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Abstract

The adoption of digital solutions is gradually diffusing also in the realm of agricul-

ture, due to the valuable contributions that innovative technologies can bring to a

distressed sector. Among these, the application of Artificial Intelligence based

fruit detection systems is receiving increasing interest, given the reliance that

many technological agricultural applications have on detection tasks to execute

their functions, as well as the usefulness such solutions can have in improving sev-

eral activities: once they track down fruits on a tree, they are able to provide for

a quality analysis of the fruits, thus rendering information over maturity level or

presence of diseases, for yield estimates ahead of time or for the implementation

of intelligent robots able to automatically collect fruits or perform agrochemicals

spraying. Nonetheless, the development of an AI based fruit detection system

is a non-trivial process since it requires many accurate and pondered consider-

ations over intricate technological aspects relating to data requirements, feature

extraction, existing models, necessary hardware configurations, as well as over the

socio-economic context. Through an analysis of these elements based on relevant

literature, the present elaborate aims to provide therefore a comprehensive under-

standing of the broader implications that arise during the conception, design, and

integration phases of AI technologies for fruit detection tasks, encouraging the ne-

cessity of an holistic perspective for informed decision-making processes that could

actually result beneficial for agricultural practices.
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Chapter 1

Introduction

According to the Food and Agriculture Organization of the United Nations, agri-

culture benefits society in numerous ways, foremost because it produces the food

to nourish populations but also because it is a sector that worldwide provides jobs

and livelihoods to almost a billion people (employing 27% of the global workforce

[1]), thus sharing prosperity and helping reducing poverty [2]. In addition, agri-

culture plays an important role in the economic growth of a country - accounting

for 4% of the global gross domestic product, but up to 30% of the GDP in some

least developing countries [1]– and is fundamental to the existence of a variety of

other activities linked to the sector.

Nonetheless, pressure on agricultural systems is growing due to the presence

of numerous challenges. Firstly, the continuous expansion of the world population

(expected to grow up to 9.7 billion by 2050 [3]), if on the on hand requires the

necessity of a considerable increase in food production (namely by at least 70%,

according to FAO [4]), on the other hand it implies the gradual reduction of the

areas of cultivated land due to rapid urbanization. In addition to this, the agri-

cultural sector is facing a labor shortage and, according to the Organization for

Economic Co-operation and Development (OECD), the world’s agricultural work-

force is expected to register a yearly decline of 2% by 2030 [5]. The causes of this

decline can be related mainly to an ageing of the farmer population not comple-

mented with a simultaneous generational change of skilled workers, more and more

scarce, which can be attributable to a preference for employment opportunities in

more rewarding sectors [6]. As a consequence, labor costs for farm enterprises are
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2 CHAPTER 1. INTRODUCTION

on the rise. To top it all, food production remains extremely vulnerable to the

effects of unpredictable weather conditions caused by climate change, and the lack

of sufficient water resources.

In such context, digital agriculture has arisen as a scientific field geared towards

developing innovative solutions for dealing with these challenges: by complement-

ing traditional agricultural management methods with cutting-edge technologies

pertaining to the Internet of Things, Machine and Deep Learning, Computer vi-

sion, Robotics, Cloud and Edge Computing, Blockchain, a revolutionary impact

on various agricultural activities is achievable. For example, by combining tech-

nologies related to the Internet of Things and Machine Learning, it is possible

to collect and analyze vast amount of valuable data, thus providing exhaustive

and worthwhile insights of the agricultural environment. As a consequence, more

effective and efficient decision-making processes are enabled and activities related

to the management of crops, the estimation of their yield, their harvesting, the

detection of diseases, the management of irrigation eventually improved. Or again,

the implementation of autonomous robots equipped with computer vision capa-

bilities can replace human labor for time-consuming and strenuous activities such

as harvesting or weed and disease control. The ultimate effects of implementing

innovative technologies in agriculture are therefore obvious: an improvement of

the agricultural production and management activities and a generalized increase

of the productivity and the profitability that can be overall achieved.

Among the different applications of the above-mentioned technologies in agri-

culture, the development of AI-based systems for the detection of on-tree fruits is

receiving increasing interest. The reasons for this can be ascribable to the reliance

that many technological agricultural applications have on detection tasks in order

to execute their functions, as well as to the usefulness such solutions can have

in improving several agricultural activities. In particular, common applications

of fruit detection in agriculture relate to computer vision systems developed for

unmanned aerial or ground vehicles or smartphones to quickly and automatically

spot and count the fruits a crop presents. Once the detection phase is done, such

systems usually provide for an analysis of the collected data, which can have dif-

ferent scopes. On the one side, from the appearance of the detected fruits some

quality information can be derived, such as maturity level, size or presence of dis-

eases thus assisting farmers in making relevant decisions with respect to harvesting
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time, fertilization, use of pesticides. The maturity level can indeed help farmers

understand a fruit’s growth state, which allows them to make efficient decisions

related to harvesting and post harvesting activities. The detection of presence

of diseases enables instead to promptly inform the farmers, so that corrective ac-

tions to avoid crop losses can be proactively taken. In addition to this, AI based

detection systems can provide counting of the identified fruits, on the basis of

which an early prediction of the orchard’s produce is enabled: by knowing such

information, farmers can implement actions to support crops growth for achieving

an optimal production, as well as efficiently plan post harvesting activities for an

effective allocations of labor, storage and transport resources. The relevance of

this is even more evident considering that, commonly, fruit yield estimation has

been carried out by manual counting, which has proven to lead to low precision

results, high costs and higher time requirements for estimation. On the other side,

fruit detection technologies have been vastly applied also for the automation of

fruit picking activities. This is because harvesting is considered one of the most

tedious, time consuming and labor intensive agricultural activities, which is even

more problematic given the labor shortage the system is facing and the high cost

of human resources: using intelligent robots equipped with computer vision tech-

nologies to detect and pick products in an autonomous way can help in alleviating

such problems.

Nonetheless, the development of an AI-enabled fruit detection system is non

trivial due to many technical, economic and social considerations that have to be

addressed and are instrumental in the integration of technologies into agricultural

operations. A complete understanding of the application domain specificities is

indeed of fundamental importance to develop appropriate solutions that deliver

accurate, reliable, efficient, and context-aware fruit detection capabilities. To pro-

vide for this, careful and exhaustive considerations of many different intricate as-

pects related to data collection and annotation, feature extraction, model selection

and evaluation, hardware architecture are to be made.

This elaborate, through a review of the relevant literature, aims to provide valu-

able information for the development of an AI enabled fruit detection system by

analyzing relevant aspects with respect to necessary data, existing algorithms and

required hardware. In this sense, after providing in Chapter 2 a general overview

of the different applications of Artificial Intelligence in agriculture (with a spe-
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cific focus on fruit detection), in Chapter 3 the main implications with respect

to the necessary data when building an AI system are presented. In Chapter 4

existing Machine Learning and Deep Learning models are investigated and com-

paratively analyzed. In Chapter 5 possible platforms and hardware considerations

are outlined. In Chapter 6, an analysis of the main technical and socio-economic

challenges that the development of an AI based fruit detection system pose is

presented. The final chapter summarizes the conclusions on the above aspects.



Chapter 2

Digitalization of agriculture

through AI

2.1 Agricultural activities enhanced by AI sys-

tems

The digitalization of agriculture has been gaining momentum given the urgency

of optimizing agricultural practices, increasing the agricultural productivity and

providing for more sustainable, informed, effective activities owing to the numer-

ous issues the sector is facing such as increasing population demanding more food

production, labor shortage, adverse climate and scarce water resources, among

others. In particular, Artificial Intelligence is playing a key role in driving the cur-

rent digital transformation of agriculture: Machine and Deep Learning algorithms

have been vastly applied, in combination with other technologies pertaining to

IoT, Big Data, Robotics, for the development of intelligent systems of valuable

applicability in many different areas and to support many relevant agricultural

activities by automating and speeding up redundant processes like crop harvest-

ing and monitoring, as well as providing accurate knowledge throughout efficient

predictive and prescriptive analyses of the vast amount of agricultural data that

is possible to collect.

As described by [7], AI methods have been mainly applied for developing:

• autonomous agricultural robots to support activities like fruit picking, weed

5



6 CHAPTER 2. DIGITALIZATION OF AGRICULTURE THROUGH AI

management, crop spraying and monitoring, thus replacing tedious, repeti-

tive manual labor and improving overall productivity;

• agricultural decision support systems: thanks to AI based systems able to

process vast amount of remotely sensed data, more effective and efficient

decision-making processes are possible with respect to crop management,

water management, harvesting and post harvesting activities;

• (mobile)expert systems: mobile/embedded devices can be used by farmers

to rapidly identify crop diseases, to detect on tree products and get relevant

statistics about them, as well as to monitor the overall field by being able to

process satellite images

• predictive analytics: together with Big Data technologies, AI enabled agri-

culture predictive analytics can forecast crop yields, weather conditions and

market conditions, providing to farmers useful insight on the production

course so that resource optimization and proactive beneficial actions can be

implemented.

Some of these applications heavily rely on object detection technologies. In light of

this, the most relevant aspects characterizing the task of object detection, declined

in the example of fruit detection, such as applications and main obstacles, will be

further examined in the next section. On the other hand, an analysis of the

main agricultural activities concerned by the application of the aforementioned AI

based solutions is presented below, specifically relating to crop monitoring, yield

prediction, disease and weed detection, irrigation management, soil management,

harvesting and crop quality.

As final considerations, existing AI and computer vision technologies have

proven efficient in addressing traditional monitoring, forecasting and planning ac-

tivities, hence reducing costs, effort, time, inaccuracies and inefficiencies in the

system. However, despite some real case applications, an extended adoption of

such technologies is still to be realized and some of the causes of this have been

analyzed by and ascribed to: lack of knowledge of the farmers, gap researchers-

farmers, cost related issues [8] [9]. In addition to this, most of the results are still in

the experimental phase, especially because complete solutions to some limitations
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due to the variability and complexity of agricultural environments haven’t been

found yet.

2.1.1 Yield Prediction

Yield prediction is regarded as both a crucial but also a challenging task. It is a

task of paramount importance since a correct estimation of a crop’s production

can help farmers take more informed and effective decisions related to orchard

management activities, as well as labor, stock and transportation allocations and

planning. Nonetheless, these predictions are affected by numerous factors such as

environment weather patterns, soil type, management practices, crop genotypic

and phenotypic characteristics, and all their interactions [10]. Since the crop yield

will be highly dependent on an optimal combination of these variables, their predic-

tion and comprehension is extremely valuable: for example, undetected anomalies

might have relevant negative effects on the crop production (e.g. huge crop losses)

with all the consequent implications this creates. Considering this, accurate Ma-

chine Learning and Deep Learning models can provide valuable support.

Figure 2.1: Orchard yield estimation enabled by the use of an unmanned ground

vehicle for image capturing and computer vision techniques for image processing

and analysis[11].

By analyzing historical and real time data from sources like remote sensors,

satellites, unmanned vehicles (Figure 2.1), AI based systems are able to both fore-

see the factors that will affect the crop yield (like possible occurrence of disease),

enabling farmers to proactively take corrective actions[12], but also to predict the
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final produce of a specific crop, its ideal harvest time and required inputs (e.g

amount of water or fertilizers) [13]. Therefore, relying on such innovative pre-

dictive models can have beneficial outcomes on several agriculture management

activities, improving decision making processes and maximizing productivity and

profits.

2.1.2 Disease and Weed Detection

Among other activities needed to safeguard a crop health, of relevance are the one

aimed at preventing and controlling the dissemination of diseases on fruits and

plants, as well as the spreading of weeds, which is detrimental for the agricultural

produce since contend to obtain water, minerals and other nutrients found in the

soil: minimizing the presence of diseases and weeds is crucial in impeding signifi-

cant crop damages that eventually translates in huge production and economical

losses for farmers [10].

