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Abstract

In the medical domain, the use of machine learning techniques for diagnosis,

treatment planning, and medical imaging interpretation is becoming increas-

ingly important. However, these approaches require a large amount of data,

which is challenging to access due to its sensitive nature and related privacy

concerns. Synthetic data generation, enabled by advances in generative tech-

niques, provides a solution to create large anonymized datasets for training

models without compromising patient privacy. Nonetheless, the presence of

memorization in such datasets, meaning the exact replication of training im-

ages, has been assessed by many studies. This dissertation explores the use of

Latent Diffusion Models (LDMs) for generating medical data, focusing on

head CT scans, and investigates the phenomenon of memorization in syn-

thetic datasets together withmethodologies to detect andmitigate it. The study

proposes an adaptation of the Lowe’s ratio test to detect potential copies and

evaluates two approaches, Privacy Distillation and Latent Filtering, for their

effectiveness in addressing memorization issues. The findings contribute to

understanding the potential of LDMs in generating realistic medical data while

reducing concerns regarding their sharing. Results validate the Lowe’s ratio

test as a metric for assessing memorization and demonstrate the efficacy of

the investigated memorization-countering techniques.
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1. Introduction

In the medical domain, data plays a crucial role in diagnosis, treatment plan-

ning, and research. Medical data can include patient records, clinical trial data,

imaging data andmore, yet this data is often highly sensitive, as it contains per-

sonal health information that is protected under privacy laws and regulations.

The sensitive nature of medical data presents unique challenges in its handling

and usage since unauthorized access or disclosure can lead to serious privacy

violations, with potential legal and ethical implications. Therefore, stringent

measures are required to ensure the confidentiality, integrity, and availabil-

ity of this data. Despite these challenges, the use of medical data is essential

for advancing healthcare, and machine learning techniques are demonstrat-

ing to be more and more important in this domain. For instance, ML mod-

els can be trained on medical data to predict disease outcomes, personalize

treatment plans, or assist in medical imaging interpretation. However, these

models often require large volumes of data, which can be difficult to obtain

due to privacy concerns. One solution to this problem is the use of synthetic

data, which can be generated from existing data and used for training models

without compromising patient privacy. Thanks to the advances in the field

of generative models, this approach is becoming increasingly popular in the

medical domain, as it enables to create public anonymized datasets to be freely

used for various medical tasks [1, 2]. For instance, generative models have

been successfully used to improve results in tumor segmentation tasks [3] and

Retinopathy of Prematurity detection [4]. Despite the high potential of genera-

tive techniques, these come also with challenges: the first one lies in the three
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dimensional nature of medical images, such as MRIs and CT scans, which

require a large amount of computational resources to be processed; while an-

other challenge is inherent to the functioning of generative models like La-

tent Diffusion Models, which can suffer from memorization. Memorization

happens when the generative model starts to generate samples that are almost

identical to the training examples, which happens when themodel assigns very

high likelihood values to the training data points [5]. This is particularly fre-

quent in the medical domain because the datasets used to train the models are

often small, therefore being problematic not only because of the uselessness

of replicated data, but also because it nullifies the efforts made to overcome

the aforementioned privacy issues.

The goal of this thesis is threefold. The first objective is to successfully train

a generative model, more specifically a Latent Diffusion Model, to generate

novel medical data. The training dataset used for this task comprises head

CT scans wherein only the skeletal structures have been retained. The trained

model is then used to create an analogous synthetic dataset which is subse-

quently analyzed to assess its quality and realisticity. The second objective

is to perform an in-depth analysis of the impact of memorization in the gen-

erated dataset: this includes ways to qualitatively and quantitatively measure

the effects of memorization as well as a method to detect possible copies of the

training set. Finally, the work focuses on addressing and overcoming memo-

rization using two different methodologies. The first is an adaptation of Pri-

vacy Distillation, as initially proposed by Fernandex et al. [6]. It aims at de-

veloping a Latent Diffusion Model without exposing it to the original training

dataset, while concurrently producing a synthetic dataset that closely resem-

bles real-world data. The second methodology, Latent Filtering, modifies the

generation process so that only images that are distant to the training ones are

produced.
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The dissertation follows a structured approach, beginning with a Background

chapter which introduces the most relevant techniques used in this work, pro-

viding necessary context for the subsequent discussion. Following this, the

Data and Methods chapter focuses on the dataset description, the preprocess-

ing steps, and explains in depth the architecture of the used models and the

training workflow. Moreover, it introduces the metrics used to measure the

quality of the generations, as well as ways to detect memorization and counter

it. An Experiments and Results chapter follows, presenting findings from the

study, including the results of the generation process and the effectiveness of

the strategies used to mitigate memorization. Finally, the Conclusions sum-

marize the key insights derived from the research.



2. Background

This chapter provides an in-depth exploration of the generative techniques

exploited in this work starting with their core concepts, advantages, and limi-

tations. It concludes with a review of the related work in the field, highlighting

the current challenges and potential solutions in the generation of 3D medical

images using these models, as well as techniques to investigate and overcome

memorization.

