
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Artificial Intelligence in Industry

DEALING WITH LONG-TERM
CONSTRAINTS IN A HYBRID LEARNING

AND OPTIMIZATION METHOD

CANDIDATE SUPERVISOR

Diego Chinellato Prof. Michele Lombardi

Academic year 2023-2024

Session 6th

To Giorgia.

ii

Abstract

The increasing complexity of real-world decision-making problems, where

long-term reasoning capabilities are required, is driving novel research on the

integration of existing approaches. With this purpose, this thesis explores the

synergies between Mathematical Optimization (MO) and Machine Learning

(ML), focusing on integrating Reinforcement Learning (RL) with Constrained

Optimization (CO) for complex decision-making problems. Our starting point

is the UNIFY framework, an hybrid method comprising an offline ML-based

phase as well as an online CO-based phase. Our core contribution is the ex-

tension of this framework to handle cumulative (long-term) constraints by re-

casting the problem as a Constrained Markov Decision Process (CMDP) and

employing Lagrangian relaxation methods for its solution. We conduct empir-

ical evaluations on an Energy Management System (EMS) tasked with optimal

power flow allocation under long-term sustainability constraints. The results

reveal: (1) the critical role of virtual parameters modeling in the learning pro-

cess; (2) the challenges associated with the choice of the online optimization

problem; and (3) the importance of hyperparameter tuning in optimizing the

framework’s performance. Overall, the proposed approach can offer strategic

foresight allowing for proactive preparation for future requirements, while also

retaining good performances even when dealing with strict constraints.

Contents

1 Introduction 1

2 Background and preliminaries 4
2.1 Mathematical Optimization 5

2.1.1 The method of Lagrange Multipliers 12

2.2 Machine Learning . 13

2.2.1 Reinforcement Learning 14

2.2.2 Constrained Reinforcement Learning 21

2.3 Learning with optimization-driven costs 22

2.4 Constraints taxonomy . 24

3 Methods 26
3.1 The UNIFY framework . 26

3.2 UNIFY formulation with cumulative constraints 27

3.3 Solving CMDPs . 29

3.3.1 PPOLag . 29

3.3.2 CPPO . 30

3.3.3 Practical considerations 31

4 Empirical evaluation 33
4.1 Study case: Energy Management System 34

4.1.1 EMS with expected constraints 34

4.1.2 Online problem: LP model 34

i

4.1.3 Offline problem: RL agent 36

4.2 Experimental setup and methodology 37

4.3 Unconstrained baseline: PPO vs PPOLag 39

4.4 On the choice of the virtual parameters 40

4.5 On the choice of the online optimization problem 49

4.6 Improving performances . 52

4.6.1 Effects of varying the cost limit 52

4.6.2 Hyperparameter Tuning 55

5 Conclusions 63
5.1 Main challenges and insights 63

5.2 Future Works . 65

Bibliography 67

Acknowledgements 75

ii

List of Figures

4.1 Average cost obtained by PPO and PPOLag on 100 test in-

stances, 95% CI. Runs are grouped according to the speci-

fied cost limit, with the horizontal bars indicating the specified

costs. Stricter cost limits are more difficult to attain. 40

4.2 Average normalized return (the higher the better) obtained by

PPO and PPOLag on 100 test instances, 95% CI. Runs are

grouped according to the specified cost limit. 41

4.3 Average constraint score (the lower the better) obtained by

PPO and PPOLag on 100 test instances, 95% CI. Runs are

grouped according to the specified cost limit. 42

4.4 Average cost obtained by each parametrization on 100 test in-

stances, 95% CI. Runs are grouped according to the speci-

fied cost limit, with the horizontal bars indicating the speci-

fied costs. The BOTH-CVIRTS variant is the only one capable

of producing policies that learn to satisfy the required constraint. 43

4.5 Average normalized return (the higher the better) obtained by

each parametrization on 100 test instances, 95% CI. Runs are

grouped according to the specified cost limit. 44

4.6 Average constraint score (the lower the better) obtained by

each parametrization on 100 test instances, 95% CI. Runs are

grouped according to the specified cost limit. 45

iii

4.7 Power flows of a trained agent employing the CVIRT-IN parametriza-

tion (test instance, d = 300). As the agent has no control on

the storage output, the online model tends to myopically sell

the energy and then buying it when needed, rather than using

the storage system to store excess energy to avoid buying it

later at a possibly higher price. 46

4.8 Power flows of a trained agent employing the BOTH-CVIRTS

parametrization (test instance, d = 300). Having given (indi-

rect) control on the storage output to the RL agent, the online

model prefers to keep the storage system at a higher capac-

ity and only retrieve energy from it when necessary; this re-

sults both in less energy sold to the grid as well as less energy

bought from the grid during peak hours. 47

4.9 Power flows of a trained agent employing the CVIRT-IN parametriza-

tion (test instance, d = 300). As it cannot influence in any way

the online model’s decision on the input energy to the storage,

the agent immediately empties the storage without using it for

the rest of the day. 48

4.10 Average cost obtained by each online model variant on 100 test

instances, 95% CI. Runs are grouped according to the speci-

fied cost limit. 49

4.11 Average normalized return (the higher the better) obtained by

each online model variant on 100 test instances, 95% CI. Runs

are grouped according to the specified cost limit. 50

4.12 Power flows of a trained agent employing the Quadratic Pro-

gramming online model (test instance, d = 300). With this

approach, the storage flows no longer act as binary variables. . 53

4.13 2 days episode (simulation), average return (normalized) ac-

cording to cost limit, 95% CI. Higher cost limits appear to

performs worse than lower cost limits. 54

iv

4.14 Permutation importance scores of the 8 most important hyper-

parameters. Bars show standard deviation. L2 regularization

and the cost function employed appear to be particularly im-

portant. 57

4.15 95% CIs for constraint score (the lower the better, validation

set) for different cost functions. The dense cost function ap-

pears to be significantly better, which was expected as it does

not introduce a credit assignment issue in the offline RL problem. 58

4.16 95% CIs for constraint score (the lower the better, validation

set) based on actor L2 regularization and type of cost func-

tion employed. The left plot considers the dense cost func-

tion, while the right plot considers the sparse cost function.

The dense cost function appears to be overall better than the

sparse cost function. Also in the dense case, L2 regulariza-

tion seems to help in improving performances, although too

much regularization is detrimental. In the sparse case, L2 reg-

ularization seems to have an opposite effect, leading to worse

performances. 59

4.17 95% CIs for constraint score (the lower the better, validation

set) based on number of training instances and type of cost

function employed. The left plot shows data of runs employ-

ing the dense cost function, while the right plot considers the

sparse cost function. A curious behaviour can be noticed: in

the dense case, more instances lead to better performances,

while in the sparse case the opposite is true, with a single-

instance training faring better than 10 or 100 instances. Still,

overall performances appear to be better when employing the

dense cost function. 60

4.18 95% CIs for average cost (validation set) based on Lagrangian

method employed. 61

v

4.19 95% CIs for average return (the lower the better, validation set)

based on Lagrangian method employed. 62

vi

List of Tables

4.1 Description of each (online) decision variable (i.e. power flows). 35

4.2 Description of each tuned hyperparameter and considered val-

ues. 56

vii

Chapter 1

Introduction

In recent years, there has been a ever-increasing collaboration on interdisci-

plinary research between the Mathematical Optimization (MO) community,

in particular that of Constrained Optimization (CO), and the Machine Learn-

ing (ML) community. While MO has long been established as a discipline fo-

cused on the formulation of mathematical models which are then employed to

solve decision-making problems, ML has emerged more recently as a power-

ful framework for data-driven decision-making and pattern recognition. These

two approaches excel in their respective domains, yet their convergence may

yield a new realm of possibilities for solving complex problems that neither

could efficiently tackle alone. For instance, ML methods tend to be scalable

and capable of generalizing to unseen data, but they also often feature a black-

box nature hindering explainability and their performances heavily depend on

the quality (and quantity) of available data; on the other hand, MO methods

usually have optimality guarantee on solutions found and they are often more

interpretable than black-box ML models, but are sensitive to modelling as-

sumptions and may be extremely computationally expensive, such as when

dealing with non-convex or combinatorial problems. We believe this com-

plementary nature of ML and MO methods to be a strong motivation behind

working towards tighter integration of these fields.

1

This synergy between MO and ML, especially within the domain of Re-

inforcement Learning (RL) and (stochastic) Constrained Optimization, em-

bodies the core focus of this thesis: we consider a hybrid learning and opti-

mization framework and equip it with the ability of dealing with long-term

constraints. The primary motivation behind this work arises from the increas-

ing complexity of real-world problems, where an AI agent tasked with solving

such complex problems would indeed need the capability to make decisions

in an environment with constraints over a long horizon (i.e. long-term reason-

ing); these constraints could range from budgetary limitations in operations

research to emission caps in environmental management systems, posing sig-

nificant challenges to traditional problem-solving methodologies which may

act in a myopic way.

The intersection of MO and ML, particularly through Constrained Rein-

forcement Learning (CRL), offers a promising avenue for addressing these

challenges: CRL methods aim at learning optimal policies in environments

where actions are not only evaluated based on rewards but must also adhere

to specific constraints. This requirement mirrors real-world scenarios much

closer than unconstrained environments, but it also introduces added com-

plexity during the learning process.

Given the significance of long-term constraints in many practical applica-

tions, this thesis extends a recently proposed framework called UNIFY [58] to

handle long-term constraints. UNIFY is an hybrid learning and optimization

framework for complex decision-making problems which works by decompos-

ing the problem into two stages, namely an offline ML model and an online

CO model[58]. In this thesis, we extend this framework by slightly altering

the general problem formulation and employing CRL methods to overcome

the myopic behaviour of traditional CO methods.

All the code developed for this thesis can be found at the following GitHub

repository: https://github.com/diegochine/thesis

The remaining of this thesis is structured as follows:

2

• Chapter 2: Background and preliminaries. This chapter deals with

the mathematical preliminaries required for understanding the subse-

quent work. A general overview of the MO and ML fields is provided,

with a focus on Reinforcement Learning (RL). Related works and con-

straints taxonomy are also provided in this chapter.

• Chapter 3: Methods. In this chapter a brief introduction to the UNIFY

framework is provided, which is then reformulated to accommodate cu-

mulative constraints. We also describe the RL algo that we employ to

learn a constraint-satisfying policy, PPOLag.

• Chapter 4: Empirical evaluation. This is the empirical chapter: the

description of the case study considered in our experiments (EMS) is

provided first, followed by the experiments that have been carried out.

The experimental setup as well as the evaluation methodology are also

discussed in this chapter.

• Chapter 6: Conclusions. This chapter summarizes the thesis by syn-

thesizing the findings and discussing their implications and the chal-

lenges encountered. We conclude by highlighting how the proposed

framework contributes to the existing body of research and describing

some possible avenues for future research.

3

Chapter 2

Background and preliminaries

In this chapter, a comprehensive theoretical overview of the foundational con-

cepts required for understanding the hybrid approach proposed in this thesis is

provided.

This chapter is structured as follows: the first section describes the general

problem of Mathematical Optimization, as well as presenting various com-

mon optimization techniques and methods ranging from linear programming

to stochastic optimization; we also describe the method of Lagrange Multipli-

ers, a pivotal tool for solving constrained optimization problems. Following

the overview on mathematical optimization, Section 2.2 delves into the realm

of machine learning, specifically focusing on Reinforcement Learning (RL).

Within this domain, we describe some of the most common RL algorithms.

Then, by building upon the basic concepts of RL, we describe the Constrained

RL problem, wherein agents must act in environments subject to constraints

of different nature. We present some related works in Section 2.3. Given

that a very large amount of different paradigms for integrating ML and CO

have been developed (and are still being actively studied), we focus on the

method that we find most closely related to our proposed framework, namely

Decision-Focused Learning. Finally, in Section 2.4, we present a taxonomy

of constraints, categorizing them based on their characteristics and implica-

tions for decision-making processes. This taxonomy serves as a foundational

4

framework for understanding the diverse array of constraints encountered in

real-world applications and guides the subsequent discussions on the integra-

tion of constraints into reinforcement learning frameworks.

