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Chapter 1

Introduction

Deepfake technology has emerged as a transformative force in the digital me-

dia landscape, fundamentally reshaping the creation and manipulation of au-

diovisual content. Crafted through advanced machine learning techniques,

particularly deep neural networks, deepfakes have the capacity to convinc-

ingly depict individuals engaging in actions or articulating statements that

never occurred, challenging the authenticity and reliability of both visual and

audio content.

(a) Example of a real im-
age within the FaceForensics
dataset.

(b) Example of a real im-
age within the FaceForensics
dataset manipulated using the
SBI technique.

Figure 1.1: Difference between a real (a) and fake (b) image

These synthetic media productions manifest in various forms, ranging from
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face swaps and voice synthesis to intricate scenarios involving the generation

of entirely fabricated scenes or events. This diversity underscores the adapt-

ability and versatility of deepfake applications, presenting both promising op-

portunities and significant concerns.

On the positive side, deepfakes can be harnessed for benign purposes such

as entertainment, creative expression, and educational simulations, offering

innovative avenues for filmmakers, content creators, and educators to explore

fictional narratives or historical events in a visually compelling manner. Ad-

ditionally, deepfake technology facilitates dubbing and language localization,

enhancing accessibility and cultural relevance in global media.

Conversely, the dual nature of deepfakes raises ethical and security con-

cerns, as malicious actors can exploit this technology for deceptive purposes,

creating misleading content for disinformation campaigns, impersonation, or

cyber threats. The potential misuse of deepfakes poses risks to public trust,

information integrity, and personal privacy.

1.1 Deepfakes identification challenges

Identifying deepfakes is of paramount importance due to the potential conse-

quences associated with their deceptive nature. Robust deepfake detection is

essential to preserve the integrity of information, safeguard public trust, and

mitigate the risks posed by malicious misuse of this technology.

One primary challenge in identifying deepfakes lies in the constant evo-

lution of the underlying techniques employed in their creation. As deepfake

generators become more sophisticated, adapting to new methodologies and

countering detectionmechanisms, traditional approaches may struggle to keep

pace. This dynamic landscape requires continual advancements in detection

methods to discern manipulated content effectively across a diverse range of

scenarios.
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Furthermore, the sheer volume and variety of digital media circulating on-

line amplify the difficulty of detection. The scale at which content is produced

and shared makes manual verification impractical, necessitating the develop-

ment of automated systems that can efficiently and accurately identify deep-

fakes. The challenge is exacerbated by the need for detection models to gen-

eralize their understanding of manipulations, accommodating emerging tech-

niques and variations.

Moreover, the ethical considerations surrounding deepfake detection in-

troduce another layer of complexity. Striking a balance between privacy preser-

vation and the identification of potentially harmful content requires careful

navigation. Implementing detectionmechanisms that respect individuals’ rights

while effectively identifying malicious uses of deepfake technology is an on-

going challenge in this evolving landscape.

1.2 Deepfakes Generalization

This thesis centers on the pivotal concept of generalization in the context of

identifying deepfakes, with a specific focus on images. Generalization, de-

noting a model or system’s ability to accurately perform on unseen or novel

data, is indispensable for the efficacy of deepfake detection algorithms across

a diverse spectrum of manipulated media. This adaptability becomes increas-

ingly crucial as deepfake techniques continue to evolve and diversify. The

primary objective is to comprehend and enhance the generalization capabil-

ities of deepfake identification systems, thereby reinforcing their resilience

against emerging manipulation methods and contributing to the robustness of

media authentication mechanisms.

In the realm of machine learning, generalization is defined as a model’s

proficiency in performing well on data beyond its training examples. For

deepfake detection, achieving generalization is a critical aspect underpinning

the effectiveness of detection systems. A successful generalization enables a
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deepfake detection model to accurately identify manipulated content across

varied scenarios, ensuring reliable performance in real-world applications.

The primary challenge associated with a system lacking generalization lies

in its limited adaptability to novel and unseen deepfake variations. Such a sys-

tem may excel in identifying specific manipulations within the training set but

falters when confronted with new techniques or unforeseen variations. This

lack of adaptability exposes the system to evasion by malicious actors who

continually innovate and refine their deepfake generation methods.

Consequently, the overarching problem of an inability to generalize poses

a potential compromise to the security and integrity of digital platforms. A

non-generalizing deepfake detection system may proficiently identify deep-

fakes created with known methods but could be blind to emerging threats.

This vulnerability puts users at risk of misinformation, privacy invasion, and

other malicious activities facilitated by advanced deepfake techniques.

On the flip side, achieving generalization in deepfake detection is a com-

plex task, primarily due to the dynamic and ever-evolving nature of deepfake

creation methods. Generalization requires the development of models capa-

ble of discerning patterns and features inherent tomanipulations across diverse

datasets. This demands a nuanced understanding of the underlying principles

of various deepfake techniques, enabling the model to generalize its knowl-

edge to new and unseen manipulations.

Furthermore, the challenge is compounded by the necessity to balance

specificity and sensitivity. A model that generalizes too broadly may yield

false positives or false negatives, diminishing its practical utility. Striking

the right balance to achieve generalization without sacrificing precision is a

delicate task in the development of effective deepfake detection systems.

Numerous studies have examined the pros and cons of deepfakes and their

future developments. One such study is the work of B.U. Mahmud et al. [29],

which provides a detailed analysis.
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1.3 History of Deepfakes

The roots of deepfakes can be traced back to the 1990s, an era when pioneer-

ing researchers delved into the realm of computer-generated imagery (CGI)

to craft increasingly realistic digital personas. During this period, the explo-

ration revolved around pushing the boundaries of technology to develop life-

like characters within the digital landscape.