2.1 Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models (DDPMs) [7] represent a popular

approach in the field of generative modeling, particularly in the context of im-

age and signal processing. These belong to the family of generative models

that aim at learning the probability distribution of complex data, allowing the

synthesis of new high quality samples. The core concept behind DDPMs is

the diffusion process, an iterative mechanism that transforms the input data

into noise. It is defined as a Markov Chain of diffusion steps in which, at each

step, Gaussian noise is added to the data. Themodel learns the reverse process,

i.e. to remove the noise from the data at a specific step of the chain. In this

way, starting from random noise, the model can generate a new sample by

performing multiple reverse diffusion steps, each contributing to a progres-

sive refinement of the image. The incorporation of a denoising mechanism

enables DDPMs to handle a variety of data types with remarkable success,

including images and signals, and makes them valuable in different domains,

such as the medical one. The iterative refinement through multiple diffusion
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steps ensures that the generated samples exhibit realistic textures, structures,

and features, making DDPMs particularly valuable in applications like image

synthesis, where faithful representation of complex visual content is crucial.

Figure 2.1: The diffusion process in both forward and reverse fashion as
shown in Ho et al. [7].

A major drawback of Denoising Diffusion Probabilistic Models is that the

probability distribution is learned in the pixel space, i.e. the same as the input

data, which happens because the Markov Chain of noising and denoising is

applied directly to the pixels of the input image. This is an issue because pro-

cessing data in such an high dimensional space requires huge computational

resources. As a result, the only way to use DDPMs in the pixel space con-

sists in processing images at a very low resolution, which is not desirable. In

the next section it will be showed how this problem can be faced in order to

generate higher quality images.

2.2 Latent Diffusion Models
Latent Diffusion Models (LDMs), introduced by Rombach et al. [8], can be

seen as an evolution of DDPMs as they overcome the computational con-

straints derived from the size of the data used in the diffusion process. The

fundamental innovation of LDMs is the introduction of a compressed latent

space, which captures the hidden patterns and features within the data. LDMs

take advantage of the latents by training a DDPM in that space, so that the

reverse diffusion process is learned not in the pixel space, but in the com-

pressed latent space, thus making both training and inference faster. To create

such compressed space, LDMs make use of an autoencoder model, which is

trained to compress and reconstruct the input data.
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Figure 2.2: The architecture of Latent DiffusionModels as shown in Rombach
et al. [8].

Latent Diffusion Models can also be used for conditional generation, i.e. they

can generate new samples conditioned on class labels or descriptive informa-

tion. The latent space can be designed not only to represent the input data,

but also to incorporate such conditions by embedding and fusing them to the

input image representation via cross-attention, as shown in figure 2.2. Putting

everything together, the training of an LDM begins by training an autoen-

coder network to efficiently encode and reconstruct images, establishing a

latent space. Subsequently, a diffusion model is trained to generate novel

samples within this latent space, potentially conditioned on labels or textual

information. Finally, the generated latent representations undergo reconstruc-

tion through the autoencoder, yielding realistic high quality images.

2.3 Autoencoders
As shown in the previous section, autoencoders are a key part of LDMs as

they are trained to shape the latent space. An autoencoder model can be seen

as a compression algorithm and consists of twomain components: an encoder,

which compresses the input data; and a decoder, which reconstructs the orig-

inal data from the compressed representation. The encoder and decoder are

trained together, with the goal of minimizing the difference between the orig-

inal input data and the reconstructed output. The autoencoder network used in
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this work is a Vector Quantized - Variational Autoencoder (VQ-VAE) [9, 10].

The main feature of this model consists in creating a discrete latent space by

using a vector quantization layer after the encoder. The use of a discrete la-

tent space has shown to produce higher quality reconstructions with respect to

traditional VAEs, being able to model more complex data distributions. More-

over, the discrete nature of the latents makes the model easier to interpret, with

each discrete latent variable potentially representing a specific feature or char-

acteristic of the data.

2.4 Related work
The generation of 3D medical images presents many challenges related to

the complexity of the data and the sensitive nature of the information in-

volved, and not many studies have explored the potential of LDMs in this

context. Pinaya et al. [11] leveraged LDMs to generate synthetic data from

high-resolution 3D brain images modelled from a public dataset of 31740

images and conditioned on features such as sex and age. Khader et al. [12]

reproposed the same approach using four different datasets with about 1000

elements each, obtaining good results in generating novel images. Their work

showed how LDMs can be successfully used also when the training dataset

is very small, while also proving how generated data can be used in self-

supervised pre-training to improve subsequent tasks.

However, neither of these works analyzed the impact of memorization in the

synthetic datasets, but recent studies have shown the significance of this prob-

lem. Different works have analyzed the causes of memorization and which

ones mostly contribute to it [13, 14]. The most relevant factor is the size

of the dataset, which can be particularly problematic in the medical domain

because the availability of data is scarce. Akbar et al. [15] investigated the im-

pact of memorization in LDMswhen trained on 2Dmedical images: they used

correlation between images to measure memorization and showed that many
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generated images are highly correlated with the training ones, especially when

the available datasets are small. Dar et al. [16] extended the investigation to

LDMs trained on 3D medical images: they used a more sophisticated metric

to measure memorization, i.e. a self-supervised model based on contrastive

learning. Their study confirmed the fact that latent diffusion models indeed

memorize training images.