2.1 Mathematical Optimization

Mathematical Optimization (also known as Mathematical Programming)

is a foundational pillar of the Artificial Intelligence discipline that provides

essential methods and techniques for modelling decision-making processes,

and finds application in many different fields ranging from Machine Learning

to financial applications. From a high-level perspective, it involves finding the

best possible solution to a given problem from a set of alternatives.

Mathematically, an optimization problem involves the minimization (or

maximization) of a function; a prototypical optimization problem can be ex-

pressed as:

min
x∈A

f(x) (2.1)

where x = (x1, ..., xd) represents the vector of decision variables, f : Rd → R

is the objective function and A is the search space, i.e. the set of admissible

values that x may assume. Usually A is specified by means of equalities and

inequalities involving constraint functions, i.e.:

min
x

f(x)

s.t. gi(x) ≤ 0, i = 1...n

hi(x) = 0, i = 1..m

(2.2)

where gi(x) are the inequality constraint functions and hi(x) are the equal-

ity constraint functions. Then, the goal is to identify the optimal set of deci-

sion variables that minimizes (or maximizes) f(x), that is: finding an element

x∗ ∈ A such that either f(x∗) ≤ f(x)∀x ∈ A, for a minimization problem,

5

or f(x∗) ≥ f(x)∀x ∈ A, for a maximization problem. Note that by conven-

tion we consider only minimization problems, as minimizing a function f(x)

yields the same result as maximizing −f(x), its reflection about the x-axis,

since f(x∗) ≥ f(x) ⇐⇒ −f(x∗) ≤ −f(x); this means we can essen-

tially treat minimization problems and maximization problems in the same

way, so without loss of generality we only consider minimization problems

from now on. Furthermore, the above definition of x∗ is that of a global min-
imum; that is, x∗ is the best possible solution out of the entire feasible set

A. From a practical point of view, however, for many classes of optimiza-

tion problems finding the global optimum may be extremely complicated, for

instance when the objective function is a highly nonlinear function; in such

cases, we may instead obtain a local optimum, that is, a value x∗ ∈ A such

that f(x∗) ≤ f(x) ∀x ∈ {x ∈ A s.t. ||x − x∗|| ≤ δ}, δ > 0. In other words,

a local optimum is only better than solution in some local neighbourhood of

itself, and may be as well as not be a good enough solution.

There are several dimensions that we may use to classify optimization

problems, resulting in many different subfields; we briefly discuss them be-

fore moving to analyzing some particular classes of optimization problems. A

main property to consider is convexity: a function f is convex if ∀x, y, ∀α ∈

[0, 1], f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y). A Convex optimization
problem is one where the objective function as well as all constraint functions

are convex, whereas a nonconvex optimization problem is one where the ob-

jective function or any of the constraint functions are not convex. Convex op-

timization is much easier w.r.t. nonconvex optimization: there are algorithms

running in polynomial-time which can provide the optimal solution to many

classes of convex problems [43], while the general problem of mathematical

programming is NP-hard [42, 52, 45].

The type of the variables of the problem also heavily influences the appli-

cable methods: if the variables are continuous, we are facing a continuous op-
timization problems, while discrete optimization deals with problems with

6

discrete variables. Continuous optimization tends to be easier than discrete

optimization, as the smoothness of the functions (objective and constraints)

involved in continuous optimization allows to employ calculus methods which

cannot be used to solve discrete problems.

The nature of the admissible set A also plays an important role: if no con-

straints are specified, that is if A = Rd, then the problem is an unconstrained
optimization problem; conversely, if A ⊂ Rd, then we are dealing with con-
strained optimization.

Finally, deterministic optimization assumes that no stochasticity is in-

volved in the model; however, in many practical applications there may be

varying degrees of uncertainty, and such problems are called stochastic opti-
mization problems.

Linear Programming

One of the most widely applied methods is that of Linear Programming
(LP): a LP problem is one where the objective function as well as the con-

straint functions are linear functions, that is, a problem of the form:

min
x

c⊺x =
∑

i

cixi

s.t.
∑

i

ajixi ≤ bj, j = 1...n

∑
i

akixi = bk, k = 1...m

∑
i

alixi ≥ bl, l = 1...o

(2.3)

Note that every LP problem can be rewritten in a compact, matricial form

known as Standard Form of an LPP [48]:

min
x∈Rn

c⊺x

s.t. Ax = b

x ≥ 0

(2.4)

7

where b ∈ Rm, c ∈ Rn and A ∈ Rm×n with n > m. Also note that, since

linear functions are both convex and concave, LP is a particular case of convex

programming.

Several methods have been developed to solve LPPs. The Simplex method,

first proposed in 1947 [16], works by noting that the feasible region (i.e. the

set of values for which Ax = b, x ≥ 0 holds) is a (possibly unbounded) convex

polytope. Since it can be shown that, given an LPP in standard form, if the ob-

jective function has a minimum value inside the feasible region then this value

must lie in (at least) one of the extreme points (vertexes) of the polytope, the

simplex method then starts from one vertex and iteratively traverses the edge

of the polytope until an optimal solution is found [12]. Although the Simplex

method has a exponential worst-case time complexity, from a practical point

of view it has proved to be efficient on a wide array of problems. Differently

from the simplex method, Interior Point methods work by traversing the in-

terior of the feasible region [51]. First proposed in [34], this class of meth-

ods has been widely studied and extended, with the current SOTA method in

terms of theoretical time complexity being the one proposed in [30]; unlike

the simplex methods, Interior Point methods have polynomial worst-case time

complexity. Still, even though Interior Point methods are theoretically more

efficient, empirical studies have shown comparable performances between the

two approaches in most cases [28].

Quadratic Programming

Another widely used approach is that of Quadratic Programming (QP),

which deals with the optimization of a quadratic objective function subject

to linear constraints. The general QP problem can be formulated as follows:

min
x∈Rn

1
2

x⊺Qx + c⊺x

s.t. Ax � b

(2.5)

8

with Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n and b ∈ Rm; � is the component-wise

inequality, i.e. ∀i ∈ {1..m}, Axi ≤ bi with vi being the i-th element of vector

v.

QP problems are in general much harder to solve than LP, given that the

objective function in QP may or may not be convex; the general problem is

NP-hard [52]. However, if matrix Q is positive definite, then the problem is

convex [35] and can be solved in polynomial time (see e.g. [35, 32]). For

the general case, a wide variety of methods have been proposed, such as Aug-

mented Lagrangian methods [18] and Interior Point methods [66].

Integer Programming

An optimization problem that requires the variables appearing in the prob-

lem to be integers is called an Integer Programming (IP) problem. If this

type constraint is required only for a subset of all the variables, then we refer

to the problem as a Mixed Integer Programming (MIP) problem. Usually,

the linear case is considered (i.e. with linear objective function and linear

constraints, escluding the integer constraint); in this case we call the problem

Integer Linear Programming (ILP) in the IP case, or Mixed Integer Linear
Programming (MILP) in the MIP case. A common formulation of an ILP

problem is the following:

min
x∈Zn

c⊺x

s.t. Ax � b

x ≥ 0

(2.6)

with c ∈ Rn, b ∈ Rm, A ∈ Rm×n.

IP is known to be NP-complete: a simple variant of the problem involv-

ing no optimization (only satisfaction) and binary variables is actually part of

Karp’s 21 NP-complete problems [33]. Thus, a wide variety of approaches

9

and methods for solving IP problems have been developed and studied.

The simplest approach for solving an ILP is to consider its LP relaxation,

that is, to drop the integral constraint and solve the resulting LP problem using

the simplex algorithm. While this simple approach does not work in the gen-

eral case (given that the solution to the LP relaxation is not guaranteed to be

the optimal solution to the original ILP problem, or even to be feasible at all),

for a particular class of IP problems (those in which the matrix A is totally

unimodular [69]) the solution of the LP relaxation returned by the simplex

algorithm is guaranteed to be integral and this approach may be used.

Concerning the general case, both exact algorithms and heuristic methods

have been developed for IP. One commonly used class of exact methods is

that of Branch and Bound methods, first proposed in [36]. The core idea

of B&B methods is to recursively split the feasible region in smaller regions

(branching) and then optimize the objective function on these smaller regions;

moreover, the method keeps track of bounds (bounding) that the optimum must

satisfy (based on the search so far), in order to prune candidate solutions that

for sure are not optimal solutions. This general schema has been extended and

combined with other methods, for instance with the Cutting Planes method

[41] resulting in the Branch&Cut method [44].

However, IP belonging to the NP-hard class implies that more difficult

problem instances are intractable for exact algorithms - in the worst case, B&B

methods have to explore the entire search space, which is exponential in the

input size [72] - hence one must resort to heuristic methods. Many approaches

have been studied, for example the application of tabu search [40], surrogate

constraints heuristic [25] or even problem-specific heuristics such as the k-opt

heuristic for the Travelling Salesman Problem [37, 38].

Stochastic optimization

The optimization models that have been discussed up to now are all exam-

ples of models for deterministic optimization, that is, with no randomness or

10

uncertainty involved in the modelling or solving process. Many practical ap-

plications, however, are subject to varying degrees of uncertainty; the field

of Stochastic Optimization (SO) deals with such stochastic problems. Over

the years, the name of the field has become an umbrella term for many dif-

ferent communities dealing with different variants of the general problem, as

stochasticity and uncertainty may indeed arise from different components of

the optimization problem (objective function, constraints, input parameters,

...). We briefly describe two important approaches in this class. Stochastic

Programming (which may be seen as the ”stochastic variant” of deterministic

LP) [15] deals with problems of the following form:

min
x∈Rn

c⊺x + E
ξ
[Q(x, ξ)]

s.t. Ax = b

x ≥ 0

(2.7)

where Q(x, ξ) is the solution of:

min
y∈Rm

q(ξ)⊺y

s.t. T (ξ)x + W (ξ)y = h(ξ)

y ≥ 0

(2.8)

This formulation is known as “two-stage stochastic programming problem”,

since in the first stage (Equation 2.7) we optimize the cost c⊺x plus the expected

value of the optimal cost of second stage decision before obtaining a realization

of ξ; in the second stage (Equation 2.8), a realization of ξ is obtained and based

on it the first stage decision is refined and optimized, now accounting for the

actual uncertainty.

Differently from Stochastic Programming, Robust Optimization aims at

11

finding the best solution x for the worst-case realization of some uncertain pa-

rameter w. The Robust Optimization problem is usually formulated as follows:

min
x

max
w∈W

F (x, w) (2.9)

where W is called the uncertainty set, i.e. the set of possible realization for

the unknown paramater w [49].

A unified framework for many SO methods and subfields has recently been

proposed in [49], which the reader may refer to for further reference on the

topic.

2.1.1 The method of Lagrange Multipliers

As we discussed earlier, Constrained Optimization (CO) involves optimizing

a function subject to certain constraints. A general and thus widely used ap-

proach to address CO problems is the method of Lagrange Multipliers [5];

loosely speaking, this approach involves converting the constrained problem

into an unconstrained one and finding saddle points of the newly defined ob-

jective function. Consider the following minimization problem:

min
x

f(x)

s.t. h(x) = 0,
(2.10)

where for the sake of simplicity we consider a single equality constraint. The

Lagrangian function, denoted as L(x, λ), is defined as:

L(x, λ) = f(x) + λh(x) (2.11)

where λ ≥ 0 is the Lagrange multiplier associated with the constraint function

h(x). Then, the solution to the original constrained problem can be found by

12

solving the following bilevel problem:

(x∗, λ∗) = arg max
λ≥0

min
x

L(x, λ) (2.12)

Essentially, the Lagrange multiplier λ can be seen as a penalty term that

is applied when constraints are violated; this violation is added to the original

objective function (i.e. f(x)). For further reference on the method and its

mathematical background, see e.g. [5].

2.2 Machine Learning

In this section we discuss about Machine Learning (ML), which refers to

both a field of study within AI and to a large set of techniques and algorithms

among the most commonly and ubiquitously used to develop systems for auto-

matic decision-making without explicit programming. We start with a general

overview of the three main approaches within ML, namely Supervised Learn-

ing (SL), Unsupervised Learning (UL) and Reinforcement Learning (RL).

