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Abstract

The modelling of high resolution maximum rainfall depth distribution plays a

key role in preventing natural disasters, such as floods. The rain gauges in me-

teorological stations distributed over the territory already offer a good base to

estimate the maximum rainfall depth distribution. However, the resolution at

which the distribution is estimated can be increased through interpolation. In

this thesis, the problem of maximum rainfall depth distribution interpolation

is addressed by using a graph neural network-based approach. Some varia-

tions of the proposed algorithm are compared and evaluated on the northern

Italy dataset. In particular, the use of a combination of a simple ensemble and

temporal ensemble proved to be particularly effective. Finally, the proposed

methods show improved results when compared with the classical methods:

ordinary kriging, universal kriging and Gaussian process.
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Chapter 1

Introduction

Maximum rainfall depth refers to the highest quantity of rainfall that can be

measured over a specific duration. Given the stochastic nature of rainfall, the

maximum rainfall depth varies annually and this variability can be described

by the maximum rainfall depth distribution. Understanding the parameters of

this distribution, referred to as maximum rainfall depth distribution parame-

ters (MRDP), is crucial for modeling extreme rainfall events, particularly in

preventing natural disasters like floods [7].

Accurate estimation of MRDP with high spatial resolution is essential for

predicting the likelihood of specific disasters. Traditionally, rainfall estimates

are derived from rain gauges inmeteorological stations scattered across the ter-

ritory. However, the limited number of stations and uneven coverage necessi-

tates the interpolation of MRDP between gauge locations. Classical methods

like ordinary kriging and Gaussian process predict MRDP based on neigh-

boring stations and their distances, while universal kriging with external drift

incorporates external factors such as altitude. While effective in highly corre-

lated scenarios, these methods may struggle to capture complex relationships

within the data.

Recent studies have highlighted the ability of Graph Neural Networks
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(GNN) to learn relationshipswithin graph-structured data. GNNs have demon-

strated success in tasks such as spatial interpolation [23, 34] and rainfall fore-

casting [45] , suggesting that GNN can also be effective in interpolating the

distribution of maximum rainfall depth. In this thesis, a transductive GNN

approach for interpolating MRDP is proposed, introducing two models based

on edge graph attention layer: Tiny eGAT and Extended eGAT. The two mod-

els differ mainly in the number of layers, with Tiny eGAT having fewer GNN

layers than Extended eGAT. Various modifications to these models are then

proposed, compared and evaluated using the northern Italy dataset.

The thesis explores the effectiveness of jumping knowledge, a variation

facilitating learning in networks with multiple GNN layers. Results from the

northern Italy dataset reveal indeed that jumping knowledge enhances Ex-

tended eGAT more than Tiny eGAT. Another variation involves employing

a base ensemble alongside a temporal ensemble. Both ensemble techniques

demonstrate improvement, with their combined application synergistically en-

hancing network performance. A proposed metric evaluates prediction con-

fidence, considering multiple predictions generated by ensemble sub-models.

Then, two metrics to weigh meteorological station reliability are compared

and utilized to enhance the training process.

Finally, the problem of overfitting is addressed by comparing two differ-

ent techniques: dropout and edge drop. While edge drop proves effective in

reducing overfitting and improving results, dropout performs poorly. Overall,

the proposed variations applied to Tiny eGAT and Extended eGATmodels sig-

nificantly enhance MRDP prediction compared to ordinary kriging, universal

kriging, and Gaussian process.
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Related work

In the past literature, the problem of interpolating maximum rainfall distribu-

tion parameters (MRDP) using graph neural networks has not been addressed

yet. However, there are many studies that have faced similar problems, which

can be divided into four categories depending on the type of problem:

• Classical approaches to rainfall interpolation

• Artificial neural networks used for rainfall interpolation

• GNN used for rainfall interpolation

• Other related problems

Classical approaches to rainfall interpolation There are many different

approaches to rainfall interpolation that do not use artificial neural networks

(classical approaches): some of the most used ones are [21, 28]: simple krig-

ing with varying local means, ordinary kriging, regression kriging, inverse

distance weight and Thiessen polygon. Another promising classical approach

is to use thin plate spline (TPS) to interpolate daily rainfall [39, 15]. TPS is a

technique for smoothing a surface by minimizing its curvature. This approach

obtains a fairly good estimation of rainfall when compared to other classical

approaches such as isohyetal and Thiessen polygon techniques.
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Artificial neural networks used for rainfall interpolation Differently from

this thesis, several researches tried to interpolate rainfall using neural networks

approaches that do not use graph neural networks. Rainfall rates have been

estimated by an artificial neural network using both infrared satellite imagery

and ground-surface information [14]. Another attempt to predict the rainfall

has been made by exploiting the information of the nearby stations, using a

feed forward network [20]. In recent years, transformers managed to achieve

astounding results in the field of natural language processing (NLP). Inspired

by its success, an attempt has been made to apply spatial transformers to ad-

dress the problem of rainfall interpolation [24].

GNNused for rainfall interpolation In literature, there aremany researches

that use graph neural networks (GNN) to interpolate rainfall related data such

as hourly rainfall. However, these researches differ from this thesis by the

features that are being interpolated. One attempt has been made by apply-

ing GNN to interpolate hourly rainfall by using an adaptive graph structure

learning and by constraining message passing flow [23]. Another possible

approach is to use the radar reflectivity signal to model quantitative precipita-

tion estimation. In this case a variation of graph neural network that uses the

attention mechanism has been used to model the spatial-temporal relationship

between radar reflectivity and quantitative precipitation estimation [34].

Other related problems While the previous researches that have been in-

troduced are similar with the problem of MRDP interpolation, there are many

other researches that tackle problems that are similar, yet more different than

the previous ones. Regardless the differences, some aspects of the researches

that will be described could give some ideas to tackle also the problem of

MRDP interpolation. Rainfall forecasting problem has been addressed inmany

researches, using spatio-temporal GNN [45]. High-resolution rainfall-runoff

models have been developed by utilizing high-resolution precipitation data
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and geographical information through a GNN [42].



Chapter 3

Theoretical frame

In this chapter the main algorithms and techniques used in this research are

described. First, the interpolation problem is introduced, together with some

classical algorithm typically used in similar cases. Then, a generic definition

of graph neural network (GNN) is proposed, followed by one type of GNN

called edge graph attention layer. Next, a few techniques that can be used to

improve the GNN performances are shown. In particular, jumping knowledge

aims to improve the learning process of the network when too many layers are

added. Ensembles are used to exploit the predictions multiple neural networks

to obtain a better model. Eventually, two ways of estimating the distribution

reliability of each data-point are described. This last estimation will be used

in Section 4.4 to weigh the training samples accordingly.

3.1 Interpolation problem

LetA be a set of data-points with some associated features. Knowing the data-

points A, interpolation is the problem of creating new data-points between the

existing ones in A. Often, the new data points to be created have some known

features and the remaining features must be determined based on the known

features (Figure 3.1).
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Figure 3.1: Interpolation over two features, one is known for every data point,
the other is an unknown feature that must be estimated for the new points.

In the case of spatial interpolation, the data-points correspond to spatial

locations and spatial closeness is often assumed to be correlated with the sim-

ilarity of the features. In geostatistics, the field of statistics applied to geology,

some of themost used algorithms for spatial interpolation are ordinary kriging,

universal kriging and Gaussian process.

3.1.1 Ordinary kriging

Ordinary kriging interpolates the unknown features on the target data-points

by a weighted average of the same features from the known data-points nearby

[10]:

Z∗(u) =
N∑

i=1
(λi(u) ∗ (Z(ui) − m(ui)) + m(u)

Here, u1, ..., uN are the positions of the neighbour data-points, Z∗(u) are the

predicted values at the position u, Z(ui) are the known values at the position

ui and λi(u) are the weights of the data-point i. The value m(u) and m(ui)

are the expected average of the values at the respective positions u and ui. In

ordinary kriging, the expected average of the values around the target position

u are assumed to be constant. Therefore, by also imposing that
N∑

i=1
λi(u) = 1,

the formula can be simplified as follows:

Z∗(u) =
N∑

i=1
λi(u) ∗ Z(ui)

Theweights λi(u) are determined based on a variogrammodel. The variogram
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model is a measure of correlation based on distance between the target data-

point at position u and the known data-point at position ui. In this case, it is

also assumed that the mean of the values is constant around the target station.

3.1.2 Universal kriging with external drift

While ordinary kriging assumes stationary data-points around the target po-

sition (the average values around the target position m(u) are constant), uni-

versal kriging with external drift assumes that there is no such property [10].

Instead, the average values around the target position depend on an external

function. By adding the external drift, universal kriging could obtain better

predictions. However, a strong correlation between the external drift function

and the values that must be predicted is necessary.

3.1.3 Gaussian process

Gaussian process assumes that the data follows a multivariate normal distribu-

tion and fits this distribution on the known data. Once this is done, the known

distribution can be used to find the values on new data-points [36]. Multivari-

ate normal distribution is defined by the following probability density function

[1]:

m.n.d. = 1√
(2π)ddet(Σ)

exp
(

− 1
2(x − µ)T Σ−1(x − µ)

)
Where the data has k dimensions, det(Σ) is the determinant of Σ and T stands

for transpose. This formula depends only on µ, which is the expected average

and Σ which is the covariance matrix. The expected average can be set to zero

by shifting all the data. This leaves only Σ to be defined.