Currently, traditional inspection methods rely on expert farmers frequently ex-

amining crop fields on the lookout for any hint that could signal the presence of

diseases and on manual or mechanical control of weeds, making such activities

laborious, expensive, time-consuming and not always sufficiently accurate[14]. To

cope with such constraints, ad hoc AI systems combining computer vision tech-

nologies, pattern recognition [15], machine learning and exhaustive agricultural

measures, have been developed and proved efficient in detecting diseases and mali-

cious weeds in a more precise and prompt way [16]. Once the identification step is

done, the smart system is also able to provide an instant diagnosis and to suggest

both urgent and preventive actions [13].

In addition, for the containment of diseases and weeds, pesticides and her-

bicides are usually used. Nonetheless, they are costly [12] and if not correctly

quantified in their usage or if applied uniformly in the field although the pres-

ence of weeds or diseases being uneven, they can cause serious damages to the

surrounding environment, waters, animals [14].

Solutions to such problems can be found again in digital agriculture: relying

on IoT sensors, robotic/aerial vehicles (Figure 2.2) and AI methods, some smart

systems have been developed, with the ability to distinguish weeds from crops or

to localize diseased crops, and thus realize both an accurate spraying of pesticides
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and herbicides only to the specific areas needed or an autonomous exacerbation of

weeds [13].

Figure 2.2: Weed detection example: an UAV examines a field, collecting data

about crop density and weed pressure and coordinating and sharing information

with a UGV that is used for targeted intervention and data analysis [17].

2.1.3 Crop monitoring

Monitoring the health status of a crop during its entire growth process is an im-

portant agricultural task for obtaining high quality abundant yields: a constant

flow of information pertaining to parameters necessary to determine a crop health

status, allow to uncover issues like nutrient deficiencies, water shortage, presence

of diseases ahead of time. This enables agronomists to proactively adopt corrective

actions, aimed at creating an optimal growth environment for the crop, so that the

likelihood of obtaining a productive harvests is increased. As many other agricul-

tural activities, also the monitoring of crops traditionally relies mainly on human

labor, which is fallacious since based on subjective judgment and is not timely

nor enough accurate [16]. Fortunately, advancements in computer vision and deep

learning inspired the creation of solutions to perform analysis of crop images and

provide therefore real time and extensive information on crops status (Figure 2.3):

for example, such systems have proved able in detecting subtle changes in crops

due to malnutrition or presence of disease beforehand human monitoring, as well

as in providing constant and more reliable, timely information [16].
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Figure 2.3: The combination of computer vision technologies, remote sensing in-

formation and robotics enables the real-time monitoring of a crop’s health and of

its environment

2.1.4 Soil Management

Knowledge related to soil properties can be very valuable in agriculture since al-

lows for the understanding the occurrence of issues related to aspects like land

degradation, unbalanced nutrients in soil due to fertilizers overuse and soil erosion

that play a crucial role in a crop productivity [10]. Traditional assessment of soil

properties is based on soil sampling and laboratory analysis, which usually are

quite expensive, time consuming and require qualified experts [10]. In contrast,

alternatively or complementarily relying on innovative technologies can be benefi-

cial in numerous ways: the use of computer vision for collecting useful data from

soil images and of IoT remote sensing for monitoring relevant parameters (temper-

ature, moisture, electrical conductivity, pH value and nutrient content [12]) in real

time, combined with AI based methods for analysis of the different data collected,

allow the development of reliable cheap solutions for supporting soil management

activities, eventually helping farmers in obtaining larger and better yields while

minimizing the time and cost of such agricultural practices [13]. For example,

computer vision based technologies have been applied and proved useful in the

characterization of soil properties like soil texture, meaning the percent contribu-

tion of sand, silt and clay (Figure 2.4) [11]. Soil texture is a foundational element

in supporting the ecosystem and greatly affects other soil physical properties and

processes like infiltration, water holding capacity and drainage, aeration, proneness



2.1. AGRICULTURAL ACTIVITIES ENHANCED BY AI SYSTEMS 11

to erosion, pH buffering capacity, which all ultimately affect the agro ecosystem

productivity [11].

Figure 2.4: Computer vision-based soil image analysis: soil images are collected

with cameras and submitted to simple computer programs to classify and cate-

gorise them considering portion of sand, silt, clay [11].

2.1.5 Irrigation Water Management

As stated in [18], agriculture is the sector that globally consumes available fresh

water the most, since the growth and nourishment of plants and crops largely

rely on it. Nonetheless, water resources are more and more scarce due to both

natural factors and climate changes but also inaccurate watering practices, all

which implies that interventions aimed at preserving water availability are urgent.

More sustainable and efficient approaches to watering rely on a precise knowledge

of the amount of water a crop requires, as well as on implementing a variable

irrigation on the basis of specific requirement different zones can present, so that

to avoid an unnecessary uniform irrigation on the entire field [10]. In addition, in

order to provide an efficient scheduling and management of irrigation, variables

like precipitation data, evaporation data, weather forecast, soil moisture data,

crop growth status can result very helpful [15]. Using remote sensors, all such

information can be collected and used for analyzing soil moisture and crop status.

Integrating then AI methods, predictions and better decisions on the basis of the

obtained values can be suggested: for example, many smart irrigation systems

able to control actuators (e.g sprinkler) in an autonomous way according to the

received data [13] have been developed (Figure 2.5), as well as computer vision
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based robots that, after analyzing and comprehending a specific situation, can

perform autonomous precise irrigation only where and in the quantity needed[11].

Figure 2.5: Smart irrigation system: IoT sensors gather in-field data, accessible

through online applications, and are able to control irrigation pumps, which get

automatically turned on and off depending on the soil moisture data that have

been sensed [19]

.

2.1.6 Harvesting

Once a crop has finalized the growth stage and reached maturity, the agricultural

produce has to be collected. Manual harvesting is still the main operating method

used, which turns out to be tedious, time-consuming and costly, given the scarce

availability of qualified workers [13]. To overcome such constraints, technologies

pertaining to smart sensors, robotics, AI and computer vision have been considered

for making harvesting processes smarter. Among others, many researches have

focused on the development of AI enabled robots that automate and speed up the

picking processes. They work thanks to computer vision technologies that allow

the identification and localization of fruit/vegetables ready to be harvested, and

then instruct a robotic arm to carefully gather the target, which is ultimately

placed in a dedicated bin [13] (Figure 2.6). In addition, by leveraging Machine

Learning predictions based on remotely sensed data, smart harvesting systems can
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provide agronomist with both yield forecasts and useful insights on crops produce,

helping them in achieving the ideal harvest and supporting them in efficiently

managing and planning pre harvesting, harvesting and post harvesting activities

and resources [15].

Figure 2.6: An example of selective harvesting robot: once the fruits that are

ready to be harvested are localized through the use of sensors and computer vi-

sion techniques, the robotic arms carefully pluck them with the help of a picking

gripper, and places them in the appropriate basket.

2.1.7 Crop quality

The quality of a crop produce, in terms of shape, color, size, plays a fundamental

role in the determination of the market price at which the products can be sold

and in the customer satisfaction, with the corresponding implications these factors

have on a farmer’s final economical gain. As seen in the above sub-sections, also in

this case AI algorithms combined with imaging and computer vision technologies

can perform automatic and meticulous quality inspections, evaluation, grading and

sorting of agricultural products, thus avoiding the high cost and low efficiency of
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traditional manual operations usually applied for such activities [10].

2.2 AI for fruit detection: applications and prob-

lems

Together with image classification and segmentation, object detection constitutes

one of the primary techniques computer vision is based on, which refers to all

those AI algorithms to instruct a machine in extracting valuable information from

images or videos [20]. Object detection approaches are useful in this sense since

they can, through an accurate analysis of the image, localize and subsequently

classify identified objects of interest, surrounding them by bounding boxes. Due

to their vast applicability, there is nowadays a growing interest towards object

detection technologies in numerous different applications domains, one of which

is agriculture. Specifically, the topic of fruit detection has received increasing

attention in the past decade owing to the relevance such technologies can have in

improving numerous fruit production and management activities, especially those

requiring vision as a sensor [21].

First off, fruit detection technologies have been implemented over aerial/ground

vehicles or smartphones applications that, after capturing the image of a crop/tree

through specific cameras, can quickly track down the present fruits or count them.

Once the fruits are detected, an analysis phase usually takes place. This means the

technology can provide exhaustive information on the fruit status with respect to,

for example, the maturity level, its size or the presence of diseases, as well as yield

estimates based on the counted number of fruits, all of which constitute valuable

knowledge for a farmer for the following reasons. To start with, by knowing a cul-

ture is affected by pests or diseases, corrective actions can be proactively taken to

avoid the infection propagating in such extended quantities that causes significant

crop losses. These actions can even be implemented as additional functionalities

of the intelligent robot used for detection, so that the machine vision technologies

they are equipped with allows them to first detect and examine the fruits and then

precisely and autonomously spray pesticides when and where needed. In addition

to this, fruit detection technologies can be devised to analyze a fruit’s appear-

ance, from which valuable quality information can then be derived: the maturity
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level can signal their readiness for harvesting time and so help in planning related

activities, while size or color results crucial especially for some crops, since the

market recognition and thus the corresponding obtainable profitability much re-

lies on these aspects [22]. On top of this, computer vision based fruit detection

and counting enable the automatic forecasting of a crop yield, which is extremely

valuable for a number of reasons. Commonly, fruit yield estimation has been per-

formed by manual counting of the fruits in selected trees, activity that has proven

to lead to low precision results (this is because usually just a small number of tree

gets inspected, the amount of fruit on each tree can be highly variable and the

assessment should be done at several times during crop growth [23]), high costs

and higher time requirements for estimations, making subsequent decision making

and planning activities a challenging task. Conversely, through computer vision

applications/methodologies, fruits can be quickly detected and then counted, so

that an early prediction of the final yield of an orchard is achievable. As a result,

this can help farmers in taking more effective decisions with respect to resources

that will be needed in pre harvesting activities for an optimal orchard management

(e.g. quantities of fertilizers or agricultural chemicals to support the achievement

of the desired yield), as well as decision referring to post harvesting activities like

allocation of labor, storage capacity needed, transportation[16], thus ensuring a

more efficient and profitable overall agricultural production [24].

Another agricultural task where fruit detection technologies can provide many

advantages is fruit harvesting. This is because, traditionally, harvesting has been

performed through manual labor, which nowadays is problematic firstly because

if on the one side it is considered a labor-intensive activity, on the other side the

increasing cost and ageing of the agricultural workforce are reducing the avail-

ability of human resources to carry out such tasks [25]. In addition, harvesting is

deemed as being an extremely time consuming, costly and tedious task, with im-

pact on a person’s health too, given the uncomfortable positions to execute it[25].

In light of this, automatic harvesting systems can result very helpful in alleviating

these problems: robots equipped with computer vision technologies can indeed

autonomously instruct a mechanical arm to carefully pick the detected fruits and

place them in a dedicated bin [13]. Autonomous harvesting and picking robots are

among the most popular robotic applications in agriculture, due to the improve-

ments in the speed and accuracy achieved in recent years and in considerations
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of the benefits they provide since they free farmers from having to carry out such

tedious activities and thus allow them to focus on more strategic issues [26].

In this scenario, automated fruit detection results a valuable resource in im-

proving fruit production and is indeed a research topic of increasing interest: many

fruit detection frameworks have been developed over the years considering differ-

ent methodologies based on feature extraction, machine learning or deep learning.

Early approaches to image analysis for fruit detection have been based on manually

design the methods to identify and extract distinctive features either pertaining

to the image, such as corners, edges, blobs or to the object the interest, like color,

shape, texture, that could signal the presence of a fruit in the image. Specifically,

these fruits detection algorithms generally present a first step of generating poten-

tial region of interest, followed by the actual detection of the fruit. The selection

of candidate regions can rely on threshold segmentation to quickly distinguish the

fruit from its background based on the provided feature [27]. To this end, color

is usually used though it can present misleading variations due to illumination or

maturity level. In turn, a fruit’s shape or texture appear to be more robust with

respect to these elements. With respect to shape-based techniques, there exist

,for example, the Hough transform (HT) or the histogram of oriented gradients

(HOG), while some common texture-based methods can referred to oriented FAST

and rotated BRIEF (ORB), speeded-up robust features (SURF), scale-invariant

feature transform (SIFT) and local binary patterns (LBP) [22]. Complex algo-

rithms that combine many of these features have proven to lead to more precise

outcomes. Although these simple image processing methods have been proven

able to detect fruit targets [27], more accurate results have been obtained when

coupled with machine learning algorithms: through such approaches, once regions

of fruit objects are distinguished through the considered features, they can be

categorized as either fruit or background by applying classifiers such as Support

Vector Machine(SVM), K-Nearest Neighbour(KNN), AdaBoost, Random Forest

[22]. Nonetheless, Machine Learning approaches presents some limitations too.