Supervised Learning involves using learning algorithms to learn a model

(i.e., a function) that can map input data to appropriate output labels; math-

ematically, let X ⊆ Rk be a k-dimensional vector space, called input space,

and Y be the output space, such that each x ∈ X is associated with a y ∈ Y ,

then the goal of SL is to learn a function f : X → Y that approximates the

true, unknown mapping g : X → Y as closely as possible. Several types of

SL exists; for instance, if the output space is a finite set of discrete values, then

we are dealing with a classification task, whereas if the output space is the set

of real numbers R we are dealing with a regression task. Common types of

SL are classification, where the input is mapped to one (or more) out of sev-

eral possible classes, and regression, where the input is mapped to a numerical

value. SL can be considered the bedrock of ML, as SL techniques are com-

monly used within more complex systems; for example, many RL algorithms

13

use SL-based subroutines within them. Indeed, in order for it to work SL re-

quires data to be labelled, that is, for each input data point x we need to know

its corresponding label y.

In constrast with SL, Unsupervised Learning involves methods that seek

to extract inherent structures or patterns without explicit supervision, that is,

in the absence of labeled data; clustering and dimensionality reduction are

common applications of UL. The advantage of Unsupervised Learning lies

in its capacity to unveil hidden relationships within data without guidance;

nevertheless, its limitations arise when interpreting the discovered structures,

often leaving room for subjectivity and requiring careful validation to extract

meaningful insights.

Finally, Reinforcement Learning involves agents that learn how to behave

in complex environments in a trial-and-error fashion, that is, by interacting

with the environment and receiving feedbacks in the form of rewards or penal-

ties. It draws inspiration from behavioral psychology and neuroscience, and

it has been shown that the dopaminergic system in the human brain can be

described using TD-learning, one of the main RL methods. RL shines in sce-

narios with sequential decision-making, as seen in robotics and game playing.

2.2.1 Reinforcement Learning

Reinforcement Learning (RL) comprises two main entities: the agent, which

is the (artificial) system tasked with learning and decision-making, and the

environment, which is the (real or virtual) world where the agent lives and with

which it interacts; at each interaction step t, the agent receives an observation

ot of the current state st of the environment and it has to decide how to act, i.e.

choose an action at, on the basis of such observation. The environment also

emits another signal, called the reward signal rt, a number that is perceived by

the agent and that describes how good (or bad) the current state is. The goal of

the agent is then to maximize its expected return (i.e. cumulative reward),

14

which is the sum of rewards over the axis of time [63]. This goal is informally

stated with the reward hypothesis: “That all of what we mean by goals and

purposes can be well thought of as the maximization of the expected value of

the cumulative sum of a received scalar signal (called reward)” [63, 57].

Formally, the above framework is usually represented via Markov Decision

Processes (MDPs). A MDP is usually defined as a 5-tuple (S, A, R, P, ρ0),

where:

• S is the set of states;

• A is the set of actions;

• R ⊂ R is the set of rewards;

• P : S × R × S × A 7→ [0, 1] is the probability transition function or

dynamics function;

• ρ0(s) is the starting state distribution, i.e. the probability that state s is

the first state encountered by the agent.

There are many different flavours of MDPs depending on the nature of

these individual components, indeed leading to different methods and strate-

gies to solve them. First, if the observation ot is a complete and exact rep-

resentation of the environment’s state st, then the environment is said to be

fully observable; if ot contains only partial information on st, then the en-

vironment is partially observable, leading to a Partially Observable MDP
(POMDP). Furthermore, the action space A may be a discrete action space

where only a finite (albeit possibly very large) number of moves are avail-

able to the agent; examples of such environments are board games like Chess

and Go and the Atari57 benchmark. Differently, in a continuous action space

the actions are real-valued vectors; for instance, most applications of RL in

Robotics and control problems are usually modelled with continuous actions.

Finally, the MDP may represent an episodic task, where the sequence of agent-

environment interactions can be naturally split into different episodes (such as

15

a game of chess), or it may represent a continuing task in which there is no

concept of individual episodes (such as a robotic arm learning to operate) [63].

We now introduce some important definitions that are central to RL the-

ory and methods. We start by introducing the core concept of policy π(a|s),

which is a mapping from states to a probability distribution over the action

space that dictates how the agent acts; that is, π(a|s) represents the prob-

ability of choosing action a when the agent finds itself in state s. From a

practical point of view, parametrized policies are usually employed, that is,

policies whose output depends on a set of parameters θ (such as the weights

in a neural network) that can be optimized via some optimization method

to obtain the desired behaviour; to emphasize this connection, policies are

usually denoted as πθ(a|s) (or π(a|s, θ)). When a given policy is executed

for a certain number of steps (say t) in an environment, a trajectory τ =

(s0, a0, r1, s1, a1, r2, .., st−1, at−1, rt) is obtained as a result, which is a se-

quence of states, actions and (instantaneous) rewards.

As earlier discussed, the goal of the agent in a MDP is to maximize the cu-

mulative reward over a trajectory; this cumulative reward or return is usually

denoted by R(τ). There are two main definitions of R(τ), depending on the

nature of the MDP:

• Finite-horizon undiscounted return is the sum of rewards over a fixed

number of steps:

R(τ) =
T∑

t=0
rt

• Infinite-horizon discounted return is the sum of all rewards ever re-

ceived by the agent, discounted by a factor γ ∈ (0, 1]:

R(τ) =
∞∑

t=0
γtrt

Note that with γ = 1 there is no discounting applied, and also note that

discount is essentially required in the infinite-horizon case, as otherwise the

16

return may diverge. Finite-horizon undiscounted returns are well suited for

episodic tasks, as T can naturally be the length of each episode, whereas

infinite-horizon discounted returns are better used for continuing tasks.

Finally, we can introduce the performance measure JR(π), called expected
return:

Jπ
R = E

τ∼π
[R(τ)] (2.13)

where τ ∼ π represents a trajectory sampled by executing policy π in the

environment; in other words, Jπ
R is the expected value of the return of trajec-

tories that result from the execution of policy π. The optimization problem

associated with a MDP can then be formulated as the maximization of the

performance measure, that is:

π∗ = arg max
π

Jπ
R (2.14)

where π∗ is the optimal policy.

Before moving on to describing some fundamental RL algorithms, we first

need to define the value functions - functions that estimate how good it is for

the agent to be in a certain state; these definitions are based on [63]. The first

one is the state-value function Vπ(s), which is the expected return obtained

by starting from state s and following policy π:

Vπ(s) = E
τ∼π

[R(τ)|St = s]

Similarly, we can define the action-value function (or state-action value func-

tion) Qπ(s, a), which is the expected return obtained by starting from state s,

executing action a and then following the policy π:

Qπ(s, a) = E
τ∼π

[R(τ)|St = s, At = a]

Finally, we can define the advantage function, which simply tells the relative

17

advantage of an action, i.e. how much it is better than the other actions on

average:

Aπ(s, a) = Qπ(s, a) − Vπ(s)

Note that in the following sections, to indicate (learned) approximations

of the above functions (e.g. via a neural network), we will use the hat notation

(e.g. V̂π(s) is the learned approximation of the state-value function of policy

π).

VPG

One of the main classes of RL algorithms is that of policy gradients (PG)
algorithms, where a policy is directly learned from environment interactions.

Given a policy π parameterized by θ and a scalar performance measure func-

tion Jπθ
R , the core idea of PG methods is to update θ by performing stochastic

gradient ascent on J w.r.t. θ:

θt+1 = θt + α∇θJ
πθ
R (2.15)

However, in general it’s difficult (if possible at all) to compute ∇θJ
πθ
R , as

it requires knowledge on the (gradient of the) distribution of states induced by

the current policy πθ, which is typically unknown [63]. Luckily, the policy
gradient theorem establishes a useful proportionality relationship between

the true gradient ∇θJ
πθ
R and an analytical expression that does not involve the

derivative of the distribution of states [63]:

∇θJ
πθ
R = ∇θ

∑
s∈S

µπθ(s)
∑
a∈A

Qπ(s, a)πθ(a|s)

∝
∑
s∈S

µπθ(s)
∑
a∈A

Qπ(s, a)∇θπθ(a|s)
(2.16)

that is, we can perform stochastic gradient ascent on J by sampling from

a sample gradient whose expectation is proportional to the actual gradient

∇θJ
πθ
R .

18

Following the PG theorem, the Vanilla Policy Gradient (VPG) algorithm

(also know as REINFORCE [68]) is the simplest instantiation of a PG algo-

rithm; it works by defining the sample gradient as:

∇θJ
πθ
R = E

τ∼π
[R(τ)∇θπθ(a|s)

πθ(a|s)
] (2.17)

resulting in the following update rule:

θt+1 = θt + αR(τ)∇θπθ(a|s)
πθ(a|s)

(2.18)

This can be further improved by including a baseline b(s), an arbitrary

function used to reduce the variance of the sampled return; the update rule

becomes:

θt+1 = θt + α(R(τ) − b(s))∇θπθ(a|s)
πθ(a|s)

(2.19)

Actor Critic

Actor Critic (AC) algorithms can be seen as the combination of Temporal

Difference learning [62] and PG methods, as AC methods learn approxima-

tions to both policy (i.e. actor) and value (i.e. critic) functions. In particular,

the value function (state-value or action-value function depending on the al-

gorithm) is learned via TD learning (i.e. bootstrapping), which is then used to

inform the updates of the actor. For instance, one-step AC replaces the full re-

turn of REINFORCE with the one-step return and making used of the learned

value function V̂π as follows [63]:

θt+1 = θt + α(rt+1 + γV̂π(st+1) − V̂π(st))
∇θπθ(a|s)

πθ(a|s)
(2.20)

PPO

A very simple idea to improve the training stability of PG-based algorithm

is to limit how much the policy can change after a single update; that is, we

19

want to avoid policy updates that would change the parameters too much, as

it might lead to performance collapse. Trust Region Policy Optimization
(TRPO) [54] does this by enforcing a KL divergence constraint on the policy

update size at each step. While TRPO offers theoretical guarantees of mono-

tonic improvement with each update, it does so via a complex second-order

optimization problem, making it a complicated and computationally expen-

sive algorithm. Proximal Policy Optimization (PPO) [56] is an AC method

which addresses the same issue as TRPO (i.e. limiting how far the policy

can move in parameter space) via a simpler first-order, and it has been shown

empirically to perform at least as well as TRPO. Formally, the (constrained)

problem that TRPO as well as PPO solve can be formalized as:

max
θ

Jπθ
R

s.t. D(πθt , πθt+1) ≤ δ

(2.21)

where D is some distance function (e.g. KL divergence). Now, let rt(θ) be the

probability ratio rt(θ) = πθt
(at|st)

πθt−1(at|st)
between the old and new (updated) policy.

PPO solves the above optimization problem by using the following surrogate

objective:

θt+1 = θt + α
(
min

(
rt(θt)Ât, clip (rt(θ), 1 − ϵ, 1 + ϵ) Ât

))
(2.22)

where ϵ is an hyperparameter which approximately fixes the maximum allow-

able distance in parameter space between the old and new policy. Ât is an

estimator of the advantage function at timestep t; to this end, the most com-

monly used estimator is the Generalized Advantage Estimation (GAE) [55].

20

2.2.2 Constrained Reinforcement Learning

Reinforcement Learning (RL) has shown remarkable success in training agents

to make decisions in dynamic environments. However, deploying RL algo-

rithms in real-world scenarios raises concerns about the safety of the learned

policies. In this section, we delve into the concept of Constrained Reinforce-
ment Learning (also know as Safe Reinforcement Learning), a crucial area

that addresses the inherent risks associated with RL applications.

The motivation behind integrating safety measures into RL stems from

the potential consequences of deploying unverified policies in environments

where failures can have severe repercussions. Traditional RL algorithms lack

explicit constraints to ensure that the learnt policies adhere to predefined safety

specifications. Safe Reinforcement Learning seeks to mitigate these concerns

by incorporating mechanisms that guarantee the satisfaction of safety con-

straints during the learning process.

