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ABSTRACT

Neural codec language models (NCLMs) are speech synthesizers that address the text-to-

speech (TTS) task as a language modeling task rather than continuous signal regression

as in previous work. They showed an impressive generalization capability, surpassing

previous state-of-the-art zero-shot TTS models by means of speaker similarity and natu-

ralness. Although addressing speech synthesis as a language modeling task in part allows

to train on large and diverse speech data crawled from the Internet, it also brings some

issues common to those of large language models (LLMs) for text generation. While

LLMs may generate outputs with made up facts or biased and toxic contents, neural

codec language models suffers from synthesis robustness and expressiveness. Reinforce-

ment Learning from Human Feedback (RLHF) has emerged to tackle the issues of LLMs,

by using human feedback to align the generated responses to the user preferences. Us-

ing RLHF helped LLMs to reduce the amount of generated toxic content and false facts.

Motivated by the success of RLHF in the text generation domain, this work proposes to

fine-tune NCLMs from feedback with reinforcement learning following the RLHF train-

ing pipeline. We conduct a series of experiments with VALL-E pretrained on LibriTTS,

fine-tuning it to optimize different kind of feedback: intelligibility, naturalness, speaker

similarity and waveform duration. Our results show that fine-tuning helped to increase

the intelligibility of the model, showing a WER reduction up to 20.954%, but also to

change the speech duration according to the reward signal. Finally, we delineate limita-

tions of our experimental setup and propose practical mitigations, to be explored in future

work.
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CHAPTER 1

INTRODUCTION

Recently, generative AI demonstrated impressive capabilities in various fields, attracting

unprecedented attention in both industrial and academic areas [72]. Generative AI refers

to technologies that can generate novel content rather than taking actions and decision

on existing one. Many generative AI models, such as ChatGPT [73] and DALL-E [46]

demonstrated the extraordinary capability to create new and diverse content [72]. These

powerful models have shown unprecedented capabilities in synthesizing realistic images,

audio, text, and other data modalities [14].

Text-to-speech (TTS), or speech synthesis, is an example of generative AI task, which

aims to generate natural and intelligible speech from text [56]. With the advent of deep

learning, neural network-based speech synthesis has thrived, and a large amount of re-

search work comes out focusing on different aspects of neural TTS [55]. Currently,

cascaded text-to-speech systems [51] [47] [30] often leverage a three-stage pipeline with

a text analysis module, an acoustic model and a vocoder using mel spectrograms or other

acoustic features as the intermediate representations. More advanced TTS models can

synthesize high-quality speech from single or multiple speakers [32] [68], but they still

require high-quality clean data, making training on large-scale data crawled from the In-

ternet unfeasible [55]. Because the training data is relatively small, current TTS systems

still suffer from poor generalization. To tackle those issues, neural codec language mod-

els (NCLMs) have emerged, addressing speech synthesis as a conditional language mod-

eling task rather than continuous signal regression. NCLMs are language models trained
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to predict discrete acoustic representations learned through neural audio codecs (NACs)

[70] [12] [48]. Those models demonstrated impressive zero-shot TTS results, while at

the same providing high speech diversity, acoustic environment preservation and speaker

emotion maintenance [62] [20]. However, since these models are trained to solve the

language modeling task and are trained also on unclean data, they suffer from synthesis

robustness (words may be unclear, missed, or duplicated in speech synthesis) and expres-

siveness (the ability of representing different speaking styles and voice types) [62] [20].

Large language models (LLMs) are another example of successful type of generative AI

models. LLMs are transformer language models that contain a number of parameters

in the order of bilions, which are trained on huge amount of text data, such as GPT-3

and LLaMA [10] [57]. They showed impressive capabilities in text generation, common-

sense reasoning, spatial reasoning, mathematical reasoning or programming assistance

[72]. However, many LLMs still suffer from several issues, such as making up facts,

generating toxic or biased content and not following the user input [4] [19] [65] [40].

The reason of this behavior is in part because of the large language modeling objective

(predict the next word on a large dataset of Internet text), is different from the "following

the user’s requests helpfully and safely" objective [40]. Reinforcement learning from hu-

man feedback (RLHF) has emerged as a practical way to introduce learning goals that are

more closely aligned with human values and intents, promoting ethically sound and so-

cially responsible AI systems [18]. RLHF is a variant of reinforcement learning (RL) that

learns from human feedback instead of relying on hand-crafted reward functions. RLHF

has seen a number of successful applications, ranging from image-generation, robotics,

control and games to the domain of LLMs [18]. In the LLMs domain, RLHF not only

demonstrated to reduce toxicity and biased content, but also to reduce the number of

made up answers and to increase the alignment of the responses with the preferences of

the users [39] [40].

Motivated by the success of RLHF in the text synthesis domain, this work proposes to

fine-tune NCLMs from feedback with reinforcement learning following the RLHF train-

ing pipeline, trying to mitigate the issues of NCLMs and exploring ways of optimizing

other non-differentiable objectives. This thesis proposes to make a first step to demon-

strate that it is possible to optimize feedback received from reward signals or preferences

for a neural codec language model, to enhance different TTS metrics such as intelligibil-

ity and speaker similarity. We believe that such method could be of extreme interest for
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both business applications and research purposes, since it could show a way to mitigate

the issues related to training on large, diverse and unclean TTS data.

To demonstrate that NCLMs can be successfully fine-tuned from feedback with RL,

we first pretrain a NCLM on an available open source TTS dataset to obtain both a base-

line and the model we optimize with RL. We then define some reward functions to pro-

vide a preference feedback to the network, with the goal of optimizing some TTS objec-

tives. To fine-tune the pretrained model, we first build a dataset containing the prompts

to be used by the NCLM for the generation of synthetic speech. For a single prompt, the

model generates multiple responses and the reward model gives a score to them, provid-

ing an intrinsic preference ranking. Finally, we use RL to optimize the feedback for the

pretrained NCLM on the prompt dataset. We evaluate the NCLM by means of objective

TTS metrics on unseen test data from an open source TTS dataset. Specifically, we mea-

sure the naturalness, intelligibility, speaker similarity maintenance and average duration

of the speech generated by the NCLM.