Despite the relevance of the problem there are not many studies proposing

solutions to memorization, which is problematic because this problem affects

the primary goal of generating medical data, i.e. overcoming the privacy re-

lated issues. Fernandez et al. [6] introduced Privacy Distillation, a framework

to train a generative model without exposing it to any identifiable data. Their

solution, tested on 2Dmedical images, consists in the following steps: training

a first diffusion model on real data; generating a synthetic dataset using this

model; filtering it to exclude images with a re-identifiability risk; and finally

training a second diffusion model on the filtered synthetic data only.



3. Data and Methods

This chapter provides a comprehensive view of the data, methods and evalua-

tion techniques employed in the subsequent experiments, setting the stage for

the detailed analysis and results presented in the following chapter.

3.1 Data

3.1.1 Dataset

The data used in this work is the union of two different datasets of anonymized

head CAT scans: CQ500, a publicly available dataset of 355 scans introduced

by Chilamkurthy et al. [17]; and a private dataset of 591 scans from Bologna’s

Sant’Orsola hospital. Each scan had already been segmented to retrieve the

meshes depicting the skeletal part of the head. Since the CTs have been ac-

quired for different purposes, most of the scans do not depict the entirety of

the skull. Therefore, a quality score (QS) was added to describe the extension

and completeness of each shape: QS 1 images represent the least complete

skulls; QS 5 images contain almost complete skulls; QS 6 scans contain the

mandible but miss the upper part of the skull.

(a) QS 1 (b) QS 2 (c) QS 3 (d) QS 4 (e) QS 5 (f) QS 6

Figure 3.1: Examples of meshes with different quality scores.
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Meshes with a quality score of 1 are not informative enough to be kept for

training the models and, similarly, other scans had been manually labelled as

qualitatively bad. Thus, in our study, entries belonging to these categories

have been removed. The final dataset is made of 909 scans, 341 from the

public dataset and 568 from Sant’Orsola’s dataset, and is split in a stratified

fashion to obtain a train (727) and a test set (182). The distribution of quality

scores among the splits is depicted in Figure 3.2. As it is possible to notice, the

dataset is not balanced: while QS 2 to QS 5 skulls have a similar cardinality,

there are only fewQS 6 images. This could influence the training process, par-

ticularly when training the DDPM conditioned on the QS, and the subsequent

evaluation metrics.

Figure 3.2: Distribution of the quality scores in train and test sets.

3.1.2 Data Preprocessing

Since the models require voxels as input data, the first data preprocessing step

consists in the voxelization of the meshes. A global bound is calculated from

thewhole dataset to delimit a volume containing all themeshes. In this waywe

expect the anatomycal parts to be of the same size irrespectively of the qual-

ity score of the scan. A uniformly distributed set of query points with shape

512x512x512 is extracted from the volume and, for each mesh, the occupancy

is calculated at each point. This leads to a spacing of 0.463mm, 0.335mm and

0.499mm in the saggital, trasversal and longitudinal axes respectively. The
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images are min-max normalized to the range between -1 and 1 and, because

of memory constraints, they are scaled to 128x128x128 pixels. Moreover, the

quality score of each mesh is one-hot encoded to be fed to the DiffusionModel

for quality score conditioned generation.

Figure 3.3: Example of middle slices of a preprocessed input image.

Figure 3.4 shows the original mesh of a skull compared to a reconstructed

one. The latter is computed as the result of the marching cube algorithm [18]

applied to the preprocessed image. Areas which are richer in detail, such as the

dental region and the paranasal sinuses, suffer the major loss of information.

This is a result of both the voxelization and the rescaling, which contribute to

a sensible decrease in the quality of the input data.

(a) Original mesh (b) Re-built mesh

Figure 3.4: An original mesh together with its reconstructed version after the
preprocessing operations.
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3.2 Architecture

3.2.1 Autoencoder

The neural network used to encode (and decode) the images into a compressed

latent representation is a Vector Quantized Autoencoder (VQ-VAE) [9, 10]. In

order to encode and decode 3D images, we followed the approach of Khader

et al. [12], i.e. 2D convolutions are replaced by 3D convolutions. Similarly

to a traditional autoencoder, in a VQ-VAE the input data x ∈ Rc×D×W ×H

is compressed into a dense representation by an encoder network to obtain

ze ∈ Rk×(D/s)×(W/s)×(H/s), where k is the embedding dimension, s is a com-

pression factor and D, W and H are respectively the depth, width and height

of the input image. The dense representation is then passed through a vec-

tor quantization layer, which consists of a codebook of n vectors Z ∈ Rn×k,

where each element of the dense representation is replaced by the nearest code

vector (in Euclidean distance), resulting in a discrete latent representation of

the input data. Finally, the quantized representation is passed through a de-

coder network, which attempts to reconstruct the original image.

Figure 3.5: The architecture of the 3D VQ-VAE.

The VQ-VAE is optimized with three loss components: a reconstruction loss

Lrec, which is computed as the mean absolute error between the input im-

age and the reconstructed one; a perceptual loss Lperceptual, which measures

the perceptual difference between the input and reconstructed images; and a
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commitment loss Lcommit, which is defined as the mean squared difference

between the encoder’s output and the selected code vector. Each vector of the

codebook is optimized by maintaining an exponential moving average of all

the dense vectors that get mapped to it.