Constrained Markov Decision Processes

To formalize safety in the RL context, we turn to the framework of Con-
strained Markov Decision Processes (CMDPs) [3]. Essentially, CMDPs

extend the classical MDP formulation by introducing safety constraints via

a set of cost functions and associated cost limits. A CMDP is formally defined

as a tuple (S, A, P , R, γ, C, D), where:

• S is the set of states;

• A is the set of actions;

• P : S × A × S 7→ [0, 1] is the probability transition function;

• R : S × A × S 7→ R is the reward function;

• γ ∈ (0, 1] is the discount factor;

• C = {Ci}n
i=0, Ci : S × A × S 7→ R is the set of cost functions;

21

• D = {di}n
i=0, di ∈ R is the set of cost limits, where each di is associated

with cost function Ci.

The optimization problem associated with a CDMP can then be formulated as:

max
θ

Jπθ
R

s.t. Jπθ
Ci

≤ di

(2.23)

While CMDPs offer a formalism for incorporating safety constraints, sev-

eral challenges persist in achieving safe RL: indeed, balancing the trade-off

between learning optimal policies and satisfying safety constraints introduces

additional complexity to the RL problem. The challenge lies in designing algo-

rithms that navigate this trade-off effectively, ensuring the agent learns policies

that not only maximize cumulative rewards but also adhere to safety specifi-

cations throughout the learning process.

2.3 Learning with optimization-driven costs

In the last couple years, interest has been increasing on the integration of ML

techniques and CO methods, which led to the birth of many different subfields

pursuing different approaches to tackle complex problem using both ML and

CO. This is motivated by the fact that CO methods excel when explicit knowl-

edge is available (e.g. cost function or constraints), as this can be used to build

a mathematical model of the problem; on the other hand, ML methods can

make use of implicit knowledge (e.g. historical data or simulators) [58].

Given these premises, many different methods and techniques have been

developed, possibly addressing the same problem in quite different ways; for

instance, learning algorithms may be used to help or substitute entirely the

solving process of a CO solver, the modelling process, or both in an end-to-

end fashion. A good survey on this wide set of techniques is provided by [19].

Given the availability of so many different methods, we focus on the method

22

that most closely resembles the UNIFY framework [58] that is used as the ba-

sis of this thesis, namely Decision Focused Learning (DFL). First proposed

in [20] and then later refined in [67], DFL is a framework that merges predic-

tion and optimization into a cohesive end-to-end system, aiming at enhancing

decision-making in combinatorial optimization problems; hence, it fundamen-

tally differs from conventional methods, in which ML models are trained sep-

arately and independently from the optimization stage, by integrating learning

(prediction) and optimization into a single, unified process. The primary chal-

lenge addressed is the misalignment of the loss function used in model training

with the ultimate goal of optimizing decisions.

As an example, we consider the the Smart ”Predict, then Optimize” (SPO)

[22] framework, one of the main DFL approaches. The key component of

this approach is the SPO loss, which measures the difference between the cost

of the decision induced by the predicted parameters and the optimal cost un-

der the true parameters; that is, it quantifies the decision error resulting from

a particular prediction. The SPO framework recognizes that the same predic-

tion error can lead to different decision errors depending on how the prediction

affects the optimization outcome; therefore, the quality of a prediction is as-

sessed based on its impact on the optimization decision, not just the accuracy

of the prediction itself. [22]

Empirical results demonstrate the superiority of DFL over traditional two-

stage approaches, where a predictive model is first trained for accuracy and

then its predictions are used for the optimization phase: by directly aligning

the model training objective with the goal of making optimal decisions, as

opposed to optimizing for predictive accuracy alone, DFL allows the model to

learn to prioritize predictions crucial for decision-making, even if it requires

sacrificing overall prediction accuracy on irrelevant aspects [67, 22].

23

2.4 Constraints taxonomy

As described earlier, a CMDP extends the standard MDP definition by adding

a set of cost functions C = {Ci}n
i=0 and modifying the objective into finding

a policy wich maximizes expected return while also being feasible, i.e. satis-

fying the constraints induced by C. Several classes of constraints exists: for

instance, instantaneous constraints are constraints that the actions selected

by the policy must satisfy at each time step [39], such as avoiding to reach

certain states or to select some particular actions. Several approaches exist

to deal with such constraints, such as applying a Lagrangian relaxation [8],

analytically solving an action correction by adding a so-called Safety Layer

to the policy [14] or even adopting a human-in-the-loop training and testing

regime to guarantee zero constraint violation, as other methods only asymp-

totically guarantee constraint satisfaction [53]. Differently from instantaneous

constraints, the class of constraints that we will focus on is that of cumulative
constraints, i.e. constraints that apply to multiple time steps. Generally speak-

ing, there are two main kinds of cumulative constraints: expected constraints
involve an expectation of a cost function, whereas probabilistic constraints
are based on the probability of a cost function. Expected constraints include

discounted constraints and mean valued constraints [3, 39]. Discounted con-
straints are of the form:

Jπθ
Ci

= E
τ∼πθ

[
∞∑

t=0
γtCi(st, at, st+1)] ≤ ϵi (2.24)

while mean valued constraints are of the form:

Jπθ
Ci

= 1
T

E
τ∼πθ

[
T −1∑
t=0

Ci(st, at, st+1)] ≤ ϵi (2.25)

where τ = (s0, a0, s1, a1, ...) is a trajectory induced by the policy πθ, T is the

total number of steps in the trajectory and ϵi is the cost limit (bound) associated

with cost function Ci. For the sake of simplicity and without loss of generality,

24

from now on we will only consider mean valued constraints for the expected

constraints class, as algorithms that can deal with one type of constraint usually

can work with the other type as well.

Probabilistic constraints instead assume the following form:

Jπθ
Ci

= P (
∑

t

Ci(st, at, st+1) ≥ η) ≤ ϵi (2.26)

where η is the cumulative cost limit for each trajectory and ϵi ∈ (0, 1) is the

probability limit [23, 39].

25

Chapter 3

Methods

This chapter is the core of this thesis, as we describe the extension to the

UNIFY framework that is being proposed to handle cumulative (i.e. long-

term) constraints. This chapter is structured as folllows: we start by providing

a brief introduction to the UNIFY framework in Section 3.1, which is then

reformulated to accommodate cumulative constraints in Section 3.2; we then

describe in Section 3.3 the RL algorithms that we employ to learn a constraint-

satisfying policy for the offline problem, PPOLag and CPPO.

3.1 The UNIFY framework

The UNIFY framework, proposed in [58], considers the problem of learning a

constrained policy for complex decision-making problems. Let x ∈ X be the

state vector (the observable information) and let z ∈ C(x) represent the de-

cision, which must lie in the feasible set C(x). A (parametrized) constrained

policy is a function: πθ(x) 7→ z ∈ C(x), that is, a function of the observ-

able information mapping into feasible decisions. Then, the goal is to find

parameters θ that minimize an objective function on a target distribution; the

optimization problem can be formulated as:

arg min
θ∈Θ

E
(x,x+)∼p

[f(x, x+, πθ(x)] (3.1)

26

where x is the observation, x+ is the realization of the uncertainty, f(x, x+, z)

is the objective function and p the target distribution. The issue here is that

the above problem is generally pretty hard to solve; thus, the authors propose

a clever decomposition of the policy in two separated components, namely a

ML model and a CO problem. The policy is then reformulated as:

πθ(x) = g(x, h(x, θ))

g(x, y) = arg min
z∈C̃(x,y)

f̃(x, y, z)
(3.2)

where h(x, θ) is the ML model (e.g. a RL agent) and g(x, y) is a function

representing the optimal solution of the CO problem, parametrized on the ML

model output y; this vector is called the virtual parameter vector. Based on

this decomposition, the authors propose two different formulations of UNIFY,

one for single-stage problems and the other for sequential decision-making

problems. We only report the sequential formulation, as it is the one we’ll

actually use:

arg min
θ∈Θ

E
τ∼ρ

[
eoh∑
k=1

γkf(xk+1, xk, zk)] = arg max
θ∈Θ

E
τ∼ρ

[Jπθ
R]

zk = g(xk, yk) = arg min
zk∈C̃(xk,yk)

f̃(xk, yk, zk)

yk = h(xk, θ)

(3.3)

where τ = (x0, z0, x1, z1, ...) is a trajectory sampled according to probability

distribution ρ. For further reference on the UNIFY framework, the readers are

referred to [58].

3.2 UNIFY formulation with cumulative constraints

In order to instantiate the UNIFY framework to deal with cumulative con-

straints, recall the sequential definition of UNIFY presented in Equation 3.3.

It would be natural to try enforcing such constraints on z, as the bilevel

27

optimization problem already involves constrained optimization on z via the

virtual feasible set C̃; however, in multi-stage stochastic optimization the fu-

ture outcomes of uncertainty is unknown. Incorporating long-term thinking

capabilities required to handle cumulative constraints in traditional CO solvers

could be extremely expensive and complex due to their myopic decision-making

behaviour, while it would be much easier to enforce instantaneous constraints.

Instead, we can formally view the problem as a CMDP, so that Equation 3.3

becomes:

arg min
θ∈Θ

= E
τ∼ρ

[
eoh∑
k=1

γkf(xk+1, xk, zk)]

zk = g(xk, yk) = arg min
z∈C̃(xk,yk)

f̃(xk, yk, zk)

yk = h(xk, θ)

s.t. Jθ
Ci

≤ ϵi

(3.4)

We can employ Lagrangian relaxation to convert the offline constrained

problem to an unconstrained one, an approach first introduced in [3]. Such

Lagrangian approach has been chosen over a number of other methods (see

e.g. [39]) both for its simplicity and strong theoretical foundations, as well

as for being one of very few methods that can deal with both cumulative and

probabilistic constraints.

We start by defining the Lagrangian function:

L(θ, λi) = Jθ
R −

∑
i

λi(Jθ
Ci

− ϵi) (3.5)

where each λi is the Lagrange multiplier associated with each constraint and

28

Jθ
R = − ∑eoh

k=1 γkf(xk+1, xk, zk). Now, we can rewrite 3.4 as:

arg min
λi≥0

arg min
θ∈Θ

E
τ∼ρ

[−L(θ, λi)] = E
τ∼ρ

[
eoh∑
k=1

γkf(xk+1, xk, zk) +
∑

i

λi(Jθ
Ci

− ϵi)]

zk = g(xk, yk) = arg min
z∈C̃(xk,yk)

f̃(xk, yk, zk)

yk = h(xk, θ)

(3.6)

3.3 Solving CMDPs

The Lagrangian method and the UNIFY extension described in previous sec-

tions can be employed to tackle CMDPs: this approach was first introduced in

[3], where the constrained problem associated with a CMDP is reduced to an

unconstrained problem via Lagrangian relaxation. Given a CMDP, its associ-

ated unconstrained problem can be formulated as:

min
λ≥0

max
θ

L(θ, λ) = min
λ≥0

max
θ

[Jπθ
R − λJπθ

C] (3.7)

where L(θ, λ) is the Lagrangian function and λ = [λ0, ..., λn], λi ≥ 0 is the

vector of Lagrange multipliers; this problem is solved by gradient ascent on θ

and descent on λ. For the sake of simplicity and without loss of generality, we

consider the case with a single Lagrangian multiplier (i.e. λ = [λ0]), while in

principle one might introduce a different multiplier for each constraint.

3.3.1 PPOLag

We consider PPO as the underlying RL agent along with the extended training

objective given by the lagrangian relaxation, an approach first introduced in

[50] in which the resulting agent is named PPOLag. In order to use PPO to

29

solve the above unconstrained problem, we first need to update PPO’s surro-

gate objective to take into account the cost function(s):

max
θ

[Jπθ
R − λJπθ

C]

s.t. D(πθt , πθt+1) ≤ δ

(3.8)

that is, we penalize the agent for violating constraints based on the current

value of λ. Then we can update λ by solving:

min
λ≥0

[Jπθ
R − λJπθ

C] (3.9)

From a practical point of view, the update rule for λ usually is the following,

employing subgradient descent:

λt+1 = (λt + ηλ (Jπ
C − d))+ (3.10)

where (·)+ is a projection on R+, in order to satisfy the nonnegativity con-

straint λ ≥ 0. Equivalently, we can define a real-valued vector λ̂ from which

to obtain the actual Lagrangian multiplier λ as λ = (λ̂)+, resulting in a similar

update rule:
ˆλt+1 = (λ̂t)+ + ηλ (Jπ

C − d) (3.11)

3.3.2 CPPO

Previous studies have shown that gradient-based Lagrangian methods for CRL

do converge to optimal, feasible policies under mild assumptions [64]; in fact,

it has been proved that the Constrained RL problem has zero duality gap, i.e.

it features strong duality [47].

