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Introduction

In today’s educational landscape, we face a number of significant challenges in
analyzing, understanding, assessing and intervening in the student learning proc-
ess [1][2][3][4]. One of the main dilemmas is the difficulty in recognizing and
addressing problems that students may encounter in the learning environment, in
the learning path and in their individual development [5][6].

The first obstacle is the lack of clarity and methodologies on how to detect
early signs of problems in student learning. It is not always immediate to recog-
nize when a student is experiencing difficulties or dissatisfaction with the learning
environment or the learning path they are following [7]. Moreover, even if we can
identify these challenges, it can be equally complex to determine where and how
to intervene to effectively support the student [6].

However, if we could profile the learning paths or even just the current learning
state of students and understand what factors they are characterized by, but more
importantly influenced by, we might be able to intervene in a preventive manner
to avoid phenomena such as low achievement or student dropout in the future
[8][9][10].

Benefiting, of course, would not only be the students, who would be supported
and helped even before any problems and difficulties arise during the learning
path, but also the teachers who could, for example, personalize curricula for stu-
dents [11]. In addition to these two main actors in the school system, families [12],
as well as school principals and staff [13], but also those who design educational
pathways and assessment tools for learning paths could benefit enormously from
any opportunity for greater understanding of learning states and paths [14][15].

This thesis work aims to make an exploratory analysis of the responses of
fifth-grade students of the province of Forlı̀-Cesena to the INVALSI test in math-
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ii INTRODUCTION

ematics, a national standardized test used in Italy to assess students’ proficiency
in basic subjects, particularly mathematics, Italian and English, with the goal of
identifying possible common factors in the performance of the test that may be
useful to a domain expert for a more in-depth analysis of students’ learning state
at the time of the test. The INVALSI test is structured to include multiple-choice
questions, open-ended questions and problems that assess students’ understand-
ing, application and analysis of knowledge and skills. Test results are used to
monitor student progress over time, identify learning trends and provide useful
information for developing educational policies [16].

Each student’s answers are modeled with two different types of representa-
tions: the first is a directed and weighted graph [17] that connects the different test
questions based on the correctness of the student’s answers and the dimensions in
common between the questions, i.e. whether they are both algebra or geometry
questions for example; the second representation is a spanning tree [17], i.e. a
version of the graph just described with the minimum number of edges and with-
out cycles [17], which was developed with two variants of the depth-first strategy
[18].

In addition, some global metrics were calculated on these three representa-
tions, the graphs and the two versions of spanning trees, to get a general idea of
some characteristics of students’ performance on the test, such as understanding
whether students are more proficient in some dimensions than others.

The three representations and the metrics computed on them were then an-
alyzed with three different clustering algorithms [19], k-Means [20], DBSCAN
[21], and Gaussian Mixture Model [22], to try to partition the students in order to
identify which factors characterize or influence each cluster.

What emerges from this work is that there is no direct correlation between
the clustering results and possible student dropout in the future, however, from
the clustering results on the metrics of the various representations, metrics can be
selected that can efficiently partition the data and that could be a useful tool for
any domain experts to understand what factors characterize the performance of
the test and consequently the student’s current learning state.

This paper is organized as follows: chapter 1 proposes an extensive literature
review on the effectiveness of clustering and non-clustering techniques in edu-
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cation, chapter 2 describes the proposed method, including the various ways in
which the data were represented and the clustering techniques used for analysis,
chapter 3 reports the results, and chapter 4 discusses the validity and limitations
of the results.
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Chapter 1

Literature review

Extensive research has been carried out over the years in an attempt to profile
the learning path of students with the dual purpose of identifying where students
may encounter difficulties and using this information to predict their academic
future [23].

Students’ performance and learning paths over time have been analysed with
a lot of different machine learning and deep learning techniques. For example, lot
of research works tested different decision tree algorithms to predict students’ per-
formance. Decision tree algorithms are a family of machine learning algorithms,
whose main goal is to create a predictive model that can be represented in the form
of a decision tree structure, where each internal node represents a question about
an attribute of the data, each branch output from that node represents a possible an-
swer to that question, and each leaf represents a class or output value. Through an
iterative process, the algorithm tries to divide the dataset into increasingly homo-
geneous subsets until it reaches a stopping condition, such as a maximum depth of
the tree or sufficient purity of the subsets. During the tree creation phase, pruning
techniques could be adopted to simplify the structure and avoid overfitting, which
occurs when the tree fits too closely to the training data and does not generalize
well to new data. This question-and-answer structure makes decision trees highly
interpretable, allowing users to easily understand the decision process followed
by the model [24]. In [25] four different decision tree algorithms (J48, NBtree,
Reptree and Simple CART) were compared, in [26] and [27] C4.5, ID3 and CART
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2 1. Literature review

decision tree algorithms were used, in [28] decision trees were applied to predict
students drop out and identify success factors, in [29] and [30] four decision tree
algorithms (C4.5 Decision Tree, ID3 Decision Tree, CART Decision Tree and
CHAID Decision Tree) were studied, in [31] the ID3 algorithm was tested on stu-
dents’ performance data, in [32] weighted ID3, a new algorithm based on ID3, is
compared with J48 algorithm and Naive Bayes to predict students’ performance,
in [33] students’ interaction data from online learning systems are analyzed by
using a decision tree, generated with C4.5 algorithm, and production rules to find
symptoms of low performance.

Association rules have also been experimented. Association rules are a data
mining technique used to discover interesting relationships between variables within
large datasets. Specifically, they identify frequent associations between elements
of a set of transactions or events. An association rule is expressed as ”if A then B,”
where A, the antecedent, and B, the consequent, are sets of elements or attributes
and the rule indicates that the presence of A is associated with the presence of B
with some probability or frequency. The support of an association rule indicates
how frequently the association occurs, while the confidence indicates the condi-
tional probability of the presence of B given that A is present [34]. In [35] the
Apriori algorithm is used to extract association rules from each class and subse-
quently analyze the given data to classify the students’ performance, while in [36]
the Apriori algorithm is used to mine association rules to find out the correlation
between courses and the factors that lead to the high or low grades. In [37] an im-
proved version of an existing mining algorithm based on MapReduce is proposed
to analyze students’ behavioral data and academic performance.

A lot of research works have also compared all these different methods. In
[38] various ML methods, decision tree J48, Classification and Regression Tree
(CART), JRIP Decision Rules, Gradient Boosting Trees (GBT) and Naive Bayes
Classifier (NBC) are tested on students data from an online course. In [39] three
selected classification methods, Naive Bayes, Rule Based and Decision Tree, were
compared to predict students’ performance from students background informa-
tion. In [40] students’ data is analyzed with two rule learners (OneR and JRip),
a decision tree classifier (J48), two popular Bayes classifiers (Naive Bayes and
BayesNet) and a Nearest Neighbour classifier (IBk) to predict their performance.
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In [41] and [42] students’ data are evaluated with k-Means and a decision tree
to study the main attributes that may affect the performance of students. In [43]
association rules, J48 decision tree and EM algorithm were tested on students’
academic grades.

A few tests have also been conducted with more complex algorithms like neu-
ral networks. Neural networks are computational models inspired by the functioning
of the human brain. These models consist of a set of computational units called
neurons organized in layers, which are connected to each other through weighted
connections. Neural networks are able to learn from data by adapting connec-
tion weights in response to the input received. Each neuron receives an input from
neurons in previous layers or from external inputs, processes that input through an
activation function, and transmits the output to neurons in subsequent layers. The
ability of neural networks to learn from data makes them extremely flexible and
suitable for a wide range of data processing and analysis problems [44]. In [45]
Smooth Support Vector Machine (SSVM) was tested to predict students’ perfor-
mance from psychometric factors like interest and study behavior. In [46] Multi-
layer Perceptron (MLP), Support Vector Machines (SVM), and Extreme Learning
Machine (ELM) algorithms are applied to students’ data to predict their perfor-
mance.

Among all the techniques used for grouping and profiling students’ learning
paths clustering is one of the most commonly used [47][48][49]. Clustering, the
main methodology for performing unsupervised learning, aims to partition data
present in an unknown area into clusters so that instances belonging to the same
cluster are as similar as possible, while instances belonging to different clusters
must be as dissimilar as possible from each other, according to clear and signifi-
cant similarity and dissimilarity metrics [19].