The covariance matrix Σ of the N data-points can be defined as:

Σ =


k(1, 1) ... k(1, N)

... ... ...

k(N, 1) ... k(N, N)
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Where k(i, j) is the covariance between the data-points i and j. The co-

variance k(i, j) is then defined by a function called kernel which is often a

parametric function that depends on some parameters. Those parameters are

then optimized to maximize the likelihood that the distribution represents the

known data.

3.2 Graph Neural Networks

This section aims to define everything needed to understand graph neural net-

work (GNN). As the name suggests, GNN are artificial neural networks ap-

plied to graphs. Therefore, graphs and artificial neural networks are defined

first. Then, a definition for graph neural networks is proposed. As more vari-

ations of GNN have been proposed through history, the definition of GNN

has been extended to include the new methods. This section will focus on a

general definition of GNN that includes as many GNN variations as possible,

including the variation used in this thesis.

3.2.1 Graphs

A graph is a data structure composed by nodes and edges as shown in Figure

3.2. Nodes can contain some data (node features), while edges are entities

that connect two nodes and can also contain some data (edge features) that

represents the relationship between the nodes. Additionally, more inclusive

definitions of graph also consider the possibility of having some additional

data related to the graph called global features [6]. More formally, a graph G

is defined as G = (V, E, u) where V is the set of all nodes, E is the set of

edges and u are the global features.
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Figure 3.2: Graph scheme

3.2.2 Artificial neural networks

One of the first models for neural networks was proposed with the idea of

simulating neurons in the human brain [30]. In recent years, artificial neural

networks (ANNs) have been applied successfully, surpassing the state of the

art in many different fields. Because of its wide usage, there are many papers

that summarize or explain what artificial neural networks are [19, 2]. The base

idea behind artificial neural networks is to simulate how the brain works. In

particular, by reproducing the functionalities of the basic entities in our brain

called neurons, ANNs aim to reproduce complex functions through learning

from experience.

Artificial neurons

Neurons are entities in human brain that can have some input signals and based

on that, process an output signal [17]. Some of them interact through the

environment by receiving external signals (such as sight, smell, touch, ...) and

by moving the muscles in the body. Other neurons are connected together

to elaborate the information received by the input neurons and propagate the

result all the way to the output neurons where they must be used. In similar

ways, artificial neurons are the basic entities of the artificial neural network.

Artificial neurons can either receive an input from the environment or can be

connected to the output of many other neurons. Those input signals are then
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modified and aggregated to generate an output (Figure 3.3). Given a neuron

xi and a set of neurons x1, ..., xN directly connected to xi, the value of the

neuron can be computed as follows [19]:

xi = f(
N∑

j=1
(wj,i ∗ xj) + bi)

Here f is called activation function and is usually needed to add non linear-

ity.
∑

in a more general definition of ANN can be substituted by a different

aggregation function. wj,i are the weights of the edges that connect the node

with its neighbours. bi is called bias and can also be seen as a weight of a con-

stant input (bi ∗1). The weights (wj,i and bi) are values that can be modified to

change the output of the artificial neural network, encoded in the output layer.

This process is called training.

Figure 3.3: Artificial neuron scheme.

Network of artificial neurons

Artificial neural networks (ANNs) are graphs composed by artificial neurons

connected together through directed edges. Similar to the brain, a set of those

neurons is commonly called input layer and accepts an external input. An-

other set of neurons is called output layer and its value is considered to be the

output of the artificial neural network. The other neurons are also commonly

structured in sequences of layers, called hidden layers. In every layer neurons

are usually connected to the neurons of adjacent layers, but in some cases they

can also be connected to neurons in distant layers. Figure 3.4 represents the

scheme of a basic ANN. Here X1, ..., X3 are the inputs of the ANN and are

also the values of the neurons in the input layer. Y1, ..., Y3 are the outputs of
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the ANN and correspond to the values of the output layer.

Figure 3.4: Artificial neural network scheme.

In the field of neural networks, there are some common terms that are

often used to define particular structures or elements of the neural networks.

A dense layer is a layer of artificial neurons, each of them fully connected with

the previous layer (such as the hidden layers in Figure 3.4). A feed forward

network is a neural network without any cycles. When more complex network

structures are used (such as graph neural network layers), the term hidden units

is defined as the number of artificial neurons used internally.

Non linearity in ANN

Every neuron in the ANN can be seen as a function that, taken some input,

gives an output. In the sameway, the ANN can be seen as a function composed

by many other functions (artificial neurons). However, if the artificial neurons

are linear functions, the ANN will also be a linear function. This would limit

the complexity of problems that the ANN could solve [37]. In order to fully

exploit the potential of ANNs it is necessary to properly add the activation

function to the artificial neurons and use it to add non-linearity. There are

many possible activation functions, each of themwith some application fields.

One of the most used is the ReLU defined as ReLU(x) = max(0, x)

(Figure 3.5a). Despite its simplicity, this function adds non linearity and has

proven to perform well in a large variety of situations. However, either during
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artificial neuron’s weight initialization or during training, it can happen that

the output of the neuron before the activation function is less than zero. In

this case, the output of the activation function is zero and the derivative of

the function is also zero. As most of the optimizers rely on the derivative of

the artificial neurons to change the weights, the optimizers could get stuck

with the same weights. When this situation occurs for every possible input

in the training set, the neuron is said to be dead and might not recover from

that situation. This phenomena is known as dying ReLU [25]. While some

dead neurons are not a problem, if the number of dead neurons increases, the

performance of the ANN could be limited. To solve this problem, a variation

of ReLU called LeakyReLU [26] is proposed (Figure 3.5b):

LeakyReLU(x) =


β ∗ x x < 0

x x >= 0
Where β is a positive small number. This function is similar to ReLU in its

functionalities but avoids the problem of dying ReLU.

(a) ReLU function. (b) LeakyReLU function.

Figure 3.5

3.2.3 Learning process

The learning process of ANNs can be divided into three steps:

• Training phase

• Validation phase

• Test phase
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Training phase Similar to real brains, ANNs are capable of learning from

experience by changing the weight of the connections between neurons. This

process is called training phase. In this phase, the ANN is applied to the train-

ing set and the weights of each neuron are optimized to minimize (or maxi-

mize) a loss function. The loss function is a function that, given the input, the

output and the weights of the ANN, returns a score of how bad (or good) the

ANN is performing.

Validation and test phases During the validation and test phases, the net-

work is tested on datasets different from the one used for training. While the

test phase is used to test and evaluate the ANN, the validation phase is used to

compare different hyper-parameters and variations before the test phase. Be-

cause of the fact that the hyper-parameter and variations are chosen knowing

the dataset used for validation, the dataset used for test is usually a different

one. The addition of the validation step is useful to avoid adapting the ANN

knowing the dataset used for testing, which would make the results unrealistic.

Transductive learning When the validation and test set are considered to be

completely unknown during the training phase, the learning process is called

inductive learning. When some features of the validation and test sets are

known during the training phase, the learning process is called transductive

learning. In this last case, however, only a part of the features in the validation

and test set is known during training. The target features, which are the ones

that must be predicted, are not known during the training phase. If they were

known, there would not be the need to build any predictive model in the first

place. It is therefore important that the target features from the validation and

test sets are kept hidden from the ANN during training phase. As an example,

one can consider the problem of predicting the traffic jam in certain areas of

a city. In this case, the number of cars is only known for some roads, while

unknown for others. However, the position and shape of all the roads is well
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known, even in the training phase.

3.2.4 Graph neural networks

Graph neural network (GNN) is a class of ANN that works on graph structured

data and aims to produce new features for the nodes of the graph, the edges or

general features regarding the graph as awhole. The first formal definitionwas

proposed as an extension of recurrent neural networks [11]. More recently,

the framework of message passing to propagate the information through the

graph has been consolidated [9]. Message passing is based on the idea of

passing pieces of information, called messages, between neighbour nodes of

the graph for each iteration. Each time the message is passed between the

nodes, new node features are generated based on: the features in the sending

nodes, the features in the receiving node, the features of the edges that connects

the nodes and the global features. A brief scheme of message passing is shown

in Figure 3.6. The message passing framework has been further extended to

include more types of models [6]. In this final formulation, at each step the

value of a node is updated as follows:

h′
j = Φ(hj, u, Ai∈N(Ψ(hi, Xj, ei,j, u)))

Where:

• hj are the node j features

• h′
j are the new node features

• N is the set of nodes adjacent to hj

• ei,j are the edge features from hi to hj

• u are the global features

• A is an aggregation function and must be permutation invariant (often

simple functions are used, such as min, max or sum)

• Φ and Ψ are typically trainable functions
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Usually, this process is repeated multiple times, either by using the same

instance of this function or by stacking more different layers (often referred

as GNN layers), one after the other.

Figure 3.6: GNN message passing scheme. In this case the node features of
the target node are being updated through messages passed by its neighbours.
The messages represent the information passed from the neighbour nodes.

