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Abstract

The integration ofMachine Learning (ML) andConstrainedOptimization (CO)

represents a promising avenue for enhancing decision-making capabilities in

complex, uncertain environments. This thesis empirically evaluates theUNIFY

framework, a novel approach that synergistically combines the predictive power

of MLwith the strategic prowess of CO. Focusing on the EnergyManagement

System and Set Multi-cover with stochastic coverages problems, in this work

we carry out a comparative analysis on the performance, efficiency, and scal-

ability of four RL algorithms - A2C, PPO, TD3, and SAC - within the UNIFY

framework. Empirical results reveal the strengths and limitations of these al-

gorithms, highlighting SAC’s superior sample efficiency and the benefits of

training on multiple instances for improved model generalization. These find-

ings underscore the potential of integrating ML and CO through RL, offering

valuable insights for the development of advanced decision-making systems

in various real-world applications.
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Chapter 1

Introduction

A growing trend in recent years involves the integration and combination of

methods fromMachine Learning (ML) with techniques from Constrained Op-

timization (CO). Adopting such an hybrid approach turns out to be particularly

attractive for tackling complex decision-making problems with inherent un-

certainty: these problems often unfold over multiple steps and possess a par-

tially known structure, making it difficult to naively apply traditional methods.

For example, explicit knowledge may exist in the form of cost functions and

constraints, which can be easily integrated in a CO-based system; but valuable

implicit knowledge may also be obtained from historical data or simulations,

and ML-based systems excel in this other case. Thus, it makes sense to work

towards bridging and integrating methods from both classes as they show in-

deed different and complementary strengths and weaknesses.

In this thesis, we consider the recently-proposed UNIFY framework [55],

an hybrid offline-online method that integrates ML methods, used in on the

offline phase, and CO techniques, which are instead employed to address the

online phase. In particular, we focus on Reinforcement Learning (RL) as the

class of ML methods that we investigate, and carry out a comparative anal-

ysis of different RL algorithms within the UNIFY framework across diverse

scenarios. These include the Energy Management System (EMS) problem
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and the Set Multi-cover with Stochastic Coverages problem, which collec-

tively embody the challenges of real-world optimization problems, such as

constraint handling, sequential decision-making, and the management of un-

certainty. Through a comprehensive empirical evaluation across various prob-

lem instances and under different training setups, we delve into the compara-

tive efficiency, scalability, and generalization capabilities of these algorithms.

The empirical results unveil key insights into the behavior and perfor-

mance of the considered RL algorithms. Notably, the algorithms exhibit dif-

ferential efficiency with SAC generally outperforming others in terms of sam-

ple efficiency, particularly in the sequential decision-making setup of the EMS

problem. Furthermore, training on multiple instances enhances the general-

ization capabilities of the RL agents, underscoring the value of diversity in

training data for real-world applications. However, challenges such as action

saturation in TD3 reveal the nuanced limitations that may arise in specific con-

texts, indicating the need for tailored approaches or algorithmic adjustments

to achieve optimal performance.

These findings have profound implications for designing and implement-

ing RL-based solutions within the UNIFY framework for complex optimiza-

tion problems. The demonstrated effectiveness of integrating ML predictions

with constrained optimization models through RL underscores the potential

of this approach to address the dynamic and uncertain nature of real-world

problems more effectively than traditional methods. The insights gained from

the comparative analysis provide a foundation for future research directions,

including algorithmic improvements for enhanced efficiency and scalability,

employing diverse strategies for dynamic hyperparameter tuning, and the ex-

ploration of more complex problem instances that closely mirror real-world

scenarios.

Overall, this thesis contributes to the evolving field of integrated ML and

CO by evaluating the potential benefits and comparing the efficiency of Rein-

forcement Learning (RL) algorithms employed within the UNIFY framework,
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paving the way for more sophisticated and effective decision-making tools.

The entire code developed for this thesis can be found in the following

GitHub repository.

The remaining of this thesis is structured as follows:

• Chapter 2: Theoretical Background. This is the theoretical chapter

which deals with all the mathematical background required for under-

standing the thesis. A general overview of the MO and ML fields is

provided, with a focus on foundational Reinforcement Learning (RL)

algorithms. Also, hybrid optimization approaches than can be related

to UNIFY are discussed in this chapter.

• Chapter 3: Experimental Setup In this chapter, the empirical evalu-

ation methodologies are discussed; the considered use cases (i.e. MSC

and EMS problems) are also presented here, and the hyperparameter

tuning process is described.

• Chapter 4: Empirical Evaluation and Discussions. In this chapter,

results of the empirical evaluation are discussed and analyzed.

• Chapter 5: Conclusions. The concluding chapter provides a summary

of the work done, the main contributions are highlighted and possible

avenues for future works.

https://github.com/giorgiac98/thesis


Chapter 2

Theoretical Background

In this chapter the theoretical background topics needed to effectively under-

stand the UNIFY framework that lies at the core of this thesis will be briefly

covered. We start with a general overview of the Mathematical Optimization

(MO) field, with a focus on techniques for stochastic optimization (i.e. opti-

mization under uncertainty) and on hybrid optimization approaches. We then

discuss foundational concepts of Reinforcement Learning (RL) and describe

foundational algorithms of this class. Finally, we describe the UNIFY frame-

work and compare it with other approaches.

2.1 Mathematical Optimization

The process of decisionmaking relies heavily on optimization, which involves

selecting the most favourable option from a wide range of possibilities. The

selection of the ”best” choice is guided by the desire to make an optimal de-

cision. The quality of the available options is evaluated using an objective

function or performance index. Optimization theory and methods are con-

cerned with identifying the optimal solution based on the specified objective

function. Mathematically speaking, an optimization problem involves finding

the optimal solution within the set of feasible solutions. [10]
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A formal definition of an optimization problem is the following:

min
x∈Ω

f(x) (2.1)

The function f : Rn 7→ R is a real-valued function known as the objective

function or cost function that has to beminimized. The vectorx = [x1, ..., xn]T ∈

Rn of independent variables, often referred to as decision variables, belongs

to the set Ω, a subset ofRn, called the constraint set or feasible set. Whenever

the decision variables are constrained toΩ ⊂ Rn the problem is a constrained

optimization problem, on the other hand, if Ω = Rn it is referred to as an un-

constrained optimization problem. The constraint x ∈ Ω is called a set con-

straint, which takes the form Ω = {x : h(x) = 0, g(x) < 0}, where h and g

are given functions. Such constraints are referred to as functional constraints.

Beyond their basic structure, constrained optimization problems exhibit fur-

ther diversity based on the type of constraints they impose. These constraints

can manifest as linear, nonlinear, or convex relationships, while the functions

themselves can be either smooth and differentiable or discontinuous and non-

differentiable. Furthermore, the nature of the objective function itself adds

another layer of complexity: when objective functions are convex, optimiza-

tion problems fall into the category of convex optimization, characterized

by well-understood properties and efficient solution techniques. Conversely,

non-convex objective functions, which can havemultiple localminima or even

be discontinuous, present significant challenges and require specialized algo-

rithms for effective solution. Within the family of non-convex optimization

problems, one key characteristic to consider is whether the domain of the de-

cision variables is continuous or discrete; problems belonging to the former

category are continuous optimization problems while problems belonging

to the latter are discrete optimization problems.



2.1 Mathematical Optimization 6

Conventionally, problems are formulated in terms ofminimization for con-

sistency and to simplify the development of optimization theory and algo-

rithms. None the less, there are also optimization problems that require maxi-

mization of the objective function and they can be represented equivalently in

the minimization form above because maximizing f(x) is equivalent to min-

imizing −f(x) (max f(x) = min−f(x)). Therefore, we can confine our

attention to minimization problems without loss of generality.

The discussion of different problem types so far has implicitly assumed

complete knowledge of the objective function and all constraints, which is a

defining characteristic of deterministic optimization problems.

A deterministic optimization problem can be classified into several cate-

gories depending on the forms of the objective function, the type of constraints

or the domain of the decision variables and different techniques can be applied

in order to solve them based on the nature of their characteristics [36].

• whenever any of the objective function or the type of constraints are

nonlinear functions, problems like 2.1 are mixed-integer nonlinear pro-

grams (MINLP);

• on the other hand, whenever the objective function and the type of con-

straints are all linear functions, problems 2.1 become mixed-integer lin-

ear programs (MILP);

• whenever any of the objective function or the type of constraints are

nonlinear functions and there is no discrete decision variable, problems

2.1 belong to the category of nonlinear programs (NLP);

• on the other hand, whenever the objective function and the type of con-

straints are all linear functions and there is no discrete decision variable,

problems 2.1 are linear programs (LP).

While providing powerful tools for finding optimal solutions to problems

with well-defined parameters, deterministic optimization may fall short when
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faced with real-world scenarios characterized by uncertainty and variability.

In many practical applications, such as those in finance, engineering, and ma-

chine learning, the presence of random fluctuations, incomplete information,

or inherent variability complicates the optimization process. Deterministic

optimization methods may struggle to effectively address these challenges, as

they rely on precise knowledge of all parameters and assumptions of deter-

ministic behavior. Moreover, deterministic methods can reach their compu-

tational limits when dealing with complex optimization problems with many

variables and intricate constraints, thus, resulting in the necessity of powerful

tools such as probabilistic sampling and random exploration in order to tackle

large-scale problems where deterministic approaches might struggle to find

feasible solutions within reasonable time.

2.1.1 Optimization under uncertainty

Given the inherent unpredictability of real-world problems, stochastic opti-

mization techniques are specifically designed to handle situations where some

elements of the optimization problem are subject to randomness or uncer-

tainty. By incorporating probabilistic elements into the problem formulation

or optimization process, stochastic optimization methods offer a more realistic

and robust framework to find optimal solutions in the presence of uncertainty

[57]. Uncertainty is considered:

• exogenous: when external factors outside the decision-making process

cause the uncertainty (e.g., weather conditions);

• endogenous: when the uncertainty arises within the system itself and

future realizations can be affected by previous decisions (e.g., treatment

effectiveness in recovering from illness).

Stochastic optimization problems are typically tackled through either of-

fline or online methodologies. Offline techniques focus on generating a re-

silient solution by preemptively accounting for future uncertainty; however,
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they often come with high computational costs. On the other hand, online

algorithms make decisions after uncertainty is disclosed responding to data

sequentially without any knowledge of the future; they offer faster solutions

that make no assumptions about what might happen in the future, producing

myopic policies that potentially compromise the solutions’ quality due to lim-

ited time for computation.

This section delves into two prominent approaches for handling uncer-

tainty in optimization: robust optimization and stochastic programming. Each

approach tackles uncertainty differently, offering diverse tools to find optimal

solutions under various conditions. Finally, an overview of hybrid optimiza-

tion techniques is presented.

Robust Optimization

Robust optimization tackles uncertainty by considering a set of possible sce-

narios or uncertainty sets. By seeking solutions that remain feasible under

all scenarios within the uncertainty set, robust optimization provides a con-

servative, yet practical approach to handle uncertainty relying on worst-case

analysis. [21] Problems of this category are formulated as follows:

min
x∈Ω

max
u∈U

f(x, u) (2.2)

where the set U is known as the uncertainty set, which might affect both the

feasibility or the optimality of the solution. In the former case, the optimiza-

tion process seeks to optimize the objective over the set of solutions that are

feasible for all the possible realization in the uncertainty set. The latter fo-

cuses on obtaining a solution that performs well for any realization taken by

the unknown coefficients, usually by optimizing the worst-case objective.