As a further contribution, we open-source our code through a publicly available

GitHub repository1 and we provide a collection of demo samples for most of the ex-

periments2.

1https://github.com/prahtz/nclm-feedback
2https://prahtz.github.io/nclm-feedback
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CHAPTER 2

BACKGROUND

2.1 Language Models

Language Models (LMs) are probabilistic models of natural language. They are usually

used to capture the regularities of natural language and use them to solve various tasks,

such as machine translation, natural language generation and information retrieval. Lan-

guage models can be trained to predict the next word, character or, in general, element in

a sequence, also known as language modeling task.

Statistical language models, exemplified by n-gram models [16], were a pioneering

method in addressing the language modeling task. These models estimated the proba-

bility distribution of word sequences based on observed frequencies in a training corpus.

Simple and interpretable, they were widely used, but their limitations included struggles

with capturing long-range dependencies (relationships between elements separated by

large distances in a sequence) and curse of dimensionality. In contrast, Neural Language

Models, leveraging the expressive power of neural networks, have emerged as a trans-

formative force in language modeling. Embodied by architectures like recurrent neu-

ral networks [31] and transformers [60], these models naturally learn intricate language

patterns, allowing them to capture contextual dependencies across extended sequences.

Their superior performance in generalization and adaptability across diverse Natural Lan-

guage Processing (NLP) tasks has reshaped the landscape of language modeling [5] [13]

[43] [60] [28].
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2.2 Speech Signals

Speech signals are audio signals defined as pressure variations traveling through the air.

Speech emerges from a speakers mouth, nose and cheeks, is a one-dimensional function

(air pressure) of time [49]. Microphones can capture those air fluctuations and convert

them into continuous electrical signals. An analogue-to-digital process can transform

those electric signals into a digital representation of the speech. The process consists of

two steps: sampling and quantization. The former is defined by the sampling rate, that

indicates the number of data points to capture from the analogue signal over a specific

time-window, while the latter limits the range of amplitudes to a discrete set. The quanti-

zation step must be defined to represent the sampled data points into a digital system, by

choosing a fixed number of bits to represent them. Usually, amplitudes are represented

by 16, 32, or 64 bit integers. In the following sections and chapters, we will use the term

"waveform" to indicate a digital speech signal. A waveform is a graphical representation

of the amplitudes of a signal plotted over time.

2.3 TTS - Text-To-Speech

Text-to-Speech (TTS) is the process of generating spoken language given written text

or any kind of textual representation. The primary goal of TTS systems is to gener-

ate human-like speech from input text, allowing computers or devices to communicate

with users through spoken words. This technology has numerous applications, including

accessibility for visually impaired individuals, voice assistants, audiobooks, navigation

systems, and more. Traditional text-to-speech systems often relied on rule-based or con-

catenative methods, where pre-recorded segments of human speech were concatenated

to generate the desired output [53]. In contrast, modern TTS systems are neural. They

leverage deep neural networks, such as recurrent neural networks (RNNs) [64] [59], con-

volutional neural networks (CNNs) [1] [54], or more recently, transformer-based archi-

tectures [68] [7]. These neural networks are trained on large datasets of text and corre-

sponding audio to learn the complex relationships between text and speech. Neural TTS

has several advantages over traditional methods, including improved naturalness, expres-

siveness, and the ability to handle various speaking styles. Additionally, these systems

can generalize better to new and unseen data, making them more adaptable and capable

of generating high-quality synthetic speech [68] [64] [62].
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2.3.1 Cascaded TTS models

A cascaded TTS system addresses the speech synthesis task in sequential steps. A general

speech generation pipeline can be described by three cascaded modules. First, there is

the text analysis module, that converts the input representation into a set of linguistic

features, such as phonemes and prosody information. Those are then processed by the

acoustic model, that generates intermediate acoustic features such as spectrograms or

acoustic embeddings. The final module, called vocoder, takes the intermediate acoustic

features generated in the previous step to produce a waveform. Examples of such models

are FastSpeech [47] and Transformer TTS [30]. Although such models allow to control

many aspects of speech generation thanks to their three-stage processing pipeline, they

usually suffer of poor generalization and require high-quality clean data to produce good

results.

2.3.2 End-To-End TTS models

In end-to-end (E2E) TTS models, the entire process, from input text to synthesized

speech, is handled by a single neural network or model. Such models are responsible

for both understanding the linguistic content of the input text and generating the corre-

sponding speech waveform. VITS [68] and YourTTS [11] are examples of E2E TTS

models. Since E2E TTS models generate the waveform directly, without learning explic-

itly intermediate acoustic representations such as spectrograms, they have the potential to

capture prosodic features (such as pitch, rhythm, and intonation) more naturally, as these

elements are implicitly learned during training [68].

2.3.3 Evaluation

A TTS system is usually evaluated under two dimensions: intelligibility and naturalness.

Intelligibility measures how well words of the TTS system’s outputs are understood,

while naturalness refers to how closely the synthesized speech resembles the natural and

expressive qualities of human speech. Several factors contribute to the perception of

naturalness in synthesized speech, such as prosody, emotional expression, accent and

speaker similarity.

There are two main ways to measure a TTS system, by either using subjective tests or

objective metrics. Subjective evaluations, such as Mean Opinion Score (MOS) [61] and
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MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) [34], are usually audio

only listening test, where participants are asked to rank the quality of the audio according

to their preferences. They are used to evaluate aspects of speech that are hard to capture

using algorithms, such as speaker similarity or emotion. Subjective metrics are usually

used to evaluate the naturalness of a TTS system. However, such tests are expensive

to perform, since they require a sufficiently high number of human participants to be

reliable. Objective tests are instead ways to evaluate the TTS system in a quantifiable

and measurable way.