Still, these methods suffer from several drawbacks, such as slow conver-

gence requiring many training iterations and wild oscillations of the cost dur-

ing training, leading to intermediate policies that are either over-satisfying the

constraints (i.e. obtaining a much lower cost that the one required) or just

30

unsafe.

In [61], the authors interpret the overall Constrained RL problem as a

dynamical system, in which the behaviour of classical Lagrangian method

can be classified as integral control; they then consider the simplest mech-

anisms that could be integrated in this scheme, namely proportional control

and derivative control [31, 61]. This results in a PID control update rule for

RL agent solving CMDPs; this is then integrated on top of PPO, resulting in

Constraint-controller PPO (CPPO). The usage of a PID controller to update

the penalty coefficient is expected to improve performances by increasing the

responsiveness of the agent w.r.t. variations in the cost, as the proportional

component can dampen oscillations, whereas the derivative component can

anticipate constraint violation and prevent cost overshoot [61].

3.3.3 Practical considerations

We conclude this chapter by highlighting some practical issues and consider-

ations of using a RL agent as ML model within an hybrid learning and opti-

mization framework such as UNIFY. Note that the following considerations

apply to both PPOLag and CPPO.

Previous work have often used a single value function approximator (i.e.

a single critic), which is trained in the usual supervised way but using r + λc

as reward (i.e. target) [64, 47]; in other words, by using this combined re-

ward the single critic employed is tasked with learning a state representation

that is expressive both in terms of return-related characteristics as well as its

safety-related aspects. In general, these features may be intertwined in a com-

plex manner, and learning a single, good representation for both aspects may

be a challenging task; moreover, λ may change rapidly (even more when us-

ing the PID-based controller), thus leading to large variation of the target and

adding further training instability. Thus, we employ two separated function

approximators, one for the usual RL return and the other for the safety cost;

31

this approach has also been used in more recent works (see e.g. [61, 70]).

Furthermore, we employ the re-scaled objective presented in [61] to train

the actor network, as a large value of λ may indeed result in a large update for

θ. The resulting objective is the following:

arg max
θ

JR − λJC = arg max
θ

1
1 + λ

(JR − λJC) (3.12)

Finally, one main assumption of convergence proofs is the requirement that

the Lagrangian update is carried out on a slower time-scale w.r.t. policy (and,

eventually, value function) updates [64, 7, 47], meaning that these methods

are actually solving the dual problem.

32

Chapter 4

Empirical evaluation

In this chapter, we instantiate the UNIFY framework in order to deal with

long-term (i.e. cumulative) constraints. Note that the hybrid offline/online

optimization method proposed in [17] and adopted in [58] assumes exogenous

uncertainty; conversely, a cumulative constraint can be viewed as a constraint

on a state variable subject to endogenous uncertainty, thus extending the ap-

plicability of the method. An extensive empirical evaluation has been carried

out to determine strengths and weaknesses of the method.

This chapter is structured as follows: we start by describing the basic EMS

problem as well as its variant equipped with long-term (i.e. expected) con-

straints that we will use as case study for the empirical evaluation in Section

4.1. Section 4.2 described the empirical setup and evaluation methodology

adopted, while the remaining of the chapter focuses on empirical results: Sec-

tion 4.3 compares the proposed method against a simple baseline; Section 4.4

discusses and analyzes the modelling process of the virtual parameter set; Sec-

tion 4.5 compares different methods for the online component of the problem;

finally, Section 4.6 involves trying to improve the general performances of the

method.

33

4.1 Study case: Energy Management System

The problem we take into consideration is an Energy Management System
(EMS) whose task is to allocate minimum cost power flows from various Dis-

tributed Energy Resources (DER) [2]. We follow and extend the hybrid of-

fline/online approach first described in [17] and then also employed in [58],

where a virtual cost parameter representing the storage subsystem is intro-

duced, with the goal of overcoming the myopic behaviour of the online solver.

4.1.1 EMS with expected constraints

The variant of the EMS problem we consider involves expected constraints on

the storage capacity. In particular, we consider the following constraint:

Jθ
C = 1

T
E[

T∑
t=0

cap(t)] > ρ (4.1)

where cap(t) ∈ [0, 1] is the storage capacity at timestep t and ρ ∈ [0, 1]; that

is, we want the storage to be on average at least ρ percent full. Similarly, by

focusing on unoccupied storage rather that occupied storage, we can invert the

sign of the inequality, thereby simplifying its management:

Jθ
C = 1

T
E[

T∑
t=0

capmax − cap(t)] ≤ d (4.2)

where capmax is the maximum capacity of the storage and d = 1 − ρ is the

limit.

4.1.2 Online problem: LP model

The myopic online step follows a typical approach based on a LP model [2,

58]:

34

DV Power Flow Description Bounds
x0 Input to storage Energy stored into the battery. [0, 200]
x1 Output from storage Energy retrieved from the battery. [0, 200]
x2 Diesel power Energy produced using the traditional generator. [0, 1200]
x3 Energy bought Energy bought from the grid (i.e. market). [0, ∞]
x4 Energy sold Energy sold to the grid (i.e. market). [0, 600]

Table 4.1: Description of each (online) decision variable (i.e. power flows).

min
x

∑
g∈G

cgxg

s.t. L̃ =
∑
g∈G

xg

0 ≤ τ + η(x0 − x1) ≤ Γ

xg ≤ xg ≤ xg

(4.3)

where xg are the decision variables (i.e. power flows) between nodes with

associated costs cg. G represents the generic flows set (i.e. G = {0, .., 4} for

our purposes). All decision variables have finite domains, with xg, xg being

respectively the lower and upper bound of each variable. We assume that the

(input) flow to the storage system is associated with index 0 and the (output)

flow from the storage system is associated with index 1, so that τ, η, Γ are

respectively the current charge, battery efficiency and upper bound; we set

η = 1, Γ = 1000 in our experiments. Finally, L̃ represents the users’ demand

for the current step. A brief description of each decision variable is given in

Table 4.1.

Please note that the model described in Equation 4.3 is the virtual model

which makes use of the predicted virtual parameters, whereas the true model

(i.e. the model we are optimizing in the EMS problem) only differs in the

objective function, where c0 and c1 are not present.

35

4.1.3 Offline problem: RL agent

The offline problem relies on training a RL agent to predict the virtual costs

associated with the storage systems, i.e. c0, c1. Note that for the sake of clarity

we will later refer to c0 as cin
virt and to c1 as cout

virt, to emphasize the role of

each virtual cost in the objective function. We employ the same environment

variants introduced in [59] and also adopted by [58], focusing in particular on

the sequential formulation. For the sake of completeness, we report here the

reward function employed:

R(st, ct, st+1) = −
∑

g∈G\{0,1}
ct

gxt
g (4.4)

Indeed, due to the presence of a cumulative constraint in the problem formu-

lation, there is an additional component to the environment, namely the cost

function. The most straightforward cost function that can be employed is the

following:

C(st, ct, st+1) =


0 if t < T

1
T

∑T
t=0 capmax − cap(t) if t = T

(4.5)

This is a sparse cost function that has value equal to 0 at every timestep,

except the last one where it is computed as the average free storage during

the episode. We hypothesize (and later show empirically) that such a function

does not fare well, as it introduces a credit assignment problem: essentially

this means that the agent has to understand not only what actions optimize the

function at each step, but also how the actions taken during the episode have

affected the final outcome [63].

A possible solution may be to introduce a dense cost function such as the

following:

C(st, ct, st+1) = 1
T

(capmax − cap(t)) (4.6)

Note that the latter function is equivalent to the former only if the discount

36

factor γ is equal to one, which is our case since we are considering an episodic

environment [63].

4.2 Experimental setup and methodology

In this section we briefly discuss the experimental setup and evaluation method-

ology, describing how empirical results have been collected and providing

some relevant implementation-level details.

The dataset employed is the same as [58] which in turn is based on a Pub-

lic Dataset1: it contains forecasts for load demand and photovoltaic produc-

tion of 10000 different days (i.e. instances), with aggregated profiles with a

timestamp of 15 minutes (i.e. 96 profiles for each day). Furthermore, based on

data from the Italian national energy market management corporation2 (GME)

and from the Italian Ministry of Economic Development3, electricity demand

hourly prices and diesel price have been derived; note that the latter is assumed

to be constant for the time horizon (one day) as done in previous works [58,

2]. For more details on the data, see [58].

This dataset is split into training, validation and testing; the training in-

stances may vary (as we experimented with training on a single instance like

in previous works [58] as well as training on multiple instances), while the

validation set (10 instances) and testing set (100 instances) are the same for

all experiments (to avoid instance-induced bias when comparing different tri-

als). To obtain the realizations of the uncertain variables (load demand and

photovoltaic production), we loosely employ the same method of [58] (see

Appendix B), although with a slight variation: for the training instances, once

an episode is over (i.e. the agent has seen one particular realization of that in-

stance) a new realization is computed, to allow for a better exploration of the

(stochastic) state space. To ensure comparability across different experiments
1www.enwl.co.uk/lvns
2http://www.mercatoelettrico.org/En/Default.aspx
3http://dgsaie.mise.gov.it/

37

for each validation and testing instance one realization has been computed be-

forehand and has been kept the same for all experiments.

Moving on to the metrics, throughout the subsequent experiments we col-

lect three main metrics:

• Return Jθ
R: the (average) return obtained by π, normalized according

to the optimal cost obtained by a look-ahead oracle;

• Cost Jθ
C : the (average) cost obtained by π;

• Constraint score: a proxy metric, computed as the distance between

the average cost and the cost limit, i.e. |Jθ
C − d|; this metric has been

introduced because, differently from the optimal cost (which depends on

a particular cost limit), the optimal value of this score for a safe policy

is ideally zero, with higher values indicating unsafer policies.

These metrics are collected once per training iteration on the training and val-

idation set, and again at the end of the whole training on either the validation

set (for hyperparameters tuning experiments) or the testing set (for the main

experiments); this end-of-training evaluation is performed using both the fi-

nal policy (i.e. the policy obtained at the end of the training) as well as using

the best policy, which is the policy that minimized the constraint score on

the validation set during training. Unless specified, in the following sections

we consider scores obtained by the best policy as measured by the constraint

score on the validation set. Note that this may be seen as a form of early stop-

ping (although we still train for the predetermined number of iterations, to

later compare the results of the two). Evaluation metrics on the validation and

testing set are collected using both a deterministic policy (by directly using

the mean outputted by the policy network) and the stochastic policy trained

by PPO (note in this case several rollouts are performed to account for the

stochasticity of the policy, whereas only a single rollout is required for the

deterministic case).

38

On the implementation side, the library employed is TorchRL, a data-

driven decision-making library for PyTorch [10, 46].

Finally, RL is known to be sensible to the choice of random seed [13, 26];

moreover, evaluation regimes of most of research in RL ignores the statis-

tical uncertainty that results from evaluating a particular method only on a

small, finite set of training runs [1]. Hence, we follow the evaluation regime

described in [1], in which the authors suggest to employ Confidence Inter-

vals (CIs) and in particular stratified bootstrap CIs to evaluate the uncertainty

in aggregated performances. We consider a minimum of 5 different random

seeds (for the most computationally-heavy set of experiments) up to 20 dif-

ferent seeds; differently, for hyperparameter tuning-related runs the random

seed are not predetermined and different from testing seeds, so as to avoid

overfitting as suggested in [21].