3.2.5 Overfit, underfit, dropout

In machine learning, the aim is often to create a model that approximates a

certain expected behaviour. When data is split into training, validation and

test sets as explained in Section 3.2.3, the training set represents the known

expected behaviour, while validation and test sets must be predicted and are

assumed to be similar to the training set, but not identical. As the model is

created by using the training set only, two known phenomena can happen,

known as overfit and underfit (Figure 3.7).

Figure 3.7: Overfitting and underfitting of a simple dataset.
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Overfit The real data often contains random noise. When a model focuses

on predicting the noise correctly, instead of generalizing the behaviour of the

data, the overfitting problem occurs [44]. In practice, the model is said to

be overfitting when it correctly predicts the data that has been used to create

that model, while it wrongly predicts the data that has not been seen before.

This often occurs when the model correctly predicts the training set, while

it wrongly predicts the validation and test sets. However, as the model also

partially depends on the validation set, it could also happen that the model

performs well on training and validation sets, while it performs poorly on the

test set.

Underfit Underfitting is the opposite problem of overfitting. In this case,

the model generalizes too much. When this occurs, the model also wrongly

predicts the same data that has been used for training. In order to avoid both

overfitting and underfitting, it is necessary to find a compromise between gen-

eralizing too little and too much. When using ANN, it can be challenging to

manually calibrate the structure of the ANN and the learning process to avoid

both problems. However, here are some general techniques that can help to

prevent overfitting while avoiding the underfitting case. One commonly used

technique is the dropout.

Dropout Dropout is a technique used in ANN that consists in randomly re-

moving some connections between neurons during every training step (Figure

3.8). One way of motivating the dropout is to see every combination of the

network with removed connections as a different, smaller network [38]. For

each training step, one of those smaller networks is taken and trained. At the

end of the training phase, the resulting network is an average of all the smaller

networks. By averaging multiple models, the result is more generalized.
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Figure 3.8: Dropout technique example applied to a simple ANN.

Edge drop When the data in the training set is not sufficient, the network

has difficulties to generalize, leading to the problem of overfit. This could be

solved by increasing the size of the dataset however, this is often not possi-

ble. One possible solution is to artificially create more data by modifying the

available dataset. In the case of GNN, this can be done by randomly removing

some edges for each training epoch [35]. By doing so, the network has to learn

every time on a slightly different graph and therefore is forced to generalize

more. This technique is similar to dropout, in the sense that both techniques

remove edges from graphs. Nonetheless, the idea behind them is completely

different: dropout changes the structure of the neural network, edge drop aug-

ments the data.

3.3 Attention

Attention is a mechanism that is used to focus the resources available on a sub-

set of the input features that are more relevant to the final goal. As for many

other artificial intelligence techniques, this one was inspired by nature. The

idea of attention has its roots in the attention mechanism in human brains. In

this analogy, the neural network is seen as a brain and has limited resources.

By focusing the brain’s resources, humans can achieve great performance in

tasks such as finding relevant objects using our visual system [8]. In the sim-

ilar way, neural networks can use attention to achieve better results.
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3.3.1 Attention in artificial neural networks

In one of the main reference models, attention is applied to the problem of

machine translation [4]. Similarly to human brains, the attention mechanism

scores how much a certain input is important given a certain context. The

input is then weighed according to its relevance. More formally, at every time

step i, the input of the neural network is replaced by a context vector which is

defined as follows:

context_vectori =
N∑

j=1
αi,jhj

αi,j = softmaxj(a(Si−1, hj))

softmaxj(a(Si−1, hj)) = exp(a(Si−1, hj))
N∑

k=1
exp(a(Si−1, hk))

Where:

• h1..hN is a list of N input.

• Si is a state variable at time i, which is used to determine the importance

of the inputs. This variable can be seen as the context in which the

attention must be applied.

• a is a function that must determine how much a given input h1 is im-

portant. In [4] a feed forward network is used.

In the case of multi-head attention, the attention mechanism is repeated

multiple times in parallel to obtain more final context_vectors instead of one

[40]. These multiple context_vectors are usually aggregated by an aggrega-

tion function such as concatenation or sum.

3.3.2 Graph attention layer

The concept of attention can also be used in more elaborated network struc-

tures, such as graph neural networks. The main idea is to weigh the informa-

tion received from every neighbour node based on their relevance. A graph
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attention layer (GAT) is defined as a GNN layer that uses the attention mech-

anism. one possible definition of GAT is the following [41]:

h′
j = σ(

∑
i∈N

αi,jWhj)

αi,j = softmaxj(LeakyReLU(aT (Whi||Whj))

Where:

• h′
j are the new features of node j

• hj are the current features of node j

• σ is a non linear function (usually referred as activation function)

• W are the trainable weights

• aT is a transposed trainable weight vector

• || is the concatenation function

It is then possible to stack in parallel more instances of this GAT layer to

obtain a multi-head GAT layer.

3.3.3 Edge graph attention layer

The definition of GAT explained in Section 3.3.2 only uses neighbour nodes

features to compute the new node features. However, edge features can be

crucial to evaluate the relevance of neighbour nodes. As an example, when the

nodes of the graph represent spatial location, the edges can contain information

about the distance between nodes. In many different real cases, spatially close

points are more correlated than distant points. Therefore, the distance between

the neighbour nodes can be an indicator of how much the neighbour node

is relevant to the target node. GAT can be modified to also includes edge

features, in such case it is called edge GAT (or eGAT) [32]. Formally, the new

node features h′
j are computed as follows:

h′
j = Ws ∗ hj +

∑
i∈N

αi,jWn ∗ hj + We ∗ ei,j
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αi,j = softmaxj(LeakyReLU(aT (Wn ∗ hi||Wn ∗ hj||We ∗ ei,j))

Where Ws, Wn and We are trainable weights and ei,j are the edge features

of the edge that connects node i to node j.

3.4 Jumping knowledge

Jumping knowledge is a technique used to make the learning process easier

when the network is deep (i.e. it has a high number of layers). This technique

can be seen as an extension of a simpler one called residuals, so in this section

residuals will be defined first.

3.4.1 Residuals

When designing neural networks, adding more layers can create more com-

plex functions and by consequence can lead to better solutions. However,

the more layers there are, the more difficult it is to train the network. This

problem is particularly evident with convolution neural networks or similar

neural network structures such as graph neural networks. This problem has

been addressed in several researches and different solutions have been found

to try to mitigate this problem. One solution that has proven to be effective

in many different real cases is the use of residual connections [12]. Given a

neural network layer (which could also be a graph neural network layer), the

residual connection consists in summing the input of the layer to its output.

More formally, given an input X and a layer F (X), the output of the residual

connection will be X + F (X). This value is usually used as a substitution

of the raw output of the layer F (X) (Figure 3.9). This solution has proven

to improve the results for networks with a high number of layers. After that,

many other similar solutions have been proposed. One of them is known as

jumping knowledge.
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Figure 3.9: Residuals scheme. The general network layer is represented by
the function F, X is the input and x + F(X) is the output of the residual

3.4.2 Jumping knowledge

Similar to residuals, jumping knowledge also creates connections that skip

neural network layers. However, differently from residuals, jumping knowl-

edge is able to create connections between a layer and all previous layers [43].

As a particular case of neural network, jumping knowledge can also be ap-

plied to GNN. In such case, jumping knowledge can be applied node by node

independently. More formally, given a node and its features in N previous

layers h1, ..., hN , the result of the jumping knowledge is an aggregation of

such features. The core part of this technique is how the features h1, ..., hN

are aggregated. Three possible aggregation functions are suggested:

• concatenation: (h1||...||hN)

• max pooling: element-wise max(h1, ..., hN)

• LSTM-attention: a bi-LSTM is used on h1, ..., hN to obtain the attention

weights a1, ..., aN . The attention weights are then used to aggregate

h1, .., hN as follows:
N∑

i=1
hi ∗ ai

LSTM is a type of recurrent neural network that can process sequentially

a list of input h1, ..., hN and remember useful information of the previously
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visited part of the input in its hidden state [13]. For every input hi, an output

is generated and the hidden state is modified. A bi-SLTM is a union of two

LSTMs where the first one receives the input in order h1, ..., hN , while the

second one receives the same input but in reverse order hN , ..., h1. The output

of the two LSTMs is then concatenated.

Figure 3.10: Jumping knowledge scheme.

3.5 Ensemble

In machine learning regression problems, ensemble is defined as a technique

that combines the results of many different models to obtain a better predic-

tion. This process can be divided into three steps [31]:

• Generation phase

• Pruning phase

• Integration phase
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After defining these three phases, one particular ensemble model, called tem-

poral ensemble, will be described.

3.5.1 Generation phase

In this phase, a set of models is generated and trained. This set is homogeneous

when all models use the same learning process, for example many different

instances of the same ANN but with different weights. Differently, this set

is said to be heterogeneous when the models use different algorithms which

means, in the case of ANN, different network structures or different learning

processes.

3.5.2 Pruning phase

The pruning consists in removing some of the models with the aim of improv-

ing the predictions or reducing the learning or prediction time. One of the

commonly used approaches is to somehow try to identify the models that are

redundant and have little impact on the combined result.

3.5.3 Integration phase

After the models are trained and pruned, the models are somehow combined.