WER (Word Error Rate), PER (Phonemes Error Rate) and SER (Sentence Error Rate)

are examples of objective metrics. Those are used to measure the intelligibility of a

TTS system, by using Automatic Speech Recognition (ASR) pretrained models, such

as wav2vec2.0 [3] or HuBERT [15]. Given the audio produced by the TTS system un-

der analysis, the ASR model computes its transcription, that is compared with the input

text/phonemes used as input by the TTS model. The WER, PER or SER between the

compared textual representations is used to asses the intelligibility of the TTS model.

Some aspects of the naturalness of a speech, such as speaker similarity, can be mea-

sured also with objective evaluations. For instance, to measure the speaker similarity

between two audio samples, in our work we use TitaNet [23], a neural network trained

for extracting speaker representations from a given speech. Given two speech samples,

one generated by the TTS system and the ground truth, TitaNet can extract their speaker

embedding, a vector representation of the speakers. Cosine similarity can be used to

measure the distance between the two embeddings. The lower the distance, the higher

the speaker similarity between the two samples.

There are also attempts to predict the MOS of a given speech without human inter-

vention, by training neural networks to predict real MOS scores in supervised way on

a MOS-labeled dataset. Speech Quality Assessment using Non-Matching References

(NORESQA-MOS) [33] is a an example of such models, where the model is trained to

predict the MOS of a given speech and a non-matching reference. Although the results of

such models are not on par with those obtained by human participants, they can be used

to measure the overall naturalness of a speech in an objective way.

10



2.4 Speech quantization

Speech Quantization refers to the use of quantization techniques for speech signals. If

we represent waveforms with 16 bit integers, a generative speech model requires to out-

put 216 = 65, 536 probabilities at each time-step to synthesize raw speech (speech as a

one-dimensional function of time), for a number of time-steps that is usually huge with

high sample rates, making raw speech generation intractable [62]. Speech quantization

techniques compress raw speech into discrete representations and reduce its sequence

length. Learning discrete representation of raw data have proven to be beneficial for vari-

ous tasks, such as image generation [46] [45], video generation [66] and speech synthesis

[26] [62]. Although various speech quantization methods are proven to be efficient for

speech generation and discrete audio representation learning [37] [2] [27], this section

focuses its attention on Neural Audio Codecs (NACs), describing their core architecture

and their working principles.

2.4.1 VQ-VAE - Vector Quantized-Variational AutoEncoder

VQ-VAE is a type of variational autoencoder, a deep neural network used to learn neu-

ral discrete representations of complex data, such as video and audio sources [38]. It is

capable to encode a data source into a discrete latent space, usually with lower dimen-

sions, and decode the result to reconstruct the original source. VQ-VAE is an extension

of the variational autoencoder framework, a type of autoencoder that encodes and de-

codes the latent space probabilistically [22]. In addition to the variational autoencoder,

VQ-VAE relies on vector quantization techniques to discretize (quantize) the continuous

representation produced by the encoder into a discrete number of learnable vectors called

codebook. The encoder maps input data to the nearest vector in the codebook, introduc-

ing also a form of compression. The decoder is trained to reconstruct the input data by

using the learned vector instead of the output of the encoder.

2.4.2 Neural Audio Codecs

Audio Codecs are algorithms that compress (encode) or decompress (decode) a codec

that encodes or decodes audio data. A codec is any compressed representation of an

audio data. Audio codecs are crucial for compressing audio data, reducing file sizes for

efficient storage and transmission. They enable compatibility across devices, support
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real-time processing, and preserve audio quality, making them essential for applications

like streaming, online communication, and multimedia production. Examples of such

algorithms are Opus [58], MP3 and AAC [8].

Neural Audio Codecs (NACs) are audio codecs that leverage neural networks. They

learn from data, adapting to different audio content, aiming for high compression ef-

ficiency while maintaining audio quality. Neural Audio Codecs such as SoundStream

[70], EnCodec [12] and TiCodec [48] are examples of state-of-the-art Neural Audio

Codecs. They are VQ-VAE-based models, trained on a vast amount of clean and noisy

speech, music and general audio to allow the generation of high-quality audio content

from quantized embeddings. Differently from pure VQ-VAEs, where the latent space is

quantized as a single codebook, SoundStream, EnCodec and TiCodec build a cascade of

codebooks through as many sequential residual vector quantizers [70] [12]. In a residual

vector quantization pipeline, the unquantized vector is passed to a vector quantizer, and

the closest entry in the codebook is extracted. Then, iteratively, the residual between the

unquantized vector and the extracted vector is passed to the following vector quantizer.

2.4.3 TiCodec

TiCodec [48] is a NAC for speech with time-invariant codes based on a VQ-VAE ar-

chitecture. Motivated by the success of Neural Codec Language Models (Section 2.5),

TiCodec introduces a way to reduce the number of discrete codes needed to represent

an input speech, by adding an additional module that captures time-invariant features of

speech, such as timbre and acoustic environment, reducing the amount of time-level in-

formation that needs encoding and effectively decreasing the number speech codes [48].

Specifically, given an input waveform, an intermediate representation of TiCodec’s en-

coder is used as time-invariant embedding. This embedding is then processed by a Group

Vector Quantization module [67], that divides it into eight groups, resulting in eight dif-

ferent discrete tokens [48]. These codes are used by TiCodec’s decoder, together with

the time-level discrete codes, to reconstruct the input waveform. The authors of TiCodec

showed that their model can enhance the quality of reconstruction speech with fewer to-

kens and also increase the similarity and naturalness on LibriTTS [71], a TTS dataset

collected from audiobooks (see Section 4.2).
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2.5 Neural Codec Language Models

Neural Codec Language Models are models that address the TTS task as language model-

ing approach with discrete codes obtained by an off-the-shelf neural audio codec. Specif-

ically, they approach the TTS task as a conditional language modeling task rather than

continuous signal regression, where a language model is conditioned on a discrete tex-

tual representation (the text to be synthesized) and, optionally, on discrete audio codes

[62] [20]. Such models generate discrete acoustic tokens given the textual and acoustic

prompts; those tokens can then be used by the neural audio codec’s decoder to generate

the waveform. This pipeline allows the model to generate personalized speech leveraging

the power of language models, including the use large, diverse, and multi-speaker speech

data. VALL-E [62] and CLaM-TTS [20] are examples of Neural Codec Language Mod-

els. They surpassed the current state-of-the-art models for speech generation in zero-shot

scenarios, showing impressive generalization capabilities [62] [20].