4.3 Unconstrained baseline: PPO vs PPOLag

We start by comparing two different RL algorithms for the offline component

of the model on the EMS problem with expected constraints: an unconstrained

baseline (PPO) that solves the problem as a MDP (i.e. it disregards the cost

and only maximizes the return), and a constrained one (PPOLag) that maxi-

mizes the return while also learning a constraint-satisfying policy by solving

a CMDP. We consider four different cost limits (from “easiest” to “hardest”:

800, 500, 300, 200).

Figures 4.1, 4.2 and 4.3 show the results of this experiment. As expected,

PPO does not care about the cost as it only optimizes the return, while PPOLag

is capable of learning a safe policy. Figures 4.1 and 4.3 clearly show this: while

PPOLag is capable of learning policies that attain the specified cost (or very

close to it, considering the strictest limits i.e. 200 and 300), whereas PPO

just always obtains maximum cost. On the other hand, Figure 4.2 shows that

PPO can attain an higher overall return w.r.t. PPOLag. Moreover, considering

39

Figure 4.1: Average cost obtained by PPO and PPOLag on 100 test instances,
95% CI. Runs are grouped according to the specified cost limit, with the hori-
zontal bars indicating the specified costs. Stricter cost limits are more difficult
to attain.

PPOLag we can notice a linear (direct proportionality) relationship between

the specified cost and the obtained return: this is due to the fact that with

stricter cost limits the agent must focus more on charging the battery system to

satisfy the constraint and less on choosing optimal actions (in terms of return),

thus leading to lower overall return.

4.4 On the choice of the virtual parameters

In [17, 58], the authors consider a single virtual cost as output of the RL pol-

icy, which we represent as cin
virt, associated with the input flow to the storage

40

Figure 4.2: Average normalized return (the higher the better) obtained by PPO
and PPOLag on 100 test instances, 95% CI. Runs are grouped according to the
specified cost limit.

system; we name this parametrization4 CVIRTIN. Following the online prob-

lem definition from Equation 4.3, cin
virt is c0, whereas c1 is absent (i.e. it can

be considered to be equal to 0 at every timestep). While such approach should

work in principle, we noticed empirically that by employing such a simple

parametrization the resulting policies were unsafe (i.e. incapable of satisfying

constraints).

At first a quick round of hyperparameter tuning was carried out, to rule

out the possibility that some particular hyperparameter setting was impeding

convergence; this is because RL is known to be very sensitive to the choice

of hyperparameters [29, 71], a phenomenon that is further aggravated by the
4The term parametrization may be to some extent considered improper; what we mean in

this context by parametrization is the way the virtual parameter set is modelled and structured.

41

Figure 4.3: Average constraint score (the lower the better) obtained by PPO
and PPOLag on 100 test instances, 95% CI. Runs are grouped according to the
specified cost limit.

usage of a Lagrangian method [39]. However, hyperparameter tuning didn’t

help in this context. To understand the actual issue, consider Figure 4.7, which

shows the power flows resulting from executing a fully trained PPOLag agent

on a testing instance, with the CVIRT-IN parametrization. As the agent has

no control on the storage output flow (recall the agent’s output i.e. cin
virt only

affects the online model’s decisions concerning the storage input flow), the

online model tends to myopically sell the available energy when there’s a sur-

plus and buying it when needed, rather than using the storage system to store

excess energy so as to avoid buying it later at a possibly higher price.

Thus, it is clear that a different parametrization is required for the agent

42

Figure 4.4: Average cost obtained by each parametrization on 100 test in-
stances, 95% CI. Runs are grouped according to the specified cost limit, with
the horizontal bars indicating the specified costs. The BOTH-CVIRTS variant
is the only one capable of producing policies that learn to satisfy the required
constraint.

to properly influence the online model’s decision concerning the storage sys-

tem so as to satisfy the imposed constraint. This different parametrization es-

sentially consists on a second virtual cost, represented as cout
virt and associated

with the (output) flow from the storage systems; we call this parametrization

BOTH-CVIRTS. Figure 4.8 shows the power flows resulting from executing a

fully trained PPOLag agent on a testing instance, employing the BOTH-CVIRTS

parametrization. By comparing these power flows with the power flows of the

CVIRT-IN parametrization (Figure 4.7), several differences can be noted: first,

on average less energy is retrieved from the storage, leading to a much higher

storage capacity that complies with the required cost limit (in this instance it

43

Figure 4.5: Average normalized return (the higher the better) obtained by each
parametrization on 100 test instances, 95% CI. Runs are grouped according to
the specified cost limit.

is equal to 300, i.e. the battery should be 70% full on average). Second, less

energy is sold to the grid, given it is now needed to keep the storage system

charged. Third, less energy is bought from the grid, as the model can now ac-

tually use the energy that is stored in the battery. Finally, the generated power

flows are almost identical, suggesting it is still needed to produce energy using

traditional generators during peak hours.

As an ablation study, we also consider a trivial variant involving only cout
virt,

i.e. the agent outputs a virtual cost that is applied on the storage output flow

only; we call this parametrization CVIRT-IN, and again we report the exemplar

power flows of this parametrization in Figure 4.9. As expected, this is the worst

performing parametrization out of the three considered: as it cannot influence

in any way the online model’s decision on the input energy to the storage, the

44

Figure 4.6: Average constraint score (the lower the better) obtained by each
parametrization on 100 test instances, 95% CI. Runs are grouped according to
the specified cost limit.

agent almost immediately empties the storage without using it for the rest of

the day.

Figures 4.4, 4.5 and 4.6 show the metrics collected on the test set for each

variant. Clearly, the BOTH-CVIRTS parametrization is the only one capable of

consistently producing policies that can adhere to the specified requirements,

as can be seen in Figures 4.4 and 4.6.

45

Figure 4.7: Power flows of a trained agent employing the CVIRT-IN
parametrization (test instance, d = 300). As the agent has no control on the
storage output, the online model tends to myopically sell the energy and then
buying it when needed, rather than using the storage system to store excess
energy to avoid buying it later at a possibly higher price.

46

Figure 4.8: Power flows of a trained agent employing the BOTH-CVIRTS
parametrization (test instance, d = 300). Having given (indirect) control on
the storage output to the RL agent, the online model prefers to keep the storage
system at a higher capacity and only retrieve energy from it when necessary;
this results both in less energy sold to the grid as well as less energy bought
from the grid during peak hours. 47

Figure 4.9: Power flows of a trained agent employing the CVIRT-IN
parametrization (test instance, d = 300). As it cannot influence in any way the
online model’s decision on the input energy to the storage, the agent immedi-
ately empties the storage without using it for the rest of the day.

48

Figure 4.10: Average cost obtained by each online model variant on 100 test
instances, 95% CI. Runs are grouped according to the specified cost limit.

4.5 On the choice of the online optimization prob-

lem

The online optimization problem described in 4.3 and adopted in previous

works [17, 58] is an LP model assumed to be in standard form (i.e. all xg are

equal to 0), as the nonnegativity constraint makes the feasible region of the

optimization problem convex, which in turns makes the problem well-behaved

and allowing for efficient algorithms to find the optimal solution. If negative

values were allowed, the feasible region would be a non-convex set, leading to

complications during the optimization phase and potentially multiple optimal

solutions [65].

The issue with using a LP model in this particular context is that bound

49

Figure 4.11: Average normalized return (the higher the better) obtained by
each online model variant on 100 test instances, 95% CI. Runs are grouped
according to the specified cost limit.

constraints involving the storage system become binding constraints, i.e., con-

straints that hold with equality in the optimal solution [9] due to the nature

of the objective function. This basically means there are two possibilities: if

cg
virt ≥ 0 then the corresponding flow xg will be pushed to its lower bound

(i.e. 0); conversely, if cg
virt < 0 then the corresponding flow xg will be pushed

to its upper bound (unless of course the storage is full in the case of the input

storage, or it is empty in the case of the output flow).In other words, the storage

input and output flows essentially become binary decision variables.

Hence, we experimented with a slightly different online model (an offline

RL agent) to see whether we could improve on this behaviour. The idea is to

have as output of the RL policy the storage flows themselves; however the on-

line model must retain the capability of altering them, as in general (especially

50

at the beginning of training, when the policy is mostly random) there’s a very

high chance that it will output non-feasible flows. To this end, we consider a

Quadratic Programming (QP) model, which can be seen as a simple variation

of Equation 4.3 employing a quadratic objective function; in particular, the of-

fline agent influences the storage flows not via costs within a linear objective

function but by directly proposing the values of such flows. The online model

can be formulated as follows:

min
x

∑
g∈G\{0,1}

cgxg + (c0 − x0)2 + (c1 − x1)2

s.t. L̃ =
∑
g∈G

xg

0 ≤ τ + η(x0 − x1) ≤ Γ

xg ≤ xg ≤ xg

(4.7)

where c0, c1 are given by the RL policy (for the sake of clarity we maintain the

same notation as before, but note that here c0, c1 are actual flows and not virtual

costs). Essentially, the online model optimizes the same objective function as

before, with the only difference being the storage flows that are not a linear

component but rather a quadratic term (a squared difference w.r.t. the RL

policy output). Also note that the objective function is still convex, making

the problem easier to solve as efficients algorithms are available for solving

convex QP problems [43].

Figure 4.12 shows the power flows of a trained agent employing the QP

model on a testing instance. As expected, the storage flows are no longer be-

having as binary variables; however, by looking at Figures 4.10 and 4.11 that

shows CIs for average cost and return, it can be noticed that there appears to

be no evident benefit in using the QP model rather than the simpler LP one as

the QP model performs the same or worse both in terms of cost and return. We

also noticed that the training phase of the RL agent employing the quadratic

online model to be much more unstable than when using the LP model, with

51

some runs possibly diverging if some heuristic tricks had not been in place

(e.g. stopping PPO’s updates to the actor network when an estimator of the

KL divergence between the old and new policy exceeds a certain threshold,

which is a common implementation trick of PPO [27]). We also report that

due to computational limitations the hyperparameter tuning was carried out

only using the LP model, hence it is possible that performances of the QP

model may improve after tuning. In any case, it is definitely easier for a RL

agent to optimize the return in an environment with liner rather than quadratic

dynamics, as from the point of view of the agent the online model is part of

the nonstationarity of the environment.

4.6 Improving performances

We now turn our attention to a pivotal aspect that is indeed critical for practi-

cal deployment, that is, the optimization of the algorithmic performance. We

first investigate the impact of different cost limits on the performance of the

resulting agent; then we move on to describing the extensive hyperparameter

tuning process that has been carried out.

4.6.1 Effects of varying the cost limit

We start by analyzing how different cost limits impact on the general perfor-

mance of the method. To this end, we consider a (simulation of) an environ-

ment with 2 days episodes: in particular, the specified cost limit acts also as

the value of the storage charge at the beginning of the episode, thus simulating

a (trained) agent that on the day before left the storage system with the required

charge level (i.e. the cost limit)5.

We considered 8 different cost limits, ranging from 900 to 50, and for each

cost limit we train agents on 10 different seeds. Figure 4.13 shows 95% CIs
5We had to resort to such a simulation, rather than actual 2 days episodes, due to compu-

tational limitations.

52

Figure 4.12: Power flows of a trained agent employing the Quadratic Program-
ming online model (test instance, d = 300). With this approach, the storage
flows no longer act as binary variables.

53

Figure 4.13: 2 days episode (simulation), average return (normalized) accord-
ing to cost limit, 95% CI. Higher cost limits appear to performs worse than
lower cost limits.

of the average return according to the specified cost limit, with the orange line

representing the return of the unconstrained baseline (PPO). A clear trend can

be noticed: higher cost limits (i.e. keeping the storage system at a lower charge,

such as 10% or 30% full) performs worse than stricter cost limits, which re-

quires the RL policy to keep the storage system at a higher level on average.