In regression problems, this is usually done through a weighted sum of the

models. Given an input x and a set of N models f1(x), ..., fN(x), the output

of the ensemble can be obtained as:

ensemble(x) =
N∑

i=1
hi(x) ∗ fi(x)

The definition of hi(x) is then the core of the integration phase, that defines

how the models are combined.
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3.5.4 Temporal ensemble

Self-ensembling is a class of ensemble algorithms that does not require dif-

ferent models, but exploits only one model to obtain different predictions that

are then aggregated. In this case, every different prediction is considered as

a sub-model. The key part of self-ensemble techniques is to somehow obtain

different but still good predictions from the same input, while using only one

model. If this problem is solved, the great advantage is the reduction in time

consumption as no more than one model has to be trained. Hence, a huge

number of sub-models can be aggregated with little cost in time, contrary to

other types of ensemble.

Temporal ensemble is a type of self-ensemble that uses only one trained

model but at different points in time [22]. Assuming that the model used is

trainable and changes over time, by considering the model at different points

in time, the prediction will be different. By then aggregating those different

predictions, a better result can be obtained. This process only requires to store

and load either previous predictions or the status of the model at previous

times. Usually, the time to load and store this information is far lower than

the time needed to fully train a new model. Thanks to that, a high number of

models can be aggregated with little overhead time cost.

3.6 Distribution reliability

This section aims to show different methods that can be used to score how

much a certain distribution represents a certain set of data. The base idea is

to calculate the cumulative distribution function (CDF) of both the real data

and the estimated distribution. These methods differ on how the similarity

between the two CDFs is estimated. Two well known methods are: Cramér–

von Mises and Kolmogorov-Smirnov test.
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3.6.1 Cumulative distribution function estimation

Cumulative distribution function (CDF) gives the probability that a certain

random variable X is smaller than the variable x. More formally,

CDF (x) = Probability(X < x).

For known distribution functions, the CDF is known across the entire domain.

In the case of real data, given the dataset composed by the values X1, ..., XN ,

the probability of having Xi is considered to be equal to M
N

where M is the

number of data points in X1, ..., XN that are exactly equal to Xi. The prob-

ability of every possible value that is not in X1, ..., XN is equal to zero. To

calculate the CDF, the resulting function will be stepwise as shown in Figure

3.11

Figure 3.11: CDF function, given the real data points with values {1, 4, 4, 5, 7}

3.6.2 Cramér–von Mises and Kolmogorov-Smirnov

Given the observed values x1, ..., xN in increasing order, Cramér–von Mises

statistic is calculated as [3]:

1
12N

+
N∑

i=1
[2i−1

2N
− F (xi)]2

where F (xi) is the real distribution. The main idea is to use the squared differ-

ence between the two CDFs as a measure of error. Assuming that the values

x1, ..., xN have all the same probability, the term 2i−1
2N

is the CDF averaged

between the observed value xi and the previous observed value.

Kolmogorov-Smirnov statistic is defined as [16]:
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supx|Fn(x) − F (x)|

where sup is the upper bound of |Fn(x) − F (x)|, Fn(x) are the real samples

and F (x) is the expected distribution. Intuitively, in Kolmogorov-Smirnov

the statistic is the maximum distance between the CDF of the real data and the

CDF of the expected distribution.



Chapter 4

Methodology

In this chapter, the problem of interpolating maximum rainfall depth distribu-

tion parameters (MRDP) is addressed by proposing two models based on edge

graph attention layer (eGAT). First, a set of possible additional features is de-

fined. These features cannot all be retrieved from existing datasets, therefore

a preprocessing step is necessary. Then, starting from the previously defined

features, a graph is created. In particular, it is necessary to define the nodes

of the graph and the connections between them (edges), together with the fea-

tures associated. The structure of the network is then presented, together with

two variations called Tiny eGAT and Extended eGAT. Eventually, as the net-

work is trained in a transductive way, particular attention will be posed to the

learning process.

4.1 Preprocessing

During the preprocessing phase, MRDP is first estimated from the yearly max-

imum rainfall. Then, the features needed to predict MRDP are processed,

starting from the available raw data. As described in Section 3.2.1, there are

three types of features that can be preprocessed: global features, node features

and edge features. Even though some features could be interpreted as global

features (such as the hyper-parameters), the proposed algorithms do not aim to
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generalize over multiple graphs. For this reason there is no need to use global

features to distinguish between features that are different from one graph to

another and those that are shared between different graphs. Node features and

edge features must be carefully chosen and preprocessed accordingly.

4.1.1 Maximum rainfall distribution parameters

Starting from the maximum rainfall retrieved from the real stations year by

year, the parameters of a distribution can be estimated. First, the type of dis-

tribution must be assessed to correctly represent the real data. The choice of

the distribution is crucial; choosing the wrong distribution can indeed lead to

the creation of distribution parameters difficult to predict. Every station has

the yearly maximum rainfall distributed differently, so a distribution that per-

fectly fits all the data can only be obtained by using amore general distribution.

However, the simpler the distribution is, the easier it is to predict its param-

eters using a neural network. For this reason, a compromise must be found

on the distribution choice. This inevitably leaves some stations badly repre-

sented. A measure of how much the distribution fits the data can be estimated

for every station using Kolmogorov-Smirnov or Cramér–von Mises statistics

as described in Section 3.6. The Kolmogorov-Smirnov or Cramér–von Mises

statistics give an error which indicates how much the real data differs from

the expected distribution. Therefore, in order to obtain an actual goodness

of fit measure, the value is inverted. Let Ri be the Kolmogorov-Smirnov or

Cramér–von Mises statistics for the MRDP at the station i. The goodness of

fit measure at that position will be 1
Ri
.

4.1.2 Node features

In order to predict the MRDP of the target stations, the MRDP of known sta-

tions can be used. Many interpolation algorithms can obtain fairly good results
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using MRDP alone. However, the bigger is the gap between the known sta-

tions, the more it becomes difficult to predict MRDPwithout other knowledge

about the territory. To interpolate in a more precise way, some information

about the environment is required. This leads to two different type of features:

known MRDP and the environmental features. While the MRDP is known in

some stations and it is unknown in all other places, environmental features

can be obtained everywhere needed. There are several existing datasets that

contain this type of features and many more can be obtained by preprocessing

the initial features. Adding non necessary features can make the overall pro-

cess heavier and lead to overfit. A good selection of these features is essential

for the network to correctly interpolate MRDP. The choice of these features

depends on the geographical area where the MRDP must be predicted. The

full list of these features used in this thesis, together with the dataset used, will

be shown in Section 5.1.

4.1.3 Edge features

In the problem of interpolation, knowing how adjacent nodes are correlated

can be used by the network to properly focus on the most important adjacent

nodes. For this purpose, one of the best features is the distance between the

nodes, as it is likely that spatially close stations have similar MRDP. To re-

inforce that claim it is worth noting that most of the classical algorithms for

interpolation (such as ordinary kriging) use distance as a measure of weight.

4.2 Graph creation

In order to apply GNN algorithm to predict MRDP, a graph must firstly be

created starting from the data. As described in Section 3.2.1, the main entities

of the graph that must be defined are the nodes, the edges and global features.

As suggested in Section 4.1, there are no global features, while nodes and

edges are defined in the following subsections.
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4.2.1 Graph nodes

Nodes are identified by their coordinates (latitude and longitude) and have

features that can be divided into two groups. The first group includes the en-

vironmental features that are defined in Section 5.1, which are known for every

pair of coordinates (even at the position where the meteorological stations are

not present). The second group includes the parameters of the maximum rain-

fall distribution (MRDP), that must be predicted and are known only for some

nodes.

The number and position of the nodes are in part defined by the presence

of meteorological stations over the territory. For every meteorological station

a node is created, regardless on whether the station is used for training, valida-

tion or test. However, the distribution over the territory of such nodes can be

non uniform and therefore can lead to low density areas with very few nodes.

Where the density of nodes is too low, it becomes difficult to propagate the in-

formation through the graph as little knowledge about the environment or the

MRDP is contained inside it. While the initial knowledge about the MRDP

is bound by the presence of real meteorological stations, having a uniformly

distributed knowledge of the environment can mitigate the lack of stations.

This can be achieved by creating a regular grid of artificial nodes. To sum up,

there are three types of nodes:

• Known stations: stations for which both environmental features and

rainfall distribution parameters are known

• Unknown stations: stations for which only environmental features are

known and the rainfall distribution parameters must be predicted

• Artificial stations: support stations containing only environmental fea-

tures and for which the rainfall distribution parameters are irrelevant

In addition to the features cited above, whether the MRDP is known or not

can be considered a feature itself, called masking value. For implementation
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purposes it is easier to always assign the MRDP to the stations, even when the

MRDP is not known. In such case, the MRDP is defined as a vector of zeros.

The masking value is then used to discriminate whether to consider theMRDP

values or not. Figure 4.1 shows a graphical representation of the different type

of nodes and their feature composition.

Figure 4.1: Different types of graph nodes and their feature structure. Mask
value zero indicates the fact that the MRDP contains a vector of zeros and
therefore must be ignored.