Relying on manual feature extraction, such techniques have low generalization

capabilities, are dependent on the quality of the selected features and accuracy

improvements in the detection of fruits, when considering more challenging field

environments, are difficult to achieve. As an example, Machine Learning algo-

rithms used for fruit counting struggle with both clustered fruits, detecting them
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as one, and with fruits that appear to be divided in two by a branch, which will

be considered as if there were two [28]. In such context, deep learning techniques

have been increasingly used for deploying fruit detection tasks, given the promising

results obtained in overcoming the challenges encountered by other techniques and

in providing therefore more accurate outcomes. In particular, the superiority of

convolutional neural networks lies in their strong self-learning ability: while pre-

vious approaches rely on hand engineered features to encode visual attributes to

differentiate fruit regions from non-fruit regions, which makes them suitable only

for a specific fruit and unique to the conditions under which data were captured,

CNN have the capability of automatically learn also discriminative higher level

image characteristics which cannot be extracted by traditional feature engineering

[20].

No matter the fruit detection approach, the complexity and variability of out-

door orchard environments hamper high levels of accuracy and the performance of

the selected detection system [20]. First of all, outdoor environments are subject

to variable lightning conditions depending on the time of the day and the cur-

rent weather, so that the light intensity is different in sunny and cloudy days. As

a consequence, the fruit image can present oversaturated areas because of direct

sunlight while capturing it, shadowed parts due to light occlusion and variable

brightness depending on the light intensity [20]. This result to be problematic for

a machine vision algorithm since if the fruits are not equally enlightened, and thus

for some the color appears to be different, these will be ignored in the detection

phase. Similarly, detection tasks became challenging in all those cases where the

target fruit is of similar color with respect to its background or the leaves and

branches of the canopy/plant, since this makes more difficult to identify them on

the basis of color information. For some type of fruits this could happen, for ex-

ample, at the beginning of their growing stage since their color is more similar to

the foliage, changing mostly when the fruit has reached maturity [20]. Another

problem comes from dense canopies/vegetation where the fruits in the considered

image appear hardly visible since occluded, overlapping or clustered, leading to

misclassification and miscounting [21].

In an effort to overcome or at least reduce the effect such constraints have on

fruit detection performance, researchers have introduced some optimization strate-

gies. A first group of optimization approaches aims at collecting higher quality
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datasets, where the number of images presenting the above-described problematic

characteristics is minimal. Choosing the most opportune visual camera or sensor

considering its imaging characteristic and applicability to the project in question

can help in this sense, as well as trying to make unstructured environments more

structured, for example by planting orchard in a more standard way, by accu-

rately pruning a crop’s branches and leaves and by using controllable light sources

when shooting for collecting sampling images [20]. Others optimization strategies

promote methods for postprocessing the collected dataset. Dataset processing

techniques rely on augmentation of the available data or creation of synthetic

data with the aim of enriching the quantity and variety of available dataset: data

augmentation consist in a series of transformations applied to an image such as

rotation, translation, mirroring, scaling, cropping, remapping into another color

space, while synthetic data are data created by a computer that present similar

characteristics to the real one. Additional optimization strategies carried out after

the collection of necessary images, which are more robust but more technically

challenging, rely on methods for improving the considered fruit detection model

(for example introducing correction factors [27] or developing more powerful fea-

ture extraction [20]), as well as designing it according to the peculiarities of the

dataset, selected sensor and requirements of the detection task [20].



Chapter 3

Data for an AI fruit detection

system

3.1 Data acquisition

The collection of data, as suggested by a typical Machine Learning pipeline, is

the starting point for the development of any Artificial Intelligence system and its

paramount role in the system’s final accuracy and reliability cannot be neglected:

as suggested by Andrew Ng [29], one of the most globally recognized leader in Ar-

tificial Intelligence, around 80% of machine learning is data preparation and most

of the accuracy improvements that can be achieved rely on high quality data.

Specifically, for any ML or DL system to be effective and trustworthy, it is indis-

pensable that the training process is initiated with huge quantities (e.g. hundreds

of them for ML models, thousands for DL models) of diverse and high-quality

data. Using a large dataset improves the model’s capacity to learn and recognize

patterns, while diversity provides the model with generalization capabilities when

applied to new or unseen images [30]. In addition, data-centric attributes such as

image resolution and object appearance, complexity, size and similarity play a very

important role in the final accuracy of the detection task [31]. These aspects are

especially true when considering the implementation of an on-tree fruit detection

model: in addition to being of high quality and substantial, agricultural datasets

must be indeed as much representative as possible of the variability that open-field

orchards present, in order to allow an effective training of the selected model and
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thus make it robust enough to be able to work under different environment condi-

tions [32]. In view of this, it is clear how a meticulous approach to data collection,

encompassing representative samples and relevant features that comprehensively

encapsulate the context complexity and object diversity expected, ensures the

ability of a model to make accurate predictions and avoid underfitting/overfitting

scenarios, granting the overall robustness and reliability of the entire ML or DL

pipeline [33]. Nonetheless, data collection is a laborious task to which careful

attention and sufficient dedication should be paid.

The acquisition of image data can happen in two main ways, namely by using

publicly available datasets or by building a custom dataset. Both approaches

present some advantages and disadvantaged that will be analyzed in the following

dedicated paragraphs.

3.1.1 Public dataset

The advantages of relying on publicly available datasets can be attributed to

their accessibility and convenience, reducing the effort and costs for data col-

lection, preparation and annotation processes. In the research environment, it is

a widespread practice to release and make available to others datasets that have

been collected throughout experimental studies, to both foster the implementa-

tion of new models or to verify already developed one and possibly propose better

solutions. Indeed, many vast benchmark datasets for computer vision tasks have

been released like ImageNet [34], PASCAL VOC [35], COCO [36], ILSVRC [37],

Open Images V4 [38], Fruit-360 dataset [39], allowing for successful improvements

in object detection and encouraging the development of new architectures [32]. Al-

though they provide for fruit datasets, the images are usually of individual fruits

collected in simple scenes that can be mainly used for fruit detection within spe-

cific, structured environment: while they might be helpful in general situations,

they have proved to perform poorly for models applied in open orchards, since

to complete fruit detection for selected agricultural tasks, they necessitate to be

trained on datasets containing more specialized images and images collected under

more realistic open field settings [32]. Such necessities and the growing interest

and development of computer vision applications for agriculture have favored an

increase in the number of available public image dataset for task related to smart
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agriculture [32]. Specifically, as reviewed by [32], some usable, annotated datasets

for the task of fruit detection are:

• DeepFruits [34]: around 42–170 RGB images of various resolution are pro-

vided for fruits like sweet pepper, rock melon, apple, mango, orange and

strawberry with corresponding bounding box annotations of fruits

• Orchard Fruit [40]: provides 1120 apple images (size 308 × 202 pixels), 1964

mango images (size 500 × 500 pixels) and 620 almond fruits images(size

308 × 202 pixels). Circular and pixel-level fruit annotations are provided

for apples, while rectangular bounding box annotations for mangoes and

almonds

• Date Fruit [41]: consist of a first subset of 8079 color images (size 224 × 224

pixels) labelled into different classes according to fruit variety, maturity and

harvesting decision; another subset contains the images, videos, and weight

measurements of date brunches

• K Fuji RGB-DS [42]: 967 multimodal images (size 512 × 424 pixels) and

bounding box as fruit annotations for a total of 12,839 apples

• MangoNet [43]: provides 49 high-resolution (4000 × 3000 pixels) color images

in jpg format, collected under natural illumination conditions. To note, in

the model training phase images will have to be cropped into smaller patches

to meet computation memory issues [32]

• MangoYOLO [44]: consist of 1730 images (size 612 × 512 pixels) collected

at night with artificial lighting, for better image contrasts

• WSU apple dataset [45]: consist of 2298 RGB images of various resolution

of apple trees acquired from multiple growth seasons and fruit varieties

• Fuji-SfM [46]: provides 288 RGB apple image (size 1024 × 1024 pixels)

collected using a handheld color camera in the natural orchard conditions

• LFuji-air dataset [47]: provides annotations of 1353 apples from 11 fruit trees
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• MinneApple [48]: two sets of images under natural illumination conditions

are provided, one dedicated to fruit detection task with 982 images (size 1280

× 720 pixels) and another for counting tasks with of 64595, 2875 and 3395

images for training, validation and test respectively (Figure 3.1)

Figure 3.1: Examples of MinneApple’s dataset annotated images for the detec-

tion, segmentation and counting tasks. The detection/segmentation datasets are

annotated with object instance masks, while the counting dataset contains image

patches and a corresponding ground truth count [48].

Nonetheless, it is clear that the field of fruit detection still suffers from the lack

of openly accessible image data, a problem that gets magnified for some type of

fruits for which no public dedicated dataset has been yet made available. To note,

there exists datasets that have been collected by research institutes to conduct

their own experiments on the topic of fruit detection, but they have not been

made available to the public or permission for their use has to be requested. As a

result, in some cases relying on public dataset for image acquisition is not viable

option, and thus a customized data collection approach will be needed.

Some other disadvantages can be pointed out. First of all, a system developed

considering public datasets might turn out to be less accurate, since the data it

has been trained on are not specific and representative of the intrinsic character-

istic of the field where it will be used. Furthermore, being collected by others,

such datasets will have to be inspected before use in order to understand if are

applicable to the specific case considered, to check the quality of the image data

and of their annotations (which might even result inadequate) and to eventually
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consider some data cleaning procedures. Additionally, it might result that the

considered public dataset lacks in representing the environmental diversity that

open orchards present, which is necessary for precise in field fruit detection, as

well as a sufficiently high number of images (the training of deep learning mod-

els, for example, require thousands of data for the development of a performing

system). Indeed, since image collection and annotation are costly and time con-

suming, often the available datasets present too few images (compromising the

model capacity to recognize patterns) and are not sufficiently diverse (affecting

the model generalization capabilities and robustness)[32].

3.1.2 New dataset

Building a custom dataset is a valuable option for data acquisition when it is a

viable solution, since it implies the creation of a dataset of images tailored to

the specific characteristics of the orchard. Indeed, the creation of custom dataset

allows to better control the quality of both the captured images and their anno-

tations, as well as to ensure that the images in the dataset exhaustively represent

the environment variability, thus allowing the development of a more accurate and

robust fruit detection model, able to perform well under mutable conditions which

are typical in open fields (change in illumination, differences due to maturity stage,

occlusions).

However, acquiring a new dataset is extremely time consuming, expensive and

laborious for many reasons [49]. First of all, specific and usually expensive equip-

ment, like cameras with good resolutions (e.g. DSLR cameras [40]), and experts

are needed for the acquisition of huge numbers of orchard images that have to

be sufficiently representative of various environmental conditions (varying illumi-

nation, clustered or occluded fruits) and of different fruit growth stages, while

ultimately being of high quality. The importance of images of higher resolution,

containing more feature information for the model to learn, has been emphasized

since it can ensure higher training accuracy and can be used to achieve so even

in those cases where the amount of available images is limited, as a strategy to

increase accuracy through increasing the input image resolution [31].

