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Introduction

Histological and cytological staining is a key method of examining tis-
sue and subcellular structures in clinical pathology and life-science re-
search. This technique involves the use of chromatic dyes or fluores-
cent labels to visualize tissue and cellular structures, facilitating their
microscopic assessment.

Traditional chemical staining is expensive, time-consuming, diffi-
cult to use on in vitro cultures, and allows only a limited number of
structures to be stained and observed on the same specimen due to the
limited spectrum of stains available and their spectral overlap. More-
over, the toxic chemical compounds used generate significant amounts
ofwaste and can alter the analyzed section, preventing additional stain-
ing and further analysis.
Deep learning techniques have opened up newpossibilities for staining
methods, generating virtually stained images from label-free images.
This breakthrough offers fast and cost-effective alternatives for visu-
alizing tissue and cellular structures. It has the potential to make tis-
sue and cellular examination more accessible, particularly in resource-
limited settings, and to make it possible to perform in vivo imaging
(Figure 1).
For this image-to-image translation task, themodel is trained to predict
the target cellular structures, represented by the fluorescent channels
of the target images, starting from label-free (e.g., transmitted-light)
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images of the sample. Models used for this task are usually based on
a U-Net architecture, either trained to minimize a pixel-wise loss func-
tion thatmeasures the dissimilarity between the prediction and the tar-
get or used as the generator in a conditional generative adversarial net-
work (cGAN).

In this work, we present a novel Wasserstein GAN with Gradient
Penalty (WGAN-GP) [2, 10]model that can take full advantage of three-
dimensional and multi-channel information of our data.

0.1 OrganVision

This work is part of the OrganVision project: an EU-funded multi-
national project that brings together various members from academia
and industry to collaborate on the development of new real-time 3D
label-free imaging solutions for organoids, combining the fields of mi-
croscopy and artificial intelligence.
Organoids are tiny, three-dimensional tissue cultures derived from stem
cells. They serve a crucial role in personalized medicine and the ex-
ploration of new drugs. Nonetheless, the development of a tool for
real-time visualization of organoids has remained an unmet challenge.
To tackle this issue, the OrganVision project, supported by the Euro-
peanUnion, is dedicated to creating a label-free image processing tech-
nology that offers real-time, high-resolution imaging capabilities for
organoid research.
This technology aims to unlock new possibilities in this field like eluci-
dating the real-time functioning of individual cells within engineered
heart muscles, shedding light on how various factors can impact their
behavior.
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Figure 1: Schematic of the standard histological staining and deep
learning-based virtual staining.
(a) Standard histological staining relies on laborious chemical-based
tissue processing and labeling steps. (b) Pre-trained deep neural net-
works enable the virtual histological staining of label-free samples as
well as the transformation from one stain type to another, without re-
quiring any additional chemical staining procedures. [3]

The work presented in this thesis was carried out in collaboration with
Datrix SpA, a company based in Milan that is part of the consortium of
entities working on the OrganVision project.
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CHAPTER 1

Background and related works

The term “virtual staining” is broadly used to refer tomethods that dig-
itally generate fluorescent stains using trained deep neural networks,
including label-free staining, in-silico labeling, and stain-to-stain trans-
formations (Figure 1).
In this work is developed a model for a specific task that in literature
is referred to by different names, such as ”in silico labeling”[6] or as
”label-free prediction of fluorescence images/cell painting”[18, 7].
This task consists of digitally generating, fromanunlabeled (unstained)
source image of a cell colony or tissue, an image representing the struc-
ture that would be seen when looking at a specific fluorescent tag.
This method differs from classical label-free staining, which generates
a color image representing how the sample would look if chemically
stained (Figure 1.1).1 In silico labeling can be seen as a more power-
ful technique, as it potentially gives us the ability to separately observe
the specific structures we are interested in, and not only the proxies of
them given by the staining (Figure 1.2).

Deep learning enabled incredible possibilities for virtual staining,
that were explored in the past years [3].

1See [21, 17, 20]
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Figure 1.1: Examples of label-free virtual staining from autofluores-
cence input images. The network digitally generates a color image rep-
resenting how the sample would look if chemically stained with a spe-
cific histochemical staining technique (Here are shown hematoxylin
and eosin stain (H&E), Jones’ Methenamine Silver stain (JMS), and
Masson’s trichrome stain(MT)). Scale bars represent 100 μm. [3]

nuclear envelope

brightfield

DNA nucleoli

myofibrilsmitochondriacell membrane

Figure 1.2: Example of in-silico labeling from brightfield input im-
ages. The network digitally generates the fluorescence channels corre-
sponding to each cellular structure we want to observe.
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Christiansen et al.[6] in 2018 presented the first work utilizing a
deep learning approach to in silico labeling.
They developed a multi-scale modular model predicting eight fluores-
cence channels from transmitted-light unlabeled images. Their model
takes as input z-stacks of thirteen 250 × 250 pixels slices of the same
sample, collected at equidistant intervals along the z-axis. Interesting
to note is that the z-dimension is treated as a feature dimension, and
they apply 2D convolutions. The output consists of nine tensors: eight
corresponding to fluorescence channels and one autoencoding tensor
that is used to facilitate debugging of certain training pathologies. For
each fluorescence channel, the network outputs a discrete probability
distribution (over 256 intensity values) for each pixel. To construct im-
ages they take the median of the predicted distribution for each pixel.
To make predictions, the network is applied in a sliding-windowman-
ner. To infer the complete image, the input images are divided into
250 × 250 patches with a stride of 8. These patches are then fed to the
network as inputs, generating outputs of size 8 × 8, which are subse-
quently stitched together to form the final image.
The model’s losses are calculated as the cross-entropy errors between
the predicted distributions and the true discretized pixel intensity.
The network predicts the fluorescent label for all the eight different
structures simultaneously, but no well in the data has more than three
fluorescent labels. To deal with this limitation, they use a masked loss
that ensures that at most three fluorescence heads would be updated
for any given training example. This mask indicates for each training
sample whether a particular fluorescent label is provided or not. The
total loss for the fluorescence channel is the weighted average of the
gated losses. This loss is then combined with the loss computed for
the autoencoding task.
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At inference time, the model takes as input the thirteen slices of the
transmitted-light source image and is able to simultaneously predict
the fluorescent labels of all the eight different structures.
The study also explored using different numbers of z-depths in their
network, finding that performance improved with more input z-slices,
but the benefit from each additional image diminished as more were
added.
In their work, the 3D information is solely used to improve the model’s
accuracy when predicting the fluorescence channels corresponding to
the central slice of the z-stack. However, in theory, their methodology
could potentially be extended to predict entire 3D fluorescent images
from unlabeled z-stack data.
In this study, the authors chose a straightforward approach by em-
bedding the z-planes into the feature dimensions of the network. This
method proves effective when dealing with a limited range of poten-
tial z values. Nevertheless, its practicality diminishes when faced with
a large number of possible z values. In such situations, the study rec-
ommends the adoption of 3D convolutions within the network archi-
tecture as a more suitable alternative to 2D convolutions.
The authors recognize the main limitation of their approach in the lack
of global coherence in the images. The employed network relies on
an approximate loss function that operates at the pixel level, which
only partially represents and enforces similarity between prediction
and ground truth images. This approach has implications for the net-
work’s predictive capabilities. Specifically, it causes the network to
independently predict individual pixels, resulting in a lack of global
coherence in the final output images. This lack of coherence is most
noticeable in the representation of long, thin structures, resulting in
discontinuous or averaged predictions.
To address this issue, the study suggests the potential use of established
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machine learning techniques such as adversarial models, to enhance
the network’s ability to produce coherent and accurate images, partic-
ularly when dealing with intricate and fine structures in the data.

