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Abstract

This thesis project presents a methodology to design and numerically validate screw propellers
for maritime applications. The method was designed and used during the 2022/2023 season of
the UniBoAT project.
The theoretical approach applied is Blade Element Momentum Theory (BEMT). A MATLAB
code was developed to implement the BEMT method. Moreover, an optimization algorithm
was implemented in the program to optimize the blade’s pitch and chord distributions. Then,
CFD and FEA simulations with Ansys Workbench were carried out to compare analytical and
numerical results. While a good correlation between BEMT and CFD has been achieved (par-
ticularly for the propeller’s thrust and efficiency), analytical methods to compute blade stress
have seemed to be not reliable in maximum stress predictions because the blade’s root rounding
geometry is usually not taken into account in the computation.
Finally, the propellers were manufactured through 3D printing technology and tested on the
boat. The propeller’s real performance was compared with the previous design and, although
the tests weren’t comprehensive, the objective of obtaining a bigger thrust from the propeller
has been achieved but with bigger power absorption than was expected.
Further investigations and improvements in the simulations set-up will be needed to improve
the correlation between BEMT and real tests.
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Sommario

Questo progetto di tesi presenta un metodo di design e validazione numerica di eliche per ap-
plicazioni marittime. Il metodo è stato sviluppato e usato nel corso della stagione 20022/2023
del progetto UniBoAT.
L’impostazione teorica utilizzata è la Blade Element Momentum Theory (BEMT). Un pro-
gramma MATLAB è stato sviluppato per implementare il metodo BEMT. Inoltre, un algoritmo
di ottimizzazione per ottimizzare le distribuzioni di pitch e corda della pala è stato implementato
nel programma. Dopodiché, si sono eseguite simulazioni CFD e FEA tramite Ansys Workbench
per confrontare risultati analitici e numerici. Benché una buona correlazione sia stata riscon-
trata tra BEMT e CFD (in particulate per la spinta e l’efficienza dell’elica), i metodi analitici per
calcolare la distribuzione di stress nella pala sono risultati poco affidabili nella previsione della
tensione massima della pala poiché solitamente non tengono conto della geometria raccordata
della base della pala.
Infine, le eliche sono state prodotte tramite stampa 3D e testate sulla barca. Le prestazioni finali
dellee eliche sono state confrontate con le prestazioni del design precedente e, benché i test non
fossero completi, a causa della mancanza di un banco prova per eliche, l’obbiettivo di ottenere
una Maggiore spinta dalle eliche è stato raggiunto ma con un assorbimento di potenza maggiore
del previsto.
Ulteriori indagini e miglioramenti nel set-up delle simulazioni saranno necessari per migliorare
la correlazione tra la BEMT e i test reali.
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Chapter 1

Introduction

1.1 UniBoAT Project
The University of Bologna Argonauts Team (UniBoAT) is a fascinating project started by the
Department of Industrial Engineering (DIN) of the University of Bologna back in 2019. The
project aims to study and develop innovative and green solutions for the maritime sector. In
particular, students and doctorates who join the Team design and build a racing catamaran to
take part in the Monaco Energy Boat Challenge (MEBC) in the Principality of Monaco, held
every year in July.
UniBoAT is a great opportunity for students who want to put their knowledge and theoretical
skills into practice, facing real engineering problems and challenges. Moreover, it is a platform
for the students to develop and refine new and advanced technologies that could revolutionize
the maritime industry in the coming years.
MEBC’s goal is to promote a faster technology transition in the maritime industry, from carbon-
fuel-based technologies to green and sustainable ones. For this reason, Futura, the UniBoAT’s
catamaran, is equipped with an advanced propulsion system that is powered by two electric
engines. These engines are supplied by lithium-ion battery packs that are recharged by solar
panels and a hydrogen fuel cell. The boat is also fitted with two standard Wageningen B-Series
propellers, which were designed by the students to achieve maximum efficiency during work.
This task is not straightforward since the competition includes four different types of races.
These are:

• Endurance race, which tests the boat’s reliability and efficiency;

• Speed test, which tests maximum speed;

• Slalom race, which tests manoeuvrability;

• Championship race, which is a 1-vs-1 race that requires both good manoeuvrability and
speed.

Fortunately, the competition rules allow every team to change propeller after each race. There-
fore, it is convenient to design different propellers depending on the race topology.
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Figure 1.1: Futura, the UniBoAT’s race hydrogen catamaran. Energy Boat Challenge of
Monaco, July 2023

1.2 Aim of this work
This thesis work was born from my curiosity to deep dive into the fluid dynamic study of ma-
rine propellers and from my pledge to the UniBoAT Team to develop a simple, efficient and
rapid propeller design methodology, functional to design quickly new custom propellers based
on the boat’s thrust, power, and velocity requirements. Since the boat’s parameters can change
frequently due to changes in race rules and improvements in boat design or components, it is
important to have a fast and reliable methodology for designing new propellers when the boat’s
operating conditions change. Additionally, this methodology should be capable of designing
high-efficiency propellers for endurance races and high-speed velocity propellers for champi-
onship, slalom, and speed races to achieve the best performance in each race.
For this season, since we already had good propellers that could reach high efficiency, we de-
cided to focus on developing high-velocity propellers. To achieve this goal, we developed a
MATLAB program that could design propellers with custom blade geometry and help us reach
maximum velocity in a specific work condition. We then compared the results from the MAT-
LAB code with CFD and FEA simulations, and finally with real test data to ensure the reliability
of the methodology.

1.3 Structure of the thesis
This thesis is organized into the following chapters and topics:

1. Chapter 2: Blade Element Momentum Theory
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1.1 Literature Review of Propeller Design Methodologies: a brief description of the
principal design methodologies adopted in propeller design starting from Rankine’s
Momentum Theory to modern CFD methods, their pros and cons and up-to-date
published design results;

1.2 Mathematical Derivation of the BEMT: motivations on the chosen model theory, its
physical and mathematical derivation and notes about the problem regarding BEMT
system numerical solution;

1.3 Summary of BEMT equations: a summary of the BEMT hypothesis and final system
of equations.

2. Chapter 2: BEMT Implementation in MATLAB

2.1 MATLAB Code Structure and Functioning: a description of the main ideas the code
is based on, the XFOIL software usage to get airfoil polar data, the main inputs to
start the design, the optimization loop structure and the verification of cavitation;

2.2 MATLAB Results: discussion of the propeller designed and optimized through the
MATLAB code and its main performance results;

3. Chapter 3: Propeller CAD model, CFD and FEM analysis

3.1 PTC Creo CAD Model: description of the propeller’s 3D modelization process;

3.2 CFD Setup and Results: fluid-dynamic simulations to analyze propeller perfor-
mance and to compare it with the BEMT results;

3.3 FEA Setup and Results: finite-element structural analysis to guarantee mechanical
integrity of the designed propeller;

4. Chapter 4: Propeller Manufacturing, Testing and Conclusions

4.1 Propeller Production and Real Test: 3D printings of the designed propeller, propeller
testing in Marina di Ravenna e collected data analysis;

4.2 Final Results: comparison between old and new propellers with the test data;

4.3 Conclusions and Future Works: final discussion on this thesis results and possible
future works to improve the design methodology.
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Chapter 2

Blade Element Momentum Theory

2.1 Introduction
Propeller design theories have been evolving since the late 1800s and are currently widely used
in the design of marine propellers, wind turbines, and aircraft propellers, especially for drones
or small aeroplanes. Carlton [9] provides a comprehensive overview of design methodologies,
but we will summarize the most important aspects and the pros and cons of the major theories
in this chapter. Moreover, the mathematical derivation of the BEMT method adopted for this
work is here explained.

2.2 Literature review of propeller design methodologies
Rankine [44] and Froude [21],[20] were the pioneers of providing a method to design and ana-
lyze propeller action. The Momentum Theory proposed by Rankine describes the propeller as
an actuator disc with an infinite number of blades through which the fluid flows. The fluid is
ideal, and no losses due to frictional drag are taken into account. By analyzing the increase in
kinetic energy of the slipstream and the flow rate through the disc, it is possible to calculate the
thrust generated by the disc and the power absorbed. While Momentum Theory describes the
global phenomena of the propeller action, it is useless for designing blade profiles. On the other
hand, the Blade Element Theory of Froude examines the local propeller action by studying the
blade divided into elementary strips. By knowing the resultant incident velocity, it is possible
to calculate the lift and drag experienced by the local strip of the blade and then thrust and
momentum through projection. Although the early theories failed in some respects to predict
propeller performance accurately, they laid the foundation for all future theories.
In the next decades, thanks to the works of Prandtl, Betz [1], [2], Goldstein [25], and Burrill [8],
a comprehensive propeller theory was developed. The advance in the vortex theory by Prandtl,
which established that the lift of a swing is generated due to the development of a circulation
around the section and that trailing vortices emanated from the blade tip, allowed Betz and
Goldstein to characterize the losses which the propeller is subjected due to a finite number of
blades and a finite blade. Moreover, Tachmindji [49] expanded this work taking into account
the presence of the propeller hub.
Finally, the work of Burrill took into account all the previous works to complete the propeller
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design theory which today is widely known as Blade Element Momentum Theory (BEMT).
Essentially, Burrill’s method is a strip theory which combines the principles of Momentum
Theory, Blade Element Theory, and vortex theory. It also introduces induced inflow factors for
axial and tangential velocities. Burrill’s analysis procedure represents the first coherent step in
establishing a propeller calculation procedure. It works quite well for the moderately loaded
propeller working at or near its design condition. However, at either low or high loading condi-
tions the theory does not behave as well.
Today, BEMT is largely adopted for marine propellers, wind turbines and aircraft rotors design,
due to its simplicity of implementation and low computational effort, which allow designers
to define quickly a first-attempt solution that must be validated through CFD simulations later
in the design process. Some notable literature examples of propeller design and analysis with
BEMT are Benini [19], Phillips [41], Winarto [51], Rwigema [45], Ning [38], Masters [35] and
Dehouck [12].
In the following years, several design methods were introduced to cope with the increase in
propulsive power transmitted. For instance, Eckhardt and Morgan’s [31] design method is an
approximated methodology which utilizes empirical data, as the ideal efficiency estimated by
Kramer’s diagram and minimum cavitation number diagrams, to optimise the propeller. Today
this methodology is still widely used thanks to its simple and fast algorithm. However, the ac-
curacy in predicting performance is limited to lightly and moderately loaded propellers. Some
up-to-date examples of this design methodology are provided by Parvez [39] and Rahman [43]
(who presented a hybrid method with some aspects of more recent theories).
With the advancements in computational capabilities in the second half of the 20th century, sev-
eral new methods have been introduced and developed. One such method is the Lifting Surface
model, which consists of replacing the blade with an infinitely thin surface, which takes the form
of the blade camber, upon which a distribution of vorticity is placed in both the spanwise and
chordal directions. During the design phase, knowing the approximate distributions of chord,
skew, rake and section thickness, source and vortex distributions representing the blades and
their wake need to be placed on suitable reference surfaces to enable the induced velocity field
to be calculated. Recent applications of this theory were presented for instance by Grassi [26]
and Brizzolara [47]. However, since computers with sufficient capabilities were not always
available, Lifting Line-lifting Surface hybrid models were introduced. Incorporating surface
corrections (Morgan et al. [36]) and cavitation prediction methods faster design computations
were admissible.
Thanks mainly to Kerwin’s work, during the ’60s and ’70s Vortex Lattice Method was intro-
duced. This is a subclass of the Lifting Surface method, where the continuous distributions of
vortices and sources are replaced by a finite set of straight-line elements of constant strength
whose endpoints lie on the blade camber surface. From this system of vortices, the velocities
are computed at several suitably located control points between the elements. Some design ex-
amples with Vortex Lattice theory were provided by Chung [11], Epps [18] and Stoye [48].
In recent years, there have been significant advancements in the application of Computational
Fluid Dynamics. With the use of Reynolds Averaged Navier-Stokes (RANS) method, Large
Eddy Simulation (LES) techniques or Direct Numerical Simulations (DNS) is possible to get
useful insights into the viscous and cavitating behavior of propellers. However, while these
approaches ensure good accuracy and reliability in performance predictions, they are more in-
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tended for propeller analysis rather than propeller design and optimization, due to the compu-
tational effort required. In literature, considerably large usage of CFD methods has been done.
For instance Dubbioso [14], Elghorab [15], Patil [40] and Bulten [7].
It is worth highlighting that several open-source codes, which implement one of the previous
theories to design propellers and turbines, are already available online. For instance, pyBEMT,
published by Giljarhus [23], is a Python application that implements a BEMT algorithm to
design aircraft propellers; OpenProp, instead, is a MATLAB code for designing marine pro-
pellers through Lifting-Line Theory and has been developed by Epps [17]; finally, AeroDyn is
a tool integrated in OpenFAST, an open source software developed by Jason Jonkman and Mike
Sprague [29], to design offshore wind turbine through implementation of BEMT with vortex-
wake corrections.
Although open-source codes are often powerful and easy to use with user-friendly interfaces,
literature validations are not always available. For this reason, experimental tests are always
recommended.

2.3 Mathematical derivation of BEMT
For this thesis development, the BEMT method has been chosen due to its simple software im-
plementation and its fast solution computation, which allows the designer to quickly perform
optimization algorithms of the propeller parameters. Validations with both experimental data
and CFD simulations of the theory can be easily found in literature, for instance: Bergmann
[6], Kamaldeep [46], Abdelkhalig [3] and Bangga [22]. As already has been stated, the BEMT
model is not commonly reliable when working conditions are far away from the design working
point.
For a comprehensive derivation and explanation of the theory, the book Wind Turbine Aerody-
namics and Vorticity-Based Methods by Branlard [16] is suggested (note that Branlard derives
the method with the turbine sign convention). In this section, the main hypothesis, equations
and results of the BEMT method are going to be discussed.