2.5.1 VALL-E

VALL-E [62] is a conditional neural codec language model for text-to-speech synthesis.

Given a textual prompt and an acoustic prompt, the model is originally trained to predict

discrete acoustic tokens of audio samples, encoded by Encodec [12]. The model features

the use of an autoregressive (AR) transformer [60] to predict the discrete codes of the first

quantizer of Encodec, and the use of a non-autoregressive (NAR) transformer to predict

sequentially the codes of the other seven quantizers. The predicted codes are then used

by Encodec’s decoder to produce a waveform.

Formally, given a waveform y and its phoneme transcription x, they encode the audio

sample with Encodec, obtaining the acoustic matrix CT ×8 = Encodec(y), where T is

the utterance length and 8 is the number of codebooks. The AR transformer is trained

as a language model to predict the codes of the first quantizer c:,1, conditioned on the

phoneme transcription x and the encoding of the acoustic prompt ĉ:,1, formulated as

p(c:,1|ĉ:,1, x; θAR) =
T∏

t=0
p(ct,1|c<t,1, ĉ:,1, x; θAR)

The NAR transformer is trained as a language model to predict the codes of the remaining

seven quantizers c:,2:8, conditioned again on x and the while acoustic prompt matrix Ĉ,
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formulated as

p(C:,2:8|Ĉ, x; θNAR) =
8∏

j=2
p(c:,j|c:,<j, Ĉ, x; θNAR)

2.6 Reinforcement Learning

Reinforcement learning (RL) is the problem faced by an agent that must learn behavior

through trial-and-error interactions with a dynamic environment [17]. An agent is an

entity that takes actions in the environment based on rewards and punishments. The

goal of an agent is to learn how to maximize the cumulative reward, the total reward

accumulated over time by following the actions. RL is modeled as a Markov decision

process. A Markov decision process (MDP) is a mathematical framework for modeling

sequential decision making problems under uncertainty. Formally, an MDP is defined as

a tuple M = (S, A, P, R, ρ); at any timestep, the environment exists in a state s ∈ S, with

ρ being the initial state distribution. The agent takes an action a ∈ A which transitions

the environment to a new state s
′ ∈ S. The stochastic transition function P governs

the dynamics of such transitions. For each transition, the agent receives a reward R :
S × A → R. Furthermore, the agent acts according to a policy π in a space of policies Π,

that produces a probability distribution over actions given a state [17]. The task of an RL

algorithm is to interact with the MDP by simulating its transition dynamics P and reward

function R and learn the optimal policy π∗, the policy that, if followed, maximizes the

expected cumulative reward obtained by the agent.

Early RL research mainly focused on tabular and approximation-based algorithms to

search for the optimal policy. Due to the lack of representation ability, traditional RL

algorithms can only solve tasks with low-dimensional state and action spaces. However,

tasks that are more complex and closer to the real-world situations usually have a higher

dimensional state space and continuous action space, thus limiting the application of RL

[63]. With the advent of deep learning, RL extended its range of applications, thanks to

the powerful representation capabilities of neural networks. Since the successful appli-

cation of deep Q-network [36] in game playing, more and more deep learning techniques

and algorithms have been combined with RL, which have been used to solve tasks such

as robot control, games, NLP and autonomous driving [63].

Deep learning has been successfully used to approximate policies for policy gradient

methods. The basic idea behind policy gradient methods is to adjust the parameters of the
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policy in the direction that increases the probability of taking actions that lead to higher

expected rewards. The objective is to find a policy that maximizes the expected cumula-

tive reward over time. Policy gradient methods are versatile and can be applied to a wide

range of problems, including both discrete and continuous action spaces. Popular algo-

rithms within the policy gradient framework include REINFORCE [52], A3C [35], and

Proximal Policy Optimization (PPO) [50]. These methods have been successfully used

in various domains, such as robotics, game playing, and natural language processing.

2.7 Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) is a machine learning algorithm

that uses human feedback to optimize agents with Reinforcement Learning (RL) algo-

rithms, such as PPO [50]. Standard RL is used to train models acting in an environment

to maximize a reward function, so that they learn to produce more accurate outcomes.

RLHF incorporates human feedback in the reward model so that the model to optimize

can be aligned to their preferences. RLHF has been successfully used to fine-tune lan-

guage models from human preferences for NLP tasks such as stylistic continuation and

text summarization [74], but also to reduce toxic output generation and to improve truth-

fulness [40] [73].

A RLHF pipeline for language models optimization can be summarized as follows.

First, a human labeled dataset with prompts and responses is collected. Then, the lan-

guage model is fine-tuned or pretrained on the collected dataset with supervised learning.

The learned model will be used to generate multiple responses given the same prompt,

for a big enough number of prompts. Then, human participants are asked to indicate their

preferences over the responses generated by a prompt, for each prompt in the dataset, and

the results will be used to label each sample and create a new preference dataset. This

dataset is then used to train a reward model with supervised learning, maximizing the

likelihood of predicting the human preferences given the language model responses. Fi-

nally, the supervised fine-tuned (SFT) language model is trained with RL to optimize its

policy, its probability distribution over words, to maximize the outcomes of the reward

model given the prompts and the LM’s responses. This process can be repeated over time,

so that a new reward model can be trained on newly generated data from the current RL

optimized language model.
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RLHF implements a way to prevent the RL policy from moving too far from the

initial pretrained model. Without any constraint, nothing prevents the policy to fool the

reward function to give extremely high rewards to generated nonsense text. To avoid this

from happening, a penalty with expectation βKL(π, ρ) is added to the reward, where KL