The history of deepfakes intertwines with the evolution of artificial intel-

ligence (AI) and machine learning. Pioneering research, such as Ian Goodfel-

low’s introduction of GANs [12] in 2014, marked a watershed moment in the

development of deep learning models capable of generating highly realistic

synthetic content. GANs, comprising a generator and a discriminator network

engaged in a competitive learning process, enabled the creation of deepfake

videos by synthesizing images or videos that convincingly mimic real human

appearances and behaviors.

In 2016, Face2Face emerged, a real-time facial reenactment system, show-

casing the ability to manipulate a target actor’s facial expressions in a video in

real-time [44]. Developed by researchers from Stanford, the Max Planck In-

stitute for Informatics, and the University of Erlangen-Nuremberg, Face2Face

employed a combination of facial tracking and reenactment techniques. It used

a standard webcam to capture a source actor’s facial expressions and, through

specialized algorithms, mapped these expressions onto a target actor’s face in

a separate video. This manipulation occurred in real-time, allowing for the

instantaneous replication of expressions, mouth movements, and other facial

gestures onto the target actor’s video footage. This technology gained atten-

tion for its capacity to alter videos by swapping facial expressions, a capability

that raised both fascination and concerns about the potential for misuse in ma-

nipulating visual content. The development of Face2Facemarked a significant

leap in real-time facial manipulation technology, introducing a new frontier in

the evolution of visual media alteration.
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The term ”deepfake” itself originates from a Reddit user named ”deep-

fakes” in 2017, who popularized the technique by superimposing celebrities’

faces onto pornographic videos in late 2017, subsequently leading towidespread

attention and concern about the potential misuse of this technology [8].

To address the rising apprehensions surrounding deepfake proliferation,

dedicated efforts from both researchers and technology companies have been

underway to create robust detection mechanisms. A pivotal step in this pursuit

came in 2018 when scholars at the University of California, Berkeley, intro-

duced ”FaceForensics”, a groundbreaking method leveraging machine learn-

ing [37]. This technique scrutinizes facial expressions and head movements,

meticulously identifying disparities to flag manipulated content. Parallelly, in

2019, Google took a significant stride by releasing a comprehensive dataset

of deepfake videos [36]. This resource aimed to aid researchers in refining

detection algorithms and fortifying defense mechanisms against the evolving

sophistication of deepfake technology. However, despite these proactive mea-

sures, the relentless advancement of deepfake capabilities persists, posing an

escalating challenge in the realm of detection and necessitating continuous

innovation to combat its escalating threat.

In recent years, the distinction between a deepfake and a real face has

become increasingly challenging, reaching a level of complexity that raises

concerns. Moreover, the accessibility to artificial intelligence, particularly

generative models, has surged, facilitating the rapid dissemination of such de-

ceptive artifacts. Recognizing this evolving landscape is crucial, as it compels

us to be discerning consumers of digital content, acknowledging the potential

for manipulated visuals and understanding that not everything presented to us

should be taken at face value. As we navigate this era of advanced technol-

ogy, awareness becomes a powerful defense against the pervasive influence of

deepfakes, prompting a critical reassessment of our perceptions in the digital

realm.
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1.4 Structure of the Thesis

Chapter 1, Introduction, provides an overview of the research topic, objec-

tives, and the scope of the study.

Chapter 2, Literature Review, explores related papers on deepfake detection

and its generalization.

Chapter 3,Methodology, discusses the implementation of studied papers dur-

ing the internship and outlines the experimental approach.

Chapter 4, Experiment Results, presents a detailed view of the results ob-

tained from various methods, followed by a comparative analysis.

Chapter 5, Discussion, offers a brief discussion of the results, highlighting

strengths, weaknesses, implications of the methods employed and debates

about potential avenues for future research and improvement.

Chapter 6, Conclusion, summarizes the findings of the study.



Chapter 2

Literature Review

One early foray into deepfake detection involved the development of Convo-

lutional Neural Network (CNN) architectures. This initial method failed to

account for important details in the frequency domain, such as compression

artifacts or specific noise patterns. In the field of video forgery detection, the

work by Afchar et al. [1] presents a method for automatically and efficiently

detecting face tampering in videos, with a focus on Deepfake and Face2Face

techniques. Cozzolino et al. [36], together with the FaceForensics dataset, em-

ployed the Xception architecture, a deep learning model based on depthwise

separable convolutions, for training their forgery detection pipeline. Nguyen

et al. [32] introduces a novel approach to detect forged images and videos us-

ing capsule networks. Du et al. [10] proposed a Locality-Aware AutoEncoder

(LAE) that focuses on the forgery regions to make accurate predictions. Huy

H. Nguyen et al. [31] introduces a convolutional neural network that simulta-

neously detects manipulated media and locates the manipulated regions using

segmentation masks.

Nevertheless, the existing methodologies predominantly concentrated on

recognizingmacroscopic features. Consequently, a shift towards high-frequency-

oriented approaches was pursued. Qian et al. [34] introduced the Frequency

in Face Forgery Network (F3-Net), a system that exploits frequency-aware

cues to identify forgery patterns. Building upon the frequency representation,
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Frank et al. [11] delved into artifacts present in GAN-generated images and

proposed a method for detecting deep fake images. Li et al. [20] proposed

a frequency-aware discriminative feature learning framework that combines

metric learning and adaptive frequency feature generation. Gu et al. [13]

proposes a progressive enhancement learning framework that extracts fine-

grained forgery traces by exploiting both RGB and fine-grained frequency

clues. Luo et al. [28] utilizes high-frequency noise features to overcome the

limitations of current CNN-based detectors that are biased towards specific

textures.

Some methods focus more on identifying deepfakes by placing greater

emphasis on specific areas. Nguyen et al. [31] proposed a multi-task learning

approach for detecting and segmenting manipulated facial images and videos.