A propeller consists of identical blades attached axisymmetrically to a common hub. Each
blade may be thought of as being similar to a high aspect ratio wing, thus the analysis of a
propeller may borrow some familiar ideas from the aerodynamic analysis of an aircraft wing.
When a wing with an airfoil section crosses a fluid, due to its geometry, fluid particles are accel-
erated around the curved shape. Since on one side (suction side), the fluid increases its speed,
while on the other side (pressure side) the fluid decelerates, due to Bernoulli’s equation a static
pressure difference is generated between the two sides and a lifting and a drag force is produced
on the aerofoil.
In the case of a propeller, the flow analysis is more complex because the propeller ”wing” (the
blade) is both moving forward and rotating around the propeller’s longitudinal axis. Therefore,
the lifting line theory applied to study aerofoil behaviour should be modified to take into ac-
count the rotation of the blade.
The blade can be divided into parallel blade elements, each one can be regarded as an infinites-
imal aerofoil with a radial length of dr, and chord c(r), with r being the radial distance from
the centre of rotation. In this way, the problem of 3-D flow analysis is reduced to a simpler 2-D
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analysis, assuming that each blade element does not influence the fluid flow of the other blade
elements.
The relative velocity experienced by this element, namely Urel, is decomposed into a longitudi-
nal component normal to the rotor Un and a tangential component in the rotor plane Ut. Three
angles are defined based on the velocity vectors and blade element definition: the inflow angle
Φ, the angle of attack α, and the pitch angle θ. The relations between these angles and the
velocity components are:

α = Φ− θ (2.1)

Φ = atan
Un

Ut

(2.2)

Urel =
√

U2
n + U2

t [m/s] (2.3)

Figure 2.1: Velocity and forces vectors for a blade element

From the previous discussion on the flow around an aircraft wing, we know that aerofoil pro-
duces lift and drag forces. Since the lift and drag coefficients of the airfoil are assumed to be
known at any given section of the blade, the lift and drag forces applied on the blade element of
surface dS = c(r)dr are:

dFL =
1

2
ρdSU2

relCl(α) [N ] (2.4)

dFD =
1

2
ρdSU2

relCd(α) [N ] (2.5)
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We can express the two forces per unit of length by dividing by the span dr:

L =
1

2
ρc(r)U2

relCl(α) [N/m] (2.6)

D =
1

2
ρc(r)U2

relCd(α) [N/m] (2.7)

The lift and drag forces can be projected on the longitudinal axis and the rotor plane. In this
way, we get an axial component dFn, the thrust component, and a tangential component dFt,
the torque component:

dFn = dFLcos(ϕ)− dFDsin(ϕ) [N ] (2.8)
dFt = dFLsin(ϕ) + dFDcos(ϕ) [N ] (2.9)

By analogy to the lift and drag coefficients, we can express the axial and tangential components
as a function of axial and tangential coefficients:

dFn =
1

2
ρdSU2

relcn(α) [N ] (2.10)

dFt =
1

2
ρdSU2

relct(α) [N ] (2.11)

Where axial and tangential coefficients can be expressed as functions of the lift and drag coef-
ficients:

cn = Clcos(ϕ)− Cdsin(ϕ) (2.12)
ct = Clsin(ϕ) + Cdcos(ϕ) (2.13)

It is noted that the radial dependency of the parameters c, Cl, Cd, α, and Φ has been omitted in
the above equations.
Since the rotational symmetry hypothesis of the flow holds, the loading on all blades Z is
identical, so the local (i.e. elementary) thrust, torque and power are:

dT (r) = ZdFn(r) =
1

2
ρU2

rel(r)Zc(r)drcn(r) [N ] (2.14)

dQ(r) = ZrdFt(r) =
1

2
ρU2

rel(r)Zc(r)rdrct(r) [Nm] (2.15)

dP (r) = ZΩrdFt(r) =
1

2
ρU2

rel(r)Zc(r)rΩdrct(r) [W ] (2.16)

We can define dimensionless coefficients as functions of the reference velocity Uref , which is
chosen as the free-stream velocity U0, namely the boat velocity:

Ct(r) =
dT

1
2
ρU2

ref2πrdr
=

U2
rel(r)σ(r)cn(r)

U2
ref

(2.17)

Cq(r) =
dQ

1
2
ρU2

refr2πrdr
=

U2
rel(r)σ(r)ct(r)

U2
ref

(2.18)

Cp(r) =
dP

1
2
ρU3

ref2πrdr
=

U2
rel(r)σ(r)ct(r)λr

U2
ref

(2.19)
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Where local solidity σ = Zc/2πr and local tip-speed ratio λ = Ωr/Uref have been introduced.
The local solidity is an important parameter in the study of rotors and it represents the ratio
between the surface area of the Z blade elements dS(r) = Zc(r)dr at the radial position r and
an annular area dA(r) = 2πrdr. While the tip-speed ratio λ is similar to the advanced ratio J
which is commonly used in propellers analysis:

J =
Uref

nrotD
=

Uref

Ω/(2π)2R
=

π

λ
(2.20)

Anyway, in this work λ has been preferred.

Until now, it has been assumed that the presence of the blade element does not affect the
inflow. In reality, the inflow velocity is affected by the presence of the blade. Indeed, there is
an incremental axial velocity upstream of the blade induced by the blade element, which can
be assumed to be a small fraction of the reference forward velocity. Note that the definition of
axial induction factor is only appropriate when a free-stream velocity U0 exists.
Similarly, there is a reduction in the tangential velocity which gives rise to the elemental torque.
This decrement is assumed to be a small fraction of the tangential velocity, and it is in the
direction opposing the tangential velocity. The distributions of a and b, the axial and tangential
induction factors respectively, are unknown and must be computed. This is the essence of the
BEMT method.
From the previous discussion, it follows that the axial velocity seen by the blade element is
(1 + a)U0, whereas the tangential velocity is (1 − b)Ωr. Then the resultant velocity and the
inflow angle are:

Urel =
√

(1 + a)2U2
0 + (1− b)2Ω2r2 (2.21)

tanϕ =
(1 + a)U0

(1− b)Ωr
(2.22)

The loads from the BET may be rewritten considering the two induction coefficients. Different
forms of the equations may be chosen due to different relations between the inflow parameters:

dT

dr
=

1

2
ρZccn(U

2
n + U2

t ) =

=
ρZccnU0(1 + a)Ωr(1− b)

2sin(ϕ)cos(ϕ)

= πrρσcn
U0(1 + a)Ωr(1− b)

sin(ϕ)cos(ϕ)

(2.23)

dQ

dr
=

ρZcctrU0(1 + a)Ωr(1− b)

2sin(ϕ)cos(ϕ)

= πr2ρσct
U0(1 + a)Ωr(1− b)

sin(ϕ)cos(ϕ)

(2.24)
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Figure 2.2: Velocity vectors for a blade element considering induction factors. Superscripted
quantities refer to the case without velocity induction.

Therefore, the essence of the BET is to reduce the difficulty of modelling a complex 3-
dimensional flow by assuming that it can be replaced by a linear summation of a large number
of simpler 2-dimensional flows. The blade is divided into several small elements and the flow
over each blade element is assumed to be independent of each other. The 3-dimensional effect
of the vortex sheet leaving at the trailing edge of the blade is modelled by assuming that as the
flow approaches the propeller disc plane, it is affected by an induced velocity in both axial and
tangential directions which are expressed through the two coefficients a and b. The momentum
theory is then applied to determine the magnitude of these two coefficients.

The momentum theory (MT) is based on applying the conservation laws of fluid mechanics
under the assumption that the flow is steady, incompressible and axisymmetric. Furthermore,
MT idealized the propeller as an actuator disk with an infinite number of blades (i.e. the pro-
peller geometry is completely neglected).
The fluid flow pattern is modelled as a stream tube flow that can be divided into three control
volumes: the upstream volume, which is somewhat larger than the disk diameter; the down-
stream volume, which is contracted due to the acceleration imposed by the propeller; and the
disk volume, within which the actuator disk is contained. Note that the opposite holds in the
case of a turbine: the downstream tube is larger than the upstream one.
In the following section, four planes are defined with the notation 0, w, 1, and 2. The quantities
far up-stream and far down-stream are noted with the subscript 0 and w respectively. The quan-
tities just ahead and behind the actuator disc are noted with the subscript 1 and 2 respectively.
Across the actuator disc, the longitudinal velocity is continuous and no distinction will be made,
thus U1 = U2 = Uz. The control volumes definition is explained in Figure 2.3.
In the upstream section, the fluid velocity is the speed U0 of the boat. The flow is accelerated
by the propeller action as it moves downstream, reaching a velocity of Uz as it passes through
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Figure 2.3: Control volume and sections definitions for Momentum Theory

the disc, and settling at a speed of Uw at a sufficiently far downstream location. While the flow
velocity is regarded as changing gradually from U0 to Uw, the static pressure is idealized as
being discontinuous as the flow crosses the actuator disc. Just upstream of the disc, the fluid
pressure is p1 and it suddenly jumps to p2 immediately downstream. The pressure and velocity
trends are shown in Figure 2.4.
One of the hypotheses of the MT is the constant enthalpy of the fluid flow. Since enthalpy is
constant, therefore Bernoulli’s equation can be applied to the three control volumes. For the
upstream and downstream regions, respectively, we have:

p0 +
1

2
ρU2

0 = p1 +
1

2
ρU2

1 (2.25)

p2 +
1

2
ρU2

2 = pw +
1

2
ρU2

w (2.26)

Employing the equilibrium condition (i.e. upstream and downstream sections are sufficiently
far away from the rotor disc) and continuity hypothesis, we have that p0 = pw and U1 = U2.
Combining the two Bernoulli’s equations we get:

∆p = p2 − p1 =
1

2
ρ(U2

w − U2
0 ) (2.27)

Knowing the pressure difference at the rotor disc, the thrust can be easily determined:

T = A(p2− p1) (2.28)

Where A = πR2 is the area of the disc.
To determine the relationship between Uz, the axial flow velocity at the disc section, Uw and U0,
we first apply the mass conservation across the three control volumes:

ṁ = ρU0A0 = ρUzA = ρUwAw (2.29)

We can apply the linear momentum conservation to get the thrust expression using the mass
conservation just obtained:

T = ρAwU
2
w − ρA0U

2
0 = ṁ(Uw − U0) = ρAUz(Uw − U0) (2.30)
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Figure 2.4: Slipstream pressure and velocity of Momentum Theory

To determine the velocity at the rotor disc, we can compare the power applied to the disc ex-
pressed through enthalpy conservation and calculated as the product of thrust and velocity, thus:

P = ρ(
pw
ρ

+
U2
w

2
)AwUw − ρ(

p0
ρ

+
U2
0

2
)A0U0 =

1

2
ṁ(U2

w − U2
0 ) (2.31)

P = TUz = ṁ(Uw − U0)Uz (2.32)

Equating the two expressions, we obtain:

1

2
ṁ(U2

w − U2
0 ) = ṁ(Uw − U0)Uz ⇒ Uz =

Uw + U0

2
(2.33)

Therefore, MT states that axial flow velocity at the rotor disc is the arithmetic average of the far
upstream and downstream velocities.
When the boat is cruising, i.e. is not stationary, we can define an axial inflow factor as we did
for BET that allows us to express the induced velocity as a function of the reference velocity
U0. Hence, flow velocity can be defined as the sum of the reference velocity U0 and an induced
velocity component aU0, thus:

Uz = U0(1 + a) ; Uw = U0(1 + 2a) (2.34)
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Figure 2.5: Streamtube of Momentum Theory with annuli definition.

Where the above result of Uz being the average of upstream and downstream velocities has been
applied.
The MT, originally proposed by Rankine, was modified by Froude to take into account that the
inflow factor is not constant across the whole surface of the actuator disc but it is a function
of radial distance from the propeller’s axis and is therefore determined by the geometry of the
propeller.
The actuator disc can be considered as being made up of rings or annuli, the width of which is
equal to ∆r, and in the limit it can be made to be infinitesimal with a value of dr. Now, the MT
is applied for an elementary stream tube or annulus whose cross section is 2πrdr at the radial
station r. The previously obtained results also hold in this case, but now the inflow factor a
varies along the propeller radius.

The infinitesimal thrust can be evaluated through Bernoulli’s equation previously obtained,
considering that the infinitesimal area is dA = 2πrdr:

dT (r) = ρdAUz(Uw − U0) = ρdAU0(1 + a)(U0(1 + 2a)− U0)

= ρU2
0πr[4a(1 + a)]dr

(2.35)

As has been done in the case BET, we assume that each annulus does not influence the others.
It is worth pointing out that since the cross sections of the stream tubes vary, a radial component
of velocity is inherently present, which contradicts the one-dimensional assumption of the MT.
If we consider axial and radial velocity components, applying Bernoulli’s equation to the control
volumes we get:

p0 +
1

2
ρU2

0 = p1 +
1

2
ρ(U2

z + Ur(r)
2) (2.36)

p2 +
1

2
ρ(U2

z + Ur(r)
2) = pw +

1

2
ρU2

w (2.37)

When expressing the pressure drop ∆p, the radial velocity terms cancel out and we obtain
the same result previously shown. This implies that as long as the velocity at the rotor is
constantly radially (i.e. the axial velocity does not depend on the radial coordinate) then the
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results previously obtained still apply. For further discussion on the radial velocity implications,
the book by Branlard [16] is suggested. Here the radial velocity component is going to be
neglected.
To analyze the momentum distribution, it must be considered that a trailing vortex is shed at the
tip of each blade. Since the tip traces a helix trajectory as the propeller rotates and advances,
the trailing vortex will be of the helical form itself. Without the presence of the trailing vortex,
a small elemental streamline would simply move axially. Therefore, the slipstream behind a
propeller is found to be rotating, in the same direction as the blades. This rotation is partly due
to the circulation around the blades and the remainder is induced by the helical trailing vortices
(Houghton and Carpenter [27]. These trailing vortices induce an additional speed upstream of
the actuator disc in the tangential direction.
Consider a control volume which encloses the propeller disc. The upstream section is placed
immediately ahead of the propeller, whereas the downstream section is placed immediately
behind. Ahead of the propeller, at the upstream section, the angular flow velocity is zero. In
the propeller plane, the flow angular velocity is bΩ, where Ω is the angular blade velocity and
b is the tangential induction factor. If we suppose that upstream and downstream sections are
equidistant from the propeller disc and that flow angular velocity increases linearly along the
control volume, then at the downstream section the angular velocity of the flow will be equal to
2bΩ. Thus the angular velocity of the flow behind the propeller is twice the angular velocity in
the propeller plane. Namely:

Uθ1 = 0 ; Uθ =
1

2
Uθ2 ; Uθ2 = 2brΩ (2.38)

Where subscript θ indicates the tangential velocity, while subscripts 1 and 2 refer to sections
just ahead and behind the actuator disc, as done before.
It should be noted that this result is similar to the axial velocity result of the axial momentum
theory.
The tangential induction factor b is related to the momentum loss in the tangential direction,
which is related to the drag force experienced by the blade. Hence, b is related to the torque
required to rotate the blade.
For a further detailed discussion about the tangential speed jump and the induction factor b, see
also Houghton and Carpenter [27] and Winarto [51].
As we have already done for the axial case, considering elementary rings of area dA = 2πrdr
we can express the momentum loss in the tangential direction through the mass flow rate mul-
tiplied by the angular induced velocity at the downstream section, thus:

dQ = ṁrUθ2 = ρrUzUθ2dA = ρrU0(1 + a)2πrΩb2πrdr

= 4πρr3U0Ωb(1 + a)dr
(2.39)

Where the definition of axial velocity through the axial induction factor has been applied.
We can also calculate the elementary power as follows:

dP (r) = ΩdQ = 4πρr3U0Ω
2b(1 + a)dr (2.40)

As we did for BET, we can calculate the local dimensionless coefficients of thrust, torque and
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power. Then:

Ct(r) =
dT

1
2
ρU2

0dA
= 4a(1 + a) (2.41)

Cq(r) =
dQ

1
2
ρU2

0 rdA
= 4b(1 + a)λr (2.42)

Cp(r) =
dP

1
2
ρU3

0dA
= 4b(1− a)λ2

r (2.43)

Which can be integrated along the radius to get the total dimensionless coefficients of the pro-
peller:

CT =
8

λ2

∫ λ

λh

(1− a)aλrdλr (2.44)

CQ =
8

λ3

∫ λ

λh

(1− a)bλ3
rdλr (2.45)

CP =
8

λ2

∫ λ

λh

(1− a)bλ3
rdλr (2.46)

where λh is the tip-speed ratio at the hub, namely λh = Ωrhub/U0.

So far we obtained thrust and torque expressions as functions of axial and tangential induc-
tion factors. To calculate the radial distribution of these velocity induction coefficients, a and b,
the MT and the BET must be combined into the Blade Element Momentum Theory (BEMT),
which is an iterative method that combines the results from the two basic theories and imposes
that these have to provide the same thrust and torque results. The convergence loop principle is
explained by figure 2.5.

Figure 2.6: Graphic representation of the linking process between BEM and MT, provided by
Branlard [16]. In this thesis, a′ and Vrel have been substituted with b and Urel, respectively.
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Basically, it is supposed that the geometry of the airfoil sections along the span of the blade is
known, in terms of pitch angle, chord length, rake and skew, which are functions of the radial
station. Furthermore, it is also supposed that aerodynamic characteristics of the airfoil profile
are known, in terms of lift and drag coefficient as a function of the angle of attack. This can
be achieved through CFD simulations, wind tunnel tests or XFOIL utility, which is the method
preferred for this work and is going to be explained in the next chapter.
Then, guessing initial values of a and b, it is possible to calculate the inflow angle and the
relative velocity, which can be used to get elementary thrust and torque using BET equations.
These must be compared with thrust and torque provided by MT equations and the induction
factor values must be iteratively adjusted until we get the same results.
We recall now velocity and inflow angle definitions previously seen in BET:

Un = U0(1 + a) ; Ut = Ωr(1− b) (2.47)

U2
rel = U2

n + U2
t =

UnUt

sin(ϕ)cos(ϕ)
(2.48)

tan(ϕ) =
Un

Ut

=
1 + a

(1− b)λr

(2.49)

To couple the two basic theories, the different approaches each theory is based on must be
considered: the BET considers naturally a finite number of blades, whereas the MT assumes a
uniform load distribution over the propeller disc with an infinite number of blades. Hence, MT
equations must be corrected to take into account a finite number of blades.
The tip-loss factor F , was first developed by Prandtl [42]. Then, Glauert [24] suggested mul-
tiplying the momentum equations to account for the flow differences that occur depending on
the number of blades. More studies about this effect were conducted by Goldstein [25] and by
Tachmindji [49]. Nowadays, several correction factors have been proposed. A more detailed
discussion is given by Branlard [16]. Here the formula proposed by Glauert, which is one of
the most widely used, is going to be adopted:

F =
2

π
cos−1(e−f ) where f =

Z(R− r)

2rsin(ϕ)
(2.50)

When the number of blades, Z, tends to infinity, F tends to 1.
The MT equations for thrust and torque with tip-loss correction become:

dTMT =
1

2
ρU2

0dA[4aF (1− a)] (2.51)

dQMT =
1

2
ρU2

0 rdA[4bF (1− a)λr] (2.52)

While the BET equations are:

dTBET =
1

2
ρU2

relZcdrcn (2.53)

dQBET =
1

2
ρU2

relZcdrrct (2.54)
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Remind that MT loads are defined over an annular cross-section of area dA = 2πrdr, while
BET loads are defined for Z blade elements of area dS = cdr.
Equating the expressions for thrust and torque, we get:

U2
rel

U2
0

σcn = 4aF (1 + a) (2.55)

U2
rel

U2
0

σct = 4bF (1 + a)λr (2.56)

From geometrical considerations on velocity vectors, it can be noted that:

U2
relsin

2(ϕ) = U2
0 (1 + a)2 (2.57)

U2
relsin(ϕ)cos(ϕ) = U0(1 + a)Ωr(1− b) (2.58)

Using these expressions, the BEMT final equations can be derived:

a

1 + a
=

cZcn
4Fsin2(ϕ)2πr

=
σcn

4Fsin2(ϕ)
(2.59)

b

1− b
=

cZct
4Fsin(ϕ)cos(ϕ)2πr

=
σct

4Fsin(ϕ)cos(ϕ)
(2.60)

The non-linear system of the two equations above must be numerically solved. The dependen-
cies between the variables are highlighted below:

iteration n+ 1 = f(iteration n) (2.61)
ϕ = ϕ(a, b) (2.62)
α = α(ϕ) (2.63)

cn = cn(α, ϕ) (2.64)
ct = ct(α, ϕ) (2.65)
F = F (ϕ) (2.66)

a = a(F, ϕ, cn) (2.67)
b = b(F, ϕ, cn) (2.68)

All the variables above are also dependent on the radial position.
The BEMT algorithm is by nature an implicit problem, due to the interdependencies between
the parameters, and a non-linear problem mainly due to the non-linearity introduced by the pro-
file polars, Cl(α) and Cd(α).
The problem can be solved using non-linear solution techniques. The solution is not always
guaranteed and a unique solution is ensured only with some assumptions on the solution do-
main. The mathematical problem related to the BEMT problem has been analyzed in depth by
Ledoux [32].
Several algorithms have been proposed to solve the BEMT system, for instance, Jin [30] and
Ning [37]. However, several numerical methods can be adopted to solve this kind of problem,
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e.g. the Newton Method or the Method of Secant (for an extensive numerical methods descrip-
tion see Chapra [10]). In this work, for practical purposes, a simple iterative process where an
iteration loop is used until convergence is reached has been used.
To solve the BEMT system, all geometric parameters of the propeller must be known a priori.
Once the airfoil profile, pitch and chord distribution, diameter, number of blades and so on
have been chosen, the numerical algorithm can be performed to calculate the induction factors
a and b. Once induction factors are known, it is possible to calculate local values of thrust
and torque, and then compute the overall thrust and torque provided by the propeller through
integration along the radius. Since the hypothesis of independence of each strip (i.e. radial po-
sitions) holds, the convergence loop and the loop over the different stripes may be indifferently
swapped.
As we are going to see in detail in the next chapter, the BEMT algorithm can be integrated into
an optimization loop to find the best parameters solution.
A generic description of the algorithm that can be implemented to numerically solve the BEMT
equations is the following:

Start
Input: Diameter, N° Blades, Propeller RPM, ρ, Va, N° Blade Sections, Pitch Distribution,
Chord Distribution, Airfoil Profile.
Load: Polars Cl and Cd.
Compute: σ, λ.
Set: Convergence Tolerance, N° Maximum Iterations, Kp,Kd, a and b Guess.
For: Every Blade Section:
While: IterationCounter < N° Maximum Iterations AND Residuals1/2 > Tolerance:
(1) Compute Un, Ut, ϕ, α.
(2) Compute Cl, Cd through interpolation.
(3) Compute f e F .
(4) Compute Residual1 =

σcn
4Fsin2(ϕ)

− a
1+a

e Residual2 =
σct

4Fsin(ϕ)cos(ϕ)
− b

1−b
.

(5) Compute new values of a e b.
(6) If: Residuals < Tolerance Break
End While
Compute: Local values of dT and dQ.
End For
Compute: Global values of T and Q.
End

2.4 Summary of BEMT equations
For clarity reasons, the hypothesis and the main results of the BEMT discussed so far are re-
ported here.
The hypotheses assumed are:

• Propeller geometry in terms of diameter, hub diameter, number of blades, airfoil profile

26



section, chord distribution, and pitch distribution is known;

• Operating conditions in terms of angular velocity and free-stream velocity are known;

• The flow is stationary, incompressible, inviscid, homogeneous and axisymmetrical;

• Each radial station is independent of the others and the radial velocity component is ne-
glected.

The final equations are:

a

1 + a
=

σcn
4Fsin2(ϕ)

;
b

1− b
=

σct
4Fsin(ϕ)cos(ϕ)

(2.69)

tan(Φ) =
1 + a

(1− b)λr

; α = Φ− θ (2.70)

cn = Clcos(ϕ)− Cdsin(ϕ) ; ct = Clsin(ϕ) + Cdcos(ϕ) (2.71)

F =
2

π
cos−1(e−f ) ; f =

Z(R− r)

2rsin(ϕ)
(2.72)

λr =
Ωr

U0

; σ =
Zc

2πr
(2.73)

Un = U0(1 + a) ; Ut = Ωr(1− b) ; U2
rel = U2

n + U2
t (2.74)

27



Chapter 3

BEMT Implementation in MATLAB

3.1 Introduction
This chapter presents the MATLAB code that has been developed to design a marine propeller
through the Blade Element Momentum Theory. First, the key ideas and basic structure of the
program will be discussed. Secondly, the software implementation will be briefly shown. The
whole code is available in the Appendix A.

3.2 MATLAB Code Structure
The basic idea of the MATLAB program is to develop a simple, reliable and fast code that can
be used to design new propellers when working conditions change. These propellers should
guarantee both big thrust and efficiency at the optimal design point.
The flowchart of the code developed is shown in Figure 3.1.
The first steps take the input data, such as propeller geometric characteristics, working point
conditions, pitch-diameter ratio, blade profile geometry, airfoil polar data, etc... As we already
said, airfoil polars must be known a priori to start the BEMT computation. To obtain polars
extrapolation to 360° angle of attack, which is necessary for the BEMT algorithm, the combi-
nation of two open-source software has been used in this project, namely XFOIL and QBlade.
Their usage will be comprehensively explained in the next section.
In the initialization step, the variables used in the following calculations are initialized. Fur-
thermore, the pitch distribution is defined considering the target P/D ratio and an ideal pitch
distribution. The choice to impose an ideal distribution will be discussed in the results section.
Then, the optimization loop can start. Firstly, through a gradient algorithm, the optimal chord
distribution, initially initialized to a constant distribution, is calculated to maximize thrust and
efficiency. At each iteration, the BEMT non-linear system of equations is numerically solved.
After achieving convergence, the mechanical validation loop can start and chord distribution
is increased to guarantee a sufficient strength of each blade section. The chord distribution is
finally interpolated with a parabolic function to avoid any discontinuity.
Since the propeller design is over, the program starts the analysis phase to compute the overall
propeller characteristic curves varying the advance ratio. The final results are then plotted and
compared with a set of data obtained through CFD simulations of the new propeller and the old
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Figure 3.1: MATLAB code Flowchart

one.
Each program step is further explained in the following sections.

3.3 XFOIL and Airfoil Polar Extrapolation
XFOIL is an open-source program, written in Fortran, for the design and analysis of subsonic
airfoils. Developed by Professor Mark Drela at MIT [13], XFOIL has become a valuable tool in
the field of aerodynamics. XFOIL’s openness and reliability have contributed to its widespread
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use in the aerodynamics community.
The primary function of XFOIL is to calculate the pressure distribution in either a viscid or in-
viscid scenario on a 2D airfoil given the coordinates specifying the shape of the airfoil, as well
as the Reynolds and Mach numbers. To calculate this pressure distribution, XFOIL implements
a panel-method approach. The airfoil surface is divided into small panels, each represented by
a source or a vortex. The strength of these sources and vortices is determined such that the body
surface is a streamline of the flow. Finally, from the pressure distribution, XFOIL can derive the
lift and drag characteristics of the airfoil.
In addition to its analysis capabilities, XFOIL also allows for inverse design, meaning that it can
vary an airfoil shape to achieve desired parameters.
Figure 3.2 shows an analysis example of the pressure coefficient distribution along the x coor-
dinate of the airfoil for certain values of the Reynolds number and the angle of attack.

Figure 3.2: XFOIL: airfoil analysis example. The plots show the CP distribution on the upper
and lower surfaces, and the flow separation coordinate as well.

In this project, XFOIL has been used to determine the lift and drag characteristics of a given
airfoil. The airfoil chosen is the NACA 64A010 which is a symmetric, thin airfoil. It has been
chosen due to its small thickness, allowing the propeller to reach higher efficiency. However, it
must be considered that thin airfoils may impact negatively the cavitation characteristic of the
propeller.
The airfoil shape and the analysis panel settings are shown in Figure 3.3. To achieve convergent
simulations, the number of panels and the number of iterations have been increased as regards
the default values, which might not allow to reach convergent results near the stall of the airfoil.
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Figure 3.3: XFOIL: airfoil shape and panel settings used in this project

The analysis has been performed in viscous mode to get more realistic results.
The final simulation results with the plot of the polars provided by XFOIL are shown in Figure
3.4. The plots include CL/CD characteristics, CL and CM as functions of α, and transition plots
of the upper and lower surfaces for a given CL.