Moreover it can be seen that the stricter the cost limit, the more uncertain the

estimate is (i.e. wider CI); indeed stricter cost limits such as 50 or 100 may

lead to additional difficulty in the Lagrangian-based optimization process, po-

tentially adding instability. In any case, all the constrained agents appear to

54

fall short of the unconstrained baseline (PPO): clearly the optimization prob-

lem that needs to be solved when training an unconstrained agent is simpler

w.r.t. a constrained one, as the former needs to optimize for the return only

whereas the latter is essentially optimizing two different objectives, and this

struggle can be seen to be particularly intense with stricter (i.e. more difficult)

cost limits. Thus, it cannot be ruled out that that either with further computa-

tional budget (i.e. longer training) or with additional fine-tuning a constrained

agent may reach the performances of an unconstrained one, while retaining the

capability of adhering to desired long-term constraints.

4.6.2 Hyperparameter Tuning

We now turn our focus to a common ML practice to improve the performance

of algorithms, namely Hyperparameter Tuning (HT), which is an important

issue of practical ML-based systems and is particularly problematic in RL and

in Lagrangian-based gradient approaches [29, 71, 39].

Several rounds of HT had been carried out. The main HT process involved

a random search, a well-know method for HT first proposed in [4], over a large

set of hyperparameters and corresponding values. Table 4.2 shows the consid-

ered hyperparameters, each with the corresponding set of values employed in

the random search. The search overall produced over 700 independent runs,

which we will use for the analysis presented in the remainder of this section.

Given the very large set of hyperparameters considered, it is not reason-

able if possible at all to fine-tune each single hyperparameter. A first step in

our analysis involved determining the most important hyperparameters. One

possible approach for doing so is by considering a regression task in which the

input is a vector containing hyperparameters’ values and the target is an eval-

uation metric (e.g. constraint score in our context). We can train a Random

Forest-like regressor (we employed Extra-trees [24]) and use it to compute

feature (i.e. hyperparameters) importance scores. In particular, we compute

55

Config name Description Values
environment.instances.train Which instance(s) to use for training. 1, 10, 100 instances
actor.net_spec.depth Depth of the actor MLP. 1, 2, 3
actor.net_spec.num_cells Width of the actor MLP. 8, 16, 32, 64
agent.activation Activation function used by the networks. tanh, relu
agent.actor_lr Learning rate for actor network. 0.02, 0.01, 0.0075, 0.005, 0.003
agent.actor_weight_decay L2 norm applied to the actor network’s weights. 0.0, 0.005, 0.01, 0.05
agent.critic_lr Learning rate for critic network. 0.02, 0.01, 0.0075, 0.005, 0.003
agent.lag_lr Learning rate for Lagrangian multiplier. 5.0, 2.0, 1.0, 0.5, 0.1
agent.lagrange.params.initial_value Initial value of the Lagrangian multiplier. 50, 25, 15, 5, 1
agent.lagrange.positive_violation Whether to train on positive costs only. True, False
agent.loss_module.entropy_bonus Whether to add an entropy term to the actor loss. True, False
agent.loss_module_lag.cost_scale Cost scaling factor. 1.0, 0.1, 0.01
agent.loss_module_lag.reward_scale Reward scaling factor. 1.0, 0.1, 0.01
agent.loss_module_lag.target_kl KL divergence threshold for early stopping actor updates. 0.5, 0.25, 0.1, 0.05, 0.025
agent.orthogonal_init Whether to employ orthogonal initialization. True, False
agent.schedule Whether to schedule the LRs. True, False
critic.net_spec.depth Depth of the critic MLP. 1, 2, 3
critic.net_spec.num_cells Width of the critic MLP. 8, 16, 32, 64
environment.params.cost_fn_type Type of cost function. dense, sparse
training.batch_size Batch size used when training. 160, 320, 640, 1280
training.frames_per_batch Amount of transitions collected at each rollout. 3200, 6400, 9600, 12800
training.num_envs Number of parallel environments used during training. 8, 16, 32
training.num_epochs PPO number of epochs for the inner optimization loop. 1, 5, 10

Table 4.2: Description of each tuned hyperparameter and considered values.

permutation feature importance: essentially, the computation process involves

randomly shuffling the values of features (one at a time) and observe how much

this degrades model performances [11]. Figure 4.14 shows such permutation

importance scores for the 8 most important ones. Two hyperparameters ap-

pear of paramount importance, namely the (coefficient of) L2 regularization

applied to the actor network and the type of cost function employed. Less im-

portant, yet relevant parameters appear to be the amount of training instances,

the activation function of the networks, reward and cost scaling factor and

depth of both critic and actor MLP.

We will use primarily the constraint score as performance metric. We start

by comparing performances of the two cost functions described in Section

4.1.3, namely the dense and sparse cost function. Figure 4.15 shows 95%

CI of the average constraint score on the validation set according to the cost

function employed. As expected, the dense cost function appears to be signif-

icantly better, as it does not introduce a credit assignment issue in the offline

RL problem.

Now, to better untangle interaction between different hyperparameters, we

56

Figure 4.14: Permutation importance scores of the 8 most important hyper-
parameters. Bars show standard deviation. L2 regularization and the cost
function employed appear to be particularly important.

will split the runs according to the cost function employed and compute CIs

independently for the two groups. Figures 4.16 and 4.17 show how different

hyperparameter values for actor L2 regularization and number of training in-

stances appear to affect the performances in term of constraint score, grouped

according to the cost function employed.

Concerning the L2 regularization (Figure 4.16), we can notice different

behaviours between the dense and sparse cases. When the dense cost function

is employed, L2 regularization seems to enhanche performance, although its

coefficient requires fine-tuning. For instance, in our experiment, the highest

value considered resulted in poorer outcomes compared to not using L2 reg-

ularization at all. Conversely, in the sparse case L2 regularization does not

57

Figure 4.15: 95% CIs for constraint score (the lower the better, validation set)
for different cost functions. The dense cost function appears to be significantly
better, which was expected as it does not introduce a credit assignment issue
in the offline RL problem.

appear be useful. Still, the reason we considered L2 regularization for the ac-

tor network in the first place was to help mitigating an issue that commonly

happened in many training runs, namely the divergence of the actor’s output

(i.e. the virtual costs). Indeed, as the virtual cost are then employed in a LP

model, several different optimal values may exist, leading to instability in the

gradient-based RL optimization process [6]; this may explain why L2 regular-

ization seems to be helping. It’s not unclear though why the same reasoning

does not apply in the sparse case.

Moving on to the amount of training episodes (Figure 4.17), we can see

once more different behaviours between the dense and sparse case. In partic-

ular, with the dense cost function training with a larger amount of instances

performs better than training with a single or few instances, whereas with the

58

Figure 4.16: 95% CIs for constraint score (the lower the better, validation set)
based on actor L2 regularization and type of cost function employed. The left
plot considers the dense cost function, while the right plot considers the sparse
cost function. The dense cost function appears to be overall better than the
sparse cost function. Also in the dense case, L2 regularization seems to help
in improving performances, although too much regularization is detrimental.
In the sparse case, L2 regularization seems to have an opposite effect, leading
to worse performances.

sparse cost function a single instance performs better than multiple instances.

Naive Lagrange vs PID controller

Finally, we move on to comparing two different methods to manage the La-

grangian update, namely a “naive” Lagrangian gradient-based method adopted

in PPOLag [50] and the PID-based method adopted in CPPO [61].

Figures 4.18 and 4.19 show 95% CIs of average cost and average return on

the validation set according to the Lagrangian method employed. Overall, we

can see little difference in performances between the two methods; CIs of the

PID-based method are slightly narrower than the naive gradient-based method,

suggesting the more advanced PID controller effectively helps in terms of con-

vergence. However, we noticed no substantial improvements in terms of time

59

Figure 4.17: 95% CIs for constraint score (the lower the better, validation set)
based on number of training instances and type of cost function employed. The
left plot shows data of runs employing the dense cost function, while the right
plot considers the sparse cost function. A curious behaviour can be noticed: in
the dense case, more instances lead to better performances, while in the sparse
case the opposite is true, with a single-instance training faring better than 10 or
100 instances. Still, overall performances appear to be better when employing
the dense cost function.

to reach to convergence, which for us was a primary interest in adopting a

non-gradient based method which suffers from slow convergence time. More-

over, the naive method is particularly susceptible to its hyperparameters (La-

grangian multiplier learning rate and initial value), an issue that still persists

in the PID-based method, and it is possibly amplified by the larger number

of hyperparameters (3 learning rates for each PID component, with their own

intrinsic tuning difficulty [60], plus possibily other hyperparameters [61]).

60

Figure 4.18: 95% CIs for average cost (validation set) based on Lagrangian
method employed.

61

Figure 4.19: 95% CIs for average return (the lower the better, validation set)
based on Lagrangian method employed.

62

Chapter 5

Conclusions

This thesis has presented a step forward in the interdisciplinary convergence

of ML and CO, particularly focusing on the domain of CO problems within the

context of RL. Our work in extending the UNIFY framework underscores the

potential of hybrid learning and optimization frameworks in addressing com-

plex decision-making problems, exemplified through the challenging case of

an EMS with long-term constraints. This chapter discusses the main chal-

lenges encountered, future directions, and any additional insight that emerged

from this work.

5.1 Main challenges and insights

One of the first challenges pertained to the modelling of virtual parameter

vector (recall that it is the ML model output which act as (an additional) set

of parameters for the CO model): this parametrization choice significantly

influenced the learning process’s effectiveness, in particular in terms of be-

ing able to learn to satisfy long-term constraints. This is indeed because the

parametrization choice played a crucial role in determining how the RL agent

could influence the online model’s decisions, regarding storage management

in the EMS case study. The findings suggest that the choice of virtual pa-

rameters cannot be arbitrary and requires careful consideration to reflect the

63

problem’s structure and constraints accurately.

Another issue was associated with the choice of the online optimization

problem. Aside from the traditional LP online model we also experimented

with a QP online model; however, the QP model did not yield any improve-

ments in performance but rather introduced additional instability in the RL

training process. This highlights the complexity of integrating offline RL

agents with online optimization problems, especially when the optimization

models introduce nonlinear dynamics that the RL agent must learn to navigate

effectively.

The empirical evaluation and hyperparameter tuning process provided valu-

able insights into the factors that influence the framework’s performance. The

importance of cost functions in shaping learning outcomes underscores the

need for mechanisms that can mitigate issues like credit assignment in RL

with cumulative constraints. Furthermore, the analysis accentuates the role of

hyperparameters, indicating potential areas where automated ML techniques

like Bayesian optimization could streamline the tuning process, leading to en-

hanced performance with reduced manual intervention and time complexity.

Indeed one main challenge lied in the fact that getting the RL agents to learn

properly in the first place required a good deal of time, both due to the general

RL requirement of long training runs (due to the low sample complexity of

RL methods), the sensitivity to hyperparameters which required an accurate

tuning and the need for several implementation-level details [13, 26, 27, 29,

71]. Thus, modelling and solving the offline phase of an hybrid framework

such as UNIFY via RL methods definitely hampers the general applicability

and scalability of the framework as a whole.

Still, several benefits arise from adopting long-term constraints in a hy-

brid framework such as UNIFY: it offers strategic foresight in scenarios such

as EMS, allowing for proactive preparation for future demands and limitations.

This approach not only enhances the system’s resilience and sustainability by

ensuring that today’s decisions align with future objectives, but it also been

64

shown to be capable of retaining good performance levels even under strin-

gent requirements (e.g. a cost of 50, which implies a 95% battery capacity on

average). Thus, the integration of long-term constraints stands as a cornerstone

for advancing towards more anticipatory and sustainable decision-making in

complex environments.

The framework’s ability to accommodate stringent cost thresholds while

sustaining commendable performance levels highlights its potential to revo-

lutionize how complex problems are approached. Our findings advocate for

a broader application of this methodology, suggesting that its benefits tran-

scend the EMS context, presenting a versatile tool for tackling diverse com-

plex, constraint-driven problems across various domains.

5.2 Future Works

Several avenues for future research have been revealed through this work.

First, further exploring alternative approaches to virtual parameters modelling

could enhance the RL agent’s ability to influence the decisions made by the

online model. Second, extending the UNIFY framework to a broader range

of application domains would test its generalizability and adaptability, as each

domain might present unique challenges, for instance concerning how con-

straints are defined as well as, of course, the nature of the decision-making

problem. Such investigations could lead to a more robust and versatile frame-

work capable of handling a wide array of complex decision-making problems.