4.2.2 Graph edges

Once the nodes are defined, the connections between themmust be created. As

distant nodes are less likely to influence each other, the connections are created

only between neighbour nodes. Therefore, this process depends on the defi-

nition of neighbourhood. One simple way of defining it is to set a threshold:

maximum neighbour distance. All nodes closer to that distance are considered

neighbours. This solution is particularly well fitted for this problem because

by correctly setting that threshold, it is guaranteed that every non artificial sta-

tion is connected to at least one artificial station, and every artificial station is

connected to the other adjacent artificial stations. This will facilitate a regular

propagation of the information through the graph and guarantee that the graph

is fully connected. More precisely, let the artificial stations be created on a

grid with a distance between the stations of d. The diagonal distance of the
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nodes on the grid will be
√

2 ∗ d as shown in Figure 4.2. By setting the maxi-

mum neighbour distance bigger than
√

2∗d, the requirements described above

are guaranteed. Also, practical tests proved that by having a bigger maximum

neighbour distance the results are not improved. Therefore, A good value for

the threshold can be set as slightly bigger than
√

2 ∗ d.

Figure 4.2: Edge creation by setting a threshold
√

2 ∗ d where d is the spacing
for the artificial station’s grid.

When updating the features of a node, first the information from neighbour

nodes is aggregated. Then, the features of the node are updated based on the

result of the previous aggregation. Depending on the actual algorithm used, it

is possible that when a node is updated, its previous features are not directly

maintained. In such case, some useful information could be lost. This case is

avoided by adding self connecting edges for every node in the graph as shown

in Figure 4.2. This way, the features of the node that is being updated are

aggregated in the aggregation step together with the information arriving from

neighbouring nodes. Hence, the previous features of the nodewill be kept only
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if they are still relevant, even after all information from neighbouring nodes

is considered.

4.3 Network structure

The overall structure of the neural network used can be divided in three sub-

sequent parts as shown in Figure 4.3:

• feature processing

• graph propagation

• rainfall distribution reconstruction

In the graph propagation two variations are proposed. Both of them are based

on edge graph attention layers (eGAT) but while the first one has less eGAT

layers with residuals, the second one has more eGAT layers uses the jumping

knowledge technique. Therefore, those two version will be referred to as Tiny

eGAT and Extended eGAT.
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Figure 4.3: Overall network structure divided in: feature processing, graph
propagation and rainfall distribution reconstruction.

4.3.1 Feature processing

The first layers of the network takes as input the preprocessed normalized

data. Even if useful features have already been preprocessed, it is difficult

to manually tune and create all the possible features that are required in the

graph propagation step. For this reason, the feature processing layers aim

at generating new features and obtain a representation of the data that is more

fitted to be used by the next layers. To achieve this, a few dense layers are used,

each one of them followed by activation function LeakyReLU and dropout.

In practice, three fully connected layers are used with 64 neurons each. It is

important to consider that in order to apply these layers to all the nodes of the
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graph, there are no multiple copies of the same layer with different weights:

all the nodes are processed by the same instance of the layers.

Figure 4.4: Feature processing block, takes as input node features to generate
new node features.

4.3.2 Graph propagation

The core part of the network is graph propagation. Here the information con-

tained in the individual stations is propagated to the neighbouring nodes mul-

tiple times. This part is fundamental in order for useful information to reach

distant nodes where the parameters of rainfall distribution must be assessed.

To do so, several layers of graph propagation block (GP block) are used.

Each GP block is composed by different parts. First there is a small shal-

low network composed by two dense layers, each of which is then followed

by the activation function LeakyReLU and a dropout. Then, an edge graph at-

tention layer is added with five attention heads, as described in Section 3.3.3.

This last layer also includes dropout and LeakyReLU. In the Tiny eGAT ver-

sion, residuals are then added to the edge graph attention layer. Each dense

layer is composed by 64 neurons and the graph attention network also has 64

hidden units.

In the Extended eGAT version, jumping knowledge is then added to the

GP block. In this case, for each node of the graph, the features from all previ-

ous GP blocks are retrieved and aggregated. The aggregation phase is done by
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first applying the following functions as described in Section 3.4.2: concate-

nation, max-pooling and LSTM-attention. Then, the result of the aggregation

functions is also aggregated together by concatenation. The result is eventu-

ally concatenated with the output of the edge graph attention layer.

(a) Tiny GP block

(b) Extended GP block

Figure 4.5: Tiny 4.5a and Extended 4.5b GP block representation. The dense
layer and jumping knowledge aggregation is applied node by node. eGAT is
applied to the whole graph by propagating the feature of each node to adjacent
nodes.

The addition of jumping knowledge to this part of the network in the Ex-

tended eGAT variation makes the learning process easier when the number of

GP blocks is higher. For this reason the Tiny eGAT version is limited to three

GP blocks, while Extended eGAT can have 5 GP blocks. In Figures 4.6a and

4.6b the overall structure of Tiny eGAT and Extended eGAT are shown.
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(a) Tiny eGAT overall structure

(b) Extended eGAT overall structure

Figure 4.6: Tiny 4.6a and Extended 4.6b eGAT overall structure. J.K. Aggr.
stands for jumping knowledge aggregation.

In a base implementation of these steps, all the nodes propagate their in-

formation to their neighbours. However, knowing which nodes are the target

nodes for which MRDP must be predicted, something more efficient can be

done. Considering a GP block with N other GP blocks after that, the infor-

mation of the nodes can be aggregated only on the nodes that are N steps far

from the target nodes. All the nodes that are farther, cannot reach the target

nodes. By propagating the information that way, the MRDP predicted on the

target nodes is the same, but it is more efficient from a computational point of

view.

4.3.3 Rainfall distribution reconstruction

After useful information reaches the target nodes, the parameters of maxi-

mum rainfall distribution must be predicted. This is done by four final dense

layers (Figure 4.7), each of which are followed by the activation function

LeakyReLU, except from the last one. All the four layers are composed by

64 neurons, except the last one that has a number of neurons equal to the size

of the MRDP. These layers are applied node by node, similarly to the feature

processing layers (Section 4.3.1). However, for computational reasons, there

is no need to apply this layer to all the nodes, it is sufficient to apply these

layers only to the target nodes for which the MRDP must be predicted.
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Figure 4.7: Rainfall distribution reconstruction block, which takes as input
the node features obtained during graph propagation steps and reconstructs
the MRDP.

4.3.4 Dropout and edge drop

Reducing overfitting is often a key part when designing a neural network. In

the proposed model, dropout is added after every layer to tackle this prob-

lem. However, another possible solution is to use edge drop during training

as explained in Section 3.2.5. This solution can be used in replacement of the

dropout.

4.4 Learning process

During the training phase, the weights of each layer of the network are changed

to improve the results. The measure of improvement is obtained by testing the

network on the training set and then score the predictions using a loss function.

Mean squared error (MSE) is used in this case. The formula for MSE is the

following:

MSE = 1
N

N∑
i=1

(Yi − Ỹi)2

where Y1, ..., YN are the predictedMRDP and Ỹ1, ..., ỸN are the real MRDP. In

this thesis, the process of optimizing the weights is done an optimizer based

on the weights’ gradients called Adam [18]. The general idea is to use the

gradients of the network’s weights to follow the direction for which the loss

function decreases.
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The magnitude of the gradient can indicate how much the weights should

be moved towards the gradient direction. However, during the training phase,

the training samples can be weighed differently from each other. This is done

to assign less weight to less reliable data. In the case ofMRDP, the reliability is

given by how well the distribution fits the real data (Kolmogorov-Smirnov or

Cramér–von Mises statistics), previously obtained in the preprocessing phase

(Section 4.1). Once the reliability value is obtained for each station, each time

a station is chosen to be in the batch, the change of weights is weighed by its

reliability. This way, the less reliable stations will have less impact on the final

weights of the network.

This whole process is further complicated by twomain factors. First, as the

network works in a transductive way, the nodes for the validation and test set

are already present in the training set, even if the values that must be predicted

are not known. The second factor is the nature of interpolation problems them-

selves. In interpolation problems the value that must be predicted (MRDP in

this case) is known for some nodes as a feature and must be used to predict

the value for the other nodes. This creates multiple type of nodes that must be

defined and addressed both during training phase and during validation or test

phases.

As explained in Section 4.2.1, there are three types of nodes: known sta-

tions, unknown stations and artificial stations. Also, the dataset with real sta-

tions is split into training, validation and test sets. What has not yet been

defined is the relationship between the type of nodes and the sets of data. Ar-

tificial stations are not contained in any set (training, validation or test sets), as

they are created artificially. The stations contained in Validation and test sets

are considered unknown stations as the rainfall distribution parameters must

be predicted for those nodes. Training stations can be considered both known

stations or unknown stations, depending on the learning phase, as is described

in Sections 4.4.1 and 4.4.2.
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4.4.1 Training

For each training step, a random batch of training nodes is selected. Consid-

ering that the learning process is transductive, the nodes of the validation and

test sets are also already used during training, even if the MRDP is not known

for those stations. Therefore, there are four types of nodes: artificial stations,

training nodes in the batch, training nodes not in the batch and nodes in valida-

tion and test sets. During this phase, the network must learn to predict MRDP

for the nodes inside the batch. Therefore, those nodes cannot have the MRDP

as an input feature and are considered unknown stations. The training nodes

not in the batch are the only nodes for which the MRDP is known. In practice,

during the training phase, the features of the nodes are dynamically masked

and the masking values is set accordingly. To sum up, the input features for

every node is created as follows:

Node type Environmental features MRDP Masking

Artificial stations Known Unknown 0

Training nodes in batch Known Unknown 0

Training nodes not in batch Known Known 1

Validation nodes Known Unknown 0

Test nodes Known Unknown 0

Table 4.1: Node features composition for different node types during the train-
ing phase.