Once images are collected, they need to be annotated. Generally, image an-

notation refers to the process of semantically describing the content of the data
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through some labels that, depending on the use case, can be numerical or cate-

gorical. In the task of fruit detection, it mainly refers to defining the regions of

interest that capture the occurrence of fruits and assigning some context informa-

tion, such as the class of fruits present in the image [32]. The annotation process,

though time and cost intensive, is of vital importance since the more meticulous

the annotations are, the better the system can learn, ultimately delivering more

accurate and robust performances in the detection of fruits even in complex or-

chards. There exist different ways to carry out the annotation of data. A first

approach is manual annotation, which is the prevalent way to label data in com-

puter vision task [32]. The main advantage of manual annotation is that it allows

higher level of accuracy and control over the annotation process, so that objects

are precisely marked and labels result more rigorous and suited for the specific

use case considered. To support it, there exist open-source software tools such

as labelImg, VGG Image Annotator(VIA), COCO Annotator, CVAT, LabelMe,

ImageTagger, imglab, OpenLabeling, VoTT [32]. In Figure 3.2, an example of the

manual labelling process of fruits with the help of the open-source tool labelImg

is shown[50]. Despite these tools, manual annotation of images is extremely time-

consuming and expensive, given the human resources required for it, and might not

always be applicable either, especially when the number of images to be annotated

is too huge (thousands of images) and of high resolution.

Figure 3.2: The manual labelling process used in [50] to identify where the fruits

were located in each image from the training dataset with the help of LabelImg

tool to label object bounding boxes. On the left, the annotation process for the

test images is shown, on the right the different types of fruits labelled.

In such cases a solution can be found in the use of commercial platforms that
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offer annotation through crowdsourcing, such as Amazon Mechanical Tunk for

example [51]. This requires less time and has been vastly applied for annotation of

large-scale image datasets. Nonetheless, annotations are performed by non-experts

and thus additional quality checks are required [52].

Another approach to data annotation is automatic labelling, which involves

leveraging developed computer algorithms to assist or perform the annotation

process with little to no manual intervention [52][53]. Automatic Image La-

belling(AIA) technologies aim indeed at training a learning model on the basis of

a given image, and on using such model to automatically assign semantic labels:

even though such approach has proven to be highly efficient, for more complex

images such as those relating to the agricultural environments it has not always

produced satisfactory results [32]. Nonetheless, researches on the topic are increas-

ing and technological advancements are allowing the implementation of improved

models, to provide more applicability and efficiency in the agricultural context

[53][33][54][55][56].

3.2 Data processing and data augmentation

Performing object detection within agricultural environments is intricate, given the

numerous complications open fields pose with respect to variable lightning condi-

tions and complex orchards structures that can thus compromise the detection

accuracy of an AI system. Since neither feature extraction combined with ma-

chine learning nor deep learning models have proven fully capable in dealing with

such challenges, accurate image pre-processing techniques can provide valuable

additional support in this sense and thus strengthen the model final performance’s

accuracy [57]. Data pre-processing is composed of a series of procedures to refine,

standardize and enhance the image data with the aim of making the considered

dataset more consistent and better representative of meaningful patterns that can

be learnt by the model. There exist in the literature many image pre-processing

techniques [58]. Resizing is useful for ensuring a consistent resolution that is suit-

able for the selected model and the memory constraints, while cropping may be

applied to focus on relevant regions of interest. Normalizing pixel values to have

them within a standard range can help in reducing the impact of variations in light-

ing conditions across different images. Image enhancement provides adjustments
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of contrast, brightness, or sharpness, thus helping to accentuate important features

in the images. For example, [57] implemented some color correction techniques like

Adaptive Histogram Equalization and Histogram equalization and proved to have

obtained higher performances than not applying such techniques. Additionally,

geometric transformations can be considered in the preprocessing phase, which

refer to the so called data augmentation techniques.

Data augmentation consist of generating variations of the considered images

in an artificial way, through the application of a series of transformations, with

the end goal of improving the dataset size and variability and thus supporting

a model’s capability to generalize to different scenarios [30]. Most common aug-

mentation techniques are (Figure 3.3): image or bounding boxes rotation (so that

the model can learn in different orientations [57]); scaling, to change an image’s

size so that the model can recognize object at different scales; cropping to add

variety; flipping to create mirror copies of an image thus exposing the model to

more information [59]. Other techniques refer to random occlusion augmentation,

photometric augmentation (to change the pixel intensity values instead of pixel po-

sitions) or deep learning-based methods for data augmentation (e.g. Neural Style

Transfer, Adversial training and Generative Adversial Networks - GAN) [59][30].

Figure 3.3: Data augmentation techniques: the image shows some geometric trans-

formation methods used in image processing and computer vision to manipulate

and modify images [60].

Data augmentation techniques have been widely considered especially for the



3.2. DATA PROCESSING AND DATA AUGMENTATION 27

implementation of deep learning models. This is because, in order to be able

to identify sufficient complex patterns and thus produce reliable and accurate

outcomes, the training phase of a DL model has to be build upon huge amount of

diverse data, the collection of which is challenging due to manual effort, costs and

in some cases it might even be infeasible [30]. Specifically, in [31], the experimental

study conducted proves that a training dataset of 2500 objects is sufficient for most

single class fruit detection. In such context, data augmentation techniques have

been used to compensate in situations of scarce data.
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Chapter 4

Models for an AI fruit detection

system

The model of an AI based system represents its fundamental core since embodies

the mechanisms through which it can first learn distinctive patterns and discrimi-

native features present in the provided images, and then generalize this knowledge

on new data. Given the relevant outcomes that implementing automated fruit de-

tection system can produce in the agricultural sector, it has been a research topic

of increasing interest in the past decades: many fruit detection frameworks have

been developed over the years considering different methodologies based on feature

extraction, machine learning or, most recently, deep learning. Selecting the ap-

propriate model is a crucial step in developing an AI-based fruit detection system

suitable for the specific use case considered and requires careful considerations on

aspects such as the complexity of the task, the size of the dataset, computational

resources, desired level of accuracy, necessary investments. In the literature, there

exist a vast number of research papers that describe specific implementation of

ML or DL techniques for the task of fruit detection considering these elements,

which can be advantageous for benchmarking the proposed solution and adapt

it to the case considered. A general overview of the main characteristics, exist-

ing algorithms and advantages and disadvantages of machine learning and deep

learning-based models is presented in the following paragraphs.
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4.1 Machine Learning models

4.1.1 General considerations

Early approaches to image processing and analysis for fruit detection have been

based on manually designing procedures to identify and extract distinctive features

pertaining to the fruit objects in an image, such as color, shape, texture, corners,

edges, blobs. Specifically, such features are usually used as the basic element for

segmentation algorithms (e.g. watershed algorithm [61]) to quickly distinguish the

fruit from its background and make decisions about whether a certain region of

an image corresponds to a fruit or not [27]. Color based techniques extract color

features through Color Histogram, Color Set, Color Moment, and Color Coher-

ence Vector. They showcase great results when the fruit color is notably different

than its background and are less dependent on image size. However misleading

variations of a fruit’s color due to illumination condition or maturity level can

undermine the efficacy of such approaches. In turn, techniques based on shape

features, among which Hough transform (HT), Circular Hough Transform (CHT)

or the histogram of oriented gradients (HOG) can be mentioned, result to be less

affected by these elements, being useful also in those cases where fruit and back-

ground have similar colors and when the fruit shape differs with respect to the

surrounding leaves and branches [22]. In addition, texture-based methods like

oriented FAST and rotated BRIEF (ORB), speeded-up robust features (SURF),

scale-invariant feature transform (SIFT) and local binary patterns (LBP) can pro-

vide valuable support in distinguishing fruits of the same color as the background

since leverage on the smoother surface that fruits present, which is also invariant

to changes in lighting conditions, though might not provide accurate results in

case of clustering, overlapping and occlusion of fruits [22]. To overcome the many

different limitations these approaches present, methods based on a combination of

more of these features have proved able to improve the accuracy and robustness of

the fruit detection task [62]. Although these simple image processing methods have

been proved able to detect target fruits [28], their capability in doing so is limited

to more structured environments and thus might not result sufficiently able to deal

with more complex and variable scenes affected by many non-controllable factors

(changing in lighting conditions, occluded and clustered orchards) like agricultural
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fields are.

An analysis of fruit detection based on image processing methods has been

carried out within the ONIT Spa company. Specifically, a complete literature re-

view of existing approaches to image processing and feature extraction has been

first conducted and then complemented with trial implementations of some of

the identified methods through Python scripts and leveraging the OpenCv and

Scikit-Image libraries. The considerations that can be derived from the results

obtained from the conducted investigations relate firstly to the complexity that

relying exclusively on these methodologies for performing fruit detection tasks im-

plies. Secondly, the findings highlight the inadequacy of these methodologies in

addressing detection tasks within open-field agricultural environments given the

diversity and variability that characterize them and the incapacity of these meth-

ods to capture all these features. As such, the necessity of considering alternative

approaches or complementing these methodologies with other techniques for more

effective solutions able to perform in intricate open fields is evident.

With the advent of Machine Learning the possibility of implementing more

accurate, efficient and robust approaches to fruit object detection is achievable.

Machine Learning is a subfield of AI and refers to those algorithms able to learn

from the data they are exposed to without being explicitly programmed to do so,

and then to generalize such knowledge over some other new unseen data. Such

capability allows then these systems to be able to automatically improve their

performance as they are exposed to more data over time. In the context of image

data, given their high dimensionality, the training of the model is preceded by an

additional step of feature extraction which involves transforming raw data into a

more emblematic and compact representation. This is necessary in order to extract

the most relevant characteristics of object in an image that could represent it in a

discriminative way, thus allowing the algorithm to process simpler but still valuable

data. Indeed, the first step of ML-based fruit detection algorithms is distinguishing

target objects by extracting specific features (through the methodologies above

analyzed) pertaining to their color, shape, texture, size. This allows to identify and

describe potential regions of interest within the image, that then will be classified

as either fruit or background. For this detection step, which implies multiple

object classification and localization, traditional machine learning classifiers can

be employed such as Support Vector Machine, k-Nearest Neighbour, Decision Trees
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or ensemble classifiers like AdaBoost and Random Forest [22].

The SVM algorithm performs classification by finding the optimal hyperplane,

meaning the decision surface most able to maximally separate different classes in

a high-dimensional feature space thus can correctly partition the training set. The

hyperplane is determined by identifying support vectors, which are the data points

that lie closest to the decision boundary and are therefore more difficult to get

classified. Generally, techniques for detection of fruits rely on SVM algorithm since

the classification problem is simplified, they appear able to handle variations in

orchard conditions and resulted better performing than other algorithms [22]. On

the other hand, they are sensitive to the tuning of parameters and accuracy is high

only for binary classification tasks while lower for multi-classification problems.

The KNN clustering algorithm achieves classification by assigning to feature

vectors a class label based on the majority class of its k-nearest neighbors. Thus, it

result useful when local patterns and spatial distribution of the fruits are relevant

and is advantageous since doesn’t make assumptions about input data, can provide

high classification accuracy and works well with small sized datasets. Nonetheless,

the algorithm’s detection accuracy can be affected by complex environment and

lighting conditions and by suboptimal values of the parameter K, which can lead

to overfitting or underfitting of the model. In addition, the computational effort

and time required can be considerable, since proportional to the dataset’s size, as

well as the memory occupation [62].

The AdaBoost algorithm is a multi classifier approach based on boosting,

through which a stronger classifier is build by combining several weak classifiers

trained on the same set, where the mistakes of previous classifiers are learned by

their successors. The advantage is that by combining in cascade several classifiers

and emphasizing misclassified instances, higher accuracy in detection can usually

be achieved. On the other hand, since the weight of difficult samples are expo-

nentially increased, the training might result biased towards such difficult samples

and thus the algorithm is sensitive to noisy data. In addition, since many classi-

fiers are combined, the final complexity of the model is increased and so also the

computational effort and time required for the training [62].

The Decision Tree algorithm performs a tree-like classification starting from

a root node that defines a good split feature able to separate different classes as

much as possible. The process is recursively applied to each node up until the leaf
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node is reached and the class label it stores is the result of the decision. Therefore,

they provide high interpretability since the whole decision process is based on

human readable sequence of decision rules that can be showed at different stages

and considering the values of feasible solutions, allowing to consider the different

affecting factors. The disadvantages are that they are prone to overfitting, can

be biased towards datasets that result imbalanced since present some features

with more values and struggle at dealing with strong feature correlations there

could be between data. To overcome such limitations, more decision trees could

be combined and their capabilities extended to build Random Forest algorithms:

their aggregation approaches allows for a better capability in dealing with more

diverse and complex dataset and thus more accurate and generalized results and

adaptability to the changing conditions in open field orchards [22].