Finally, incorporating more sophisticated, powerful or even simply different

RL algorithms and optimization models could definitely offer new ways to im-

prove the framework’s performance. Indeed, in our experiment we focused on

PPO as the underlying RL algorithm, which is a model-free, on-policy, policy

gradient-based approach; it could be that a different approach (e.g. model-

based, off-policy, ...) performs better than PPO, which is known to be some-

what sample inefficient at times [26].

65

In conclusion, this thesis contributes to the ongoing dialogue between the

fields of ML and CO, specifically through the lens of Reinforcement Learning.

By addressing the inclusion of long-term constraints within the UNIFY frame-

work, we pave the way for inventive solutions to complex decision-making

problems, highlighting the potential for interdisciplinary approaches that lever-

age the strengths of both ML and CO.

66

Bibliography

[1] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Belle-

mare. Deep reinforcement learning at the edge of the statistical precipice.

Advances in neural information processing systems, 34:29304–29320,

2021.

[2] D. Aloini, E. Crisostomi, M. Raugi, and R. Rizzo. Optimal power schedul-

ing in a virtual power plant. In 2011 2nd IEEE PES International Con-

ference and Exhibition on Innovative Smart Grid Technologies, pages 1–

7. IEEE, 2011.

[3] E. Altman. Constrained Markov decision processes. Routledge, 1999.

[4] J. Bergstra and Y. Bengio. Random search for hyper-parameter opti-

mization. Journal of machine learning research, 13(2), 2012.

[5] D. P. Bertsekas. Constrained optimization and Lagrange multiplier meth-

ods. Academic press, 2014.

[6] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization,

volume 6. Athena scientific Belmont, MA, 1997.

[7] S. Bhatnagar and K. Lakshmanan. An online actor–critic algorithm with

function approximation for constrained markov decision processes. Jour-

nal of Optimization Theory and Applications, 153:688–708, 2012.

[8] S. Bohez, A. Abdolmaleki, M. Neunert, J. Buchli, N. Heess, and R.

Hadsell. Value constrained model-free continuous control. arXiv preprint

arXiv:1902.04623, 2019.

67

[9] J. C. G. Boot. On trivial and binding constraints in programming prob-

lems. Management Science, 8(4):419–441, 1962.

[10] A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. D.

Fabritiis, and V. Moens. Torchrl: a data-driven decision-making library

for pytorch, 2023. arXiv: 2306.00577 [cs.LG].

[11] L. Breiman. Random forests. Machine learning, 45:5–32, 2001.

[12] E. K. Chong, W.-S. Lu, and S. H. Zak. An Introduction to Optimization:

With Applications to Machine Learning. John Wiley & Sons, 2023.

[13] C. Colas, O. Sigaud, and P.-Y. Oudeyer. How many random seeds?

statistical power analysis in deep reinforcement learning experiments.

arXiv preprint arXiv:1806.08295, 2018.

[14] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y.

Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757,

2018.

[15] G. B. Dantzig. Linear programming under uncertainty. Management

science, 1(3-4):197–206, 1955.

[16] G. B. Dantzig. Origins of the simplex method. In A history of scientific

computing, pages 141–151. 1990.

[17] A. De Filippo, M. Lombardi, and M. Milano. The blind men and the

elephant: integrated offline/online optimization under uncertainty. In

Proceedings of the Twenty-Ninth International Conference on Interna-

tional Joint Conferences on Artificial Intelligence, pages 4840–4846,

2021.

[18] F. Delbos and J. C. Gilbert. Global linear convergence of an augmented

lagrangian algorithm for solving convex quadratic optimization prob-

lems. Journal of Convex Analysis, 12(1):25, 2005.

[19] F. Detassis. Methods for integrating machine learning and constrained

optimization, 2022.

68

[20] P. Donti, B. Amos, and J. Z. Kolter. Task-based end-to-end model learn-

ing in stochastic optimization. Advances in neural information process-

ing systems, 30, 2017.

[21] T. Eimer, M. Lindauer, and R. Raileanu. Hyperparameters in reinforce-

ment learning and how to tune them. arXiv preprint arXiv:2306.01324,

2023.

[22] A. N. Elmachtoub and P. Grigas. Smart “predict, then optimize”. Man-

agement Science, 68(1):9–26, 2022.

[23] P. Geibel. Reinforcement learning for mdps with constraints. In Ma-

chine Learning: ECML 2006: 17th European Conference on Machine

Learning Berlin, Germany, September 18-22, 2006 Proceedings 17,

pages 646–653. Springer, 2006.

[24] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Ma-

chine learning, 63:3–42, 2006.

[25] F. Glover. Heuristics for integer programming using surrogate constraints.

Decision sciences, 8(1):156–166, 1977.

[26] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger.

Deep reinforcement learning that matters. In Proceedings of the AAAI

conference on artificial intelligence, volume 32 of number 1, 2018.

[27] S. Huang, R. F. J. Dossa, A. Raffin, A. Kanervisto, and W. Wang. The

37 implementation details of proximal policy optimization. The ICLR

Blog Track 2023, 2022.

[28] T. Illés and T. Terlaky. Pivot versus interior point methods: pros and

cons. European Journal of Operational Research, 140(2):170–190, 2002.

[29] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup. Reproducibil-

ity of benchmarked deep reinforcement learning tasks for continuous

control. arXiv preprint arXiv:1708.04133, 2017.

69

[30] S. Jiang, Z. Song, O. Weinstein, and H. Zhang. Faster dynamic matrix

inverse for faster lps. arXiv preprint arXiv:2004.07470, 2020.

[31] M. A. Johnson and M. H. Moradi. PID control. Springer, 2005.

[32] S. Kapoor and P. M. Vaidya. Fast algorithms for convex quadratic pro-

gramming and multicommodity flows. In Proceedings of the Eighteenth

Annual ACM Symposium on Theory of Computing, STOC ’86, pages 147–

159, Berkeley, California, USA. Association for Computing Machinery,

1986.

[33] R. M. Karp. Reducibility among combinatorial problems. Springer, 2010.

[34] L. G. Khachiyan. A polynomial algorithm in linear programming. In

Doklady Akademii Nauk, volume 244 of number 5, pages 1093–1096.

Russian Academy of Sciences, 1979.

[35] M. K. Kozlov, S. P. Tarasov, and L. G. Khachiyan. Polynomial solv-

ability of convex quadratic programming. In Doklady Akademii Nauk,

volume 248 of number 5, pages 1049–1051. Russian Academy of Sci-

ences, 1979.

[36] A. H. Land and A. G. Doig. An automatic method of solving discrete

programming problems. Econometrica, 28(3):497–520, 1960.

[37] S. Lin. Computer solutions of the traveling salesman problem. Bell Sys-

tem Technical Journal, 44(10):2245–2269, 1965.

[38] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the

traveling-salesman problem. Operations research, 21(2):498–516, 1973.

[39] Y. Liu, A. Halev, and X. Liu. Policy learning with constraints in model-

free reinforcement learning: a survey. In The 30th International Joint

Conference on Artificial Intelligence (IJCAI), 2021.

[40] A. Lokketangen and F. Glover. Solving zero-one mixed integer pro-

gramming problems using tabu search. European journal of operational

research, 106(2-3):624–658, 1998.

70

[41] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes

in integer and mixed integer programming. Discrete Applied Mathemat-

ics, 123(1-3):397–446, 2002.

[42] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic

and nonlinear programming. Technical report, 1985.

[43] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms

in convex programming. SIAM, 1994.

[44] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the res-

olution of large-scale symmetric traveling salesman problems. SIAM

review, 33(1):60–100, 1991.

[45] P. M. Pardalos and S. A. Vavasis. Quadratic programming with one neg-

ative eigenvalue is np-hard. Journal of Global optimization, 1(1):15–22,

1991.

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.

Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E.

Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala. Pytorch: an imperative style, high-

performance deep learning library, 2019. arXiv: 1912.01703 [cs.LG].

[47] S. Paternain, L. Chamon, M. Calvo-Fullana, and A. Ribeiro. Constrained

reinforcement learning has zero duality gap. Advances in Neural Infor-

mation Processing Systems, 32, 2019.

[48] P. Pedregal. Introduction to optimization, volume 46. Springer, 2004.

[49] W. B. Powell. A unified framework for stochastic optimization. Euro-

pean Journal of Operational Research, 275(3):795–821, 2019.

[50] A. Ray, J. Achiam, and D. Amodei. Benchmarking safe exploration in

deep reinforcement learning. arXiv preprint arXiv:1910.01708, 7(1):2,

2019.

71

[51] C. Roos, T. Terlaky, and J.-P. Vial. Interior point methods for linear

optimization, 2005.

[52] S. Sahni. Computationally related problems. SIAM Journal on comput-

ing, 3(4):262–279, 1974.

[53] W. Saunders, G. Sastry, A. Stuhlmueller, and O. Evans. Trial without er-

ror: towards safe reinforcement learning via human intervention. arXiv

preprint arXiv:1707.05173, 2017.

[54] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust re-

gion policy optimization. In International conference on machine learn-

ing, pages 1889–1897. PMLR, 2015.

[55] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-

dimensional continuous control using generalized advantage estima-

tion. arXiv preprint arXiv:1506.02438, 2015.

[56] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-

imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,

2017.

[57] D. Silver, S. Singh, D. Precup, and R. S. Sutton. Reward is enough.

Artificial Intelligence, 299:103535, 2021.

[58] M. Silvestri, A. De Filippo, M. Lombardi, and M. Milano. Unify: a uni-

fied policy designing framework for solving constrained optimization

problems with machine learning. arXiv preprint arXiv:2210.14030, 2022.

[59] M. Silvestri, A. De Filippo, F. Ruggeri, and M. Lombardi. Hybrid of-

fline/online optimization for energy management via reinforcement learn-

ing. In International Conference on Integration of Constraint Program-

ming, Artificial Intelligence, and Operations Research, pages 358–373.

Springer, 2022.

[60] O. A. Somefun, K. Akingbade, and F. Dahunsi. The dilemma of pid

tuning. Annual Reviews in Control, 52:65–74, 2021.

72

[61] A. Stooke, J. Achiam, and P. Abbeel. Responsive safety in reinforce-

ment learning by pid lagrangian methods. In International Conference

on Machine Learning, pages 9133–9143. PMLR, 2020.

[62] R. S. Sutton. Learning to predict by the methods of temporal differ-

ences. Machine learning, 3:9–44, 1988.

[63] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[64] C. Tessler, D. J. Mankowitz, and S. Mannor. Reward constrained policy

optimization. arXiv preprint arXiv:1805.11074, 2018.

[65] R. J. Vanderbei et al. Linear programming. Springer, 2020.

[66] R. J. Vanderbei. Loqo: an interior point code for quadratic program-

ming. Optimization methods and software, 11(1-4):451–484, 1999.

[67] B. Wilder, B. Dilkina, and M. Tambe. Melding the data-decisions pipeline:

decision-focused learning for combinatorial optimization. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, volume 33 of

number 01, pages 1658–1665, 2019.

[68] R. J. Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8:229–256, 1992.

[69] L. A. Wolsey. Integer programming. John Wiley & Sons, 2020.

[70] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. Spaan. Wcsac:

worst-case soft actor critic for safety-constrained reinforcement learn-

ing. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 35 of number 12, pages 10639–10646, 2021.

[71] B. Zhang, R. Rajan, L. Pineda, N. Lambert, A. Biedenkapp, K. Chua,

F. Hutter, and R. Calandra. On the importance of hyperparameter opti-

mization for model-based reinforcement learning, 2021. arXiv: 2102.

13651 [cs.LG].

73

[72] W. Zhang. Branch-and-bound search algorithms and their computa-

tional complexity. University of Southern California, Information Sci-

ences Institute, 1996.

74

Acknowledgements

I’m very grateful to Mattia and Allegra for their extensive support in carrying

out this thesis project. I would also like to thank my advisor Prof. Michele

Lombardi. Last but not least, I am extremely grateful to Giorgia for everything

she did and all the help she has given me. I wouldn’t still be here, if it wasn’t

for her. Thank you from the bottom of my heart.

75