Wang et al. [46] proposed FakeSpotter, a robust approach for detecting AI-

synthesized fake faces, based on monitoring neuron behaviors. Amerini et

al. [4] developed a new technique using optical flow fields to discern be-

tween fake and original video sequences. Sun et al. [42] introduced LRNet, a

lightweight and robust framework that uses temporal modeling on precise ge-

ometric features. Zhu et al. [52] proposed a novel approach by decomposing

face images into 3D shape, common texture, identity texture, ambient light,

and direct light, and utilizing facial detail as a clue to detect subtle forgery

patterns. Li et al. [21] introduced Face X-ray, a forgery detection model that

stands out by emphasizing blending boundaries in manipulated face images.

Haliassos et al. [15] proposes a novel approach called LipForensics that tar-

gets high-level semantic irregularities in mouth movements. Zhao et al. [51]

propoes a method that measures patch-wise similarities of input images and

focusing on the inconsistency of source features within the forged images. Li

et al. [22] suggest a technique that utilizes variations in resolution between

manipulated faces and backgrounds to identify deepfake content.

Several methodologies leverage attention mechanisms for digital face ma-

nipulation detection. Dang et al. [25] utilized attention to improve feature
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maps and manipulated region visualization, Zhao et al. [50] proposed a multi-

attentional approach, Wang et al. [45] introduced a Multi-modal Multi-scale

Transformer (M2TR) for detecting subtle artifacts at different spatial levels

and in the frequency domain. Cao et al. [5], who developed an end-to-end

reconstruction-classification learning framework.

Another technique widely used for detecting deepfakes is that of disentan-

glement, it refers to the separation of different factors or components within

a given data representation. An example of this concept can be found in the

paper written by Liang et al. [24].



Chapter 3

Methodology

In this chapter it is presented a comprehensive outline of the approach em-

ployed in this study, encompassing various sections detailing the implemen-

tation process, dataset selection, and experimental design.

In the section titled General Implementation (Section 3.1), a systematic ap-

proach to implementing selected papers is delineated. This entails a thorough

examination of each paper’s methodology, replication of results using relevant

datasets, and adjustments for integration with proprietary datasets.

The subsequent section,Data (Section 3.2), delves into the selection and cate-

gorization of datasets, considering both public and private sources. Addition-

ally, this section elaborates on dataset partitioning and preprocessing efforts

to ensure standardized experimental conditions.

Sections 3.3, 3.4, 3.5, and 3.6 provide detailed information and implemen-

tations associated with the individual papers mentioned, specifically: UCF

Paper, SBI Paper, Locate and Verify Paper, and SPSL Paper.

An overview of the Evaluation (Section 3.7) is then presented, highlighting

the metrics used for evaluation and considerations for dataset imbalance in
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calculating AUC.

Lastly, the section titled Experimental Setup and Code Development (Sec-

tion 3.8) summarizes the experimental setup, including hardware specifica-

tions, software tools, and programming languages, to provide a clear under-

standing of the computational environment utilized throughout the experi-

ments.

3.1 General Implementation

In implementing the selected papers, I adopted a systematic approach charac-

terized by multiple stages:

1. Initially, I conducted a comprehensive study of each paper to ensure a

thorough understandingmethodologies. This involved spending several

days delving into both the code and the written material.

2. In cases where necessary, I replicated results by obtaining the relevant

datasets and adhering to the provided code guidelines. This step was

skipped when dealing with less complex repositories or minimal re-

quired modifications.

3. Subsequently, assuming correct replication of results, I implemented all

necessary changes. A primary modification involved adapting dataset

retrieval from various repositories to fit company datasets within the

workstation. Additionally, I often made adjustments such as sampling

or implementing mixed precision.

4. Typically, I conducted an initial experiment using FaceForensics as a

training set, followed bymodel evaluation on various datasets represent-

ing out-of-distribution domains. This preliminary step provided valu-

able insights into the model’s performance, ensuring consistency with
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previously replicated results and identifying any potential errors in pre-

vious implementations. FaceForensics is typically selected due to its

frequent use as a benchmark dataset in research papers.

5. Finally, for each paper, I tested different parameters and dataset combi-

nations to assess whether inclusion of diverse datasets led to improve-

ments in generalization. The results of these experiments are reported

in Chapter 4.

It’s important to highlight that the selection of papers was a collaborative deci-

sion made by the company, aligning with our objectives in deepfake detection

and generalization.

3.2 Data

In this study, we meticulously selected a diverse array of datasets to address

different scenarios and challenges in deepfake detection. We categorized the

datasets based on their public or private status, content, and, if applicable, the

specific algorithm or deep learning model used to generate fake images. A

summary of the key features of these datasets can be found in Table 3.1.

A detailed list of how the various algorithms or models associated with

datasets containing fake images work will be shown below. It’s important

to note that while this compilation isn’t exhaustive and encompasses only a

restricted subset, it offers valuable insights into the algorithms employed.

• Face Morph: is a process of blending or transitioning between two

facial images to create a smooth transformation effect, often used in

animations and visual effects.

• Face Swap: is a computational technique used to swap faces between

different images or videos, typically involving the replacement of one

person’s face with another while preserving the facial expressions and

movements.
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• Face Synthesis: involves the creation of artificial facial images or videos

using computational techniques, often leveraging deep learning models

to generate realistic-looking faces.

• GAN (Generative Adversarial Network)[12]: is a machine learning

framework consisting of two neural networks, a generator and a discrim-

inator, trained adversarially to generate realistic data samples, such as

images or videos.

• GFPGAN[47]: refers to a Generative Facial Prior GAN, a type of gen-

erative adversarial network (GAN) designed specifically for parsing fa-

cial features and generating high-quality images.

• Lip Sync: short for lip synchronization, is the process of matching the

lip movements of a digital character or avatar with spoken audio or text,

typically achieved through algorithms or manual animation techniques.

• Stable Diffusion[35]: is a method for generating high-quality images

by gradually adding noise to an initial image and iteratively denoising

it, resulting in visually appealing outputs with fine details.