Since the airfoil is symmetric, the CL is correctly computed to 0 when α is 0. Furthermore, we
can see that the maximum CL is around 1.16 and the stall of the airfoil begins around 13°.
There is no point in trying to simulate airfoil characteristics for larger angles of attack because
XFOIL is not capable of reaching convergence far away from the linear region. Sometimes, even
simulations in the stall region are not convergent. However, in performing the BEMT algorithm
is essential to provide airfoil polars over the whole range of angles of attack to avoid numerical
instability and because we can’t know a priori the working conditions (i.e. the angle of attack
of a particular blade section) of the propeller. For these reasons, extrapolation procedures are
available in the literature and widely used by propeller and turbine designers to estimate CL and
CD starting from the linear-stall characteristics.
Most used extrapolation techniques are the Viterna [50] and Montgomerie methods [4]. Both
methods estimate propeller lift and drag coefficients starting from the linear-stall airfoil be-
haviour and from geometric considerations. Mahmuddin [34] has presented an assessment of
the two methods with experimental data. Moreover, a more recent technique has been proposed
by Battisti [33] for further improved extrapolation reliability in the post-stall region.
The Viterna method has been used due to its simple implementation. In particular, it has been
used another software to perform polars extrapolation, namely QBlade.
QBlade is an advanced multi-physics software designed to facilitate the comprehensive aero-
servo-hydro-elastic development, prototyping, simulation, and certification of wind turbines. It
is an open-source, cross-platform simulation software for wind turbine blade design and aero-
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Figure 3.4: XFOIL: NACA64A010 final polars plot

dynamic simulation. The software is integrated into XFOIL to allow for the rapid design of
custom airfoils and computation of their performance curves, extrapolating the performance
data to a range of 360° Angle of Attack, and directly integrating them into a wind turbine ro-
tor simulation. Indeed, QBlade can be utilized for various purposes, including Wind Turbine
Design (HAWT, VAWT, and Multi-Rotor), Floater Design and Numerical Testing, Controller
Testing and Optimization, Wind Farm Simulations and Wake Interaction Studies. One of the
significant advantages of QBlade is its user-friendly graphical user interface.
Figure 3.5 shows the graphical interface of the extrapolation module which allows for fine-
tuning of the extrapolation parameters.
The software returns an Excel file with CL and CD defined for the whole range of angles of
attack that can be exported to a text format and read by the Polar Reader MATLAB function.
At this point, we can proceed with the input data required to perform propeller design and the
initialization phase.

3.4 Input Data and Initialization Step
Since now we have the polars data of the selected airfoil, we can now analyze the geometric
and working inputs needed for propeller design. Figure 4.1 shows the MATLAB section with
the input definition.
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Figure 3.5: QBlade polars extrapolation module

Figure 3.6: MATLAB code inputs data

Regarding the working conditions, we need to specify the rotational velocity of the propeller at
the ideal working point, remembering that our simulation will be just a steady-state computa-
tion. Then, we have to define the boat’s velocity, i.e. the uniform inflow velocity. Since in our
case the boat is a catamaran with the engines sufficiently far away from the hulls, it has been
chosen to not consider any wake fraction coefficient, that is the hulls don’t affect the uniform
inflow velocity at the propellers.
Regarding the geometry, we need to define the propeller diameter, the hub diameter, the number
of blades and the P/D ratio. Since we choose to impose an ideal pitch distribution, from the
P/D ratio we can define the pitch at each section in the following way:

θref = atan(
p

2πR
) (3.1)

k = θrefR (3.2)
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Where k is a constant and θref is the pitch at the radius R. Thus, we choose to take the P/D
ratio as referred to the radius R. Finally, we have:

θ(r) =
k

r
(3.3)

That defines the pitch value at each blade section during the initialization step. As previously
mentioned, the choice of using an ideal pitch distribution is explained in the results section.
The last input parameter of interest is the number of sections that the blade is divided into. In
the previous figure, this parameter is set to the value of 40 because is the best threshold between
computational effort and good results convergence. The convergence study on the number of
sections is shown in the results section.
Lastly, in the initialization phase, the chord distribution is initialized to a constant value that is
going to be optimized in the following steps.
Now that the simulation is set and initialized we can proceed with the performance calculation
and chord optimization.

3.5 Chord Distribution Optimization and Stress Analysis
In the optimization loop, the chord distribution is modified to improve the propeller’s thrust and
efficiency. Secondly, the mechanical assessment is performed to guarantee a sufficient thickness
of the blade. At each iteration, the function induction factors calculation, which implements
and solves the BEMT equations, is called to allow the calculation of current thrust and efficiency
values. Then, a gradient descent algorithm is implemented to optimize the chord distribution.
To implement a gradient descent algorithm, we need to define a learning rate and a cost function
of which we will calculate the gradient at each iteration. To improve algorithm stability, a first-
order central difference scheme has been adopted to calculate the gradient. With J representing
the cost function, the gradient is:

J ′
i(r, c) =

Ji+(r, c)− Ji−(r, c)

2h
(3.4)

where the subscripts i, + and − refer to the i− th iteration, the cost function forward step and
the backward step, respectively. While the h parameter is the constant chord step, applied to
calculate the forward and backward steps, and c refers to dependency by the chord distribution.
The cost function is defined in the following way:

Ji(r, c) =
dT (r, c)

dT0(r, c)
+

η(r, c)

η0(r, c)
(3.5)

where dT (r) and η(r) are the infinitesimal thrust and efficiency distribution along the radius
respectively, while dT0(r) and η0(r) are the thrust and efficiency distribution with the current
chord distribution. Hence, the thrust and efficiency are normalized with the initial values.
Basically, at each iteration thrust and efficiency distributions are calculated with the current
chord distribution. Then, at each blade section, the chord is incremented by h and the new
thrust and efficiency distributions are computed. Thus, the forward cost function is calculated
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as well. The procedure is repeated applying a decreasing chord step to compute the backward
cost function. Finally, the gradient can be computed with (3.1). The gradient descent is then
applied through:

ci(r) = ci−1(r) + αJ ′
i(r, c) (3.6)

where c is the chord distribution and α the learning rate. Hence, in our case, the algorithm is
more correctly a gradient ascent since the main objective is to maximize the cost function.
The learning rate is defined as:

α = k1 + k2e
−k3i (3.7)

where k1, k2 and k3 are constants tuned to guarantee as fast and stable as possible algorithm, and
i is the current iteration number. Thus, the learning rate decreases exponentially and reaches an
almost constant value of k1 after some iterations.
Once the new chord distribution is computed, the procedure is repeated until the chord differ-
ence between two consecutive iterations of each blade section is below a tolerance value. When
this is true, the chord optimization is convergent and we can proceed with the stress analysis of
the blade.

The mechanical assessment of the blade is performed just after the chord optimization loop.
We need to guarantee a suitable thickness (i.e. strength) of the blade that undergoes centrifugal
force and bending moment, generated by the hydrodynamic action, during work conditions.
Since the dimensionless profile of the blade is fixed, to increment blade thickness we need to
vary the chord distribution until the mechanical strength target is achieved.
The methodology implemented here is described by Carlton [9]. The stress at each blade sec-
tion is generated by the following components: the thrust action, the torque action, the direct
centrifugal force and the centrifugal bending (if the blade is swept). At each blade section, the
stress is given by:

σ =
M

Z
+

FC

A
(3.8)

where σ is the tensile stress on the section, M is the total bending moment given by the com-
bined effect of hydrodynamic and centrifugal actions, Z is the section tensile modulus, FC is
the centrifugal force and A is the section area.
In our case, the bending moment is determined only by the hydrodynamic action, and thus is:

MH = FTacos(θ) + FQbsin(θ) (3.9)

where FT and FQ are the integrated means of thrust and torque respectively, θ is the local pitch,
and a and b are:

a =

∫ R

r0

F ′
T rdr

F ′
Tdr

(3.10)

b =

∫ R

r0

F ′
Qrdr

F ′
Qdr

(3.11)

The centrifugal force is:

FC = ρmxcω
2(

∫ 1

x0

Adx) (3.12)
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where:

xc =

∫ 1

x
Axdx∫ 1

x
Adx

(3.13)

A =

∫ C

0

tdc (3.14)

with t and c the local thickness and chord of the blade section respectively, A the local area, x
the non-dimensional radius, xc the position of the blade centroid, rhom the material density and
ω the local angular velocity. Finally, the section tensile modulus is:

Z =
2
∫ C

0
[3yp(yp + t) + t2]tdc ·

∫ C

0
tdc

3
∫ C

0
(2yp + t)tdc

− 1

2

∫ C

0

(2yp + t)tdc (3.15)

where yp is the pressure face coordinate.
With these formulas, we can estimate the stress at each blade section. Starting from the tip
blade, the stress analysis is performed and if the inverse safety factor (ICS) is bigger than 0.2,
the local chord is iteratively incremented by 2 mm. Then, propeller performance and thus
mechanical stress are calculated again until the ICS is satisfied. When the local ICS value is
guaranteed, we proceed with the following blade section until a sufficient mechanical strength
of the last section, at the root of the blade, is achieved. The reason we chose 0.2 as the ICS
target is explained in the results section.
The following Figure shows the piece of code where the mechanical assessment loop is imple-
mented.

Figure 3.7: MATLAB mechanical stress analysis loop

Once the blade is completely assessed, the chord distribution is interpolated with a parabolic
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function to avoid discontinuities. With the final distribution, the final performance and mechan-
ical stress are calculated.
Since the propeller design is completed, we can now analyze the propeller characteristics for
variable advance ratios and examine the overall results.

3.6 Propeller Analysis and MATLAB Results
The final step is straightforward since the code implements a variable advance velocity and
runs the function induction factors calculation to evaluate thrust, torque and efficiency at each
velocity (with constant angular velocity). After the analysis, the design results can be examined.

Before proceeding with the design results, it is worth testing the convergence behaviour of
the BEMT algorithm and so of the function induction factors calculation. As we saw in the
previous section, the code takes as input the number of sections into which the blade is divided.
This input has a strong influence on the final result because it allows us to better represent the
pitch and chord distributions along the radius, and to decrease the error due to the hypothesis
that each section is independent from the others.
For these reasons, the MATLAB function was run iteratively with an increasing number of sec-
tions with fixed chord and pitch distributions. The thrust was chosen to analyse the convergence
behaviour of the results and Figure 3.8 shows the analysis.
As we can see, there is no point in adopting hundreds of sections because the algorithm reaches
a good results convergence with just a few dozen sections. In this case, 40 sections were chosen
as a good threshold between convergence and computational time.

Figure 3.8: MATLAB Convergence analysis based on the number of sections
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(a) (b)

Figure 3.9: (a) Final pitch distribution (b) Final chord distribution

The first interesting design results are the final pitch and chord distributions shown in Figure
3.8.
As we said before, the pitch distribution comes from an interpolation between an ideal distri-
bution and a linear distribution near the propeller hub. The chord distribution instead comes
from the performance optimization and mechanical stress assessment. The maximum chord
is reached at the root of the blade where the centrifugal force and the bending moment are
maximum.

Another interesting result is the thrust distribution along the radius. Figure 3.9 shows the
thrust distribution of the final propeller.
As we can see the distribution is quite non-uniform and the maximum thrust is more or less in
the middle of the blade span.
In the first version of the code, the thrust distribution was quite different because the pitch
distribution was not a quasi-ideal distribution but it was calculated through an optimization
loop starting from a constant distribution. The pitch optimization loop was coupled with the
chord optimization and the two distributions were iteratively calculated until convergence. In
particular, the pitch distribution optimization algorithm followed the same idea and structure
as the chord optimization algorithm, but the descent algorithm optimized the pitch instead of
the chord. The thrust distribution results were very different with many consequences. Figure
3.10 shows an example of the thrust distribution calculated through the original pitch-chord
optimization loop.
As we can see, comparing the two distributions, the optimized-pitch distribution is more non-
uniform, has a higher thrust peak and, most of all, the thrust is concentrated nearer the blade
tip. These differences produce lots of problems from the mechanical point of view. Indeed, the
distribution in Figure 3.9, due to a higher bending moment produced by the thrust distribution,
generates much bigger stress at the root of the blade where the mechanical stress reaches its
maximum value. This would impose oversizing the chord distribution to guarantee sufficient
blade thickness, which is of course a negative drawback.
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Figure 3.10: MATLAB final thrust distribution along the propeller radius

Figure 3.11: MATLAB optimized thrust distribution with the old code version

Since the quasi-ideal distribution allows us to produce a more uniform thrust distribution, with
a thrust peak nearer the blade root, and thus a better stress distribution, in the final code version
the pitch optimization was eliminated and a quasi-ideal pitch distribution was imposed in the
initialization step.
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Furthermore, about the stress distribution, we saw in the previous section that the analytical
stress computation must reach an inverse safety factor of 0.2 (i.e. a safety factor of 5), which
is quite an oversized safety factor. But this is necessary since the finite element analysis (FEA)
shows completely different stress results compared with the analytical procedure, as we will
see in the next chapter. For this reason, the value of 0.2 was chosen empirically to guarantee an
acceptable maximum stress in the FEA.