is the Kullback-Leibler divergence, π is the policy to be fine-tuned, ρ is the pretrained

language model and β can be a constant or adjusted dynamically [74]. The KL diver-

gence measures how one probability distribution π is different from a second reference

probability distribution ρ [25]. The idea is to adjust the reward given to the generated

responses so to penalize those that are generated by a policy that is too distant from the

pretrained language model. Constraining the policy to be reasonably close to the proba-

bility distribution of the pretrained model automatically prevents it to generate gibberish

texts.
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CHAPTER 3

FINE-TUNING NEURAL CODEC

LANGUAGE MODELS FROM

FEEDBACK WITH REINFORCEMENT

LEARNING

Ad described in Chapter 1, the goal of this thesis is to see if it is possible to optimize

neural codec language models from feedback with reinforcement learning, motivated by

the success of RLHF in the field of NLP with LLMs [73] [40]. In particular, this thesis

proposes a training pipeline to optimize a NCLM to improve the produced speech under

several dimensions, such as speaker similarity and intelligibility.

3.1 Problem formulation

Given a dataset D = {xi, yi} where yi is an audio sample and xi is its phoneme transcrip-

tion, we use a pre-trained neural audio codec to encode each audio sample into discrete

audio codes, denoted as Codec(y). We use just the first codebook of the NAC to encode

the audio samples, then Codec(y) = cT , where c denotes the acoustic code vector and

T is the downsampled utterance length. Given an autoregressive NCLM ρ, we train it to

predict cT , conditioned on the phoneme transcription x and a discrete acoustic prompt ĉ,
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formulated as

p(c:|ĉ, x; θρ) =
T∏

t=0
p(ct|c<t, ĉ, x; θρ)

The prompt ĉ is a discrete acoustic representation obtained by encoding a speech sample

ŷ with the NAC, so that ĉ = Codec(ŷ). The recording sample ŷ should represent the

acoustic features of the speech we want to generate, such as speaker identity, emotion

and pitch. After training, ρ is able to generate discrete audio codes of the first code-

book of the NAC given the phoneme transcription and the acoustic prompt. Codes are

a discrete representation of the synthetic speech to be generated. To obtain a waveform,

the generated codes can be decodes using the NAC’s decoder. We denote the decoding

process as Decodec(c) = w where c is the code vector and w is the waveform.

Once ρ is trained, we fine-tune it with the RLHF pipeline following [74] to maximize

the outcomes of a reward model. We first need to build a prompt dataset D̂, containing the

prompts used by the NCLM to generate synthetic speech. A prompt is a tuple qi = (xi, ĉi)
where xi is the phoneme representation of the utterance to be generated and ĉi is a discrete

acoustic code representation of an audio prompt. The NCLM ρ is asked to generate

multiple responses zi = (zi1, zi2, ..., zin) given the prompt qi. If we want to incorporate

human feedback in the RL loop, the generated dataset D̂ = {qi, zi} must be labeled

by human participants according to their preferences, then fit a reward model r to it, as

described in [74]. Otherwise, is it possible to choose any kind of reward function r to

provide feedback to the NCLM. A reward function r : X × Y → R is used to provide a

score to each response of zi. Each score provides an intrinsic preference feedback to each

response in zi, allowing the NCLM to learn which is the most aligned with the provided

feedback and which not.

As done in [74], we initialize the policy to fine-tune as π = ρ and build a modified

reward model R(x, y) = r(x, y) − βKL(π, ρ) = r(x, y) − βlog π(y,x)
ρ(y,x) to keep π from

moving too far from ρ. The value β varies dynamically to reach a particular target value

of KL(π, ρ) [74]. Finally, we fine-tune π with PPO [50] with reward R on q∼D̂.

3.2 Feedback

In this section, we describe the feedback used to optimize the NCLM with RL. We do not

incorporate human feedback for our experiments, since collecting crowd-sourced data

would have been too expensive for the resources available for this thesis. We rely instead

18



on objective TTS metrics to provide feedback to the network in the RL loop.

Intelligibility We evaluate the intelligibility of the model with HuBERT-L [15] fine-

tuned on 960h of LibriSpeech for ASR. Specifically, given the response codes generated

by the policy, we use TiCodec’s decoder to decode the waveform and transcribe it with

HuBERT-L. We then compare the transcription with the textual prompt to compute the

WER of the model and scale it in [0, 1]. Since RL maximizes a reward function, the

feedback we provide is computed as 1 − WER.

Increase Waveform Duration We provide a feedback to increase the average duration

of waveforms generated by the model. We assign a reward of 1 to waveforms having a

duration of around 6 times the duration of the audio prompt, that linearly decreases down

to 0 for empty waveforms.

Decrease Waveform Duration This feedback is used to decrease the average duration

of waveforms generated by the model. The reward model looks at the duration of the

generated waveform and assigns a reward of 1 to those one second long responses, that

linearly decreases down to 0 for waveforms around 6 times long the duration of the audio

prompt. We also assign 0 to code vectors having a duration less than 1s.

Speaker Similarity We provide a feedback to the model to increase the speaker sim-

ilarity of the generated audio sample with respect to the original waveform. We use

TitaNet-L [23] from the NeMo toolkit [24] to extract speaker embeddings from wave-

forms. Specifically, given the waveform generated by TiCodec and VALL-E, and the

waveform of the original audio sample, we compute their speaker embeddings with

TitaNet-L, Sg and St. We compute the cosine similarity between the two vectors cos(θ) =
Sg ·St

||Sg || ||St|| and scale it in the range [0, 1] to obtain the speaker similarity SPK = cos(θ)+1
2 .

Finally, the speaker similarity SPK is provided as reward function in the RL loop to

fine-tune VALL-E.

Naturalness We try to increase the naturalness and the overall speech quality of the

generated synthetic speech by incorporating an objective TTS metric in the RL loop.