In the same year, Ounkomol et al. [18], present a study where is in-
vestigated a model for fluorescent label prediction that takes as input
three-dimensional transmitted-light (TL) live cell images. Their model
uses a U-Net [22] architecture trained to minimize the mean squared
error (MSE) between generated and ground truth fluorescent chan-
nels. Contrary to Christiansen et al., their model does not perform si-
multaneous prediction of multiple fluorescent channels. Instead, they
train a differentmodel for each structure. To evaluate the performances
they use the Pearson correlation coefficient.
In their work, they also establish the possibility of using this approach
for digital fluorescent labeling of time lapses by applying the model
trained solely on static images to a single TL 3D time series.
They compared the results of the 3D model versus a model that takes
as input only 2D slices, measuring better performances with the 3D
model. This establishes that 3D patterns are valuable for predicting
subcellular organization.

In 2019, Rivenson et al. [21] publish the first GAN architecture for
virtual staining. Their network predicts, starting from label-free un-
stained auto-fluorescence images, the corresponding bright-field im-
ages as if they were chemically stained (Hematoxylin & Eosin stain-
ing).
To train their GAN model, the loss of the generator, which follows the
design of a U-Net, combines the pixel-wise mean squared error be-
tween output and target images, total variation of the output image
(to encourage less blurring), and the adversarial loss computed by the
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discriminator. The discriminator does not take as an input the source
unstained auto-fluorescence image, so it only penalizes fake-looking
images, but not images that look realistic but that are not realistic flu-
orescent labeling of the source unstained image. Isola et al.[12] found
out that for image-to-image transformation tasks, passing as input to
the discriminator also the source image, usually produces better re-
sults.

In 2022, Cross-Zamirski et al. [7] develop two models for the pre-
diction of five fluorescent channels, taking as input three 2D brightfield
slices from different focal z-planes.
The first model is a U-Net trained to minimize L1 loss (MAE), that
takes as input 2D 256 × 256 pixels patches of the original images. This
model is trained for 15 000 steps with a batch size of 10 (around 30h of
training). After this, the same trained U-Net model is used as the gen-
erator of a conditional Wasserstein GAN, and is now trained to mini-
mize a combination between L1 loss and the adversarial loss computed
by the critic model:

ℒ𝐺(𝐺, 𝐷) = 𝜆1ℒ𝐿1 + 𝜆𝑒ℒ𝐴𝐷𝑉

where 𝜆1 is aweighting parameter for the L1 objective and 𝜆𝑒 = 1/𝑒𝑝𝑜𝑐ℎ
is an adaptive weighting parameter to prevent the unbounded adver-
sarial loss ℒ𝐴𝐷𝑉 overwhelming the L1 component.
The outputs of the model have the same shape as the input, and the
full images are reconstructed by stitching together the 256×256 patches
with a stride of 128, computing the median value of the pixels in the
overlapping portions (two overlapping patches along the edges and
four in the central portion of the image). This approach often produces
artifacts along the lines where the patches are stitched together.
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The predicted and target imageswere evaluated both at the image level
and at themorphological feature level. Themetrics used for the image-
level evaluation are: mean absolute error (MAE), mean squared er-
ror (MSE), structural similarity index measure (SSIM), peak signal-
to-noise ratio (PSNR), and the Pearson correlation coefficient (PCC).
Thesemetrics show slightly better performances for theWGANmodel.

1.1 Original Contributions

The work presented in this thesis tries to combine all the insights and
promising features of these past works.
Our model takes as input 3D images and outputs 3D images like the
model of Ounkomol et al. [18]. To leverage the correlation and addi-
tional information present in the other channels, our model is trained
to predict six fluorescent channels simultaneously. Each sample in our
training data, like in the dataset of Christiansen et al. [6], only has three
fluorescent labels. So to train the model we apply the same idea of a
masked loss used in their work.
To deal with coherence and lack of finer details, we use a conditional
GAN approach. In particular, we used aWGAN-GPmodel, like Cross-
Zamirski et al. [7], that was found to perform very well thanks to its
stability in training.
Moreover, themodel designed here has the only requirement for the in-
put images to have at least 8 pixels on one of the axis, and dealswith the
three dimensions in the same way. Thanks to this feature our model
is almost completely agnostic to the size of the input images, taking
away the need to stitch together predicted patches frommultiple steps
of inference.
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To the best of our knowledge, this is the first work developing a single
GAN model simultaneously predicting different fluorescent channels,
that uses the three-dimensional information present in the data, pro-
duces 3D images for each fluorescent channel, and takes away the need
to stitch together predicted patches from multiple steps of inference.