• Talking Head: refers to a synthesized video or animation of a human

head speaking or lip-syncing to audio or text input, commonly used in

applications like virtual assistants, avatars, and deepfakes.

• Unstable Diffusion[9]: is a technique that involves adding random

noise to an image and gradually reducing its intensity, aiming to gen-

erate diverse and creative visual outputs, although with less predictable

results compared to stable diffusion.

It is worth emphasizing that the proposed dataset encompasses various char-

acteristics such as different resolutions, contexts, contrasts, brightness, facial

shapes, etc. This is a crucial element to enable a model to generalize and rep-

resent (albeit approximately) real-world data. However, on the other hand, it
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Datasets Informations

Name Type Algorithm

blendswap-swapped Fake Face Swap
CelebA[27] Real -
CelebA-GFPGAN Fake GFPGAN
CelebDF[23] Fake+Real Face Swap
Cheap-Morphs Fake Face Morph
DeeperForeniscs[17] Fake+Real Face Swap
DFDM[16] Fake FaceSwap
faceapp-faceswap Fake Face Swap
faceapp-morph Fake Face Morph
FaceForensics/actors[36] Real -
FaceForensics/Deepfakes[36] Fake Face Swap
FaceForensics/Face2Face[36] Fake Talking Head
FaceForensics/FaceSwap[36] Fake Face Swap
FaceForensics/NeuralTextures[36] Fake Face Swap
FaceForensics/youtube[36] Real -
FFHQ[18] Real -
FFHQ-GFPGAN Fake GAN
FRLL-Morphs[38][39] Fake Face Morph
iFakeFaceDB[30] Fake GAN
insightface-swapped Fake Face Swap
LRS3[3] Real -
MegaFS[53] Fake Face Swap
Ms-Celeb-1M[14] Real -
reface Fake Face Swap
simswap-swapped Fake Face Swap
stable-diffusion Fake Stable Diffusion
synthesis-generated Fake Face Synthesis
TPDNE Fake GAN
tedx[2] Real -
unstable-diffusion Fake Unstable Diffusion
VGGFace[6] Real -
Wav2lip[33] Fake Lip Sync

Table 3.1: Summary of all the Datasets used: Types (Real or Fake images)
and Algorithms Used. Datasets cited are public; otherwise, they are private.

adds a layer of complexity as the abundant and diverse data make model train-

ing very challenging. Furthermore, it’s worth noting that certain real datasets

include samples extracted from video datasets. Consequently, the range of

facial expressions available is limited, and the videos often follow a TV setup
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(e.g., FaceForensics and TEDx). This aspect should be taken into considera-

tion. Notably, since a significant portion of the data, both public and private,

was obtained from deepfake generation applications and algorithms, the type

of algorithms often varies greatly among them, and they range from algorithms

that are not very recent to algorithms that are extremely new and very difficult

to identify. This may make some datasets easier to identify than others.

Within our company, datasets are represented in well-organized image

structures. a unique procedure for performing preprocessing in a public dataset

has been identified. For example, FaceForensics is a collection of videos, the

preprocessing performed consists of extracting frames from the videos with a

given sampling rate followed face identification with subsequent image crop-

ping.

In terms of dataset partitioning, the majority of publicly available datasets

were already divided into training and test sets, facilitating a streamlined in-

tegration into the experimental framework. However, in cases where such

divisions were not predefined, a standard practice of allocating approximately

30% of the data as the test set was followed to maintain consistency across

experiments.

3.3 UCF Paper

The authors of ”UCF: Uncovering Common Features for Generalizable Deep-

fake Detection” [48] propose a novel disentanglement framework that uncov-

ers common forgery features by decomposing image information into forgery-

irrelevant, method-specific forgery, and common forgery features. They em-

ploy a multi-task learning strategy, a conditional decoder, and a contrastive

regularization technique to enhance the disentanglement process. The code of

this paper derived from the paper ”DeepfakeBench: A Comprehensive Bench-

mark of Deepfake Detection” [49].

The authors of the paper noticed the tendency of detectors to focus excessively
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on irrelevant content information and the lack of generalization due to over-

fitting to specific forgery technologies. To solve this problem they created the

architecture showed in Figure 3.1.

Figure 3.1: Representation of the architecture of the UCF model reported
within the paper

Specifically, within the encoder, a pair of images, one real and the other fake,

is processed. The encoder then produces three distinct types of outputs for

each image: one representing specific features, another for common features,

and the last one representing content features.

• Specific features: f s
0 for a fake image and f s

1 for a real image, are used

to identify the type of deepfake technique and distinguish them from

real images. They focus on capturing the unique characteristics of each

type of fake dataset.

• Common features:f c
0 for a fake image and f c

1 for a real image, are em-

ployed to differentiate fake images from real ones. The aim is to avoid

capturing patterns specific to a single deepfake domain and instead cap-

ture patterns that are consistent across various deepfakes encountered by

the model.
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• Content features: c0 for a fake image and c1 for a real image, are gen-

erated to preserve the facial structure and other content-related aspects

of the image.

These features are re-used to reconstruct faces, combining all previously men-

tioned features to produce four distinct images using a decoder:

• Recombined Image 1 - D(c0, f0): fake image Content features com-

bined with fake Specific and Common features.

• Recombined Image 2 - D(c0, f1): fake image Content features com-

bined with real Specific and Common features.

• Recombined Image 3 - D(c1, f1): real image Content features com-

bined with real Specific and Common features.

• Recombined Image 3 - D(c1, f0): real image Content features com-

bined with fake Specific and Common features.

To fully understand the complexity of the model, it’s helpful to delve into its

losses.

• There are two Classification losses, Lc
ce for Common features and Ls

ce

for Specific features, given by the cross-entropy loss. Specifically, after

classification, the result is compared with the corresponding label of

each features.