A model’s learning through such algorithms is referred to as supervised learn-

ing since they are applicable in those cases where the data provided in input are

annotated. There exist also the option of making the system learn by feeding it

unannotated data, so called unsupervised learning. An example ML algorithm

to do so is K-mean algorithm which can automatically partition a dataset into k

distinct, non-overlapping clusters, and assign input data to the cluster with the

nearest mean [22]. Though there exist some application examples of unsupervised

algorithms, usually they obtain worse result and complicate the overall develop-

ment process. Indeed, k means algorithm are sensitive to the random initial choice

of k centroids which is non trivial and has a relevant impact on the final classifica-

tion performance. In addition, they might result unable to provide accurate results

in the presence of complex orchards with overlapping, occluded fruits or fruits of

similar color than the background since in these cases the fruits discriminative

characteristics, on which the algorithm much rely on to perform distinction, are

not clearly separable [62].

4.1.2 Pros and Cons

The interest in using fruit detection algorithms based on traditional machine learn-

ing techniques is dictated firstly by their interpretability, since the decision rules

and factors they are based on to perform fruit detection can be understood and

eventually explained to other stakeholders (e.g. farmers) to encourage trans-
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parency and trustworthiness. In addition to this, ML models can perform well

with medium size datasets (hundreds of image data) and thus result helpful in

those cases where acquiring and labelling huge amount data might be challenging.

They also require less training time and therefore less use of resources related to

computational power and memory, which can be advantageous if they are limited

[22]. Nonetheless, they rely on handcrafted features, meaning that the method-

ology for extracting them is based on human vision insights and intuition: if on

the one side this can allow to emphasize the discriminative features of fruits so

that they are tailored to the case considered, on the other hand this translates

in inability of the model to generalize if applied to other different contexts or in

presence of complexities [22]. Manual feature extraction is also a time consuming

and tedious process and same considerations hold for the correct tuning of a huge

number of the model’s parameters, for which domain experts might be necessary

[22]. Moreover, the performance of models based on such approaches might de-

crease if faced with more complex tasks: ML based fruit detection algorithms have

proven to struggle in capturing highly complex patterns and thus in dealing with

the intrinsic variability that the open field agricultural environments present, such

as variations in lighting conditions and shadowing effects, fruits exhibiting differ-

ent characteristics due to maturity level, fruits similar to their background and

orchards presenting occluded, overlapped, clustered fruits [22]. As an example,

Machine Learning algorithms used for fruit counting struggle with both clustered

fruits, detecting them as one, and with fruits that appear to be divided in two by

a branch, which will be considered as if there were two [27].

4.2 Deep Learning models

4.2.1 General considerations

The development of new advanced technologies and hardware supports like Graphic

Processing Units, have enabled abundant researches aimed at exploring new and

more efficient methods for improving object detection tasks, considering in partic-

ular Deep Learning implementations. Deep Learning is considered a sub-field of

Machine Learning and it relies on the idea of imitating, as far as possible, the hier-

archical nature of biological neurons, to provide analysis and learning capabilities
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by creating hierarchical structured layers of fully connected artificial neurons.

In the context of computer vision and object detection, the most commonly

used deep neural networks are the so-called Convolutional Neural Networks (CNN),

which have been specifically designed to process images by arranging neurons in

three-dimensional matrices (feature maps) and by stacking, one on top of the

other, many different layers (convolutional, pooling, fully connected layers) to

process input data and features at different scales thus allowing the model to learn

a vast amount of complex discriminative patterns that allow for accurate detection

performances [22] [63]. The main innovation CNN provides is reflected in their ca-

pability of automatically learning high level features from data, without therefore

needing manual hand-crafting of features (still they can be used as a pre-processing

input). This is possible thanks to the convolutional layers where, depending on

the designed kernel, convolution operations are able to extract relevant image fea-

tures and generate corresponding feature maps. A pooling layer is usually used to

reduce the spatial size of these feature maps, through a down-sampling operations

by sampling the maximum or average value in a neighborhood range. The various

type of visual information are thus learned to be extracted in a hierarchical way:

filters to extract more simple features such as colour, edges, lines are learned in

the early layers while filters to extract more complex and semantic information,

such as shape and patterns, are learned in layers placed in depth. An activation

layer then uses activation functions to process the input data and the neurons in

the fully connected layer are connected to all activated neurons in the layer above

it, to ultimately provide the final output. In consideration of this, DL methods

have proved more able to deal with the various challenges that unstructured envi-

ronments like open orchards present, thus providing more precise, fast, and robust

fruit detection and recognition: their promising capability of achieving excellent

performances have made them the method that recently has been prevalently con-

sidered for the development of various agricultural applications [64].

CNN for object detection are generally composed of two main structures: back-

bone and head. The backbone usually uses the first layers of the CNN as feature

extractor to encode the extracted data into feature maps. Then, the head structure

uses the feature maps provided by the backbone to predict the object locations and

their class. Depending on the head structure, object detection networks can be

classified in two main categories: single-stage detection methods based on regres-



36 CHAPTER 4. MODELS FOR AN AI FRUIT DETECTION SYSTEM

sion (e.g. YOLO and SSD), and two-stage detection methods based on candidate

regions (e.g. Fast and Faster R-CNN) [22]. Generally, due to their ability to pro-

pose more accurate fruit locations, two-stage fruit detection methods have shown

higher accuracy levels than single-stage methods, which indeed struggle especially

in presence for small sized fruits. On the other hand, two-stage fruit detection

methods are slower and computationally more intensive, compared to the simpler

one-stage methods [64].

Two-stage networks were the first type of CNN developed and applied in the

field of fruit detection. As their name suggests, their structure is composed of

two modules. In the first stage, proposals about the regions that could contain

fruits are made on the basis of the feature maps produced by the convolutional

layers. Each proposal consists of a fixed-size bounding box and a probability score

of containing a target fruit. The N regions with the highest score are then chosen

as final region of interest proposals. In the next step, a separate CNN classifies

the identified regions as either fruit or background and performs bounding box

regression [22][64]. Among the most commonly used two-stage CNN for fruit

detection, Fast and Faster R CNN can be mentioned.

Fast R-CNN have been developed with the goal of improving the detection

speed of precursor Region-based CNN. They performs feature extraction on the

whole image and region proposals on the final feature map. The novelty is the

implementation of a Region of Interest (RoI) pooling layer which takes feature

maps and regions of interest as inputs and provides the corresponding features for

each region, allowing to extract them from all regions of interest in one pass only

(Figure 4.1). While this improves the detection speed, the necessity of extracting

regions of fruit and providing them to the detection model is limiting. In addition,

since relying on Selective Search for generating region proposal hampered further

speed improvements, a new architecture was proposed, namely Faster R-CNN.

Faster R-CNN replace the heuristic selective search method of Fast R-CNN

with a Region Proposal Network (RPN), that consists of fully convolutional layers

aimed at proposing candidate regions from the feature maps generated by the

backbone network, by filtering them on the basis of a score that indicates their

probability of containing the object (Figure 4.1). The identified regions are then

passed to the following stage of detection [63]. By integrating region detection

into the main neural network structure, Faster R-CNN achieves near real-time
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detection speed with high accuracy and generalization capability[64].

Figure 4.1: Typical R-CNN, Fast R-CNN, and Faster R-CNN frameworks for fruit

detection. It can be seen the innovative introduction of the “RoI pooling layer”

within the Fast R-CNN framework for improving speed detection with respect to

the previous R-CNN. To provide for further improvements, in the Faster R-CNN

the “RPN” is introduced, allowing the integration of region detection into the main

neural network structure and thereby providing higher detection speed, accuracy

and generalization capabilities [64].

To enable a further improvement in speed, one stage networks predict ob-

ject class and bounding boxes simultaneously, without therefore needing a region

proposal step. They define fruit detection tasks as regression problems of class

confidence and bounding box locations. Single shot methods divide input fruit

images into a grid of cells, extract fruit feature information through the convolu-

tional layer, and predict object class probabilities and bounding box coordinates

for each cell [64]. Most commonly used one-stage CNN for fruit detection are Sin-

gle Shot Single Shot Multibox Detector and (SSD [65]) and You Only Look Once

(YOLO [66]).

SSD is based on a series of convolution and pooling layers to generate multiple

feature maps of different scales, for which then class probabilities and bounding box

offsets are predicted (Figure 4.2). Next, top-ranked prediction boxes are outputted
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as the final result of fruit detection. This multiscale detection approach makes such

network very effective in detecting object that might present different sizes [63]. In

addition, fruit detection methods based on SSD provide high accuracy and speed.

However, they present some disadvantages given that detection accuracy lowers

in presence of relatively small target fruits and cases of repeated detection might

occur [64].

Figure 4.2: SSD object detection framework. ’Conv’ refers to ’convolution layer’.

Output image displays bounding box on identified ROI, classification result and

probability score.[63]

YOLO is a single-shot detector where the object detection task is formulated

as a single regression problem by placing the bounding box coordinates to image

pixels and then assigning class probabilities. YOLO only looks at the image once

to predict which objects are present and where, and does so by dividing the image

into a grid where each grid predicts bounding boxes [67] (Figure 4.3). By learn-

ing to predict boxes directly from the image data, it produced many localization

errors (for small objects and objects in groups) and thus further improvements

in accuracy and speed have been provided over the years, leading to the develop-

ment of many versions of the YOLO network each presenting different innovations

[63]. YOLO is considered one of the most commonly used and advanced fruit

detection algorithms due to their speed in detecting target fruits in an accurate

way. Nonetheless, they do not use prior information when predicting fruit posi-

tions, which might result in a loss of fruit location accuracy, and have resulted less

effective at detecting small fruits that appear in groups [64].
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Figure 4.3: YOLOv2 framework with 24 Layers. Compared to other state-of-the

art methods that treat detection, classification and region extraction as different

problems, YOLO does all in one pass, hence the name [26].

4.2.2 Pros and Cons

The recent technological advancements have allowed the refinement of deep learn-

ing methods for object and fruit detection, providing new methods able to achieve

better performances and high accuracy results even in complex unstructured envi-

ronments like agricultural one are. The reason for this are to be found in the auto-

matic feature learning process that Convolutional Neural Networks implement. In

the field of image detection, extracting image features is the most critical part of

the pattern recognition system, since the quality of such process directly affects the

final recognition rate of the system. In CNN, feature extraction is based on a hi-

erarchical representation of the data by means of various convolutions that enable

the model to extract and learn in depth a vast amount of discriminative features of
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the fruit objects (in early layers simple local patterns like edges are learnt, while

deeper layers capture more semantic representations of the object, like shape),

thus ultimately better capturing the full complexity of the real on-field task un-

der study. This end-to-end approach, where features are learnt directly from the

raw data, results advantageous also because eliminating the need for manually

engineered features implies that all the resources in terms of time, experts, costs

needed to carry out such task are not anymore necessary. In addition, CNN have

proved able not only to provide more accurate results in intricate environments,

but are able to do so in a faster way: in some cases DL models have been specifi-

cally developed with the goal of obtaining real-time performances, like the YOLO

architectures, making them suitable for applications that require rapid detection

[64]. Another advantage DL models provide is that they can be developed through

transfer learning approaches that implies the adoption of models that have been

already trained on huge and diverse datasets (typically millions of data). By adopt-

ing these pretrained models, the knowledge thus acquired (usually weights from

the earlier layers that contain information about the basic features that can be

found in common objects, such as colour, shape, edges, lines) can be transferred

to the model of the case, which will just require some adjustment and the fine

tuning of some parameters to better optimize it and adapt its architecture to the

domain considered [67]. This is a valid solution in those cases where an insufficient

amount of annotated data is available or collectable, since CNN models demand

thousands of them to accomplish good results and generally their superiority with

respect to ML models manifests itself when vast quantities of training data are

available. Nonetheless, such necessity and reliance on significant data volume can

be regarded as one of the main constraints that the adoption of DL model entails:

image acquisition and annotation are extremely tedious and cost, time, labor in-

tensive processes and even more so if the necessary amount of data to collect is

huge and if such data have to be heterogeneous too, so that they can exhaustively

represent the variability and complexity that open field orchards present and ulti-

mately enable the implemented models to appropriately perform. In addition, the

powerfulness of deep learning architectures comes at the expense of an increased

intricacy and computational cost. Their intrinsic complexity on the one hand im-

poses a necessary involvement of experts in deep learning and computer vision for

the model’s implementation and fine tuning, on the other hand has consequences
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over their interpretability: DL models are often considered as black boxes since

their decision-making process is not always easily interpretable which can be a

problem in those cases where explainability is necessary [68]. Additionally DL

models, and CNN in particular, require more computational power since rely on a

series of complex operations (e.g convolution, backpropagation, optimization) to

allow the learning of intricate patterns through a deep hierarchical representations

of huge amount of high dimensional data. To provide for this, significant com-

putational resources and specific hardware might be needed, usually in the form

of Graphic Processing Units (GPUs). In light of these considerations, the adop-

tion of DL models demands specific expertise, hardware and software resources

for a successful deployment, thus encompassing a series of expenses that might be

unattainable in some cases.