1.2 U-Net

TheU-Net is a popular deep learning architecture initially presented in
the work of Ronneberger, Fischer, and Brox [22] for the task of image
segmentation in biomedical images.
It comprises two essential components: a contracting path and an ex-
pansive path. (Figure 1.3)
In the contracting path, there are encoder layers responsible for cap-
turing contextual information and diminishing the spatial resolution
of the input. On the other hand, the expansive path is composed of de-
coder layers that decode the previously encoded data and incorporate
information from the contracting path through skip connections.
The contracting path in U-Net is responsible for identifying the rele-
vant features in the input image. The encoder layers perform convolu-
tional operations, reducing the spatial resolution of the feature maps
and increasing their depth. This enables the capture of progressively
abstract representations of the input data.
Conversely, the expansive path is dedicated to decoding the previously
encoded information and locating the features while maintaining the
spatial resolution of the input. The decoder layers within the expan-
sive path increase the size of the featuremaps through upsampling and
applying convolutional operations. The crucial role of the skip connec-
tions from the contracting path is to preserve the spatial information
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Figure 1.3: Visual scheme of U-Net architecture.
Each box is a featuremap. The input is encoded by the contractingpath,
through convolutional downsampling operations. Once it has reached
the bottleneck, upsampling operations in the expansive path decode
the information in the previous layer, and the output is concatenated
with the same level feature map from the contracting path. [12]

that was initially lost during the contracting phase, enhancing the de-
coder layers’ precision in locating the features.
This is exactly what we want for an image-to-image translation task as
the structure in the input is roughly aligned with the structure in the
output.

1.3 Conditional GAN

U-Nets, like other Neural Networks, are trained to minimize a loss
function, which serves as an assessment of the quality of the outputs.
Despite the automated nature of the learning process, a significant level
of manual work must be dedicated to formulating effective loss func-
tions: we still need to tell the model what metric we wish to minimize.
In our image-translation task, we would need a metric that represents
how much the generated image is similar to the target image. Design-
ing a loss function that effectively encapsulates our human perception
of image similarity poses significant challenges.
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The naive approach is to use pixel-wise metrics such as the Euclidean
distance between predicted and ground truth pixels. Even if we had
perfectly registered images, such that we don’t have to deal with trans-
lational or rotational offsets, when a model optimizes for this metric
we stumble into Goodhart’s law: ”When a measure becomes a target,
it ceases to be a good measure.”
It’s known that models trained to minimize a pixel-wise measure will
produce blurry results, simply because this is the most effective way
of minimizing that loss in the presence of noise or when the problem
is underconstrained. This happens because by predicting the mean of
the distribution, the model minimizes the mean pixel-wise error. [29,
19]
”Coming up with loss functions that force the CNN to do what we really want
– e.g., output sharp, realistic images – is an open problem and generally re-
quires expert knowledge.”[12]
What we would like is to define a high-level goal like ”output images
indistinguishable from the ground truth” and then automatically learn
a loss function that pushes the model towards this goal. Luckily, this
is exactly what a Generative Adversarial Network (GAN) does. GANs
train by optimizing a loss function that distinguishes between real and
fake output images, while simultaneously training a generative model
to minimize this loss. Since blurry images look clearly fake, the model
is incentivized to produce sharper contours.
In this work, we don’t simply need to produce a realistic image, but a
realistic image representing the structure we are interested in, given a
specific transmitted-light source image. For this reason, we use a Con-
ditional GAN (cGAN) that learns a conditional generative model of
data: a mapping from a source image 𝑥 to an output image 𝑦:

𝐺 ∶ 𝑥 ↦ 𝑦
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The objective of a conditional GAN can be expressed as

ℒcGAN(𝐺, 𝐷) = 𝔼𝑥,𝑦 [log𝐷(𝑥, 𝑦)] + 𝔼𝑥 [log(1 − 𝐷(𝑥, 𝐺(𝑥))] (1.1)

where G tries to minimize this objective against an adversarial D that
tries to maximize it, i.e. G* = argmin𝐺 max𝐷 ℒcGAN(𝐺, 𝐷).

In other works [12, 19] it has been established that, for image-to-
image translation tasks, it is beneficial to add to the adversarial loss a
more traditional loss, like the L1 distance. In this way, the generator’s
task is not only to fool the discriminator but also to produce images
that are close to the ground truth in an L1 sense.

ℒ𝐿1(𝐺) = 𝔼𝑥,𝑦 [||𝑦 − 𝐺(𝑥)||1] (1.2)

ℒ(𝐺, 𝐷) = ℒcGAN(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺) (1.3)

So the final objective is:

𝐺∗ = argmin
𝐺

max
𝐷

ℒcGAN(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺) (1.4)

Training Generative Adversarial Networks is widely recognized as a
challenging and unstable process. GANs are notorious for their sen-
sitivity to hyperparameters, data quality, and network architectures,
making them prone to issues like mode collapse, training divergence,
and other instabilities. The theoretical reasons for this problems were
investigated by Arjovsky and Bottou in [1].
Training the discriminator is usually far easier than training the genera-
tor. Moreover, the traditional cost functions of GANs (Kullback-Leibler
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divergence 2 or Jensen-Shannon divergence3) provide gradients close
to zero when the distributions of the real and generated images are
too distant. These two issues combined have a big responsibility in
the instability of the training process of GANs: when the generator
performance is poor, the gradient provided by the discriminator van-
ishes, hampering the learning process and impeding the generator’s
improvement.
More precisely, the authors state that given two distributions, if their
supports are disjoint or lie in low dimensional manifolds, there is al-
ways a perfect discriminator between them, and the gradient for the
GAN generator’s objective function will be zero almost everywhere.
The gradient vanishes when the discriminator becomes optimal (𝐷 is
close to 𝐷∗):

lim
‖𝐷−𝐷∗‖→0

∇𝜃𝔼𝑧∼𝑝(𝑧) [log (1 − 𝐷 (𝑔𝜃(𝑧)))] = 0 (1.5)

To deal with this problem, an alternative cost function was proposed,
so that the gradient step for the generator becomes:

∇𝜃𝑔
log𝐷 (𝐺 (𝑥)) (1.6)

But Arjovsky and Bottou [1] proves that, while this gradient doesn’t
necessarily suffer from vanishing gradients, it causes massively unsta-
ble updates under the presence of a noisy approximation to the optimal

2

𝐾𝐿 (ℙ𝑟‖ℙ𝑔) = ∫ log( 𝑃𝑟(𝑥)
𝑃𝑔(𝑥)) 𝑃𝑟(𝑥)𝑑𝜇(𝑥)

where both ℙ𝑟 and ℙ𝑔 are assumed to be absolutely continuous distributions ∈
Prob(𝜒), and therefore admit densities, with respect to a same measure μ defined
on X.

3

𝐽𝑆 (ℙ𝑟, ℙ𝑔) = 𝐾𝐿 (ℙ𝑟‖ℙ𝑚) + 𝐾𝐿 (ℙ𝑔‖ℙ𝑚)
where ℙ𝑚 is the mixture (ℙ𝑟 + ℙ𝑔)/2. Note that, contrary to the KL-divergence, this
divergence is symmetric and always defined.
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discriminator: the updates to the model follow a centered Cauchy dis-
tribution that has zero mean and infinite variance.