4.4.2 Validation and test

During validation and test phases, all non artificial stations in the training set

are considered as known stations, while the nodes in the validation or test sets

are considered unknown. the input features for every type of node can be sum

up as follows:
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Node type Environmental features MRDP Masking

Artificial stations Known Unknown 0

Training nodes Known Known 1

Validation nodes Known Unknown 0

Test nodes Known Unknown 0

Table 4.2: Node features composition of different node types during validation
and test.

4.5 Ensemble

As described in Section 3.5, ensemble can combine multiple models to get a

more accurate prediction. In this thesis, two types of homogeneous ensembles

are proposed and combined together to obtain a much better solution. Both

ensemble methods are based on a simple average of the multiple models, but

differ in the generation phase (explained in 3.5.1). In order to distinguish the

two methods, let them be called base ensemble and temporal ensemble.

In the base ensemble, multiple identical neural networks are created as ex-

plained in 4.3 and trained independently. The initialization of the networks’

weights, as well as some processes such as batch selection in the training

phase, are stochastic processes. This leads to a change in the final weights

of the network, creating multiple different models which are then combined

with a simple average. The pruning phase of the ensemble, defined in 3.5.2,

in this case is just skipped.

In the temporal ensemble, as explained in Section 3.5, just one instance of

the network is created and trained. For every certain amount of epochs, the

state of the network is stored, creating a list of network’s copies at different

times of the training phase. Once the training ends, the predictions of the last

N copies are combined to obtain better results.

These two ensemble methods can then be combined together. First, N



4.5 Ensemble 43

models are created and self-ensembled by using temporal ensemble. Then,

the result of the temporal ensembles is combined using the base ensemble.

Considering that M sub-models are aggregated using temporal ensemble, the

total number of sub-models are N ∗ M . In this case, the number of basic

ensemble and temporal ensemble models that are combined are:

Ensemble type Sub-models number

Basic ensemble models (N ) 3

Temporal ensemble models (M ) 9

Total ensemble models (N ∗ M ) 27

Table 4.3: Number of ensemble models.



Chapter 5

Methodology grounding and

baseline

In this chapter, the algorithms proposed in Chapter 4 are applied to a real

dataset containingmeteorological stations from the northern part of Italy. First,

the dataset is shown and the MRDP representing the data are defined. Then,

the environmental features are proposed based on the territory in question.

Next, a way of splitting the dataset between training, validation and test sets

is shown. Finally, the baselines are presented and a few metrics to compare

them with the proposed algorithms are defined.

5.1 Northern Italy dataset

In this research, the methods proposed in Chapter 4 have been tested in a prac-

tical setting. For this purpose, several stations scattered around the northern

part of Italy have been used. For every station, the maximum rainfall depth

has been calculated during periods of 1, 3, 6, 12 and 24 consecutive hours,

year by year. Most of the stations do not have the data for every year, with

some stations having more data than others. This creates a difference in the

reliability of maximum rainfall depth for different stations. The information

of yearly maximum rainfall, can be summarized over each station through a



5.1 Northern Italy dataset 45

distribution. Once the parameters of the distribution are estimated, it is then

possible to make considerations not only about the expectedmaximum rainfall

depth, but also about the probability that the maximum rainfall depth is greater

than a certain value during a year long period. Having a good understanding of

the probabilities that certain situations occur is the basis for preventing future

natural disasters.

According to a study made on the dataset used [27], the Gumbel distri-

bution represents the data with a good approximation. This study uses L-

moments to characterize the shape of probability distribution for every station

in the dataset. As shown in Figures 5.1a and 5.1b, the weighted average of

the station’s L-moments is close to the Gumbel’s L-moments. Therefore, the

Gumbel distribution can be used to represent the data. The Gumbel cumula-

tive distribution function is defined as [33]:

F (x, σ, µ) = e−e
x−µ

σ
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(a) L-moments for yearly maximum rainfall depth over 1 hour.

(b) L-moments for yearly maximum rainfall depth over 24 hours.

Figure 5.1

Another possible distribution according to the L-moments shown in Fig-

ure 5.1 is the generalized extreme value distribution (GEV). The cumulative

density function for the GEV distribution is the following [5]:
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GEV (x; ϵ, σ, µ) = e−(1+ϵ∗ x−µ
σ

)− 1
ϵ

where ϵ ̸= 0 and σ > 0. In the case that ϵ tends to 0, the GEV distribution

corresponds to the Gumbel distribution. This means that, as also shown in

Figure 5.1, the Gumbel is a particular case of GEV.

Once the parameters of GEV and Gumbel distributions are fit on the real

data, the result is shown in Figures 5.2, 5.3 and 5.4. In Figures 5.3 and 5.4 the

parameters σ and µ of GEV and Gumbel distributions are compared. Even if

the values are scaled differently, the parameters are distributed similarly over

the territory. Also, according to the map shown in Figure 5.2, the parameter ϵ

is close to 0, except for some outliers. The fact that for most of the stations the

parameter ϵ is close to 0 means that the optimal distribution shape is similar

to the Gumbel. Moreover, the presence of few outliers makes it more difficult

for any model (both the baselines and the neural network based approaches)

to correctly predict the parameters. To summarize, GEV distribution has more

parameters which are more difficult to predict while for most of the stations

it coincides with the Gumbel. Because of that, Gumbel distribution is a better

fit to represent the yearly maximum rainfall of the dataset used.

Figure 5.2: GEV parameter ϵ for the stations over northern Italy.
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(a) GEV parameter µ. (b) Gumbel parameter µ.

Figure 5.3: Parameters µ for GEV and Gumbel distributions for the stations
in northern Italy.

(a) GEV parameter σ. (b) Gumbel parameter σ.

Figure 5.4: Parameters σ for GEV and Gumbel distributions for the stations
in northern Italy.

In addition to MRDP, additional information about the territory is needed

to correctly predict the MRDP in the unknown stations. Such features can be

obtained not only on the stations, but also between themwhere the real stations

are not present, as suggested in Section 4.1.

According to the literature, there is no agreement on the best possible fea-

tures that must be used for similar problems. Also, some of those features

strictly depend on the geographical area where MRDP must be predicted.

However, some studies [29, 27] proved that their set of features used for sim-

ilar problems and geographical areas can lead to good results. In this thesis,

a subset of those features is used. Moreover, the features have been adapted
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according to the dataset used. The complete list of the environmental features

used is presented in Table 5.1:
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Name Description

mean altitude mean altitude around the target position

std altitude standard deviation of the altitude around the

target position

mean slope mean slope around the position

mean aspect mean aspect (direction of maximum slope)

around the target position

MAP mean annual precipitation around the target

position

mean snow mean snow precipitation around the target

position

std snow standard deviation of snow precipitation

around the target position

distance from Adriatic minimum distance from the Adriatic coast

mean altitude

from Adriatic

mean altitude between the target position

and the Adriatic coast

std altitude

from Adriatic

standard deviation of the altitude between

the target position and the Adriatic coast

distance from

Tyrrhenian
minimum distance from the Tyrrhenian coast

mean altitude

from Tyrrhenian

mean altitude between the target position

and the Tyrrhenian coast

std altitude

from Tyrrhenian

standard deviation of the altitude between

the target position and the Tyrrhenian coast

Table 5.1: Environmental feature names and descriptions adapted to northern
Italy’s dataset. Mean altitude, std altitude, mean slope, mean aspect, MAP,
mean snow and std snow are all taken within a radius of 1 km around the
target position.
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Once those features are created, the dataset is split between training, val-

idation and test sets. In this case the test set contains about 5% of the data,

the validation set about 10% and the training set the remaining 85%. As the

aim of this thesis is to interpolate the MRDP on the areas between the stations,

the validation stations are taken completely randomly as shown in Figure 5.5.

Similarly to the validation set, the test set is also well distributed around the

domain but has been carefully selected to satisfy three criteria:

• At least some of the stations must have a high number of observations

and therefore be reliable enough

• The stations must be well distributed over the territory

• The stations must represent different morphoclimatic contexts (such as

plains and different mountain ranges)

Figure 5.5: Northern Italy’s dataset split into training, validation and test sets.