3.2.2 Latent Diffusion Model

The technique employed for synthesizing new head CT scans leverages the

power of a Latent Diffusion Model (LDM) [8]. This model operates on the

unquantized representations produced by the VQ-VAE described in the previ-

ous section, using them as inputs to a Diffusion Model [7]. LDMs are built on

top of a fixed Markov chain over the latent variables, which is used to mod-

ify the input image by adding Gaussian noise with increasing variance over a

series of timesteps T . A neural network, conditioned on the noised version of

the image at a given timestep t and the timestep itself, is trained to learn the

reverse process, i.e. it learns the noise distribution used to modify the image.

This allows the data distribution at t − 1 to be inferred. The loss used to train

the network is calculated as the L1 difference between the noise that was added

at the specific timestep and the output of the network. As T grows large, the

distribution of the final timestep can be approximated by a standard normal

distribution, and by sampling from it and traversing the Markov chain in re-

verse, a new realistic image can be yielded. Following the approach of Khader

et al. [12], the architecture used to denoise the images is a UNet3D, which is a

UNet [19] modified to support 3D input data by substituting 2D convolutions

with 3D convolutions. The models are also conditioned on the quality scores,

which are fed as one-hot encoded vectors and subsequently embedded through

two fully connected layers. The quality score embedding is then concatenated

to the timestep embedding and fed as input to the cross-attention layers of the

diffusion model.
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3.2.3 Training Workflow

The training of each model is performed in two stages: the first stage consists

in training the VQ-VAE to encode and decode 3D images into compressed

latent representations; the second stage is the training of the Diffusion Model.

The input to this model has to be normalized to the range between -1 and 1 [7],

hence the output of the encoder of the VQ-VAE must also be in that range.

Following the work of Khader et al. [12], this is done by min-max normalizing

the dense representations by taking as min and max values the minimum and

maximum values that can be found in the learned codebook. The output of the

diffusion model is then quantized and decoded to build 128x128x128 images.

The hyperparameters used to train the networks are shown in appendix B.

3.3 Quality assessment techniques
The trained models are then exploited to create a synthetic dataset analogous

to the training one. Two metrics are used to evaluate the performance of the

generative models and the quality of the generated datasets: FID score and

MS-SSIM.

The Fréchet Inception Distance (FID) score [20] is a popular metric used to

evaluate how realistic the synthetic datasets are: it measures the similarity be-

tween two sets of images, typically the generated images and the real images

they are supposed to mimic. The FID score does this by comparing the distri-

butions of Inception network features extracted from the two sets of images.

A lower FID score indicates that the two sets of images are more similar, and

thus that the generative model is performing better. The FID score is calcu-

lated in two steps: first, a pre-trained Inception network is used to extract a

feature vector from each image in both sets; the feature vectors are then used

to compute a multivariate Gaussian distribution (characterized by a mean and

covariance matrix) for each set. The FID score is then the Fréchet distance

between these two Gaussians, which is a measure of similarity between the
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two distributions. When it comes to 3D data, such as voxelized meshes, the

FID score can be computed using a network that extracts features from 3D im-

ages, such as Med3D [21]. Med3D is a pre-trained 3D convolutional neural

network that has been trained on an aggregation of datasets coming from dif-

ferent medical tasks. Following the work of Pinaya et al. [11], Med3D is used

to extract the features from the 3D images, which can be used to compute the

FID score in the same way as for 2D images, thus allowing for a meaningful

comparison of the realisticity of 3D generative models.

The Multi-Scale Structural Similarity Index Measure (MS-SSIM) [22] is an

extension of the Structural Similarity IndexMeasure (SSIM), which compares

local patterns of pixel intensities that have been normalized for luminance and

contrast. While SSIM is computed on a single scale, MS-SSIM considers sim-

ilarity at multiple scales, which makes it more robust and better aligned with

human visual perception. MS-SSIM is calculated by sliding a window over

the image and comparing the structure, luminance, and contrast of the two

images in each window. The final MS-SSIM score is the product of these

comparisons at multiple scales with a score of 1 indicating perfect similarity,

and a score of 0 indicating no similarity. In the case of MS-SSIM computed

on 3D images, the only difference lies in the fact that the slid window is not

two dimensional, but three dimensional. While this metric is typically used to

measure similarity between images, it can also be used to compute the diver-

sity of a dataset. The idea is to compute the MS-SSIM for n random pair of

images in a dataset, and then use the average of these scores to quantify the

overall diversity of the dataset itself. If the dataset is diverse, then the images

in it should be quite different from each other, leading to a low MS-SSIM,

conversely, if the dataset is not diverse, then the images in it will be similar to

each other, leading to a highMS-SSIM. This is useful to compare the diversity

of the generated dataset with respect to the one of the training and test sets. In

this case, the optimal result is not to obtain the lowest MS-SSIM possible, but
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to obtain similar results in the real and synthetic datasets, i.e. obtaining the

same degree of diversity.

3.4 Memorization assessment techniques
Metrics like FID and MS-SSIM are useful to measure the realisticity and di-

versity of the generated dataset, but they are not significant to highlight the

impact of memorization. Optimal results on those metrics could potentially

hide a high number of copies in the synthetic dataset. Therefore, other metrics

must be used to assess the presence of memorization. For instance, following

the approach of Akbar et al. [15], image correlation can be used. The idea is

to measure the correlation between each generated image and all the images

in the training set. Similarly, this process can be repeated correlating the test

set to the training set. By comparing the distribution of the highest correlation

coefficients in both scenarios, one can gain insights into the extent of memo-

rization. If the model is generalizing well, then the distribution of the highest

correlation coefficients for the generated images should be similar to the dis-

tribution for the test set. This would indicate that the model is creating novel

images that are similar in structure to the training set, without directly copying

or memorizing it. On the other hand, if the model is memorizing the training

data, the distribution of the highest correlation coefficients for the generated

images with the training set would be significantly higher than the results ob-

tained for the test set. This would suggest that the model is producing images

that are overly similar to the training ones, indicating memorization.