Another proposed solution was to add continuous noise to the inputs
of the discriminator to smoothen the data distribution of the probabil-
ity mass. When we add noise 𝜖 to two distributions ℙ𝑟 and ℙ𝑔 that
have their supports on manifolds that are close, but not overlapping,
the noise termswillmake the noisy distributionsℙ𝑟+𝜖 andℙ𝑔+𝜖 almost
overlap. As a result, the Jensen-Shannon divergence between them be-
comes small.
However, when we consider the noiseless variants, ℙ𝑟 and ℙ𝑔, the JSD
between them remains at its maximum, regardless of how close the
underlying manifolds are. In other words, the JSD between noiseless
distributions is always at its maximum, indicating high dissimilarity,
even if the underlying manifolds are close.
While it might be tempting to use the JSD of the noisy variants (ℙ𝑟+𝜖

and ℙ𝑔+𝜖) as ameasure of similarity between the original distributions
(ℙ𝑟 and ℙ𝑔), this approach is not without challenges, because it de-
pends on the level of noise introduced (the value of 𝜖). Therefore, it’s
not an intrinsic or absolute measure of the similarity between ℙ𝑟 and
ℙ𝑔 because it can vary based on the amount of noise added.

Finally, Arjovsky and Bottou introduce the idea of using a different
metric as a cost function that has a smoother gradient everywhere, in
an attempt to stabilize the training process: the Wasserstein distance.
We will see the details of the GAN model trained using this cost func-
tion in the next section.
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1.3.1 Wasserstein GAN

The distance 𝜌 used to measure how close the model distribution ℙ𝜃

and the real distribution ℙ𝑅 has a big impact on the convergence of the
training. This is because a sequence of distributions (ℙ𝑡)𝑡∈ℕ converges
if and only if there is a ℙ∞ such that 𝜌 (ℙ𝑡, ℙ∞) → 0 when 𝑡 → ∞. But
this notion depends on how the distance 𝜌 is defined.
Of course, wewant ourmodel distribution to be a continuousmapping
from parameters 𝜃 to distributions ℙ𝜃: if 𝜃𝑡 → 𝜃 than ℙ𝜃𝑡

→ ℙ𝜃.
Now, the weaker the distance we defined between distributions, the
easier it is for the distributions to converge, and hence the easier it is
to have a continuous mapping from parameters space to distributions
space.
Arjovsky, Chintala, and Bottou [2] proved that the Wasserstein-1 dis-
tance (also known as Earth-Mover distance) (eq. 1.7) is weaker than
the Jensen-Shannon distance, and makes the mapping continuous un-
der weaker assumptions.
Wasserstein distance:

𝑊 (ℙ𝑟, ℙ𝑔) = inf
𝛾∈𝛱(ℙ𝑟,ℙ𝑔)

𝔼(𝑥,𝑦)∼𝛾[‖𝑥 − 𝑦‖] (1.7)

where𝛱 (ℙ𝑟, ℙ𝑔) is the set of all joint distributions𝛾 (𝑥, 𝑦)whosemarginals
are respectively 𝑃𝑟 and 𝑃𝑔. Intuitively, 𝛾 (𝑥, 𝑦) indicates how much
“mass” must be transported from 𝑥 to 𝑦 in order to transform the dis-
tributions 𝑃𝑟 into the distribution 𝑃𝑔. The Wasserstein distance then is
the “cost” of the optimal transport plan.

However, finding the infimum in eq. 1.7 is intractable. But it is
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possible to use the Kantorovich-Rubinstein duality to prove that

𝑊 (ℙ𝑟, ℙ𝜃) = sup
‖𝑓 ‖𝐿≤1

𝔼𝑥∼ℙ𝑟
[𝑓 (𝑥)] − 𝔼𝑥∼ℙ𝜃

[𝑓 (𝑥)] (1.8)

where the supremum is over all the 1-Lipschitz functions 𝑓 ∶ 𝛸 → ℝ:

|𝑓 (𝑥1) − 𝑓 (𝑥2) | ≤ ∣𝑥1 − 𝑥2∣

Regarding how to find such 𝑓 function, we can train a neural network
to approximate it. This neural network indeed is very similar to a clas-
sic discriminator, with the only difference being that it outputs a scalar
score instead of a probability (it doesn’t have a final sigmoid activa-
tion). This output represents how real the images passed as input to
the model are, that is, how close the generator model distribution and
the real distribution are. To emphasize the difference with respect to
the classical discriminator of a GAN, the authors call this model critic.
To enforce the 1-Lipschitz constraint, the simplest idea is to confine the
weights of this neural network to a compact space. To do this, it is
enough to clip the weights of the model to be in a fixed box after each
gradient update.
But this method has many downsides. If the clipping parameter is too
large, the time needed for any weights to reach their limit could be too
large too, making it unfeasible to reach optimality during the training
of the critic. On the other hand, a too small clipping parameter can
lead to vanishing gradients, especially if the model has many layers.
Tuning this hyperparameter is very difficult and time and resource in-
tensive. Nonetheless, this method was enough to already surpass the
classic cGAN performance.
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1.3.2 WGAN-GP

Gulrajani et al. developed an improvement over gradient clipping to
enforce the Lipschitz constraint: gradient penalty [10]. They use the
fact that a differentiable function 𝑓 is 1-Lipschitz if and only if it has
gradients with norm at most 1 everywhere to prove that points inter-
polated between the real and generated data should have a gradient
norm of 1 for 𝑓 . This fact makes it possible to define and compute a
term to be added to the loss function that penalizes the model when
the gradient norm moves away from its target value of 1:

𝔼
̂𝑥∼ℙ ̂𝑥̂

[(∥∇ ̂𝑥𝐷( ̂𝑥)∥2 − 1)2] (1.9)

where ̂𝑥 = 𝑡 ̃𝑥 + (1 − 𝑡)𝑥 with 0 ≤ 𝑡 ≤ 1.
The final loss function for the critic model is:

𝐿 = 𝔼
𝑥̃∼ℙ𝑔

[𝐷( ̃𝑥)] − 𝔼
𝑥∼ℙ𝑟

[𝐷(𝑥)] + 𝜆 𝔼
𝑥̂∼ℙ𝑥̂

[(∥∇𝑥̂𝐷( ̂𝑥)∥2 − 1)2] (1.10)