Early research in robust optimization primarily focused on one-time deci-

sion making, where all decision variables are determined at once. However,

problems with uncertainty revealed over time could be tackled by repeatedly
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solving the multi-stage problem as new information arise and only implement-

ing the decisions relevant to the current stage. As the field developed, a key

research focus emerged: integrating this time-varying information efficiently

into the optimization model itself, leading to a more dynamic approach. Due

to the inherent complexities of multi-stage robust optimization, many theoreti-

cal works have focused on two-stage models [2][3]. Early robust optimization

simplified problem complexity by treating uncertainties as fixed parameters

within a defined set. This approach offered computationally efficient solutions

similar to deterministic approaches, avoiding the curse of dimensionality that

plagues stochastic and dynamic programming. Afterwards, researchers fo-

cused on bridging the gap between robust and stochastic optimization: quan-

tifying robust solutions’ performance under real-world, stochastic conditions

and re-examining robust optimization within the context of uncertain proba-

bility distributions.

Stochastic Programming

The field of stochastic programming evolved from deterministic linear pro-

gramming, with the introduction of random variables [45]. Stochastic pro-

gramming aims to find an optimal solution for optimization problems where

uncertainty is present in the form of random variables, modeled using proba-

bility distributions, affecting the objective function or constraints.

Stochastic programming finds applications across various fields due to its

ability to handle decision-making under uncertainty: it is applied to produc-

tion planning, supply chain management and risk management, as well as to

portfolio optimization, risk budgeting, energy sources management and many

more [24]. The generality of stochastic programming problem lends itself to

be applied to a variety of problems in different fields.

In the following two common formulation of stochastic programming are

presented, which have different objectives, yet, in more complex scenarios, a

combination of both may be better suited to the problem at hand [52].
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Chance-Constrained Formulation: this formulation ensures that the con-

straints are satisfied with a certain desired level of confidence (α). The prob-

lem with uncertain constraints which depend on a vector of random variables

ξ with distribution P can be formulated as:

min
x∈Ω

f(x)

s.t. P (g11(x, ξ) ≤ 0, ..., g1k1(x, ξ) ≤ 0) ≥ α1,

...

P (gm1(x, ξ) ≤ 0, ..., gmkm(x, ξ) ≤ 0) ≥ αm,

(2.3)

where α = (α1, ..., αm) are the given confidence levels αj ∈ (0, 1). The

formulation covers the joint (k1 > 1 and m = 1) as well as the separate

(kj = 1 andm > 1) chance-constrained problems as special cases [7].

ExpectedValueMinimization: this approach aims tominimize the expected

value of the objective function across various possible realizations of the ran-

dom variables.

min
x∈Ω

E[f(x, ξ)] (2.4)

where ξ is a vector of random variables.

Dantzig’s work in 1955 [12] marked a significant milestone in stochastic

programming: he introduced the two-stage stochastic programming prob-

lem, which has become a cornerstone concept in the field. The equation 2.4

can be divided in two stages where the first-stage decision are based on data

available at that time and should not depend on future observations, yielding

the following formulation:

min
x∈Ω

f(x) + E[Q(x, ξ)] (2.5)
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where Q(x, ξ) is the optimal value of the second-stage problem:

min
y∈Rm

q(y, ξ)

s.t. T (ξ)x+W (ξ)y = h(ξ)
(2.6)

where x ∈ Rn is the first-stage decision vector, Ω ⊆ Rn set of feasible solu-

tions, y ∈ Rm is the second-stage decision vector and ξ(q, T,W, h) contains

the data of the second-stage problem to be solved after a realization of ξ be-

comes available [53, 5].

Multi-stage Stochastic Programming Despite its seemingly static nature

of the two-stage stochastic programming model (2.5), it incorporates a sub-

tle dynamic element in its formulation: the sequential nature of function Q,

which is evaluated only after x is being instantiated, is an essential element of

decision making under uncertainty. Moreover, the model 2.5 assumes that the

uncertainties are realized only once after the first-stage decisions are made.

However, many real-world situations involve a series of decisions based on

evolving information. Multistage stochastic programming addresses the se-

quential realization of uncertainties by allowing them to unfold gradually over

discrete time periods called stages. Each stage incorporates the uncertainties

revealed at that specific point in time. The model 2.5 may be perceived as the

first stage of a more extensive multi-stage formulation whenever Q is defined

recursively.

Consider an N -stage problem: let the boundary conditions be given by

QN+1 ≡ 0, and let ξ0 denote a degenerate random variable reflecting the deter-

ministic information available prior to decisions of stage 1. For t = 1, ..., N ,

let ξt denote the history prior to stage t [i.e. ξt = (ξ0, ..., ξ(t−1))]. Note that

the decision variables at stage t depend on the history of the data process.

Hence these variables are functions of random variables, and will be denoted

xt(ξt). The entire history of decisions until stage t will then be represented as

a superscripted vector xt(ξt) = (x1(ξ1), x2(ξ2), ..., xt(ξt)), or simply xt. For



2.1 Mathematical Optimization 12

t = 2, ..., N , define the value functions [52]:

Qt(xt−1, ξt) = min
xt∈Ωt(xt−1,ξt)

ft(xt;xt−1, ξt) + E[Qt+1(xt, ξ̃t+1|ξt)]

s.t. Tt(ξt)xt−1(ξt−1) +Wtxt(ξt) = ht(ξt)
(2.7)

2.1.2 Hybrid Optimization Approaches

In numerous real-world scenarios, a significant amount of information about

the stochastic variables is known before the uncertainty is disclosed. This

drives the desire to develop hybrid offline/online approaches that leverage the

strengths of both methods to enhance solution quality and computational effi-

ciency. This section provides a brief overview of various hybrid optimization

approaches, offering a broad perspective of the field.

Many multi-stage optimization problems under uncertainty involve two

distinct phases: a strategic offline phase and an operational online phase.

While the offline phase allows for extensive planning (with minimal time con-

straints), the online phase is often subject to strict time limitations, requiring

decisions to be made quickly [13]. Given an n-stage stochastic optimization

problem modelled as a Markov Decision Process [47], the use of Dynamic

Programming as a solution method can be seen as a hybrid offline/online op-

timization approach. The policy and its corresponding value-function are it-

eratively improved offline, simulating executions, and then the resulting pol-

icy can be efficiently executed online. In recent years, researchers have pro-

posed hybrid stochastic/robust models (e.g. Zhao and Guan [70]) to address

the limitations of purely stochastic and robust approaches. These models aim

to leverage the strengths of both methodologies for better decision-making

under uncertainty in complex domains.

The ever-growing volume of data available in last decades presents a sig-

nificant advantage for tackling stochastic optimization problems: this vast

amount of information allows us to gain insights to inform and enhance the

decision-making processes involved in optimization problems. In particular,
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machine learning algorithms have emerged as powerful tools for extracting

valuable knowledge and uncovering hidden patterns from vast and intricate

datasets [44]. The area of machine learning has three major sub-fields:

• Supervised learning focuses on training models using labeled data,

where each data point has a corresponding label or target value. The

goal is to learn a mapping function from the input data to the corre-

sponding labels.

• Unsupervised learning deals with unlabeled data, where the data points

do not have predefined labels. The goal is to uncover hidden patterns

and structures within the data.

• Reinforcement learning involves training an agent to interact with an

environment through trial and error. The agent receives rewards or

penalties for its actions, and the goal is to learn an optimal policy to

maximize the long-term reward.

Integrating the insights gleaned from machine learning models can sig-

nificantly enhance the decision-making capabilities of optimization models in

several ways. Firstly, by leveraging insights gleaned from data, a more accu-

rate modeling of uncertainties can be achieved. This empowers the optimiza-

tion process to account for potential future variations with greater precision,

leading to more robust and reliable outcomes. While stochastic programming

assumes perfect knowledge of the probability distribution of uncertain param-

eters, such detailed information is often unavailable in real-world situations.

Relying solely on an assumed probability distribution in conventional stochas-

tic programming, as it may not reflect real-world distributions, can lead to

sub-optimal or even detrimental out-of-sample results [56].

Recognizing the limitations of traditional stochastic programming,Distri-

butionally Robust Optimization (DRO) [23] emerges as a new data-driven

approach. It tackles uncertainty by considering the ”worst-case” scenario
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within a set of possible probability distributions, referred to as ambiguity set,

rather than relying on a single assumed distribution. Unlike stochastic pro-

gramming, DRO leverages statistical inference and big data analytics to con-

struct the ambiguity set containing various potential distributions based on

available uncertainty data. This allows DRO to hedge against potential errors

in the assumed distribution, effectively incorporate real-world uncertainty data

into the decision-making process and having various applications in power

systems, such as unit commitment problems [68, 9, 17, 69], and optimal power

flow [62, 27].

Secondly, the integration of machine learning unlocks the power of predic-

tive analytics. By analyzing historical data and identifying trends, the model

can anticipate future events and proactively guide the decision-making pro-

cess. This proactive approach allows for capitalizing on opportunities and

mitigating potential risks, leading to improved overall performance. A com-

mon name that identifies this paradigm is predict-then-optimize, where the

optimizationmodel is used to generate decisions, based on key parameters pre-

dicted by a machine learning algorithm. A growing trend in analytic solutions

for real-world challenges is the combination of prediction and optimization,

see Chan, Farias, Bambos, and Escobar [8], Deo, Rajaram, Rath, Karmarkar,

and Goetz [16], Gallien, Mersereau, Garro, Mora, and Vidal [22], Mehrotra,

Dawande, Gavirneni, Demirci, and Tayur [40], and den Hertog and Postek

[15] as examples. Most machine learning tools are not designed to consider

how their predictions will be used in subsequent optimization tasks. Recent

advancements led to the development of machine learning tools that take into

account how their predictions will be used in optimization problems: the gen-

eral framework called Smart “Predict, then Optimize” (SPO)[18] explicitly

uses the structure of the nominal optimization problem in order to evaluate the

quality of the prediction. In the SPO framework, the prediction model is op-

timized in order to generate predictions that aim to minimize decision error,

not prediction error: the loss is the true cost of the decision induced by the
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predicted parameters minus the optimal cost under the true parameter after its

realization. This approach has numerous applications in different real-world

scenarios, including:

• Vehicle routing problems, where the cost of each edge of a graph needs

to be predicted before making a routing decision.

• Inventory management, where the production demands are the key

input into the optimization model.

• Portfolio optimization, where the returns of potential investments can

be estimated from data.

Finally, machine learning models possess the remarkable ability to con-

tinuously learn and adapt as they are exposed to new data. This allows the

optimization model to dynamically adjust its strategies in response to evolv-

ing conditions, ensuring its continued effectiveness in the face of changing

circumstances. This sequential ecision-making process closely aligns with

Reinforcement Learning (RL), which will be covered in detail in Section 2.2.

The interplay between RL and stochastic optimization has been extensively

explored by [46], emphasizing their shared goal of finding optimal decision-

making strategies over time in dynamic and uncertain environments.

In essence, machine learningmodels act as powerful informants for the op-

timization process, enabling it to operate in a dynamic and data-drivenmanner.