We use NORESQA-MOS [33] for estimating the MOS of synthetic speech generated

by VALL-E and TiCodec, and use it as a reward signal. NORESQA-MOS computes
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a relative MOS between the speech we want to estimate and a non-matching reference

speech, with the assumption of perfect MOS rating. We provide a MOS-based feedback

to the model by computing the NORESQA-MOS on the generated synthetic waveform

as test speech and the original audio sample as non-matching reference. Finally, we scale

the reward in the range [0, 1].
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CHAPTER 4

EXPERIMENTS

4.1 Neural Audio Codec

We use TiCodec as pre-trained NAC for our experiments. For computational resources

and time constraints, we adopt the 24kHz pre-trained checkpoint trained on LibriTTS

with just one quantizer, allowing us to experiment with VALL-E without the NAR trans-

former. This version of TiCodec takes as input 24 kHz audios and its encoder produces

75 Hz embeddings, which is a 320-fold reduction in the sampling rate. Each embed-

ding is modeled by a vector quantization module, with a codebook having 1024 entries.

In this setting, a 1 second waveform is encoded with 75 codes plus 8 codes from the

time-invariant quantizer.

4.2 Dataset

We use LibriTTS [71] as dataset for each experiment. LibriTTS is a cleaned an pre-

processed version of LibriSpeech [41], a dataset derived from audiobooks. LibriTTS

contains 586 hours of speech data from 2456 speakers in English language, with audio

files at 24kHz sampling rate and their transcriptions. We phonemize all the transcriptions

with phonemizer [6]. We use TiCodec [48] to extract the discrete acoustic codes from

each audio sample. We use the first 25% of the original audio samples as audio prompts
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for the RL optimization steps, up to a maximum of 3 seconds. With TiCodec and TitaNet-

L, we extract and store from the audio prompts the time invariant codes and the speaker

embeddings respectively.

4.3 Pre-training details

We decided to use VALL-E as NCLM for our experiments. Since there is not an official

implementation of VALL-E, we rely on lifeiteng/vall-e [29], a PyTorch [42]

unofficial implementation. We also followed the same training recipes described on the

repository, unless otherwise specified. We use a downscaled version of the VALL-E au-

toregressive transformer as NCLM for each experiment. Specifically, a transformer with

6 layers, an embedding dimension of 256, 8 attention heads, a feedforward dimension of

4096 and dropout 0.1. We train this version of VALL-E to predict the codes produced

by TiCodec described in the previous section. The model is trained using one NVIDIA

RTX 2080 Ti 11GB GPU with batches containing a maximum of 7500 acoustic tokens

for 100 epochs. Each batch is sampled so that it contains audio code vectors with simi-

lar lengths, to improve memory efficiency. We optimize with ScaledAdam [69] with an

initial learning rate of 5e-2 and 200 warm-up steps, following [29].

4.4 Reinforcement Learning details

We fine-tune our pre-trained VALL-E with PPO [50] on LibriTTS train set. We filter-out

the audio samples longer that 15 seconds before training. Given a prompt (phonemes and

acoustic), VALL-E generates two responses and a reward model produces a reward for

both. We experiment with two KL(π, ρ) target values: 12 and 100; the first is a value

that should keep the two policies close but has less flexibility to change, while the second

has the opposite characteristics. We train for four PPO epochs with a batch size of 256

with one-sized mini-batches, for a total of 250k prompt-response pairs. We optimize

with Adam [21] with an initial learning rate of 1e-5 and a cosine decay learning rate

scheduler. The rest of the PPO hyper-parameters are the same as those described in [74].

To generate responses, we sample from the policy with a temperature T = 2.
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4.5 Evaluation

After fine-tuning a model with RL, we evaluate it on the test-clean and test-other sets

of LibriTTS. Each model is evaluated under several dimensions: intelligibility, speaker

similarity, naturalness and waveform duration. We evaluate the first three dimension

using the corresponding methods described in Section 3.2, while the latter is measured

directly on the decoded waveform.

4.6 Experiments

This section shows the results of the experiments we conducted to fine-tune a NCLM

from feedback with RL. We fine-tune the pre-trained VALL-E model with the different

types of feedback described in Section 3.2, but also with two different target values of

KL(π, ρ), 12 and 100.

4.6.1 Waveform Length

With this type of experiments, we try to optimize the length of the waveform produced by

the NCLM according to the feedback provided by the reward function. We tried to both

decrease and increase the length of the generated audio sample down or up to a minimum

or maximum length.

Increasing Waveform Length Figure 4.1 shows that in both experiments, the policies

are able to reach the expected target KL(π, ρ) and maintain it over time. When training

with KL(π, ρ) = 12, the model is able to gradually increase the mean reward over time.

When the target KL(π, ρ) = 100, the policy learns to obtain high mean rewards after

few optimization steps.

Table 4.1 and Table 4.2 shows that the both the fine-tuned models are able to produce

longer audio samples with respect to the pre-trained baseline. However, we also observe

intelligibility, speaker similarity and naturalness degradation for both models. The degra-

dation effect is reduced when the policy is constrained to reach a target KL(π, ρ) = 12.
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Figure 4.1: Learning curves for VALL-E fine-tuned with target KL(π, ρ) = 12 and
KL(π, ρ) = 100 with increase waveform duration feedback.

Increase Waveform Length test-clean
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.654 4.291 34.707 4.002
KL(π, ρ) = 12 0.637 4.217 44.758 5.828
KL(π, ρ) = 100 0.500 4.121 85.276 9.872

Table 4.1: Results of VALL-E baseline and Fine-Tuned models from Increase Duration
Feedback on LibriTTS test-clean

Increase Waveform Length test-other
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.636 4.171 51.820 3.377
KL(π, ρ) = 12 0.627 4.005 61.271 4.957
KL(π, ρ) = 100 0.510 3.634 91.550 8.239

Table 4.2: Results of VALL-E baseline and Fine-Tuned models from Increase Duration
Feedback on LibriTTS test-other

Decreasing Waveform Length Figure 4.2 shows that, when the target KL(π, ρ) = 12,

the model learns to reach and maintain the expected KL value, while when the target
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KL(π, ρ) = 100 it does not. Despite that, both models learns to maximize the mean

reward after few optimization steps.