5.2 Baseline

To show the effectiveness of the proposed models and their variations, a se-

lection of the state of the art algorithms is used as baseline. The main aspects
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that have been considered to choose the baseline models can be summarized

as follows:

• Relevance: only state of the art models known to have high performance

in similar problems are used

• Popularity: well known algorithms are preferred as they can give a bet-

ter understanding of the results

• Simplicity: in order to reduce human error, algorithms that are difficult

to calibrate or to apply are excluded. This reduces the possibility of

falsifying the results by comparing well optimized algorithms with non

optimized ones

Using this reasoning, the selected baseline models are the following:

• Ordinary kriging linear

• Ordinary kriging power

• Universal kriging linear with altitude as external drift

• Gaussian process

Here, there are two versions of ordinary kriging that differ from the variogram

model used (explained in Section 3.1.1). In the linear one, the correlation be-

tween neighbour stations is assumed to be linear with the distance. In the

power variation, the variogram model is a power function where the distance

is raised to a certain power that is optimized to fit the data as much as possi-

ble. Similarly, universal kriging also used a linear variogram model but also

uses the stations altitude to improve the predictions, as explained in Section

3.1.2. When all the known stations are used to predict the target stations,

both ordinary kriging and universal kriging perform poorly. Intuitively, far

stations which have little to no correlation to target stations affect negatively

the predictions. To solve this problem and improve the predictions, for each
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target station only the closer stations are interpolated using ordinary kriging

or universal kriging. The number of neighbour stations used for interpolation

is optimized based on the dataset. Considering the northern Italy dataset, the

optimal numbers of neighbours are the following:

Algorithm Num. of neighbours

Ordinary kriging linear 10

Ordinary kriging power 20

Universal kriging 10

Table 5.2: Optimal number of closer neighbours that are used for interpolation.

In the Gaussian process, as explained in Section 3.1.3, what defines the

distribution is the kernel function. In this case, the kernel function is a com-

position of more sub functions:

k(x1, x2) = WhiteKernel(x1, x2) + ConstKernel(x1, x2) ∗ RBF (x1, x2)

where:

WhiteKernel(x1, x2) =


µ x1 = x2

0 x1 ̸= x2

ConstKernel(x1, x2) = ϵ ∀x1, x2

RBF = exp( ||x1−x2||2
2σ

)

Where ||...|| is the euclidean norm.

White kernel is used to consider the fact that there is noise in the data, so the

knowledge on the known points is also uncertain. RBF is known as the radial

basis function and is multiplied by the constant kernel to weigh it in an auto-

mated way. The parameters µ, ϵ and σ are optimized to fit the known data as

much as possible. Once these parameters are fitted, the kernel can be used to

define the distribution, which is then used to predict the MRDP on the new

stations. Differently from Ordinary kriging and universal kriging, Gaussian

process performs better when all the stations of the northern Italy dataset are

used to create the kernel and then to predict the target stations MRDP.
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5.3 Metrics

In order to compare the proposed model with the baselines, several metrics

are proposed:

• Mean absolute error (MAE):

• Mean squared error (MSE)

• Root mean squared error (RMSE)

Defined as:

MAE(X, Y ) = 1
N

N∑
i=1

|xi − yi|

MSE(X, Y ) = 1
N

N∑
i=1

(xi − yi)2

RMSE(X, Y ) =

√√√√ 1
N

N∑
i=1

(xi − yi)2



Chapter 6

Empirical evaluation

In this chapter, the results obtained by the different model variations are com-

pared. In the final test, only the twomain variations (Tiny eGAT and Extended

eGAT) are tested on the test set. Because Tiny eGAT is computationally less

expensive and has similar results to extensive eGAT, the other variations have

been tested only on the Tiny eGAT. Also, to avoid choosing the other varia-

tions knowing the test set, the tests done to demonstrate the effectiveness of

these variations have only been done using the validation set.

6.1 Tiny eGAT and Extended eGAT final test

After assessing the best combination of hyper-parameters and variations, the

twomainmodels (Tiny eGAT and Extended eGAT) have been trained and then

tested on the test set. The result is then compared with the scores obtained by

the baselines in Table 6.1:
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MSE RMSE MAE

Tiny eGAT 64.52

± 1.53

7.34

± 0.072

4.65

± 0.042

Extended eGAT 62.00

± 0.94

7.24

± 0.048

4.54

± 0.025

Ordinary kriging linear 75.23 7.73 4.89

Ordinary kriging power 75.47 7.77 4.98

Universal kriging 86.48 8.33 5.17

Gaussian process 86.01 8.23 5.38

Table 6.1: Comparison between the baselines and the proposed algorithms
Tiny eGAT and Extended eGAT, when tested on the test set. In the case of
Tiny eGAT and Extended eGAT, the metrics represent the average and stan-
dard deviation (preceded by the symbol±) across multiple training and testing
iterations.

According to all the considered metrics (MSE, RMSE and MAE), both

proposed algorithms, Tiny eGAT and Extended eGAT, perform consistently

better than all the baselines, with Extended eGAT performing better. The stan-

dard deviation of the metrics between different runs is much smaller than the

metrics difference between the proposed algorithms (Tiny eGAT and Extended

eGAT) and the baselines, ensuring consistent results across different tests. Be-

tween the baselines, ordinary kriging linear is the best baseline according to all

the metrics. Universal kriging with altitude as external drift performs poorly.

One possible motivation is that there is no strong direct correlation between

the MRDP and the altitude.

6.1.1 Best variation selection

While the test shown in section 6.1 has been done with the best variations

applied to Tiny eGAT and Extended eGAT, the selection of those variations

needs to be justified. In order to prove the effectiveness of those variations,
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more tests have been done on the validation set. The detailed reasoning be-

hind the variations selection will be described in the next sections. The list of

variations used can be summarized as follows:

Tiny eGAT Extended eGAT

Layer jumping Residuals Jumping knowledge

Ensemble Base ens. of temporal ens. Base ens. of temporal ens.

Sample weights Cramér von Mises Cramér von Mises

Overfitting Edge drop Edge drop

Table 6.2: Variations selection.

In order to contextualize the next tests that will be shown, it is useful to

compare the validation and test sets. While the baselines performances on

the test set have already been shown (Table 6.1), their performances on the

validation set can be seen in Table 6.3. It is important to consider that both

the baselines, Tiny eGAT and Extended eGAT perform better on the validation

set. As the difference in performance is consistent with all techniques tested, it

is plausible that the comparison of performances for different variations seen

on the validation set remains more or less invariant in the test set.

MSE RMSE MAE

Tiny eGAT 46.61 6.21 4.16

Extended eGAT 45.51 6.13 4.07

Ordinary kriging linear 62.05 6.94 4.61

Ordinary kriging power 59.78 6.83 4.51

Universal kriging 65.60 7.14 4.76

Gaussian process 59.02 6.77 4.58

Table 6.3: Comparison between the baselines on the validation set.
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6.2 Deeper network and jumping knowledge

Graph neural networks are limited on how far the information can travel in the

graph. If the information is not aggregated from far enough nodes, predicting

MRDP correctly becomes difficult. Also, how far the information must be

propagated strictly depends on the dataset. Therefore, it is important to adapt

the network to propagate the information far enough. This can be done in

two ways: by increasing the number of GNN layers or by creating edges that

connect nodes that are farther.

The creation of long distance edges increases the number of neighbours

for every node and by consequence the number of nodes that are aggregated

in each GNN layer. When too many nodes are aggregated, it is difficult to ex-

tract all the useful information from neighbour nodes. Therefore, it could be-

come difficult for the network to correctly model the relationships between the

nodes. Adding more GNN layers, on the other hand, makes it more difficult

for the optimizer to find the best combination of network weights. However,

this problem can be solved by using the jumping knowledge technique.

When tested on the northern Italy dataset, the Tiny eGAT with residuals

performs better than Extended eGAT with residuals as shown is Figures 6.1

and 6.2. However, when tested with the jumping knowledge variation instead

of residuals, both Tiny eGAT and Extended eGAT perform similarly accord-

ing to MSE or RMSE (Figure 6.1) and better when compared with residu-

als, while Extended eGAT performs slightly better only when compared using

MAE metric (Figure 6.2). This means that while the performances are always

improved when jumping knowledge is used, Extended eGAT obtains more

advantage from using it compared to Tiny eGAT.
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Figure 6.1: Comparison ofMSE between Tiny eGAT or Extended eGATwhen
using jumping knowledge (JK) or residuals (res).

Figure 6.2: Comparison ofMAEbetween Tiny eGATor Extended eGATwhen
using jumping knowledge (JK) or residuals (res).

6.2.1 Resource consumption

The jumping knowledge variation considerably increases the size of the net-

work. This leads to an increase in the resource consumption. Similarly, the

same thing happens when more GP blocks (described in Section 4.3.2) are

added. This suggests two main variations of the network: Tiny eGAT with

residuals which is lighter but worse at predicting MRDP and Extended eGAT
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with jumping knowledge which is heavier but better at predicting MRDP. A

third valid variation is Tiny eGAT with jumping knowledge. However, this

last combination is not further explored in this thesis.

6.3 Ensemble evaluation

In this thesis two models of ensemble are proposed (Section 4.5): base en-

semble and temporal ensemble. Therefore, both ensembles have been tested

and compared when used individually and combined together. These tests

demonstrate that the use of both base ensemble and temporal ensemble not

only improves the results but also makes the results more stable over different

training and testing iterations or different stopping epochs. Then, by compar-

ing the predictions of different sub models, a measure of prediction reliability

is obtained and compared with the actual results.