Important to note is that, with this approach, batch normalization
must be avoided for the critic, because the correlations it creates be-
tween samples in the same batch can lower the effectiveness of the gra-
dient penalty.
At the cost of a bit more computation, experiments show that WGAN
with Gradient Penalty (WGAN-GP) produces better quality images
than WGAN with gradient clipping.
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CHAPTER 2

Dataset and preprocessing

2.1 Dataset

The dataset used for this work is the hiPSC Single-Cell Image Dataset
introduced in [26]. This dataset comprises 3D, high-resolution images
of over 200,000 live cells from 25 isogenic human induced pluripotent
stem cell (hiPSC) lines from the Allen Cell Collection 1.
HiPSCs are growed in tightly packed, epithelial-likemonolayer colonies,
onMatrigel-coated glass plates that are compatiblewith high-resolution
imaging while preserving their normal pluripotent state.
Each line contains one fluorescently tagged protein, created via en-
dogenousCRISPR/Cas9 gene editing, representing a key cellular struc-
ture or organelle.
The cells were imaged in 3Dusing spinning-disk confocalmicroscopes.
To reference the locations of fluorescent protein (FP)-tagged cellular
structures relative to the cell boundary and the nucleus ormitotic chro-
mosomes, for each cell are included fluorescent cell-membrane and
DNA dyes. Cells were imaged live and in 3D, as a z-stack of two-
dimensional images, at high resolution (120x magnification, 1.25 NA),
generating 18 186 fields of view (FOVs) in four acquisition channels,

1https://www.allencell.org/cell-catalog.html
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representing the FOV-specific protein, the cell membrane, the DNA,
and the transmitted-light channel.
Both the FOV images and the single-cell dataset are available as down-
loadable files as Quilt packages 2 and through interactive online visual-
analysis tools 3.

2.1.1 Cell lines and culturing

Each cell line created through gene editing originated from the parental
WTC-11 hiPS cell line and featured an endogenously tagged fluores-
cent protein associated with a specific cellular structure. The cell lines
were generated using CRISPR–Cas9-mediated genome editing tech-
niques. Fifteen additional cell lines from the Allen Cell Collectionwere
also produced using the same methods.

All these cell lines were maintained on an automated cell-culture
system developed on aHamiltonMicrolab STAR LiquidHandling Sys-
tem by the Hamilton Company. They were cultured in a Cytomat 24
(Thermo Fisher Scientific) incubator at 37 °C and 5% CO2 in mTeSR1
medium with or without phenol red (STEMCELL Technologies), sup-
plementedwith 1%penicillin–streptomycin (ThermoFisher Scientific).
For imaging purposes, the cells were plated on Matrigel-coated glass-
bottom, black-skirt, 96-well plates with 1.5 optical grade cover glass
(Cellvis). [26]

2.1.2 Microscopy and image acquisition

Imagingwas conducted using three identical ZEISS spinning-disk con-
focalmicroscopes equippedwith either 10×/0.45NAPlan-Apochromat
or 100×/1.25 W C-Apochromat Korr UV Vis IR objectives (Zeiss) and

2https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_
image_dataset

3https://cfe.allencell.org/
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ZEN 2.3 software (blue edition; ZEISS). These spinning-disk confocal
microscopes featured a 1.2× tube lens adapter, resulting in final mag-
nifications of 12× or 120×, respectively. In our work, we used only the
images with 120x magnification.
Standard laser lines were employed with the following laser powers
when using 10× objectives: 405 nm at 0.28 mW, 488 nm at 2.3 mW,
561 nm at 2.4 mW, and 640 nm at 2.4 mW. Emission from specific flu-
orophores was collected using Band Pass (BP) filter sets (Chroma):
450/50 nm for DNA dye, 525/50 nm for mEGFP tag, 600/50 nm for
mTagRFP-T tag, and 706/95 nm for cell-membrane dye detection. Im-
age acquisition had an exposure time of 200ms. Cells were imaged in a
phenol red-free mTeSR1 medium on microscope stages equipped with
a humidified environmental chamber, maintaining cells at 37 °C with
5% O2 during imaging. Transmitted light (bright-field) images were
acquired using either a white LED light source with a broad emission
spectrum or a red LED light sourcewith a peak emission of 740 nm and
a narrow range, along with a BP filter 706/95 nm for bright-field light
collection. Fast z-acquisition was facilitated by using a Prior NanoScan
Z 100 mm piezo z stage (ZEISS).

For image acquisition, after selecting the field of view (FOV) posi-
tion from thewell overviewacquisition, cells’ DNAwas initially stained
for 20 minutes with NucBlue Live (Thermo Fisher Scientific). Sub-
sequently, the cell membrane was stained with CellMask Deep Red
(CMDR, ThermoFisher Scientific)whileNucBlueLivewas still present,
and the cells were washed once before imaging, within a maximum
time frame of 2.5 hours. Three-dimensional FOVs at 120× magnifica-
tion were acquired at the pre-selected positions. Four channels were
captured at each z-step (interwoven channels) in the following sequence:
bright field, mEGFP or mTagRFP-T, CMDR, and NucBlue Live. [26]
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2.2 Preprocessing

Portions of each FOV suffer from defocus aberration and noise. This is
especially relevant for the intended target channels and thus the train-
ing of ourmodel. The datasetwas therefore processed tomitigate these
problems.

2.2.1 Selection of in-focus slices: PLLS

In order to automatically select the in-focus z-planes in the z-stack, we
compute the power spectrum log-log slope (PLLS) [5].
Thismetric evaluates the slope of the power spectral density of the pixel
intensities on a log-log scale. The power spectrum shows the strength
of the spatial frequency variations as a function of frequency. It is
always negative and usually decreases in value as blur increases and
high-frequency image components are lost (more negative values in-
dicate a steeper slope, whichmeans that the image is composedmostly
of low spatial frequencies).
In our case, PLLS works well to spot the on-focus region, but behaves
the opposite as expected regarding its values: PLLS is consistentlymore
negative for on-focus images. We believe this behavior to be due to the
presence of noise. Experiments with denoising suggested that in our
images the high-frequencies don’t represent structure but rather noise,
which is equally present in on-focus and out-of-focus images. The dif-
ference resides in medium frequencies, that in our images encode the
structure we want to visualize. The higher power of medium frequen-
cies in on-focus images makes the power spectrum slope steeper, and
hence more negative (see Fig. 2.1).
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Figure 2.1: Power spectrum plots for an in-focus slice (A) and a defo-
cused slice (B) of the same sample (DNA channel).

2.2.2 Denoising: Noise2Void

The other problemwehave in our target images is the presence of noise.
When we train a model with the generative adversarial framework,
noise in the ground truth images becomes a problem because it gives
the discriminator an easy way to distinguish between real and gener-
ated images, making the discriminator’s job even easier than it already
is, with bad consequences for training stability.
To denoise our target imageswe use theNoise2Voidmodel [13], a deep
learning based technique that exploits the assumption that signal has
a predictable structure, while noise doesn’t, to make it possible to train
the denoising images directly on the body of data to be denoised. So
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there’s no need for clean targets.
To do this, it employs a blind-spot network that operates by masking
the central pixel of the image patch. (Figure 2.2). During training, the
network tries to reconstruct the input image patch but excludes infor-
mation from the center pixel of the patch. This creates a ”blind spot”
that forces the network to rely on the surrounding context to predict
the clean value of the masked pixel.
By training to accurately predict the missing value at the blind spot,
the network essentially learns to distinguish between the underlying
image structure (signal) and the random noise.
Once trained, the network leverages the knowledge gained from pre-
dicting missing values to effectively remove noise and reveal the clean
image content.
Noise2Voidmade it possible to denoise our datasetwith results compa-
rable to classicalmethods like block-matching and 3Dfiltering (BM3D)
in a fraction of the time and without the need to estimate the amount
of noise beforehand.

Figure 2.2: Blind-spot network: The receptive field of each pixel ex-
cludes the pixel itself, preventing the model from learning the identity.
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CHAPTER 3

Methodology

3.1 Architecture

Our model is a WGAN-GP [2, 7], where the generator is a U-Net [22]
and the critic follows the design of a PatchGAN discriminator (Figure
3.3) [12].

3.1.1 Generator

Our generator is a U-Net of depth 3. The downsampling path is com-
posed of convolutional blocks with 64, 128, and 256 filters respectively.
Each block is composed by two identical sub-blocks made of a 3D con-
volution with a kernel size of 3, stride 1, and padding 1, followed by
instance normalization and Leaky ReLU activations. Between blocks, a
3D convolution with kernel size 2 and stride 2 performs the downsam-
pling halving the spatial dimensions.
The upsampling path is symmetric to the downsampling, with trans-
posed convolutions. The skip connections from the downsampling
path are concatenatedwith the corresponding featuremaps during the
upsampling path to facilitate information flow across different scales.
Thefinal layer employs a 3D convolutionwith kernel size 3 andpadding
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1 to generate the 6 fluorescent channels as the output.
In total, our generator has 23.1M trainable parameters.

Convolution

InstanceNorm

LeakyReLU

Transposed Conv

Figure 3.1: Generator architecture diagram
Downsampling path composed of convolutional blocks with 64, 128,
and 256 filters respectively. Each block is made of two identical sub-
blocks (3D convolution with a kernel size of 3, stride 1, and padding
1, followed by instance normalization and Leaky ReLU activations).
Between blocks, a 3D convolution with kernel size 2 and stride 2 per-
forms the downsampling halving the spatial dimensions. The upsam-
pling path is symmetric to the downsampling, with transposed con-
volutions. The skip connections from the downsampling path are con-
catenatedwith the corresponding featuremaps during the upsampling
path. The final layer employs a 3D convolution with kernel size 3 and
padding 1 to generate the 6 fluorescent channels as the output.

3.1.2 Critic

The critic is composed of five convolutional blocks. The first one is
followed just by a Leaky ReLu activation, while the others perform in-
stance normalization before. The first three blocks perform convolu-
tions with a kernel size of 4, stride of 2, and padding of 1, while the last
two preserve the spatial dimensions using a kernel size of 3, stride of 1,
and padding of 1. The final layer has a receptive field of size 54, so the
critic model can only penalize unrealistic structure at this scale (Figure
3.3). In total, our critic has 6.2M trainable parameters.
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Convolution

InstanceNorm

LeakyReLU

Figure 3.2: Discriminator architecture diagram
Five convolutional blocks in succession: the first one is followed just by
a Leaky ReLu activation, while the others perform instance normaliza-
tion before. The first three blocks perform convolutions with a kernel
size of 4, stride of 2, and padding of 1, while the last two preserve the
spatial dimensions using a kernel size of 3, stride of 1, and padding of
1.

3.2 Training Setup

3.2.1 Loss function

The loss function of our generatormodel is aweighted sum between L1
distance and the adversarial loss calculated by a PatchGAN discrimi-
nator, which encourages local realism.
Each ground truth sample presents just three populated channels (DNA,
cell membrane, and specific structure) while the others are just popu-
lated by NaN values. To deal with this, we mask the image produced
by the generator so that it has only zeros in the channels corresponding
to the void channels of the target image. These channels in the target
image are processed so that the NaN values become zeros. In this way,
we can compute the pixel-wise component of our loss on the whole im-
age. Note that the model now would have a perfect score on the void
channels: they are populated with zeros both in the generated image
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Figure 3.3: PatchGAN discriminator. Each value of the output matrix
represents the probability of whether the corresponding image patch
is real or artificially generated. [8].
Since we are using a Wasserstein GAN architecture, our PatchGAN
critic differs in the fact that each value of the output matrix is a real
number representing the ”realness score” that the critic assigns to that
specific image patch, and not a probability.

and in the target image. This is why we compute our loss without re-
duction, we mask it using the same mask we used before, and then we
compute the mean.
Regarding the adversarial component of the loss, we feed the critic
modelwith themaskedgenerated image, so that it has the same amount
of void channels as a real sample, and the critic can’t use the number of
non-zero channels as additional info to distinguish between fake and
real samples.
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3.2.2 Hyperparameters

Activation functions Early experiments were conducted both with
ReLUandwithLeakyRelu. LeakyReluwas found to be themost promis-
ing.
This is in accordance to what general empirical knowledge tells about
the choice between these two similar activation functions: LeakyReLU
usually performs better for regression tasks, with deep architectures,
and when data has a lot of noise or outliers.
Once LeakyReLUswere selected as the model’s activation function, we
also performed hyperparameter optimization on their negative slope.
Experiments have shown an improved performance, with sharper con-
tours in the generated images, whenweusedhigher non-linearity (smaller
negative slope). The final value selected was 0.05.

Batch size Experiments showedbetter performanceswith bigger batch
sizes. Because of memory constraints given by the size of the files we
are processing, we selected a batch size of 16 z-stacks.