This synergy between optimization and machine learning paves the way for

more informed, adaptable, and effective decision-making in an ever-evolving

world.

2.2 Reinforcement Learning

Learning through interaction is a fundamental principle in many theories of

learning and intelligence. This includes infants, who learn by interacting with
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their environment through exploration and experimentation. This goal-directed

learning through interaction is also the core concept behind Reinforcement

Learning. It is simultaneously a problem, a class of solution methods that

work well on such problems, and the field that studies these problems and

their solution methods. Three key characteristics distinguish reinforcement

learning problems:

• closed-loop system: the learner’s actions directly influence future inputs

and experiences.

• trial and error: the learner discovers themost rewarding actions through

experimentation, not explicit instruction.

• long-term effects: actions can impact not only immediate rewards but

also future situations and rewards.

These characteristics differentiate RL from other learning approaches and high-

light its unique approach to learning through interaction and exploration [59].

In the reinforcement learning framework, the agent represents the learner

or decision-maker who interacts continually with the environment, which pro-

vides new situations and generates rewards, special numerical values that the

agent tries to maximize over time. A complete specification of the environ-

ment defines a specific RL task.

More specifically, the interaction between an agent and the environment

happens over discrete time steps (t = 0, 1, 2, 3, ...): at each time step (t), the

agent observes the environment’s state, St ∈ S , where S is the set of all pos-

sible states; based on the state, the agent selects an action At ∈ A(St) from

the set of available actions in state St, denoted by A(St); one time step later

the agent receives a numerical reward Rt+1 ∈ R ⊂ R and finds itself in a

new state, St+1 (refer to Figure 2.1 for a visual representation of this interac-

tion loop). The sequence of all states, actions and rewards generated is called

trajectory(τ ) which looks like S0, A0, R1, S1, A1, R2, S2, A2, R3, ....



2.2 Reinforcement Learning 17

Figure 2.1: The agent–environment interaction in reinforcement learning.
From Sutton and Barto [59]

The framework that is usually employed to formally describe RL dynamics

is that of Markov Decision Processes (MDPs). A MDP is usually defined as

a 5-tuple (S,A,R, P, ρ0), where ρ0(s) is the starting state distribution (i.e.

the probability that state s is the first state encountered by the agent) and the

function P : S ×R×S ×A 7→ [0, 1] defines the dynamics of the system: for

particular values of s′ ∈ S and r ∈ R, there is a probability of those values

occurring at time t, given particular values of the immediately preceding state

and action St−1 and At−1(also known as the Markov Property). A formal

definition of P follows:

P (s′, r|s, a) .=Pr{St = s′, Rt = r|St−1 = s, At−1 = a}

∀s, s′ ∈ S,∀r ∈ R, ∀a ∈ A(s)
(2.8)

This function is the starting point for anything else one might want to compute

about the environment’s dynamics, such as state-transition probabilities, but,

most importantly, the expected rewards for state-action pairs (r : S×A 7→ R):

r(s, a) .= E[Rt|St−1 = s, At−1 = a] =
∑
r∈R

r
∑
s′∈S

P (s′, r|s, a) (2.9)

[59].

The tasks the agent undertakes can usually be classified into two types:

• Episodic tasks are characterized by episodes, identified by a clear be-

ginning and end: each episode ends in a terminal state after T steps,
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followed by a reset to a standard starting state or to a sample of a distri-

bution of starting states. The following episode is completely indepen-

dent from the previous one.

• Continuing tasks, on the other hand, do not have a defined endpoint.

These tasks are ongoing, and the agent aims to continuously collect re-

wards over an indefinite period.

In reinforcement learning, the ultimate objective of the agent is to act in

a way that maximizes its rewards over time. However, the notion of ”time”

introduces complexity because rewards received in the immediate future are

often considered more valuable than those received in the distant future. In the

case of continuing tasks, the distinction between immediate and distant future

rewards becomes critical: without a terminal state to provide natural breaks in

the decision-making process, the agent must meticulously balance the value

of immediate rewards against those that it might receive in the distant future.

It is possible to overcome this challenge through the introduction of a dis-

count factor denoted as γ ∈ (0, 1], whose purpose is to weight rewards re-

ceived at varying time distances, essentially acting as a trade off between im-

mediate and future rewards.

Given this, the agent’s goal can be encapsulated by an objective function

that seeks to maximize the expected return: the discounted sum of future

rewards. This is mathematically represented as:

Gt =
T∑
k=0

γkRt+k+1 (2.10)

where Gt represents the total discounted reward from time step t on. Rt+k+1

is the reward received after k + 1 time steps from time t, and γk effectively

discounts the reward’s value. This notation includes the possibility that T =

∞ or γ = 1 (but not both).

The agent, through its interactions with the environment, seeks a policy,
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π, which governs how it selects actions based on the current state. This pol-

icy is aimed at maximizing not just the immediate reward, but the cumulative

discounted rewards it expects to receive over the future. Formally, the op-

timal policy, denoted as π∗, is the one that maximizes the expected sum of

discounted rewards from any given state, s, as:

π∗ = arg max
π

J(π)

= arg max
π

Eπ[Gt]

= arg max
π

Eπ
[
T∑
t=0

γtr(St, At)|S0 = s, π

] (2.11)

Here, Eπ[·] denotes the expectation, which considers that actions are selected

according to policy.

At the core of most reinforcement learning algorithms lies the concept of

value functions [59]. These functions, defined for states or state-action pairs,

estimate the expected future benefit the agent can anticipate from being in a

particular state (or taking a specific action in that state). This ”benefit” is often

referred to as the expected return, which considers the sequence of rewards the

agent might receive in the future. The state value function, denoted V π(s),

quantifies the expected long-term return an agent can achieve starting from

state s and following policy π thereafter: V π(s) = Eπ[Gt|St = s]. It has

its optimal counterpart denoted as: V ∗(s) = maxπ V π(s), that follows the

optimal policy π∗. Similarly, we define the value of taking action a in state

s under a policy π, namely action-value function, denoted Qπ(s, a), as the

expected return starting from s, taking the action a, and thereafter following

policy π: Qπ(s, a) = Eπ[Gt|St = s, At = a], with the optimal counterpart

denoted as: Q∗(s, a) = maxπQπ(s, a), acting according to the optimal policy

π∗.

In the following sections, approximation of value functions and policies

will be carried out through the use of neural networks since they are widely

used for nonlinear function approximation [11]. The sets of parameters will be
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denoted by letters such θ, ψ or ϕ, and then written as a subscript on the policy

or value functions symbols: πθ, Vψ, Qϕ.

Action-Value Methods

The Bellman equation captures a fundamental property of the optimal action-

value function Q∗(s, a): if Q∗(s′, a′) was known for all possible next states

s′ and actions a′, then the optimal strategy would be to select the action a′

maximising the expected value of r + γQ∗(s′, a′):

Q∗(s, a) = E[r + γmax
a′

Q∗(s′, a′)|s, a] (2.12)

Reinforcement learning algorithms leverage this principle to iteratively esti-

mate the action-value function by applying the Bellman equation as an itera-

tive update Qi+1(s, a) = E[r + γmaxa′ Qi(s′, a′)|s, a] that converges to the

optimal action-value function as i→∞ [59].

Training algorithm for deep Q-networks. In practice, it is common to use

a function approximator to estimate the action-value function: letQϕ(s, a) be

an approximate action-value function with network parameters ϕ, referred to

as Q-network Qϕ(s, a) ≈ Q∗(s, a) [42]. Q-learning algorithm [63] is model-

free, meaning it doesn’t feature, nor learn, a model of the environment (i.e. a

function that predicts state transitions and rewards), and off-policy: it learns

about the greedy policy a = arg maxa′ Qϕ(s, a′), while following a behaviour

distribution that ensures adequate exploration of the state space. In practice,

the behaviour distribution is often implemented by an ϵ-greedy policy that

follows the greedy policy with probability 1 − ϵ and selects a random action

with probability ϵ. Off-policy learning benefits from the use of experience

replay [38]: the agent stores experiences as tuples (st, at, rt, st+1) at each time-

step t in a replay bufferD. During learning, Q-learning updates are calculated

on samples (or minibatches) of experience (s, a, r, s′) ∼ D, drawn uniformly
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at random from the pool of stored samples. The Q-network can be trained by

minimizing a sequence of loss functions Li(ϕi) that changes at each iteration

i:

Li(ϕi) = E(s,a,r,s′)∼D

[(
r + γmax

a′
Qϕ̄i

(s′, a′)−Qϕi
(s, a)

)2
]

(2.13)

where ϕi are the parameters of the Q-network at iteration i and ϕ̄i are the net-

work parameters used to compute the target at iteration i. The target network

parameters ϕ̄i are only updated with the Q-network parameters ϕi every C

steps (or at every step through Polyak’s averaging [37]) and are held fixed

between individual updates [43].

Policy Gradient Methods

Having explored action-valuemethods, which rely on calculating action-values,

this section introduces policy gradient methods. These methods directly learn

a parameterized policy, denoted as πθ, which can select actions without re-

quiring a value function. While a value function can contribute to learning the

policy’s parameters, it’s not essential for action selection [59]. The notation

πθ(a|s) denotes the probability that, at time t with parameters θ, the action a

is chosen given the environment is in state s.

Policy gradient methods focus on learning the optimal policy parameters

leveraging the gradient of a performance measure, Jπ(θ), which is a scalar

value indicating how well the agent performs under policy πθ. The ultimate

goal is to maximise this performance measure, achieved through gradient as-

cent updates approximated as follows: θt+1 = θt+αθ∇Ĵπ(θt), where∇Ĵπ(θt) ∈

Rd represents a stochastic estimate whose expectation approximates the gra-

dient of the performance measure with respect to the argument θ ∈ Rd.

For the sake of simplicity and without loss of generality, we will focus

on the episodic case; similar derivations are provided for the continuing case

(see Sutton and Barto [59]). In the episodic case, the performance measure is
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defined as Jπ(θ) .= V πθ(s0)where V πθ is the true value function for policy πθ.

The policy gradient theorem provides an analytic expression for the gradient

of performance with respect to the policy parameter that does not involve the

derivative of the state distribution:

∇Jπ(θ) =∇V πθ(s0)

∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇πθ(a|s)

=Eπ [Qπ(St, At)∇πθ(At|St)] replaced a, s with At ∼ π, St ∼ π

=Eπ
[
Gt
∇πθ(At|St)
πθ(At|St)

]

where µ is the on-policy distribution under π.