Figure 3.12: MATLAB final propeller characteristic curves

Finally, in Figure 3.11, we can see the dimensionless characteristic curves of the designed
propeller for variable advance ratio. The maximum efficiency of 0.71 is reached around a
value of 1.65 of J, which corresponds to a velocity of around 20 kn with a total thrust of 340
N. Unfortunately, this thrust is not sufficient to reach 20 kn if compared with the theoretical
resistance characteristic of the hulls. Anyway, since the objective of this propeller is to provide
better acceleration at low velocities and the same maximum velocity as the older propeller,
the impossibility of reaching the efficiency peak is not a big issue. Since these performances
were considered adequate, we chose to proceed with the CAD design, CFD analysis and FEA
validation as we are going to see in the next chapter.
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3.7 Cavitation Characteristic
To complete the design process, we need to consider the cavitation tendency of the propeller.
As generally accepted, cavitation refers to the phenomenon in which the decreasing static pres-
sure of a liquid, below the liquid’s vapour pressure, leads to the formation of small vapour-filled
cavities in the liquid. This phenomenon could be dangerous and damage the machinery. A
comprehensive explanation of the physics principles behind cavitation, cavitation inception and
design considerations are described as usual by Carlton [9] in Marine Propellers and Propul-
sion. Here we are just going to describe the methodology adopted and the consequent results.
As suggested by Batten [5], XFOIL can be useful in the preliminary design stage since it allows
us to compute the pressure coefficient at each blade section. From the MATLAB code analysis
we got the effective angle of attack at each blade section with which we can evaluate, using
XFOIL analysis module, the minimum Cp at each section of the blade. At this point, we can
compare the local pressure coefficient with the cavitation number, which is defined as:

σ =
PAT + ρgh− PV

1
2
ρV 2

(3.16)

where PAT is the atmospheric pressure, h is the depth of immersion, ρ is the water density, PV

is the vapour pressure and V is the free stream velocity. Comparing local pressure coefficients
and the cavitation number, we can predict if cavitation at a particular blade section will occur
or not.
Figure 3.13 shows the comparison between the local Cp and the cavitation number calculated
for the whole propeller at the optimal working point.
As we can see, the lower half blade seems to be safe from cavitation, while the upper half may
experience cavitation. It is worth highlighting that XFOIL, for the used airfoil profile, predicts
a huge localized peak of the pressure coefficient (for instance, see Figure 3.2). This peak value
was used to evaluate the cavitation characteristic of the propeller but it’s not representative of
the whole chord of the airfoil. Since the presence of cavitation for a 5÷10% of the local total
chord length is generally considered acceptable, and also the pressure coefficient falls quickly
around the peak, the cavitation characteristic was considered acceptable.
We can now proceed with the CAD modelization of the designed propeller.
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Figure 3.13: MATLAB Cavitation Evaluation
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Chapter 4

Propeller CAD model, CFD and FEM
analysis

4.1 Introduction
This chapter presents the CAD model of the designed propeller, the CFD simulations performed
with Ansys Fluent module of Ansys Workbench 2020 R2 to validate the BEMT model, and the
FEM analysis performed with Ansys Static Structural module to guarantee sufficient mechanical
strength of the propeller.

4.2 Propeller CAD model
To developed the CAD model of the propeller PTC Creo 9 was used.
One possible way to create the blade geometry is to import a .txt file of airfoil point coordi-
nates for each section of the blade. Airfoil dimensionless point coordinates can be easily found
online or in the literature. Once we have the coordinates, we need to calculate the real section
coordinates using the chord distribution designed by the MATLAB program.
For each section, we must define a local reference system with the axis correctly oriented to
represent the blade pitch distribution. In this way, importing point coordinates referred to the
local reference system, the airfoil shape is already oriented with the correct local pitch angle.
Then, point coordinates can be used to create a line which represents the blade section at each
radius using the Line through points function. Finally, all the blade sections can be interpolated
with the blend function that generates the blade geometry. Figure 4.1 shows the blade sections
points and lines of the designed blade on the left, and the blend function definition to create the
blade geometry on the right.
Once the blade is generated, we can round the blade’s trailing edge, the blade’s tip and, es-
pecially, the blade’s root. As we are going to see in the next sections, the blade root is the
most stressed zone of the propeller. Thus, root rounding becomes very important to prevent the
yielding or even the break of the blade. Figure 4.2 shows the propeller geometry with the root
rounding which was designed to 5 mm.
After the simulations, the hub geometry was completed with the hole and the correct geometry
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(a) (b)

Figure 4.1: (a) CAD Blade sections points and lines (b) CAD Blend function definition to create
the blade

Figure 4.2: CAD Propeller geometry and root rounding

to allow the assembly of the propeller with the engine shaft.
It is worth enlightening that the cylindrical hub geometry was adopted after CFD simulations.
Often, propellers for light applications adopt a conic hub geometry, and this was the solution
initially adopted in this case as well. Our BEMT model doesn’t allow us to take into account hub
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Figure 4.3: (a) Computational domain parametric dimensions (b) CAD wireframe of the Com-
putational domain adopted for CFD simulations

different geometries, so CFD was used to test the two different hub configurations. The com-
parison results will be shown in the next section together with the overall performance analysis.
At this point, we want to say that conical geometry seems to produce higher thrust with lower
efficiency. Thus, cylindrical geometry was preferred.
With the complete geometry of the propeller, we can now analyze the CFD setup and results.

4.3 CFD Setup and Results
In this section, the CFD setup and the main simulation results will be shown and discussed.

To simulate the propeller open water performance, firstly we need to create the simulation
domain. As recommended by the ITTC Open Water Test Procedures and Guidelines [28], the
test bench must avoid any air drawing from the water surface, and the inflow must be as parallel
as possible to the shaft axis. To guarantee these conditions in the simulation environment, the
computational domain should be large enough to avoid any disturbances due to the boundary
walls (since we performed single-phase simulations, the air drawing from the water surface
is automatically guaranteed). Furthermore, a long cylindrical shaft is introduced ahead of the
propeller to guarantee as uniform as possible inflow over the propeller. Figure 4.3 shows the
cylindrical Creo 3D model used to perform CFD simulations and its main dimensions which
were parameterized with the propeller diameter.
The model was exported to the .stp format and then imported into Ansys Workbench environ-
ment. The Ansys Fluent module was used to perform CFD simulations.
The simulation domain was divided into smaller subdomains to allow better mesh quality con-
trol and to facilitate structured mesh creation. Figure 4.4 shows the mesh quality around the
rotor subdomain. As you can see, the mesh is structured and has hexahedral elements in each
subdomain but in the rotor domain where the mesh is non-structured and has tetrahedral ele-
ments.
After the mesh generation, a mesh convergence analysis was carried out to find the best thresh-
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Figure 4.4: CFD mesh around the rotor subdomain

old between results accuracy and computational effort. Figure 4.5 shows the convergence trend
for the total number of elements of the mesh. In this case, the output torque applied to the
propeller was chosen to analyze the convergence behaviour. Unfortunately, since our compu-
tational capability was limited, it was not possible to use a larger number of elements. Thus,
the maximum number of elements of the convergence analysis was used to analyse the whole
propeller characteristics, namely around 13.4 million elements.
With the optimal mesh number of elements, we carried out simulations with variable inflow
velocity and constant propeller rotational velocity to get the complete propeller characteristics.
We adopted a steady-state pressure-based solver, a viscid Spalart-Allmaras model, rotational
velocity applied through the Frame-motion option, and convergence residual condition set to
1e−4. The propeller dimensionless characteristics, calculated through CFD, are shown in Fig-
ure 4.6.
Figure 4.7 shows the pressure distribution on both propeller sides. As we can see, the pressure
calculated is axisymmetric. In reality, since the boat engine is an outboard engine in a pushing
configuration, the interaction of the water flux with the immersed part of the engine will exert
an influence on the pressure distribution over the propeller. In particular, each blade rotating
will see an oscillating pressure distribution due to the periodic presence or absence of the out-
board engine. For this reason is reasonable to guarantee a higher structural safety margin to not
overcome the material yield strength due to the pressure oscillations.
As stated in the previous section, the hub geometry was chosen after CFD analysis. The first

design geometry was a conical geometry with a conicity ratio of 1 : 4, similar to the original
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Figure 4.5: CFD mesh convergence analysis

Figure 4.6: CFD Designed Propeller Characteristic Performance

propellers provided by the engine manufacturer, who sponsors the team, and similar to typical
hub geometries for light boat propellers. The conical hub geometry was simulated at the optimal
working point and compared with a cylindrical hub. Figure 4.8 shows the propeller with conical
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(a) (b)

Figure 4.7: (a) Propeller pressure distribution front-side (b) Propeller pressure distribution back-
side

geometry and the performance results in comparison between the two different geometries.
As we can see, the conical hub geometry provides better thrust action, due to a larger blade
surface. On the other hand, the thrust improvement is obtained despite a 5.4% larger torque
requested which reduces the propeller efficiency. Even if the efficiency decrease was not a big
issue, the increased total power requested was a problem since the cylindrical geometry already
required all the available power from the engine. For this reason, the cylindrical geometry was
adopted.
Finally, we can compare CFD results with BEMT results. Figure 4.9 shows the comparison.
As we can see, there is a good correspondence between BEMT code results and CFD simula-
tions. In particular, thrust and efficiency values are very close around the working point and at
the beginning of the curve as well. On the contrary, torque curves, and thus power absorption of
the propeller, show little divergence at the optimal working point and a big divergence at the be-
ginning of the curve. Since propeller characteristics show usually a descending behaviour even
at low advance-ratio values, we suggest that BEMT is not completely reliable in calculating
propeller performance far away from the optimal working point, and the bibliography analyzed
states the same conclusion. For this reason, CFD results at the beginning of the characteristic
curve are considered more accurate.

Once we finished analysing propeller fluid-dynamic characteristics, the CFD pressure distri-
bution of the design working point was exported to the Ansys Static Structural module to verify
the deformation and stress distributions.

4.4 FEA Setup and Results
In this section, the propeller FEA setup and results are discussed. Furthermore, as we mentioned
before, the decision to implement an ideal pitch distribution due to structural considerations is
here explained.
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Figure 4.8: (a) Propeller CAD with conical hub geometry (b) CFD comparison between conical
and cylindrical hub geometries

Figure 4.9: CFD-BEMT Performance comparison

Ansys Fluent allows easily to export a pressure distribution from a Named Selection object
of the Fluent module into the Static Structural module. Thus, it allows us to export the surface
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pressure distribution over the propeller geometry into another module. Once we have generated
a mesh of the geometry, the pressure load is applied through a pressure interpolation between
the Fluent and Mechanical meshes.
The pressure load is the most important load component, but in addition to the flow dynamic
condition we must consider the centrifugal force which was applied through a centrifugal load.
Furthermore, a fixed boundary condition, applied to the hub hole, was applied.
Regarding the propeller material, the propellers have been manufactured through 3D printing
by Continental Engineering Services thanks to a sponsorship agreement. The technology used
was MJF (Multy-Jet Fusion) and the filament has been Nylon PA12. Since there are many fil-
aments of this material with different characteristics on the market, and since we didn’t have
any kind of control of the printing parameters, a conservative tensile strength value of 41.8 MPa
was considered.
As we did for the CFD analysis, first a convergence analysis is carried out to guarantee that
the dimensions of the elements are suitable to correctly represent the stress distribution. Figure
4.10 shows the results of the analysis. Here, the maximum stress was chosen to probe the de-
pendency on the mesh.

Figure 4.10: FEA mesh convergence analysis

As we can see, a number of elements around 6 ·105 is sufficient to guarantee mesh convergence.
Then, with a suitable element dimension, the working point stress distribution was simulated.
Figure 4.11 shows deformation and stress distributions. As was predictable, the maximum de-
formation is at the blade tip while the maximum stress is on the rounding at the blade root.
The maximum stress of around 32MPa was calculated, thus a safety factor of around 1.3 is
guaranteed. This result led us to conclude that the analytical method, proposed by Carlton and
implemented in our code, is not reliable in predicting propeller stress since it doesn’t take into
account the presence of a radius at the blade root. We recall that a safety factor of 5 had been
considered in the MATLAB stress analysis, which seems to be very different from the finite-
element analysis result, which was considered more accurate.
The deformation distribution shows a maximum of around 20mm at the blade tip. Since we
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Figure 4.11: (a) Propeller FEA mesh and deformation distribution (b) Propeller FEA stress
distribution

considered a conservative Young modulus of 1250MPa and since the propellers, after printing,
would have been covered with a layer of epoxy resin, which has higher stiffness after cure than
Nylon PA12, we considered the deformation acceptable and the safety factor sufficient.

As we stated before, the first version of the MATLAB code performed a pitch distribution op-
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timization with a similar algorithm used for the chord distribution. The optimized propeller, for
the same diameter, number of blades, and optimal working point of the final propeller, showed
higher thrust force despite a lower efficiency. However, the main issue was the thrust distri-
bution along the radius (remember the comparison of Figures 3.10 and 3.11) which led to a
too-large bending momentum on the blade with large stress at the blade root rounding. Figure
4.12 shows the stress calculated through the FEA of the blade rounding with the optimization
of the pitch distribution.

Figure 4.12: Propeller with optimized pitch stress at the blade’s root

As we can see, the mechanical stress reaches a very large value of around 101MPa, which
overcomes the material yield strength and is more than three times the stress calculated for the
final propeller, which was designed with an ideal pitch distribution. The difficulty of reaching
an acceptable stress distribution led us to the final version of the program, in which the pitch
optimization has been substituted with an ideal pitch distribution known a priori.

At this point, since the results were considered acceptable, the design process was com-
pleted. Then, the propellers were printed, covered with epoxy resin and finally tested on the
boat, as we are going to see in the next chapter.
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Chapter 5

Propeller Manufacturing, Testing and
Conclusions

5.1 Introduction
In this final chapter, we are going to see the results of real tests we carried out with the designed
propellers. Then, the results from CFD simulations and experimental tests will be compared
and discussed. Finally, we are going to provide our conclusions and future works that will be
carried out.

5.2 Propellers Manufacturing and Treatments
Since the catamaran is powered by two engines with opposite directions of rotation, to improve
thrust and manoeuvrability, we designed and printed two propellers, a left-oriented one and a
right-oriented one. As we said before, the propellers were printed by Continental Engineering
Services, through a sponsorship agreement, in Nylon PA12 filament with MJF technology. Fig-
ure 5.1 shows the propellers as just arrived at the UniboAT lab. To improve the assembly, the
hole tolerance was corrected at the milling machine since the printing process was not capable
of reaching the correct tolerance. Then the propellers were smoothed with glass paper and cov-
ered with epoxy resin with the addition of a yellow pigment. Figure 5.2 shows the propellers
mounted on the engines.