Optimizer RMSprop was found to lead to more stable training of the
WGAN. The training was performed with a constant learning rate of
0.00005, both for the generator model and for the critic model.
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3.2.3 Training loop

Here is the pseudocode for the training loop:

Algorithm 1 WGAN-GP.
Hyperparameters: 𝜆adv = 0.05, 𝜆gp = 10, 𝑛critic = 5, 𝑙𝑟 = 0.00005,
𝑚 = 16
Require: The adversarial loss weight 𝜆adv, the gradient penalty coef-

ficient 𝜆𝑔𝑝, the number of critic iterations per generator iteration
𝑛critic , the batch size 𝑚, the RMSProp learning rate 𝑙𝑟.

Require: Initial critic parameters 𝑤0, initial generator parameters 𝜃0.
1: while 𝜃 has not converged do
2: for 𝑡 = 1, … , 𝑛critic do
3: for 𝑖 = 1, … , 𝑚 do
4: Sample real data: a pair (𝑥, 𝑦) ∼ ℙ𝑟, where 𝑥 is the source

image and 𝑦 represents the fluorescent channels
5: ̃𝑦 ← 𝐺𝜃(𝑥)
6: ̃𝑦 ← mask( ̃𝑦)
7: Sample a random number 𝜖 ∼ 𝑈[0, 1]
8: ̂𝑦 ← 𝜖𝑥 + (1 − 𝜖) ̃𝑦
9: 𝐿𝑖 ← 𝐷𝑤((𝑥, ̃𝑦)) − 𝐷𝑤((𝑥, 𝑦)) + 𝜆 (∥∇ ̂𝑦𝐷𝑤( ̂𝑦)∥2 − 1)

2

10: end for
11: 𝑤 ← RMSProp (∇𝑤

1
𝑚 ∑𝑚

𝑖=1 𝐿(𝑖), 𝑤, 𝑙𝑟)
12: end for
13: 𝜃 ← RMSProp (∇𝜃

1
𝑚 ∑𝑚

𝑖=1 (||𝑦 − ̃𝑦||1 − 𝜆adv𝐷𝑤 ((𝑥, ̃𝑦))) , 𝜃, 𝑙𝑟)
14: end while
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CHAPTER 4

Evaluation

Evaluating the quality of synthesized images is an open and difficult
problem [24]. Using pixel-wise metrics for evaluation presents the
same issues as using them as losses for training (e.g. rewarding blurry
results). Moreover, the absolute value of imagemetrics is greatly influ-
enced by the characteristics of the data, so these metrics can be appro-
priately used only for the purpose of comparing models on the same
data.
When dealing with cellular data, a significant drawback is that they
treat every pixel in the image equally, even though pixels represent-
ing cellular structures are undoubtedly more critical than background
(empty) pixels. Additionally, some image channels, like the nucleoli
channel, exhibit sparser content compared to other channels, resulting
in a difference in the number of pixels that matter versus background
pixels.
Classical evaluation frameworks for GANsmake use of inception score
(IS) or Fréchet inception distance (FID), but the fact that thesemethods
don’t use a specialized encoder trained on our dataset makes them un-
reliable for the evaluation of ourmodel because the pre-trainedmodels
learned features are ineffective on specific domains that are far from the
ImageNet dataset [16].
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4.1 Perceptual classification metric

To better evaluate our model we designed a perceptual classification
metric following the intuition that if the generated images are realistic,
a classifier trained on real images will have good accuracy when clas-
sifying the synthesized images.
We trained a ResNet classifier to recognize which structure it is looking
at: given a 3D patch of one of the channels of a ground truth image, the
model outputs to which channel it belongs.
Whenwe compare the performance of this classifier on the images gen-
erated by different models, we have a measure of how much the struc-
ture present in the output images is realistic and preserves the features
that make it distinguishable from other cellular structures.

4.2 Results

The U-Net trained with 𝐿1 loss optimizes image metrics like structural
similarity index measure (SSIM), MSE, mean absolute error (MAE),
andPearson correlation coefficient (PCC) better than theWGANmodel
(Table 4.1), but this doesn’t correspond to better and more realistic
output images. This is in contrast to what was found in [7], where
the WGAN model also showed better performance for image metrics.
Their WGAN model was not trained from scratch but starting from a
U-Net generator pretrained tominimize 𝐿1 loss. We also experimented
with this training setup, finding intermediate results between the U-
Net and ourWGAN, as expected, both for image metrics and for visual
human analysis.
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Table 4.1: Image metrics for each channel for the two models, com-
puted on the test set. 𝐹1clf is the 𝐹1 score of the classifier on the
images produced by the two models. The values corresponding to the
best-performingmodel for each channelmetric are highlighted in bold.

Channel Model SSIM MSE MAE PCC 𝐹1 clf

DNA U-Net 0.75 ± 0.08 0.4 ± 0.1 0.42 ± 0.06 0.79 ± 0.07 0.9750
WGAN 0.73 ± 0.09 0.43 ± 0.14 0.39 ± 0.07 0.76 ± 0.08 0.9796

Cell mem. U-Net 0.69 ± 0.09 0.6 ± 0.1 0.43 ± 0.06 0.65 ± 0.08 0.8908
WGAN 0.64 ± 0.09 0.6 ± 0.1 0.46 ± 0.06 0.61 ± 0.08 0.9889

Mito. U-Net 0.79 ± 0.05 0.35 ± 0.06 0.29 ± 0.03 0.81 ± 0.04 0.9086
WGAN 0.77 ± 0.05 0.39 ± 0.08 0.31 ± 0.04 0.79 ± 0.05 0.9528

N. env. U-Net 0.85 ± 0.05 0.19 ± 0.04 0.24 ± 0.02 0.89 ± 0.02 0.7707
WGAN 0.82 ± 0.06 0.25 ± 0.05 0.27 ± 0.03 0.86 ± 0.03 0.9410

Myofib. U-Net 0.72 ± 0.09 0.5 ± 0.2 0.43 ± 0.07 0.7 ± 0.1 0.9855
WGAN 0.7 ± 0.1 0.5 ± 0.2 0.47 ± 0.09 0.7 ± 0.1 0.9919

Nucleoli U-Net 0.93 ± 0.03 0.14 ± 0.05 0.15 ± 0.02 0.92 ± 0.03 0.9500
WGAN 0.91 ± 0.04 0.19 ± 0.06 0.17 ± 0.03 0.90 ± 0.04 0.9789

The perceptual classificationmetricwe designed is in better accordance
with the human eye evaluation of the produced images, giving us a bet-
ter proxy for what we want to evaluate than classical metrics. In fact,
ourWGANmodel, which producesmore realistic images, with sharper
edges and finer details, produces images that are recognized better by
the classifier (Fig. 4.1).

