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Abstract

NeRF (Neural Radiance Fields) belongs to the category of modern im-

plicit 3D image reconstruction algorithms. NeRF achieves state-of-the-

art novel view synthesis of complex scenes by optimizing a continuous

volumetric rendering scene function. However, it cannot synthesize un-

der unobserved light conditions. Several relighting methods have been

proposed but have shown to be prohibitively expensive to train, failing to

gain traction in real-world applications. ReNe (Relighting NeRF) from

eyecan.ai presented a novel data set of various objects with complex ge-

ometry and a new lightweight architecture that can render real-world

objects under one-light-at-time (OLAT) conditions. Any method that

aims to generate a realistic scene must have geometrically accurate shad-

ows. ReNe’s lightweight architecture solves this by estimating global

geometry through its visibility. A common theme of relighting is that

approximations about geometry must be made to avoid expensive geo-

metric queries. In this thesis, I propose using a classical computer graph-

ics technique called shadow mapping to create low-cost yet convincing

shadows. Shadow mapping utilizes precalculated distance maps from the

viewpoint of the light to obtain an understanding of geometry. Through

shadow mapping, we can create shadow hints, which are structured and

geometrical scalars, to better advise shadow predictions at every point.

With no architectural change, the injection of shadow hints produced

more accurate shadows. We empirically tested our hybrid approach on

the entire ReNe dataset, where we set new state-of-the-art results.



Chapter 1

Introduction
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1.1 Introduction

Inverse rendering aims to solve the problem of estimating the proper-

ties of a scene given a set of images. As opposed to traditional rendering,

which starts with a 3D scene and produces a 2D image, inverse rendering

does the opposite. With many or sometimes even one image, it attempts

to understand geometry reconstruction, lighting estimation, material es-

timation, and camera pose estimation. The task is challenging due to the

inherent ambiguity that can arise in complex scenes, further complicated

with dynamic lighting. The ability to inverse render under unobserved

lighting conditions would greatly benefit many applications.

Given recent advances in 3D computer vision algorithms such as

NeRF [11] (Neural Radiance Fields), the landscape of 3D model rep-

resentations is vastly changing. NeRF represents a paradigm change

from classical computer graphic methods utilizing modern deep learn-

ing frameworks to model and represent 3D scenes implicitly. Traditional

computer graphics rely on explicit representations of geometry such as

manual algorithms; NeRF learns to represent from data-driven training,

making it more flexible for complex scene modeling and rendering. [9]

Relighting is considered a critical technique to achieve realism within

classic computer graphics. Relighting allows for dynamic control over

a scene’s appearance and can enhance immersiveness. While NeRF is

a state of the art method for novel view synthesis, it fails to change

the appearance of lights. The problem of moving light within a scene

is known as Relighting. In many applications of 3D asset creation, the

lighting condition is baked in, making the asset unfeasible in other en-

vironments. Even within the same environment, the lighting conditions

can be dynamic; consider a naturally lit factory with the sun’s movement.

Given how effective NeRFs are in scene representation, their limitations

arise from data-driven training and fixed formulation, and this requires
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a whole pipeline change to add new capabilities. While the geometry of

NeRF is implicit, so are its lighting representations. Since NeRF learns a

black-box function that maps 3D points and viewing directions to colors

and densities, it is difficult to manipulate the scene’s lighting conditions

or material properties. NeRF relies on volume rendering to integrate the

radiance along camera rays. However, simulating the attenuation and

reflection of light by particles in the volume is very challenging, as it

requires querying the neural network for the density at densely sampled

points along many light rays. The computational cost becomes pro-

hibitively expensive for complex lighting scenarios, such as environment

maps or global illumination. NeRF assumes that the lighting conditions

are fixed and known for the input images and uses them to compute the

loss function during training. However, in outdoor scenes or uncontrolled

settings, the lighting may vary significantly across the images and may

not be accurately measured or estimated. Measurements that do not

align can lead to errors or artifacts in the learned representation.

Several methods have been proposed in recent years to enable relight-

ing in NeRF. These include techniques from Neural Reflectance Fields

for Appearance Acquisition [1], NeRV: Neural Reflectance and Visibility

Fields for Relighting and View Synthesis [14], NeRFactor: Neural Factor-

ization of Shape and Reflectance Under an Unknown Illumination [20],

NeRD: Neural Reflectance Decomposition From Image Collections [3].

The following papers were published after NeRF and contain collective

insights on relighting a NeRF. Their main insights show that the dataset

must be structured to have convincing relighting, and computational re-

sources must be plentiful. NeRFactor, which was the fastest, still utilizes

four GTX TITANs for 6-8 Hours, while NeRV, being the slowest, uses 128

TPU cores for one Day. Recently, there have been new papers that pro-

vide novel techniques and datasets. The "ReNeRF: Relightable Neural
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Radiance Fields with Nearfield Lighting" [18] paper method builds re-

lightable neural radiance fields (ReNeRFs) from images captured under

a few area lights without requiring a dense light stage. This approach is

inspired by image-based relighting, a data-driven approach that captures

global light transport without explicit simulations or assumptions. The

method models a continuous OLAT basis for each 3D point using a spher-

ical codebook and an OLAT MLP and disentangles diffuse and specular

radiance using a NeRF MLP. The method achieves photorealistic re-

lighting of complex scenes with arbitrary materials and geometry under

novel views and lighting, including nearfield and environment lighting.

The paper "OpenIllumination: A Multi-Illumination Dataset for Inverse

Rendering Evaluation on Real Objects" [8] introduces OpenIllumination,

a dataset of more than 108,000 images of 64 different objects. The ob-

jects in the dataset have diverse materials and are captured under 72

camera views with various illuminations. Accurate camera parameters,

illumination ground truth, and foreground segmentation masks accom-

pany each image in the dataset. This dataset enables the quantitative

evaluation of most inverse rendering and material decomposition meth-

ods for natural objects. The paper "Relighting Neural Radiance Fields

with Shadow and Highlight Hints" [19] introduces a novel neural im-

plicit radiance representation for free viewpoint relighting from a small

set of unstructured photographs. The paper also introduces shadow and

highlights hints to the radiance MLP to help model high-frequency light

transport effects, such as occlusions and specular reflections, by leverag-

ing signed distance functions (SDF). This representation’s effectiveness

and robustness are demonstrated on various challenging synthetic and

real-world objects containing various materials, shape complexity, and

global light transport effects.

The problem I intended to solve as a part of this thesis was to illu-

minate a scene’s representation using NeRF with more accurately cast
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shadows. The starting point for this thesis work is the paper ReLight My

NeRF: A Dataset for Novel View Synthesis and Relighting of Real World

Objects, a paper proposed at CVPR 2023 from eyecan.ai. It aims to set

a new benchmark for relighting. They offer a custom, highly structured

dataset and a much faster algorithm. The dataset comprises 2000 images

acquired from 50 different points of view under 40 different OLAT condi-

tions. It was the first to have multiple categories: real-world, background

shadows, public, and light supervision. Their architecture coined as V5,

was developed after iterations of the Instant NGP [12]. Their findings

show that relighting is as much an architectural problem as an informa-

tion injection problem, and the purpose should be to inject highly fruitful

information.

In the ReNe paper, the authors attempted to model an MLP to pre-

dict a scalar value that allows efficient query of the point-to-light visibil-

ity, given a position and a normalized position to the light source vector.

The MLP, however, acts as a memorizer that creates a shadow based on

its location and does not generalize two new unseen lighting illuminations

well. Fundamentally, cast shadows are not a local illumination problem

but a global geometry problem. It is possible to mistakenly assume that

shadows are solely governed by local illumination since the BRDF corre-

lates light color to position. However, to achieve accurate generalization,

one must consider the global geometry, precisely the path between the

light and the point. This path can be prohibitively expensive as the num-

ber of queried points becomes squared. The critical insight of this thesis

is to utilize a traditional graphics technique known as shadow mapping

within NeRF. It works by rendering the scene from the viewpoint of a

light source to create a shadow map that represents the depths of objects

from that light’s perspective (pre-computed). Then, during the regular

scene rendering, this shadow map is used to determine which parts of the
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scene are in shadow and which are not, allowing for the accurate render-

ing of shadows. Using Shadow Mapping, we could create a high-quality

input named shadow hints, which considers geometry for cast shadows.

In the results for never-before-seen lighting conditions, it is clear that

the V5 cannot render geometrically accurate cast shadows, while the

version with shadow hints does. Overall, through empirical testing on

the benchmarks, we showed that shadow mapping does produce superior

results. Given the variability of quality given NeRF initialization and

that we only improved a small part of the image, these results are rather

satisfactory.

This thesis is organized as follows: Chapter Two Foundations of Radi-

ance and Illumination introduces the background concepts such as NeRF

and foundations of Radiance and Illumination. With a solid understand-

ing of the radiometric properties of light and the volumetric rendering

algorithm of NeRF, it is then finally possible to delve into the different

NeRF-based relighting algorithms. In Chapter Three Related Work, an

overview of NeRF-based relighting works literature is presented. Chap-

ter Four Methodology reviews the methodology and results to show the

difference shadow mapping can make.



Chapter 2

Foundations of NeRF,

Radiance, and Illumination
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2.1 Radiance and Illumination

2.1.1 Modeling Assumptions

The assumption of light that we make is in its simplest terms. We avoid

the more complicated models of light, such as polarization and wave

optics. We model light as individual rays that travel in straight lines with

infinite speed. [6] This assumption would quickly break down in some

real-world scenes outside of studio conditions, such as being underwater

as shown by SeaThru-NeRF. [7] Lighting effects such as diffraction and

interference would require an extra layer of modeling.

2.1.2 Radiometric Quantities

To model the amount of light radiating from a scene, we must model the

light transport as a physical term, such as light as a measure of energy.

We know that the energy going outwards from a surface depends on the

energy flowing inwards over time. Denoted by Φ and expressed in terms

of watts [W = J · s−1] flux is a unit of energy described measured Jules.

Figure 2.1: Flux, Irradiance, Radiance
Flux measures the amount of light that impacts the surface in a specified

finite area. Irradiance is the integral around the hemisphere Ω arrive at the
point x. Radiance measures the quantity of light arriving at a single point

from a differential solid angle. Figure from [6]

Irradiance is a crucial parameter in radiative transfer, denoting the
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quantity of incident power impacting a surface per unit area. It is quan-

tified in scientific units as [W ·m−2] and can be formulated with regard

to flux:

E(x) = dΦ(x)
dA(x)

(2.1)

Irradiance has to be measured on a surface at a point with a surface

normal n⃗. This is different from the term radiant exitance (M) or ra-

diosity (B), which is the flux departing the surface that will be defined

later.

Radiance formulate the amount of flux that arrives from a hypothet-

ical disk with a differential area dA⊥ that is perpendicular to a differential

direction dw⃗. Radiance is quantified in the units of [W · sr−1 ·m−2] and

can be expressed as follows:

L(X, w⃗) = d2Φ(x, w⃗)
dw⃗dA⊥(x)

(2.2)

We note that it may be more useful to describe radiance as the mea-

surement of light at the surface rather than at a hypothetical surface

perpendicular to the incident angle of w⃗. We can therefore consider

dA⃗⊥ = (n⃗ · w⃗)dA to obtain:

L(X, w⃗) = d2Φ(x, w⃗)
(n⃗ · w⃗)dw⃗dA(x)

(2.3)

With another substitution of dw⃗⊥ = (n⃗ · w⃗)dw⃗ we can also derive the

following expression for radiance:

L(X, w⃗) = d2Φ(x, w⃗)
dw⃗⊥dA(x)

(2.4)

This formula can be more pragmatic in describing radiance since our

area at the point x is the surface rather than an area perpendicular to

the direction.
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The radiance measurement interests us the most as its value is what

is perceived by human eyes and camera sensors.

So far, we have defined the following radiometric quantities [6].

Symbol Units Description
Φ W Flux
E W ·m−2 Irradiance
M W ·m−2 Radiant Exitance (outgoing)
B W ·m−2 Radiosity (Outgoing)
L W ·m−2 · sr−1 Radiance

Table 2.1: Radiometric Quantities

2.1.3 Radiometric Relationships and Properties

Now that radiance is quantified, it is important to distinguish the differ-

ence between incident radiance and exitant radiance. Incident radiance

is expressed as L(x ← w⃗) representing the radiance impacting the sur-

face at the point x from direction w⃗. L(x → w⃗) represents the exitant

radiance exiting the surface at the point x to direction w⃗. The BRDF

(Bidirectional Reflectance Distribution Function) is one of the

most fundamental and central functions in computer graphics and radi-

ance fields. It describes the relationship between the two quantities of

incident radiance and exitant radiance. Its flexibility allows us to accu-

rately represent different materials from various viewing and illumination

conditions, a key point in relighting.

Figure 2.2: Incident Radiance, Exitant Radiance, BRDF
Figure from [6]
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Using the L(x ← w⃗) representation of incident radiance we can ex-

press flux; this requires the double integral over the hemisphere Ω at each

point of the area A as follows:

Φ =
∫

A

∫
Ω

L(x← w⃗)(n⃗ · w⃗)dw⃗dA(x) (2.5)

Furthermore, we can also express Irradiance (E), Radiant (M) exi-

tance, and Radiosity (B) as integrals.

E(x) =
∫

Ω
L(x← w⃗)(n⃗ · w⃗)dw⃗ (2.6)

M(x) = B(x) =
∫

Ω
L(x→ w⃗)(n⃗ · w⃗)dw⃗ (2.7)

Thus far, when referring to incident radiance L(x← w⃗), and exitant

radiance L(x → w⃗), the direction of the vector w⃗ was point away from

the surface, even if w⃗ were equal in both cases, the measurement would

be different since the incident measures the radiance arriving at the sur-

face and the exitant measures the radiance leaving, these can only be

measured at different times. Therefore:

L(x← w⃗) ̸= L(x→ w⃗) (2.8)

However, due to the conservation of energy, we can derive that the

incident radiance at point x coming from the direction w⃗ will continue

off as the exitant radiance at point x in the direction −w⃗. (Not correct

wording yet)

L(x← w⃗) = L(x→ −w⃗) (2.9)

We can also derive two distinct points’ incident and exitant radiance

functions. In our modeling assumptions, we modeled light as individual

rays that travel in straight lines. In a typical scene, the observer does

not view most of the reflected light but impacts another surface. This
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realization makes the basis of the rendering equation as defined later.

Therefore, it is vital to state the property that the incident radiance at

the point x from direction w⃗ is equal to the outgoing radiance from the

closest visible point in that direction [6]. To demonstrate this property

we can define ray casting function which when given a point x and a

direction w⃗: r(x, w⃗) = x′, it returns the point x′ which is the closest

point along the casted ray. In the figure below, we can quickly see how

one point’s exitance is another point’s incidence.

Figure 2.3: Incident and Exitant Radiance Relationship
Figure from [6]

The following equation can also express this.

L(x← w⃗) = L(x′ → −w⃗) (2.10)

2.1.4 The BRDF

The BRDF (Bidirectional Reflectance Distribution Function) is

a six-dimensional (2 two angular components for w⃗′, w⃗ and n⃗) it simply

describes the radiance or "brightness" as we perceive it from viewing angle

w⃗ as a function from the illumination angle w⃗′. In most illustrations, x

and w⃗ are fixed as w⃗′ are set free to show how the BRDF operates as a

distribution function.
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Figure 2.4: Diffusion, Lambertian and Specular BRDFs
Figure from [6]

This is the ratio of the infinitesimal change in outgoing radiance

dL(x→ w⃗) to the infinitesimal change in incident irradiance dE(x← w⃗′)

The formula can be written as:

fr(x, w⃗′ → w⃗) = dL(x→ w⃗)
dE(x← w⃗′)

= dL(x→ w⃗)
L(x← w⃗)(n⃗ · w⃗′)dw⃗′ (2.11)

Different Types of BRDFs

When given as expressions, it is easier to comprehend the different types

of BRDFs.