The following research works used clustering to discover patterns and struc-
tures in students performances and evaluate their progresses as well. In [50] a
comparison of four clustering algorithms (k-Means, k-Medoids, FCM and EM)
was conducted, in [51] k-Means and FCM were employed, in [52] recursive
clustering was used, in [53] k-Means combined with the elbow method was ob-
served, also in [54], [55], [56], [57], [58], [59] and [60] k-Means was tested, in
[61] k-Means and PROCLUS were performed.
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Clustering techniques are also employed on aggregated data from online learn-
ing platforms to analyze students’ learning behavior and eventually predict their
performances. For example in [62] k-Means and Ward’s clustering, a hierarchical
method, were used, in [63] agglomerative hierarchical clustering was applied, in
[64] EM, hierarchical clustering, k-Means and X-Means were performed, in [65]
k-Means, DBSCAN and BIRCH were compared, in [66] network analysis and
spectral clustering were used.

The following research works also apply clustering methods on different kinds
of datasets for the same purposes of profiling students. In [67] k-Means and
hierarchical clustering are combined to cluster students based on the mistakes
made while using a web-based tool. In [68] spectral clustering and k-Means were
performed on a dataset of students’ features gathered from two tutoring systems.
In [69] k-Means, EM and Farthest First were used to profile students based on
competencies, affinities, and demographic attributes. In [70] a two-phase hier-
archical clustering algorithm was compared with k-Means and the Farthest First
Traversal algorithm on a dataset of students’ learning styles. In [71] k-Means and
in [72] k-Means, DBSCAN and BIRCH were tested on a dataset of students’ per-
formance and other background information. In [73] a pairwise-clustering was
performed on a dataset of students’ mathematical skills modelled as a dynamic
Bayesian network.

Clustering algorithms are not the only method used so far for this purpose,
but recently graph theory and network analysis has also begun to be exploited,
as in the following works. In [74] social network analysis was employed to
analyze the communication that takes place between the students of an online
learning course. In [75] a student’s knowledge is represented in the form of a
dynamic graph of concepts connected when the student succeed in an assess-
ment item containing both concepts and then analyzed. In [76] a Graph-based
Exercise- and Knowledge-Aware Learning Network (Graph-EKLN) is proposed
to model students’ mastery of exercises and knowledge concepts. In [77] Graph-
based Knowledge Tracing (GKT), a knowledge tracing method based on GNNs,
where the knowledge is structured as a graph and the knowledge tracing task is
reformulated as a time-series node-level classification problem in GNN, is pro-
posed. In [78] learning pathways are modelled by networks constructed from
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the log data of student interactions from an online learning system, which cap-
ture the sequence of reviewing the learning materials by the students enrolled in
a course. In [79] a student is modelled as a Bayesian network that stores all the
information about him/her so that tutoring systems can use this information to
provide personalized instructions. In [80] the student’s knowledge is modelled
as a dynamic Bayesian network that is able to represent also skill topologies. In
[81] Bayesian networks are used for modelling relationships between knowledge
items, like question items, for cognitive diagnostic. In [82] Bayesian networks
that model students’ behavior are studied to detect the learning style of a student.
In [83] a model of the students’ learning pathways, as a network that captures the
time dimension and sequences of the learning events is introduced. In [84] a learn-
ing path recommendation model based on a multidimensional knowledge graph
framework that separately stores learning objects organized in several classes is
proposed. In [85] a few descriptive statistics were computed on networks from
students’ engagements in two online courses.

Both clustering and graph theory have already proven to be widely useful and
efficient in identifying behavioral patterns in various fields and contexts such as
human mobility [86], mental disorders [87], social structures [88], human brain
[89], human behavior [90][91][92], animal behavior [93], crime detection [94]
and customer profiling [95].





Chapter 2

Proposed method

2.1 Representation

This section presents the dataset used and the different ways in which it was
chosen to present the data in order to prepare them as input for the next stage of
analysis with clustering.

2.1.1 Dataset

To conduct the experiments it was used a subset of 2466 students of the
province of Forlı̀-Cesena that includes pseudonymized information on their de-
mographic, educational, social, economic, and cultural backgrounds, as well as
whether they answered correctly to each question of a large-scale assessment test
in mathematics held in the school year 2013-2014 when the students under ex-
amination were in fifth grade. The test referred to is the INVALSI math test,
which that year was composed of 29 questions, some of which included a few
sub-questions, for a total of 50 questions. These questions are categorized based
on three dimensions, Area, Process and Macro-process, as described in [96]. In
particular we can have:

• four areas:

– (NU) numbers,

– (SF) space and figures,

7



8 2. Proposed method

– (RF) relations and functions,

– (DP) data and prediction;

• seven processes or mathematical skills:

– (P1) know and master the specific contents of mathematics,

– (P2) know and use algorithms and procedures,

– (P3) know different forms of representation and move from one to the
other,

– (P4) solve problems using strategies in different fields,

– (P5) recognize the measurable nature of objects and phenomena in
different contexts and measure quantities,

– (P6) progressively acquire typical forms of mathematical thought,

– (P7) use tools, models and representations in quantitative treatment
information in the scientific, technological, economic and social fields,

– (P8) recognize shapes in space and use them for problem solving;

• and three macro-processes:

– (F) formulating,

– (I) interpreting,

– (A) applying.

For the construction of the representations and the following phase of analysis
with clustering it was chosen to use only the data regarding the answers to the test,
temporarily setting aside the background information of the student that could be
taken into account in any future developments to look for correlations between
them and the results presented in this work.

2.1.2 Graphs

The first proposed representation of each student is a graph. A graph is a
data structure used to represent relationships between objects. Formally, a graph
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consists of a set of nodes (or vertices) and a set of edges (or arcs) connecting pairs
of nodes. Edges can be directed (with a sense) or undirected (without a sense),
depending on whether they represent unidirectional or bidirectional relationships
between nodes, and they can be associated with a weight to provide additional
information about the relationship between nodes. More precisely, a graph can
be defined as an ordered pair G = (V,E), where V is a set of nodes, which can
represent entities or data points, E is a set of edges, which represent relationships
or connections between nodes [17].

In our domain the graph of a single student has 50 nodes, which correspond to
the 50 questions of the INVALSI test, that are connected by directed and weighted
edges. As for directionality, an edge always originates from a node indicating a
question to which the student has answered correctly and culminates in a node
with which it shares at least one of the three dimensions, area, process and macro-
process, regardless of its correctness. The number of dimensions shared by a pair
of connected nodes i and j is expressed by the weight wi j which assumes a value
of 1 to 3 according to the relation wi j = |Ii ∩ I j|, where Ii is the set of dimensions
of node i. In the figure 2.1 we can see a detail of an example of a graph, the upper
right part, and in 2.2 we can see the full example.

2.1.3 Spanning trees

The second representation chosen to depict the test answers of a student is
a spanning tree. The spanning tree of a connected graph is the minimal subset
of edges that forms a tree that connects all the nodes of the graph, without the
creation of cycles. More formally, the spanning tree of a connected graph G =

(V,E) is defined as a subset of edges T ⊆ E, such that: T is a tree, i.e. it is a
connected, acyclic graph, and T contains all nodes of G, i.e. for every node v in
V , there exists a path in T that connects v to all other nodes [17].

This representation is constructed from the one described in 2.1.2 to elimi-
nate the cycles [17] in the previous one, so the same criteria of directionality and
weight of the edges are maintained, as well as the same nodes. Trees are built us-
ing the depth-first strategy, i.e. you completely explore all the nodes of the current
subtree before moving on to the sibling nodes [18], but in two slightly different
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Figure 2.1: Detail of figure 2.2. Upper right part of an example of a student graph
with green nodes representing correct answers and red nodes representing wrong
answers. The black edges have weight equal to 1, the grey edges equal to 2, and
the orange edges equal to 3.
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Figure 2.2: Example of a student graph with green nodes representing correct
answers and red nodes representing wrong answers. The black edges have weight
equal to 1, the grey edges equal to 2, and the orange edges equal to 3.
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versions: in the first version of trees, called deep spanning trees, every time you
explore a node, only one child node is added and you continue exploring from it,
while in the second version, the shallow spanning trees, every time you explore
a node, all its child nodes are added to the tree. A common element between the
two versions which is fundamental for the construction of these trees is the strat-
egy for choosing the next node to be explored, which in the case of deep spanning
trees coincides with the child node to be inserted in the tree and in the case of
shallow spanning trees is the first node to be explored among the newly inserted
child nodes, which is based on the difficulty of the question. In fact, the easiest
node is always chosen, which is the node that received the highest number of cor-
rect answers among the nodes considered with respect to the reference dataset. In
this way we get two representations without cycles, but to preserve the indication
of the correctness of the answer to a question, when a node that represents a cor-
rect answer but has no child nodes is added to the tree, a fictitious child node is
connected to it. In figure 2.3 we find a detail, the middle part specifically, of the
representation as deep spanning tree of the same student in fig 2.2 and in 2.4 the
full example, while in figure 2.5 we see the details of the representation as shallow
spanning tree, again the middle part, and in 2.6 the full example.