This derivation yields the REINFORCE update [65] :

θt+1
.= θt + αθGt

∇πθ(At|St)
πθ(At|St)

(2.14)

This can be generalized to include a comparison of the action value to an ar-

bitrary baseline b(s), any function that does not vary with a:

θt+1
.= θt + αθ(Gt − b(St))

∇πθ(At|St)
πθ(At|St)

= θt + αθ(Gt − b(St))∇ log πθ(At|St)
(2.15)

One natural choice for the baseline is an estimate of the state value V̂ π
ψ (St),

which reduces variance but introduces bias [25]. The simplest method for

learning V̂ψ is to minimize a mean-squared-error objective similarly to 2.13

by updating neural network parameters ψ as follows:

ψt+1
.= ψt + αψ(Gt − V π

ψ (St))∇V π
ψ (St) (2.16)
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Figure 2.2: The actor-critic architecture. From Sutton and Barto [59]

Actor-Critic Methods

Methods that concurrently learn approximations of both the policy and value

function are categorized as actor-critic methods. In these methods, the ”ac-

tor” refers to the learned policy, while the ”critic” represents the learned value

function. Although REINFORCE with baseline involves learning both a pol-

icy and state-value functions, it is not classified as an actor-critic method. The

key difference lies in how the value function is utilized: in REINFORCE with

baseline, the state-value function acts solely as a baseline for comparison, not

as a critic directly influencing policy updates. On the other hand, typical actor-

critic methods leverage TD (temporal-difference) learning [58], which inher-

ently involves bootstrapping. This learned value function then serves as a

critic, providing feedback for refining the actor (policy). See Figure 2.2.

The one-step actor-critic method replaces the full return of REINFORCE

(2.15) with the one-step return using a learned state-value function as baseline

as follows:

θt+1
.= θt + α(Rt+1 + γV̂ π

ψ (St+1)− V̂ π
ψ (St))

∇πθ(At|St)
πθ(At|St)

= θt + αδt∇ log πθ(At|St)
(2.17)
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2.2.1 A2C

It was first proposed in Mnih et.al. [41], where the authors actually describe

an asynchronous algorithm called A3C; lately empirical studies have shown

that good performances can be obtained by its synchronous version (A2C)

[67]. Advantage Actor-Critic (A2C) is the simplest actor-critic algorithm: it

maintains a policy πθ(at|st) and an estimate of the value function V π
ψ (St). The

update performed by the algorithm can be seen as a generalization of 2.17:

θt+1
.= θt + α∇Aπ(St, At) log πθ(At|St) (2.18)

where Aπ(St, At) is the advantage function, generally defined as the rela-

tive advantage of an action compared to the average value of all possible ac-

tions in a given state: Aπ(s, a) = Qπ(s, a) − V π(s). This function yields

almost the lowest possible variance, though in practice, it is not known and

must be estimated [50]. The estimate can be as simple as the TD(0) δt =

Rt+1+γV̂ π
ψ (St+1)−V̂ π

ψ (St) employed in one-step actor-critic. Even though, a

more powerful estimate has been proposed by Schulman et. al. [50], theGen-

eralized Advantage Estimator (GAE), in order to balance the bias-variance

trade-off:

Â
GAE(γ,λ)
t :=

∞∑
l=0

(γλ)lδt+1 (2.19)

The policy and the value function are updated after every tmax actions or when

a terminal state is reached. Moreover, the entropy of the policy π can be added

to the objective function in order to improve exploration by discouraging pre-

mature convergence to sub-optimal deterministic policies, as first proposed by

Williams & Peng [66]:

θt+1
.= θt + α∇Aπ(St, At) log πθ(At|St) + β∇H(πθ(·|St)) (2.20)

whereH is the entropy and the hyper-parameter β controls the strength of the

entropy regularization term.
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2.2.2 PPO

A simple yet effective method to improve the performances of policy gradient

methods is that of enforcing a trust region when updating the policy, that is,

limiting how much the policy can move in the parameter space during a single

update step. The first notorious example of this class of techniques is Trust

Region Policy Optimization (TRPO) [49], which enforces the trust region

constraint via a KL divergence constraint between old and new policy. TRPO

features theoretical guarantees of monotonic improvement at each policy up-

date step, yet its reliance on second-order optimization practically becomes

expensive and not scalable.

This challenge of relying on second-order optimization was later solved

by Proximal Policy Optimization (PPO) [51], which proposed a simpler trust

region mechanism by employing a surrogate objective function that can op-

timized with a first-order method. The general problem addressed by trust

region methods in RL can be formulated as follows:

π∗ = arg max
π

Jπ(θ)

s.t. DKL(πθt , πθt+1) ≤ δ
(2.21)

whereDKL is an average KL-divergence between policies. PPO authors pro-

pose two variant of the surrogate objective:

• PPO-Penalty incorporates KL divergence into the objective function as

a penalty term and dynamically adjusts the penalty coefficient through-

out training to ensure appropriate scaling.

• PPO-Clip doesn’t take into consideration a KL-divergence term in the

objective, it relies instead on specialized clipping in the objective func-

tion.

For the sake of simplicity and without loss of generality, we’ll focus on PPO-

Clip since in the original experiments by [51], researchers found it to be the
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best performing among the proposed variants. Let prt(θ) = πθ(at|st)
πθold (at|st) denote

the probability ratio between policies after an update, so that prt(θold) = 1.

The new surrogate objective is transformed as follows:

Jπ(θ) = E
[
min(prt(θ)Ât, clip(prt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(2.22)

where epsilon is a small hyperparameter, usually ϵ = 0.2. Strategically clip-

ping the probability ratio to be in the interval [1−ϵ, 1+ϵ] removes the incentive

for moving too far away from the old policy. Similarly to 2.20, the objective

can be augmented by adding an entropy bonus to ensure sufficient exploration.

2.2.3 DDPG

Deep Deterministic Policy Gradient (DDPG) [37] can be seen as a com-

bining ideas from the DQN algorithm [43] — notably the use of a target net-

work and the experience replay mechanism—with those from policy gradient

methods, resulting in a model-free, off-policy algorithm that learns policies in

continuous action domains. In particular, DDPG employs the same principle

of deterministic policy gradient [54] where the policy function directly maps

states to actions, denoted by µθ(s), with θ representing the parameters of the

policy network. This contrasts with stochastic policies used in algorithms like

A2C, PPO and SAC, providing a more straightforward approach for continu-

ous actions by eliminating the need to sample them. DDPG also incorporates

two key techniques fromDQN to stabilize training that were discussed in para-

graph 2.2: it adopts target networks for both the actor and the critic, denoted

as µθ̄ and Qϕ̄ respectively, as well as employing an experience buffer replay

to store the agent’s experiences.

The critic is trained byminimizing the mean squared Bellman error (notice
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the usage of the actor target network when computing the target):

LQ(ϕ) =E(st,at,rt+1,st+1,d)∼D
[
(Qϕ(st, at)− yt(rt+1, st+1, d))2

]
where yt(rt+1, st+1, d) = rt+1 + γ(1− d)Qϕ̄(st+1, µθ̄(st+1))

(2.23)

and D is the replay buffer. Then, the actor is learned simply by performing

gradient ascent with respect to policy parameters on:

max
θ

Est∼D [Qϕ(st, µθ(st))] (2.24)

Exploration poses a significant challenge when learning in continuous ac-

tion spaces. However, off-policy algorithms like DDPG offer an advantage:

the exploration process can be addressed independently from the learning al-

gorithm itself. An exploration policy µ′ is constructed by augmenting the ac-

tion of policy µθ with sampled noise from a noise process N :

µ′(st) = clip(µθ(st) + ϵ, alow, ahigh) where ϵ ∼ N (2.25)

In the original version by [37], N was chosen to be an Ornstein-Uhlenbeck

process [60].

2.2.4 TD3

Twin Delayed Deep Deterministic policy gradient (TD3) [20] builds upon

DDPG by introducing key improvements aimed at addressing the problem

of overestimation bias in value function estimation, which can significantly

impact the performance and stability of training in deep reinforcement learning

algorithms. TD3 specifically targets continuous control tasks and proposes

three critical enhancements to the basic DDPG framework:

1. Target Policy Smoothing: TD3 adds noise to the target action, sam-

pled from a clipped normal distribution, to smoothen the policy. This
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smoothing is applied when computing the target values during critic up-

dates, making the algorithm less sensitive to outliers:

ā(st+1) = clip(µθ̄(st+1) + clip(ϵ,−c, c), alow, ahigh), ϵ ∼ N (0, σ)

(2.26)

where c is a small constant, preventing excessive deviation from the

original action µθ̄(st+1).

2. Clipped Double-Q Learning: TD3 learns two critic networks (in par-

ticular Q-networks) concurrently, Qϕ1(s, a) and Qϕ2(s, a), and uses the

minimum of their predictions to update the action values. This ap-

proach is inspired by Double-Q Learning [30] and is designed to miti-

gate overestimation by taking the minimum estimate from the two critic

networks:

y(rt+1, st+1, d) = rt+1 + γ(1− d) min
i=1,2

Qϕ̄i
(st+1, ā(st+1)) (2.27)

where Qϕ̄i
are the target networks of the two critic networks, and µθ̄ is

the target network for the actor. The two critic networks are learned by

regressing the following target:

JQ(ϕi) = E(st,at,rt+1,st+1,d)∼D
[
(Qϕi

(st, at)− y(rt+1, st+1, d))2
]
(2.28)

3. Delayed Policy Updates: Policy and target networks are updated less

frequently than the critic networks, specifically every policy_delay

steps, where policy_delay > 1. This delay reduces the impact of

value overestimation on policy updates, promoting a more stable and

reliable improvement.

Lastly, the policy is learned just as 2.24, but employing Qϕ1 as critic.

TD3 designs an exploration policy like 2.25 where the noise is sampled from
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N (0, σ). Moreover, in order to further improve exploration and remove the

dependency on the initial policy parameters, a completely random policy runs

on the environment for the first init_random_frames.

Together, these innovations form the TD3 algorithm, achieving notable

improvements in stability and performance over its predecessor DDPG [20].

2.2.5 SAC

Soft Actor Critic considers a more general maximum entropy objective (see

e.g. [71]) that generalizes the standard objective 2.11 by augmenting it with

an entropy term, such that the optimal policy additionally aims to maximize

its entropy at each visited state:

π∗ = arg max
π

∑
t

E(st,at)∼ρπγ
t[r(st, at) + αH(π(·|st))] (2.29)

where α is the temperature parameter that determines the relative importance

of the entropy term versus the reward, and thus controls the stochasticity of

the optimal policy. The entropy is calculated asH(π(·|s)) = − log π(·|s).

In this different settings, the value function and the state-value function

change in order to include the entropy term:

V π(s) = E(st,at)∼ρπ

[ ∞∑
t=0

γt(r(st, at) + αH(π(·|st)))|s0 = s

]
(2.30)

Qπ(s, a) = E(st,at)∼ρπ

[ ∞∑
t=0

γt(r(st, at) + αH(π(·|st)))|s0 = s, a0 = a

]
(2.31)

where V π and Qπ are connected by V π(s) = Ea∼π [Qπ(s, a)] + αH(π(·|s)).

Soft Actor Critic algorithm concurrently learns a policy πθ and two Q-

functions Qϕ1 , Qϕ2 , while in the original formulation ([28]) it learned also a

value function Vψ, recent formulations omit it since it can be substituted by

the Q-function. Note that in the following, we will refer to r(st, at) as rt+1.

Both Q-functions can be trained to minimize the soft Bellman residual, by
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regressing to a single shared target:

JQ(ϕi) = E(st,at,rt+1,st+1,d)∼D

[1
2

(Qϕi
(st, at)− y(rt+1, st+1, d))2

]
(2.32)

where the target y is computed using the target Q-networks:

y(rt+1, st+1, d) = rt+1+γ(1−d)
(

min
j=1,2

Qϕ̄j
(st+1, ãt+1)− α log πθ(ãt+1|st+1)

)
(2.33)

where ãt+1 ∼ πθ(·|st+1) and the target Q-networks (Qϕ̄1,2) are obtained by

polyak averaging the Q-network parameters over the course of training [43].

The policy parameters can be learned by directly minimizing the expected

KL-divergence:

Jπ(θ) = Est∼D

[
Eat∼πθ

[
α log(πθ(at|st))− (min

j=1,2
Qϕj

(st, at))
]]

(2.34)

From a practical point of view, in order to optimize the policy (given that we

use a neural network to approximate the policy) we can apply the reparametriza-

tion trick, in which a sample from πθ(·|s) is drawn by computing a determin-

istic function of the state, the policy parameters and independent noise:

ãθ(s, ξ) = tanh(µθ(s) + σθ(s)� ξ), ξ ∼ N (0, I) (2.35)

The tanh ensures that actions are bounded to a finite range and changes the

distribution. The reparameterization trick allows us to rewrite the expectation

over actions into an expectation over noise:

Jπ(θ) = Est∼D,ξ∼N

[
α log(πθ(ãθ(st, ξ)|st))− (min

j=1,2
Qϕj

(st, ãθ(st, ξ)))
]

(2.36)

In the first paper of Soft Actor Critic ([28]), the temperature parameter is

subsumed into the reward scaling factor, specifically by scaling the reward by
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α−1. In the followup paper ([29]) the reward scaling is not used and the α pa-

rameter is learned instead. Unfortunately, choosing the optimal temperature

α is non-trivial and it needs to be tuned for each task. Instead of requiring the

user to set the temperature manually, this process can be automated by formu-

lating a different maximum entropy reinforcement learning objective, where

the entropy is treated as a constraint. Through mathematical manipulation, we

can derive the following loss for the α parameter:

J(α) = Eat∼πt

[
−α log πt(at|st)− αH̄

]
(2.37)

where H̄ is an hyperparameter. A classic heuristic for choosing H̄ is H̄ ∝

dim(A), where A is the action space, e.g. H̄ = −dim(A) as suggested by

the authors [29].

The method alternates between collecting experience from the environ-

ment with the current policy and updating the function approximators using

the stochastic gradients from batches sampled from a replay buffer.

2.3 The UNIFY Framework

The UNIFY framework, proposed in [55], is a novel approach for solving

constrained optimization problems by integrating traditional machine learning

models with constrained optimization techniques. It outlines how complex

decision-making processes, which are traditionally hard to handle due to their

requirement for feasible decisions within possibly unstructured spaces, can be

simplified through a strategic decomposition of the decision-making policy.

Let x ∈ X be a vector representing observable information and the con-

strained policy π(x, θ) 7→ z ∈ C(x) with z being the decisions vector. The

fundamental insight lies in representing the constrained policy that should ad-

dress the decision-making problem as a combination of a machine learning

(ML) model denoted by h(x, θ) and a traditional constrained optimization
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problem solved by a function g(x, y). This decomposition is formalized as

follows:

π(x, θ) = g(x, h(x, θ)) (2.38)

Here, the function g(x, y) is defined as a constrained optimization problem:

g(x, y) ≡ arg min
z∈C̃(xy)

f̃(x, y, z) (2.39)

In this formulation, y, the output of theMLmodel, acts as a virtual param-

eter vector influencing both the feasible set C̃ and the cost f̃ of the optimiza-

tion problem, hence termed virtual feasible set and virtual cost, respectively.

This approach enables the policy to navigate complex decision spaces and en-

force feasibility more conveniently by leveraging any traditional constrained

optimization methods (e.g., Mathematical Programming, Constraint Program-

ming, or the Alternating Direction Method of Multipliers).

The reformulated problem becomes a bi-level optimization challenge, com-

bining unconstrained optimization concerning θ and constrained optimization

on z. Strategies for tackling this problem might involve the classical sub-

gradient method, especially when the model h is differentiable. This process

involves a “forward pass” where h is evaluated and z computed, followed by a

“backward pass” where z’s value is fixed, and h is differentiated with respect

to parameters θ.

A remarkable facet of this reformulated policy is the introduction of vir-

tual parameters (y): the selection of y is identified as a design decision and

represents a creative challenge in applying this methodology. Given the influ-

ence of y on C̃ and f̃ , there’s a consequently design flexibility that can be used

to partition the challenging aspects of the original problem into either h or g,

by introducing or modifying elements like constraints, cost terms, or incor-

porating buffer schemes within g. This design flexibility empowers tackling

the complexities of the original problem more adeptly, even though it does

require a degree of creativity and expertise to be effectively used.
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In sequential decision-making scenarios, this framework can be extended

to frame problems as Markov Decision Processes (MDP), to accommodate

situations where decisions unfold over time. In this setting, the MDP is char-

acterized by a set of observable states (X), a decision space (Z), a state transi-

tion probability distribution (p+), a cost function (f ), an initial state probability

distribution (p1), and a discount factor γ ∈ (0, 1], which ensures convergence

in infinite sequences. At each time step (k), an observation of a new state (xk)

leads to the making of a decision (zk), resulting in a transition to the next state

(xk+1) according to p+(xk+1, xk, zk).

The training problem for sequential decision-making is then formulated as

a minimization of the expected discounted cost over trajectories, represented

mathematically as:

arg min
θ∈Θ

Eτ∼p

[
eoh∑
k=1

γkf(xk+1, xk, zk)
]

zk = g(xk, yk) = arg min
z∈C̃(xk,yk)

f̃(xk, yk, zk)

yk = h(xk, θ)

(2.40)

where (θ) represents the parameters of the machine learning (ML) model, (τ )

denotes a trajectory comprising sequences of states (i.e. the ML model out-

puts) and decisions (xk, yk, zk) from the beginning to the end of a horizon

(eoh); p(τ) is the probability of observing such a trajectory, calculated as the

product of the probability of the initial state and subsequent state transitions

along the trajectory.

This sequential formulation bridges directly to the realm of Reinforcement

Learning (RL), where the function h can be interpreted as an RL policy inter-

acting with an environment that incorporates the function g during training.

This identification with reinforcement learning provides a natural pathway in

order to apply such algorithms to the training problem, facilitating the incor-

poration of sequential decision-making challenges into the framework.
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Furthermore, the sequential formulation showcases how theUNIFY frame-

work can be extended beyond single-step decision-making problems, empha-

sizing the framework’s versatility and adaptability to complex decision-making

scenarios through the integration of machine learning and optimization strate-

gies within an MDP framework.

2.3.1 Comparison with Other Approaches

The UNIFY framework can be compared to other notable approaches used

in literature to solve the same class of problems, shedding light on its unique

attributes and potential advantages.

UNIFY is more flexible than Decision Focused Learning (DFL)[64], en-

abling better handling of general constraints, cost functions, and sequential

decision-making. Unlike DFL, which lacks virtual parameters and often as-

sumes a fixed feasible space, UNIFY incorporates these features, potentially

enhancing convergence and solution quality during training. However, UNIFY

may face similar challenges as DFL in certain cases, especially when dealing

with linear cost coefficients.

With regards to approaches from constrained RL [39], UNIFY is shown

to generalize those methods, overcoming limitations of RL approaches that

either reshape rewards to accommodate constraints or project policy parame-

ters to achieve feasible solutions. By separating the machine learning model

from decision vectors, UNIFY allows for more complex and flexible problem-

solving structures, potentially yielding superior outcomes.

Finally, by incorporating machine learning predictions into optimization

models, UNIFY can provide more robust and efficient solutions compared to

traditional stochastic optimization techniques [45], given that the computa-

tional cost of ML model can be paid in a single offline training phase, making

inference much more efficient. For further reference on UNIFY’s relation to

other approaches, please refer to [55].



Chapter 3

Experimental Setup

In this chapter we discuss the empirical evaluation methodologies. We start by

presenting the use cases considered, namely the Energy Management System

problem and the Set Multi-Cover with stochastic coverages problem; both

use cases are based on [55]. We then describe the training and evaluation

methodologies, with a focus on the different decisions taken w.r.t. [55]. We

conclude the chapter by describing how theHyperparameter Tuning phase was

structured and performed.

3.1 Use Cases

This section explores two principal use cases presented within the UNIFY

framework [55], which are pivotal to understanding its applications: an En-

ergyManagement System (EMS) and a Set Multi-cover with stochastic cover-

ages problem. These cases not only exemplify the framework’s versatility in

handling diverse real-world constrained optimization problems, but also serve

as the foundation for this thesis experiments. In particular, the nuanced chal-

lenges these use cases present, ranging from real-world data integration to ab-

stract mathematical formulation, will be subjected to empirical examination

under various reinforcement learning algorithms integrated into the UNIFY

framework.
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3.1.1 Energy Management System (EMS)

The EnergyManagement System (EMS) faces a highly uncertain environment

due to uncontrollable fluctuations in consumption load and the integration of

Renewable Energy Sources (RES). Based on real-time energy prices and fore-

casts regarding the availability of distributed energy resources (DERs)[1] and

future consumption, the EMS must make critical decisions:

• Energy production: Determine the total amount of energy to be gener-

ated.

• Generator selection: Choose the specific generators to be used for pro-

duction.

• Energy management: Decide whether to store surplus energy or sell it

to the energy market.

For this problem, the available data includes historical costs, forecasts, and

real-time measurements of power generation and consumption. The optimiza-

tion process aims to minimize the overall power flows cost while adhering to

constraints that ensure power balance and stay within power flow limits. In

order to integrate this optimization problem in the UNIFY framework a pre-

vious study [14] introduced a virtual model parameter: assigning a (typically

absent) cost to the storage equipment improved the performance of a tradi-

tional optimization method that relied on KKT conditions.

The problem can be addressed with two different formulations: the first

considers a single-stage problem (SINGLE-STEP), where a comprehensive

plan for the entire day is created in advance, encompassing 96 time units (each

15 minutes long); the second frames it as a sequential decisions problem (SE-

QUENTIAL), where actions are taken for each individual time unit (15 min-

utes), looking one step ahead, until the planning horizon is complete. Either

case, the problem is composed of two macro steps: an offline phase involving
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the training of a RL agent to find the optimal virtual parameter and an on-

line parametric algorithm, implemented within a simulator, that tries to make

optimal online choices, by building over the offline decisions.

Online Phase: LP model

The online step employs a myopic (greedy) heuristic to minimize costs and

satisfy energy demands by manipulating energy flows between sources. This

approach can be formulated as a linear programming (LP) model. A complete

summary of all power flows can be seen in Table 3.1. For each stage k up to n,

the decision variables xgk are the power flows between nodes in g ∈ G and cg

are the associated costs. All flows must satisfy the lower and upper physical

bounds xg and xg. Index 0 refers to the input power flow to storage system

and the index 1 to the respective output power flow. Hence the virtual cost

associated with the input to storage system is c0
k . The battery charge, upper

limit and efficiency are τ,Γ and ν. The EMS must satisfy the user demand at

each stage k referred to as L̃k .

SINGLE-STEP formulation:

min
x

n∑
k=1

∑
g∈G

cgkx
g
k

s.t. L̃k =
∑
g∈G

xgk

0 ≤ τk + η(x0
k − x1

k) ≤ Γ

xgk ≤ xgk ≤ xgk

(3.1)
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DV Power Flow Description Bounds
x0 Input to storage Energy stored into the battery. [0, 200]
x1 Output from storage Energy retrieved from the battery. [0, 200]
x2 Diesel power Energy produced using the traditional generator. [0, 1200]
x3 Energy bought Energy bought from the grid (i.e. market). [0,∞]
x4 Energy sold Energy sold to the grid (i.e. market). [0, 600]

Table 3.1: Description of each decision variable (i.e. power flows).