1. Diffuse BRDF: Diffuse reflection imparts a matte, non-shiny ap-

pearance to surfaces, where light striking a diffuse surface scatters

uniformly in all directions in the simplest cases. The Lambertian

reflectance model is widely employed to model this phenomenon.

The BRDF is expressed as fr(x, w⃗′ → w⃗) = ρd

π
where ρd denotes

the diffuse reflectance of the material. Unsurprisingly, π appears in

the formula as a normalization factor and is essential for ensuring

the total reflected energy remains conserved over all possible direc-

tions. This mathematical representation encapsulates the idealized

behavior of perfectly diffuse reflection, implying that the surface

exhibits uniform brightness when viewed from any direction.

2. Specular BRDF: Specular reflection, indicative of glossy surfaces
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with mirror-like characteristics, produces distinct highlights that

mirror the light source. Various models, such as the Phong and

Cook-Torrance (microfacet) models, have been developed to de-

scribe the intricate behavior of specular reflection. The Phong

BRDF is defined as fr(x, w⃗′ → w⃗) = ρs (⃗h·w⃗)n

(n⃗·⃗h)(n⃗·w⃗′) where ρs is spec-

ular reflectance, h⃗ is the half-vector, and n si the shininess ex-

ponent. On the other hand, the Cook-Torrance BRDF integrates

microfacet theory, conceptualizing surfaces as collections of tiny,

reflective facets. While more physically accurate, this model is

more complex, offering a detailed and sophisticated representation

of specular reflection in computer graphics rendering.

3. Diffuse + Specular(Phong)BRDF: Combining diffuse and spec-

ular reflection components results in a more comprehensive model

that effectively captures the diverse appearance of various materi-

als. The Phong BRDF with both diffuse and specular components

is expressed as: fr(x, w⃗′ → w⃗) = ρd
n⃗·w⃗′

π
+ ρs

(⃗h·w⃗)n

(n⃗·⃗h)(n⃗·w⃗′) The first

term corresponds to the Lambertian (diffuse) reflection. In con-

trast, using the Phong model, the second term captures the specu-

lar reflection. This combined BRDF offers a versatile approach for

rendering almost all real-life materials.

2.1.5 Properties of the BRDF

1. Positivity

From a physical and practical interpretation of the BRDF, it makes

sense for the function to remain positive, as it can not emit negative

amounts of light.

0 ≤ fr(x, w⃗′ → w⃗) (2.12)
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2. Reciprocity

Helmholtz’s law of reciprocity states that the transfer of radiance

of a point in a wave field is the same, regardless of the direction of

the angle of the vectors. Thus:

fr(x, w⃗′ → w⃗) = fr(x, w⃗ → w⃗′) (2.13)

This means that light can be traced forward or backward. In a

physical sense, while measuring the BRDF of a point, the light

source and camera could be swapped without a noticeable differ-

ence in the value of radiance. Another notion for writing the BRDF

follows.

fr(x, w⃗′ ↔ w⃗) (2.14)

3. Incident and Reflected Radiance

By manipulating the BRDF, we can find an exciting relationship

between them.

fr(x, w⃗′ → w⃗) = dL(x→ w⃗)
L(x← w⃗)(n⃗ · w⃗′)dw⃗′ (2.15)

First, we multiply both sides by the L(x← w⃗)(n⃗ · w⃗′)dw⃗′ term, we

end up with the following.

dL(x→ w⃗) = fr(x, w⃗′ → w⃗)L(x← w⃗)(n⃗ · w⃗′)dw⃗′ (2.16)

By taking the integral on both sides, we see a simple formula for

the relationship between the incident and reflected radiance.

L(x→ w⃗) =
∫

Ω
fr(x, w⃗′ → w⃗)L(x← w⃗)(n⃗ · w⃗′)dw⃗′ (2.17)
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The equation describes the relationship between incoming and out-

going radiance at the point x on the surface. Stated it signifies the

reflected radiance at x in the direction w⃗ is determined by consid-

ering all incident radiance arriving at that point. While the BRDF

only accounts for the exitant radiance departing along the angle

w⃗. This is also known as local illumination as it implies that lo-

cal points can act as light sources, although relatively small light

sources.

3. Conservation of Energy

Another practical and physical interpretation of the BRDF is that

the conservation of energy means the surface cannot emit more

light than it receives, it is stated as.

∫
Ω

fr(x, w⃗′ → w⃗)(n⃗ · w⃗′)dw⃗′ ≤ 1,∀w⃗ (2.18)

2.1.6 The Rendering Equation

Having previously defined local illumination, its primary use comes

in the form of the rendering equation. Within a lit room exists an

ongoing equilibrium where the outgoing light of every point is equal

to the emitted light. This is expressed as the outgoing radiance,

L(x→ w⃗), Le as emitted radiance, Lr as reflected radiance.

L(x→ w⃗) = Le(x→ w⃗) + Lr(x→ w⃗) (2.19)

We can express the Lr(x→ w⃗) in the form of the spherical integral.

L(x→ w⃗) = Le(x→ w⃗) +
∫

Ω
fr(x, w⃗′ ↔ w⃗)L(x← w⃗′)(n⃗ · w⃗′)dw⃗′

(2.20)
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This expression shows that the equilibrium is recursive. This re-

quires tracing the path of the light for several bounces in a scene,

which is computationally very expensive. Fortunately, with NeRF

for each point, we calculate the total reflectance from each point,

and we do not have to run the recursive step. However, in some

cases, which we will see later, a recursive method is used in relight-

ing to achieve better results.

2.2 Neural Radiance Fields

2.2.1 Plenoptic Function

In 1845, Michael Faraday was accredited with proposing light as a

part of the electromagnetic field. Later on, in 1936, Arun Gershun

proposed the term light field in his theory of the Plenoptic Function.

The Plenoptic Function is a 5-dimensional function comprising of

3 coordinate positions (x, y, z) and two viewing spherical coordi-

nates (θ, ϕ). The original Plenoptic Function was 7-dimensional

with three coordinate positions (x, y, z) and two viewing spherical

coordinates (θ, ϕ) with additional parameters for time and wave-

length (t, λ). This function could theoretically render all possible

scenes that can be composed. For this thesis, we will only use the

5D plenoptic function express as an implicit MLP.

2.2.2 Neural Fields

A recent phenomenon that is the main focus of this thesis is the

use of MLPs to represent fields implicitly. A field is a region where

all points are well-defined, and images can be considered discrete

fields. For example, we can consider the function x ∈ R2 → c ∈ R3,
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which takes a pixel coordinate and outputs RGB color. We can

extend this idea into higher dimensions, x ∈ R3 → c ∈ R3, α ∈ R1

where alpha is added to describe the opacity of a 3D point.

2.2.3 Coordinate-based Multilayer Perceptrons

Coordinate-based Multilayer Perceptrons are the best way to en-

code a field into an MLP, but some drawbacks will be discussed

later. In some cases, it requires less memory to store the weights

of the MLP than to store it in an explicit representation. That

can unlock the potential of neural networks shown in the monu-

mental Instant Neural Graphics Primitives with a Multiresolution

Hash Encoding paper. [12] The paper also covers Neural gigapixel

images, Neural volumes, and Neural SDF (Signed Distance Func-

tions). Signed Distance Functions where the distance d is 0 on the

surface, greater than one outside the surface, and less than 0 inside.

Although they are not used in this thesis, their importance should

be remembered, as finding the distance to the surface is a crucial

factor in relighting.

2.2.4 Neural Radiance Fields: NeRF

Proposed by Mildenhall et al NeRF: representing scenes as neural

radiance fields for view synthesis, was pixel breaking in our abilities

to reconstruct 3D scenes. [11] NeRF is an overfitting method where

each MLP fits a scene from scratch. This has the added benefit of

high fidelity but requires new training if the scene changes, even in

the slightest. As stated in by Mark Boss in his PhD thesis:

Each training step selects a stochastic batch of pixels and the cor-

responding camera rays. Samples are then placed along the rays.