2.1.4 Metrics

The last representation considered provides the calculation of a set of global
metrics on the three representations just proposed, the graphs and the two types of
spanning trees. Below are the metrics calculated on all three representations with
the definition and interpretation based on our reference domain:

• Average out-degree calculates the average of the edges leaving the nodes
taking also into account the weights. In our domain it gives us an indication
of how many dimensions on average a node representing a correct response
shares with other nodes.

• Compactness measures the percentage of pairs of nodes that can be reached
from a path of any length, but the paths connecting the nodes are weighted
inversely according to their length, therefore it measures how easily things
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Figure 2.3: Detail of figure 2.4. Middle part of an example of a student deep
spanning tree with green nodes representing correct answers and red nodes
representing wrong answers. The black edges have weight equal to 1, the grey
edges equal to 2, and the orange edges equal to 3.



14 2. Proposed method

Figure 2.4: Example of a student deep spanning tree with green nodes
representing correct answers and red nodes representing wrong answers. The
black edges have weight equal to 1, the grey edges equal to 2, and the orange
edges equal to 3.



2.1 Representation 15

Figure 2.5: Detail of figure 2.6. Middle part of an example of a student shal-
low spanning tree with green nodes representing correct answers, red nodes
representing wrong answers and light gray nodes representing fictitious nodes.
The black edges have weight equal to 1, the grey edges equal to 2, and the orange
edges equal to 3.

Figure 2.6: Example of a student shallow spanning tree with green nodes
representing correct answers, red nodes representing wrong answers and light
gray nodes representing fictitious nodes. The black edges have weight equal to
1, the grey edges equal to 2, and the orange edges equal to 3.
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can cross it, including disconnected components. In our domain a very
high value indicates that the nodes reach each other with short paths and
consequently that the student has sufficient mastery of the various possible
dimensions, except in the case of deep spanning trees where a compact
graph is an index of many errors, while in shallow spanning trees it indicates
that the student has good mastery of some dimensions and poor mastery of
others.

• Average closeness centrality calculates the mean reciprocal of the mean
shortest path distance to a node over all reachable nodes n-1. In our domain
it indicates how much the student has mastered the required skills, except
in spanning trees where it’s the other way around.

• Average betweenness centrality calculates the average of the sums of the
fraction of the shortest paths among all pairs passing through the node. In
our domain a very high value indicates that there are many critical nodes that
are fundamental to a proper assessment of the student’s skills, in particular
in spanning trees where nodes are ordered in growing order of difficulty.

• Average edge betweenness centrality calculates the average of the sums
of the fraction of the shortest paths among all the pairs crossing each edge.
In our domain, the higher the value, the more there are many critical edges
which, if removed, would make the student’s level of competence lower, and
therefore indicates that the student’s competence, even with a decent mas-
tery, is not very consolidated, in particular in spanning trees where nodes
are ordered in growing order of difficulty.

• Density calculates how much a graph is ”filled” in relation to the maximum
number of possible edges, i.e. those of a graph where all the answers are
correct, and can vary from 0, ”spreadly” connected, to 1, densely connected.
In our domain, the higher the density, the more it means that the test contains
fewer errors.

• S-metric calculates the sum of the degree products, calculated as the sum of
in-degree and out-degree for direct graphs, of the two nodes connected by
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an edge for each edge of the graph, without taking into account the weights
of the edges. It gives an indication of how much the graph is scale-free,
that is, how much it follows the power law distribution, that is, if there are
few nodes with very high degrees and many nodes with low degrees. In
our domain it indicates how robust the graph is to the removal of nodes and
it gives an indication of how much the test taken by the student is able to
reflect his knowledge, since even after removing some questions from the
test we could still correctly verify the level of learning of the student.

• Number of isolates calculates the number of isolated nodes. In our domain
it can only happen if a node is wrong and has no dimension in common
with the others, or if all the other nodes that share one or more dimensions
in common with it are also wrong, ergo the three dimensions of the node
have been mistaken throughout the test.

• Number of weakly connected components calculates the number of weakly
connected components, i.e. the maximum subsets of the nodes, where there
is an indirect path between each pair of nodes. In our domain, in the case
of graphs it tells us the number of separate subgraphs, while in the case of
spanning trees it tells us the number of trees if there are more than one tree.

The following metrics were also calculated for the graphs only:

• Average in-degree calculates the average of the incoming edges from the
nodes, also taking into account the weights. In our domain it gives us an
indication of how many dimensions on average a node, which can be correct
or not, shares with the nodes corresponding to correct answers.

• Degree assortativity coefficient measures the tendency of nodes with sim-
ilar in-degrees to connect to each other and the same for nodes with similar
out-degrees. In our domain it indicates how much answers with the same
dimensions tend to be connected to each other because they are both correct
and consequently how much a student actually has a good mastery of the
various skills.
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• Global reaching centrality computes the average over all nodes of the
difference between the local reaching centrality of the node, which is the
proportion of other nodes reachable from that node, and the largest local
reaching centrality in the graph. In our domain it indicates the ability of the
nodes to reach other nodes compared to the most influential node, so a high
value indicates the percentage of wrong answers in the test, since the wrong
nodes have a local centrality equal to 0, and the correct nodes equal to 1.

• Flow hierarchy calculates the fraction of edges that does not participate
in a cycle. In our domain, since directionality always starts from nodes
representing correct answers, a high value indicates that there is a hierarchi-
cal structure in the graph and therefore that some nodes have a more impor-
tant role than others and consequently their dimensions are more positively
relevant for the student.

• Transitivity calculates the fraction of all possible triangles in the graph, i.e.
measures the probability that if node A is connected to node B and node
B is connected to node C, then also node A is connected to node C. In our
domain, a high value suggests the presence of cyclic structures in the graph,
i.e. that the student is very good at most of the questions’ dimensions.

• Average clustering is the average of local clusterings, that is the fraction of
triangles that actually exist on all possible triangles in its neighborhood. In
our domain a high value means that nodes tend to form clusters with other
nodes that share at least one dimension out of three, so clusters can represent
test questions that are related to each other based on the dimensions being
considered.

• Overall reciprocity measures the tendency for pairs of nodes to be recip-
rocal. In our domain, since pairs of nodes are reciprocal only when both
nodes are correct, it is the measure of how much two nodes that are related
by some dimensions are also correct.

• Average node connectivity computes the average of local node connectiv-
ity between all node pairs, i.e. the average number of nodes to be removed
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to disconnect the graph or reduce its connectivity. In our domain, a high
value indicates that, even if we removed some questions from the test, we
would still be able to adequately evaluate all the questions’ dimensions.

• Edge connectivity calculates the minimum number of edges that must be
removed to disconnect the graph or make it trivial, so the higher the value,
the more resistant the graph is to removing edges and stays connected. In
our domain, a high value indicates that, even if we remove some connec-
tions, for example we might assume more mistakes are made by the student,
the graph remains connected, so the student doesn’t have any particular dif-
ficulty in one of the three dimensions.

• Number of strongly connected components calculates the number of strongly
connected components, i.e. subsets of nodes where there is a direct path be-
tween each of the nodes. In our domain, strongly connected components can
be formed by a single node in the case of nodes that correspond to wrong
answers, while all components with more than one node contain only nodes
that represent correct answers, so the fewer strongly connected components
there are in a graph, the fewer mistakes the student will make in the test.

• Connectedness measures the percentage of pairs of nodes that can be reached
from a path of any length or, alternatively, the percentage of pairs of nodes
that are in the same component. In our domain a high value indicates that
most answers are strongly connected and can be reached by any other an-
swer through a series of connections, indicating a significant consistency
between the student’s answers with respect to the three dimensions of the
questions.