• TheContrastive loss,Lcon, evaluates the proximity of common features

between two images. To be more specific, if two images with different

labels are close to each other in the latent space, this loss will be high;

if they are far apart, it will be low. Similarly, for two images with the

same label, a low loss indicates closeness in the latent space, while a

high loss indicates distance.
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• There are two Reconstruction losses, Ls
rec for Self-Reconstruction and

Lc
rec for Cross-Reconstruction. In self-reconstruction, we pair the Com-

mon and Specific features generated from an image with the Common

features derived from the same image. In cross-reconstruction, wematch

the fake Common and Specific features generated from one image with

the real Common features generated from another image, and vice versa.

Ls
rec = ||x0 − D(f0, c0)||1 + ||x1 − D(f1, c1)||1

Lc
rec = ||x0 − D(f1, c0)||1 + ||x1 − D(f0, c1)||1

The final reconstruction loss is the sum of the two reconstruction losses

obtained from the previous operation.

Lrec = Ls
rec + Lc

rec

The final loss is the sum of these losses, eachmultiplied by empirical constants

determined by the paper’s author.

L = Lc
ce + λ1L

s
ce + λ2Lrec + λ3Lcon

To be more specific, the parameters selected by the authors are as follows:

λ1 = 0.1, λ2 = 0.3, λ3 = 0.05

In essence, what’s happening here is a disentanglement of features. The model

is tasked with distinguishing between features specific to various deepfake

techniques and between real and fake images. This distinction is evident in

the k-SNE visualization provided in Figure 3.2 of their paper. This approach

deviates from traditional detection methods, as illustrated by the Xception im-

age shown to the left of the preceding figure. Notably, the Xception model can



3.3 UCF Paper 20

differentiate between different deepfake techniques but struggles to do so dis-

tinctly in the feature space, unlike the UCF model.

Figure 3.2: The t-SNE visualization of features extracted from the baseline
Xception in the UCF framework trained on FaceForensics. We can see the dif-
ferent separations that can be obtained by considering different outputs within
the model itself.

It’s important to note that despite this architecture appearing quite complex,

during the inference period, only the encoder is taken into account, along with

only the common features, which are consequently classified as either fake or

real. This leads to a lengthy training process but faster speeds during inference.

3.3.1 Implementation

To explain the implementation process in this paper, I first carefully stud-

ied and understood the methodology described in the research paper. Then, I

replicated the experiments to validate their results, following the preprocess-

ing steps provided. This involved cloning the repository, setting up a Conda

environment, and installing required libraries. Next, I preprocessed the dataset

they used (FaceForensics) by extracting and cropping frames using the c23

compression. I made adjustments to configuration settings to select the cor-

rect folder wheremy dataset is stored and ran preprocessing and rearrangement

scripts provided by the authors, which required a significant time investment.
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In the subsequent phase, I made refinements to improve system perfor-

mance. Notably, I integrated mixed precision techniques to increase batch

size and computational efficiency. I also implemented strategic sampling to

handle large volumes of data, reducing epoch duration. Specifically, I trained

on 250,000 samples and tested on an additional 25,000, drawn from the entire

dataset pool. This adaptation significantly reduced training time from 80 to

15 minutes, allowing for more thorough monitoring of the process.

Additionally, I tailored the repository to my computational environment

for seamless retrieval of locally stored datasets. Since my proprietary datasets

differed structurally from publicly available ones, adjustments were made to

accommodate this distinction. Consequently, I eliminated methods reliant on

masks and landmarks, absent in my dataset, to streamline the process and en-

hance simplicity.

3.4 SBI Paper

The paper called ”Detecting Deepfakes with Self-Blended Images” [40] pro-

poses a novel approach called Self-Blended Images (SBIs) for deepfake de-

tection. SBIs are synthetic training data generated by blending pseudo source

and target images, reproducing common forgery artifacts. The key idea is that

SBIs encourage classifiers to learn generic and robust representations, improv-

ing model generalization to unknown manipulations and scenes.

The author’s objective is to identify statistical inconsistencies between al-

tered facial images and background images in deepfakes. To enhance training,

the key is to utilize more data. Rather than merging two distinct faces to create

a new face, the author devised a method to generate a new face using a single

image. This approach is called Self-Blended Images and the architecture is

showed in Figure 3.3. The pipeline operates as follows:
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1. Considering a real image, the Source-Target Generator creates a du-

plicate of this image, treating the two images as source and target, re-

spectively. Subsequently, to introduce statistical inconsistencies, var-

ious types of random transformations are applied, including random

shifts in RGB channels, hue, saturation, value, brightness, and con-

trast. Additionally, to replicate blending boundaries and landmark mis-

matches, the source image undergoes resizing and translation, randomly

selected from a feasible range.

2. The Mask Generator facilitates blending of source and target images

using a grayscale mask image. It begins by employing a landmark de-

tector on the input image to predict facial regions and creates a mask

by computing the convex hull from these predicted landmarks. The

mask undergoes deformation using landmark transformations. To di-

versify blendingmasks, theMaskGenerator introduces random changes

to their shape and blending ratios. This includes elastic deformation

and smoothing with Gaussian filters, followed by adjustments to pixel

values for erosion or dilation of the mask. Additionally, the Mask Gen-

erator varies the blending ratio of the source image by multiplying the

mask image by a constant between 0 and 1.

3. The source and target images are blended using the mask to produce a

Source-Blended-Image (SBI).

ISB = Is ⊙ M + It ⊙ (1 − M)

Is represents the image source, It represents the image target and M

represents the mask.

One peculiar detail of this paper compared with others is that it is possible

to train it using only real images. Moreover, during training, real images and

artificially fake images are paired together, thus forcing the model to learn the
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Figure 3.3: Representation of the architecture of the SBI model reported
within the paper.

differences between them. It is possible to dwell on an example given in the

Image 1.1 and Image 3.4. This method enables the generation of manipulated

faces that are both easily identifiable by the human eye and quite challenging

to discern. The latter option is crucial as it compels the model to operate with

minimal information.