2.2 Neural Radiance Fields 20

The sample positions are evaluated in the current field and aggre-

gated with volume rendering. The resulting color for each ray can

be compared with the input. This process is repeated over several

hundred thousand steps, and the neural field starts to replicate the

input scene slowly. This process is similar to the volumetric recon-

struction of computer tomography. [2]

More specifically, the method is training a five-dimension plenoptic

function. This function takes in a position vector and viewing

direction x, d ∈ R3,2 → c, α ∈ R3,1 and outputs color and density.

Figure 2.5: NeRF Architecture Model
Figure from [11]

The γ(x) and γ(d) stand for the positional encoding of the vectors.

The transformer paper inspired this positional encoding. [17] This

encoding is also recognized as the Fourier Encoding it encodes over

a sinusoidal function. It is rather simple:

γ(x) = (x, Γ1, ..., ΓL−1) (2.21)

Γk(x) = [sin(2kx), cos(2kx)] (2.22)

Despite the low-frequency nature of this encoding, the network
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demonstrates an enhanced ability to acquire high-frequency infor-

mation. Tancik et al. [15] explore this characteristic by employing

techniques derived from the neural tangent kernel (NTK) litera-

ture to show how spatial bias can be overcome. [5] An overlooked

aspect of the architecture, a common theme later for relighting, is

the input and output of different variables. Notably, the input of

the viewing direction is usually in the last layers due to specular

reflections having a minor impact on the total image, as seen in

figure 2.6.

Figure 2.6: View Dependent Lighting
Figure from [11]

By leveraging view-dependent lighting, NeRF has a significant ad-

vantage over other photogrammetry techniques. Figure 2.6 demon-

strates how a color difference can occur at the same point when

looking at viewing directions (a) and (b).

NeRF renders each scene using volumetric rendering techniques to

combine the different colors and densities. Each ray has around

100 to 200 point values that need to be evaluated and summed;

however, sampling each point is immensely costly. Therefore, new

sampling techniques are continuously being developed; the original

paper uses hierarchical sampling, with two different neural net-

works trained simultaneously. Along the ray r(t) = o + td the

samples of ti are picked from the following distribution. Where tm

and tf are the far and near bounds, N is the number of samples to

be taken.
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ti ∼ U
[
tn + i− 1

N
(tf − tn), tn + i

N
(tf − tn)

]
(2.23)

For each pixel in a photo, a ray is shot out, and the colors are

aggregated; this process must remain differentiable, as seen in Fig-

ure 2.6. The first step (a) is figuring out which points need to be

queried based on the camera model, and this would result in the

set of points of type (x, y, z, θ, ϕ). In step (b), these locations are

fed into the MLP, as shown in Figure 2.5. In step (c), the differ-

entiable volume rendering happens, which will be discussed later.

Finally, in step (d), the color produced by volume rendering is com-

pared in a rendering loss. Unlike most other Deep Learning (DL)

solutions, our goal here is actually overfit the MLP to produce a

perfect replica of the scene. It should also be stated that MLP is

a continuous volumetric scene function; many points will never be

fed into the MLP, and it also has to function as a regressor.

Figure 2.7: Four Step NeRF Pipeline
Figure from [11]

The crux of the NeRF algorithm is the volume rendering equation.

At first glance, the equation is complicated to comprehend, but it

comprises three components, each with its function. The simplest

is the σ(r(t)), which is the density scalar value from MLP at the

point r(t). The second is c(r(t), d), which is the RGB color value

from the MLP at the point r(t) and viewing directions d. It is no
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surprise that these values are multiplied together as density should

determine the brightness of color. Nevertheless, this method treats

occluded terms with the same significance along the ray, posing an

issue as our primary interest lies in the color values that are visibly

present in front of the scene. The function T (t) denotes the accu-

mulated transmittance, which is the probability that the ray travels

from tn to t without hitting any other particle. [11] The parameter

of this function is only t which is also its integral limit. The func-

tion can also be interpreted as 1/esum of densities, which means

T (t) is exponentially monotonically decreasing. Ideally, this func-

tion would remain one but drop to zero after the first occurrence of

a surface is reached. Then, the occluded colors and densities will

not be visible.

C(r) =
∫ tf

tn
T (t)σ(r(t))c(r(t), d)dt, where T (t) = exp

(
−

∫ t

tn
σ(r(s))ds

)
ds

(2.24)

The next important idea is the discretization of this formula. The

term δi = ti+1 − ti which is a discrete delta. Secondly, the term

1−exp(−σiδi) is added to replace σ. Known as alpha compositing,

this formula also has a minimum and maximum of 0 and 1, which

is more suitable.

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp

− i−1∑
j=1

σjδj


(2.25)

However realistic NeRF might be, it still overfits one scene with

baked-in lighting. This functionality dramatically limits its capa-

bilities and requires a complete architectural change. One benefit
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is that the geometry is consistently stored within the neural field;

view-dependent colors can be interpolated, but relighting requires

further thought. Nevertheless, NeRF was a giant leap forward re-

garding realistic image quality when compared to previous methods

such as Local Light Field Fusion (LLFF) [10] and Scene Represen-

tation Networks (SRN) [13].

Figure 2.8: NeRF Compared to LLFF and SRN
Figure from [11]
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Related Work
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The literature review comprises four fundamental papers that initi-

ated the NeRF relighting revolution. In no order of importance, the

papers that will be discussed in this chapter include Neural Reflectance

Fields for Appearance Acquisition [1], NeRV: Neural Reflectance and Vis-

ibility Fields for Relighting and View Synthesis [14], NeRFactor: Neural

Factorization of Shape and Reflectance Under an Unknown Illumina-

tion [20], NeRD: Neural Reflectance Decomposition From Image Collec-

tions [3].

3.1 Neural Reflectance Fields for Appear-

ance Acquisition

3.1.1 Introduction

Compared to traditional methods, Neural Reflectance Fields’ novel as-

pect lies in their ability to encode volume density, normal, and reflectance

properties at any 3D point in a scene using a fully connected neural net-

work. This representation can accurately model the appearance of real-

world scenes with complex geometry and reflectance and render photo-

realistic images under novel viewpoints and non-collocated lighting con-

ditions. It can be estimated from images captured with a simple collo-

cated camera-light setup, allowing for the rendering of images from new

viewpoints and lighting conditions that were never captured. Neural

reflectance fields also enable relighting and other image synthesis appli-

cations and can model complete scene appearance, including challenging

effects like specularities, shadows, and occlusions.

3.1.2 Reflectance Equation

A problematic aspect of these papers is they tend to be similar but

slightly different notations. Standardizing their notation would be too
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tricky, and a limited summary would be given when required. The vol-

ume rendering equation generally computes the radiance L(c, ωo), c is

typically the camera point, and ωo is a direction.

L(c, ωo) =
∫ ∞

0
τc(x)σ(x)Ls(c, ωo)dt (3.1)

LS(x, ωo) represents the scattered light at x along ωo, σ is the extinc-

tion coefficient that indicates the probability density of medium particles

(volume density), τc(x) represents the transmittance factor which deter-

mines the loss of light along the ray from c to x.

Considering single-bounce direct illumination under a single point

light source to approximate Ls is essential in the context of neural re-

flectance fields because it allows for the accurate modeling of the incident

radiance. By incorporating the explicit reflectance term and considering

the loss of light due to extinction through the volume, the rendering

equation can accurately capture the interaction of light with the scene.

This approach enables the neural reflectance fields to represent geometry

and reflectance, producing high-quality rendering under different light-

ing conditions. By accounting for single-bounce direct illumination, the

rendering equation becomes reflectance-aware, allowing for a more com-

prehensive understanding of the light transport in the scene. This is done

so in the following equations. First, they have to modify the Ls to Eqn.

2.1

LS(x, ωo) =
∫

S
fp(x, ωo, ωi)Li(x, ωi)dωi (3.2)

This is once again a sphere integral over hemisphere S, fp is a phase

function that governs light scattering, and Li(x, ωi) is the incident radi-

ance arriving at x from direction ωi.