Only for spanning trees the following metrics have been calculated:

• Size is the sum of the weights of the edges in the spanning tree. In our
domain it indicates that the higher the sum, the more the nodes connected
to each other share many dimensions.

• Breadth (Max node out-degree) calculates the maximum number of out-
going edges on a single node in the spanning tree, which corresponds to the
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width of the tree. In our domain in the case of shallow spanning trees a very
large width, which corresponds to a node with many children, indicates that
the three dimensions of the node are very common in the questions of this
test, while in the case of deep spanning trees if the width is large means
that the tree has not been developed in depth because of too many incorrect
nodes.

• Load balance calculates the average difference between the number of in-
coming edges and the number of outgoing edges taking into account the
weights of the edges. In our domain it gives interesting indications about
how much parent nodes and child nodes have in common.

• Height (DAG longest path length) calculates the maximum distance from
the tree root to the leaves. In our domain, in the case of deep spanning
trees, if the height is limited, it means that there are many wrong nodes that
prevent the deep development of the tree, while in the case of shallow deep
trees, if the height is very high, it means that the easiest and correct nodes
already inserted and then explored have the least frequent dimensions in the
test.

2.2 Analysis

All the representations described in 2.1, the graphs, the two versions of span-
ning trees and the metrics calculated on the previous three, were then analyzed
with three clustering algorithms (k-Means, DBSCAN and Gaussian Mixture) to
identify elements that characterize the various clusters, so that a domain expert
could then use them to extract information on the learning states of the students.

As for graphs and spanning trees, these representations were prepared for
clustering by transforming them into linearized adjacency matrices. In the case of
a directed and weighted graph such as ours, the adjacency matrix is a tabular rep-
resentation of the graph that shows the relationship between nodes through their
edges, indicating the weights of the associated edges. For a directed and weighted
graph with n nodes, its adjacency matrix is an n×n square matrix, where the ele-
ment in row i and column j represents the weight of the edge from node i to node
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j (if any). If no edge exists between nodes i and j, the corresponding element in
the matrix will usually be represented by a special value, in our case 0, to indicate
the absence of the edge. More formally, given an adjacency matrix A of a directed,
weighted graph, the elements ai j of the matrix are defined as follows: ai j repre-
sents the weight of the edge from node i to node j, if there is no edge between
nodes i and j, ai j can be represented by a special value such as 0 to indicate the
absence of the edge. The matrices were then linearized to further simplify the
clustering input, i.e. each matrix was transformed from table form n×n to linear
form 1×n2 by concatenating the rows. At the end, the input dataset of these rep-
resentations was composed of 2466 rows, one for each student, and the columns
(or features or dimensions) represent the connections between each pair of nodes
with the associated weight.

Before proceeding with the clustering, the Principal Component Analysis (PCA)
was performed on the graphs and on the two types of spanning trees, but not on the
metrics, in order to reduce the dimensionality of the input data of the clustering
methods, since in the linearized adjacency matrices of these representations it was
very high, while keeping as much as possible the variance between the features.
PCA is a dimensionality reduction technique that is used to transform a multi-
dimensional dataset with a lot of features into a smaller dataset, while retaining
most of the information contained in the original data [97]. The main goal of
PCA is to transform a high-dimensional dataset into a new coordinate system,
known as ”principal components,” so that most of the variance in the data is ex-
plained by the first principal components. PCA identifies a set of new variables,
the ”principal components” precisely, which are linear combinations of the origi-
nal variables. These principal components are ordered by importance, so that the
first principal component explains the maximum variance in the data, the second
explains the second maximum variance, and so on. After calculating the principal
components, the original data can be projected into the new principal component
space in a way that reduces the dimensionality of the data while maintaining the
maximum amount of variance explained. A critical step in PCA is the selection of
the number of principal components to be retained. This decision depends on the
goal of the analysis and the amount of variance you want to retain in the reduced
data, in our case, for example, we want to keep as much variability in the data as
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possible.

In the case of metrics prior to applying clustering algorithms, metrics with
variance equal to 0 and metrics with correlation equal to 1 with other metrics
already present have been removed, so the input dataset of metrics was composed
of 2466 rows, one for each student, and the columns are the calculated metrics.

The quality of the clustering partition was then assessed using the Silhouette
Score, a measure that evaluates the cohesion and separation of the clusters by
providing an indication of the overall quality of the data splitting into clusters.
For each sample it calculates how similar its cluster is to other clusters as the
difference between the mean intra-cluster distance and the mean nearest-cluster
distance normalized for the maximum of the two:

Silhouette Score =
b−a

max(a,b)
,

where a is the mean intra-cluster distance, i.e. the average distance between a
sample and the other samples in the same cluster, and b is the mean nearest-cluster
distance, i.e. the average distance between a sample and samples from the nearest
cluster not belonging to the same cluster. For a, a low value of this measure
indicates that the sample is very close to the others in the cluster, suggesting good
cohesion in the clusters, while for b, a high value of this measure indicates good
separation between clusters. The silhouette score ranges from -1 to 1, with 1
representing the best possible subdivision, -1 indicating that the sample has been
assigned to the wrong cluster, and 0 indicating that the sample is close to the edge
between two clusters. In general, a silhouette score closer to 1 suggests that the
clustering of data is appropriate, while values close to 0 or negative may indicate
that clusters overlap or that samples have been misallocated.

2.2.1 k-Means

k-Means is a clustering algorithm proposed by J. MacQueen in 1967 and it
is used to partition data into k groups efficiently in terms of intra-class variance
[20]. Its goal is to minimize the sum of squares of distances between data points
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and centroids, called inertia or Sum of Squared Errors (SSE):

SSE =
n

∑
i=1

min
c j∈C

(||xi − c j||2),

where n is the number of samples, C is the set of k clusters, c j is the centroid of the
j-th cluster, xi is the i-th sample and ||xi − c j|| is the Euclidean distance between
sample xi and centroid c j.

This method processes the partition into k groups starting with k initial points
called centroids and assigning each element of the dataset to the cluster of the
nearest centroid according to the Euclidean distance. The Euclidean distance is
a measure of distance between two points in a Euclidean space, which is a ge-
ometric space characterized by the properties of Euclidean geometry. In a Eu-
clidean space, each point is represented by a coordinate vector, and the distance
between two points is calculated using the Pythagorean theorem. In other words,
the Euclidean distance is the length of the segment connecting the two points in
their space. It is an intuitive measure of ”distance” that reflects the length of the
shortest path between two points in Euclidean space. The initial centroids are de-
termined using k-Means++, which selects initial cluster centroids using sampling
based on an empirical probability distribution of the points’ contribution to the
overall inertia to speed up convergence. Once all the points have been assigned
to a cluster, the centroids are recalculated as the average of the points belonging
to each cluster and the points distributed again between the clusters based on the
Euclidean distance. This optimization process is repeated until the centroids stop
changing their position and therefore until a satisfactory partition is found.

The primary difficulty of this algorithm is to determine the parameter k, i.e. in
how many clusters to partition the data [98]. A very simple but very popular tech-
nique is the elbow method [53][99], which involves locating the point on an elbow
graph where the change in the SSE starts to decrease significantly more slowly as
the number of clusters increases. In fact, going beyond this point, i.e. choosing
larger k values, would not improve the model’s ability to explain variance in the
data. If, in addition to the elbow graph, we also take into account the changes in
the silhouette score as a function of the number of clusters, we can make an even
more informed choice of the k parameter.
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2.2.2 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a
density-based clustering algorithm proposed by Ester et al. [21], which is able to
identify arbitrarily shaped clusters in a high-dimensional data space, separated by
low-density regions. Initially, for each point in the dataset, the algorithm calcu-
lates the number of points within a distance ε and if this number exceeds or equals
a previously set min samples threshold, the point is considered a core point. For
each core point not yet assigned to a cluster, the points reachable from the core
point are explored, which are then assigned to the same cluster as the core point,
and if a core point is reachable from multiple clusters, it is assigned to the first
cluster found. Non-core points that are not reachable from any other core point
are considered ”boundary points” and are assigned to the cluster of the nearest
core point connected by a core point path. Points that are neither core points nor
boundary points are considered ”noise points” and are not assigned to any cluster.

