Venieri, Lorenzo
(2024)
Generative Adversarial Networks for three-dimensional multi-channel virtual fluorescent staining.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (9MB)
|
Abstract
Fluorescent staining plays a crucial role in clinical pathology and life-science research for visualizing tissue
and cellular structures. However, traditional staining methods are hindered by cost, time, and environmental impact.
Deep learning has emerged as a transformative approach to address these challenges by computationally generating virtually stained images from label-free samples. We introduce a Wasserstein Generative Adversarial Network (WGAN) for three-dimensional fluorescent staining, leveraging multi-channel data to exploit the positive and negative colocalization information of cellular structures. The proposed model surpasses conventional U-Net architectures, producing
sharper and more realistic images. Additionally, we designed a classification perceptual metric to evaluate the realisticness of the generated images that better correlates with expert evaluation.
Abstract
Fluorescent staining plays a crucial role in clinical pathology and life-science research for visualizing tissue
and cellular structures. However, traditional staining methods are hindered by cost, time, and environmental impact.
Deep learning has emerged as a transformative approach to address these challenges by computationally generating virtually stained images from label-free samples. We introduce a Wasserstein Generative Adversarial Network (WGAN) for three-dimensional fluorescent staining, leveraging multi-channel data to exploit the positive and negative colocalization information of cellular structures. The proposed model surpasses conventional U-Net architectures, producing
sharper and more realistic images. Additionally, we designed a classification perceptual metric to evaluate the realisticness of the generated images that better correlates with expert evaluation.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Venieri, Lorenzo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
virtual staining,GAN,label-free,cellular structures,perceptual metric
Data di discussione della Tesi
19 Marzo 2024
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Venieri, Lorenzo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
virtual staining,GAN,label-free,cellular structures,perceptual metric
Data di discussione della Tesi
19 Marzo 2024
URI
Statistica sui download
Gestione del documento: