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SCHOOL OF ENGINEERING

DEPARTMENT of

ELECTRICAL, ELECTRONIC AND INFORMATION ENGINEERING

”Guglielmo Marconi”

DEI

Master Degree in Automation Engineering

Sim2real Transfer for Reinforcement Learning in

Robotic Arm Control: a Closed-Loop Optimization

approach for Parameter Estimation

Master Degree Thesis

in

Autonomous and Mobile Robotics

Supervisor:

Prof. Gianluca Palli

Co-Supervisors:

Alex Pasquali

Riccardo Zanella

Candidate:

Davide Bargellini

Academic Year

2022/2023

III Session



fff



Abstract

This thesis delves into sim-to-real transfer challenges for torque-controlled

robotic arms. Employing reinforcement learning, the research addresses the

simulation-reality gap to improve control policies for practical applications.

The study investigates static and dynamic friction compensation, as well as

the optimization of simulation parameters and domain randomization. The

results offer valuable insights into the efficacy of the proposed methodology

and its potential implications for real-world robotic systems. Additionally, the

thesis introduces an approach to refining simulation parameters by comparing

trajectories generated in simulation with those obtained from real-world

experiments. This contributes to a more comprehensive understanding of

the sim-to-real transfer problem and advances the state-of-the-art in robotic

control.
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Chapter 1

Introduction

Robotic systems play a central role in various applications, ranging from

industrial automation to healthcare. The capability of these systems to

perform effectively in real-world environments is crucial for their widespread

adoption. However, transferring control policies learned in simulation to

real-world scenarios, known as sim-to-real transfer, remains a challenging

problem, particularly for torque-controlled robotic arms.

This thesis addresses the complexities associated with sim-to-real trans-

fer, focusing on the Panda robot, a torque-controllable robotic arm. The

motivation for this work originates from the need to bridge the gap between

simulation environments, such as MuJoCo, and the real-world counterpart,

emphasizing the challenges that come from this process.

1.1 Introduction to Sim-to-Real Transfer

Sim-to-real transfer is a critical frontier in the realm of robotic systems,

standing at the crossroads of simulation, machine learning, and real-world

deployment. The fundamental challenge lies in the seamless integration

of insights gained in a simulated environment into the complexities and

uncertainties of the physical world. In the context of torque-controlled robotic

arms, this challenge is magnified by the need for precise and adaptable control

strategies to navigate real-world scenarios effectively.
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Motivated by the potential advantages of sim-to-real transfer, the thesis

project seeks to bridge the gap between simulation and reality, in particular

for torque-controlled robotic arms with many unknown parameters. The

advantages of training in simulation and then transferring the trained model

in reality are many. Firstly, the ability to train and optimize control policies

in a simulated environment significantly reduces the cost and time associated

with real-world experiments. This not only accelerates the development cycle

(depending on the hardware, the simulation time could be hundreds of times

faster than reality) but also enables the exploration of a wide range of scenarios

that may be impractical or dangerous in reality. Secondly, the deployment of

robotic systems in diverse and dynamic environments necessitates adaptability.

Sim-to-real transfer allows robotic models to adapt to unforeseen variations,

ensuring that learned behaviours generalize effectively. Such adaptability is

particularly vital for industrial applications, where robots must operate in

different environments, for example, a robotic arm should work properly with

different weights, workspace limits and varying tasks. Whether handling light

or heavy payloads, moving in confined spaces or expansive work areas and

performing a range of tasks with precision, the ability of robotic arms to

seamlessly adjust to diverse conditions ensures efficiency and reliability in

industrial settings.

Our primary goal is to devise methodologies and strategies that enable

torque-controlled robotic arms, in our case the Franka Emika Panda robot,

to seamlessly transition from simulated training environments to real-world

tasks. In our study, we focused on the task of reaching random points in

the workspace using the Panda robotic arm. The end effector of the Panda

arm was tasked with reaching specified points in the three-dimensional space,

requiring the learning algorithms to acquire robust control policies for diverse

scenarios. To achieve this, we have used, as a base, MuJoCo, a physics engine

that serves as our primary training environment, and Gazebo, the simulation

platform that offers a closer-to-reality control interface for simulating the

behaviour of robotic systems.

In the subsequent sections, we provide a detailed overview of the Panda

robot, the MuJoCo training environment, Gazebo simulation platform and
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reinforcement learning. We explore the difficulties encountered when transi-

tioning from simulation to Gazebo, highlighting the problems of adjusting

control policies to accommodate varying dynamics. As we explore sim-to-

real transfer, we refer to existing literature, introduce new adaptations, and

share results that add to the ongoing conversation about the effectiveness of

sim-to-real transfer for torque-controlled robotic arms.

1.2 Motivation and Goals

The motivation behind this research comes from the growing demand for

robotic systems that can seamlessly transition from simulation to real-world

environments. Moreover, our focus lies in addressing the challenge posed

by unknown parameters associated with robotic arms, such as the Panda

robot’s inertia, static friction and dynamic friction compensation. Notably, the

dynamic friction compensation remains concealed and inaccessible through the

libfranka API and the inertia parameters are not revealed by Franka Robotics,

further limiting access to crucial details of the robotic system’s dynamics. The

primary goals of this project encompass understanding and mitigating the

challenges associated with sim-to-real transfer for torque-controlled robotic

arms. Specific objectives include:

• Investigating the limitations of current simulation environments in

capturing the complexities of real-world physics and dynamics.

• Developing effective strategies for training torque-controlled robotic

arms in simulation for reaching specific points, with a focus on rein-

forcement learning methodologies.

• Exploring the adaptation of simulation-trained models to real-world

scenarios, considering factors such as friction, gravity compensation,

and unknown parameters.

• Assessing the performance of the adapted models through rigorous

experimentation and comparison between simulated and real-world

trajectories.
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By achieving these goals, we aim to advance the state-of-the-art in sim-to-

real transfer for torque-controlled robotic arms.

1.3 Overview of Robotics Components

In this section, we will show the fundamental components that form the back-

bone of our robotics exploration. We begin by introducing the Panda robot,

a versatile and widely used robotic platform, highlighting its key features

and functionalities. Subsequently, we explore the simulation environments,

MuJoCo and Gazebo, which play crucial roles in our research and development

efforts. These environments provide a virtual playground for testing and

refining robotic algorithms before deploying them on physical counterparts.

Through a comprehensive overview of these robotics components, we aim

to lay the groundwork for the subsequent chapters that delve into specific

aspects of our research and experiments.

1.3.1 Panda Robot

The Panda robot, developed by Franka Emika, serves as the primary robotic

platform for our investigation.

Figure 1.1: Franka Emika Panda [1].
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The Franka Emika Panda robot is a 7-axis robot arm designed for re-

search, it enables direct control and is developed for multiple tasks including

manipulation and grasping.

The robot is also equipped with force/torque sensors at its joints, enabling

it to sense external forces and torques.

1.3.2 ROS

ROS [2] (Robot Operating System) is an open-source operating system for

robotic applications. The idea of ROS is to develop a high-level control that

can communicate with the lower level of the robot. This high-level controller

is an abstraction, meaning that the program written for a robotic platform

can be reused eventually with other robots even from different producers if

their interface with ROS is provided. The key idea of ROS is the fact that it

is a distributed framework of processes that run concurrently, each process,

called ”node”, is meant to work independently of each other and represents

a different module. The nodes are capable of sharing information with each

other through a communication system based on the concept of ”topic” and

”messages”.

Figure 1.2: ROS communication scheme, nodes are registered to a central

master node. During their execution, nodes communicate with each other

with messages, services and actions.
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Nodes

In ROS each program executed is denoted as a Node, it can be seen as a

single entity running concurrently in the system. Each node can communicate

with the other nodes by using a server-client communication architecture, in

which each node can work as a client but also as a server. To communicate,

a node must be connected with a master node, whose purpose is to enable

communication between all the nodes registered to it. Nodes can communicate

between themselves through the direct invocation of another node’s services

or actions or through publish/subscribe. A ROS−-based robot control system

is usually composed of many nodes. Each node should be designed to have a

small and specific task. Nodes should perform their tasks and exchange the

results with other nodes. This net of elaboration of data will form a complex

graph−like structure capable of solving demanding problems. Node−based

architecture provides ROS with many benefits, where the biggest benefits are

fault tolerance (as each node is an isolated part of the system) and reduced

code complexity compared to monolithic systems, which are not decoupled.

Topics

ROS topics are the ”mailboxes” used by nodes to communicate. This com-

munication is based on a publish/subscribe mechanism. Each ROS topic has

a unique name associated so that ROS nodes can publish or subscribe to it.

Any node is enabled to publish or subscribe to any ROS topic as long it knows

the name of the topic. Furthermore, there is no limitation on the number of

topics to which a node can be subscribed or publish. As this communication

is not direct, nodes are not aware of who are they getting the data from or

who are they sending the data to.

Messages

ROS messages are exchanged between ROS nodes using the publish/subscribe

mechanism. One ROS node would publish the ROS message to a certain

ROS topic, while the other ROS node would subscribe to that ROS topic
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and obtain the ROS message sent. ROS Messages are described as .txt files

inside a specific folder called msgs under the ROS package folder structure.

Each ROS message is described with a data structure which contains only

primitive types like integers, floats or booleans, it also can include arrays of

the primitive types listed earlier. A ROS message can also include other ROS

messages. In this way, it is possible to create complex and longer messages.

Additionally, ROS messages can contain the other ROS message or an array

of ROS messages as a data type. ROS messages can also be exchanged in a

direct communication between nodes. This mechanism is called ”Services”.

Figure 1.3: Visual concept of the message communication scheme in ROS.

Services

Topics can be seen as named ”mailboxes”, where a node can publish or

read messages. In this context, there are no direct connections between the

nodes or knowledge of the topics connected which are reading the published

messages. ROS services instead are used when there is a wish for nodes to be

able to communicate directly with each other. By using the ROS services,

the publish/subscribe mechanism is avoided and nodes can send requests and

replies to each other directly using the defined srv. Like the messages, also

the services have their target folder named ”srv” in which custom services

can be defined, each srv is a .txt file containing its two parts, the request

sent from the client node, and the response from the Server node. Since

the ROS services are a form of direct communication, they are increasing

the performance of the system, however, they are decreasing the system

decoupling.
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1.3.3 Simulation environment

Two main simulation environments are central to our study: MuJoCo and

Gazebo. MuJoCo, developed by Google DeepMind, offers a straightforward

plug-and-play physics engine. Gazebo, on the other hand, is a versatile open-

source robotics simulator that provides a realistic 3D environment for testing

and developing robotic systems. Simulation environments play a crucial role

in RL-based training for robotic systems. They provide a safe and scalable

platform for the agent to explore different scenarios and learn optimal policies.

MuJoCo

MuJoCo [3] (Multi-Joint dynamics with Contact) is an open-source physics

engine, providing a simulation environment well-suited for reinforcement

learning tasks. Developed by Google DeepMind, MuJoCo offers a physics

engine designed to capture the complexities of robotic systems, making it a

popular choice for training and evaluating reinforcement learning agents.

MuJoCo excels in simulating the dynamics of multi-joint systems, making it

appropriate for torque-controlled robotic arms. The environment supports the

modelling of various physical properties, including friction, inertial properties,

and joint dynamics. This flexibility enables the creation of diverse and

realistic scenarios for training reinforcement learning agents. In MuJoCo,

the robot is represented through an XML model, specifying joint properties,

links, and physical parameters. The control of the robot is achieved by

specifying torques at each joint. The training process in MuJoCo involves the

iterative optimization of policies through reinforcement learning algorithms.

Our approach utilizes a grid search, exploring a range of hyperparameters to

enhance the training effectiveness. More detailed information about the grid

search process and specific hyperparameter configurations will be provided in

the subsequent chapter.
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Gazebo

Gazebo serves as an integral component of our research infrastructure, pro-

viding a realistic robotic simulation environment within the Robot Operating

System (ROS) framework. Gazebo enables the emulation of diverse robotic

platforms and scenarios, facilitating the development and testing of control

algorithms before deployment on physical hardware.

Gazebo is tightly integrated with ROS, allowing seamless communication

between the simulated environment and the robotic control system. The

integration enables ROS nodes to interact with the simulated robot in Gazebo,

replicating the real-world interaction between software components and robotic

hardware. This integration is fundamental to our sim-to-real transfer approach,

as it allows us to utilize ROS functionalities for control and communication.

The Gazebo simulation engine incorporates a robust physics engine that

simulates realistic interactions between the robot and its environment. This

includes modelling friction, dynamics, and collisions, providing a high-fidelity

representation of the robot’s behaviour. The realism achieved in Gazebo is

crucial for training reinforcement learning agents in scenarios that closely

resemble real-world conditions.

In Gazebo, the robot model is typically represented using the Unified Robot

Description Format (URDF). This is very similar to MuJoCo, being URDF an

XML-based format that defines the robot’s kinematic and dynamic properties,

including joint specifications, link connections, and physical parameters.

The URDF model serves as the blueprint for the robot in the simulated

environment, ensuring consistency between simulation and reality.

Gazebo offers versatile tools for simulation control and visualization. Users

can control the simulation time, pause and resume scenarios, and inspect the

robot’s state during runtime. Visualization tools provide insights into the

robot’s movements, sensor readings, and environmental interactions. These

features are crucial in debugging and understanding the behaviour of the

simulated system.
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1.3.4 Challenges in Sim-to-Real Transfer

The process of transferring knowledge gained in simulation to real-world

robotic systems is filled with challenges.

One of the fundamental obstacles lies in the intrinsic differences between

simulation and reality. Physical properties, such as friction coefficients,

inertial parameters, and joint dynamics, may vary between the simulated

environment and the real-world robotic system. These discrepancies can lead

to suboptimal or even failed transfer attempts, necessitating methods for

adaptation. Robust adaptation strategies, such as domain randomization, are

essential for handling these uncertainties.

In real-world robotic systems, compensatory mechanisms might be in

place to address specific issues. However, these compensations may not be

accurately reflected in the simulation. Additionally, incorrect compensations

implemented in the simulation can lead to a mismatch between expected and

actual behaviours in the real-world scenario.

Challenges specific to simulation environments, such as discrepancies in

simulation and control frequencies, also contribute to the complexity of sim-

to-real transfer. Strategies employed during simulation training might not

seamlessly translate to real-world scenarios, requiring careful consideration

and adaptation.

One of the main contributors to the field of sim-to-real transfer in deep

reinforcement learning for robotics is the survey conducted by Zhao, Quer-

alta, and Westerlund [4]. This paper provides a comprehensive review of

the different methods being utilized to close the sim-to-real gap and accom-

plish more efficient policy transfer. It covers the fundamental background

behind sim-to-real transfer in deep reinforcement learning and overviews the

main methods being utilized at the moment, including domain randomiza-

tion, domain adaptation, imitation learning, meta-learning, and knowledge

distillation.

Meanwhile, the work by Peng et al. [5] significantly contributes to the

field by expanding the concept of domain randomization. Their research

delves into the development of adaptable control policies for robotic systems,

10



demonstrating its effectiveness in real-world scenarios. Through experiments,

the authors showcase that policies trained exclusively in simulation maintain

a similar level of performance when deployed on a real robot. This work,

presented at the IEEE International Conference on Robotics and Automation

in 2018, provides valuable insights into the sim-to-real transfer of robotic

control with dynamics randomization.

Navigating through these challenges is the core of our research, as we aim

to develop effective and robust sim-to-real transfer methodologies for torque-

controlled robotic arms, with a particular focus on domain randomization to

enhance adaptability to real-world variations.

1.3.5 Reinforcement Learning in Robotic Systems

Reinforcement learning (RL) has emerged as a potent approach for training

robotic systems to perform complex tasks. In this subsection, we delve into

the fundamental concepts of reinforcement learning, its applications in robotic

control, and its relevance to sim-to-real transfer.

At its core, reinforcement learning involves an agent interacting with an

environment to learn optimal actions that maximize a cumulative reward

signal. The agent explores the environment, takes actions, receives feedback

in the form of rewards, and adjusts its behaviour over time (see Fig. 1.4).

This trial-and-error learning process enables the agent to discover effective

strategies for solving tasks.

Figure 1.4: Reinforcement Learning simple representation.

11



In the context of robotic systems, reinforcement learning has been suc-

cessfully applied to various tasks, ranging from simple manipulator control

to complex locomotion and dexterous manipulation. RL algorithms allow

robots to adapt and learn behaviours in dynamic and uncertain environments,

making them versatile for a wide range of applications.

The foundational work by Kaelbling, Littman, and Moore provides a

profound analysis of reinforcement learning and its applications [6]. In their

extensive survey, they delve into the fundamental concepts of learning and

algorithms, emphasizing crucial aspects such as exploration-exploitation trade-

offs and the necessity for sample efficiency when learning from interactions

with the environment.

In the realm of robotic arms, Lindner, Milecki, and Wyrwa l have conducted

a comprehensive study on the application of Reinforcement Learning (RL)

algorithms for achieving precise positioning [7]. The article evaluates the

performance of four RL algorithms—DDPG, TD3, SAC, and HER—in six

combinations, considering critical factors such as positioning accuracy, motion

trajectory, and the number of steps required to attain the goal. Their findings

offer valuable insights into the effective use of RL for enhancing the precision

of robotic arm movements. The results indicate that RL algorithms can

be successfully applied for learning the positioning control of a robot arm,

showcasing the potential of RL in robot programming and control. The

study also highlights the need for further research to identify the strengths

and weaknesses of each algorithm for specific tasks. Exploiting reinforcement

learning through a systematic grid search methodology, we explore a multitude

of hyperparameters and RL algorithms to understand their impact on training

effectiveness and generalization.

To further enhance the probability of success of our sim-to-real transfer

we have adopted the technique of domain randomization, a concept that

introduces variability into the training environment. By randomizing param-

eters such as inertia, friction and goal position during simulation, we aim

to create a diverse training dataset that better prepares our model for the

real world. However, the effectiveness of domain randomization is dependent

on judicious parameter selection, requiring expert knowledge to balance ro-
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bustness without obstructing the learning process. In particular, the paper

[8] discusses the limitations of existing reality gap mitigation methods like

domain randomization, emphasizing the need for prior knowledge.

Meanwhile, Chebotar et al. [9] presents a data-driven strategy using real-

world data to enhance simulation randomization. The focus is on learning

simulation parameter distributions conducive to successful policy transfer, min-

imizing the necessity for exact real-world replication. The article delves into

closed-loop policy rollouts, comparing them with trajectory-based parameter

learning and underlining the potential of physics simulations for parameterized

models. Experimental validations demonstrate successful policy transfers for

complex robotic tasks, emphasizing the importance of accurate parameter

estimation in achieving real-world applicability.
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Chapter 2

Reinforcement Learning in

Simulation Environments

As we explore the training of torque-controlled robotic arms with reinforcement

learning (RL), it’s crucial to thoroughly examine the simulation environments

we’re working with. This chapter takes a close look at the MuJoCo (Multi-

Joint dynamics with Contact) simulator and Gazebo, which serve as the

training platforms for our Panda robotic arm. We explore the details of

RL methodologies in both environments, explaining the training procedures,

environmental features, and the challenges encountered.

Using RL in simulation environments allows for iterative refinement of

robotic control policies. MuJoCo and Gazebo, each with distinct strengths,

provide suitable settings for training agents to master complex motor skills

and adapt to dynamic scenarios. Despite successful simulations, the transition

to real-world applicability poses a significant challenge. This chapter discusses

the preparatory steps taken within MuJoCo and Gazebo to facilitate the

subsequent transfer to the real-world counterpart. We will discuss design

choices, training configurations, and insights from the RL process. We aim to

offer a thorough understanding of the simulated foundation before addressing

the challenges and adaptations needed to bridge the gap between simulation

and reality.
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2.1 MuJoCo Training Environment

Within MuJoCo, our Panda robotic arm becomes an agent, navigating its

environment through a defined action space and perceiving the consequences

through an observation space. To seamlessly interface with the MuJoCo

simulator, we utilize Gymnasium [10], an open-source toolkit designed to

develop and compare reinforcement learning algorithms. Gymnasium provides

a unified interface for interacting with different simulation environments,

streamlining the integration of MuJoCo into our RL pipeline.

The task was to make the Panda arm reach random points within its

operational space. This simulated real-world scenarios where the robotic arm

needs to deal with different positions. By picking random target coordinates,

the study covered a wide range of possible end-effector locations. This ap-

proach mirrors the adaptability needed in real-world applications, showcasing

the practicality and strength of the developed methodologies.

2.1.1 Action Space and Observation Space

The action space represents the set of actions of the Panda robot, the one

we can take at each time step. While the virtual realm of MuJoCo provides

a flexible arena for training the Panda robot, it is essential to ground our

simulations in the physical reality of the real robot. The Panda robot, as a

physical entity, is bound by certain limitations and constraints, especially

concerning its joint movements and torques.

The joint limits, both in terms of position, velocity, acceleration and jerk,

delineate the range within which each joint of the Panda robot can articulate.

These limits, depicted in Table 2.1, safeguard against undesirable or even

damaging configurations in the real-world scenario.
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Name Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7

qmax 2.8973 1.7628 2.8973 -0.0698 2.8973 3.7525 2.8973

qmin -2.8973 -1.7628 -2.8973 -3.0718 -2.8973 -0.0175 -2.8973

q̇max 2.1750 2.1750 2.1750 2.1750 2.6100 2.6100 2.6100

q̈max 15 7.5 10 12.5 15 20 20
...
q max 7500 3750 5000 6250 7500 10000 10000

τjmax 87 87 87 87 12 12 12

τ̇jmax 1000 1000 1000 1000 1000 1000 1000

Table 2.1: Panda Robot Joint Limits and Constraints.

[11]

To align the simulation environment with these real-world constraints, the

action space should be hard-constrained below the joints limits. The action

space is defined as a continuous space representing the torques that could be

applied on each joint of the Panda robot. The lower and upper limits are:

Joint Lower Limit Upper Limit

Joint 1 -2 2

Joint 2 -3 3

Joint 3 -2.5 2.5

Joint 4 -4 4

Joint 5 -2 2

Joint 6 -1 1

Joint 7 -1 1

Table 2.2: Joint Limits for the Panda Robot.

This formulation ensures that the simulated actions generated during

training are not only feasible within the virtual environment but also adhere

to the physical limits of the real Panda robot.

On the other side of the interaction, the observation space encapsulates

the information available to the agent. This encompasses details about the

current state of the robotic arm, such as joint angles, velocities and distances
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between objects. Our observation space is also a gymnasium.spaces.box, the

space dimension is 24 and each value is bounded between -1 and 1.

2.1.2 Training Process

The training process in MuJoCo involves iterative interactions between the

Panda robot and its simulated environment. At each time step, the agent

receives observations from the environment, processes this information, selects

actions from its action space, and executes them. The dynamics of the

simulated environment determine the next state, and the process repeats as

can be seen in Alg. 1.

Algorithm 1 Reinforcement Learning Loop in MuJoCo with Periodic Gradi-

ent Descent.

1: Initialize neural network model for policy πθ with parameters θ

2: Initialize replay buffer D

3: Initialize counter t← 0

4: Set update frequency N

5: for episode in range(num episodes) do

6: Reset environment with reset() function

7: for timestep in range(max timesteps) do

8: Observe current state s

9: Select action a using policy πθ with exploration strategy

10: Execute action a and observe reward r and next state s′

11: Store transition (s, a, r, s′) in replay buffer D

12: Increment counter: t← t + 1

13: if t mod N == 0 then

14: Sample a mini-batch from D and perform gradient descent on

πθ using optimization algorithm with learning rate α

15: end if

16: Move to the next state: s← s′

17: end for

18: end for
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The training is guided by reinforcement learning methodologies, where

the agent learns to associate its actions with rewards or penalties based on

the consequences of those actions. Through repeated cycles of exploration

and exploitation, the agent refines its policy, optimizing its behaviour towards

achieving defined objectives.

2.1.3 Simulation Functions

Central to the training process are the environment functions step(),

compute reward(), get obs() and reset().

step()

The step() function advances the simulation by one time step, considering

the actions taken by the agent and updating the state accordingly. It also

returns the observations, the reward value for the current state and the

boolean done.

function step(self, action):

// Apply the specified joint torques to the simulated robot

self.sim.execute(self.action)

// Obtain observations for the current state

observations = self.get_obs()

// Calculate the reward based on the achieved state

reward = self.compute_reward()

// Check for episode termination conditions

done = check_termination()

return observations, reward, done
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get obs()

Within the MuJoCo training environment, the get obs() function plays a

central role in shaping the observational landscape available to the Panda

robotic arm during training extracting key information from the simulated

environment providing the agent essential data to make decisions.

def get_obs(self):

q = self.sim.get_state()["joint_pos"][:7]

dq = self.sim.get_state()["joint_vel"][:7]

eef = self.sim.get_state()["site_pos"][1]

target_pos = self.sim.get_state()["site_pos"][0]

self.obs_dict = {"sinq": np.sin(q), "cosq": np.cos(q),

"tanhdq": np.tanh(dq),

"tanhdist": np.tanh(eef[:3] - target_pos[:3])}

return self.obs_dict

Breaking down the components of get obs(), the function captures the

state of the simulation using self.sim.get state(), extracting joint posi-

tions (q) and velocities (dq) from the simulation state. The function constructs

an observation dictionary (obs dict) encapsulating various features, includ-

ing sine (sinq) and cosine (cosq) of joint angles, hyperbolic tangent (tanhdq)

of joint velocities, and hyperbolic tangent (tanhdist) of the distance between

the end-effector and the target position. These values are already normalized

to the [−1, 1] interval, collectively forming the observational input provided

to the RL agent.

compute reward()

compute reward() is the base of the Panda robot’s decisions and learning

process, it’s defined as:

def compute_reward(self):

dist = (norm(self.obs_array[21:])) / self.init_dist_goal

joint_acc = self.sim.get_joints_acc()[:7] / 100

20



joint_acc = sum(np.tanh(abs(joint_acc)))

dq = sum(np.tanh(abs(self.sim_state["joint_vel"][:7])))

r = -2 * dist - 0.03 * joint_acc / (0.15 + dist)

- 0.05 * joint_acc / abs(1.15 - min(1, dist))

- 0.03 * dq

return r

Let’s analyze the terms contributing to the reward:

• dist: Normalized distance between the Panda robot end effector and

its goal, emphasizing the importance of reaching the target.

• joint acc: Sum of hyperbolic tangent tanh-transformed absolute joint

accelerations, promoting smooth and controlled movements.

• dq: Sum of tanh-transformed absolute joint velocities, encouraging

gradual changes in joint positions.

The reward function incorporates a weighted combination of these terms,

with specific coefficients indicating their relative importance. Notably:

• The term -2 * dist encourages the robot to minimize the distance to

the goal.

• - 0.03 * joint acc / (0.15 + dist) penalizes excessive initial joint

accelerations, with a diminishing penalty as the robot approaches the

goal.

• - 0.05 * joint acc / abs(1.15 - min(1, dist)) imposes a

penalty for joint accelerations when the robot is close to or has reached

the goal.

• - 0.03 * dq penalizes rapid changes in joint velocities.

This reward function balances achieving the task at hand, maintaining

smooth movements, and minimizing abrupt changes in joint behaviour. The
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acceleration penalty reflects the consideration that rapid acceleration in a

real-world scenario might lead to errors due to structure limits (see Table 2.1).

It’s important to note that going forward, the term ”reward function”

will still be used, but the reward should be interpreted as a penalty. Given

that the cumulative reward is always negative, with a value closer to 0

indicating better performance. An advantage of employing the penalty

function is its constrained nature. Unlike traditional reward functions, where

the optimal performance is unbounded and can potentially approach infinity,

the penalty function operates on a reversed scale. In this context, the best

achievable reward is constrained to 0, with values close to it indicating superior

performance. Tuning these coefficients can significantly impact the learning

dynamics, representing a crucial aspect of refining the agent’s behaviour

during the training process.

reset()

reset() initializes or resets the simulation, providing a starting point for

each episode in the training process. The position of the target gets calculated

randomly inside the workspace and the robot joints are placed back to their

initial positions. The initial distance between the end effector and the target

also gets calculated to be used by the compute reward() function

2.2 ROS and Gazebo Setup

In the context of sim-to-real transfer, the interaction between the simulation

environment and the real robot is a critical aspect. This section outlines

the configuration and setups involving ROS (Robot Operating System) and

Gazebo for evaluation.

To bridge the gap between simulation and reality, a key component is

the implementation of a custom JointTorqueController. This controller

facilitates communication with the robot and allows for torque control. The

JointTorqueController subscribes to /joint states, sets joint torques,

and manages the pause/unpause functionality in the Gazebo simulation.
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2.2.1 JointTorqueController

The JointTorqueController is a ROS node responsible for handling torque

commands in Gazebo. It utilizes various ROS packages such as sensor msgs,

std msgs, gazebo msgs, and more. The node is initialized to handle joint

torques, joint states, and link states.

Joint Torque Commands

To exert torques on the robot joints, the JointTorqueController utilizes the

effort joint torque controller in Gazebo. The torques are published to

respective joint controllers with the topic

/panda joint+i+ controller/command (where i is a string containing the

joints number) using the Float64 message type.

Joint State Subscription

One of the fundamental aspects of the JointTorqueController is its ability

to acquire real-time feedback from the simulated robot. This is achieved

through the subscription to the /joint states topic, a central communication

channel providing information about the robot’s joint configurations.

ROS facilitates inter-process communication through topics, and in the

case of robotic systems, the /joint states topic plays a central role. This

topic is a standardized way of transmitting information about the state of a

robot’s joints, including position, velocity, and effort.

The messages published on the /joint states topic typically adhere to

the sensor msgs/JointState message type.

By subscribing to /joint states, the JointTorqueController gains

access to real-time data regarding the configuration of each joint in the simu-

lated robot. This includes the instantaneous positions (position), velocities

(velocity), and efforts (effort) exerted on each joint.

The JointState messages are timestamped, allowing the controller to

synchronize the received joint state information with its internal clock. This

synchronization is crucial for accurately calculating velocities and accelera-
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tions, aiding in the dynamic control of the robot.

Upon receiving JointState messages, the JointTorqueController ex-

tracts relevant information for further processing. This includes obtaining

joint positions (joints pos), joint velocities (joints vel), and gripper posi-

tions (gripper pos), enabling a comprehensive understanding of the robot’s

state.

To enhance control strategies, the controller computes joint accelerations

(accelerations). Since JointState doesn’t provide the joint accelerations,

it is achieved by differentiating the received joint velocities over time, providing

insights into the dynamics of the robotic system.

In summary, the JointTorqueController utilizes the /joint states

topic to establish a dynamic feedback loop with the simulated robot. This

real-time information, encompassing joint positions, velocities, and efforts, is

fundamental for implementing advanced control algorithms and adapting the

robot’s behaviour to the evolving simulation environment.

Pause and Unpause Functionality

The JointTorqueController provides services for pausing and unpausing

Gazebo physics. This functionality is essential for resetting the simulation,

adjusting the environment, and managing the simulation’s temporal aspects.

Transformation Frames

The node uses the tf2 ros package to manage transformations between

different frames in the Gazebo simulation and reality. It employs a buffer

to store and retrieve transformations, aiding in obtaining the positions of

specific links.

Switching Controllers

During the simulation, there is a need to switch between controllers when

resetting the joints’ position. The JointTorqueController interfaces with

the controller manager package to seamlessly transition between torque

and position controllers.
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Sphere Pose and Resetting World

The controller is responsible for setting the pose of a sphere in the Gazebo

environment and resetting the entire simulation world. This feature introduces

variability and randomness, crucial for testing the robot’s capabilities.

In summary, the JointTorqueController serves as a crucial interface

between the simulated environment and Gazebo. Its functionalities enable

torque control, real-time feedback, and dynamic adjustments, contributing

significantly to the sim-to-real transfer process.

2.3 Grid Search Methodology

The success of reinforcement learning (RL) algorithms is often contingent on

the careful tuning of hyperparameters. The following section outlines the

parameters included in the grid search, providing a detailed rationale for their

selection:

• Action Noise: The action noise added to the agent’s actions dur-

ing exploration. The options considered include None, Normal, and

OrnsteinUhlenbeck. The inclusion of different action noises aims to

understand the impact of exploration strategies on the learning process.

• Learning Rate: The learning rate of the RL algorithm, a critical

parameter that determines the size of the update made to the model’s

parameters during the training process. It influences how quickly or

slowly a model learns from new experiences. Mathematically, the

learning rate (α) is applied to the gradient of the loss function with

respect to the model parameters (∇θ) in order to update the model

parameters (θ):

θt+1 = θt − α · ∇θt

Here:

– θt represents the model parameters at time step t.
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– ∇θt is the gradient of the loss function with respect to the model

parameters at time step t.

– α is the learning rate.

• Gamma: In reinforcement learning, the discount factor gamma (γ) is a

parameter that controls the importance of future rewards in the agent’s

decision-making process. Mathematically, the discount factor is used in

the calculation of the discounted cumulative reward, also known as the

discounted return.

The discounted return (Gt) at time step t is defined as the sum of future

rewards, each multiplied by the discount factor raised to the power of

the time step difference:

Gt = Rt+1 + γ ·Rt+2 + γ2 ·Rt+3 + . . .

Here:

– Gt is the discounted return at time step t,

– Rt is the reward obtained at time step t, and

– γ is the discount factor (a value between 0 and 1).

The discount factor serves several purposes:

1. Temporal Focus: A discount factor less than 1 gives more em-

phasis to immediate rewards, making the agent more focused on

short-term gains. This is important in scenarios where immediate

actions have a more significant impact.

2. Convergence: The discount factor ensures that the sum converges,

preventing an infinite sum of rewards. Without discounting, the

sum of rewards in an infinite horizon might not converge.

3. Preference for Shorter Paths: A smaller discount factor can

lead the agent to prefer shorter paths to rewards since future

rewards are less influential.
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4. Handling Uncertainty: It incorporates a degree of uncertainty

about the future, making the agent more robust in dynamic envi-

ronments.

• Buffer Size: The size of the replay buffer used to store and sample

experiences for training. A buffer size of 1,000,000 was selected to

evaluate the impact of memory capacity on learning.

• Batch Size: The number of experiences sampled from the replay buffer

in each training iteration. Values of 2,048 were explored to investigate

the impact of batch size on learning stability.

• Learning Starts: The number of steps the agent takes in the envi-

ronment before starting the learning process. This parameter is set to

5,000 to allow the agent to accumulate experiences before initiating

learning.

• Train Frequency: The frequency at which the agent performs a

learning update. A tuple of (500, ”step”) indicates an update every 500

steps.

• Gradient Steps: The number of optimization steps performed on

each learning update. Two values, 50 and 25, were tested to assess the

sensitivity of training to the number of gradient steps.

• Sigma: The standard deviation of the action noise when using Normal

and OrnsteinUhlenbeck action noise. Values of 0.2, 0.1, and 0.05 were

examined to understand the impact of noise magnitude on exploration.

• Tau: The soft update coefficient for target networks. Also called

”polyak update” or ”target network update” is a way of slowly updating

the parameters of the target network towards the parameters of the

main network. Mathematically, it is represented as:

θtarget ← τ · θonline + (1− τ) · θtarget

Here:
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– θtarget represents the parameters of the target network,

– θonline represents the parameters of the online (main) network,

– τ is the Polyak update parameter.

This update is performed periodically during training. The slow update

helps stabilize the training process by providing a moving average of the

online network’s parameters to the target network. This can make the

learning more robust and prevent the target network from oscillating or

diverging during training.

• Seed: The random seed is used to initialize the environment and

algorithms.

• Policy Architecture: The neural network architecture of the policy. A

feedforward architecture with three layers of 512 units each is employed

and the number of critics is set to 2. This exploration aims to evaluate

the influence of policy complexity on learning performance.

Additionally to hyperparameters, many different algorithms have been

tested. In particular from Stable Baselines3 [12]: Deep Deterministic Policy

Gradient (DDPG [13]), Soft Actor-Critic (SAC [14]) and Twin Delayed DDPG

(TD3 [15]) while from Stable Baselines3 Contrib [16] we used Truncated

Quantile Critics (TQC [17]).

2.3.1 Grid Search Results and Analysis

The grid search was conducted over a diverse set of hyperparameters to

comprehensively explore their impact on the training effectiveness of the

algorithms in the PandaTorquesReachSite environment. The following key

findings and insights were derived from the extensive experimentation:

Action Noise Impact

The exploration of diverse action noise types, including None, Normal, and

OrnsteinUhlenbeck, yielded varied improvements across different algorithms.
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Notably, the role of action noise proved essential for DDPG, an algorithm

reliant on a deterministic policy. The addition of action noise was essential in

introducing the necessary exploration-exploitation balance.

For algorithms like SAC and TD3, while not strictly required due to their

stochastic policies, the incorporation of action noise demonstrated enhanced

convergence and improved training stability. However, the effect of action

noise on the TQC algorithm would lead, in certain scenarios, to difficulties in

reaching local minima.

An interesting overview impact of action noise in DDPG, TD3, and SAC

can be found in the work of Hollenstein et al. [18]. This research provides

valuable insights into the subtle effects of action noise on deterministic policies

and contributes to a deeper understanding of its role in reinforcement learning

algorithms.

In the context of DDPG, the impact of different action noises, specifically

Normal and OrnsteinUhlenbeck, appears to exhibit minimal distinctions, as

illustrated in Figure 2.1. The visual representation of the training trajectories

under various action noise types suggests comparable performance between

the two. This observation implies that, within the DDPG framework for

the PandaTorquesReachSite environment, the choice between normal and

Ornstein-Uhlenbeck action noises may not significantly influence training

outcomes.

Figure 2.1: Comparison of Normal and OrnsteinUhlenbeck action noises in

DDPG.
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Impact of Gamma in SAC

In the SAC algorithm applied to the PandaTorquesReachSite environment,

the choice of the discount factor (γ) significantly influences training outcomes.

A comparative analysis of evaluation rewards with different γ values, specifi-

cally 0.95 and 0.99, reveals substantial differences in performance, as depicted

in Figure 2.2. Notably, a γ value of 0.95 results in inferior training compared

to the more conventional value of 0.99.

Figure 2.2: Impact of γ on training trajectories in SAC.

Results of TD3 algorithm

The TD3 (Twin Delayed DDPG) algorithm, often regarded as an enhancement

over DDPG [19], exhibited suboptimal results in the PandaTorquesReachSite

environment. Surprisingly, its performance was not superior to the original

DDPG, contrary to the expected trend. Similarly to the SAC (Soft Actor-

Critic) algorithm, TD3 delivered unfavourable results when γ was set lower

than 0.99.
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Figure 2.3: Results of TD3 algorithm.

The plot clearly shows that TD3 had a hard time learning and improving

its policy in this environment. The observed decrease in performance suggests

a need for a thorough examination of the adaptability and robustness of TD3

in this specific setting.

Learning Rate Sensitivity

The learning rate parameter, a crucial factor in determining the step size

during optimization, showed notable sensitivity. Contrary to expectations,

higher learning rates (e.g., 0.01) often resulted in a low convergence rate for

all algorithms tested.

To illustrate this sensitivity, we conducted experiments with different

learning rates and generated two key plots for the TQC algorithm. The

first comparison, depicted in Figure 2.4, contrasts the outcomes of learning

rates 0.0001 and 0.001, revealing minimal differences in results. However, the

second comparison, shown in Figure 2.5, demonstrates that models trained

with a learning rate of 0.01 consistently underperformed when compared to

their counterparts.
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Figure 2.4: Comparison of learning rates 0.0001 and 0.001.

Figure 2.5: Comparison of learning rates 0.001 and 0.01.

Tau and Target Network Update

Exploring different values of tau for target network updates showed the

importance of this parameter. Values equal to or exceeding 0.9 often led

to suboptimal learning outcomes. This observation emphasized the need to

moderate the update speed of target networks for improved stability and

performance.
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Gradient Steps and Training Stability

The number of gradient steps performed during each learning update was

found to impact training stability. Higher values, such as 100, sometimes

resulted in erratic behaviour and reduced overall effectiveness.

2.3.2 Optimal Hyperparameters for Different Algo-

rithms

Several hyperparameters exhibited complex interactions, necessitating an un-

derstanding of their collective impact. Notably, combinations of lower learning

rates, moderate tau values, and reduced gradient steps often contributed to

more stable and effective learning. The following sets of hyperparameters

were tested and the ones marked in bold represent the optimal choices for

each algorithm in the PandaTorquesReachSite environment:

DDPG

• Learning Rate: {0.005, 0.002, 0.001}

• Gamma: {0.99, 0.97, 0.95}

• Sigma: {0.2, 0.1}

• Tau: {0.005, 0.01, 0.02}

SAC

• Learning Rate: {0.005, 0.002, 0.001}

• Gamma: {0.99, 0.95}

• Sigma: {0.2, 0.1}

• Tau: {0.005, 0.01, 0.02}
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TD3

• Learning Rate: {0.005, 0.002, 0.001}

• Gamma: {0.99, 0.95}

• Sigma: {0.2, 0.1}

• Tau: {0.005, 0.01, 0.02}

TQC

• Learning Rate: {0.005, 0.002, 0.001}

• Gamma: {0.99, 0.95}

• Tau: {0.9, 0.8}

These optimal hyperparameter configurations reflect the specific param-

eter choices that demonstrated superior performance for each algorithm in

achieving effective learning and control.

Performance of TQC Algorithm

The TQC algorithm consistently outperformed alternative algorithms (DDPG,

SAC, and TD3) in our environment. This superiority, also demonstrated by

Kuznetsov et al. [20], is more evident when confronted directly with the other

algorithms as shown in Figure 2.6.

Moreover, differently from SAC and TD3, the TQC presented insensitivity

to lower γ values. Remarkably, setting γ to 0.95 did not lead to the anticipated

degradation in performance; the policy showed only marginal improvement

when γ was set to 0.9. In general, the variation of parameters did not exert

a significant influence on the training outcomes, despite the diverse set of

parameters explored, the impact on the overall training effectiveness remained

relatively consistent (see Figure 2.7).
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Figure 2.6: Comparison between algorithms.

Figure 2.7: Results of TQC algorithm.

2.4 Challenges and Adaptations

During the transfer from MuJoCo to Gazebo several issues emerged, in

particular, the disparities in the handling of damping and friction and the

topic publishing rate posed significant problems. The reason behind this

approach lies in the understanding that if the simulation functions effectively

in Gazebo, it is more likely to exhibit similar behaviour in the real world.

Testing in Gazebo acts as a preemptive and safer measure, helping identify

and resolve issues before transitioning to the physical system.

35



2.4.1 Discrepancies in Friction Models

In MuJoCo, damping is applied as a force linear in velocity, included in

the passive forces. However, the usage of damping in Gazebo differs, as

it represents an opposing force to joint velocity, acting to decelerate the

joint motion. Friction, on the other hand, is computed differently in both

simulators. In Gazebo, it involves Coulomb friction coefficients, including

mu and mu2, corresponding to the friction coefficients in two directions. This

contrasts with MuJoCo, where friction and damping are conceptually similar

but computed uniquely and it doesn’t allow to set the static friction separately.

The absence of a mechanism to set proper static friction in MuJoCo

complicated the challenge, as Gazebo employs a combination of damping and

friction coefficients with distinctive formulations. Adjusting the simulation to

address these differences became necessary to ensure accurate and consistent

outcomes.

2.4.2 Friction Solution

To bridge the gap in dynamic friction between MuJoCo and Gazebo, a

customized solution was implemented, focusing on the Franka Emika Panda

Robot. The primary parameters influencing the reality gap were identified as

inertias, static frictions, and dynamic frictions. A comprehensive approach,

outlined in the paper [21], introduced a dynamic friction solution specifically

addressing link-side friction. The dynamic friction compensation formula for

joint j, as derived from the methodology presented in the referenced paper,

is expressed as follows:

τf,j =
φ1,j

1 + e−φ2,j(q̇j+φ3,j)
− φ1,j

1 + e−φ2,jφ3,j
, j ∈ [1, . . . , 7] (2.1)

Here, τf,j represents the dynamic friction compensation for joint j, φ1,j,

φ2,j, and φ3,j are parameters specific to each joint.
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Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7

φ1 0.5462 0.8722 0.6407 1.2794 0.8390 0.3030 0.5649

φ2 5.1181 9.0657 10.1360 5.5903 8.3469 17.1330 10.3360

φ3 0.0395 0.0259 −0.0461 0.0362 0.0262 −0.0210 0.0036

Table 2.3: Estimated Friction Parameters.

It’s essential to highlight that this dynamic friction solution specifically

addresses link-side friction, leaving motor-side friction not explicitly considered.

Internally, the libfranka library incorporates a hidden friction observer that

compensates for a significant portion of motor-side friction, recognizing its

dominance over link-side friction.

By setting the friction parameters to 0 in both simulators and utilizing

the dynamic friction compensation formula, the resulting friction for each

joint can be subtracted from the policy’s action. This approach aims to unify

the friction modelling between MuJoCo and Gazebo, contributing to a more

consistent simulation for the Franka Emika Panda Robot.

2.4.3 Frequency Mismatch in Joint State Controller

An aspect affecting the fidelity of the simulation was the disparity between

the frequencies of the joint state controller [22] in Gazebo and the counterpart

function providing joint states in MuJoCo. The joint state controller, respon-

sible for obtaining joint positions, exhibited frequency-related issues. When

its frequency surpassed 250 Hz, the controller produced identical position

values for multiple consecutive timesteps even if the frequency of the joint

state controller was set to 1000 Hz.

The frequency mismatch posed challenges in accurately calculating accel-

erations, as the joint state controller provided the same values of positions

and velocities for consecutive timesteps.

Given that the controller outputs only positions and velocities, the accel-

eration must be derived using the formula:

ai =
vi − vi−1

ti − ti−1
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where ai is the acceleration of the i-th joint, vi is the velocity at time ti, vi−1

is the velocity at the previous time ti−1, and ti − ti−1 is the time difference

between the current and previous instants. Having both the velocity values

equal for 2 timesteps would lead to an incorrect acceleration calculation.

Maintaining an optimal frequency is crucial for torque-controlled robots,

as they require precise actions for each timestep within a simulation itera-

tion. High-frequency control ensures fine-grained influence over movements,

adapting to dynamic changes and disturbances.

Additionally, torque-controlled robots heavily rely on receiving timely

and accurate information from the simulation environment. Parameters

such as position, velocity, acceleration, and the distance from the target

play central roles in formulating effective torque commands. High-frequency

communication between the simulation and the controller is essential for

maintaining synchronization and enabling the robot to exhibit the desired

behaviour with responsiveness and precision as the actions the policy gives

are strictly related to the observations received.

To address this frequency mismatch, adaptations were implemented in the

joint state controller to ensure reliable position data acquisition. Limiting

the controller frequency to values compatible with the simulation dynamics

played a crucial role in preserving the integrity of acceleration calculations.

The challenges outlined above underscore the intricate process of transi-

tioning robotic simulations between different environments. The adaptations

made were essential in reducing the differences between MuJoCo and Gazebo,

enhancing the accuracy and stability of the simulated robotic system.
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Chapter 3

Sim-to-Real Parameters

Adaptation

In this section, we will show the process of adapting simulation parameters

to real-world conditions for the Panda robot. The focus encompasses static

friction compensation, gravity compensation, and the optimization of dynamic

friction and inertia parameters. Each of these elements plays a crucial role in

bridging the gap between simulated and real-world robotic environments.

3.1 Gravity and Friction Issues

The real Panda robot exhibited an issue where, upon activating the torque

controller, the arm would slowly fall due to inadequate gravity compensa-

tion. Moreover, we observed different kinetic friction based on the direction

of applied torque leading to different velocity trajectories for positive and

negative torque values. The second major problem involved the unknown

static friction parameters. Until this point, our efforts had been primarily

focused on simulating the effects of dynamic friction in the simulation. The

equation we used is only dependent on the velocity and is equal to 0 when

the joint is not moving, we need another way to simulate the static friction

in a manner that both MuJoCo and Gazebo would show similarities.

A systematic procedure was created to enhance both gravity compensation
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and different kinetic friction in a single step. The idea was to apply constant

torque (both positive and negative) to each joint and observe the resulting

velocity trajectory. To find the static friction parameters a similar approach

was used but instead of a static torque, we used a constantly increasing torque

in a way to obtain the value needed to break the static friction.

3.1.1 Gravity Compensation

To observe the effects of erroneous gravity compensation and different kinetic

friction constant torques were applied to individual joints, this revealed

discrepancies for various configurations. In particular, joints 2 and 4, which

are the ones most responsible for gravity compensations, showed very different

trajectories for positive and negative torque. The joints 1, 3 and 6, while not

usually in charge of gravity compensation, also revealed discrepancies in the

trajectories because of different kinetic friction. Joints 5 and 7 did not show

any relevant problems. Specifically, torque values were applied as follows:

• Joint 6: −0.6 N/m, −0.45 N/m, 0.45 N/m, 0.6 N/m

• Joint 4: −1.5 N/m, −1 N/m, 1 N/m, 1.5 N/m

• Joint 3: −1.5 N/m, −1 N/m, 1 N/m, 1.5 N/m

• Joint 2: −1.5 N/m, −1 N/m, 1 N/m, 1.5 N/m

• Joint 1: −2 N/m, −1 N/m, 1 N/m, 2 N/m

These torque applications resulted in a total of 20 velocity trajectories.

The subsequent plots illustrate the motion of each joint individually under

the influence of various torque values.
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(a) Torque = -0.45 N/m (b) Torque = -0.6 N/m

(c) Torque = 0.45 N/m (d) Torque = 0.6 N/m

Figure 3.1: Velocity trajectories before offset for Joint 6.

(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.2: Velocity trajectories before offset for Joint 4.
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(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.3: Velocity trajectories before offset for Joint 3.

(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.4: Velocity trajectories before offset for Joint 2.
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(a) Torque = -1 N/m (b) Torque = -2 N/m

(c) Torque = 1 N/m (d) Torque = 2 N/m

Figure 3.5: Velocity trajectories before offset for Joint 1.

As depicted in Figures 3.1a, 3.2c, and 3.4a, when applying torques of

−0.45 N/m, 1 N/m, and −1 N/m, respectively, Joint 6, Joint 4, and Joint

2 exhibit no movement. Interestingly, these problems are not observed with

torques of the opposite sign. This issue is caused by both incorrect gravity

compensation and varying kinetic friction. It can be assumed that in the idle

configuration, the system is not situated at the midpoint of the friction cone.

Generally, trajectories corresponding to equal positive and negative torques

are not comparable.

To solve these issues, an offset was introduced for each joint, which aimed

to make positive and negative trajectories visually similar. The offset values

applied to each joint were determined through a manual adjustment process.

The resulting offset values are as follows:
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Joint Offset Value

Joint 1 -0.127

Joint 2 -0.725

Joint 3 0.027

Joint 4 0.53

Joint 5 0

Joint 6 -0.06

Joint 7 0

Table 3.1: Offset Values for Gravity Compensation and Kinetic Friction

By adding these offset values to the joints for the actions that the policy

gives we were able to improve gravity compensation and kinetic friction,

creating consistent velocity trajectories for positive and negative torques

across all joints.

(a) Torque = -0.45 N/m (b) Torque = -0.6 N/m

(c) Torque = 0.45 N/m (d) Torque = 0.6 N/m

Figure 3.6: Velocity trajectories after offset for Joint 6.

44



(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.7: Velocity trajectories after offset for Joint 4.

(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.8: Velocity trajectories after offset for Joint 3.

45



(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.9: Velocity trajectories after offset for Joint 2.

(a) Torque = -1 N/m (b) Torque = -2 N/m

(c) Torque = 1 N/m (d) Torque = 2 N/m

Figure 3.10: Velocity trajectories after offset for Joint 1.
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3.1.2 Static Friction Compensation

Another prominent issue in the real Panda robot was the existence of different

kinetic friction for positive and negative torques applied to joints.

To solve this problem, linearly increasing torques were applied to each

joint, both positively and negatively. Torque values were incremented until

joint movement was detected, indicating the point where static friction was

overcome. This process was repeated for each joint, resulting in torque values

needed to break static friction in both directions.

The following plots present, for each joint, the applied action on the left,

and to the right, a zoomed-in view highlighting the specific moment where

static friction is overcome.

(a) (b)

(c) (d)

Figure 3.11: Static friction for Joint 1.
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(a) (b)

(c) (d)

Figure 3.12: Static friction for Joint 2.

(a) (b)

(c) (d)

Figure 3.13: Static friction for Joint 3.
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(a) (b)

(c) (d)

Figure 3.14: Static friction for Joint 4.

(a) (b)

(c) (d)

Figure 3.15: Static friction for Joint 5.

49



(a) (b)

(c) (d)

Figure 3.16: Static friction for Joint 6.

(a) (b)

(c) (d)

Figure 3.17: Static friction for Joint 7.
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The obtained torque values for joints J1 to J7 are summarized as follows:

Joint Positive Torque (Nm) Negative Torque (Nm)

J1 0.65 -0.62

J2 0.88 -0.81

J3 0.51 -0.42

J4 0.61 -0.51

J5 0.44 -0.67

J6 0.40 -0.23

J7 0.32 -0.35

Table 3.2: Positive and Negative Torque Values for Each Joint

These torque values were then used to simulate static friction in both

MuJoCo and Gazebo during training. A condition was introduced: if the joint

velocity was within the range of -0.03 to 0.03 (indicating stationary), and the

action generated by the policy fell within the positive and negative torque

values found for that joint, then the applied action was set to 0, simulating

the action’s inability to break static friction.

3.2 Trajectory Comparison and Evolution

Strategy

In this section, we discuss the optimization process for dynamic friction and

inertia parameters, the approach involves an evolution strategy with a single

population.

To address the vastly different dynamic friction observed in the real Panda

robot compared to simulation environments, an optimization process was

implemented. The goal was to find friction and inertia parameters that

minimize the error between simulated and real trajectories. To generate the

trajectory for each joint, a constant torque was applied for the initial 1500

timesteps of the simulation. During this period, the joint moved in response
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to the applied torque. This phase allowed capturing the dynamic response of

the system under torque influence.

After the initial 1500 timesteps, no external torque was applied to the

joint for the remaining 500 timesteps. This intentional interruption of torque

application enabled the observation of dynamic friction and inertia effects

on the joint’s behaviour when it was in motion without any external driving

force.

3.2.1 Friction and inertia Parameters Adjustment

The optimization process involves adjusting friction parameters (FI1X,

FI2X, FI3X) for each joint (X) and the six inertia values of the matrix for

each link using an evolution strategy. The parameters were adjusted based

on the error between simulated and real trajectories. The algorithm involved

the following steps:

1. For each joint in the real robot, different trajectories were obtained.

2. For each joint, friction and inertia parameters were randomly perturbed

in a neighbourhood of the value to explore the parameter space.

3. A check is made so that the eigenvalues of the inertia matrix obtained

with the new parameters have positive eigenvalues, if not repeat the

randomization of inertia parameters.

4. Simulated trajectories were generated using the adjusted parameters.

5. The error between real and simulated trajectories was calculated.

6. If the new parameters resulted in a lower error, they were accepted;

otherwise, the parameters were reverted.

7. The process was repeated from point 2 until a satisfying set of parameters

was found.
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Error Calculation

The error between real and simulated trajectories was calculated by summing

the absolute values of the difference between the joint positions in the real and

simulated environment with all the trajectories given at regular intervals. This

error served as the fitness function for the evolution strategy. Additionally,

another type of error was computed without considering the absolute value.

Instead, the sign of this error before the sum was adjusted based on the

applied torque for that trajectory (negative or positive) before summing

the errors together for that joint. This adjustment allows for discerning

whether the friction in the simulation is too high or too low. The sign of this

error is used in the smart adjustment strategy to determine where parameter

randomization is needed.

Smart Adjustment Strategy

The smart adjustment strategy was introduced to guide the evolution strategy

based on the sign of the error. This strategy takes into account whether the

error between real and simulated trajectories is positive or negative.

1. When the error is positive (indicating too much friction in the simula-

tion), the strategy selectively decreases friction for certain parameters

while increasing others to reduce the overall friction.

2. Conversely, when the error is negative (indicating too little friction in

the simulation), the strategy adjusts the parameters to increase friction

selectively.

3. This selective adjustment aims to address specific aspects of friction

behaviour, allowing for targeted improvements.

The smart adjustment strategy helped reach an optimal solution faster,

adapting the parameters search based on the observed errors.

53



Worse Counter

To avoid getting stuck in local minima during the optimization process, a

”worse counter” mechanism was implemented. This counter monitors the

consecutive iterations where the new parameter set results in a worse (higher)

error compared to the previous one. If the counter is bigger than a threshold,

the smart adjustment strategy is ignored, allowing the randomization in

both directions independently from the value of the error, this is especially

useful when we are in a local minimum and no improvement was found due

to the forced directional randomization. If the worse counter surpasses a

second predefined threshold, the scaling factor for parameter adjustments

becomes more aggressive, allowing for larger perturbations. The worse counter

is reset when a new better set of parameters is found. This mechanism

introduces controlled exploration during the optimization process, enhancing

the algorithm’s ability to escape local minima.

The combination of the smart adjustment strategy and the worse counter

contributes to the adaptability and robustness of the evolution strategy in

optimizing friction and inertia parameters for the Panda robot simulation.

3.2.2 Trajectory Generation and Comparison

To evaluate the effectiveness of the optimized parameters, trajectories were

generated from the real robot and compared with simulated trajectories.

Trajectories from the real Panda robot were recorded by applying various

static torques to each joint. The resulting trajectories were stored and used

as a reference for comparison. In particular by applying the following torques

to the following joints:
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Joint Torques Applied

Joint1 -2, -1, 1, 2

Joint2 -1.5, -1, 1.5

Joint3 -1.5, -1, 1, 1.5

Joint4 -1.5, -1, 1, 1.5

Joint5 -1.3, -1, 1, 1.3

Joint6 -0.6, -0.5, 0.5, 0.6

Joint7 -0.6, -0.5, 0.4, 0.5, 0.65

Table 3.3: Torques Applied for Trajectory Generation.

We obtained a total of 28 trajectories. Before randomizing friction and

inertia parameters, we compared the real-world trajectories with their corre-

sponding simulated trajectories with the friction and inertia values proposed

on [23] for the inertia and [21] for the friction. The purpose of this comparison

was to observe the impact of the optimization algorithm after obtaining new

parameters.

Considering the trade-off between computational time and accuracy, the

number of trajectories generated was carefully considered. While having

more trajectories generally improves evaluation comprehensiveness, we opted

for a balance. Approximately four trajectories per task were selected for

analysis, providing a meaningful representation of the robot’s behaviour

without significantly increasing computational demands.

Trajectory Comparison Plots

The following plots depict the trajectories of selected joints before any ran-

domization of friction and inertia parameters. The blue lines represent the

real-world trajectories obtained from the physical Panda robot, while the

orange lines represent the corresponding simulated trajectories.
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(a) Torque = -1 N/m (b) Torque = -2 N/m

(c) Torque = 1 N/m (d) Torque = 2 N/m

Figure 3.18: Trajectory comparisons for Joint 1 with initial parameters.

(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1.5 N/m

Figure 3.19: Trajectory comparisons for Joint 2 with initial parameters.
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(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.20: Trajectory comparisons for Joint 3 with initial parameters.

(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.21: Trajectory comparisons for Joint 4 with initial parameters.
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(a) Torque = -1 N/m (b) Torque = -1.3 N/m

(c) Torque = 1 N/m (d) Torque = 1.3 N/m

Figure 3.22: Trajectory comparisons for Joint 5 with initial parameters.

(a) Torque = -0.5 N/m (b) Torque = -0.6 N/m

(c) Torque = 0.5 N/m (d) Torque = 0.6 N/m

Figure 3.23: Trajectory comparisons for Joint 6 with initial parameters.
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(a) Torque = -0.5 N/m (b) Torque = -0.6 N/m

(c) Torque = 0.4 N/m (d) Torque = 0.5 N/m

(e) Torque = 0.65 N/m

Figure 3.24: Trajectory comparisons for Joint 7 with initial parameters.

It’s evident from the plots that the friction in simulation is significantly

lower compared to reality. This discrepancy is apparent across all joints,

where the trajectories for positive and negative torques diverge notably from

the real ones.
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New Parameters

The following table presents the updated friction parameters for each joint after

optimization. The optimization process aimed to enhance the simulation’s

fidelity to real-world trajectories.

Joint Parameter Old Value New Value

1

FI 10 0.54615 3.40395

FI 20 5.1181 9.67118

FI 30 0.039533 6.748e-05

2

FI 11 0.87224 1.97802

FI 21 9.0657 28.66575

FI 31 0.025882 0.00012

3

FI 12 0.64068 2.51351

FI 22 10.136 9.82965

FI 32 -0.04607 -0.00050

4

FI 13 1.2794 2.43842

FI 23 5.5903 18.77921

FI 33 0.036194 0.00057

5

FI 14 0.83904 2.59531

FI 24 8.3469 4.19342

FI 34 0.026226 0.00541

6

FI 15 0.30301 1.19220

FI 25 17.133 5.74691

FI 35 -0.021047 -0.00048

7

FI 16 0.56489 1.54853

FI 26 10.336 1.69810

FI 36 0.0035526 0.00169

Table 3.4: Comparison of Friction Parameters Before and After Optimization.
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The optimization process not only focused on refining friction parameters

but also targeted improvements in inertia values to enhance the simulation’s

accuracy. Table 3.5 showcases a side-by-side comparison of the original and

optimized inertia parameters for each link.

Link Old Inertia Values New Inertia Values

1

0.70337, 0.70661,

0.009117, -0.000139,

0.006772, 0.019169

0.5123, 0.5147,

0.0066, -0.0001,

0.0049, 0.0140

2

0.007962, 0.02811,

0.025995, -0.003925,

0.01025, 0.000704

0.01089, 0.03844,

0.03555, -0.00537,

0.01402, 0.00096

3

0.03724, 0.03616,

0.01083, -0.004761,

-0.01140, -0.01281

0.04234, 0.04110,

0.01231, -0.00541,

-0.01296, -0.01456

4

0.02585, 0.01955,

0.02832, 0.007796,

-0.001332, 0.008641

0.02525, 0.01910,

0.02766, 0.007614,

-0.001301, 0.00844

5

0.03555, 0.02947,

0.008627, -0.002117,

-0.004037, 0.000229

0.04287, 0.03554,

0.01040, -0.00255,

-0.00487, 0.00028

6

0.001964, 0.004354,

0.005433, 0.000109,

-0.001158, 0.000341

0.00148, 0.00329,

0.00410, 0.000082,

-0.00087, 0.00026

7

0.01252, 0.01003,

0.004815, -0.000428,

-0.001196, -0.000741

0.01482, 0.01188,

0.00570, -0.00051,

-0.00142, -0.00088

Table 3.5: Comparison of Old and New Inertia Values.
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Joint Initial Error Final Error

1 188.8488 3.0121

2 31.5475 1.7076

3 96.0152 3.1312

4 77.5024 2.1821

5 258.6358 10.8730

6 156.5996 15.6212

7 288.9131 54.1302

Table 3.6: Comparison of Initial and Final Errors

The optimization process led to significant adjustments in the friction

parameters. Notably, these changes were drastic, with some friction coefficients

experiencing several-fold increases or decreases. The inertia parameters

presented in Table 3.5 for each joint correspond to MuJoCo’s full inertia

matrix (fullinertia). This matrix is expressed using six numbers in the

following order: M(1, 1), M(2, 2), M(3, 3), M(1, 2), M(1, 3), and M(2, 3).

It is a symmetric 3-by-3 matrix. The compiler computes the eigenvalue

decomposition of M and adjusts the frame orientation and diagonal inertia

accordingly. The values in the table represent both the old and new inertia

parameters for each joint, providing information about the modifications

made during the optimization process.

Unlike the friction parameters, the changes in inertia parameters are

more moderate. While still significant, they do not exhibit the same level of

magnitude of variation as observed in the friction values.

Trajectory Comparison

The following figures illustrate the comparison between real and simulated

trajectories for a specific joint and torque condition after the optimization

algorithm.
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(a) Torque = -1 N/m (b) Torque = -2 N/m

(c) Torque = 1 N/m (d) Torque = 2 N/m

Figure 3.25: Trajectory comparisons for Joint 1 with new parameters.

(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1.5 N/m

Figure 3.26: Trajectory comparisons for Joint 2 with new parameters.
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(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.27: Trajectory comparisons for Joint 3 with new parameters.

(a) Torque = -1 N/m (b) Torque = -1.5 N/m

(c) Torque = 1 N/m (d) Torque = 1.5 N/m

Figure 3.28: Trajectory comparisons for Joint 4 with new parameters.
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(a) Torque = -1 N/m (b) Torque = -1.3 N/m

(c) Torque = 1 N/m (d) Torque = 1.3 N/m

Figure 3.29: Trajectory comparisons for Joint 5 with new parameters.

(a) Torque = -0.5 N/m (b) Torque = -0.6 N/m

(c) Torque = 0.5 N/m (d) Torque = 0.6 N/m

Figure 3.30: Trajectory comparisons for Joint 6 with new parameters.
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(a) Torque = -0.5 N/m (b) Torque = -0.6 N/m

(c) Torque = 0.4 N/m (d) Torque = 0.5 N/m

(e) Torque = 0.65 N/m

Figure 3.31: Trajectory comparisons for Joint 7 with new parameters.

Evolution Strategy Performance

The evolution strategy demonstrated its ability to adapt friction and inertia

parameters to improve trajectory matching. The final parameters resulted in

reduced errors and more accurate simulation results.
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3.2.3 Overall Impact

The initial total errors for all joints were relatively high (as visible in Ta-

ble 3.6), indicating a significant deviation between the simulated and real

trajectories. After the optimization, the final total errors for all joints sig-

nificantly decreased. This suggests that the algorithm successfully identified

better parameter values that align the simulated trajectories more closely

with the real trajectories. The reduction in total error is a positive outcome,

indicating improved accuracy in the simulation.

However, it’s worth mentioning that despite the substantial error reduction,

there might still be room for further improvement. Fine-tuning or employing

more sophisticated optimization techniques could potentially lead to even

better alignment between simulated and real trajectories.
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Chapter 4

Sim-to-Real Transfer

This chapter provides an overview of the Sim-to-Real Transfer and introduces

the context for discussing the results obtained with domain randomization.

The goal is to assess the robustness of learned policies under diverse conditions

by introducing randomization in the system’s physical parameters.

4.1 Results of Sim-to-Real Transfer Experi-

ments with Domain Randomization

In this section, we discuss the outcomes of Sim-to-Real Transfer experiments

with the implementation of domain randomization. The aim is to investigate

the robustness of the learned policies under varying conditions by introducing

randomization in the physical parameters of the system.

4.1.1 Domain Randomization Actuated

The domain randomization is integrated into the environment to enhance

the transferability of the learned policies. Specifically, after each iteration of

the reinforcement learning process, the friction and inertia parameters are

randomized around their initial optimal values. The randomization involves

varying friction within a range of ±10% and inertia within a range of ±5% of

their initial values. This process is repeated after every episode, providing a
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diverse set of training scenarios.

Reinforcement Learning Performance

Graphical representations of the reinforcement learning performance are

shown in Figure 4.1 and Figure 4.2. These graphs demonstrate the learning

progress of the TQC algorithm during the grid search, both before and after

implementing domain randomization.

Figure 4.1: TQC performance during the grid search without domain ran-

domization.

Figure 4.2: TQC performance during the grid search with domain randomiza-

tion.
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The visual representations collectively offer valuable insights into the

influence of domain randomization on Sim-to-Real transfer experiments,

revealing the robustness and adaptability of the learned policies under diverse

real-world conditions. Notably, the mean reward per episode, as observed

in the confrontation of the final training episodes of the two most successful

runs presented in Figure 4.3, indicates that the randomized scenarios exhibit

a slight performance dip compared to their non-randomized counterparts.

This marginal difference underscores the efficacy of domain randomization in

sustaining competitive performance despite the inherent variations introduced

during the training process.

Figure 4.3: Comparison of mean reward per episode between scenarios with

and without domain randomization.

4.1.2 Sim and Real Model Testing

In this section, we evaluate the performance of the newly trained model,

which was trained with domain randomization, in different environments.

The evaluation encompasses testing in MuJoCo, Gazebo, and real-world

scenarios.

MuJoCo Evaluation

The model’s performance is first evaluated in the MuJoCo simulation environ-

ment. Figure 4.4 presents the results of the evaluation, in particular, the plots
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represent the value of the reward obtained at each step during the evaluation.

(a) (b)

(c) (d)

Figure 4.4: Results for MuJoCo.

The evaluation in the MuJoCo simulation environment demonstrates the

effectiveness of the trained model. The plots of the rewards highlight the

model’s ability to efficiently navigate and manipulate the robotic arm getting

almost null rewards for some positions. The end effector successfully reaches

the randomized target and maintains its position steadily throughout the

remaining timesteps.

Gazebo Evaluation

Next, we assess the model’s performance in the Gazebo simulation environ-

ment. Figure 4.5 showcases the reward plots obtained during the Gazebo

evaluation.
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(a) (b)

(c) (d)

Figure 4.5: Results for Gazebo.

The evaluation in the Gazebo simulation, being a simulator closer to

reality, reveals optimal results. Figure 4.5 demonstrates that the model

performs exceptionally well, exhibiting only minor fluctuations in rewards

as the end effector precisely reaches the randomized target as shown in

Figure 4.5b and Figure 4.5d. The slight variations observed in the rewards are

attributed to subtle movements of the end effector upon reaching the target.

Overall, these results suggest a high level of accuracy and stability in the

model’s performance, indicating a successful transfer of learned behaviours to

a simulation environment more representative of real-world conditions.

Real-world Evaluation

It’s important to note that the real-world setup differs from the simulation

environments. Unlike in simulations, the policy’s actions are no longer

modified by subtracting dynamic friction. Instead, the policy’s actions are

directly summed with the pre-determined gravity compensation offset values.

73



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Results in real scenario.
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The plots illustrating the real-world evaluation indicate that the model

trained with domain randomization performs remarkably well in the actual

physical environment. The end effector consistently approaches and maintains

its position near the randomized goal. Notably, some minor overshooting is ob-

served in reaching the target, as depicted in Figure 4.6a, 4.6b and Figure 4.6d.

Despite these slight deviations, the overall performance demonstrates the

effectiveness of the trained model in a real-world setting.

The evaluation across different environments shows the generalizability and

robustness of the trained model, allowing possible applications in real-world

settings.
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Chapter 5

Conclusion

The research findings highlighted the challenges encountered during the trans-

fer from MuJoCo to Gazebo, particularly in handling damping and friction dis-

crepancies. The study emphasized the importance of simulation effectiveness

in Gazebo for real-world applicability. The evaluation in different environ-

ments demonstrated the model’s generalizability and robustness, showcasing

its potential in real-world settings. The impact of domain randomization on

the Sim-to-Real Transfer experiments was evident, revealing the adaptability

and performance of the learned policies under diverse conditions. Although

significant error reduction was achieved through optimization, further im-

provements could be explored through fine-tuning or advanced optimization

techniques to enhance alignment between simulated and real trajectories.

5.1 Contributions to Sim-to-Real Transfer

This thesis delves into the challenges of transferring simulated robotic control

policies to the real world, focusing on torque-controlled robotic arms. Using

reinforcement learning techniques, the research addresses issues related to

friction compensation, parameter optimization, and domain randomization,

aiming to enhance the adaptability of robotic systems in varied environments.

One significant aspect of this research is the in-depth exploration of

parameter estimation, specifically dynamic friction and inertia. The conducted
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experiments and analyses showed how to accurately estimate these crucial

parameters, emphasizing their impact on simulated and real-world dynamics.

These techniques contribute not only to robust control policies but also to a

better understanding of challenges posed by unknown parameters.

The successful implementation of parameter optimization strategies demon-

strated in this work is central to improving the adaptability and performance

of robotic systems in real-world scenarios. Optimizing inertia and dynamic

friction helps bridge the reality gap, adding a valuable dimension to creating

resilient and versatile robotic systems.

Beyond discovery, this work highlights the practical implications of sim-

to-real transfer challenges, emphasizing the importance of developing robust

strategies for generalizing robotic arms effectively. The research advances the

state-of-the-art in robotic control, laying a foundation for future efforts to

enhance performance and adaptability in real-world settings.

The detailed investigation into simulation environments, training method-

ologies, and adaptation strategies provides a comprehensive understanding

of sim-to-real transfer complexities for torque-controlled robotic arms. By

analyzing existing literature, introducing innovative adaptations, and shar-

ing empirical results, this thesis enriches the discourse on the efficacy of

sim-to-real transfer methodologies.

The implications of this work extend towards creating more efficient and

adaptable robotic systems capable of navigating diverse real-world environ-

ments with precision and reliability.

5.2 Future Research Directions

Moving forward, specific avenues for future research can be explored based

on the identified limitations and potential improvements. Some potential

directions include:

• Further investigate the impact of domain randomization on sim-to-real

transfer across a broader range of robotic applications to assess its

effectiveness and robustness in diverse scenarios.
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• Explore new strategies for adapting simulation-trained models to com-

plex real-world environments with unknown parameters, focusing on

enhancing adaptability and generalization capabilities.

• Evaluate the scalability of the proposed methodology to different robotic

platforms and tasks to enhance its applicability and effectiveness in

various real-world settings.

• Explore the potential of reinforcement learning algorithms and hyper-

parameter optimization techniques to further enhance training effective-

ness and generalization capabilities for sim-to-real transfer challenges

in robotic control.

By addressing these future research directions, the field of sim-to-real trans-

fer for torque-controlled robotic arms can continue to evolve and innovate,

leading to more efficient and adaptable robotic systems for a wide range of

applications.
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