Figure 4.2: Learning curves for VALL-E fine-tuned with target KL(π, ρ) = 12 and
KL(π, ρ) = 100 with decrease waveform duration feedback.
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Tables 4.3 and 4.4 shows that both policies are able to produce shorter waveforms

after fine-tuning. However, as in the previous experiment, we observe degradation for

the other metrics.

Decrease Waveform Length test-clean
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.654 4.291 34.707 4.002
KL(π, ρ) = 12 0.591 4.104 68.392 0.746
KL(π, ρ) = 100 0.573 4.075 79.098 0.731

Table 4.3: Results of VALL-E baseline and Fine-Tuned models from Decrease Duration
Feedback on LibriTTS test-clean

Decrease Waveform Length test-other
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.636 4.171 51.820 3.377
KL(π, ρ) = 12 0.587 3.947 76.972 0.751
KL(π, ρ) = 100 0.574 3.917 86.121 0.748

Table 4.4: Results of VALL-E baseline and Fine-Tuned models from Decrease Duration
Feedback on LibriTTS test-other

4.6.2 Intelligibility

This experiment aims to increase the intelligibility of VALL-E by promoting the genera-

tion of waveforms whose transcription has a lower WER than the text prompt.

Figure 4.3 shows that when the target KL(π, ρ) = 12, the mean reward follows a

constant trend over time, while when the target KL(π, ρ) = 100, the model learns to

increase the reward after around 150k episodes.

From Tables 4.5 and 4.6 we can see that the fine-tuned models outperform the base-

line in intelligibility. Specifically, the KL(π, ρ) = 12 model shows a WER reduction of

8.014% on the test-clean set and 10.107% on the test-other set, while the KL(π, ρ) = 100
model shows a WER reduction of 15.324% on test-clean and 20.954% on test-other. We

also observe that the average duration of the synthetic waveforms is lower than the base-

line for both models. For the KL(π, ρ) = 100 model, we observe a small degradation of

speaker similarity and naturalness on both the datasets.
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Figure 4.3: Learning curves for VALL-E fine-tuned with target KL(π, ρ) = 12 and
KL(π, ρ) = 100 with increase intelligibility feedback.

Intelligibility test-clean
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.654 4.291 34.707 4.002
KL(π, ρ) = 12 0.657 4.299 26.693 3.474
KL(π, ρ) = 100 0.637 4.292 19.383 2.978

Table 4.5: Results of VALL-E baseline and Fine-Tuned models from WER Feedback on
LibriTTS test-clean

Intelligibility test-other
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.636 4.171 51.820 3.377
KL(π, ρ) = 12 0.633 4.165 41.713 2.907
KL(π, ρ) = 100 0.606 4.086 30.866 2.524

Table 4.6: Results of VALL-E baseline and Fine-Tuned models from WER Feedback on
LibriTTS test-other

4.6.3 Speaker Similarity

With this experiment we aim to fine-tune VALL-E so that it generates speech whose

speaker is as similar as possible to the original one (the speaker of the audio prompt), by
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increasing their SPK.

Figure 4.4 shows the learning curves for the speaker similarity experiments. Although

the models reached and maintained the target KL(π, ρ) value, we observe a decreasing

mean reward as episodes grow for both models.

Figure 4.4: Learning curves for VALL-E fine-tuned with target KL(π, ρ) = 12 and
KL(π, ρ) = 100 with increase speaker similarity feedback.

Table 4.7 and table 4.8 confirm that both models attempt to maximize the speaker

similarity metric failed, since the baseline outperforms them, indicating a SPK degra-

dation after the fine-tuning process. We also observe WER degradation and a waveform

duration reduction on both sets.

Speaker Similarity test-clean
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.654 4.291 34.707 4.002
KL(π, ρ) = 12 0.609 4.161 64.473 0.911
KL(π, ρ) = 100 0.627 4.207 69.672 1.565

Table 4.7: Results of VALL-E baseline and Fine-Tuned models from SPK Feedback on
LibriTTS test-clean
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Speaker Similarity test-other
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.636 4.171 51.820 3.377
KL(π, ρ) = 12 0.605 4.015 72.088 1.002
KL(π, ρ) = 100 0.614 4.083 77.723 1.801

Table 4.8: Results of VALL-E baseline and Fine-Tuned models from SPK Feedback on
LibriTTS test-other

Ablation study We argue that a possible reason for the results degradation of the fine-

tuned NCLM is that the model struggles to generate responses with better speaker sim-

ilarity with respect to the baseline. PPO is purely guided by exploration of the action

space, where in our scenario actions are predicted discrete codes. We argue that the iden-

tity of a speaker can be seen as a time-invariant feature of a waveform, thus encoded by

TiCodec’s time-invariant quantizer rather than the time-level one. Since our action space

does not include the time-invariant codes, a possible reason for the observed fine-tuning

failure is the impossibility of the network to explore and find responses that encodes

time-invariant features and thus, speaker identity features.

To support this claim, we conducted an ablation study on the baseline, VALL-E pre-

trained on LibriTTS, where we evaluate it with random time-invariant codes instead of

those extracted from the audio prompts. Table 4.9 shows that there is a big SPK gap

between the waveform generated with true time-invariant codes and with random ones,

providing an evidence that supports the claim above.

Ablation study: speaker similarity
model SPK (test-clean) SPK (test-other)
True time-invariant codes 0.654 0.636
Random time-invariant codes 0.318 0.305

Table 4.9: Results of the ablation study conducted on VALL-E baseline with and without true
time-invariant codes

4.6.4 Naturalness with MOS predictor

From Figure 4.5, similarly as for the speaker similarity experiment, we observe a mean

reward degradation as the number of episodes increases for both models, although the

target KL value is reached and maintained.
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Figure 4.5: Learning curves for VALL-E fine-tuned with target KL(π, ρ) = 12 and
KL(π, ρ) = 100 with increase NORESQA-MOS feedback.