Since Ls is baked in NeRF their approach, therefore, the new Ls con-

siders single-bounce direct illumination under a single-point light source
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where fr represents a differentiable reflectance model with parameters

R(x), n is the local surface shading normal, and Li represents the inci-

dent radiance.

LS(x, ωo) = fr(x, ωo, ωi, n(x), R(x))Li(x, ωi) (3.3)

Li(x, ωo) = τl(x)Ll(x) (3.4)

Where τl is the transmittance from the light to the shading point,

and Ll represents the light intensity with the consideration of distance

attenuation. Here, l denotes the position of the point light source.

The original NeRF equation C(r) =
∫

T (t)σ(x)c(x, d)dt does not en-

code the light transmittance along an additional ray toward the light

(yellow ellipsoid). However, it does encode the LS(x, ωo), which does not

allow access to reflectance properties, making relighting impossible.

Figure 3.1: One Bounce Reflection Diagram
Figure from [1]
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3.1.3 Limitations

One of the main limitations is the long training time. The authors men-

tion that training each reflectance field network takes about two days

to train using four NVIDIA RTX 2080Ti GPUs. Although the network

takes about 30 seconds to render a 512 x 512 image at inference time,

the training time is still a significant limitation.

3.2 NeRV: Neural Reflectance and Visibil-

ity Fields for Relighting and View Syn-

thesis

3.2.1 Introduction

The NeRV method, developed by Google, MIT, and UC Berkeley re-

searchers, introduces a novel approach to scene representation and ren-

dering. It can synthesize 3D representations of scenes from images illumi-

nated by unconstrained known lighting. NeRV can produce output that

enables rendering from novel viewpoints under arbitrary lighting condi-

tions, including indirect illumination effects. This capability sets it apart

from prior methods and allows relightable 3D scene representations. The

predicted visibility and surface intersection fields play a critical role in

simulating direct and indirect illumination during training, particularly

in complex lighting settings. NeRV’s ability to handle such difficult light-

ing conditions sets it apart from alternative approaches.

3.2.2 Redering Equations

NeRV requires a set of images with known lighting conditions and recov-

ers a 3D representation that can be rendered from novel viewpoints and

multiple lighting conditions. Their method requires four MLPs: a shape
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that outputs volume density σ, a "reflectance" that outputs BRDF pa-

rameters (3D diffuse albedo a and 1D roughness γ), a "visibility" for

visibility field approximations and "distance" for surface distance ap-

proximation. The surface distance approximation is perhaps the most

essential, especially indirect illumination. Sampling the direct visibility

of light source l of each n point along the ray is in O(n2l) while using

an approximation MLP makes it only O(nl), sampling a one-bounce in-

direct light source is in O(n3dl) while using approximation methods is

O(n + dl). Their crucial insight is approximating distance and visibility

fields via MLPs to reduce render times significantly under new lighting

conditions, as seen in the figure 3.2.

Figure 3.2: Runtime Relation of Different Approximation Methods
Figure from [14]

The two essential MLPs are the visibility and distance approximators

(Ṽϕ, D̃ϕ), for a given (x, ω) they estimate the equations below to reduce

heavy line integral calculations. E is the known light source and can be

queried efficiently.

V (x, ω) = exp
(
−

∫ ∞

0
σ(x + sω)ds

)
(3.5)

D(x, ω) =
∫ ∞

0
exp

(
−

∫ t

0
σ(x + sω)ds

)
tσ(x + sω)dt (3.6)



3.2 NeRV: Neural Reflectance and Visibility Fields for
Relighting and View Synthesis 31

Figure 3.3: Indirect Illumination Path of NeRV
Figure from [14]

Instead of calculating the distance to each surface and its visibility of

the known light source, the reflections also use the normals of each point,

which are analytically computed.

In addition to the Ṽϕ, D̃ϕ MLPs they require the shape MLPθ(x(t))→

σ and "reflectance" MLPψ(x(t)) → (a, γ). The normal is calculated s.t.

n = ∇xMLPθ(x(t)), and with these, we can render an image with single

bounce indirect light with the following steps.

1. Sample each ray across x(t) = c − tωc and query the shape and

reflectance MLPs for the volume densities, surface normals, and

BRDF parameters.

2. Shade each point along the ray with direct illumination. The

visibility computes this, Light source E, and BRDF values at each

point.

3. Shade each point along the ray with indirect illumination. Use

the predicted endpoint x(t”) and compute its illumination effects,

this time in the direction of x(t′). Then, calculate the illumination

effects from x(t′) in the camera’s direction.

4. The total reflected radiance at each point along the camera ray is

the sum of all the direct and indirect illumination.

A single equation L(c, ωo) can also describe these steps. This would be

a near-perfect illumination model; however, it’s too costly. When looking
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at the more significant equation, it’s understandable why approximations

are necessary.

L(c, ωo) =
∫ ∞

0
V (x(t), c)σ(x(t))

∫
S

Ṽϕ(x(t), ωi)E(x(t),−ωi)R(x(t), ωi, ωo) dωi dt

+
∫ ∫

S
Ṽϕ(x′(t′′), ω′

i)E(x′(t′′),−ω′
i)R(x′(t′′), ω′

i,−ωi) dω′
iR(x(t′), ωi, ωo) dωi

(3.7)

It’s better to abstract each equation into the function that it operates

in. The indirect illumination path has very discrete steps. Finding the

distance to a point is integral, which is why the equation is so large and

might cause confusion. However, it is still possible to define each function

as such.

• Ṽϕ(x(t), ωi)E(x(t), ωi)R(x(t), ωi, ωo)dωi: Is the direct illumination

from a point into the camera.

• Ṽϕ(x′(t”), ω′
i)E(x′(t”),−ω′

i)R(x′(t”), ω′
i,−ωi)dω′

i: Is the indirect il-

lumination of the light that is expected to reach t′ (expected ter-

mination depth)

• R(x(t′), ωi, ωo)dωi): Takes the indirect light arriving at t′ and di-

rects it to the camera according to the BRDF.

Figure 3.4: Indirect Illumination Path of NeRV
Figure from [14]

In figure 3.4 the authors visualize the visibility to a spherical en-

vironment map by sampling Ṽϕ; direct illumination is given, and they
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estimated indirect illumination at that point to determine the full inci-

dent illumination; this is then multiplied by the BRDF to calculate the

light is the direction of the camera. Given any continuous 3D location

as input, such as the point at the cyan "x".

3.2.3 Limitations

The most significant limitation of NeRV is that it requires training for 1

million iterations using 128 TPU cores. It also has a complicated training

recipe that requires the Ṽϕ, D̃ϕ MLP to be trained extensively on their

own. The unique ability to calculate the measurement of indirect illu-

mination is commendable. However, the computational costs associated

with it are immense.

3.3 NeRFactor: Neural Factorization of Shape

and Reflectance Under an Unknown Il-

lumination

3.3.1 Introduction

NeRFactor is a method for factorizing images of an object under an

unknown lighting condition into shape, reflectance, and illumination,

thereby supporting free-viewpoint relighting and material editing. Its

main technical contributions include a method for joint estimation of

surface normals, light visibility, albedo, spatially-varying BRDFs, and

environment lighting from multi-view images of an object. NeRFactor

also introduces a strategy to distill volume density into surface geometry

for normals. Also, a novel data-driven BRDF prior learned from actual

measured BRDFs. The unique features that set NeRFactor apart from

other methods include its ability to handle one unknown illumination
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condition, successfully separate shadows from albedo, model spatially-

varying BRDFs, and use data-driven priors to disambiguate the most

likely factorization of the scene. NeRFactor enables realistic relighting

and material editing, even under challenging lighting conditions.

NeRFactor’s architecture is relatively simple and intuitive. It consists

of different blocks with their respective function; this function enforces

careful selection of inputs and outputs in the pipeline and, more im-

portantly, through clever loss functions. The first half of a standard

NeRF is initialized to predict the surface volume. Additional visibility,

BRDFs, albedo, and normal MPLs are included too. NeRF-estimated

volume density into surface geometry (with normals and light visibility)

is used as an initialization when improving the geometry and recovering

reflectance, and then smoothing is jointly optimized in the loss function.

