and deserialization, which are useful for saving and loading models. Other
utilities include helper functions for tensor operations, model visualization, and more,
enhancing the ease of use of PyTorch.

jit: Just In Time (JIT) compilation in PyTorch refers to a dynamic runtime pro-
cess that significantly optimizes the execution of PyTorch models. The traditional
execution of Python code involves interpreting one instruction at a time, which can
be inefficient. The JIT compiler in PyTorch tackles this by translating portions of
the model into a more efficient, low-level machine code before execution. This process
involves two primary components: tracing and scripting. Tracing is used on models
where the control flow (like loops and conditionals) depends on the input data, and
it records the operations performed when the model is run with sample data. Script-
ing, on the other hand, converts Python code, including control flow, into TorchScript,
a static graph representation that provides performance improvements through opti-
mized execution. This JIT compilation process is crucial for real-time applications and
high-performance computing tasks where speed and efficiency are paramount.

distributed: The distributed module provides functionalities for distributed train-
ing. It includes different backends for communications, like NCCL and MPI, and
offers tools for both data parallelism and model parallelism. The core implementa-
tions of these functionalities are primarily written in C++ and are located in the
torch/csrc/distributed/c10d directory. Within this directory, the C++ codebases
are seamlessly integrated with Python, allowing for a user-friendly interface. The sub-
directory algorithms provides implementations of compression algorithms, including
PowerSGD.

B.1.2 ATen
ATen is the core tensor library in PyTorch. It stands for "A Tensor Library" and pro-
vides the foundational data structures and operations for tensors. ATen provides an
abstraction layer for the underlying computational device, whether it’s a CPU or GPU,
facilitating backend-specific implementations of tensor operations. This approach op-
timizes performance across a range of hardware platforms.

The Tensor class is the most fundamental in ATen, representing a multi-dimensional
array. It’s the core data structure used for all mathematical operations. This class
allows for creating tensors, manipulating their shapes, and performing many opera-
tions. PyTorch employs reference counting as a sophisticated mechanism to efficiently
handle and manipulate tensors. When operations like view() are invoked on a tensor,
PyTorch doesn’t immediately allocate new memory for the resultant tensor. Instead,

62

B – PyTorch internals

it creates a new tensor object that shares the same underlying data storage as the orig-
inal tensor, thereby increasing its reference count. When a Tensor is no longer needed
and is garbage collected, the reference count of its storage decreases. The underlying
storage is freed only when the reference count drops to zero, indicating no more tensors
are referencing that particular block of memory. This shared storage mechanism is effi-
cient, as it avoids unnecessary data duplication, reducing memory usage and enhancing
performance. However, since multiple tensors can share the same data, modifications
to the data through one tensor view are reflected in all other views, requiring careful
consideration while manipulating tensors to avoid unintended side effects.

B.2 Operation bindings
In PyTorch, operation bindings refer to the process of linking high-level Python code to
low-level C++ implementations. This binding ensures efficient execution of tensor op-
erations. This is handled by the Dispatcher which acts as an abstraction layer, allowing
users to write code without worrying about the underlying hardware. Depending on
the device type (CPU, GPU) and data type (float, int), it dynamically binds Python
functions to their C++ counterparts.

Functions are registered with the Dispatcher, along with their metadata (such as the
device and data type they support). When a PyTorch function is called in Python,
the call is directed to the Dispatcher. The Dispatcher looks up the registered functions
and selects the appropriate implementation based on the current context.

B.2.1 Adding operations to PyTorch

Let’s suppose you wrote a custom tensor operation. How to add the operation to
PyTorch, to be usable in Python?

Method 1: Runtime extension loading

A simple way to use a custom C++ operation in PyTorch is to load the module using
torch.utils.cpp_extension.load. After writing the custom C++ code, we can load
it with the following code:

from torch.utils.cpp_extension import load

my_extension = load(
name=’example_extension’,
sources=[’path/to/my_extension.cpp’],
extra_cflags=[’-O2’],

)

63

B – PyTorch internals

where extra_cflags gives the additional flags to pass to the C++ compiler and
sources the path to our custom C++ code. After running the code above, the function
defined in our C++ module is now usable:

my_extension.function_name(...)

where function_name is the name of the function defined in my_extension.cpp.

Method 2: Adding to native functions Integrating an operation as a native func-
tion within PyTorch makes it accessible directly under the torch namespace. Addition-
ally, this operation is compiled as part of the PyTorch installation process. However,
this necessitates modifications to the PyTorch codebase and requires compiling the
library from the source. For those looking to contribute new tensor operations to Py-
Torch, this is the standard procedure to follow.

The first thing to do is declare your function in native_functions.yaml. This file
serves as the central registry for native functions in ATen. The entry should follow this
format:

- func: func_name(ArgType arg0[=default], ...) -> Return
python_module: linalg
variants: function, method
dispatch:

CPU: func_cpu
CUDA: func_cuda

where:
- func is the function signature with name, arguments, and return type. Common
types include ‘Tensor‘, ‘int[]‘, ‘float‘, ‘bool‘, and ‘str‘. Optional arguments and default
values are also supported. The signature must match the signature declared in the
C++ file.
- python_module defines in which Python module the function will be available. If
not specified, the function will be accessible from torch. - variants specifies if the
function is a Tensor method, function, or both.
- dispatch maps backends (e.g., CPU, CUDA) to specific implementation functions.

If the function is not automatically differentiable, i.e. it doesn’t rely only on other
differentiable torch functions, you need to write a corresponding backward function
and add an entry in tools/autograd/derivatives.yaml.

After doing these modifications and placing our code in the appropriate folder, we
can build PyTorch from the source; Python bindings are automatically generated.

64

	Introduction
	Dissertation organization

	Background
	Deep learning
	What is learning?
	Gradient-based learning
	Artificial neural networks
	Computing the gradient of a neural network
	Training phases

	Distributed learning
	Data parallelism
	Model parallelism
	Synchronous vs. asynchronous methods
	Communication primitives
	Federated learning
	Compression algorithms
	PowerSGD

	PyTorch
	Autograd: automatic differentiation
	Building neural networks
	Training the network
	Distributed package
	PyTorch's PowerSGD

	Orthogonalization algorithms
	Gram-Schmidt
	QR decomposition

	Related work
	Compression algorithms
	The gradient is limited in rank
	Error feedback
	DALL-E: practical use of PowerSGD

	Contributions
	Novel approaches
	Optimizing PowerSGD implementation
	PowerSGD variants

	Experimental results
	Timing orthogonalization methods
	Timing training phases
	Variants benchmark
	Discussion of results

	Conclusions
	Summary
	Future work

	Bibliography
	CUDA basics
	Introduction
	Performance considerations
	Reduction pattern
	QR factorization implementation

	PyTorch internals
	Repository structure
	torch
	ATen

	Operation bindings
	Adding operations to PyTorch