4.3 Machine Learning vs Deep Learning

In consideration of all the aspects analyzed in the above sections, it appears evident

that the choice between relying on traditional machine learning models or deep

learning models when considering the development of an AI enabled fruit detection

system is not straightforward: specific and appropriate considerations of numer-

ous technical and economical aspects are needed and the final decision will involve

a trade-off of various factors. Traditional machine learning models have proven

effective in correctly performing within the considered agricultural environment

since the extraction of relevant patterns from data relies on manual feature engi-

neering and is thus more controllable and tailorable to the specific characteristics

of the fruit images. In addition, the detection task is based upon well-established

algorithms that do not require huge amount of data to efficiently train the model.

As a consequence of these characteristics, ML models result advantageous when

interpretability and transparency are essential, as well as in presence of limited

computational resources [22]. On the other hand, deep learning models excel in

automatically capturing intricate patterns and hierarchical representations from

large, complex datasets, making them suitable to deal with the intrinsic variabil-

ity and challenges that fruit detection applications in open field orchards are faced

with, providing at the same time more accurate results. However, these improved

performances require more computational resources and rely on huge amounts of
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annotated data for efficiently training the DL model. In light of this, the decision

between the two approaches revolves around the specific requirements imposed by

the considered fruit detection task, the desired level of interpretability, the prac-

ticable investments, the computational resources available or affordable and the

obtainable quantity of data, since the superiority of DL approaches with respect

to ML approaches manifest itself when huge quantity of training data are avail-

able(in [69], through a comparative analysis of experimental data, the authors have

demonstrated that traditional machine learning provide better recognition accu-

racy when small-scale datasets are considered, while deep learning models show

higher accuracy results on large sample datasets). In addition to the amount of

available data, additional evaluations can be made considering that methods based

on handcrafted features could continue to be advantageous in some cases (e.g. if

the fruit presents a high contrast with respect to the background and thus can be

easily distinguished), especially because of their lower use of computational and

memory resources and faster training time. Nonetheless, in the existing litera-

ture there is a tendency in suggesting the adoption of deep learning approaches

for fruit detection systems given the higher accuracy results they can achieve and

their better generalization capabilities in detecting fruits within variable conditions

(lighting changes, different versions of the same fruit, noise, background color [70])

with respect to ML models that instead struggle to provide good performances in

such cases [22].

Element Machine Learning Deep Learning

Dataset size Medium (hundreds of data) Large (thousands of data)

Computational power Low High

Required Hardware CPU GPU

Training time Short Long

Feature extraction Manual Automatic

Domain expertise High Low

Interpretability High Low

Deployment flexibility High Low

Table 4.1: Traditional machine learning models vs deep learning models



Chapter 5

Hardware for an AI fruit

detection system

When considering the development of a machine vision system for fruit detection,

other important aspects to take into account are those relating to the physical plat-

form and hardware infrastructure that are needed to deploy the considered model

and thus innovating common agricultural tasks by bringing intelligent capabilities:

for example, fruit detection models have been mainly considered for achieving im-

provements and automatization in activities such as fruit quality analysis, fruit

yield estimation and fruit harvesting. To achieve so, farmers can benefit from a

diverse range of solutions offered by computer vision technologies. For example,

given the widespread presence of smartphone, an AI-enabled application can be

developed for supporting decision-making processes: after capturing the image of

an orchard, the application can be designed to detect fruits and eventually pro-

vide some analytics related to maturity level, size, presence of diseases. Or again,

other computer vision based solutions have been applied to drones and robots for

the automation of agricultural processes: numerous research works have focused

on both the development of unmanned ground vehicles equipped with detection

capabilities that allow to locate a fruit and instruct a mechanic arm to carefully

pick it, providing thereby automatic harvesting, as well as on the implementa-

tion of unmanned aerial vehicles able to capture images of a fruit’s tree/orchard

for then providing further analysis or perform agrochemicals spraying [71]. The

development of these approaches to fruit detection by using modern intelligent

43
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equipment is favored by the combination of image acquisition tools together with

computer vision detection algorithms, in order to design a machine vision system

that result effective in agronomic production management. An appropriate choice

of such intelligent equipment is an additional guarantee to obtaining successful

fruit detection performances in outdoor environments.

On the basis of the specific application considered, three main types of plat-

forms can be identified, i.e., ground manual platforms, ground vehicle platforms

and unmanned aerial vehicle platforms [27]. Whichever the type, a machine vi-

sion system generally requires a vision sensor, a processing and memory units

and detection algorithms, in order to be able to analyze and comprehend complex

visual data and thus enabling automation capabilities [60]. Since considerations

about data and detection algorithms have been provided in the previous chapters,

hereinafter the hardware aspects, namely types of platform, visual sensors and

processing unit will be analyzed.

5.1 Platforms

A first type of employed platform for fruit detection systems can be identified

in ground manual platforms which are mainly based on smartphones, given the

great potential in agricultural applications they can have: the main reason for

this is because they are pervasive in today’s lives and can provide operability

and economic advantages since are simple and cheap tools, making them appeal-

ing to agricultural producers [72]. Their suitability in performing fruit detection

tasks is attributable to the recent technological advancements that enabled the de-

velopment of smartphones with high resolution cameras and powerful computing

capacity. In addition, due to their increased utilization popularity, improvements

have been made also in the development of more applicable algorithms: lightweight

DL models like YOLO and SSD have been indeed specifically designed to run on

constrained devices, still providing high accuracy results [73]. An example of real-

time fruit detection in orchard through smartphones is provided in [73], where the

authors employed single shot multibox detector (SSD) to develop an Android APP

named KiwiDetector for in field kiwifruit detection. In Figure 5.1, the interface

of the app is shown: the initial interface includes an image display unit, a camera

button, and an album button by which users can take or choose a kiwifruit im-
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age. The kiwifruit detection result will then be shown in the image display unit

immediately.

Figure 5.1: Example of ground manual platform to enable fruit detection: initial

interface of the KiwiDetector app developed for Android™ smartphones (left) and

its detection result display interface (right) [73].

While such platforms are more suitable for small-scale orchards, for large-scale

orchards moving vehicles equipped with the necessary sensors, cameras, computers

are preferable (among these, tractors are one of the most exploited machineries),

for which many example applications can be found in the literature [27][74][75][44].

Nonetheless, given the shortage of agricultural workforce, employing this manually-

driven vehicles is causing increasing concerns. In consideration of this, unmanned

ground vehicles (UGV) have arisen as innovative solutions for performing fruit

detection tasks [76][77]. These platforms implement sensors, cameras, computing

capabilities and GPS modules to be able to autonomously travel around orchards

to capture and analyze fruit images for rendering useful insights to the agronomist,

performing accurate spraying of pesticides/fertilizers when, where and in the quan-

tities needed or harvesting the detected products (Figure 5.2), if equipped with

such additional functionalities. They allow therefore to save labor costs, prevent
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workers from performing laborious tasks while ensuring a longer duration of work

and provide farmers with up-to-date accurate information to assist agricultural

management decisions [78]. In addition, some remarks have been made on the

environmental and economic benefits that automated agricultural vehicles enable

when compared to conventional methods to complete various tasks, since they do

not aimlessly travel through fields but rather strategically navigate to specific ar-

eas of interest by selecting the most efficient paths, thereby optimizing resource

utilization [78]. Nonetheless, autonomous navigation can result challenging due to

the intrinsic specificity of orchards, which can indeed be characterized by dense

structures, intricate and rough terrains as well as present various obstacles, the

handling of which is not trivial [78].

Figure 5.2: Typical ground vehicles examples employed for automatic harvesting

activities in different orchards (plum, apple, sweet pepper, strawberry, lychee,

tomato, kiwifruit) [64].

An additional type of platform that has gained popularity recently are un-

manned aerial vehicles (UAV) which rely on sensor cameras, computer vision and

flight control techniques to monitor large planting areas [71]. Among the most
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common applications, there are those of yield estimation especially in orchards

that do not present occlusion problems [79][80]. This is because although UAVs

platform has high efficiency in a wide range of applications, for many types of fruits

there could be occlusion conditions of their trees that undermine the efficiency of

top view images [27], or in case the visibility of the fruit relies more on side views,

in which case a solution would be to fly the drones between rows [81]. In addi-

tion, the UAV can shoot with its unique looking-down angle and can freely adjust

the imaging angle and imaging distance in the air based on the actual operation

conditions, thus allowing to obtain images with more comprehensive information

(Figure 5.3).

Figure 5.3: Unmanned aerial vehicles image acquisition capabilities examples, pro-

viding shooting in a looking-down angle or considering a tree’s two side view [20].

Another application example is the exploitation of UAVs to perform variable

rate tasks, thus allowing a precise and selective spraying of agrochemicals such

as pesticides/herbicides/fertilizers [71]. The main advantages of these vehicles are

their flexibility and ease of handling, their rapid implementation, their reusability

and their cost-effectiveness, all of which makes them a device with significant
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potential for proximity-based fruit detection and orchard analysis and for providing

also unique perspectives and information that would be otherwise unattainable

or economically prohibitive using traditional techniques reliant on human efforts

[50]. Nonetheless they present some payload and power constraints, so that some

relevant technical challenges arise in consideration of mounting spraying equipment

or artificial lighting for capturing quality images, as well as the limited memory

and computational resources that can be implemented [71].

Choosing the optimal hardware platform for implementing an AI system for

fruit detection, whether on UAVs, UGVs, or smartphones, is a complex task,

involving a careful investigation of various factors: the specific application re-

quirements, the system end goal, the targeted environment, the data collection

requirements, the power and processing capabilities, the compatibility with the

AI model, the budget constraints are among some of the key considerations that

have to be pondered, so that a well-informed and aligned decision of the most

appropriate platform can be taken.

5.2 Vision sensors

The vision sensor represents an important element in the considered machine vi-

sion system, since the quality of the images it is able to capture directly affects

the overall system performance. However, the selection of the appropriate cam-

era equipment is a non trivial task since many elements have to be taken into

consideration for correctly choosing the sensor that best suits the needs of the de-

sired application: task requirements, camera’s sensor resolution, frame rate, image

transfer rate (connectivity), and price are among the most important factors that

need to be examined [78]. Generally, different type of cameras can be implemented

as the vision sensors of the machine vision systems, mostly RGB, multi-spectral or

stereo-vision cameras. It is important to note that due to the different types of data

these sensors render, each will require the development of a different, data-specific

algorithm.

RGB cameras have been the most preferred choice for fruit detection and ex-

tensively used in many agricultural vision applications given their affordability and

progresses in sensing capabilities, as well as being the default build-in cameras of

smartphones [60]. The camera pixel resolution, the camera filed of view and so
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lens focal length, camera to canopy distance and canopy height are all relevant

decision factors, since the quality of the captured images depends on the their ca-

pability to deal with lighting conditions, size of object and distance from objects

[78] and thus the system ability to tolerate the challenges that open fields pose.