A visual analysis of the model’s predictions shows how the pre-
dicted structures have sharp edges and coherence, even for long and
thin structures (Figure 4.2). In the DNA channel, it is often possible to
see regions inside the structures with a different intensity, correspond-
ing to the nucleoli. These structures are often less visible in ground
truth images because of noise and the low precision of the chromatic
dyes,making the digital staining approach evenmore effective andpre-
cise than classical chemical staining in locating these structures (Figure
4.3). This perk may be attributable to the simultaneous training on
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Figure 4.1: Confusion matrices of the classifier on images generated
by (A) the U-Net trained with fixed 𝐿1 loss and by (B) the WGAN-
GP (right). The outputs produced by theWGAN are recognizedmuch
better by the classifier.

nuclear envelope

brightfield

DNA nucleoli

myofibrilsmitochondriacell membrane

B

A

Figure 4.2: Input image (A) and WGAN model prediction (B) from
a sample not seen in training. Each structure is shown through the
central z-plane (512 × 512pixels) taken from the 3D cube (32 × 512 ×
512pixels).

many channels: the network has access to information about the po-
sition of nucleoli from the nucleoli channel and can integrate its DNA
channel prediction using this information.
In general, themulti-channel structure of themodel ensures inter-structure
coherence. The nuclear envelope is always perfectly aligned to the edge
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of theDNA(nucleus) channel, mitochondria andmyofibrils are always
located in the space between the nucleus and the cell membrane, etc.
In Figure 4.4 we can see some inference results of the U-Net model,
trainedwith the same architecture and training setup as our finalWGAN
model, whose inference results are shown in Figure 4.3, but without
the adversarial component of the loss. The differences are small but
clearly visible. The DNA channel produced by the U-Net model has a
more uniform and less realistic brightness. The cell membrane is less
smooth and with less sharp edges. The biggest difference is visible
in the myofibrils channel, where the WGAN model produces images
with sharper contours for the filaments that follow the cell membranes,
keeping them more visible than the rest of the structure that correctly
remains at a lower pixel intensity. Overall, the images produced by
the WGAN model seem more realistic and have sharper edges, as ex-
pected considering the theoretical advantages of the conditional GAN
approach over the classical U-Net trained to minimize a fixed pixel-
wise loss function.
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Figure 4.3: Some inference results of the WGAN model on the vali-
dation set. Each column represents a different sample. Rows are alter-
nating between ground truth images and generated predictions. Each
column has only three target channels. Predictions are shown also for
channels where the ground truth is not available for comparison. The
model produces 3D images, here is shown the central z-slice. Each 2D
slice is 384 × 384pixels.
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Figure 4.4: Some inference results of the U-Net model on the valida-
tion set. Each column represents a different sample. Rows are alter-
nating between ground truth images and generated predictions. Each
column has only three target channels. Predictions are shown also for
channels where the ground truth is not available for comparison. The
model produces 3D images, here is shown the central z-slice. Each 2D
slice is 384 × 384pixels.
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Conclusion

Our study introduces aWasserstein GANmodel for three-dimensional
virtual fluorescent staining. The model, inspired by prior works, en-
hances its predictive capabilities by training on 3D images and adopt-
ing a masked loss strategy for handling multiple fluorescent labels si-
multaneously. The use of a conditional WGAN-GP model ensures sta-
bility in training and addresses coherence and finer details, while the
model’s architecture allows it to be agnostic to the size of input images,
eliminating the need for patch stitching.

4.3 Limitations and future work

Despite the promising contributions of our study, we should acknowl-
edge some limitations:

• Training data constraints: Histological characteristics can vary
significantly among different tissues, introducing challenges in
capturing the diverse structures and textures. Moreover, vari-
ations in lighting, staining protocols, imaging equipment, and
techniques must be considered. The model may struggle to gen-
eralize well to tissues and conditions not represented in the train-
ing data, potentially leading to unreliable predictions. It was ob-
served that models that are initially trained using one cell type,
such as hiPSC, exhibit reduced performance when dealing with
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inputs featuring significantly distinct cellular morphologies. Ad-
ditionally, model accuracy decreases when attempting to predict
fluorescence images from input transmitted light (TL) stacks ac-
quired with a shorter inter-slice interval compared to the interval
used in the training data. [18] Our model is trained on cell cul-
tures and not tissue samples. While there are many reasons to
expect it to perform similarly well if trained on tissue samples,
this has to be checked.

• Limitations common to every digital staining approach: Flu-
orescent channels carry a substantially greater amount of infor-
mation compared to a brightfield z-stack. Consequently, the pre-
diction of complete fluorescent channels from brightfield images
represents a significantly more complex and demanding task.
For some structures, such as sarcomeres, the association between
transmitted light (TL) andfluorescence images is inherentlyweaker,
leading to worse prediction performances.
Moreover, it’s important to note that there might not exist a di-
rect quantitative correlation between the predicted intensity of a
tagged structure and the actual protein levels.

• Masked loss strategy sensitivity to sparsity: The effectiveness of
the masked loss strategy is influenced by the distribution of flu-
orescent labels in the training dataset. If certain labels are sparse
or imbalanced, the model may prioritize more prevalent labels
during training, potentially leading to suboptimal performance
for rare or less frequent structures.

• Clinical validation: Although our model demonstrates promis-
ing results in generating 3D images of fluorescent channels, its
clinical applicability and accuracy in real-world scenarios need
further validation through rigorous testing on diverse clinical
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datasets.

To address the limitations regarding training data, future work should
be aimed at the creation of more diverse and comprehensive histologi-
cal datasets. This includes incorporating a broader range of tissue types
and imaging conditions. Diversifying the training data will enhance
the model’s generalizability to a wider array of tissues and clinical sce-
narios.
Our evaluation method could be improved by pairing our classifica-
tion perceptual metric with a deep perceptual metric that compares the
deep activation of the classifier when looking at real or generated flu-
orescence channels [30]. It would be interesting to experiment adding
a term in the loss function during training representing this deep per-
ceptual loss, like in [9].

The potential impact of thiswork extends tomaking subcellular and
tissue examination more accessible and facilitating in vivo imaging,
marking a significant contribution to the field of deep learning-based
histological staining methods.
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