Since the objective ofmemorization assessment is to verify the degree of copy-

ing in the synthetic dataset, correlation may not be the most accurate metric

because an high maximum correlation does not always imply that an image is

a copy. For instance, a generated image could be highly correlated with two

different real images, therefore being a copy of neither. A different approach

to memorization assessment is to consider the task of identifying copies in the
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synthetic dataset as a matching problem: finding a match would correspond to

detecting a copy. To do so, it comes handy a modified version of the Lowe’s

ratio test. This is a method originally proposed in the context of SIFT (Scale-

Invariant Feature Transform) for matching key points between images. In the

context of finding copies with correlation, the test would be done using the

ratio between the second highest correlation coefficient and the highest cor-

relation coefficient. The idea is that if a synthetic image is a direct copy of a

training image, it should have a very high correlation with that training image

and significantly lower correlation with all other training images. This would

result in a low Lowe’s ratio, indicating a potential copy. On the other hand, if

a synthetic image is not a direct copy, it should have similar correlation with

multiple training images, resulting in a higher Lowe’s ratio. This is because

the highest and second highest correlation would be close in value, making

their ratio closer to 1. Also in this case the Lowe’s ratio can be computed both

for the generated dataset and for the test set.

The Jensen-Shannon (JS) divergence can be used to quantitatively measure

the degree of memorization. It is a measure of similarity between two distri-

butions that can be computed for both the two highest correlation coefficient

distributions and the two Lowe’s ratio ones. Taking two probability distribu-

tions P and Q, the JS divergence is defined as the average of the Kullback-

Leibniz (KL) divergence of P from the average distribution M , and the KL

divergence of Q from the average distribution M , where M is the average of

P and Q. This metric is always between 0 and 1 being 0 when the two distri-

butions are the same, and 1 when they are completely different. In this case

we aim for the JS divergence to be as small as possible.

3.5 Memorization countering techniques
As explained in the first chapter, an objective of this thesis is to address and

overcome the problem of memorization. A possible solution, following the
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work of Fernandez et al. [6], is to perform Privacy Distillation, i.e. training a

Diffusion Model without exposing it to any re-identifiable data. This process

consists in the following steps:

1. Train an LDM (θvq−vae
real , θddpm

real ) with real data Dreal;

2. Use (θvq−vae
real , θddpm

real ) to generate a synthetic dataset Dgen;

3. Filter the generated datasetDgen removing re-identifiable data, i.e. copies

of the training set, to obtain Dfilt;

4. Train a new Diffusion Model θddpm
filt with the filtered synthetic dataset

Dfilt;

5. Use (θvq−vae
real , θddpm

filt ) to generate a synthetic datasetDfinal which is blind

to the original dataset Dreal.

The challenge lies in the filtering step, where copies of the training set must

be identified and removed from the generated data. Since the values of the

correlation of non copies, i.e. the values of the test set, are known, a simple

solution is to filter out images whose maximum correlation is higher with re-

spect to those values. The actual threshold can be chosen from a quantile of

the maximum correlation of the test set. This leads to a fairly conservative

filtering: even if it is possible to assume that the images with maximum cor-

relation lower than the test set threshold are non copies, it is not safe to imply

that the opposite is always true. An alternative is to take into consideration

the Lowe’s ratio: it is possible to identify copies by thresholding it. In this

case we consider copies the images whose Lowe’s ratio is lower than a certain

value. As previously done with the maximum correlation filter, also in this

case the value of the threshold can be chosen from a quantile of the Lowe’s

ratios of the test set. Moreover, it is also possible to rank the generated images

on descending Lowe’s ratio and keep the top-k results. Since the Lowe’s ratio

represents a degree of copying of an image, this ranking can be interpreted as

an ordering from the least copied to the most copied image.
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The second approach used to counter memorization acts directly on the gen-

eration process. It is based on the idea that copies of the training images are

generated from synthetic latents that are close to the training ones, and that by

getting far from those latents memorization could be avoided. The process is

the following:

1. Create, for each quality score, an index of training latents;

2. Generate through reverse diffusionM latents conditioned on the quality

score;

3. Keep only the latent zm
e that is farthest (in euclidean distance) from the

training latents of the same QS, i.e. the one that has farthest nearest

neighbour;

4. Finally, quantize and decode zm
e to yield the image.

On one hand, this method reduces the likelihood of reproducing exact copies

of the training images and does not require another training of the DDPM. On

the other hand, generating multiple latents is computationally expensive, thus

making the generation process slower.

The next chapter will present the experiments and the results of the genera-

tion, as well as the results of the methodologies for countering memorization

proposed in this section.



4. Experiments and Results

This chapter offers a comprehensive exploration of the experiments done for

training an LDM, generating a novel synthetic dataset and evaluating its qual-

ity. It also displays the different strategies adopted to analyze and address

memorization. Through empirical analyses and quantitative assessments, we

gain valuable insights into the capabilities and limitations of the proposed

techniques.