For example, as reported in [82], when using a 5 MP camera with 2.2 by 2.2 um

pixels at a canopy distance of 2 m, equipped with a lens with 6 mm focal length

to achieve a field of view for imaging a 4 m high canopy, a 100 mm diameter fruit

will be represented by an image 12 pixels in width. In addition to this, while

a camera capturing a snapshot of the crop from the side is appropriate for most

fruits type, for some crops different orientations might be needed (e.g for kiwifruits

cultivations, given their canopy structure, the camera should instead look upwards

to the hanging fruits [82]) so that also the camera orientation is a factor to take

into consideration.

Multispectral cameras, which are able to capture images in multiple bands

of the electromagnetic spectrum, have also been employed for the task of fruit

detection. The main reason for this is that they can exhibit better results than

conventional color images captured by RGB cameras, since are able to provide

additional information on the reflectance properties of fruits object, thus allowing

to distinguish them even if present similar colors. Nonetheless, they are more

expensive and usually not affordable for practical use [78].

While RGB cameras can only provide two-dimensional information about the

scene, which in some application cases might be insufficient, stereovision cameras

allow to monitor also the dimension of orchards by using two or more lenses to

capture images from slightly different perspectives to provide depth perception.

Specifically, orchard depth and height information, leaf shape and area are ren-

dered to allow three-dimensional information on the canopy structure, which is

especially useful for some monitoring activities [60].

5.3 Processor

Once an image as been captured through the provided sensor, it has to be fed

to the implemented DL or ML model so that it can be analyzed and the specific

results the system has been designed for can be delivered.

Providing UAVs, UGVs, or smartphones with sufficient computational power
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depends on various factors, and there are limits to the computational resources

that can be embedded in these devices. For example, unmanned vehicles often have

size and weight limitations, and specifically aerial vehicles that require lightweight

and agile designs. Or again, while these platforms operate on limited battery

power, powerful processors required by some models tend to consume more energy

and generate heat, thus impacting the device’s operational duration and requiring

a way to dissipate heat, which is challenging to implement in compact devices.

In addition, more powerful processors are undoubtedly more expensive, so that

the overall cost of the system is increased. On top of this, some applications

might require real-time detection tasks, which strictly relies on powerful processors

mounted on the device. It is therefore clear that meeting all these requirements

without compromising aspects related to weight, power, costs is a complex task.

For implementing fruit detection computation capabilities over UGV, UAV,

smartphones two main ways can be considered: on-board processing and off-board

processing, meaning transmitting data to an external computer for analysis. The

choice between these options depends on the specific requirements of the fruit

detection task (e.g need of real-time performances), the available computational

resources of the platform, the desired level of autonomy.

On-board processing implies that the platform considered, either smartphone,

UAV, UGV, is itself equipped with a sufficiently powerful processor capable of run-

ning the ML or DL model to perform detection and analysis tasks. One of the main

advantages of this approach is that it enables (near)real-time detection, especially

because there is no need of constant communication and transmission of image

data to an external source, so that the latencies that usually occur in such process

are minimized and the autonomy of the platform is increased. This is mostly useful

for those applications that require tempestive decisions, like UGV for instances,

if for example they have been devised to autonomous spraying of pesticides or

autonomous picking of fruits. Nonetheless, there are limits on the computational

power that can be implemented over such platforms given their energy supply and

physical constraints. This is especially problematic in case the model implemented

relies on deep learning methods, since they are data-intensive complex algorithms

that require huge processing power and thus specialized hardware to run, usually

a GPU, which is power consuming and quite expensive [61]. A way to accommo-

date this could be to optimize the considered DL model, by taking into account
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the size, speed and memory constraints the platform pose (e.g. YOLO algorithms

have been specifically developed for providing more lightweight computation pro-

cesses). Another mode of operation would be to consider implementing off-board

processing: the vehicle/smartphone simply captures the image of fruits and this

data is then transmitted to an external computer or cloud server where the com-

putation and analysis required will be performed. The advantage in this case is the

possibility to rely on stronger external servers to perform power-consuming tasks,

which is especially useful for computationally intensive operations like running DL

models could be. This approach enables also easier maintenance, auto-scaling,

load-balancing and centralized analysis and storage of data, which facilitate col-

laboration and management [61]. Nonetheless, this solution makes the system

dependent on stable and reliable connectivity for transferring the data, so if it is

lacking latencies in data transmission, processing and results rendering are cre-

ated and thus real-time performances limited[61]. In addition, privacy issues and

the higher costs for processing huge amounts of data through such paradigm are

additional concerns.

The choice between on-board and off-board processing involves therefore a

trade-off between real-time responsiveness and computational capabilities so that

in scenarios where immediate decision-making is critical, on-board processing is fa-

vored while for applications where latency is less critical, off-board processing can

leverage on more powerful computing resources. Hybrid approaches that balance

the advantages of on-board and off-board processing can also be considered: an

initial image processing is performed on the considered platform for rapid decision-

making and a more in-depth analysis is conducted off-board for detailed insights.

Moreover, technological advancements and the availability of edge computing so-

lutions can encourage improvement in the computational capabilities of the con-

sidered devices: lighter models such as YOLO or SSD algorithms can efficiently

run on smartphone devices, while embedded systems like NVIDIA Jetson [83] or

specialized processors designed for edge AI [84] are promising in providing a bal-

ance between computational power and energy, thus resulting suitable for on-board

processing in UAVs and UGVs.
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Chapter 6

Challenges and tentative solutions

The implementation of an AI fruit detection system for supporting agricultural

tasks such as fruit quality analysis, yield prediction, automatic harvesting can be

hindered by many challenges that derive from inherent technicalities and more

general socio-economic factors that characterize the adoption of new technologies

within the agricultural context. Addressing these challenges requires a collabora-

tive effort involving researchers, policymakers, technology developers, and farmers

to ensure the successful integration of innovative systems into agricultural practices

with the aim of increasing efficiency, productivity and profitability. An analysis of

these challenges will be provided in the following paragraphs.

6.1 Technical challenges

The technical challenges that the development of an AI based fruit detection sys-

tem impose can be traced back firstly to the necessity of robust algorithms able

to deal at best with the complexities that open field agricultural environments

impose. In actual orchards, fruits are densely distributed and usually overlapped

by each other or by the ubiquitous branches and leaves that can create occlu-

sions, while some type of fruits present clustered structure or are very small in

size [49]. In addition to these, also variations in fruit appearance can occur due to

either differences in the degree of maturity or to the unstructured lighting condi-

tions of open fields. These indeed change dynamically during the day and weather

conditions, thus producing changes in the brightness of the fruit image, oversat-
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urated or shadowed areas [20]. Furthermore, the outdoor orchard environment

itself can present an intricate structure and thus interfere with the performance of

the machine vision equipment, making it difficult to achieve the desired effect and

causing poor recognition outcomes. Concrete examples of these aspects are shown

in Figure 6.1 .

Figure 6.1: Examples of fruit detection challenges that unstructured open field

environments present: a) shadowed fruits, b) fruits of similar color than their

background and brightness, c) slope in an apple tree orchard, d) night time con-

ditions e) cluster of grapes, f) fruits occlusion and shading [22].

It is clear that all these elements complicate the fruit detection task, com-

promising the performance and the results’ accuracy that the system can obtain

and imposing therefore the necessity of implementing sophisticated and robust

models able to handle these challenges. To provide for this, some solutions have

been proposed, for example fine-tuning feature extraction tasks, though the great-

est improvements and capability in dealing with intricate environments’ problems

have been showed by implementing DL models [28], while considering also effective

optimization strategies [20]. Nonetheless, even current improved Deep Learning

network architectures still have certain limitations when dealing with highly in-

tricate scenes, and providing such capability implies better feature extraction and
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information inference processes, which ultimately have direct consequences on the

complexity of the model architecture [20][64]. Indeed, more complex systems imply

the necessity of sufficient computational power to both train and then deploy the

model, consideration especially true for data-intensive DL approaches and even

more when real time performances are required, so that a tradeoff between ac-

curacy and computational complexity has to be evaluated to provide acceptable

results[28]. Complex architectures ultimately impose higher expenses in terms of

needed hardware, software and experts to manage them.

Another type of technical complexities can be imputed to data availability,

since data is the most fundamental requirement to build accurate AI systems: to

train models that are robust enough to deal with the complexities open field or-

chards present, representative and substantial dataset with high quality images are

a necessity. Nonetheless, on the one side publicly available dataset are scarce, of

poor quality or insufficiently characteristic [85], on the other side the collection and

the annotation of huge amount and diverse data, such as open field fruit images, is

a tedious and labor-, time- and cost-intensive process. To alleviate the difficulties

that dataset generation imposes, some solutions have been proposed. One of these

is data augmentation, which relies on applying to the dataset’s images several

transformation techniques to increase its variability and thus size, being the lat-

ter an important concern especially when considering the training of DL models,

since thousands of data are required to develop accurate systems [28]. To increase

the amount of available image data, also the option of generating synthetic data

is conceivable [86]. Other ways to deal with dataset generation and specifically

data annotation processes that have been gaining recent interest in research, are

unsupervised or semi-supervised DL approaches where only a part of data gets an-

notated, as well as the development of applicable automatic annotation approaches

[49]. In light of the analyzed aspects, it transpires how data collection processes

are not so straightforward and imply meticulous considerations of numerous as-

pects, especially given the importance appropriate data have in influencing the

final learning capabilities and performances of the developed system.

In addition to what described above, further technical challenges arise when

considering the development of an AI fruit detection system for constrained de-

vices such as smartphones. Smartphones are increasingly appearing as highly

attractive tools for many agricultural applications, given their widespread adop-
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tion and integration into everyday life, which makes them readily accessible to

farmers too: they represent indeed a simple, portable and cost-effective tool that

could be leveraged for instilling intelligent capabilities within agricultural tasks.

Nonetheless, smartphones, and more in general mobile devices, are characterized

by limited computational power and battery capacity, thus implying a series of

further necessary considerations to balance quality of the prediction, speed and

energy efficiency. Running sophisticated algorithms or providing (near)real-time

processing for immediate feedback are resource intensive tasks that on the one

hand require high computational power, and on the other hand lead to increased

battery consumption. In consideration of this, an optimization of the AI model

that would be ran on the device is needed to provide efficiency, which can be

achieved considering more lightweight models(e.g. MobileNet [87], YOLO [66],

SSD [65]), available hardware acceleration options, leveraging cloud computing for

heavy processing tasks, minimizing processing time or exploring low-power modes

for background processing [64]. Mobile devices present also limited memory re-

sources, constricting the size of models and datasets that can be loaded. Solu-

tions to this would be to rely on compression techniques or strategies like model

quantization in order to reduce memory requirements, or else turn to cloud-based

solutions for storing and retrieving data when needed [64]. Nonetheless, reliance

on network connectivity for either model updates or cloud-based processing and

storing creates dependencies and communication latencies, which are additional

problems to take into consideration when counting on mobile devices. Therefore,

depending on the specific application requirements (for example if real time per-

formances are essential), providing sufficient offline capabilities and intermittent

or low-bandwidth connections might be preferable [73].

On more general terms, the deployment itself of an AI based fruit detection

system is also one of the most challenging phases due to a lack of deployment

expertise, dependencies on third-party libraries, size of the considered model and

hardware limitations of the deployment platform, such as those encountered with

mobile devices. In addition, the deployment stage is often slowed down by the

process of algorithm selection that usually relies on trial-and-error techniques,

given that there exist many possible applicable models and figuring out the most

suitable one requires either random selection or comparing multiple algorithms to

then choose the one providing the best results [85].
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Tackling the technical challenges that implementing an AI-based fruit detec-

tion system implies therefore careful considerations over many aspects and requires

accurate strategies that encompass model optimization, platform-specific adapta-

tions and continuous refinement to ensure a seamless integration and a sustained

effectiveness of the system within the agricultural context considered.