Figure 3.4: The images presented were generated using the SBI method. Real
images appear at the top of each image, while fake images are depicted at the
bottom.

3.4.1 Implementation

In this paper (like the previous one) the approach was very simple and straight-

forward. As a first step it was preferred to use the datasets already available in

the workstation, this necessitated some modifications to the code. Then some

experiments were carried out with real images, initially faceforensics was used

as usual. Next we tried different combinations of datasets.
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This model relies on landmarks, which are essential facial points or fea-

tures identified in the input image. An example of landmarks applied in im-

ages can be seen in Figure 3.5. They utilized Dlib[19] to compute landmarks,

utilizing 81 shape predictor points for each dataset. To expedite the training

process, these landmarks were pre-calculated and stored in the workstation.

During training, the corresponding landmarks for each image were accessed.

Figure 3.5: Sample images showcasing associated landmarks.

Subsequently, several optimization operations were performed. As the first

step, the landmark generation function was accelerated by utilizing GPUs and

processing batches, reducing the overall time from almost 31 hours to approx-

imately 10 minutes per dataset. Following this, a decision was made to utilize

a subset of data per epoch due to the time required, resulting in a decrease from

about 17 hours per epoch to 40 minutes. The data retrieval function was also

improved, reducing the processing time from approximately 7 minutes to just

a few seconds. Here, the utilization of batches, along with a better formulation

of list comprehensions, played a significant role. Finally, the implementation

of mixed precision was adopted, increasing the batch size from 4 to 8.

3.5 Locate and Verify Paper

The paper Locate and Verify: A Two-Stream Network for Improved Deep-

fake Detection [41], proposes a two-stream network for improved deepfake
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detection. The network effectively identifies potential forged regions and ex-

tracts forgery evidence. It includes three functional modules to handle multi-

stream and multi-scale features. The paper also introduces a semi-supervised

patch similarity learning strategy to estimate patch-level forged location an-

notations.

When someone changes a face in a picture using editing techniques, some

areasmight show obvious signs of editing, while other parts remain untouched,

keeping the original picture unchanged. This creates an uneven appearance

with some parts looking altered and others looking normal. In order to deal

with this problem, the authors of the paper created a two-part system able to:

1. Locate where manipulations might be in a picture.

2. Verify if those areas are manipulated.

The first part guides the second by pointing out areas that are more likely to

have fake alterations in the image. The architecture of the model is visible in

Figure 3.6.

Figure 3.6: Representation of the architecture of the Locate and Verify model
reported within the paper.

The pipeline of the data follows this path:

1. In the Input Flow the Spatial RichModel Filters are applied to generate

an image called noise residual that contains information associated with
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theworld of steganography (hidden information in objects ormessages).

This is useful because SRM Filters better captures high-frequency fea-

tures crucial for image forensics.

2. In the Entry Flow there is a combination of RGB and SRM modalities

through Cross-Modality Consistency Enhancement (CMCE) mod-

ule. This is employed to collaboratively learn features from two dif-

ferent representations of data.

3. In theMiddle Flow theLocal ForgeryGuidedAttention (LFGA)mod-

ule obtain an attention map from the location features to guide the learn-

ing of more robust and informative classification features.

4. In the Exit Flow, in order to exploit artifacts in shallow features,Multi-

scale Patch Feature Fusion (MPFF)module is introduced. Themethod

involves examining artifacts at multiple scales, where one branch fo-

cuses on classification features representing global semantic informa-

tion, and the other branch concentrates on localization features captur-

ing local spatial details.

5. Still in the Exit Flow, to address the absence of forgery annotations

in public deepfake datasets, the paper introduces a Semi-supervised

Patch Similarity Learning (SSPSL) strategy for training the localiza-

tion branch. Specifically, for real images, the forgery location maps are

fixed as all zeroes, while for fake images, regions like the nose, eyes,

and mouth (commonly manipulated areas) are identified using facial

landmarks.

3.5.1 Implementation

In this approach, the input consists of a combination of the face to be identi-

fied and its mask repeated twice (see Figure 3.7). To achieve this, faces and

masks were extracted from FaceForensics videos using preprocessing scripts
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provided by the repository, along with a script for frame extraction and pre-

processing. Two datasets were created from FaceForensics’s videos using dif-

ferent sampling rates: one with 10,000 images and another with 50,000 (along

with corresponding masks). Several functionalities were then implemented to

improve efficiency and analysis. These included: sampling to reduce epoch

time, saving an experiment summary file to track parameters used in differ-

ent experiments, plotting loss and metrics during training using tensorboard,

and implementing mixed precision to increase batch size. Additionally, as the

model returns both classification predictions and masks identifying manipu-

lation points, images associated with predicted masks were printed for each

epoch.

Figure 3.7: Input of the SBI Model.

It’s worth noting that not all input masks are highly accurate; for instance,

in Figure 3.7, the corresponding mask appears as a simple square. This is

acceptable since extreme accuracy is not required for the entire dataset; a mi-

nority of very accurate masks have a significant impact.

3.6 SPSL Paper

The paper Spatial-Phase Shallow Learning: Rethinking Face Forgery Detec-

tion in Frequency Domain [26], introduces a novel approach called Spatial-

Phase Shallow Learning (SPSL) for detecting face forgery in images. The



3.6 SPSL Paper 28

authors observe that up-sampling, a common step in face forgery techniques,

results in changes in the frequency domain, particularly in the phase spectrum.

They propose using the phase spectrum, which preserves important frequency

components, along with spatial image information to capture up-sampling ar-

tifacts.

Figure 3.8: Representation of the architecture of the SPSL model reported
within the paper.

The architecture of the model is showed in Figure 3.8. The peculiarity

of this model is that besides being relatively very simple, it involves recon-

structing the representation in the spatial domain of the phase spectrum from

the frequency domain and concatenating it with the RGB image to form a 4-

channel image. In other words, the input entered within Xception consists of

an image with 4 channels.