A novel data-driven BRDF prior learned from training a latent code

model on real measured BRDFs is also utilized.

3.3.2 Architecture and Training

The MLPs can be grouped into three training methods: frozen, pre-

trained, pretrained, jointly finetuned, and trained from scratch. The

Normal and Light Visibility MLPs can be trained independently to give

a high-quality estimate and initialize their weights. Still, they will be

jointly finetuned for smoothing and final rendering. The BRDF MLP

is trained upon the MERL dataset, while the Albedo and BRDF Iden-

tity MLP output a latent variable that can be edited later for material

editing.

Shape

Normal and Light Visibility MLPs can be trained separately to provide

high-quality estimates. After training them independently to reproduce
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Figure 3.5: Architecture of NeRFactor
Figure from [20]

the values from the NeRF geometry without any smoothness regulariza-

tion or re-rendering loss, their weights are finetuned jointly for smooth-

ing and final rendering. This process reasonably initializes the visibility

maps, preventing albedo or Bidirectional Reflectance Distribution Func-

tion (BRDF) estimation artifacts. Below na and va are the so-called an-

alytical normal and visibility functions derived from the standard NeRF.

fn and fv are initialized as na and va at first then finetuned on this loss.

The second term in each loss can be referred to as the smoothing loss,

while the first term ensures that the functions don’t drift too far away

from their main purpose.

Figure 3.6: Surface Normals and Topology with Smoothing Loss
Figure from [20]
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ln =
∑
xsurf

(
λ1

3
||fn(xsurf )− na(xsurf )||22 + λ2

3
||fn(xsurf )− fn(xsurf + ϵ)||1

)
(3.8)

lv =
∑
xsurf

∑
ωi

(
λ3(fv(xsurf , ωi)−va(xsurf , ωi))2+λ4|fv(xsurf , ωi)−fv(xsurf+ϵ, ωi)|

)
(3.9)

Reflectance

f ′
r is parameterized BRDF trained on the MERL Dataset to learn spec-

ular components. It is trained to learn the latent space of real-world

BRDFs but is kept frozen. fz is then trained from scratch to predict

the real world zBRDF and can be changed later to material editing. fa

is responsible for generating the diffuse color component. While la and

lz ensure smooth functions, most gradient updates should come with

reconstruction loss.

la = λ5
∑
xsurf

1
3
||fa(xsurf )− fa(xsurf + ϵ)||1 (3.10)

lz = λ6
∑
xsurf

||fz(xsurf )− fz(xsurf + ϵ)||1
dim(zBRDF )

(3.11)

R(x, ωi, ωo) = fa(x)
π

+ f ′
r(fz(x), g(fn(x), ωi, ωo)) (3.12)

3.3.3 Limitations

Dealing with one unknown light source is impressive but not what’s re-

quired in a controlled environment. This also creates one of its most

significant limitations in Light Probe Image Resolution: The resolution
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Figure 3.7: Factorized Plant from NeRFactor
Figure from [20]

of the light probe images is limited to 16×32, which may not be sufficient

for generating tricky shadows or recovering very high-frequency BRDFs.

This can lead to specularity or shadow residuals in albedo estimation

under specific illumination conditions.

3.4 NeRD: Neural Reflectance Decompo-

sition From Image Collections

3.4.1 Introduction

NeRD is a collaboration between the University of Tubingen and Google

Research. It introduces a novel approach to scene representation and

rendering. It can decompose a scene into shape, color, metallic, rough-

ness, and normals, all view and illumination dependant. NeRD can pro-

duce output that enables rendering from novel viewpoints under arbi-

trary lighting conditions, including indirect illumination effects. It can

also extract a relightable textured mesh from the learned neural volume,

enabling fast real-time rendering with novel illuminations. The effective-

ness of the proposed approach is demonstrated on both synthetic and
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real datasets, where it can produce high-quality, relightable 3D assets

from image collections.

NeRF and NeRD have similar course networks for estimating where

the fine network should query. The Fine Network or Decomposition

network is what does the actual rendering with an extra m samples

around σ. Lighting comprises 24 lobes of spherical Gaussian mixtures

(24× 7 = 168 parameters). These are differentiable and efficient to ren-

der. An encoder-decoder network computes the BRDFs to compress the

latent space severely. This comes from the assumption that the number

of materials in a scene is few. The scenes are decomposed into base color,

metallic, roughness, and normals. The analytical calculation of normals

here was later used in NeRFactor.

3.4.2 Sampling Network

The main task of the coarse sampling network is to generate a finer

distribution for sampling in the decomposition network. NΘ2 shown in

figure 3.8 is a Network that reduces the dimensionality of the Gaussian

illumination spheres Γj. This does not give the final light of the scenes

determined by the decomposition network. These are then concatenated

with the NΘ1 network values, which produce color with illumination. NΘ3

has the final color on the point xi along the ray, composed of the other

points to give the pixel color.

3.4.3 Composition Network

The intermediate decomposition step is responsible for the BRDF pa-

rameters, base color, and normals. Note that all of these are view

and illumination-independent. The NΦ1 as seen in figure 3.9 outputs

(RGB+σ) which is also passed to NΦ2 a [36, 16, 2, 16, 16, 5] MLP no

activation network. The final five dimensions are for the analytical Cook
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Figure 3.8: Course Sampling Network from NeRD
Figure from [3]

Torrance BRDF model [4]. After the points nxi
, dxi

and bxi
are com-

posed into nr, dr and br and are rendered with illumination and view

direction being considered. To keep the lighting of spherical Gaussians

Γj differentiable, the reflectance due to diffuse and specular lobes is sep-

arately evaluated by ρd and ρs, from the paper All-frequency rendering

of dynamic, spatially- varying reflectance.

Figure 3.9: Fine Decomposition Network from NeRV
Figure from [3]
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3.4.4 Limitations

On 4 NVIDIA 2080 Ti, the training takes about 1.5 days. The final

mesh extraction takes approximately 90 minutes. It struggles to accu-

rately recover detailed illumination, which can limit the realism of the

results. Additionally, evaluating an object’s radiance fields, a crucial

part of the technique, can be resource and time-intensive. Despite these

challenges, NeRD has shown potential in decomposing scenes into their

shape, reflectance, and illumination and enabling fast real-time rendering

with novel illuminations. This method requires no particular illumina-

tion setup and can have multiple light sources. Spherical Gaussians are

much simpler to calculate than the lighting equation and don’t require

an approximation formula. Since the lighting is done in a physics engine,

this also allows for hard shadows.



Chapter 4

Methodology
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4.1 ReNe: ReLight My NeRF

ReNe aims to solve the problem of rending under unobserved lighting

conditions. During their research era, this was only possible by creating

a new dataset dubbed ReNE (Relighting NeRF), which frames real-world

objects under one-light-at-time (OLAT) conditions alongside accurate

ground-truth camera and light poses. The ground truths are essential

for supervised learning, and the shift from synthetic to real-world allows

us to test the actual merit of our rendering algorithms.

Figure 4.1: The ReNe Dataset with Varying Poses and Lights
Figure from [16]

Their data acquisition frame consists of a LightBot and CameraBot,

which move the light and camera, respectively. Their trajectories must

also be non-intersecting in the sections of the hemisphere of which they

traverse. This can then be visualized in a grid of images. Each row de-

picts the same viewpoint as the light conditions change, and each column

depicts the same light conditions as the viewpoint changes. Each column

usually represents a NeRF trained since lighting is a necessary constant.

Rene is a dataset of 40,000 images acquired from 50 different points of
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view under 40 different OLAT conditions of 20 unique objects. It was

the first to have multiple categories: real-world, background shadows,

public, and light supervision. Each object has a total of 2000 images,

which is also partly why the training takes so long; however, as relight-

ing demands, there are no shortcuts to quality data.