6.3.1 Base ensemble

By applying the base ensemble, combining the predictions of three different

instances of the Tiny eGAT, it is possible to decrease the prediction error as

shown in Figure 6.3. Also, Figure 6.4 shows that the prediction error for the

base ensemble is lower even when compared with the average of the sub-

models prediction error. Moreover, fromFigure 6.4 it is possible to deduce that

the base ensemble prediction error is more or less proportional to the average

of the sub-models prediction error. This leads to the conclusion that even if

the performances of the sub-models vary one from the other, by aggregating

multiple sub-models, the results are more stable over multiple training and

testing iterations and less dependent on chance.
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Figure 6.3: Prediction error of three Tiny eGAT models (sub-models 1, 2 and
3) compared with the base ensemble that combines the predictions of those
models together.

Figure 6.4: Base ensemble prediction error compared with the average of the
three sub-models prediction error.
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6.3.2 Temporal ensemble evaluation

By applying the temporal ensemble to the network, it is possible to achieve

two important improvements as shown in Figure 6.5: better performances and

more stability in the results. It is important to notice that the prediction er-

ror of the temporal ensemble model oscillates less over time, therefore, the

prediction error depends less on the stopping epoch. This is important as it

influences the performances when tested on different datasets such as the test

set. Usually, the validation set is assumed to be similar to the test set and the

stopping epoch is chosen based on the validation set. However, the optimal

stopping epoch for the test set can differ from the one for the validation set.

By decreasing the oscillation in the prediction error over different epochs, the

consequences of choosing a sub-optimal stopping epoch are also reduced.

Figure 6.5: Tiny eGAT prediction error on the validation set compared with
the same model after applying temporal ensemble using 9 sub-models spaced
by 5 epochs each.

6.3.3 Ensemble of ensembles

Previous tests demonstrated the advantages of using base ensemble or tempo-

ral ensemble alone. In particular, other than improving the overall results, the

base ensemble reduces the variation of the results over multiple tests while the
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temporal ensemble reduces the oscillation of the results over different epochs

during training.

By applying the base ensemble to multiple temporal ensembles (ensemble

of ensembles), each sub-model (temporal ensembles) already benefits from the

reduction of oscillation over different epochs. When the sub-models are then

combined using the base ensemble, as shown in Figure 6.6, the first property

(reduction in the oscillation over different epochs) is maintained. Other than

that, the similarity between the prediction error of the ensemble of ensembles

and the average of the sub-models prediction error (Figure 6.7) is analogue

to the one described in Section 6.3.1. Therefore there is a reduction in the

variation between the results of different training and testing iterations. To

sum up, by applying the base ensemble to temporal ensembles the results are

improved and the advantages of both base ensemble and temporal ensemble

aremaintained, obtaining an ensemble which is better than both base ensemble

and temporal ensemble individually.

Figure 6.6: Base ensemble of temporal ensembles (ensemble of ensembles)
compared with its sub-models (temporal ensembles).
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Figure 6.7: Base ensemble of temporal ensembles (ensemble of ensembles)
compared with the average of its sub-models (temporal ensemblemodels avg).

6.3.4 Reliability measure

Given the prediction of MRDP on a certain station, the prediction reliability

estimates how much the predictions are likely to be accurate. To show that

reliability measure is coherent with the results, a relationship must be found

between the prediction error and the reliability measure.

By using the ensemble algorithm, many sub models are created. If all the

models agree on the same MRDP for a certain station, it is plausible that the

station is easier to predict. If the station is easier to predict, the prediction is

more reliable. Therefore, a measure of sub model accordance can be used as

a measure of reliability. By using standard deviation between the predictions

of different sub-models as measure of accordance, the results shown in Figure

6.8 are obtained. In this test, standard deviation (std) and MSE are first mea-

sured for each parameter in MRDP and then averaged and compared. Similar

results are obtained when parameters of MRDP are considered one at the time.

These results show some correlation between sub-model accordance (std) and

ensemble MSE, meaning that when the sub-models disagree, the ensemble
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model is more likely to fail. This information can be used, together with the

predictions, to have a better understanding about the distribution of maximum

rainfall over the territory.

Figure 6.8: Standard deviation (std) between the predictions of different en-
semble sub-models compared with ensemble MSE. In this case both std and
MSE are first calculated for each parameter in MRDP and then averaged.

6.4 Sample weights

The MRDP that must be interpolated is an estimation and therefore prone to

errors and misrepresentation. Using unreliable MRDP can lead to the creation

of a model that misrepresents the training dataset. However, this can be solved

byweighing the training samples as explained in Section 4.4. By observing the

graph in Figure 6.9, it is unclear whether Cramér von Mises or Kolmogorov-

Smirnov is better to weigh the samples. However, both cases decrease the

MSE, compared to not weighing the samples. By considering RMSE or MAE

similar results are obtained.
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Figure 6.9: Tiny eGAT without any sample weighing compared with Tiny
eGAT with the training samples weighed based on Cramér von Mises or
Kolmogorov-Smirnov.

6.5 Overfitting, dropout and edge drop

Reaching a compromise between generalizing too much and generalizing too

little is fundamental to obtain good results. In this thesis, two possible solu-

tions are proposed to help the network generalizing: dropout and edge drop.

The first step is understanding whether the network without dropout or edge

drop is overfitting or not. As shown in Figures 6.10 and 6.11, the difference

in the performance of the network when tested on training set and validation

set is relevant. On the other hand, the results on the validation set are already

good compared with the baselines. This suggests that there is some overfit-

ting, even if limited, and improving the results could be possible by reducing

it.
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Figure 6.10: Tiny eGATMSE on validation set without the addition of dropout
or edge drop.

Figure 6.11: Tiny eGATMAEon validation set without the addition of dropout
or edge drop.

Three variations of Tiny eGAT have been compared:

• Dropout with 0.1 probability of removing connections

• Edge drop with 0.5 probability of removing edges

• Without dropout or edge drop
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Figures 6.12 and 6.13 show the prediction error of the different variations on

the training and validation sets. Both dropout and edge drop variations cause

a reduction in the difference between training and validation error, as also

confirmed in Figure 6.14. This proves that both variations help generalizing,

with dropout generalizing more. However, reducing overfitting is pointless

if there is no improvement in the results. By also considering the results on

the validation set (Figure 6.13), while dropout reduces overfitting, it does not

improve the results. By applying edge drop variation, while the reduction of

difference between training and validation MSE is smaller, better results are

obtained when tested on the validation set. Therefore, edge drop is a better

option than dropout.

Figure 6.12: Tiny eGAT prediction error on training set with or without
dropout or edge drop. In this case, the probabilities of dropping the connec-
tion or edge are 0.1 and 0.5.
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Figure 6.13: Tiny eGAT prediction error on validation set with or without
dropout or edge drop. In this case, the probabilities of dropping the connection
or edge are 0.1 and 0.5.

Figure 6.14: Prediction error difference between training and validation sets
of Tiny eGAT variations. In this case, the probabilities of dropping the con-
nection or edge are 0.1 and 0.5.
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Conclusions

In this thesis, the problem of maximum rainfall depth distribution parameters

interpolation has been tackled through the introduction of two models: Tiny

eGAT and Extended eGAT, both based on edge graph attention layers. While

Tiny eGAT is computationally lighter, Extended eGAT is designed to be more

adaptive through the incorporation of additional GNN layers. Various net-

work variations have been proposed and tested on the northern Italy dataset.

Following that, Tiny eGAT and Extended eGAT were compared against base-

line algorithms, including ordinary kriging, universal kriging, and Gaussian

process. In the evaluation on the northern Italy dataset, both Tiny eGAT and

Extended eGAT consistently outperformed the baseline algorithms. However,

when compared to each other, both models yielded similar results, with Ex-

tended eGAT performing better.

While Tiny eGAT demonstrated satisfactory performance with residuals,

Extended eGAT necessitated jumping knowledge to reach the same results,

thereby increasing training time. To enhance results, base ensemble and tem-

poral ensemble were tested individually and in combination. Both ensemble

types proved effective in improving results, with the base ensemble reducing

variability between different tests and the temporal ensemble reducing vari-

ability over time. The combined use of both ensembles not only further im-

proved the performances but also retained the advantages provided by each
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type of ensemble. Additionally, the use of ensembles allowed for the pos-

sibility of utilizing differences in sub-model outputs to assess prediction re-

liability. Furthermore, an estimation of station reliability was employed to

weigh training samples, mitigating the impact of noisy stations on the results.

Finally, the issue of overfitting was addressed by proposing two potential so-

lutions: dropout and edge drop. Between the two, edge drop demonstrated

significantly better generalization capabilities.

The two variations Tiny eGAT and Extended eGAT have been effectively

optimized for predicting MRDP on the northern Italy dataset. Nevertheless,

with certain modifications, they could also be applied to other datasets. These

adjustments should include changes in the environmental features and the

number of GP blocks. The optimal number of GP blocks may vary across

different datasets and even within distinct areas of the same dataset. In such

cases, an ideal solution would involve a dynamic network where the number

of GP blocks adapts based on the specific area. Jumping knowledge could fa-

cilitate this adaptation by learning how and when to skip entire portions of the

network. However, whether jumping knowledge can achieve similar results

on other datasets remains an area for further exploration.
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