Together with the UCF model, it is one of the best papers you can find in

the repository ”DeepfakeBench: A Comprehensive Benchmark of Deepfake

Detection” [49].
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3.6.1 Implementation

No significant modifications were necessary since the code utilized is the same

as that of the UCF paper, thus the changes made previously (Section 3.3) re-

main. For this reason, it was decided to directly utilize the datasets stored

within the workstation and refrain from replicating the results.

3.7 Evaluation

In the evaluation of deepfake detectionmodels, two commonly employedmet-

rics are the Area Under the Receiver Operating Characteristic curve (AUC)

andAccuracy. AUC quantifies the ability of a model to discriminate between

positive and negative instances, with a higher AUC indicating superior per-

formance. It is calculated by plotting the true positive rate against the false

positive rate across various classification thresholds. Accuracy, on the other

hand, measures the proportion of correctly classified instances over the total

number of instances. It is computed as the sum of true positives and true neg-

atives divided by the total number of instances. However, it is important to

note that in datasets exclusively comprised of either fake or real images, AUC

calculation becomes impractical due to the absence of a balanced distribution

between positive and negative instances.

Other metrics such as Average Precision (AP) and Equal Error Rate (EER)

are also relevant in the evaluation of deepfake detection models. AP measures

the area under the precision-recall curve and provides a more nuanced under-

standing of model performance, particularly in scenarios where class imbal-

ances exist within the dataset. A higher AP indicates better model perfor-

mance. Equal Error Rate (EER) represents the point on the ROC curve where

the false acceptance rate (FAR) is equal to the false rejection rate (FRR). It is

an important metric for assessing the overall effectiveness of a detection sys-

tem, as it signifies the point at which the model is equally likely to misclassify

genuine and fake instances. While these metrics provide valuable insights into
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model performance, they were not extensively discussed in this thesis.

3.8 Experimental Setup and Code Development

For conducting experiments and code scrutiny, the workstation available in

the company equipped with Linux operating system was employed. The GPU

utilized was a GeForce RTX 2080 Ti, enhancing computational capabilities.

Python served as themain programming language for this project, with Py-

Torch being the primary library used. Other essential dependencies included

NumPy and OpenCV. Version control was handled through Git, ensuring easy

tracking and collaboration. The integrated development environment (IDE)

chosen for the project was Visual Studio Code.



Chapter 4

Experiment Results

In this chapter, we present the comprehensive analysis of experimental results

obtained from various studies conducted under different papers, shedding light

on the efficacy, feasibility, and implications of the methodologies employed.

The experimental investigations delve into the findings outlined in four pri-

mary papers: UFCPaper (Section 4.1), SBI Paper (Section 4.2), Locate and

Verify Paper (Section 4.3), and SPSL Paper (Section 4.4).

Additionally, we provide a combined evaluation between all the previousmodel

in a section called Cross Evaluation (Section 4.5).

4.1 UFC Paper

In the initial phase of experimentation, the decision was made to replicate ex-

isting findings. Consequently, the FaceForensics dataset obtained from the In-

ternet was utilized, accompanied by the requisite preprocessing steps as spec-

ified by the repository. The model was trained using the default parameters

obtained from the repository. Key experimental parameters included a learn-

ing rate of 1e-4, a batch size of 8, and input images sized at 256x256 pixels.
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Adam optimizer was utilized, the backbone was Xception[7] and data aug-

mentation techniques such as image flipping, rotation, blur, brightness adjust-

ment, contrast adjustment, and quality control were employed. As depicted in

Figure 4.1, it is evident that the model exhibits a learning trend, characterized

by a gradual decrease in training losses. Concurrently, there is an observable

increase in performance metrics such as the Area Under the Curve (AUC) and

other relevant metrics provided by the repository.

Figure 4.1: Visualization of various losses and metrics recorded during the
initial training session with the UCF model on the FaceForensics dataset.

Next, the model was evaluated using both the FaceForensics and CelebDF test

set. Upon examination of Table 4.1, it is evident that while the reproduced

results do not align precisely with the original outcomes, they exhibit a high

degree of fidelity. Thus, the model is overall able to capture the key features

for identifying a deepfake within the CelebDF dataset, despite not having been

trained on it.

Following this, my first objective was to ascertain the consistency in result

representation by conducting experiments using various seeds: 0, 10, 28, 42,

and 100. Each training iteration comprised 15 epochs and was assessed on a

CelebDF test set at the epoch where the loss was minimized. In addition, the
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UCF Result Reproduction (AUC)

Test Set Trained Model Paper Result

FaceForensics 0.9480 0.9705
CelebDF 0.7396 0.7527

Table 4.1: Reproduction of results for the UCF model. Both models were
trained using the FaceForensics dataset, and the evaluations presented here
are based on the test sets from both FaceForensics and CelebDF datasets.

parameters associatedwith themodel discussed above remain unchanged. The

findings, detailed in Table 4.2, reveal a high degree of alignment among the

results, thus confirming their consistency. This means not only that the model

can discretely identify deepfakes but also that it is quite stable in returning an

output.

UCF Result Consistency (AUC)

Test Set Seed 0 Seed 10 Seed 28 Seed 42 Seed 100

CelebDF 0.7420 0.7398 0.7406 0.7308 0.7353

Table 4.2: Seed Consistency in UCF Model. The models were trained on the
FaceForensics dataset for 15 epochs, and the best epoch was selected. The
results demonstrate consistency across different seeds within the same exper-
imental setup.

An additional experiment was conducted to investigate the impact of alter-

ing the model’s backbone architecture on its performance. The default back-

bone utilized in the model is Xception, which was substituted with Efficient-

NetB4, accompanied by adjustments to the input size (Xception takes an input

of 299x299 but in the paper was setup a resolution of 256x256 while Effi-

cientNetB4[43] of 380x380). As indicated in Table 4.3, the results reveal a

marginal enhancement in terms of the Area Under the Curve (AUC) metric

calculated on the CelebDF test set. Since we can consider the two models

equivalent in performance, I will continue to use Xception.