4.1 LDM training and dataset generation

Figure 4.1: Plots of the training loss of the VQ-VAE and of the DDPM. Both
models converged successfully. The VQ-VAE plot shows the different com-
ponents of the loss: the reconstruction, perceptual and commitment losses.

As explained in section 3.2.2, the LDM has been trained in two stages: the

first one is the training of the VQ-VAE while the second one is the training

of the DDPM. In both cases, as shown in figure 4.1, the model converged

successfully and no fine-tuning of the hyperparameters was required.

In order to measure the ability of the autoencoder, the trained VQ-VAE has
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Figure 4.2: Axial (on the left) and saggital (on the right) view of a skull. The
first row shows the original image, while the second row shows the recon-
structed one.

been used to reconstruct the images of the test set. Even if the model con-

verged well, by inspecting figure 4.2 it is possible to notice that the test set

reconstructions present some defects. For instance, smaller holes and details

which are present in the original images are missing in the reconstructions.

This is problematic because we can expect just the same level of detail com-

ing out of the DDPM.

Figure 4.3: Original, preprocessed and VQ-VAE reconstructed meshes. It is
possible to observe how the quality diminishes during the process. Still, most
of the detail is lost in the preprocessing.

In order to qualitatively analyze the skulls, the meshes of both the prepro-

cessed test voxel grids and the ones reconstructed by the VQ-VAE have been

re-built using the marching cubes algorithm. Similarly to what was observed

in the voxel space, also by looking at the meshes it is possible to recognize
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the missing details. Still, the quality bottleneck is in the preprocessing phase,

when a lot of information is lost during the voxelization of the mesh and the

rescaling of the high quality voxel grid.

The training of the DDPM worked well too, and the fit model was used to

generate a synthetic dataset of 3000 images with the same QS distribution of

the training set. The generated images show a good degree of realisticity and,

at the same time, present the peculiarities of the QS they were conditioned

with. Still, it is possible to find in the generated images the same defects that

were visible in the skulls reconstructed by the VQ-VAE. For instance, the level

of detail visible in the dental area of the synthetic images is worse than the

one of the real and preprocessed skulls. Overall, there are also some wrongly

generated images, showing only partial anatomical structures. This happens

more frequently for QS 6 skulls, probably due to their low cardinality in the

training set.

Figure 4.4: Examples of skulls generated by the trained LDM.

MS-SSIM and FID scores have been computed to quantitatively measure the
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quality of the generations, as well as to analyze the impact of both the VQ-

VAE and the DDPM in the result. By looking at table 4.1, which presents the

metrics for the various datasets, it is possible to notice how the reconstructed

test set FID score is much higher than the one of the original test set. This

confirms the fact that the autoencoder contributes severely to the quality loss.

On the other hand, the generated dataset obtained a very similar FID score to

the reconstructed one, meaning that the DDPM is working well. As expected,

the VQ-VAE does not contribute to a change in the diversity of the datasets,

as proved by the MS-SSIM of the reconstructed test set being close to the one

of real data. Conversely, the generated dataset losed diversity, as shown by

its higher MS-SSIM. These results have been compared to the ones obtained

in similar works on LDMs trained on 3D medical images. Pinaya et al. [11]

achieved better scores in both metrics: the MS-SSIMs of real and synthetic

data are close and the FID score is very low. However, this could be due to

the difference in the cardinality of the datasets used to train the models (909

vs 31740). Differently, the MS-SSIM obtained in this work is comparable to

the one of Kahder et al. [12], with which we share the cardinality of the used

dataset.

MS-SSIM FID
Training set 0.5232 0
Test set 0.5236 0.0003
Reconstructed test set 0.5244 0.0158
Generated dataset 0.5435 0.0195
Distilled top-k 0.6073 0.0111
Distilled corr threshold 0.5448 0.0323
Distilled LR threshold 0.6045 0.0132
Filtered Latents 0.5738 0.0101
Pinaya et al. real 0.6536 0.0005
Pinaya et al. generated 0.6555 0.0076
Khader et al. real 0.8095 -
Khader et al. generated 0.8557 -

Table 4.1: Quantitative evaluation of the quality of synthetic images via MS-
SSIM and FID scores. The results are compared to the ones of similar studies.
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In order to better understand the influence of the distribution of the quality

scores in the results, both metrics were also calculated separately for each QS.

The results in table 4.2 show that, in fact, QS 6 skulls have suffered from

their small cardinality, obtaining a much higher FID score with respect to the

other quality scores. This is true for the reconstructed test set, but particularly

relevant in the generated dataset. This also confirms the presence of wrongly

generated images of that QS. Also the grouped MS-SSIMs shown in table 4.3

highlight the same behaviour: all quality scores register a comparable increase

in the value, while QS 6 images, influenced by the wrong generations, obtain

a lower value than real data.

FID QS2 QS3 QS4 QS5 QS6
Test set 0.0003 0.0003 0.0016 0.0007 0.0014 0.0021

Recon test set 0.0158 0.0145 0.0125 0.0186 0.0201 0.0331
Generated ds 0.0195 0.0121 0.0136 0.0234 0.0168 0.1221
Distilled top-k 0.0111 0.0107 0.0185 0.0098 0.0186 0.0636
Distilled corr 0.0323 0.0158 0.0207 0.0456 0.0334 0.219
Distilled LR 0.0132 0.0118 0.0134 0.0172 0.0195 0.0665
Filtered latents 0.0101 0.0139 0.0147 0.0091 0.0101 0.0276

Table 4.2: FID scores of the datasets grouped by QS.