The two fundamental parameters that characterize this algorithm are the al-
ready mentioned ε and min samples and in [100] it is suggested to try the follow-
ing approach: set the last parameter min samples as the double of the features of
the dataset as suggested in [101], while for the first parameter the heuristic pro-
posed in [21] is revisited and the distance from 2 ∗ dim− 1 nearest neighbors is
computed as suggested again in [101], where dim is the number of features in the
dataset. According to this method we have to plot the k-dist graph, which is the
graph of the k-nearest-neighbor distances computed for each point and ordered
from largest to smallest. The optimal value, or the range of optimal values to test,
will be where the graph will form a sort of elbow.

2.2.3 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is a probability clustering algorithm that
assumes that data is generated by a set of Gaussian distributions (or components),
each characterized by a centroid (mean) and a covariance matrix. The Gaussian
distribution is also known as the normal distribution or bell distribution because
of its symmetrical bell shape around its mean, with most values concentrated near
the mean and a gradual decrease in probability density as one moves away from
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it. The Gaussian distribution is completely determined by two parameters: mean
(µ), which represents the center of the distribution and indicates the expected
value of the random variable, and the standard deviation (σ ), which represents
the dispersion of the data around the mean and determines how widely the data
are distributed around the mean, so a smaller standard deviation indicates a more
concentrated distribution around the mean, while a larger standard deviation indi-
cates a more dispersed distribution. The covariance matrix is a statistical measure
that provides information about the covariance relationship between variables in a
multivariate data set. It provides a measure of the joint variability of two or more
variables and the direction of this variability.

In the model, initially, the parameters of the Gaussian components, including
the centroids and covariance matrices, are randomly initialized using k-Means.
For each data point in the dataset, the probabilities of belonging to each Gauss-
ian component are calculated using the multivariate Gaussian probability density
formula for each component, which are then used to update the parameters of
the Gaussian components, including centroids and covariance matrices, using the
Maximum Likelihood Estimation method, which is a technique used to estimate
the parameters of a statistical model, maximizing the likelihood of the observed
data under the assumption that the model is correct or, in other words, it tries to
find those parameter values that make the observation of the data we have most
likely. This process is iterated until the parameters converge or until a preset max-
imum number of iterations is reached [22].

This algorithm is very flexible and can model clusters of various shapes and
sizes, but it also depends on the choice of the number of components n components
to use and the type of covariance matrix covariance type between:

• full: each component has its own general covariance matrix,

• tied: all components share the same general covariance matrix,

• diag: each component has its own diagonal covariance matrix,

• spherical: each component has its own single variance.

To choose the best ones, you can search through the various combinations of the
two parameters and choose the one with the lowest BIC score, as this indicates a
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good compromise between adaptability to the data and complexity of the model.
The Bayesian Information Criterion (BIC) is defined as:

BIC =−2log(L)+dlog(n),

where L is the maximum likelihood of the model to the data, d is the number of
parameters of the model, and n is the number of elements of the dataset [102].

2.2.4 Metrics selection

To try to give meaning to the clustering results applied to the metrics calcu-
lated on the three representations, the intra-cluster mean and variance were eval-
uated. Specifically, for each metric and each cluster, it was checked that the open
intervals, i.e. where extremes are excluded, created by adding and subtracting the
variance of each cluster from its mean, did not overlap for more than the extreme
values of the intervals, i.e. whether the intervals were at most adjacent. It was
also checked if by chance the variance of the intra-clusters variances was greater
than 1, which would mean that among any clusters identified some consistently
separate the data while at least one overlaps all the others.
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Experimental results

3.1 Technologies

The experiments were conducted using Google Colab and the Python pro-
gramming language (v. 3.10.12). The libraries used are Pandas (v. 1.5.3), Numpy
(v. 1.25.2), Networkx (v. 3.2.1), Matplotlib (v. 3.7.1) and Scikit-learn (v. 1.2.2).

3.2 Results

Below are the results of all the experiments performed with the three clustering
algorithms (k-Means, DBSCAN and Gaussian Mixture Model) on each of the six
representations, i.e. the graphs, the deep spanning trees, the shallow spanning
trees and the metrics applied to the three representations just mentioned.

Regarding the application of PCA on the linearized adjacency matrices of the
graphs and the spanning trees, 0.995 was chosen as the value of the parameter
n components to maintain 99.5% of the variability. As for the evaluation range of
the elbow method to decide the k value of k-Means, numbers of k clusters between
2 and 10 are tested for all representations. For all three algorithms, the parameter
random state has been set to 42 for the reproducibility of the experiments.

27
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Figure 3.1: On the left the changes, based on the number of clusters, of inertia in
red and silhouette scores in light blue in the elbow graph produced by the elbow
method. On the right the result of the clustering performed with k-Means plotted
on the two most significant components of the dataset with the centroids of each
cluster identified by red stars.

3.2.1 Graphs

For k-Means the elbow method suggests using a value of k equal to 2, so the
algorithm partitions the data in two clusters. Figure 3.1 shows the graph produced
by the elbow method and the plot of the clustering results on the two main dimen-
sions of the data.

The k-dist graph computed before DBSCAN suggests a value of ε equal to
28, so the model partitions the data in one cluster and identifies 522 noise points.
Figure 3.2 shows the k-dist graph and the plot of the clustering results on the two
main data dimensions.

The search for the best parameter combinations for the Gaussian Mixture
model application suggests 3 as n components and ”full” as covariance type,
so the model partitions the data in three clusters. Figure 3.3 shows the plot of the
clustering results on the two main data dimensions.

The table 3.1 shows the silhouette scores of the three clustering algorithms
applied. As we can see DBSCAN gets the highest score among the three models,
however, all three do not produce a particularly satisfactory score.
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Figure 3.2: On the left the k-dist graph, that plots the changes of the k-nearest-
neighbor distances computed for each point and ordered from largest to smallest.
On the right the result of the clustering performed with DBSCAN plotted on the
two most significant components of the dataset with the centroid of the cluster
identified by a red star and the noise points identified by purple points.

Figure 3.3: The result of the clustering performed with Gaussian Mixture model
plotted on the two most significant components of the dataset with the centroids
of each cluster identified by red stars.
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k-Means DBSCAN Gaussian Mixture Model
Silhouette score 0.11679 0.15517 0.04883

Table 3.1: Silhouette scores of clustering applied on graphs.

Figure 3.4: On the left the changes, based on the number of clusters, of inertia in
red and silhouette scores in light blue in the elbow graph produced by the elbow
method. On the right the result of the clustering performed with k-Means plotted
on the two most significant components of the dataset with the centroids of each
cluster identified by red stars.

3.2.2 Deep spanning trees

For k-Means the elbow method suggests using a value of k equal to 2, so the
algorithm partitions the data in two clusters. Figure 3.4 shows the graph produced
by the elbow method and the plot of the clustering results on the two main dimen-
sions of the data.

The k-dist graph computed before DBSCAN suggests a value of ε equal to
10, so the model partitions the data in one cluster and identifies 531 noise points.
Figure 3.5 shows the k-dist graph and the plot of the clustering results on the two
main data dimensions.

The search for the best parameter combinations for the Gaussian Mixture
model application suggests 4 as n components and ”diag” as covariance type,
so the model partitions the data in four clusters. Figure 3.6 shows the plot of the



3.2 Results 31

Figure 3.5: On the left the k-dist graph, that plots the changes of the k-nearest-
neighbor distances computed for each point and ordered from largest to smallest.
On the right the result of the clustering performed with DBSCAN plotted on the
two most significant components of the dataset with the centroid of the cluster
identified by a red star and the noise points identified by purple points.

k-Means DBSCAN Gaussian Mixture Model
Silhouette score 0.07950 0.14599 -0.07165

Table 3.2: Silhouette scores of clustering applied on deep spanning trees.

clustering results on the two main data dimensions.

The table 3.2 shows the silhouette scores of the three clustering algorithms
applied. As we can see DBSCAN gets the highest score among the three models
again, however again, all three do not produce a particularly satisfactory score.

3.2.3 Shallow spanning trees

For k-Means the elbow method suggests using a value of k equal to 4, so
the algorithm partitions the data in four clusters. Figure 3.7 shows the graph
produced by the elbow method and the plot of the clustering results on the two
main dimensions of the data.

The k-dist graph computed before DBSCAN suggests a value of ε equal to
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Figure 3.6: The result of the clustering performed with Gaussian Mixture model
plotted on the two most significant components of the dataset with the centroids
of each cluster identified by red stars.