SEQUENTIAL formulation:

min
x

∑
g∈G

cgkx
g
k

s.t. L̃k =
∑
g∈G

xgk

0 ≤ τk + η(x0
k − x1

k) ≤ Γ

xgk ≤ xgk ≤ xgk

(3.2)

where the LP model is solved at every stage k.

Offline Phase: Training a RL Agent

The offline phase involves the training of a RL agent that interacts with an

environment simulating the EMS scenario relying on real data. The electric

load demand and photovoltaic production forecasts, upper and lower limits

for generating units and the initial status of storage units are taken from a

public dataset1, that yields data from 10,000 days, from now on referred to as

instances. The electricity demand hourly prices (€/MWh) have been obtained

from the Italian national energymarket management corporation (GME)2. The

diesel price is taken from the Italian Ministry of Economic Development3 and

is assumed as a constant for all the time horizon (one day in our model) as

assumed in literature [1] and [19].

In the SINGLE-STEP environment, every episode has a one-step length

where the observations that build up the state s are the day-ahead photovoltaic
1http://www.enwl.co.uk/lvns
2http://www.mercatoelettrico.org/En/Default.aspx
3http://dgsaie.mise.gov.it/

http://www.enwl.co.uk/lvns
http://www.mercatoelettrico.org/En/Default.aspx
http://dgsaie.mise.gov.it/
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generation R̂ ∈ Rn and electric demand forecasting L̂ ∈ Rn and the actions

are the set of virtual costs for all the stages c0
k ∀k ∈ {1, ..., n}. Meanwhile,

int the SEQUENTIAL environment, episodes last 96 time steps (representing

units of 15 minutes each) where the state sk keeps track of the battery charge

τk, along with R̂, L̂ and a one-hot encoding of the stage k. The agent’s action

ak corresponds to the virtual cost c0
k and the associated online optimization

problem 3.2 is solved at every step. The reward function for the EMS is the

negative real cost computed as follows in the two different settings:

SINGLE-STEP SEQUENTIAL

r(S = s,A = c0) = −
n∑
k=1

∑
g∈G

cgkx
g
k r(Sk = sk,Ak = c0

k) = −
∑
g∈G

cgkx
g
k

where (cgk) are the costs, and (xgk) are the decision variables (i.e. the power

flows) at stage (k) for each generator (g).

3.1.2 Set Multi-cover with stochastic coverages

The Set Multi-cover problem (MSC) with stochastic coverage requirements

[32] models a simplified production planning problem: given a universe N

containing n elements and a collection of sets over N , it requires finding a

minimum size sub-collection of the sets such that coverage requirements for

each element are satisfied. The sets may correspond to product bundles, where

each bundle comprises components that must be manufactured together. Sim-

ilarly, the coverage requirements can be interpreted as demand constraints for

individual products. The variant of the problem considered introduces addi-

tional complexities: sets have non-uniform manufacturing costs, the demands

are stochastic and unknown at production time. Unsatisfied demands can be

met by buying additional items, but at a higher cost. Differently from the pre-

vious case study, a synthetic dataset is generated given the number of prod-

ucts N , the number of sets M and the number of data points, referred to as



3.1 Use Cases 40

instances. Initially, the parameters a, c, w are randomly generated as follows:

• a ∈ RN×M is the availability matrix with density (number of 1 in the

matrix) of 2%; it is generated following the guidelines of [26] where

every column covers at least one row and every row is covered by at

least two columns.

• c ∈ NM , cj ∼ U(1, 100) ∀j ∈ M are the set costs randomly gener-

ated with an uniform probability.

• w ∈ NN is the penalty vector associated to the violation of the coverage

requirements of each product, which is computed as follows:

wi = max
j∈M |aij=1

cj · 10 ∀i ∈ N (3.3)

ensuring that covering an element is always more convenient than re-

ceiving a penalty.

Subsequently, the dataset instances are generated, where each entry is charac-

terized by (o, λ, d):

• o ∈ R, o ∼ U(1, 10) is an observable variable randomly generated with

an uniform probability.

• λ ∈ RN are the rates of Poisson distribution assumed to have a linear

relationship with o as: λi = bio for all products i ∈ N , where b ∼

U(1, 5) is a random integer coefficient.

• d ∈ RN , di ∼ Poisson(λi) ∀i ∈ N are the coverage requirements

for each product, also referred to as demands.

Online Phase: LP model

Similarly to the previous use case, the online step employs a myopic (greedy)

heuristic to minimize costs associated with products production and satisfy
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their coverage requirements. This approach is formulated again as a linear

programming (LP) model:

min
∑
j∈M

cjxj

s.t.
∑
j∈M

ai,jxj ≥ d̂i ∀i ∈ N

xj ∈ Z, xj ≥ 0

ai,j ∈ {0, 1}

(3.4)

where x is the vector of decision variables and d̂ is the vector of coverage

requirements predicted by the RL agent.

Offline Phase: Training a RL Agent

The offline phase involves the training of a RL agent that interacts with an en-

vironment simulating the MSC scenario relying on the synthetic dataset pre-

viously described. In this use case, the environment has a single step duration

where the state s is simply the observable variable o and the agent’s actions

are the predicted coverage requirements d̂, which, in practice, belong to RN

so they’re converted to the closest integer values. The reward is computed as:

r(S = s, A = d̂) = −
∑
j∈M

cjx̂j −
∑
i∈N

wid̄i

where d̄i = max

0, di −
∑
j∈M

ai,jx̂j

 (3.5)

where x̂ is the solution found using the predicted demands d̂ and d̄ is the vector

of not satisfied demands computed as di − d̂ ∀i ∈ N .

3.2 Training methodologies

This section highlights key differences in the experimental setup, contrasting

previously adopted methods with novel approaches introduced for empirical
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evaluation, while maintaining good levels of reproducibility.

3.2.1 Revision of the experimental setup

In the original work [55], the A2C algorithmwas employed in the offline phase

with a standard architecture without performing much hyperparameters tun-

ing. The policy represents each possible action using a Gaussian distribution

parameterized by a deep neural network with two hidden layers of 32 units

each activated by the hyperbolic tangent function; a deep neural network with

the same architecture is also used to learn the state value function that serves

as the critic. The Adam optimizer [35] was used to update the networks’ pa-

rameters, with different learning rates chosen for each problem. The EMS use

case opted for a larger learning rate (0.01), while the MSC case employed a

more standard rate of 0.001.

For both use cases, the data is organized into sets of instances. While

EMS dataset size is static, counting 10k instances, MSC dataset was generated

to comprehend 1000 instances each comprising 200 elements and 1000 sets.

The EMS experiments in [55] trained the RL agent on a single instance with

noise added to the forecasts R̂, L̂ so as to allow for a better exploration of

the stochastic state space. The final evaluation of the agent was performed

on 100 randomly selected instances. On the other hand, MSC experiments

equally divided the dataset between training and test sets. The final evaluation

has been performed by randomly selecting 50 instances to be tested. For the

sake of reproducibility, all experiments were executed on a single thread even

though multi-threading was available.

This thesis begins by revisiting critical decisionsmade regarding the dataset

split for both use cases. Concerns regarding the representativeness of a sin-

gle instance in the EMS use case prompted the investigation of training the

agent on multiple instances, to determine whether it would help its general-

ization capabilities. Experiments presented in the following work investigate
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the impact of using 1 (as a baseline), 5, and 30 training instances for EMS. For

MSC, the dataset splitting procedure was adapted to ensure consistency across

multi-threaded runs and different seeds, fostering reproducible experiments.

Additionally, the training set size was increased to 70%, with the remaining

30% split divided between validation and test instances.

In both cases, 20 additional instances were selected to form a validation

set. This set facilitated the evaluation of the agent’s performance during train-

ing, allowing for the retention of the parameter set yielding the best results. A

final evaluation was conducted on 100 different instances, acting as test set, by

loading the previously saved parameter set to assess the agent’s performance

in a more reliable way. It is important to note that for the EMS case, during

evaluation and the final test, the noise added to the observed forecasts (R̂, L̂)

was fixed, ensuring consistent and reproducible results.

The RL algorithms investigated will be PPO, TD3 and SAC, while A2C

experiments with the originally proposed parameters will be used as baselines.

3.2.2 Training Procedures and Metrics

For a better understanding of the experimental evaluation, a high-level overview

of the training procedures and derived metrics is provided. It is important to

note that within the general RL training paradigm, which involves alternating

between interaction with the environment and updates to the network parame-

ters, a key distinction exists between on-policy and off-policy algorithms. The

former 1 relies on data collected from the current policy πθ to update network

parameters; the latter 2 employs a buffer D to store each interaction collected

during training in the form (st, at, rt+1, st+1, d) and samples random batches

of data, potentially obtained with an old policy, to update network parameters.

Leveraging the provided pseudocode for Algorithms 1 and 2, this section

defines and presents the metrics used for evaluation. To ensure a fair com-

parison of the agent’s performance across different instances, the evaluation
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metric cannot rely solely on the raw value of the sum of cumulative reward

(episode reward), due to varying optimal costs per instance. The optimal cost

and its optimal solution are computed by solving the LP problem stated respec-

tively in Equation 3.4 and 3.1, under the assumption of perfect knowledge and

the absence of the virtual parameter (also referred to as oracle). During eval-

uation, the agent’s performance is measured using its optimality, computed

as:
−optimal_cost
episode_reward

where values closer to 1 indicate better performance. Additionally, in theMSC

scenario, the agent’s regret is tracked, defined as

−optimal_cost− episode_reward
−optimal_cost

During training, the agent’s best optimality on the validation set is tracked:

whenever the model improves its performances, additional metrics related to

data efficiency are logged. In particular, the total number of episodes col-

lected and the total number of updates done up to that point are tracked; this

is because in this work we are not merely interested in obtaining the best-

performing agent on a particular problem, rather in analyzing the tradeoff be-

tween data efficiency and performances so as to better understand the scala-

bility and sample complexity [34] properties of the UNIFY approach, when a

RL algorithm is employed in the offline phase.
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Algorithm 1: On-Policy Algorithm
Input: θ, ψ
θ ← θ0 // Initialize policy
ψ ← ψ0 // and value function parameters
best_opt = −1
for each iteration i = 0, 1, ..., N do
D ← ∅ // Initialize buffer to store trajectories
for each environment step or until episode completion do

at ∼ πθi
(at|st)

execute action at in the environment
observe st+1, rt+1, d
D ← D ∪ {(st, at, rt+1, st+1, d)}

end
compute the expected return Gt for each transition in D
for each gradient step do

compute advantage estimates Ât (using any method of
advantage estimation) based on Vψi

for each batch of transitions B = {(st, at, rt+1, st+1, d)} ∈ D
do
update policy parameters according to the specific
algorithm objective by one step of gradient ascent:

θi+1 = θi + αθ∇Ĵπ(θi)

fit value function by regression on mean-squared error:

ψi+1 = arg min
ψ

1
|B|T

∑
τ∈B

T∑
t=0

(Vψ(st)− Gt)

end
end
if time to evaluate then

perform agent’s evaluation on the validation set using the
deterministic version of the policy µθ(st) and obtain
new_opt
if new_opt ≥ best_opt then

best_opt← new_opt
save model’s parameters, the total number of episodes
collected and the total number of updates done

end
Output: θ, ψ // Optimized parameters
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Algorithm 2: Off-Policy Algorithm
Input: θ, ϕk ∀k ∈ K
θ ← θ0 // Initialize policy,
ϕk ← ϕ0k

∀k ∈ K // Q-functions
ϕ̄k ← ϕk ∀k ∈ K // and target network parameters
D ← ∅ // Initialize an empty replay buffer
best_opt = −1
for each iteration i = 0, 1, ..., N do

for each environment step do
if |D| ≤init_random_frames then

at ∼ U(alow, ahigh)
else

at ∼ πθi
(at|st)

end
execute action at in the environment
observe st+1, rt+1, d
D ← D ∪ {(st, at, rt+1, st+1, d)}

end
if |D| ≥init_random_frames then

for each gradient step j do
randomly sample a batch of transitions:
B = {b = (st, at, rt+1, st+1, d)} ∼ D
compute targets for the Q functions y(rt+1, st+1, d)
accordingly to the specific algorithm
update Q-functions by one step of gradient descent:

∇ϕik

1
|B|

∑
b∈B

(Qϕik
(st, at)− y(rt+1, st+1, d))2 ∀k ∈ K

if j mod policy_delay = 0 then
update policy parameters according to the specific
algorithm objective by one step of gradient ascent:

θi+1 = θi + αθ∇Ĵπ(θi)

update target network weights:
ϕ̄k ← τϕk + (1− τ)ϕ̄k ∀k ∈ K

fit any other algorithm specific parameter if present
end

if time to evaluate then
perform agent’s evaluation on the validation set using the
deterministic version of the policy µθ(st) and obtain
new_opt
if new_opt ≥ best_opt then

best_opt← new_opt
save model’s parameters, the total number of episodes
collected and the total number of updates done

end
Output: θ, ϕk ∀k ∈ K // Optimized parameters
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3.3 Hyperparameter Tuning

Hyperparameter tuning, the process of selecting the optimal configuration of

parameters for a machine learning model, plays a crucial role in achieving op-

timal performance. However, it often presents a significant challenge due to

its time-consuming and computationally intensive nature: exploring numer-

ous parameter combinations throughmanual experimentation can be laborious

and inefficient, while relying solely on default values might hinder themodel’s

potential. Studies have demonstrated that a simple random search often yields

superior performance compared to grid search [4]. Moreover, adopting re-

inforcement learning methods adds additional complexity to this process for

several reasons: first, due to the non-stationarity of the RL objective, RL algo-

rithms tend to be sample inefficient; second, these algorithms are very sensible

to the stochasticity present in the training process and in the environment [31],

yielding results with high variance across random seeds, thus the need for av-

eraging many runs together when reporting them; third, the sensitivity to key

hyperparameters that typically characterise RL algorithms can significantly

impact their behaviour and, consequently, their performances. [33]

Real-world and complex scenarios require acknowledging that a single set

of hyperparameters cannot be effectively applied across all such situations.

This necessitates tuning algorithm-specific parameters for each environment,

one simulating the Set Multi-Cover problem (see Section 3.1.2), and two dis-

tinct environments for the EMS use case (see Section 3.1.1) differentiating on

the problem formulation (single step, Equation 3.1 and sequential, Equation

3.2). Due to this, numerous tuning phases were carried out in this work: for

each RL algorithm considered (i.e. PPO, TD3 and SAC) and for each envi-

ronment an independent hyperparameter tuning task was performed.

A complete description of the tuned hyperparameters can be found in Ta-

bles 3.2 and 3.3. Additionally, it is worth explaining the role of the parameter
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Name Description
actor_lr Learning rate of policy network.
critic_lr Learning rate of critic network.
actor_cells Width of the policy network layers with fixed depth (2).
critic_cells Width of the critic network layers with fixed depth (2).
schedule_lr Whether to schedule the LRs.
frames_per_batch Number of interactions steps with the environment.

update_rounds
Number of update rounds after each rollout. Off-policy
algorithms set this equal to frames_per_batch to keep
the ratio of interaction steps to gradient steps equal to 1.

batch_size Batch size used to perform a single update.
num_envs Number of parallel environments the agents interacts with.
obs_norm Whether to employ observation normalization.

Table 3.2: Descriptions of hyperparameters common to all algorithms.

Name Description
buffer_size Size of the Experience Replay buffer.
init_random_frames Number of random environment steps before training starts.
num_q_value_net Number of Q value networks for clipped Q-learning.
tau Polyak averaging coefficient for updating target networks.
prb Whether to employ a Prioritized Experience Replay buffer.
alpha_lr (SAC only) Learning rate for of temperature parameter.

policy_delay (TD3 only) Number of Q-value functions updates
between each policy update.

Table 3.3: Descriptions of hyperparameters specific to off-policy algorithms.
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total_frames, i.e. the total number of interactions steps with the environ-

ment. Due to design choices in the chosen library (TorchRL [6]), it was re-

quired to set the total_frames rather than the number of epochs (or training

iteration) during the hyperparameter tuning phase. Otherwise, tuning values

of frames_per_batch combined with a fixed number of epochs would lead

to runs of varying lengths, hindering fair comparisons. For the MSC and EMS

single-step use cases, the value of total_frames was set to 20000, while a

larger value of 480000 was used for EMS sequential. This approach essen-

tially fixes the total number of episodes encountered by the algorithm (inde-

pendently from the value of frames_per_batch) during training, aligning

with the focus on sample efficiency due to the high computational cost of en-

vironment interactions.

As previouslymentioned, the EMS experiments in this work explore learn-

ing from multiple instances. During hyperparameter tuning, it was randomly

chosen to utilize either a single instance or multiple instances (specifically,

five), aiming to identify a versatile hyperparameter set that performed effec-

tively in both scenarios.

The platformWeights&Biases was employed to ease the process of tuning

hyperparameters, running experiments, store data and visualize early results.

All runs can be found at this project.

https://wandb.ai/site/
https://wandb.ai/giorgiac98/thesis/sweeps/


Chapter 4

Empirical Evaluation and

Discussions

In this chapter, we discuss and analyze results of the empirical evaluation. We

first discuss the results of the Hyperparameter Tuning process, and then move

on to the comparative analysis of RL algorithms.

4.1 Discussion ofHyperparameterTuningResults

The results of the hyperparameter tuning are summarized in Tables 4.2 and

4.3. It is important to acknowledge that, in the EMS scenario, trying to iden-

tify a versatile hyperparameter set that performs effectively both on the single

and multiple instances, may not be suitable for all hyperparameters. For ex-

ample, observation normalization (obs_norm) in PPO and SAC algorithms is

crucial when training onmultiple instances, but detrimental for single-instance

training. TD3 makes an exception, meaning that it performs better as long as

there is no observation normalization, but it is one of its key characteristics,

as evidenced in the original study [20].

Several iterations of hyperparameter tuningwere performed, progressively

adjusting and narrowing down the search space. Through this iterative pro-

cess, significant insights emerged. For instance, it was observed that certain
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PPO-specific algorithm parameters had minimal impact on performance, and

optimal values for some parameters could be readily identified, such as set-

ting ϵ = 0.2 as illustrated in Equation 2.22. Notably, all the presented use

cases appeared to require minimal exploration; indeed, deviations from an

entropy coefficient of 0 in PPO were found to negatively affect learning out-

comes. Similarly, the SAC algorithm promptly disregarded the exploration-

controlling temperature parameter α, particularly in EMS environments. Un-

fortunately, TD3 exhibited crucial limitations in the EMS sequential environ-

ment, attributable to the well-documented issue of action saturation [61]. De-

spite numerous attempts to mitigate this challenge, none provided a definitive

solution; some of the approaches that were not successful have been: trying

different methods for the initialization of the network’s weights, adding more

noise to the exploration policy and trying different actor network architecture

with a decreasing number of units.

Although, some contributed to overall performance enhancements so they

have been retained in the training process. For example, it was introduced

a weight decay of 0.1 to the policy optimizer and reduced the size of the re-

play buffer that, up to that moment, was set to be equal to the number of

total_frames for both off-policy algorithms. As highlighted in this study

[61], TD3 benefits from more recent experience gathered from the environ-

ment; to this end, the authors introduce a non-uniform sampling technique that

prioritizes recent memories and to approximate this approach, we included

in the tuning process unusually small values for the buffer size. Indeed, a

general improvement resulted from employing a replay buffer with smaller

size, confirming the findings of [61]; this led to the emergent result of Prior-

itized Experience Replay (PER)[48] being preferred over the uniform sam-

pling method, since its sampling technique prioritizes based on a proxy metric

for ”priority” (by default, the absolute TD-error). This provides further evi-

dence that TD3 learning benefits from non-uniform sampling based on more

recent experiences.
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Hyperparameter PPO SAC TD3
actor_lr 2.5e−3 5e−4 5e−4

critic_lr 5e−4 1e−2 5e−3

actor_cells 32 8 16
critic_cells 32 32 64
schedule_lr False False False
frames_per_batch 208 32 120
update_rounds 25 32 120
batch_size 32 32 256
num_envs 2 2 8
obs_norm True True True
buffer_size - 20000 10000
init_random_frames - 2000 2000
num_q_value - 4 2
tau - 5e−3 1e−3

prb - True True
alpha_lr - 3e−4 -
policy_delay_up - - 4

Table 4.1: Best hyperparameter values for each algorithm (after tuning), MSC
use case.

Hyperparameter PPO SAC TD3
actor_lr 5e−4 5e−4 5e−4

critic_lr 1e−3 1e−3 5e−4

actor_cells 16 32 16
critic_cells 32 32 16
schedule_lr False False True
frames_per_batch 1200 16 120
update_rounds 25 16 120
batch_size 32 8 128
num_envs 16 4 8
obs_norm True True False
buffer_size - 480000 30000
init_random_frames - 4000 6000
num_q_value - 4 3
tau - 1e−3 1e−3

prb - True True
alpha_lr - 3e−5 -
policy_delay_up - - 8

Table 4.2: Best hyperparameter values for each algorithm (after tuning), EMS
sequential use case.
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Hyperparameter PPO SAC TD3
actor_lr 2.5e−3 2.5e−3 1e−3

critic_lr 2.5e−3 5e−3 2.5e−3

actor_cells 8 8 16
critic_cells 32 16 16
schedule_lr False False False
frames_per_batch 208 120 120
update_rounds 20 120 120
batch_size 64 64 16
num_envs 16 2 2
obs_norm True True False
buffer_size - 20000 10000
init_random_frames - 2000 2000
num_q_value - 3 4
tau - 1e−3 5e−3

prb - False True
alpha_lr - 1.6e−3 -
policy_delay_up - - 2

Table 4.3: Best hyperparameter values for each algorithm (after tuning), EMS
single step use case.