MS-SSIM QS2 QS3 QS4 QS5 QS6
Test set 0.5236 0.6517 0.6261 0.5722 0.615 0.594

Recon test set 0.5244 0.6453 0.6312 0.5703 0.6177 0.611
Generated ds 0.5435 0.7354 0.6614 0.6314 0.6796 0.5602
Distilled top-k 0.6073 0.7921 0.8028 0.6705 0.7627 0.6418
Distilled corr 0.5448 0.7456 0.6388 0.7323 0.7854 0.6951
Distilled LR 0.6045 0.8107 0.7906 0.6696 0.7582 0.6
Filtered latents 0.5738 0.7041 0.7359 0.6394 0.6632 0.6264

Table 4.3: MS-SSIMs of the datasets grouped by QS.

4.2 Memorization assessment
While the previous section was useful to analyze the ability of the model to

generate realistic images, it does not provide any insight about the degree of
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memorization in the synthetic dataset. In order to do so, the correlation be-

tween each generated image and the training set has been computed, and the

same has been done for each image in the test set. Also the Lowe’s ratio, de-

fined as the ratio between the second highest correlation coefficient and the

highest correlation coefficient, has been computed in both scenarios.

Figure 4.5: Distribution of the highest correlation coefficient and of the
Lowe’s ratio in the test set and in the generated dataset.

The distribution of themaximum correlation coefficient highlights the fact that

the synthetic dataset is much more correlated to the training set with respect to

the test set. This means that the model is somewhat memorizing the training

data. The same conclusion can be drawn by looking at the distributions of the

Lowe’s ratio, which show that the synthetic dataset obtains lower values, thus

indicating the presence of copies.

Figure 4.6: Middle slice of the saggital plane of generated QS5 skulls with the
corresponding copied training slice.
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Image 4.6 shows the QS 5 generated skulls with lowest Lowe’s ratio matched

with the corresponding copied training images. It is possible to notice how the

structure of the synthetic images is perfectly modelled on the real ones. On

the other hand, as a consequence of the reconstruction error, the details are not

perfectly matched. We can assume that an improvement of the ability of the

VQ-VAE would lead to the presence of even more accurate copies.

The degree of memorization has also been quantitatively measured using the

Jensen-Shannon divergence (Table 4.4). This has been computed between the

distributions of the memorization metrics of the generated dataset and of the

test set, setting up a baseline for the evaluation of the effectiveness of the

memorization countering techniques.

4.3 Memorization countering
The first experimentedway to countermemorization in the generated dataset is

Privacy Distillation, meaning training a newDDPMwithout exposing it to any

re-identifiable data. As explained in section 3.5, the key part of this method

lies in the strategy used for filtering the generated dataset. In this work, three

different techniques have been adopted and all of them aimed at building a

new dataset with the same cardinality and QS distribution of the training set.

The first one is to rank the synthetic dataset based on descending Lowe’s ratios

and to take the top-k images. This corresponds to building a filtered dataset

containing only the images which are least copied from the training set. The

second and third strategies rely on the information provided by the test set

and consist in filtering the generated dataset based on a threshold over the

highest correlation coefficient and Lowe’s ratio respectively. The thresholds

have been selected from the quantiles of the values in the test set to remove

the outliers of the distributions: the 0.983 quantile of the highest correlation

coefficients (0.7640) and the 0.005 quantile of the Lowe’s ratios (0.8719). In

this case the synthetic dataset has not been sorted and, for each quality score,
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the first k images that got through the filtering were kept. Three different

DDPMs have been trained with the dataset created from the different filtering

strategies and they were subsequently used to generate three distilled datasets

with same cardinality and QS distribution of the training set.

Memorization was also countered using Latent Filtering, whose only hyperpa-

rameter is M , the number of generated latents among which to select the one

that will be decoded, i.e. the farthest from the training latents. In this work

this hyperparameter was set to 5 and, as before, this technique was used to

generate a new synthetic dataset with the same characteristics of the training

set.

Figure 4.7: Distribution of the highest correlation coefficient and of the
Lowe’s ratio in the test set and all the synthetic datasets.

Figure 4.7 shows the effect of the different memorization countering tech-

niques in the distribution of the Lowe’s ratio and of the highest correlation

coefficient. It is possible to appreciate how, independently from the method,
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the frequency of higher correlations has dropped. Similarly, the distribution

of the Lowe’s ratio has become much more alike the one of the test set. Ta-

ble 4.4 shows how the different methods influenced the degree of memoriza-

tion. Firstly, it is possible to appreciate how each technique was able to bring

the distributions closer to the test set ones. This is particularly visible in the

Jensen-Shannon divergence computed on the Lowe’s ratio distributions. It is

relevant to note how the filtering done directly on the latent space, in term

of memorization, was as effective as the distillation techniques. In particular,

the results were very similar to the ones obtained by thresholding the highest

correlation coefficient.