5.3 Propellers Testing and Data Analysis
Unfortunately, we don’t have a testing bench for propellers, therefore we are not able to test the
complete characteristics of the propellers.
Our testing session was conducted in open water in Ravenna at the Circolo Velico Ravennate
during the Navigare per Ravenna event in September. The next pictures show the boat during
the event in Ravenna when we tested the new propellers.
In these conditions, the data we can extract from the tests are limited. Indeed, we are not able
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Figure 5.1: Final printed propeller

(a) (b)

Figure 5.2: (a) Propellers mounted on the engines (b) Futura with the new propellers

to directly measure the thrust of the propeller and the torque provided by the engines. Fur-
thermore, since we don’t have the complete characteristic curves of the electric engines used
during the test, which had been supplied by a sponsor when the project started, it is not possible
to indirectly calculate thrust and torque with a power balance. Anyway, we can compare the
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Figure 5.3: Futura attending the Ravenna’s event with the new propellers

power absorbed and the engine’s angular velocities, as functions of the boat velocity, with our
CFD results and with old propeller test data as well.
After we collected the test data, we could proceed to the analysis phase. The MATLAB code
used to analyse the data is included in Appendix B. The variables of interest are Motor Speed
of the two engines, Inverter Current, Inverter Power supplied to the two inverters, and the GPS
Speed which is the boat’s velocity. The sample frequency for each of these variables is 10ms.
Since the event was divided into three main parts (outward from the sea to the dock, a short ex-
hibition of the boat, and finally the return to the arbour), the data sampled are divided into three
groups as well. In particular, in the first part boat’s velocity was quite low and constant while in
the second and third groups, the velocity was higher and quite variable. Since we are interested
in steady-state conditions, data of each group were filtered to consider only steady functioning
conditions for at least 2-3 seconds. This assumption reduces the acceptable samplings from the
second and third groups due to high data variability in time. Figure 5.4 shows the valid velocity
data sampled during the overall event.
As we can see, we were able to collect a lot of data at low velocities and very few at high veloc-
ities. Moreover, since we were inside the dock area, we weren’t allowed to test the maximum
boat velocity. Anyway, these data allow us to make some considerations about the low-middle
velocity range.
Figure 5.5 shows a comparison between the newly tested propellers and the old ones.
The chart on the left shows the power absorption as a function of the boat speed. The new
propellers absorb more power at high velocities and less power at low velocities. In the middle
range, the two absorptions are very similar. The chart on the right shows the engine rotational
velocity as a function of the boat speed. Since data were collected in steady-state conditions,
namely when thrust and boat resistance are equal, we can conclude that new propellers provide
bigger thrust than the old ones, that was one of the main objectives of this project. However,
this is obtained with higher power absorption, which might be an important limitation. Indeed,
since our maximum deliverable power is limited by the temperature constraint of the inverters,
which is reached in the range of 8÷9 kW , with the new propellers the maximum achievable
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Figure 5.4: Velocity test sampled during Navigare per Ravenna event

velocity is around 14÷15 kn instead of 16kn with the old ones. Actually, during the test, the
maximum velocity sampled was 16kn, but it was sampled just for a few instants and not in
steady-state conditions, therefore it was disregarded. Probably, higher velocities can be reached
in favourable sea and wind conditions, but usually, our performance is limited by the power
delivered from the inverters.
Finally, Figure 5.6 shows the power curves compared with the new propeller’s CFD results.
We must highlight that the test data and CFD results comparison is not straightforward. Indeed,
our data on the power are provided by sensors placed between the batteries and the inverters.
Thus, the power we calculate is the total power absorbed by the powertrain system, and not just
the power absorbed by the propellers. On the contrary, CFD results regard only the propeller,
and this partially justifies the huge difference between real power absorbed and CFD prediction.
Anyway, since our inverters and electric engines should have an efficiency higher than 90% for
a wide part of the operating range, which partially covers the difference in the power curves
obtained, we can say it is very likely that CFD simulations predict a lower power absorption
compared with real test data. This is probably due to the ”bench test” configuration adopted
in CFD simulations. Indeed, we considered a uniform and steady inlet flow and neglected the
interaction of the propeller with the engine pod. It seems that these conditions are not very re-
liable in power absorption predictions and further investigations should be carried out in future
analysis.
In future tests, we hope to be capable of a more comprehensive analysis of propeller perfor-
mance thanks to either a test bench or more sensors installed on the boat. At least, with com-
plete characteristic curves of inverters and engines we should be able to indirectly estimate the
thrust and efficiency of the propellers.

So far, we explained our design method implemented in MATLAB and we commented on
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Figure 5.5: Absorbed power and velocity comparison between the new propellers and the old
ones

the analysis carried out to validate the method. Furthermore, the tests completed, even if not
comprehensive, allowed us to highlight some interesting results that will help the team to revise
and improve the future design methodology. We can now look at the conclusions of this project
and analyze possible future works.

5.4 Conclusions
• A BEMT algorithm with chord distribution optimization has been designed and imple-

mented in MATLAB to design new propellers. The BEMT algorithm is quite easy to
implement and allows fast computations with good reliability of the results, especially
around the optimal working point. The main idea of the newly designed propellers was
to improve acceleration and thrust without losing too much efficiency.

• CFD and FEA simulations were carried out to validate the code. Compared with CFD
simulations, the BEMT algorithm seems reliable in thrust and efficiency predictions.
Smaller reliability is highlighted in the torque prediction. Regarding FEA results, it is
worth highlighting that analytical methods to predict blade maximum stress are unreliable
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Figure 5.6: Absorbed power comparison between real test data of the new propellers, CFD
results and test data of the old propellers.

unless they consider the rounding geometry at the blade’s root. Otherwise, finite-elements
analysis should be always carried out to validate the mechanical integrity of the propeller.

• Real tests were carried out to compare the designed propellers with the old ones. Even if
we are not capable of analyzing the complete propeller characteristics, we can conclude
that the objective of reaching a bigger thrust has been achieved. Anyway, the bigger power
absorption than the predicted one by BEMT and CFD limits the maximum velocity we
can reach with these new propellers. It seems that BEMT code and CFD methodology
should be revised taking into account a non-uniform inlet flow due to the presence of the
engine pod to predict a more realistic power absorption.

5.5 Future Works
• The MATLAB code should be improved in the coming years to achieve better correlation

with CFD results and real test data, particularly regarding the power absorbed by the pro-
peller. Furthermore, a pitch algorithm may be implemented to reach the optimal design
for a particular working condition, taking into account the thrust requested as well.

• The MATLAB code should be improved by introducing other airfoil sections. An investi-
gation of the effects on the propeller’s performance of different airfoil sections might be
interesting since there isn’t comprehensive literature about that.

• The CFD methodology should be revised to take into account the engine pod interaction
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with the propeller since this seems to affect the power absorption prediction. Furthermore,
the team will try to test the propeller’s performance completely through a test bench,
provided by a sponsor company, to improve the correlation between analytical methods,
CFD and real test results.
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Appendix A
This appendix contains the main file of the MATLAB code and all the function files.

PropBEMT_v4.m Main File

%**************************************************************************
% Main File
% PropBEMT_v4 - Thesis Project
% Mechanical Engineering Master’s Degree - University of Bologna
%
% Blade Element Momentum Method - Marine Propeller Design and Optimization
% Author: Manuel Cotoni
% 27/12/2023
%**************************************************************************

clc; clear;

% This program implements a Blade Element Momentum method to design a
% marine propeller to reach optimum thrust and efficiency at a particular
% working point.

%% INPUT DATA %%

D = 0.296; % [m] Propeller Diameter
Dh = 0.0724; % [m] Propeller Hub Diameter
Z = 3; % Number of Blades
rpm = 1360; % [rpm] Rotational Speed at Design Point
rho = 1020; % [kg/mˆ3] Water Density
Va = 15; % [kn] Forward Speed at Design Point
PD = 1.72; % Target Pitch Diameter Ratio
num_sec = 40; % Number of Blade Sections
g = 9.807; % [m/sˆ2] Gravity Acceleration

%% INITIALIZATION %%

% Constants
R = D/2; % [m] Propeller Radius
rh = Dh/2; % [m] Propeller Hub Radius
rps = rpm/60; % [rev/s]
w = pi/30*rpm; % [rad/s] Angular Velocity
U0 = Va/1.944; % [m/s] Forward Speed
J = U0/rps/D; % Advance Ratio

% Blade Elements Position and Thickness
r = zeros(1,num_sec);
dr = (R-rh)/num_sec; % Thickness of Blade Elements
for i = 1:num_sec

r(i) = rh+(i-1)*dr+dr/2; % Radius of Sections Position
end

tipspeed = w.*r/U0; % Tip-Speed Ratio

% Chord Distribution Initialization
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c = zeros(1,num_sec)+0.05; % Constant Chord Distribution

% Ideal Pitch Distribution
% Pitch distribution is calculated through PD ratio and an interpolation
% with a linear distribution near the hub to avoid an infinite pitch angle
p = PD*D; % Target Pitch
theta_deg_ref = rad2deg(atan(p/(2*pi*R))); % Reference Pitch Angle
k_pitch = R*theta_deg_ref;
theta_deg_ideal = k_pitch./r;
% Linear distribution is imposed in the last 10 blade sections
theta_deg = [linspace(80,theta_deg_ideal(10),10) theta_deg_ideal(11:end)];
% Pitch distribution polynomial interpolation to avoid discontinuities
h_t = polyfit(r,theta_deg,3);

% Final Pitch Distribution in degrees
theta_deg = h_t(1)*r.ˆ3+h_t(2)*r.ˆ2+h_t(3)*r+h_t(4);
% Final Pitch Distribution in radians
theta = deg2rad(theta_deg);

%% POLARS INPUT DATA %%
% Polars must be provided through a .txt file properly formatted
[alpha,CLpp,CDpp] = polar_reader("NACA64A010.txt"); % NACA64A010 Airfoil

%% OPTIMIZATION LOOP
% Chord is optimized to reach high thrust and efficiency and to guarantee
% the mechanical strength of the blade
[c_opt,complete_chord] = chord_optimization_Rev1(Z,rho,num_sec,R,w,U0,J,...

r,dr,theta,c,CLpp,CDpp); % Chord Optimization Function
solidity = Z.*c_opt./(2*pi*r); % Blade Solidity

% Convergence check
if complete_chord == 1

fprintf("Chord convergence achieved\n");
else

fprintf("Chord convergence not achieved\n");
end

[T,Q,CT,Ct,CQ,dT,dQ,eta,deta,iter] = induction_factors_calculation_Rev1(...
num_sec,dr,r,w,U0,theta,R,solidity,Z,rho,c_opt,J,CLpp,CDpp);

c_opt_stress = c_opt;

% Mechanical Analysis of the Blade
[˜,˜,˜,ICS] = Stress_Calculation(dT,dQ,r,dr,num_sec,"naca64a010.dat",...

c_opt_stress,Z,theta,w); % Stress Calculation Function
% Chord Modification to obtain an Inverse Safety Factor smaller than 0.2 at
% each Blade Section
for i = 1:(num_sec-1) % Loop over blade sections

while ICS(num_sec-i) >= 0.2 % Inverse Safety Factor validation loop
% Chord is incremented of 2 mm at each iteration
c_opt_stress(num_sec-i) = c_opt_stress(num_sec-i) + 0.002;
solidity = Z.*c_opt_stress./(2*pi*r);
[T,Q,CT,Ct,CQ,dT,dQ,eta,deta,iter] = ...

induction_factors_calculation_Rev1(num_sec,dr,r,w,U0,theta,...
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R,solidity,Z,rho,c_opt_stress,J,CLpp,CDpp);
% Stress calculation with the new chord value
[sigma,A,weight,ICS] = Stress_Calculation(dT,dQ,r,dr,num_sec,...

"naca64a010.dat",c_opt_stress,Z,theta,w);
end

end

% Chord interpolation with a parabolic function
C = [r.ˆ2; r; ones(size(r))]’;
d = c_opt_stress;
a = [];
b = [];
Aeq = [Rˆ2 R 1;r(1)ˆ2 r(1) 1;2*rh 1 0];
beq = [0.005; c_opt_stress(1);0];
h_c = lsqlin(C,c_opt_stress,a,b,Aeq,beq);
% Final chord distribution and solidity
c_final = h_c(1)*r.ˆ2 + h_c(2)*r + h_c(3);
solidity = Z.*c_final./(2*pi*r);

%% ANALYSIS OF THE DESIGNED PROPELLER

fprintf("Starting analysis of the propeller...\n")
% Propeller analyzed between 4 and 25 kn
Vaa = [4:1:(Va-1) Va (Va+1):1:25];
U0 = Vaa/1.944;

% Variable rotational speed with respect to the design point
%rpm = 1350;
%rps = rpm/60;
%w = pi/30*rpm;
J = U0/rps/D;

% Performance and Stress Calculation with variable advance velocity
for i = 1:length(Vaa)

[T(i),Q(i),CT(i),Ct(i,:),CQ(i),dT(i,:),dQ(i,:),eta(i),deta(i,:),...
iter] = induction_factors_calculation_Rev1(num_sec,dr,r,w,U0(i),...
theta,R,solidity,Z,rho,c_final,J(i),CLpp,CDpp);

[sigma(i,:),A,weight,ICS(i,:)] = Stress_Calculation(dT(i,:),dQ(i,:),...
r,dr,num_sec,"naca64a010.dat",c_final,Z,theta,w);

end

% Final Coefficients Calculation
KT = T./(rho*rps.ˆ2*Dˆ4);
KQ = Q./(rho*rps.ˆ2*Dˆ5);
Pin = w*Q/1000;
eta = T.*U0./(w*Q)*100;
fprintf("Analysis completed.\n")

%% GRAPHIC RESULTS

% Thrust Distribution
figure(1)
hold on
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barh(r*1000,dT(13,:))
title("Thrust distribution along the Radius")
grid on

% Final Propeller Characteristic Curves
figure(2)
hold on
grid on
yyaxis left
ylim([0,2000])
plot(Vaa,T,Color="r")
plot(Vaa,Q*10,Color="b",LineStyle="-")
yline(620) % Target Thrust 1
yline(720,Color="magenta") % Target Thrust 2
yyaxis right
ylim([0 80])
plot(Vaa,eta,Color="g")
title("Propeller characteristic curves")
legend("Thrust","Torque*10","Thrust Target 17kn","Thrust target 20kn",...