Figure 3.7: On the left the changes, based on the number of clusters, of inertia in
red and silhouette scores in light blue in the elbow graph produced by the elbow
method. On the right the result of the clustering performed with k-Means plotted
on the two most significant components of the dataset with the centroids of each
cluster identified by red stars.
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Figure 3.8: On the left the k-dist graph, that plots the changes of the k-nearest-
neighbor distances computed for each point and ordered from largest to smallest.
On the right the result of the clustering performed with DBSCAN plotted on the
two most significant components of the dataset with the centroids of each cluster
identified by red stars and the noise points identified by purple points and the noise
points identified by purple points.

k-Means DBSCAN Gaussian Mixture Model
Silhouette score 0.65136 0.64054 0.63353

Table 3.3: Silhouette scores of clustering applied on shallow spanning trees.

7, so the model partitions the data in two clusters and identifies 133 noise points.
Figure 3.8 shows the k-dist graph and the plot of the clustering results on the two
main data dimensions.

The search for the best parameter combinations for the Gaussian Mixture
model application suggests 6 as n components and ”spherical” as covariance type,
so the model partitions the data in six clusters. Figure 3.9 shows the plot of the
clustering results on the two main data dimensions.

The table 3.3 shows the silhouette scores of the three clustering algorithms
applied. As we can see k-Means gets the highest score among the three models,
and all three produce a particularly satisfactory score.
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Figure 3.9: The result of the clustering performed with Gaussian Mixture model
plotted on the two most significant components of the dataset with the centroids
of each cluster identified by red stars.

3.2.4 Metrics on graphs

First, we report the mean and the variance of the metrics calculated on the
graphs in table 3.4.

For k-Means the elbow method suggests using a value of k equal to 3, so the
algorithm partitions the data in three clusters. Figure 3.10 shows the graph pro-
duced by the elbow method and the plot of the clustering results on the two main
dimensions of the data. Moreover, from the process of selecting the characteristic
metrics of the various clusters based on mean and variance, as explained in the
2.2.4 section, we get the metrics:

• density,

• s-metric,

• average clustering,

• number of strongly connected components,

• transitivity,
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Mean Variance
Average in-degree 25.289 29.965

Average out-degree 25.289 29.965
Compactness 1.339 0.075

Average closeness centrality 0.435 0.012
Average betweenness centrality 0.012 0.0

Average edge betweenness centrality 0.002 0.0
Density 0.694 0.025

S-metric 939852.250 2.175635e+11
Number of isolates 0.0 0.0

Number of weakly connected components 1.0 0.0
Number of strongly connected components 16.032 61.767

Connectedness 0.509 0.046
Average node connectivity 6.696 9.042

Edge connectivity 0.048 0.818
Global reaching centrality 0.393 0.017

Average clustering 0.689 0.001
Overall reciprocity 0.689 0.026

Transitivity 0.515 0.013
Flow hierarchy 0.290 0.023

Degree assortativity coefficient 0.394 0.021

Table 3.4: Metrics computed on graphs.
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Figure 3.10: On the left the changes, based on the number of clusters, of inertia in
red and silhouette scores in light blue in the elbow graph produced by the elbow
method. On the right the result of the clustering performed with k-Means plotted
on the two most significant components of the dataset with the centroids of each
cluster identified by red stars.

• compactness,

• connectedness,

• flow hierarchy,

• global reaching centrality,

• average betweenness centrality,

• average closeness centrality,

• average node connectivity,

• edge connectivity,

• overall reciprocity,

• average in-degree.

The k-dist graph computed before DBSCAN suggests a value of ε equal to
30000, so the model partitions the data in two clusters and identifies 24 noise
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points. Figure 3.11 shows the k-dist graph and the plot of the clustering results on
the two main data dimensions. Moreover, from the process of selecting the char-
acteristic metrics of the various clusters based on mean and variance, as explained
in the 2.2.4 section, we get the metrics:

• density,

• s-metric,

• average clustering,

• number of strongly connected components,

• transitivity,

• compactness,

• connectedness,

• flow hierarchy,

• global reaching centrality,

• average closeness centrality,

• average node connectivity,

• edge connectivity,

• overall reciprocity,

• average in-degree.

The search for the best parameter combinations for the Gaussian Mixture
model application suggests 4 as n components and ”full” as covariance type,
so the model partitions the data in four clusters. Figure 3.12 shows the plot of the
clustering results on the two main data dimensions. Moreover, from the process
of selecting the characteristic metrics of the various clusters based on mean and
variance, as explained in the 2.2.4 section, we get the metrics:
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Figure 3.11: On the left the k-dist graph, that plots the changes of the k-nearest-
neighbor distances computed for each point and ordered from largest to smallest.
On the right the result of the clustering performed with DBSCAN plotted on the
two most significant components of the dataset with the centroids of each cluster
identified by red stars and the noise points identified by purple points.

• density,

• s-metric,

• average clustering,

• number of strongly connected components,

• transitivity,

• compactness,

• connectedness,

• flow hierarchy,

• global reaching centrality,

• average betweenness centrality,

• average closeness centrality,
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Figure 3.12: The result of the clustering performed with Gaussian Mixture model
plotted on the two most significant components of the dataset with the centroids
of each cluster identified by red stars.

• average node connectivity,

• edge connectivity,

• overall reciprocity,

• average in-degree.

If we take a look at the metrics that characterize the clusters identified by each
algorithm we notice that all three selected these metrics:

• density,

• s-metric,

• average clustering,

• number of strongly connected components,

• transitivity,

• compactness,
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k-Means DBSCAN Gaussian Mixture Model
Silhouette score 0.56707 0.40530 0.41015

Table 3.5: Silhouette scores of clustering applied on metrics on graphs.

• connectedness,

• flow hierarchy,

• global reaching centrality,

• average closeness centrality,

• average node connectivity,

• edge connectivity,

• overall reciprocity,

• average in-degree.

This means that 14 out of the 20 metrics computed on graphs are significant and
”average betweenness centrality” is the only metric that is considered significant
for k-Means and Gaussian Mixture Model but not for DBSCAN.

The table 3.5 shows the silhouette scores of the three clustering algorithms
applied. As we can see k-Means gets the highest score among the three models,
and all three produce a satisfactory score.

3.2.5 Metrics on deep spanning trees

First, we report the mean and the variance of the metrics calculated on the
deep spanning trees in table 3.6.

For k-Means the elbow method suggests using a value of k equal to 3, so the
algorithm partitions the data in three clusters. Figure 3.13 shows the graph pro-
duced by the elbow method and the plot of the clustering results on the two main
dimensions of the data. Moreover, from the process of selecting the characteristic
metrics of the various clusters based on mean and variance, as explained in the
2.2.4 section, we get the metrics:
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Mean Variance
Average out-degree 1.766 0.006

Compactness 9.486 13.585
Average closeness centrality 0.036 0.0

Average betweenness centrality 0.092 0.001
Average edge betweenness centrality 0.098 0.001

Density 0.046 0.0
S-metric 278.661 4048.156

Number of isolates 0.0 0.0
Number of weakly connected components 1.017 0.017

Size 89.860 10.327
Breadth 4.651 4.763

Load balance 1.345 0.204
Height 33.062 72.596

Table 3.6: Metrics computed on deep spanning trees.

• s-metric,

• average out-degree,

• average edge betweenness centrality,

• average betweenness centrality,

• load balance,

• height,

• breadth,

• size.

The k-dist graph computed before DBSCAN suggests a value of ε equal to
20, so the model partitions the data in one cluster and identifies 10 noise points.
Figure 3.14 shows the k-dist graph and the plot of the clustering results on the two
main data dimensions. Moreover, from the process of selecting the characteristic
metrics of the various clusters based on mean and variance, as explained in the
2.2.4 section, we get the metrics:
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Figure 3.13: On the left the changes, based on the number of clusters, of inertia in
red and silhouette scores in light blue in the elbow graph produced by the elbow
method. On the right the result of the clustering performed with k-Means plotted
on the two most significant components of the dataset with the centroids of each
cluster identified by red stars.

• density,

• s-metric,

• compactness,

• number of weakly connected components,

• average edge betweenness centrality,

• average betweenness centrality,

• average closeness centrality,

• load balance,

• height,

• breadth,

• size.
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Figure 3.14: On the left the k-dist graph, that plots the changes of the k-nearest-
neighbor distances computed for each point and ordered from largest to smallest.
On the right the result of the clustering performed with DBSCAN plotted on the
two most significant components of the dataset with the centroid of the cluster
identified by a red star and the noise points identified by purple points.