JS - HCC JS - LR
Generated dataset 0.6365 0.4037
Distilled top-k 0.6044 0.1251
Distilled corr threshold 0.5055 0.2159
Distilled LR threshold 0.6183 0.1631
Filtered Latents 0.5198 0.1759

Table 4.4: Quantitative evaluation of the memorization in the synthetic
datasets. It is computed as the Jensen-Shannon divergence between the high-
est correlation coefficient (or the Lowe’s ratio) distributions of a synthetic
dataset and of the test set.

The effects in term of generated images realisticity can be analyzed in table

4.1. The distilled datasets gave different results depending on the filtering

technique used. When based on Lowe’s Ratio values, the effect was a good

realisticity at the expense of a lower diversity. Astonishingly, the FID values

resulted better than the ones obtained with the originally generated dataset and

with the reconstructed test set. This is primarily caused by the better values

obtained with QS 4 and QS 6 skulls, as observable in table 4.2. The dataset

directly built from the filtered latents obtained very similar results, displaying

high realisticity but lower diversity. On the other hand, the distilled dataset

based on the correlation filter showed an opposite behaviour: the diversity is

higher but the realisticity of the skulls is considerably lower.

Overall, Privacy Distillation (using Lowe’s ratio) and Latent Filtering have
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Figure 4.8: Examples of generated skulls after applying different memoriza-
tion countering techniques.

shown to be equivalently effective both in term of quality and in term of mem-

orization countering. The advantage of using one or the other mainly depends

on the subsequent tasks. If the aim is to publish a realistic but privacy pre-

serving dataset, then Latent Filtering is probably the best solution because it

can be seamlessly integrated in the generation process. On the other hand, if

the goal is to publish a trained model, then Privacy Distillation proves to be

more useful because the privacy is enforced at the model weights level.



5. Conclusions

Given the expanded capabilities of generativemodels, there is a corresponding

increase in the interest in using them in the medical domain. This is primarily

due to their potential in overcoming privacy related issues, enhancing data

availability, and improving the outcomes of subsequent tasks.

This work has confirmed the ability of LDMs to generate realistic 3D medi-

cal images which adhere to the anatomical structures of the skeletal parts of

the head. The synthetic skulls have displayed a good degree of diversity and

the generation, conditioned on the quality score, has proved to be effective.

The quantitative analysis has highlighted the different impact of the autoen-

coder and of the DDPM in the effectiveness of the generation, showing that

the first is the main responsible for the quality loss. A possible continuation

of this work could involve a fine hyperparameter tuning of the VQ-VAE to

improve the scores, or a comparison of different architectural choices for the

autoencoder. However, the results have also shown that the primary quality

bottleneck is the preprocessing phase and this is due to hardware limitations.

The problem can be addressed by using GPUs with larger memory or, more

interestingly, by training another model to upsample the images yielded by the

LDM via super-resolution [23]. This could be done because the raw data have

a very high quality, which is sacrificed because of memory constraints. The

size of the training set (727 images) had only a limited influence on the eval-

uation metrics, which is valuable information in the context of medical tasks,

where large datasets are rare. Still, the generation of images of the least rep-

resented quality score (QS 6, 38 training examples) was indubitably affected
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by the small cardinality of its training set, leading to some wrongly generated

images.

This dissertation confirms the presence ofmemorization and shows howLDMs

tend to generate images which are exact copies of training examples. Nonethe-

less, the experiments done to counter this behaviour were effective. Lowe’s

ratio as proved to be an effective metric to measure the degree of memoriza-

tion as well as to decide whether an image is a copy or not. Also when used on

3D images, Privacy Distillation has proved to work well but, at the same time,

the experiments have shown the influence of the filtering strategy in the dis-

tilled datasets evaluation metrics. Overall, filters based on Lowe’s ratios were

more effective in term of quality than the one based on highest correlation co-

efficients. Considering memorization metrics, all the filtering strategies have

shown to be able to reduce memorization. The dataset obtained via Latent

Filtering achieved comparable results both in term of diversity and in term of

realisticity, and it proved to be a valid alternative for counteringmemorization.

The preference of one technique over the other depends on each work’s goals:

Privacy Distillation is better suited for publishing a model; Latent Filtering is

an easier solution for sharing a dataset.

In summary, this work demonstrated the effectiveness of LDMs in generating

novel medical data while simultaneously pointing out their flaws. Moreover,

in this dissertation the issue of memorization was investigated in depth: it was

proposed the use of Lowe’s ratio (computed on correlation coefficients) as a

novel memorization assessment technique; and two different countering tech-

niques were successfully implemented, being effective in reducing the amount

of memorization while, at the same time, not leading to image quality loss.



A. Code Availability

This work is a fork of the repository of Khader et al. [12].

It is available on GitHub at the following link:

https://github.com/Chavelanda/medicaldiffusion

https://github.com/Chavelanda/medicaldiffusion


B. Hyperparameters

All the models have been trained on a NVIDIA GeForce RTX 3090 Ti with

24GB GPU RAM.

Value
No. images 909
Image size 128x128x128
VQ-VAE
Batch size 2

Training steps 150000
Learning rate 3e-4

Embedding dimension k 8
Codebook size n 16384

Compression factor s 4
Training time 20h

DDPM
Batch size 10

Training steps 100000
Learning rate 1e-4
Timesteps T 300
Training time 20h

Generation time* 80m

Table B.1: Hyperparameters used for training the Latent Diffusion Model

* The time required to generate a dataset of same cardinality as the training

set, i.e. to generate 727 images.
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