Figure 4.2: Grid Sample of the ReNe dataset
Figure from [16]

Following the dataset creation, the authors developed a new architec-

ture inspired by the existing NGP [12] model. This was done effectively in

an iterative approach to address variations in lighting conditions. They

start from the most naive approach, V0, and go to their most advanced,

V5. Their architecture is comprised of Ψgeo, Ψrgb and Ψvis. Ψgeo takes in

an encoded x using a multiresolution hash encoding called h(x) it gives
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a density σ and normal e. Ψrgb takes in h(x) and e with the addition

of spherical harmonically encoded ζ(d) of viewing directions and ζ(l) of

direction to the light and give the RGB color. Meanwhile, the Ψvis takes

in the ζ(l) and h(x) and gives a scalar value to create a shadow. It is a

clever way to create an independent Ψvis, which acts like a shadow net-

work and can be used to generate shadow maps. What does this function

do? It tries to predict visibility, which is a function of geometry. To make

things worse, MLP does so along an entire ray, which we know is hard

to generalize. More importantly, that is only the described function.

Figure 4.3: The Evolutions of ReNe Architectures
Figure from [16]

The V5 visibility MLP takes in ζ(l) and h(x). The first red flag

should be h(x). Shadows should be based on geometry, not on position;

injecting positional data with no geometric data will cause the shadow

network to learn patterns of general darkness, i.e., a checkerboard. While

their intention is commendable, they also incorporate ζ(l), aiming to con-

vey information about the specific location of the light source for each

point. So what makes this so hard to generalize to unobserved lighting

conditions, and why does V5 perform poorly on the hard test set? To

do its task correctly, the Ψvis network has become to memorize global

geometry. Due to visibility being a mighty difficult task, we only expect

to predict the σ of that point at every point; instead, for visibility, we

expect it to predict it at all points along an entire ray. The visibility

function does remarkably well in observed light conditions. It can mem-

orize the lighting condition thanks to ζ(l) and then use the position x to
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predict the shadow. Otherwise, it should perform equally when given a

new unobserved lighting condition, as seen in Figure 4.4.

Figure 4.4: Struggles of V5 Network
RGB image on the left and the visibility MLP shadow predictions on the

right.

4.2 ReNe with Geometric Shadow Hints

After reviewing ReNe’s results and comparing them with the literature

review’s results, it became evident that any method that relights the

shadows properly must consider the global geometry. As we have also

witnessed, this is prohibitively expensive, so a hybrid solution is needed.

For a given OLAT light position, it is possible to conclude that all the

rays point in the same direction. To calculate any occlusion for visibility,

it is impossible to cast a ray from the point to the light source but from

the light source to the point. Shadow mapping is a technique used to

create realistic, low-cost shadows. It works by rendering the scene from

the viewpoint of a light source to create a shadow map that represents

the depths of objects from that light’s perspective (pre-computed). Then,

during the regular scene rendering, this shadow map is used to determine

which parts of the scene are in shadow and which are not, allowing for

the accurate rendering of shadows. This can create a radical speed-up in

performance as we can recalculate a set of rays in the form of a distance

map.
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Figure 4.5: Shadow Mapping Diagram
Figure from learnopengl.com

In classic computer graphics, shadow mapping comes with its own

set of problems. Aliasing artifacts, a limitation of shadow mapping, are

shown as jagged and pixelated edges in rendered shadows due to insuffi-

cient resolution in the shadow map. This issue arises when the discrete

nature of the shadow map’s depth values fails to accurately represent

the intricate details of shadow-casting geometry, leading to visual dis-

tortions. Light bleeding is another obstacle, causing shadows to appear

lighter than expected due to inaccurate stored depth values, resulting in

unrealistic illumination in shadowed areas. The limited resolution fur-

ther compounds these problems; creating resolutions that are too high

would require additional memory. Lastly, viewpoint dependency presents

challenges when the camera perspective changes; this requires each light

source to have its depth map; for dynamic light sources, this is almost im-

possible to create in real time. These limitations collectively underscore

the complexity and ongoing efforts to enhance the realism and accuracy

of shadow mapping in computer graphics.

All of these problems result from having explicitly defined what makes

a shadow. However, with implicit models, we can let the neural network

deal with these aspects in training. It is still vital to give the neural

network accurate measurements concerning where a shadow might be.
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As a precaution, we did many sanity checks to ensure our measurements

were correct. The first test was to see if the distance map from the view of

the light was geometrically accurate. The actual distance was relatively

easy to calculate as it was the sum of the already calculated T (t)σ(r(t))

values. We are visualizing the distance map from the viewpoint of the

light source on the right. If we closely examine the cube’s cast shadow,

we can notice that it is precisely the cube’s silhouette from the light’s

viewpoint.

Figure 4.6: Distance Map From Light Source

Since the ReNe dataset lacks a 360 view around the object, it struggles

with highly accurate distance maps from light sources that are remote

from the camera positions. Initially, we believed this would cause sig-

nificant damage to the quality of the shadow maps, but the MLP was

remarkably able to learn past this. To see what the MLP is learning,

we can visualize the shadow hints by setting a threshold for which pixels

should remain the same and which should turn black. There is much

noise included in the shadow hints.

The images on the left show ground truth, while those on the right

show where a cast shadow should fall according to the shadow mapping

algorithm and provided distance map. To speed up training time for this

sanity check, we trained on one of the OLAT scenes, which is why, for

all examples, there is a baked-in shadow. Regardless, it can pick up an

idea about geometry using simple linear algebra rather than trying to
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Figure 4.7: Shadow Hints Under Different Conditions

memorize the whole scene. We feed these shadow hints directly into the

visibility network to make things more convenient, mainly because there

was no need for massive architectural change.

4.3 Shadow Hints

Creating the shadow hints only requires a few extra lines of code in the

renderer and mainly comprises 3D vector arithmetic. First, it is essential

to visualize the process as a single ray cast during volume rendering. The

black arrow is a NeRF ray shooting out of the camera. NeRF queries
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Figure 4.8: Diagram of Shadow Hints Insertion

at distinct points; these sets are known as the xyzs and are represented

as black dots. The blue vectors represent the projection from the light

source to the black dots before they collide with the surface. The green

distance shows the difference between the projected and actual points in

3D space. We do not set a manual threshold but let the Ψvis learn these

green distances coined as shadow hints.

Figure 4.9: Diagram of Shadow Hints Along NeRF Ray

From figure 4.9, the simplified code is relatively easy to follow. The
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function distances take in five parameters, the xyzs, w2l which the world

to the light matrix, distance_map as shown in figure 4.9, l_rays_d are

the directional vectors of each light ray corresponding to each pixel in

the depth_map. l_rays_o but as the origin of each light source. The

first step is to make the xyzs into homogeneous coordinates. Then, it

is possible to find the corresponding pixel in the depthmap to the 3D

point. Once the indices of the pixel are known, the depth is indexed. A

predicted projection is made using the corresponding ray directions and

origins, shown as the blue arrow. After this, a simple norm is calculated

to measure the difference shown as the green line representing the shadow

hints.

1 def distances (xyzs , w2l , depth_map , l_rays_d , l_rays_o ):

2 # Concatenate the ones tensor with the points

3 # tensor along the third dimension

4 ones = torch. ones_like (xyzs [:, :, :1])

5 homog_xyzs = torch.cat ((xyzs , ones), dim =2)

6

7 #Map 3D points to pixel coordinates

8 pixel_cords = w2l @ homog_xyzs

9 pixel_ints = pixel_cords / pixel_cords [... , 2]

10 pixel_ints = pixel_cords_ints [:, :, :2]

11

12 #Finds depth values of 3D coordinates

13 index = pixel_ints [:, :, -2:]. to(int64)

14 depths = depth_map [... , index [... ,1] , index [... ,0]]

15

16 # Project them onto the surface from a light point

17 projection = depths * l_rays_d + l_rays_o

18

19 # calculate distance from projection to xyzs

20 dist_points = torch.norm (( projection -xyzs), dim =2))

21

22 return dist_points
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The code above is a simplified version of the actual process; this is

done to promote legibility. The actual code requires a lot of matrix

reshaping and permuting, so those parts were left out. There are many

edge cases to be handled, for example, when the xyzs point might be

indexed outside of the discrete distance map.

4.4 Results

The table below is divided into two; the four numeric columns on the

left are our experiments with shadow mapping implemented, and the

last four columns are copied from the ReNe paper. We can notice that

the structural similarity index measure sharply rises with shadow map-

ping. Meanwhile, PSNR has increased but slightly. PSNR stands for

"Peak Signal-to-Noise Ratio." It is a metric used to measure the quality

of an image or video compression by quantifying the ratio of the maxi-

mum possible signal strength to the noise introduced during compression.

Its maximum value is 48, while anything between 25 and 29 for inverse

rendering tasks is considered realistic. SSIM stands for "Structural Sim-

ilarity Index." It is a metric used to assess the similarity between two

images, considering pixel-wise differences and incorporating information

about structure, luminance, and contrast. For a static NeRF scene, usu-

ally, this value is above .8. [11] Given the complex nature of our problem,

we could only achieve around .6.

In most images, the cast shadow only represents a small part of the

image; if our method were to create perfect shadows, we would still expect

a slight increase in these metrics. Calculating the algorithm’s effect on

only the shadows would require us to have a perfect ground truth mask

of where the shadows were cast. Therefore, we found it to be better to

compare by human evaluation. To do this, we created one graphic where

the top images are the RGB render and shadow predictions from the V5
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S-Hint V5
Easy Hard Easy Hard

Object PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Apple 26.52 0.66 26.35 0.66 26.44 0.62 26.25 0.62
Cheetah 26.02 0.67 25.14 0.67 25.66 0.61 24.64 0.60
Cube 25.02 0.59 24.64 0.59 24.9 0.54 23.98 0.53
Dinosaurs 25.49 0.65 24.88 0.64 25.75 0.65 24.98 0.64
FlipFlop 25.74 0.66 25.39 0.66 25.85 0.61 25.42 0.61
Fruits 26.11 0.66 25.93 0.67 25.93 0.62 25.72 0.62
Garden 25.78 0.67 25.08 0.66 25.74 0.66 25.08 0.66
Helicopters 25.25 0.62 24.84 0.62 25.12 0.61 24.73 0.61
Kittens 25.99 0.68 25.09 0.67 25.9 0.64 24.96 0.63
Lego 25.87 0.65 25.58 0.65 26.07 0.61 25.77 0.61
Lunch 25.91 0.64 24.75 0.63 25.84 0.6 24.71 0.59
Plant 26.64 0.67 26.07 0.67 26.55 0.67 25.93 0.67
Reflective 25.95 0.66 25.44 0.66 25.79 0.61 25.28 0.61
Robotoy 26.26 0.66 25.73 0.66 26.24 0.65 25.55 0.65
Savannah 25.21 0.66 24.30 0.65 25.15 0.62 24.31 0.61
Shark 25.81 0.62 25.59 0.62 25.59 0.57 25.32 0.56
Stegasaurus 26.03 0.65 25.82 0.66 25.87 0.63 25.65 0.63
Tapes 25.71 0.62 25.26 0.62 25.84 0.58 25.41 0.57
Trucks 25.81 0.69 25.15 0.69 25.8 0.67 25.16 0.66
Wood Toys 25.61 0.64 25.12 0.64 25.69 0.61 25.24 0.6

Average 25.84 0.65 25.31 0.65 25.79 0.62 25.20 0.61

Table 4.1: Empirical Results Comparisons of Shadow Hint and Standard
V5

architecture, right below, the same for the shadow mapping architecture,

on the right is the ground truth of the RGB ground truth. These help

make the results much more evident. All provided images are from the

hard test set; this was done to ensure the light condition was never seen

in training.
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Figure 4.10: Comparison Diagram of Cheetah
The shadow is far from perfect, but the improvements are immense. Around

the edges, there are far fewer fragments. It is as if the shadow is now a
complete piece and shows more geometric accuracy.

Figure 4.11: Comparison Diagram of Apple
The apple stands out superior to most results, although it faces challenges,

particularly around the edges. Even minor deviations from the ground truth
become unmistakably apparent in synthetic renders. With shadow mapping,

the edges are much more refined.
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Figure 4.12: Comparison Diagram of Shark
The shark exhibits sharper and more jagged geometry, which V5 handles

well overall. Shadow mapping enhances the refinement of shadows, although
they may not precisely match the ground truth upon close comparison.
Nevertheless, the improvement is significant enough to impress a novice

observer convincingly.

Figure 4.13: Comparison Diagram of Cube
The cube experienced substantial enhancement, especially given its slender
and intricate form, which resulted in complex shadows. Due to the intricate
geometry, it becomes challenging for V5 to identify the shadow’s occlusion
precisely. The elevated points in the scene, where the light source varies

significantly, pose a rendering challenge for V5. This example vividly
illustrates how the RGB network renders accurate shadows without

understanding the geometry.
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Real-world relighting is a critical problem. Classical methods have

been well developed over the past few years but lack being data-driven.

With data-driven techniques, it is easier to derive new rendering methods;

however, they require structured data and computational resources. The

relighting methods built on top of NeRF require a tremendous amount of

computation to get an understanding of global geometry. The brute force

methods shown in the literature do not work in the real world, regardless

of how convincing their results were. Effective relighting demands careful

consideration at every stage of the rendering pipeline, from data capture

and training to the final rendering process. The objective of this thesis

was not to overhaul an existing pipeline significantly. Instead, as a solo

project, the goal was to demonstrate that through a first-principles ap-

proach to understanding the essence of shadows, it is possible to generate

a more geometrically accurate shadow effectively and at a negligible cost.

The results provided in this thesis prove our hypothesis that relight-

ing to create cast shadows requires an understanding of global geome-

try. In the literature review, it was shown that to do this by brute was

prohibitively expensive. The best method we initially wanted to com-

pare against took two days with four Nvidia RTX 2080Tis; with our one

2080Ti GPU, we opted for a different solution. Using a classical computer

graphics technique known as shadow mapping, we showed that injecting

information about the geometry directly into architecture is possible.

This information came in the form of shadow hints which can be derived

in constant time and injected with zero architectural changes. However,

this did require considerable changes in the processing pipeline, and the

distance maps were not free of cost. It still shows that hybrid methods

have great potential when mixed with NeRF.

Since the inception of this thesis, alternative methods for relighting

and new datasets have been released. The OpenIllumination [8] dataset
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was created with 108K images of 64 objects with pattern lighting. Re-

lightable Neural Radiance Fields (ReNeRFs) showed that with a simple

without dense lighting and many of the previous assumptions needed for

relighting. "Relighting Neural Radiance Fields with Shadow and High-

light Hints" [19], also trained on a 360 dataset with SDFs as their primary

way; this still requires 20 hours on four Nvidia V100 GPUs. Our hybrid

approach built on V5 requires much less time. There are still aspects that

can be improved on our pipeline, so we chose the easiest to implement

that went to prove our hypothesis.

It should be noted that not every inverse rendering problem requires

the use of NeRF. Rendering an image from a NeRF involves millions

of neural network calls, which makes them notoriously tricky for porta-

bility. Meanwhile, classical computer graphics pipelines can be run on

modern mobile web browsers, even with ray tracing. For this reason

alone, I think the future of inverse rendering will rely heavily on hybrid

solutions between classical computer graphics and machine learning. An-

other method for asset generation and materials capture does precisely

this. It is possible for geometry to be captured using classical photogram-

metry with meshes, while they use machine learning-based approaches

for material capture, which BRDF learns. These results are on par with

what a NeRF can learn in a controlled environment, yet the models can

be ported to any modern 3D engine. Given the software legacy of tra-

ditional computer graphics and the hardware accelerators built around

them, it seems likely that explicit representation will remain around but

also improve through machine learning-based methods.

This thesis brought satisfaction from achieving a new benchmark but

primarily from the valuable lessons gained throughout the journey. It

enabled me to delve into the principles governing light and its curious

predictability yet enigmatic properties that perplexed the likes of Ein-

stein. Without light, we would all live in darkness. Its projected beauty
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derives every sight, color, and form we comprehend as an intricate dance.

Light unveils the all-beautiful visual tapestry of existence. In the lumi-

nous orchestration of our reality, light is the sole conductor, revealing all

that we perceive.
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