The search for the best parameter combinations for the Gaussian Mixture
model application suggests 3 as n components and ”full” as covariance type,
so the model partitions the data in three clusters. Figure 3.15 shows the plot of the
clustering results on the two main data dimensions. Moreover, from the process
of selecting the characteristic metrics of the various clusters based on mean and
variance, as explained in the 2.2.4 section, we get the metrics:

• density,

• s-metric,

• compactness,

• average out-degree,

• average edge betweenness centrality,

• average betweenness centrality,

• load balance,
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Figure 3.15: The result of the clustering performed with Gaussian Mixture model
plotted on the two most significant components of the dataset with the centroids
of each cluster identified by red stars.

• height,

• breadth,

• size.

If we take a look at the metrics that characterize the clusters identified by each
algorithm we notice that all three selected these metrics:

• s-metric,

• average edge betweenness centrality,

• average betweenness centrality,

• load balance,

• height,

• breadth,

• size.
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k-Means DBSCAN Gaussian Mixture Model
Silhouette score 0.59290 0.74845 0.47334

Table 3.7: Silhouette scores of clustering applied on metrics on deep spanning
trees.

Mean Variance
Average out-degree 0.966 0.013

Compactness 0.088 0.0
Average closeness centrality 0.017 0.0

Average betweenness centrality 0.001 0.0
Average edge betweenness centrality 0.001 0.0

Density 0.073 0.0
S-metric 1522.583 18392.244

Number of isolates 0.0 0.0
Number of weakly connected components 1.017 0.017

Size 76.681 34.939
Breadth 19.003 0.006

Load balance 1.793 0.049
Height 5.599 0.467

Table 3.8: Metrics computed on shallow spanning trees.

DBSCAN and Gaussian Mixture Model select pretty much the same metrics ex-
cept for ”number of weakly connected components” and ”average closeness cen-
trality” in DBSCAN, while k-Means select fewer metrics. In total 7 out of 13
metrics were selected.

The table 3.7 shows the silhouette scores of the three clustering algorithms
applied. As we can see DBSCAN gets the highest score among the three models,
and all three produce a satisfactory score.

3.2.6 Metrics on shallow spanning trees

First, we report the mean and the variance of the metrics calculated on the
shallow spanning trees in table 3.8.

For k-Means the elbow method suggests using a value of k equal to 3, so the
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Figure 3.16: On the left the changes, based on the number of clusters, of inertia in
red and silhouette scores in light blue in the elbow graph produced by the elbow
method. On the right the result of the clustering performed with k-Means plotted
on the two most significant components of the dataset with the centroids of each
cluster identified by red stars.

algorithm partitions the data in three clusters. Figure 3.16 shows the graph pro-
duced by the elbow method and the plot of the clustering results on the two main
dimensions of the data. Moreover, from the process of selecting the characteristic
metrics of the various clusters based on mean and variance, as explained in the
2.2.4 section, we get the metrics:

• density,

• s-metric,

• compactness,

• average out-degree,

• average closeness centrality,

• load balance,

• size.
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The k-dist graph computed before DBSCAN suggests a value of ε equal to
20, so the model partitions the data in one cluster and identifies 78 noise points.
Figure 3.17 shows the k-dist graph and the plot of the clustering results on the two
main data dimensions. Moreover, from the process of selecting the characteristic
metrics of the various clusters based on mean and variance, as explained in the
2.2.4 section, we get the metrics:

• density,

• s-metric,

• number of weakly connected components,

• compactness,

• average out-degree,

• average closeness centrality,

• average betweenness centrality,

• size.

The search for the best parameter combinations for the Gaussian Mixture
model application suggests 6 as n components and ”diagonal” as covariance type,
so the model partitions the data in six clusters. Figure 3.18 shows the plot of the
clustering results on the two main data dimensions. Moreover, from the process
of selecting the characteristic metrics of the various clusters based on mean and
variance, as explained in the 2.2.4 section, we get the metrics:

• density,

• s-metric,

• compactness,

• size.

If we take a look at the metrics that characterize the clusters identified by each
algorithm we notice that all three selected these metrics:
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Figure 3.17: On the left the k-dist graph, that plots the changes of the k-nearest-
neighbor distances computed for each point and ordered from largest to smallest.
On the right the result of the clustering performed with DBSCAN plotted on the
two most significant components of the dataset with the centroid of the cluster
identified by a red star and the noise points identified by purple points.

Figure 3.18: The result of the clustering performed with Gaussian Mixture model
plotted on the two most significant components of the dataset with the centroids
of each cluster identified by red stars.
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k-Means DBSCAN Gaussian Mixture Model
Silhouette score 0.52055 0.59599 0.06579

Table 3.9: Silhouette scores of clustering applied on metrics on shallow spanning
trees.

• density,

• s-metric,

• compactness,

• size.

Here only four metrics were selected mainly because of Gaussian Mixture Model,
while k-Means and DBSCAN have only a few differences between the two of
them.

The table 3.9 shows the silhouette scores of the three clustering algorithms
applied. As we can see DBSCAN gets the highest score among the three models,
with k-Means producing a similar score, but the Gaussian Mixture Model doesn’t
produce a satisfactory score.





Chapter 4

Discussion

4.1 Results discussion

We begin to discuss the results of the analysis phase from the graph repre-
sentation. From the silhouette score of k-Means we note how none of the three
clustering algorithms produce satisfactory results in partitioning the students, with
DBSCAN providing the best but still poor performance among the three. This was
already imaginable from the elbow graph where the inertia did not form a true el-
bow and the silhouette score always remained very low. Even the k-dist graph
calculated before DBSCAN already showed that there was no drastic improve-
ment as the radius ε of the algorithm changed. In fact, DBSCAN can only detect
one cluster and classifies the remaining one-fifth of the students as noise points.
Gaussian Mixture Model also does not give great results despite the fact that these
three methods all use different techniques to partition students. In fact, in contrast
to what one might expect when looking at the plot of the data on the two princi-
pal components, which are the data features that capture the most variance in the
data, in which there appear to be three distinct clusters, none of these three algo-
rithms succeeds in identifying them, suggesting that the differences in the data are
probably not as marked as one would expect.

The same considerations about the results of the clustering can also be made
for the deep spanning trees, where the silhouette scores show even worse per-
formance than the graphs, with Gaussian Mixture Model even having a negative
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score. However, the plot on the two principal components does not show a clear
separation between the data, rather, there seems to be only small differences be-
tween the points and nothing that makes the data separable.

The case of the shallow spanning trees, on the other hand, is more interesting.
The silhouette scores of the three algorithms are promising with values of all three
above 0.5. In addition, the three algorithms suggest a conspicuous number of
clusters compared to those identified by clustering on the other representations,
in fact k-Means identifies 4 clusters, DBSCAN 7 and Gaussian Mixture Model 6.
Particularly interesting is the elbow graph visualized before applying k-Means, as
we notice how the inertia and silhouette scores follow inverse trends, i.e. as the
inertia decreases dramatically the silhouette score increases, although by less than
two decimal points.

The metrics calculated on the three representations, however, can tell us in-
teresting things about the tests. Starting with the graphs we notice that there are
four metrics, average betweenness centrality, average edge betweenness central-
ity, number of isolates and number of weakly connected components, that have
variance equal to 0, which means that the results of these metrics for each student
are identical. The number of isolates has also a mean equal to 0 indicating that all
graphs are connected and there are no external nodes. The number of weakly con-
nected components has mean 1 which means no graph is disconnected. The two
metrics on betweenness centrality have mean close to 0 indicating that there are
no particularly critical edges or nodes in the graphs. Also, average in-degree and
average out-degree have the same mean and variance indicating that the number
of dimensions sharing nodes is fairly balanced. All other metrics except s-metric,
number of strongly connected components, average in-degree, average out-degree
and average node connectivity have very low variance indicating that according to
these metrics the graphs are all similar. Looking, however, at the various averages
we can see that the graphs tend to be very compact, connected and fairly dense.
In addition, there are several cycles within them and transitivity is discretely high,
as well as average clustering and overall reciprocity. As for connectivity, it is high
for nodes and very low for edges.