"Efficiency","Location","SouthWest")

% Final Propeller Dimensionless Characteristic Curves
figure(3)
hold on
grid on
plot(J,KT,J,KQ,J,eta/100)
title("Propeller dimensionless characteristic curves")
legend("KT","KQ","Efficiency","Location","best")

%% RESULTS COMPARISON
% Comparison of the results obtained through MATLAB and CFD analysis
% Actual Propeller CFD Results
Jst = [0.3927 0.7853 1.1780 1.5707];
Ktst = [0.3267 0.2384 0.1350 0.0079];
Kqst = [0.06129 0.05069 0.03619 0.01332];
etast = [0.333 0.588 0.7 0.149];
% Designed Propeller CFD Results
nnew = 1360;
Vanew = [13 17 20];
Tnew = [789.468 642.318 482.4204];
Qnew = [68.3738 58.9488 50.0208];
U0new = Vanew/1.944;
rpsnew = nnew/60;
wnew = pi*nnew/30;
Jnew = U0new/(D*rpsnew);
Ktnew = Tnew./(rho*rpsnewˆ2*Dˆ4);
Kqnew = Qnew./(rho*rpsnewˆ2*Dˆ5);
etanew = Tnew.*U0new./(wnew*Qnew)*100;
% Comparison Plot
figure(4)
hold on
grid on
plot(Jnew,Ktnew,Jnew,Kqnew,Jnew,etanew/100)
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plot(Jst,Ktst,Jst,Kqst,Jst,etast)
legend("KT new","KQ new","Efficiency new","KT old","KQ old",...

"Efficiency old","Location","northwest")
title("CFD Results Comparison");

% End of the file

chord_optimization_Rev1.m Function File

%**************************************************************************
% Function File
% Chord Optimization Loop
% Mechanical Engineering Master’s Degree - University of Bologna
%
% Blade Element Momentum Method - Marine Propeller Design and Optimization
% Author: Manuel Cotoni
% 27/12/2023
%**************************************************************************

% This function optimizes the chord of the propeller through a gradient
% descent algorithm. The cost function is defined as the sum of thrust and
% efficiency normalized with their initial values, respectively. The
% algorithm optimizes the chord maximizing the cost function value. The
% learning rate is optimized to guarantee convergence and good
% computational time in the case of 40-blade sections.

function [c_opt,complete_chord] = chord_optimization_Rev1(Z,rho,num_sec...
,R,w,U0,J,r,dr,theta,c,CLpp,CDpp)

% Input Variables
k_min = 0.00003; % Learning Rate Minimum Value
k_per = 0.00015; % Learning Rate Multiplication Constant
k_exp = -0.02; % Learning Rate Exponent Constant
chord_step = 0.004; % Chord Optimization Step
toll = 1.5e-4; % Convergence Residual
iter_max = 300; % Maximum number of iterations

% Initialization
convergence = 0; % Convergence Boolean
sec_conv = zeros(1,num_sec);
i = 1; % Counter

% Gradient Descent Algorithm
while i <= iter_max && convergence ˜= 1

iter1(i) = i; % Iteration counter
% Exponential Learning Rate
learning_rate = k_min + k_per*exp(k_exp*iter1(i));

solidity = Z.*c(i,:)./(2*pi*r); % Solidity of the Blade
% Initial Values
[˜,˜,˜,˜,˜,dT(i,:),˜,˜,deta(i,:),˜] = ...
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induction_factors_calculation_Rev1(num_sec,dr,r,w,U0,theta,R,...
solidity,Z,rho,c(i,:),J,CLpp,CDpp);

% Forward Step
c_temp = c(i,:)+chord_step;
solidity = Z.*c_temp./(2*pi*r);
[˜,˜,˜,˜,˜,dT1,˜,˜,deta1,˜] = induction_factors_calculation_Rev1(...

num_sec,dr,r,w,U0,theta,R,solidity,Z,rho,c_temp,J,CLpp,CDpp);
% Cost Function Definition Normalized with the Initial Values
cost_function1(i,:) = dT1./dT(i,:)+deta1./deta(i,:);

% Backward Step
c_temp = c(i,:)-chord_step;
solidity = Z.*c_temp./(2*pi*r);
[˜,˜,˜,˜,˜,dT2,˜,˜,deta2,˜] = induction_factors_calculation_Rev1(...

num_sec,dr,r,w,U0,theta,R,solidity,Z,rho,c_temp,J,CLpp,CDpp);
% Cost Function Definition Normalized with the Initial Values
cost_function2(i,:) = dT2./dT(i,:)+deta2./deta(i,:);

% Two-Points Gradient Calculation
grad_cost_function(i,:) = ...

(cost_function1(i,:)-cost_function2(i,:))/(2*chord_step);

% New Chord Calculation
for j = 1:num_sec

if i == 1 % First Optimization Iteration
c(i+1,j) = c(i,j) + learning_rate*grad_cost_function(i,j);

else
% Thrust Imposed Limitation to Blade Radius
if dT(i,j) <= (R*100+1/3*R*100)

if (j <= num_sec/8 || j >= num_sec*9/10)
% Slower Computation
c(i+1,j) = c(i,j) + ...

1*learning_rate*grad_cost_function(i,j);
else

% Faster Computation
c(i+1,j) = c(i,j) + ...

5*learning_rate*grad_cost_function(i,j);
end

else
c(i+1,j) = c(i,j);

end
% Section Convergence Check
if abs(c(i+1,j)-c(i,j)) <= toll && i > 20

sec_conv(j) = 1;
else

sec_conv(j) = 0;
end

end
end
% Blade Convergence Check
if sum(sec_conv) == num_sec

convergence = 1;
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c_opt = c(end,:);
complete_chord = 1;

end

i = i+1;
% Maximum Number of Iterations Reached
if i == iter_max

c_opt = c(end,:);
complete_chord = 0;

end
end
end

% End of the file

polar_reader.m Function File

%**************************************************************************
% Function File
% Polar Reader
% Mechanical Engineering Master’s Degree - University of Bologna
%
% Blade Element Momentum Method - Marine Propeller Design and Optimization
% Author: Manuel Cotoni
% 27/12/2023
%**************************************************************************

% This function reads a .txt file containing the airfoil’s lift and drag
% coefficients as functions of the angle of attack alpha. Then, the
% function returns the lift and drag interpolated through a spline function.

function [alpha,CLpp,CDpp] = polar_reader(fileID)

filename = fileID;

% Table Format
data = readtable(filename,"format","%f%f%f","Delimiter",["","\t"]);
rows = height(data);
cols = width(data);

% Initialization
alpha = zeros(rows,1); % Attack Angle
CL = zeros(rows,1); % Lift Coefficient
CD = zeros(rows,1); % Drag Coefficient
column = zeros(rows,cols);

% Data Reading
for i = 1:cols

column_index = data.Properties.VariableNames{i};
column_data = data.(column_index);
column(:,i) = column_data;

end

67



for i = 1:rows
alpha(i) = column(i,1);
CL(i) = column(i,2);
CD(i) = column(i,3);

end

% Cubic Spline Interpolation of the coefficients
CLpp = spline(alpha,CL);
CDpp = spline(alpha,CD);

end

% End of the file

induction_factors_calculation_Rev1.m Function File

%**************************************************************************
% Function File
% Induction Factors Calculation Loop
% Mechanical Engineering Master’s Degree - University of Bologna
%
% Blade Element Momentum Method - Marine Propeller Design and Optimization
% Author: Manuel Cotoni
% 27/12/2023
%**************************************************************************

% This function calculates the velocity induction factors of the BEMT
% method and return the thrust and torque characteristics of the input
% propeller.

function [T,Q,CT,Ct,CQ,dT,dQ,eta,deta,iter] = ...
induction_factors_calculation_Rev1(num_sec,dr,r,w,U0,theta,R,...
solidity,Z,rho,c,J,CLpp,CDpp)

% Initialization
% Proportional constants to calculate the numerical correction
Kp1 = 0.006; Kp2 = 0.006;
% Derivative constants to calculate the numerical correction
Kd1 = 0.001; Kd2 = 0.0001;

iter_max = 10000; % Maximum number of iterations
toll = 0.005; % Convergence tollerance
err = 0; % Error Boolean

a = zeros(num_sec,iter_max);
b = zeros(num_sec,iter_max);
convergence = zeros(1,num_sec);
phi_deg = zeros(num_sec,iter_max);
alpha_deg = zeros(num_sec,iter_max);
res1 = zeros(num_sec,iter_max);
res2 = zeros(num_sec,iter_max);
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eps1 = zeros(num_sec,iter_max);
eps2 = zeros(num_sec,iter_max);

% Calculation Loop
for z = 1:num_sec

% Error Check
if err == 1

break;
end

i = 1; % Counter
conv1 = 0;
conv2 = 0;
iter(z) = 0;

while (i <= iter_max && convergence(z) ˜= 1)

if i == 1 % First Iteration

% Induction factors initial guess values
a(z,i) = 0;
b(z,i) = 0;

Un = U0*(1+a(z,i)); % Axial velocity
Ut = w*r(z)*(1-b(z,i)); % Tangential velocity
phi = atan(Un/Ut); % Intake flux angle
phi_deg(z,i) = rad2deg(phi);
alpha = theta(z)-phi; % Effective angle of attack
alpha_deg(z,i) = rad2deg(alpha);

% Lift and drag coefficients interpolation (ppval is
% preferable since it is faster than interp1)
Cl = ppval(CLpp,alpha_deg(z,i));
Cd = ppval(CDpp,alpha_deg(z,i));
%Cl = interp1(alpha_polar,CL,alpha_deg(z,i),"linear");
%Cd = interp1(alpha_polar,CD,alpha_deg(z,i),"linear");

% Dimensionless coefficients
cn = Cl*cos(phi)-Cd*sin(phi);
ct = Cl*sin(phi)+Cd*cos(phi);

f = Z*(R-r(z))/2/sin(phi);
F = 2/pi*acos(exp(-f));

% Residuals calculation
res1(z,i) = solidity(z)*cn/(4*F*sin(phi)ˆ2)-a(z,i)/(1+a(z,i));
res2(z,i) = solidity(z)*ct/(4*F*sin(phi)*cos(phi))-...

b(z,i)/(1-b(z,i));

% Numerical correction calculation
eps1(z,i) = Kp1*res1(z,i)+Kd1*res1(z,i);
eps2(z,i) = Kp2*res2(z,i)+Kd2*res2(z,i);
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else

Un = U0*(1+a(z,i)); % Axial velocity
Ut = w*r(z)*(1-b(z,i)); % Tangential velocity
phi = atan(Un/Ut); % Intake flux angle
phi_deg(z,i) = rad2deg(phi);
alpha = theta(z)-phi; % Effective angle of attack
alpha_deg(z,i) = rad2deg(alpha);

% Lift and drag coefficients interpolation (ppval is
% preferable since it is faster than interp1)
Cl = ppval(CLpp,alpha_deg(z,i));
Cd = ppval(CDpp,alpha_deg(z,i));
%Cl = interp1(alpha_polar,CL,alpha_deg(z,i),"linear");
%Cd = interp1(alpha_polar,CD,alpha_deg(z,i),"linear");

% Dimensionless coefficients
cn = Cl*cos(phi)-Cd*sin(phi);
ct = Cl*sin(phi)+Cd*cos(phi);

f = Z*(R-r(z))/2/sin(phi);
F = 2/pi*acos(exp(-f));

% Residuals calculation
res1(z,i) = solidity(z)*cn/(4*F*sin(phi)ˆ2)-a(z,i)/(1+a(z,i));
res2(z,i) = solidity(z)*ct/(4*F*sin(phi)*cos(phi))-...

b(z,i)/(1-b(z,i));

% Numerical correction calculation
eps1(z,i) = Kp1*res1(z,i)+Kd1*(res1(z,i)-res1(z,i-1));
eps2(z,i) = Kp2*res2(z,i)+Kd2*(res2(z,i)-res2(z,i-1));

end

% Application of the numerical corrections to the induction factors
% and convergence check
% Axial Induction Factor
if (res1(z,i) >= toll || res1(z,i) <= -toll)

conv1 = 0;
a(z,i+1) = a(z,i) + eps1(z,i);

else
conv1 = 1;
a(z,i+1) = a(z,i) + eps1(z,i);

end
% Tangetial Induction Factor
if (res2(z,i) >= toll || res2(z,i) <= -toll)

conv2 = 0;
b(z,i+1) = b(z,i) + eps2(z,i);

else
conv2 = 1;
b(z,i+1) = b(z,i) + eps2(z,i);

end
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iter(z,i) = i;

% Infinitesiaml Thrust, Torque and Efficiency calculation if
% convergence has already been reached
if (conv1 == 1 && conv2 == 1)

convergence(z) = 1;

dT(z) = 0.5*rho*(Unˆ2+Utˆ2)*Z*c(z)*cn*dr;
dQ(z) = 0.5*rho*(Unˆ2+Utˆ2)*Z*c(z)*r(z)*ct*dr;
deta(z) = dT(z)*U0/(w*dQ(z))*100;

Ct(z) = (Unˆ2+Utˆ2)/U0ˆ2*solidity(z)*cn;
Cq(z) = (Unˆ2+Utˆ2)/U0ˆ2*solidity(z)*ct;

else
i = i + 1;

% Maximum number of iterations allowed
if i == iter_max

fprintf("Induction factors calculation: Max..." + ...
" number of iteration is reached. Convergence..." + ...
" not achieved.\n");

err = 1;
break;

end
end

end
end

% Calculation of the total Thrust, Torque and Efficiency of the Propeller
if err == 0