Tables 4.10 and 4.11 shows that the fine-tuned model failed to maximize the feedback,

since their NORESQA-MOS deteriorated in both experiments and test sets. We also

observe WER, SPK and waveform duration degradation for both models.

Naturalness test-clean
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.654 4.291 34.707 4.002
KL(π, ρ) = 12 0.559 3.898 75.483 0.457
KL(π, ρ) = 100 0.559 4.034 75.109 0.555

Table 4.10: Results of VALL-E baseline and Fine-Tuned models from NORESQA-MOS
Feedback on LibriTTS test-clean

With a further experiment, we investigate the causes of the optimization failure. As

for the speaker similarity experiment, we argue that a possible reason for the failure is

that the NCLM struggles to generate responses having a NORESQA-MOS higher than

the ones generated by the baseline.

We suspect that NORESQA-MOS struggles to output realistic values for audios that
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Naturalness test-other
model SPK NORESQA-MOS WER AVG Waveform Duration (s)
Pretrained 0.636 4.171 51.820 3.377
KL(π, ρ) = 12 0.563 3.812 82.768 0.486
KL(π, ρ) = 100 0.562 3.925 82.547 0.636

Table 4.11: Results of VALL-E baseline and Fine-Tuned models from NORESQA-MOS
Feedback on LibriTTS test-other

are already similar to the original ground truth speech samples, probably because it does

not generalize well on data out of domain. We also suspect that NORESQA-MOS does

not output realistic values for speech samples that are worsening during the RL opti-

mization, but rather optimistic values. To support the first claim, instead of evaluating

synthetic speech samples generated by the baseline, we evaluate the NORESQA-MOS

of ground truth speech samples against themselves. Instead, to support the second claim,

we silence a random 50% of the speech samples generated by the baseline and evaluate

them with NORESQA-MOS.

Table 4.12 shows that, although the MOS values of the ground truth are higher than

those of the baseline, the gap between them is relatively small, 0.062 for test-clean and

0.130 for test-other. We think that this evidence supports the first claim, since we ex-

pected much higher MOS values for ground truth samples, close to the maximum value

of 5. We also observe that the silenced samples obtained MOS values that are lower

than those of the baseline, but the gap between them is again relatively small, 0.149 for

test-clean and 0.082 for test-other. We think that NORESQA-MOS should output lower

values for those samples, since speech with such interruptions must not be considered of

good naturalness, supporting the second claim.

Speech samples NORESQA-MOS (test-clean) NORESQA-MOS (test-other)
Pretrained 4.291 4.171
Ground Truth 4.353 4.301
Pretrained w/ 50% silence 4.142 4.089

Table 4.12: NORESQA-MOS results for different speech samples on LibriTTS test sets
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CHAPTER 5

CONCLUSIONS

5.1 Conclusions, Limitations and Future Works

We have conducted experiments to fine-tune VALL-E with RL to optimize four types

of feedback: waveform duration, intelligibility, speaker similarity and naturalness. We

achieved our results by directly applying reward learning to speech generation, rather

than build task specific training techniques.

We obtained mixed results. We were able to achieve good results when increasing or

decreasing the generated waveform duration, since VALL-E easily learned to maximize

the reward signal. However, compared to the baseline, the generated speech has lost its

speaker identity, naturalness and intelligibility. For the intelligibility optimization task

instead, we achieved positive results, since the fine-tuned model learned to decrease its

WER over time after few RL steps. Moreover, the fine-tuned model showed a huge intel-

ligibility increase on both unseen test datasets, while also preserving the speaker identity

and naturalness. We were not able to improve the speaker similarity and NORESQA-

MOS of the generated speech with reward learning. With both feedback, the fine-tuned

model shows SPK, WER and NORESQA-MOS degradations on the test sets. We argue

that a possible limiting factor for learning to increase the speaker similarity feedback is

the time-invariant quantizer of our neural audio codec, TiCodec. With the ablation study

we showed that a big percentage of the speaker identity resides in the time-invariant
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codes, that are independent of the RL process; thus, the network could struggle to ob-

tain reward increments when exploring. We also showed that NORESQA-MOS outputs

values for ground truth samples that are really close to those of the baseline’s samples.

Moreover, NORESQA-MOS predicts values that are too optimistic for synthetic samples

that are clearly unnatural. We suspect that both factors affect negatively the fine-tuning

process, since the network could struggle to obtain reward increments for better samples

and reward decrements for worse samples when exploring.

Although we achieved some positive results, our work has some limitations. With

the available resources for this thesis, we were not able to use the original scaled version

of VALL-E and neither working with bigger datasets than LibriTTS. The baseline we

trained is not as strong as expected by means of intelligibility, so the improvements we

achieved need to be consolidated by other experiments with stronger baselines trained

on bigger datasets. Also, we only use objective metrics to evaluate the naturalness and

speaker similarity of the fine-tuned models. Since the results of such metrics are yet not

on par with those obtained by human perception, to further consolidate the results of the

experiments we can replace objective metrics with subjective ones to evaluate the syn-

thetic speeches generated by the fine-tuned NCLMs. As previously mentioned, another

limitation in this work is the use of TiCodec’s time-invariant codes; using a different

neural audio codec could led to successful enhancements of speaker similarity. A last

limitation to mention is the use of a MOS predictor as reward function instead of a MOS

feedback derived by crowd-sourced human preferences. Using human feedback to eval-

uate naturalness is more realistic than objective metrics and it could help the fine-tuning

process.

In the future, we would like to experiment with other NCLMs and different TTS

datasets to consolidate the positive results of our experiments. We would like also ex-

periment with mixed feedback functions, to prevent mode collapsing and degradation of

speech quality. We could also incorporate human feedback in the RL loop, following the

original RLHF pipeline [74]. Finally, since our experimental setup follows the theoreti-

cal Bradley-Terry preference model [9], we could replace the RL optimization setup with

Direct Preference Optimization (DPO), a method that showed better or the same results

than existing methods in fine-tuning LMs to align with human preferences [44].
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