The metrics on deep spanning trees have some things in common with the
previous ones just described. For example, the number of isolates here also has
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variance equal to 0, as does average closeness centrality and density. Average be-
tweenness centrality, average edge betweenness centrality, and number of weakly
connected components, along with average out-degree and load balance, have a
variance that is close to 0, while all other metrics have more or less high variance.
Moving to the averages, the average out-degree is in line with expectations, as are
the various centrality measures, which are all close to 0 because the graphs are
very deep. For the same reason we have a low breadth and a very high height.
These trees appear compact but not dense since the trees are constructed with the
minimum number of edges possible. The number of weakly connected compo-
nents suggests to us that most students have only one tree and that node pairs tend
more likely to share one or two dimensions.

Finally, the metrics on spanning trees have the peculiarity that almost all of
them have variance equal to 0 or tending to 0 except s-metric and size, which
indicates that the graphs are very similar according to these metrics. If we study
the averages we again see that the average of the number of isolates is 0, that
the centralities have an average close to 0 and that the trees are not very compact
nor dense. The number of weakly connected components has the same mean and
variance as the other tree type, but here obviously breadth is higher than height.
The size is slightly lower than its counterpart, while the load balance is slightly
higher. Here the average out-degree is lower than in the deep spanning trees as it
is easier for fictitious nodes to be added.

The clustering results on the metrics, on the other hand, can be much more
helpful to us. Starting again with the metrics on the graphs, the silhouette scores
of the three clustering algorithms are quite good even though the three algorithms
identify a different number of clusters, which could mean that the three algo-
rithms capture different features of the data or with a different level of depth.
However, all three algorithms select three-fourths of the metrics, with a minimal
difference of one metric that DBSCAN does not select. Of particular interest is
the elbow graph, which shows that as the inertia changes, the k-Means silhouette
score hardly changes, even though the inertia forms a discrete elbow. The k-dist
graph also forms a significant elbow, however DBSCAN partitions almost all of
the data into a single cluster and the remaining points between a very small cluster
and noise points.
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The same considerations about the silhouette scores and the elbow graph and
the k-dist graph also apply to the deep spanning trees. In this case, about half
of the calculated metrics are selected with some differences between the various
algorithms, among other things, all of which are different from those selected by
the graphs except one, the s-metric.

Again the same considerations about the elbow graph and the k-dist graph
apply to the shallow spanning trees, but this time the silhouette score is good only
for k-Means and DBSCAN, while for Gaussian Mixture Model it is very low.
The metrics in common selected by the three algorithms are only four because of
the poor results of Gaussian Mixture Model, while the other two models identify
similar but not identical sets of metrics of which some are also significant for
graphs.

4.2 Method validity and limitations

Clustering applied directly on the first three representations unfortunately pro-
vides no particular insights and in the case of graphs and deep spanning trees is
also quite disappointing. An attempt was made to check whether there was any
correlation between the clusters identified by the three algorithms with the possi-
ble future dropout of students, a datum present in the initial dataset from which
the students’ test responses were isolated, but in fact even this was not found to be
significant. In fact, although the relative frequencies indicated that some clusters
partitioned the data more according to dropout, the absolute frequencies showed
that the separation was not sharp enough to be significant. In spite of all this,
shallow spanning trees gave promising clustering results, however, it is not easy
to understand and extract what factors determine data separation, and a great deal
of work would be needed to understand whether the clusters can be linked with
background information of the students or with the size of the various questions
according to which ones were answered correctly.

In addition, the fact that the connections between pairs of nodes indicate only
how many dimensions they share and do not specify which ones can be limiting
for the next step of evaluating the clustering results, especially the one applied
directly on the three representations.
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Clustering applied to metrics, on the other hand, gives good results, and in
this case we can also identify which metrics characterize the clusters the most, but
only an expert in this domain can actually draw meaningful considerations from
these results and then translate them into our context, so only at that point it will
be possible to evaluate whether indeed these results are useful for assessing and
understanding the students’ learning state.

Certainly the choice to focus only on the students’ responses to the test and the
metrics calculated on the representations ensures that the data do not contain bias
arising from the students’ background, however, the classification of the questions
based on the three dimensions was done by hand by an expert. Also, if we look at
the distribution of the data based on dropout this is not balanced in the dataset.

To recap, with the current method only clustering on the spanning trees and on
the metrics computed on the various representations give satisfactory results that
are worth analyzing. However, direct clustering on the spanning trees is very com-
plex to interpret since it is very difficult to extract any factors that characterize the
data since the clustering is performed directly on the adjacency matrix, whereas
in clustering on the metrics we can isolate characterizing metrics for individual
clusters that perhaps globally did not give particularly relevant information.

4.3 Future works

In light of the limitations just outlined there are several future directions that
this work can take to further explore the issues of analyzing a student’s learning
path and learning state.

First and foremost, other clustering algorithms could be attempted especially
with regard to graphs and deep spanning trees where those tested gave poor results.

In addition, a multi-layer graph structure could be proposed so that in addition
to knowing how many dimensions each pair of nodes shares, we can also know
which ones are shared by isolating the layers of the graph.

Another interesting insight that would help shed light on the results already ob-
tained instead, would be a deep study of the direct clustering results on the graph
and spanning tree representations to look for possible correlations with other stu-
dent data, such as family or educational background, or with the three dimensions
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of the questions, area, process and macro-process.
The results of this work are also a good starting point for experts in this do-

main, particularly those who design tests to assess students’ learning paths, to try
to find more details about the difficulties that students may find during learning
and while taking the test, as well as on the test itself.



Conclusions

Assessment of student learning states and paths is a crucial task for educators
and researchers in education. In the course of this work, we examined differ-
ent representations of the data obtained from fifth-grade students’ answers to the
INVALSI math test using clustering algorithms. The main objective was to un-
derstand if and how it was possible to divide students into homogeneous clusters
based on their performance on the test in order to identify any distinctive patterns
or characteristics in the students’ learning state.

In our study, we examined different representations of the data, graphs, deep
spanning trees and shallow spanning trees, as well as computed metrics on these
representations for an initial stage of analysis. Next, we applied three clustering
algorithms, k-Means, DBSCAN and Gaussian Mixture Model, on each of these
representations and the metrics calculated on them to try to identify any significant
clusters in the students’ learning state.

The results obtained highlight a variety of challenges and opportunities in ap-
plying clustering to this type of data. In particular, direct clustering analysis on
graphs and deep spanning trees showed disappointing performance. This sug-
gests that the structure of the data may not be easily interpretable or separable
using such approaches. However, the analysis conducted on shallow spanning
trees produced more promising results, with more clusters identified and higher
silhouette scores. This may indicate that reducing the complexity of data repre-
sentation may improve the ability of clustering methods to identify meaningful
patterns in the data.

In addition, analysis of the metrics computed on each representation provided
additional insights, revealing patterns and characteristics of the data that may not
have been highlighted by clustering methods directly applied to the representa-
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tions. For example, we observed that the metrics computed on the graphs tended
to show strong connectivity and density, while the metrics computed on the deep
and shallow spanning trees showed different characteristics such as height, width
and load balance. However, even here, understanding the results requires in-depth
knowledge of the specific domain and educational contexts.

In any case, it is important to note that the results obtained in this study have
some limitations. For example, we found that the correlation between the clus-
ters identified and student dropout was not significant, suggesting that the clusters
identified may not be closely correlated with student performance, but the unbal-
anced distribution of the data based on student dropout might have influenced the
results of the analysis. Furthermore, interpreting the results obtained directly from
clustering on the data representations requires an additional and in-depth analysis
work to be able to find patterns.

To address these limitations and deepen our understanding of the student learn-
ing state, further study and future research is needed. For example, we could
explore the use of other clustering algorithms or try other representations. In ad-
dition, we could examine how the identified clusters correlate with other variables,
such as students’ backgrounds or the size of test questions.

In conclusion, this study represents a first step toward a better understanding of
students’ learning states through the analysis of test data. Despite the challenges
and limitations encountered, the results obtained provide interesting insights for
further research and can be used as a basis for the development of targeted and
personalized educational interventions. However, it is important to emphasize
that understanding the student learning state is a complex and ever-evolving field,
and what we present in this study represents only a small part of what might be
possible. With further research and collaborative efforts, we hope to develop a
deeper understanding of this important topic and make a significant contribution
to improving student instruction and assessment.
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