T = sum(dT);
Q = sum(dQ);
CT = 2/Rˆ2*sum(r.*Ct*dr);
%CT = T/(0.5*rho*pi*Rˆ2*U0ˆ2);
CQ = 2/Rˆ3*sum(r.ˆ2.*Cq*dr);
%CQ = Q/(0.5*rho*pi*Rˆ3*U0ˆ2);
%eta = CT*J/CQ/2/pi*100;
eta = mean(deta);

else
fprintf("Calculation stopped (section %i)\n",z);
T = 0; CT = 0; Ct = zeros(1,num_sec); CQ = 0; dT = zeros(1,num_sec);
dQ = zeros(1,num_sec); eta = 0; Q = 0; deta = zeros(1,num_sec);

end
end

% End of the file

Stress_Calculation.m Function File

%**************************************************************************
% Function File
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% Stress Calculation
% Mechanical Engineering Master’s Degree - University of Bologna
%
% Blade Element Momentum Method - Marine Propeller Design and Optimization
% Author: Manuel Cotoni
% 27/12/2023
%**************************************************************************

% This function determines the stress generated at each blade section due
% to the centrifugal force and the bending torque

function [sigma,A,weight,ICS] = Stress_Calculation(dT,dQ,r,dr,num_sec,...
fileID,c,Z,theta,w)

A = zeros(1,num_sec); % Blade section area

% Material properties
rho_mat = 1010; % [kg/mˆ3] Nylon PA12
sigma_max = 41.8; % [MPa]

% Coefficients calculation. A and b depend on thrust and torque
% distributions on the blade respectively. Mh instead is a bending module.
for i = 1:num_sec

a(i) = sum(dT(i:end).*(r(i:end)-r(i))*dr)/sum(dT(i:end)*dr);
b(i) = sum(dQ(i:end).*(r(i:end)-r(i))*dr)/sum(dQ(i:end)*dr);
Mh(i) = sum(dT(i:end))*a(i)*cos(theta(i))+...

sum(dQ(i:end))*b(i)*sin(theta(i));
end

% Reading data of the airfoil. Yup, ylow, cxup and cxlow are the
% dimensionless airfoil points coordinate (the origin (0,0) is the
% leading edge)
filename = fileID;
data = readtable(filename,"format","%f%f","Delimiter",["","\t"]);
cx = data.(1);
y = data.(2);
[k,˜] = size(cx);
yup = flip(y(1:round(k/2),1));
ylow = y(round(k/2):end,1);
cxup = flip(cx(1:round(k/2),1));
cxlow = cx(round(k/2):end,1);
t = abs(yup)+abs(ylow); % Thickness

% Actual coordinates of the section taking into account the real chord of
% the airfoil
yup = yup.*c;
ylow = ylow.*c;
t = t.*c;
cxup = cxup.*c;
cxlow = cxlow.*c;

% Section area calculation
for i = 1:num_sec
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for j = 1:height(cxup(:,1))-1
A(i) = A(i) + t(j,i)*abs((cxup(j+1,i)-cxup(j,i)));

end
end

weight = rho_mat*Z*sum(A*dr); % Weight of the blades

% Centrifugal force calculation
for i = 1:num_sec

Fc(i) = rho_mat*wˆ2*sum(A(i:end).*(r(i:end)-r(i))*dr);
end

% Tensile module calculation
for i = 1:num_sec

for j = 1:round(k/2)
if j == 1

tensile_mod(i) = (2*sum((3*yup(:,i).*(yup(:,i)+t(:,i))+...
t(:,i).ˆ2).*t(:,i)*abs(cxup(j,i)))*sum(t(:,i)*cxup(j,i)))...

/(3*sum((2*yup(:,i)+t(:,i)).*t(:,i)*(cxup(j,i))))-0.5*...
sum((2*yup(:,i)+t(:,i)).*t(:,i)*cxup(j,i));

else
tensile_mod(i) = (2*sum((3*yup(:,i).*(yup(:,i)+t(:,i))+...

t(:,i).ˆ2).*t(:,i)*abs(cxup(j,i)-cxup(j-1,i)))...

*sum(t(:,i)*(cxup(j,i)-cxup(j-1,i))))/(3*sum((2*yup(:,i)...
+t(:,i)).*t(:,i).*(cxup(j,i)-cxup(j-1,i))))-0.5*sum((2*...
yup(:,i)+t(:,i)).*t(:,i).*(cxup(j,i)-cxup(j-1,i)));

end
end

end

% Stress calculation
sigma = (Mh./tensile_mod+Fc./A)/10ˆ6;

% Inverse safety factori calculation
ICS = abs(sigma)/sigma_max;

end

% End of the file

Appendix B
This appendix contains the scripts used to analyze test data and to compare them with CFD
simulation and PropBEMT code results.

DataAnalysis.m

clc;clear;

%**************************************************************************
% Test Data Analysis

73



% Data Analysis
% Mechanical Engineering Master’s Degree - University of Bologna
%
% Blade Element Momentum Method - Marine Propeller Design and Optimization
% Author: Manuel Cotoni
% 27/12/2023
%**************************************************************************

% This script analysis the data acquisited during propellers test in open
% water. The data acquisitions are 3 and are analyzed one at a time and
% stored in a data struct.
% The sample time is 10 ms.

counter = 0;
sampledData = zeros(1,3);
nPrevious = 0;
relaxation = 0;

% Since in the second and third acquisitions the velocity shows
% considerable variations, we apply a coefficient to the interval range
% and standard deviation to loosen up the limits and evaluate if in each
% interval variables are steady state or not
coeff = 1.4; % Multiplication Coefficient for second and third acquisitions

speedZeroLimit = 1; % Minimum valid Speed [kn]
stdZeroLimit = 0.002; % Minimum valid Deviation

% Loading one of the data acquisitions at a time
for iter = 1:3

load([’acquisition’,num2str(iter),’.mat’])
load([’acqPower’,num2str(iter),’.mat’])
n = size(GPS_Speed,1); % Array dimension of the data acquisited

if iter == 1
step = 250; % 100 steps = 1 s interval
speedRangeLimit = 0.012; % Maximum valid Speed Variation ...
% Acceptable Range is 2*speedRangeLimit
stdSpeedVarLimit = 0.01; % Maximum valid Speed std Deviation

else
step = round(step/coeff); % 100 steps = 1 s interval
speedRangeLimit = speedRangeLimit*coeff; % Maximum Speed ...
% Variation % Acceptable Range is 2*speedRangeLimit
stdSpeedVarLimit = stdSpeedVarLimit*coeff; % Maximum Speed ...
% std Deviation

end

relaxLimit = step/2; % Relaxation between a valid interval and the
% following one

% For each acquisition we analyze a data interval calculating average
% values. Then, if the data acquisited in that interval are of
% interest, we stored them in a struct variable.
for i = 1:(n-step)

74



% Average values computation
interval = GPS_Speed(i:(i+step-1));
intervalCurrent1 = InverterCalc_TargetCurrent(i:(i+step-1));
averageSpeed = sum(interval)/step;
averageCurrent = sum(intervalCurrent1)/step;
averagePower = sum(PackCalc_Power)/step;
maxSpeed = max(interval);
minSpeed = min(interval);
stdDeviation = std(interval);
topLimit = maxSpeed-averageSpeed;
bottomLimit = averageSpeed-minSpeed;

% Evaluation of the interval. We don’t want to keep an interval in
% which either velocity or current are zero.
if relaxation >= relaxLimit % Relaxation Control

if averageSpeed >= speedZeroLimit && stdDeviation ...
>= stdZeroLimit && averagePower > 0 % Minimum ...

% Speed and Power Control
if topLimit <= speedRangeLimit && bottomLimit ...

<= speedRangeLimit && stdDeviation <= ...
stdSpeedVarLimit % Maximum Variation Control

counter = counter+1;
validData.index(counter) = i + nPrevious;
validData.averageSpeed(counter) = averageSpeed;
validData.maxSpeed(counter) = maxSpeed;
validData.minSpeed(counter) = minSpeed;
validData.stdDeviation(counter) = stdDeviation;
validData.motor1Speed(counter) = ...

InverterCalc_MotorSpeed(i); % Inverter 1 current
validData.motor2Speed(counter) = ...

InverterCalc2_MotorSpeed(i); % Inverter 2 current
validData.inverter1Current(counter) = ...

InverterCalc_TargetCurrent(i);
validData.inverter2Current(counter) = ...

InverterCalc2_TargetCurrent(i);
validData.Power1(counter) = PackCalc_Power(i);
validData.Power2(counter) = PackCalc2_Power(i);
relaxation = 0;

end
end

else
relaxation = relaxation + 1;

end
end
sampledData(1,iter) = counter;
nPrevious = nPrevious + n;

end

% Valid Data saved in a single array
sampledData(1,3) = sampledData(3)-sampledData(2);
sampledData(1,2) = sampledData(2)-sampledData(1);

% Valid Data Plot

75



hold on
fig = plot(validData.index/100,validData.averageSpeed,’o’);
grid on
xtickangle(45)
ax = ancestor(fig,’axes’);
ax.XAxis.Exponent = 3;
xlabel("Time [s]")
ylabel("Average Velocity Sampled")
title("Steady State Average Velocity Sampled")

save("TestDataRev1.mat",’validData’)

% End of the file

DataComparison.m

clc;clear;

%**************************************************************************
% Test Data Comparison
% Data Comparison
% Mechanical Engineering Master’s Degree - University of Bologna
%
% Blade Element Momentum Method - Marine Propeller Design and Optimization
% Author: Manuel Cotoni
% 27/12/2023
%**************************************************************************

% Load Test Data already analyzed
load("TestDataRev1.mat")

power_new = max(validData.Power1,validData.Power2);
rpm_new = max(validData.motor1Speed,validData.motor2Speed);

% Polynomial interpolation of the test data
t = linspace(0,20,200);
fitPower_New = polyfit(validData.averageSpeed,power_new/1000,2);
Power_New = polyval(fitPower_New,t);
fitRpm_New = polyfit(validData.averageSpeed,rpm_new,2);
RPM_New = polyval(fitRpm_New,t);

%%% ------------------------------------------------------------------- %%%
% Old propeller data from previous test sessions

power_old = [0;96; 126; 339; 367;373;375;409;460;489;530;546;594;796;879;...
906;915;939;1181;1188;1194;1246;1265;1288;1338;1374;1506;1611;1637;1941;...
2052;2062;2067;2303;2466;2534;2896;2918;3177;3387;3408;3432;4000;...
4027;4262;4559;4580;5209;6079;6176;6330;6333;6406]; % [W]

Boat_speed_kn_old = [0;2.07;2.8;4.16;4.5;4.8;4.7;4.3;3.49;5.02;5.3;4.9;5.14;...
5.58;5.13;6.04;5.4;5.44;6.02;5.7;5.5;6.4;6.04;6.6;7.3;5.7;6.3;6.6;...
6.7;9;9.3;8.7;7.6;8.27;8.9;8.9;10.5;9.5;10.9;9.8;10.3;10.3;11.1;11;...
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12.3;11.8;11;12.2;13.5;12.6;14.2;14.1;14.3];

Motor_speed_rpm_old =[0;273;287;438;449;461;464;457;346;505;524;502;527;590;...
590;639;608;598;658;645;668;700;682;699;740;676;731;731;752;865;885;...
881;825;859;912;903;1004;966;1031;1006;1023;1026;1050;1078;1147;...
1186;1115;1174;1256;1252;1322;1321;1316];

% Polynomial interpolation of the old test data
fitPower_Old = polyfit(Boat_speed_kn_old,power_old/1000,2);
Power_Old = polyval(fitPower_Old,t);
fitRpm_Old = polyfit(Boat_speed_kn_old,Motor_speed_rpm_old,2);
RPM_Old = polyval(fitRpm_Old,t);

%%% ------------------------------------------------------------------- %%%

%%% ------------------------------------------------------------------- %%%
% CFD new propellers results

CFD_Speed = [2.6;5;8;11;13.5];

CFD_Motor_Speed = [250;440;675;910;1100];

CFD_Torque = [2.24;6.54;15.05;26.98;39.06];

CFD_Power = CFD_Torque.*CFD_Motor_Speed*pi/30/1000;

% Polynomial interpolation of the new propellers CFD results
fitPowerCFD = polyfit(CFD_Speed,CFD_Power,2);
Power_CFD = polyval(fitPowerCFD,t);
fitRPMCFD = polyfit(CFD_Speed,CFD_Motor_Speed,2);
RPM_CFD = polyval(fitRPMCFD,t);

%%% ------------------------------------------------------------------- %%%

% Figures
% Data Comparison

figure(1)
subplot(1,2,1)
title("Power Absorbed Comparison")
hold on
plot(t,Power_New,’LineWidth’,2,’Color’,’r’)
plot(validData.averageSpeed,power_new/1000,’o’,’Color’,’red’)
plot(t,Power_Old,’LineWidth’,2,’Color’,’b’)
plot(Boat_speed_kn_old,power_old/1000,’o’,’Color’,’b’)
ylim([0,10])
ylabel("Power [kW]")
xlabel("Boat Velocity [kn]")
legend("New Prop. Power Curve","New Prop. Data", ...

"Old Prop. Power Curve", "Old Prop. Data","Location","southeast")
grid on
subplot(1,2,2)
title("Engine Velocity Comparison")
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hold on
plot(t,RPM_New,’LineWidth’,2,’Color’,’r’)
plot(validData.averageSpeed,rpm_new,’o’,’Color’,’r’)
plot(t,RPM_Old,’LineWidth’,2,’Color’,’b’)
plot(Boat_speed_kn_old,Motor_speed_rpm_old,’o’,’Color’,’b’)
ylim([0,1500])
ylabel("Engine Speed [rpm]")
xlabel("Boat Velocity [kn]")
legend("New Prop. Power Curve","New Prop. Data",...

"Old Prop. Power Curve", "Old Prop. Data",’Location’,’southeast’)
grid on

figure(2)
title("Power Absorbed Comparison")
hold on
plot(t,Power_New,’LineWidth’,2,’Color’,’r’)
plot(t,Power_Old,’LineWidth’,2,’Color’,’b’)
plot(t,Power_CFD,’LineWidth’,2,’Color’,’m’)
ylim([0,10])
ylabel("Power [kW]")
xlabel("Boat Velocity [kn]")
legend("New Prop. Power Curve", "Old Prop. Power Curve", "New Prop. CFD" + ...

" Results","Location","southeast")
grid on

% End of File
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