4.2 Comparative Analysis of RL Algorithms

The hyperparameter tuning results, summarized in Tables 4.1, 4.2 and 4.3,

were subsequently used for the final comparative evaluation of the RL algo-

rithms employed within the UNIFY framework. The analysis will be con-

ducted by considering different values of total frames for each environment,

to investigate whether longer training could yield better performances, and

various random seeds, for better statistical significance [33, 31]. As exten-

sively presented in Section 2.2 and 3.2.2, the RL algorithms A2C, PPO, TD3

ans SAC differ in the training procedure, leading to different results in terms

of efficiency on the number of updates to the networks and number of episodes

needed during training.

All the environments presented in this study have to solve an optimization

problem at every time step, making the environment interaction an expensive

computational operation. Given the objective of this algorithm comparison
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is preferable to have an algorithm that is more sample efficient, namely that

needs fewer episodes to learn a good policy, rather than an algorithm that is

more efficient in terms of number of updates to the networks.

4.2.1 MSC

The final results on the MSC environment are presented in the following sec-

tion: runs were conducted on 10 different seeds for 4 different number of total

frames, specifically 20000, 40000, 60000 and 1000000. This last value was

introduced to reproduce the experiments presented in the original study [55],

where an A2C agent was trained for 10000 epochs performing an update every

100 episodes.

Figure 4.1: Average optimality obtained by the algorithms on 20 instances
from the validation set, 95% CI. Runs are grouped according to the total num-
ber of frames.

The results clearly identify PPO and SAC as the front-runners in both

performance and efficiency.They achieve validation set optimality exceeding

60% with a lower training burden, employing only 20k frames. A2C is able to
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Figure 4.2: Average number of updates needed for each algorithm to obtain
4.1, 95% CI. Runs are grouped according to the total number of frames.

Figure 4.3: Average number of episodes needed for each algorithm to obtain
4.1, 95% CI. Runs are grouped according to the total number of frames.
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Figure 4.4: Average optimality obtained by the algorithms on 100 instances
from the test set, 95% CI. Runs are grouped according to the total number of
frames.

Figure 4.5: Average regret obtained by the algorithms on 100 instances from
the test set, 95%CI. Runs are grouped according to the total number of frames.
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achieve the similar results, but it requires to be trained for more frames (1 mil-

lion). TD3 lags behind due to its limitations in exploration compounded by the

single-dimensional observation space that restricts the deterministic policy’s

ability to explore, despite the added noise after the action is chosen.

Given the definition of the reward in this environment 3.5 where the agent

is heavily penalised for predicting fewer requirements than really needed, the

action that the agent chooses tends to overestimate the real demands (some-

times heavily exaggerating). Refer to Figures 4.6 for a visual example. This is

further confirmed by the optimality score which, on average, isn’t intuitively

high, meaning that the algorithms aren’t interested in perfectly learning the re-

lationship between demands (di ∼ Poisson(λi)) and the observable variable

o where λi = bio. Further experiments could be conducted by reducing the

penalty factor in 3.5 and investigate whether the agent would be able to learn

the underlying distribution governing the future coverage requirements.

Figure 4.6: An example of SAC on a MSC instance during testing
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4.2.2 EMS Sequential

The final results on the EMS Sequential environment are presented in the fol-

lowing section: each RL algorithm was tested on 5 different seeds and 4 dif-

ferent values of the total frames hyperparameter, specifically 96000, 128400,

288000 and 480000. The value 128400was introduced to reproduce the exper-

iments presented in the original study [55], where an A2C agent was trained

for 19 epochs performing an update every 9600 episodes. In order to provide a

fair comparison, two distinct single instance experiments were tried. Further

investigation on the number of instances used during training is conducted by

increasing its size (30 instances) in order to investigate the efficiency of the

algorithms in learning from multiple instances and gain insights on the gener-

alization benefit they could add.

The sequential case of the EMS environment is more challenging than its

single-step counterpart: there are training runs that are unable to attain any

improvement at all. One of them is a SAC sample that might actually be an

outlier due to an unfortunate seed, as the others show that the algorithm is

capable of learning without any issues. The other case presents 45 samples

of the TD3 algorithm (out of 80 in total), which is the one that struggles the

most in this environment, since it suffers from the action saturation problem,

resulting of an agent only performing actions that are either the absolute max-

imum or minimum value and get stuck in a local optimal policy. This problem

presents itself most frequently when training on one instance, specifically 26

cases (out of 40 in total).

The results reveal that all algorithms, except TD3, exhibit learning and

generalization difficulties when trained on a single instance. TD3’s perfor-

mance remains stable due to the previously discussed limitations related to

action saturation. The multi-instance setting (using 5 or 30 instances) signif-

icantly improves learning and generalization for most algorithms. However,
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Figure 4.7: Average optimality obtained by the algorithms on 20 instances
from the validation set, 95% CI. Runs are grouped according to the total num-
ber of frames.

Figure 4.8: Average number of updates needed for each algorithm to obtain
4.7, 95% CI. Runs are grouped according to the total number of frames.

Figure 4.9: Average number of episodes needed for each algorithm to obtain
4.7, 95% CI. Runs are grouped according to the total number of frames.

PPO suffers the most when limited to a single instance, and even with im-

proved performance in the multi-instance setting, it remains the least efficient

in terms of training updates and episode exposure. Conversely, SAC emerges
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Figure 4.10: Average optimality obtained by the algorithms on 100 instances
from the test set, 95% CI. Runs are grouped according to the total number of
frames.

as both the most efficient and the best performing algorithm. Finally, A2C

demonstrates consistently poor performance, although the multi-instance set-

ting appears to enhance its generalization capabilities.

Figure 4.11: An example of the virtual cost predicted by a SAC agent during
testing on a particular instance.
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Figure 4.12: Powerflows influenced by the actions of the SAC agent on the
test instance 4.11 with an optimality of 0.99. The oracle represents the opti-
mal powerflows obtained by solving the LP problem under the assumption of
perfect knowledge and no virtual cost.
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4.2.3 EMS Single Step

The final results on the EMS Single Step environment are presented in the

following section: each RL algorithm was tested on 5 different seeds and 3

different values of the total frames hyperparameter, specifically 20000, 40000

and 60000. The experiments presented in the original study [55] trained an

A2C agent for 37 epochs performing an update every 100 episodes; as this re-

sults in slightly less than 40000 total frames, we can consider the 40000 frames

variant as being the replication of the original experiments. The settings on

the number of instances used during training is the same as in the previous

case 4.2.2.

Figure 4.13: Average optimality obtained by the algorithms on 20 instances
from the validation set, 95% CI. Runs are grouped according to the total num-
ber of frames.

Results show that PPO struggles again in the single instance setting, with

respect to SAC and TD3 which perform well even when with limited data.

exhibits consistently poor performance, although the multi-instance setting

appears to improve its generalization capabilities. Interestingly, TD3 emerges

as quite inefficient, especially on fewer total frames, requiring more training

updates and episodes compared to others. In the multi-instance setting, SAC

and PPO perform similarly, however, they excel in different aspects of effi-

ciency: PPOminimizes the number of network updates, while SACminimizes

the total training episodes.
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Figure 4.14: Average number of updates needed for each algorithm to obtain
4.13, 95% CI. Runs are grouped according to the total number of frames.

Figure 4.15: Average number of episodes needed for each algorithm to obtain
4.13, 95% CI. Runs are grouped according to the total number of frames.

Figure 4.16: Average optimality obtained by the algorithms on 100 instances
from the test set, 95% CI. Runs are grouped according to the total number of
frames.
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4.3 Summary

Across different environments, SAC consistently emerges as the most effi-

cient and effective algorithm, particularly in multi-instance settings where it

displays superior performance and training efficiency. PPO shows promise

but struggles in the single-instance scenarios of EMS and lags in efficiency

metrics. A2C generally underperforms, facing challenges in both learning

and generalization, marginally improved in environments allowing for multi-

ple instances. TD3, while stable in certain conditions, has notable exploration

limitations and inefficiencies, particularly highlighted in environments that

restrict deterministic policy exploration.
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Conclusions

This thesis presented a comprehensive study of Reinforcement Learning (RL)

applications within the UNIFY framework, utilizing the Energy Management

System (EMS) and the Set Multi-Cover with stochastic coverages problem to

evaluate the efficiency and effectiveness of various RL algorithms. Through

extensive experimentation and analysis involving the hyperparameter tuning

and performance evaluation of A2C, PPO, SAC, and TD3 algorithms, several

key insights and contributions have been made to both theory and practice.

5.1 Key Findings

The empirical evaluations revealed notable differences in performance and ef-

ficiency among the RL algorithms in different scenarios and settings. Among

the primary findings:

• AlgorithmPerformance: SAC consistently emerged as themost effec-

tive algorithm across various settings, aided by its sample efficiency and

robust handling of continuous action spaces. PPO exhibited competi-

tive performance, particularly in multi-instance settings, highlighting

its flexibility and generalization capabilities. A2C, while foundational,

showed limitations in complex environments. TD3 faced challenges,



5.2 Contributions 66

mainly in the EMS sequential environment, due to its deterministic pol-

icy gradient approach and the action saturation problem.

• Efficiency and Generalization: The results demonstrated that learn-

ing from multiple instances significantly improves the generalization

capabilities of the RL models, as opposed to training on a single in-

stance. This was particularly evident in environments with high vari-

ability, where SAC and PPO particularly benefited from multi-instance

training settings.

• Hyperparameter Sensitivity: Hyperparameter tuning played a crucial

role in optimizing the performance of the RL algorithms. SAC and

PPO’s adaptability highlighted the importance of careful hyperparame-

ter selection, especially in varying environmental conditions and prob-

lem settings. These findings provided additional evidence that optimal

hyperparameter settings are scenario-dependent, highlighting the need

for tailored tuning approaches.

5.2 Contributions

The thesis contributes to the understanding of the application of RL within

frameworks integratingmachine learningmodels with optimization techniques,

such as the UNIFY framework. The systematic analysis of RL algorithms in

varied settings, both in terms of environment complexity and training config-

urations, adds valuable insights into the design and deployment of these algo-

rithms in real-world scenarios. Moreover, the consideration of multi-instance

training settings underlines the importance of diversity in training samples for

enhancing the generalization of learned policies.

Additionally, the study also sheds light on the complex interaction between
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algorithmic characteristics and their performance in specific contexts, offer-

ing guidance for researchers and practitioners on selecting and tuning RL al-

gorithms for similar decision-making and optimization problems.

5.3 Future Work

Building on the findings of this thesis, several avenues for future research can

be explored:

• Exploring More Complex Environments: Extending the application

of the UNIFY framework to more diverse and complex environments

also from different domains, incorporating higher dimensions of con-

straints and decision variables, would serve to further validate the flex-

ibility and robustness of RL algorithms.

• Algorithmic Enhancements: Evaluating different RL algorithms, par-

ticularly to address specific challenges like learning environment con-

straints, that could simplify the online phase, while maintaining robust

and efficient solutions.

• Meta-Learning forHyperparameter Tuning: Investigating the use of

meta-learning techniques for dynamic hyperparameter tuning and adap-

tation in changing environments could improve the efficiency and per-

formance of RL algorithms.

In conclusion, this thesis underscores the potential of integrating RL with

optimization techniques in solving complex decision-making problems. The

UNIFY framework, augmented by the insights derived from the comparative

analysis of RL algorithms, offers a promising avenue for advanced research

and practical applications in various domains.
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