6.2 Socio-economic challenges

Despite the many benefits that technological advancements applied to agriculture

have been proven able to generate, specifically in the form of improved decision-

making processes and thus overall increase in efficiency, productivity and prof-

itability, there is still reluctance in their adoption all over the sector. The reasons

of this have been analyzed by many researches and can be ascribed to a number

of aspects [8].

First off, there is a widespread skepticism over the actual benefits that the

adoption of technological innovations to automatize agricultural tasks can factually

bring. This can be in consequence of a farmer’s education, since less educated

persons have resulted being usually less confident and less inclined towards the use

of technologies, as well as to not having the sufficient knowledge to understand their

benefits or to manage them [8]. In consideration of this, the use of prohibitively

scientific terms during the promotion of technological solutions for agriculture

have been highlighted as additional hampering factors, together with the lack

of training and support provided at purchase or in case of malfunctions: without

these, the potential user does not have sufficient skills and capabilities to implement

the considered innovations [8]. In addition, economic barriers can be deemed

among the factors that discourage the adoption of technologies, since there is

a common perception that the results obtainable with their implementation are

not worthwhile enough to justify the high investments in hardware, software and

training that they impose. The economic gain is an important decision factor since,

as for any other business, farmers aim at maximizing production and increasing

profits too [9].

Proposed solutions to overcome these barriers pertain firstly to providing farm-

ers with transparent cost-benefit analyses where both costs associated with adopt-

ing technologies are clearly outlined and long-term gains and return on investment
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well emphasized. In addition, an increased commitment of governments can be of

valuable importance, by providing adequate policies and financial supports that

eventually make the transition more economically viable and thus encourage the

propagation of innovations in agriculture [8]. With respect to cultural accessi-

bility, it should be approached by rethinking the way in which smart agriculture

technologies are presented and marketed. A first way of operation could be the in-

stitution of adequate awareness campaigns to educate farmers about the practical

benefits obtainable through implementing new technologies, including increased ef-

ficiency, reduced labor, improved yields and profits, eventually showcasing success

stories and case studies of farmers who have successfully implemented innovative

approaches to agricultural tasks. In addition, extensive training services to equip

farmers with the necessary skills and knowledge to use and integrate technologies

into their daily practices are of fundamental importance, as well as long-term sup-

port mechanisms to assist post-implementation with the aim of addressing any

challenges and ensuring a smooth transition to innovation [8].

Incentivizing the adoption of new technological solutions and creating trustwor-

thiness over the obtainable benefits depend also upon providing tailored solutions

that fit the specific needs and challenges an agricultural industry might present, by

investing in research and development to create technologies that directly address

these, by fostering continuous improvement and by promoting user-friendly and

intuitive technologies that are easy for farmers to understand and integrate into

their existing practices. All these rely on an exhaustive domain understanding,

which is non trivial. Indeed, another aspect that enhances socio-economic barri-

ers is the cooperative gap there exist between farmers and AI researchers, whose

collaboration and synergies are instead of fundamental importance for a success-

ful implementation of AI solutions in agriculture. This is because, even though

farmers are presented with a lot of difficulties during the agricultural production

processes, AI researchers do not have enough agricultural knowledge and thus are

not aware of them and do not know how they can actually be solved by technolo-

gies. Providing a synergic linkage between all the actors involved so that relevant

knowledge is shared therebetween and thus the agricultural domain characteristics

and implications are better comprehended, will pave the way for the implementa-

tion of efficient and beneficial intelligent solutions [7]. A support in this sense can

also be found in the formation of interdisciplinary figures that are provided with
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extensive knowledge related to both agricultural and technological aspects, able

therefore to better fill in the existing gaps still hampering a faster application of

innovative advancements in agriculture [7].

Addressing the hesitancy of farmers in adopting new technologies involves

therefore the implementation of strategies that acknowledge and mitigate their

concerns while showcasing the tangible benefits that their integration can bring to

numerous agricultural tasks.
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Chapter 7

Conclusions

As a result of to the ongoing technological advancements, the contemporary land-

scape is experiencing an unprecedented surge in digitalization, which is profoundly

impacting various industries and thereby transforming traditional business mod-

els, enhancing efficiency and fostering innovation. While the spread of digital

technologies has been more prominent in some sectors, its pace and scale in agri-

culture have accelerated only in recent years. The reasons for this can be related

to an increased awareness over the crucial necessity of ground-breaking interven-

tions and changes in traditional farming practices, in order for the agricultural

sector to be able to cope with the difficulties that it is experiencing: increasing

food demand due to growing population, labor shortages, increasing costs, climate

changes, scarce resources, market pressure and volatility are all factors currently

burdening the farming industry. In such context, agriculture is therefore faced with

the imperative to keep pace with digitalization trends, given the support and ben-

efits that incorporating advanced technologies can bring to agricultural practices,

ultimately increasing operational efficiency, improving decision making processes,

improving the quality and quantity of products and yields, increasing profitabil-

ity, alleviating manual labor and contributing to promote more sustainable and

environment friendly practices. Nonetheless, many intricate technological, social,

economic challenges hamper the pervasive adoption of technologies in the farming

industry. Considering the example of implementing AI systems in the agriculture,

many of these clearly emerge.

AI can be considered as one of the most important and impactful technologies
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that can be leveraged to automate and provide a more efficient management of

agricultural tasks, thus creating productivity and profitability. Among the many

different applications of AI, those requiring the automatic detection of on-tree

fruits are rising increasing interest, given the innovation progresses that have been

made in the machine vision field and since it is a task that result beneficial in

numerous ways. First off, AI-based fruit detection technologies are capable of lo-

cating fruits on a tree and of analyzing them, thus providing useful information like

maturity level or size which can help in better planning harvesting and marketing

activities. Or again, by analyzing the fruit appearance, it is possible to detect the

presence of diseases: this is of valuable importance to provide timely corrective

actions and thus avoid detrimental crop losses. In addition, the intelligent de-

tection of on tree fruits, complemented with counting capabilities, allows farmers

to estimate yields beforehand, enabling constructive decision-making processes for

harvesting and post harvesting activities, specifically with respect to orchard man-

agement, labor allocation, storage and transport resources that can be therefore

organized in the most appropriate and efficient way. In many cases, fruit detection

capabilities have been also infused within unmanned ground vehicles to enable for

the automatic picking and collection of mature fruits, or over unmanned aerial

vehicles to performs agrochemical spraying or crop monitoring in an autonomous

way. The ultimate effects of implementing innovative fruit detection technologies

in agriculture are therefore clear: they allow to collect and analyze vast amount of

valuable data, thus providing insights that are useful for improving activities such

as the management of orchards, the estimation of their yield, their harvesting, the

detection of diseases, as well as allow to achieve increased overall productivity and

profitability given that many tedious and time-, labor-, cost-intensive agricultural

activities can be automatized. However, the implementation of an AI based fruit

detection system, and more in general of whichever AI system, is a non-trivial pro-

cess since it requires accurate and pondered considerations over aspects relating

to data, feature extraction, model, hardware.

Data are the most important element in a Machine Learning pipeline: as sug-

gested by Andrew Ng [29], one of the most globally recognized leader in Artificial

Intelligence, around 80% of machine learning is data preparation and most of the

accuracy improvements that can be achieved rely on high quality data. Nonethe-

less, data collection is an extremely laborious process, which could partially be
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facilitated by exploiting publicly available datasets, but they are quite scarce es-

pecially for more niche tasks like fruit detection and the quality of both data and

their annotations will have to be checked and might not work for the specific case

considered. The creation of a custom dataset, on the other hand, enable a better

control over the quality of the images and their labels, that will result tailored to

the specific characteristics of the orchard, thus ensuring the dataset exhaustively

represent the environment variability and so allowing the development of a more

accurate and robust fruit detection model. Though, the process of acquiring a new

dataset is burdensome since huge amount of high quality image data are required,

especially for Deep Learning models that rely on thousands of them to be properly

trained and thus able to generalize over other data. In addition, the collected fruit

images will have to be annotated which is an extremely time consuming, costly

and labor intensive process, given the elaborated data that open field fruit im-

ages represent. Selecting the appropriate model is a crucial step in developing an

AI-based fruit detection system suitable for the specific use case considered and

requires careful evaluations over aspects such as the complexity of the task, the

size of the dataset, the computational resources, the desired level of accuracy and

the necessary investments.

Considerations over the model that best suits the application domain needs are

also not straightforward and imply a careful trade-off between many aspects. DL

models have surged recently as the most common used ones, mainly due to the

absence of manual feature engineering (an intricate, laborious process for which

expert technical knowledge is needed) and the higher accuracy result they are able

to provide with respect to ML models. Nonetheless, the higher performances are

strictly correlated with the amount of data available: DL models manifest their

superiority in presence of huge quantity of training data (thousands of them),

the collection of which, as stated above, is complicated. In addition, while in ML

models the decision process in more straightforward, DL models have been defined

as black boxes since characterized by deep hierarchies of numerous interconnected

convolutional, pooling, activation layers so that the steps that brought to a specific

output are harder to grasp. The complexities of data-intensive DL algorithms

have also consequences in terms of higher training time and computational power

required, which imply the necessity of additional investments in specific hardware

solutions to support these, usually in the form of a GPU.
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The platform over which implementing an AI-based fruit detection system

needs to be properly analyzed too. Specifically, mobile and autonomous de-

vices such as smartphones, drones and robots are increasingly being considered

for achieving improvements and automatization in many agricultural activities.

As for the hardware part, the main components that allow for a machine vision

system are vision sensors and processing and memory units to perform the task it

has been devised to. There exist different typologies of all these components and

the choice of the most appropriate one relies, among others, on aspects pertaining

to the specific task requirements, the platform intrinsic characteristics and the

available budget.

In addition to the analyzed technical challenges, the adoption of an AI system

and more in general of technologies in agriculture, is hampered by some socio-

economic factors that cannot be neglected. In particular, researches have investi-

gated how farmers with lower education levels are less confident and less willing

towards the adoption of technologies, given that they lack the skills and knowledge

to understand or implement them. They also have difficulties in recognizing the

potential advantages that innovative solutions could actually offer to their daily

activities, being hesitant towards the high initial investments that technologies

require and the long-term benefits they can produce.

In light of all these considerations, it is clear how the digitalization of agricul-

ture, if on the one side is an urgent matter for enabling the sector to persevere in

an increasing pressuring situation that many issues are creating, on the other side

it is a challenging and laborious process that requires careful contemplations of

many intricate aspects. In this sense, effective management practices can play a

crucial role in navigating the complexities that the development of intelligent sys-

tems implies and in fostering a constructive collaboration between all the involved

stakeholders to provide synergic approaches for exhaustively comprehend the do-

main characteristics and implications, and thereby develop accurate solutions that

could be effectively beneficial in improving agricultural tasks.
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Manuel Pérez-Ruiz. Intelligent Fruit Yield Estimation for Orchards Using

Deep Learning Based Semantic Segmentation Techniques—A Review, vol-

ume 12. 2021.

[29] A. Ng. A chat with andrew on mlops: From model-centric to data-centric ai.

2021.

[30] Bai J. Al-Sabaawi A. et al. Alzubaidi, L. A survey on deep learning tools

dealing with data scarcity: definitions, challenges, solutions, tips, and appli-

cations. J Big Data 10, 46. 2023.

[31] Xu (Annie) Wang, Julie Tang, and Mark Whitty. Data-centric analysis of

on-tree fruit detection: Experiments with deep learning, volume 194. 2022.

[32] Yuzhen Lu and Sierra Young. A survey of public datasets for computer vision

tasks in precision agriculture, volume 178. 2020.
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[39] Horea Mureşan and Mihai Oltean. Fruit recognition from images using deep

learning, volume 10. 2018.

[40] Suchet Bargoti and James Underwood. Deep fruit detection in orchards. 2017.

[41] Hamdi Altaheri, Mansour Alsulaiman, Ghulam Muhammad, Syed Umar

Amin, Mohamed Bencherif, and Mohamed Mekhtiche. Date fruit dataset

for intelligent harvesting, volume 26. Elsevier, 2019.
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