In the experiments with the UCF technique, we tested different learning

rates, ranging from 1e-3 to 1e-5. The default value mentioned in the paper,
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UCF Backbone Comparison (AUC)

Test Set Xception EfficientNetB4

CelebDF 0.7420 0.7525

Table 4.3: Comparison of the Xception and EfficientNetB5[43] backbones
in the UCF Model. Two distinct training runs were conducted with identical
setups but different backbones. Experimental results indicate that Efficient-
NetB5 performs slightly better.

adjusted for our batch size, is 1e-4. Figure 4.2 illustrates how using a higher

learning rate caused the loss value to increase instead of decrease, prompting

us to stop training for time constraints. Conversely, too low a learning rate re-

sulted in excessively long convergence times. Even with the longest training

duration, the loss did not reach its previous level of 1e-4. These experiments

highlighted the significant impact of the 1e-4 learning rate in facilitating con-

vergence.

Figure 4.2: The visualization illustrates experiments conducted with different
learning rates: 1e-3 (orange), 1e-5 (green), and 1e-4 (blue). The results in-
dicate that the experiment with a learning rate of 1e-4 demonstrates superior
convergence compared to the others.

Moreover, we explored the effectiveness of data augmentation, emphasizing

its pivotal role in improving the performance of this technique. Data augmen-

tation involves artificially expanding the training dataset by applying various
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transformations such as rotation, flipping, scaling, and brightness adjustments

to the existing images. This process helps the model generalize better and

learn robust features from the data. Through our investigations, we found that

incorporating data augmentation significantly improved the model’s ability to

generalize to unseen data and enhanced its overall performance. Results are

presented in Table 4.4.

UCF Data Augmentation Comparison (AUC)

Test Set with Data Augmentation without Data Augmentation

CelebDF 0.7420 0.7288

Table 4.4: Comparison of Experiments with and without Data Augmentation
in the UCF Model trained on FaceForensics

Additionally, we conducted a brief experiment to investigate the effectiveness

of dropout regularization. Dropout is a technique commonly used in neu-

ral networks to prevent overfitting by randomly dropping out some neurons

during training. We compared the performance of the model with and with-

out dropout by conducting short training sessions and observing the resulting

AUC test scores. Table 4.5 illustrates the performance improvements achieved

with dropout regularization. These results demonstrate the beneficial impact

of dropout in enhancing the model’s generalization ability and overall perfor-

mance.

UCF Dropout Comparison (AUC)

Test Set with Dropout Without Dropout

CelebDF 0.7573 0.7420

Table 4.5: Comparison with and without dropout in the UCFModel. Two dis-
tinct training runs were conducted with identical setups. Experimental results
indicate that Dropout have a good impact for performances
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The top-performing model, trained on FaceForensics datasets comprising ac-

tors, Deepfakes, Face2Face, FaceSwap, and NeuralTextures, underwent eval-

uation across various datasets. This analysis highlighted the limitations of re-

lying solely on a single dataset to ensure the adaptability of the model. Table

4.6 illustrates that while the model performs well on datasets within the same

domain, it struggles when faced with out-of-distribution datasets. This result

is expected since the model was trained exclusively on one domain. Addition-

ally, the model tends to classify images as real more frequently than fake, as

evident when comparing its performance on real and fake image datasets. It’s

worth noting that the model performs poorly on privately generated datasets,

which utilize newer and more complex techniques compared to those found

online. This challenge deviates from our goal of generalizing the model ef-

fectively.

After conducting initial experiments, we proceeded with more detailed in-

vestigations involving a broader range of datasets and varied combinations.

Through thorough evaluation of these combinations, we identified a specific

configuration for further analysis. This configuration included datasets such

as Defacto-morphs, Face2Face, FaceSwap, NeuralTextures, actors, youtube,

FFHQ, FFHQ-GFPGAN,Ms-Celeb-1M, StyleGAN3, VGGFace, faceapp-morph,

reface, and tedx. We chose these datasets based on factors such as the vary-

ing difficulty levels in identifying deepfakes within each dataset, the presence

of specific types of deepfakes, and the necessity to include datasets contain-

ing deepfakes generated from images within other datasets, or vice versa. As

shown in Table 4.7, incorporating multiple datasets indeed led to improved

results, as expected. Surprisingly, the performance of the majority of the out-

of-distribution datasets not only benefited from this training but also increased

significantly. While these improvementsmay not be dramatic, they represent a

promising step towards better generalization of deepfake detection. Addition-

ally, we observed a tendency to classify images across all out-of-distribution

datasets as real. An interesting observation is the below-average results of
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UCF Model trained on FaceForensics

Name Type (Real/Fake) Accuracy AUC

In-Domain Datasets

FaceForensics/Deepfakes Fake 0.9371 -
FaceForensics/Face2Face Fake 0.9493 -
FaceForensics/FaceSwap Fake 0.9558 -
FaceForensics/NeuralTextures Fake 0.8799 -
FaceForensics/youtube Real 0.9566 -

Out-of-Distribution Datasets

blendswap-swapped Fake 0.4102 -
CelebA Real 0.9499 -
CelebA-GFPGAN Fake 0.3596 -
CelebDF Fake+Real 0.5098 0.6911
Cheap-Morphs Fake 0.6552 -
DeeperForensics Fake+Real 0.8821 0.6678
Defacto-morphs Fake 0.5822 -
DFDM Fake 0.9871 -
faceapp-faceswap Fake 0.0775 -
faceapp-morph Fake 0.1600 -
FaceForensics/actors Real 0.6971 -
FFHQ Real 0.8135 -
FFHQ-GFPGAN Fake 0.5562 -
FRLL-Morphs Fake 0.1071 -
iFakeFaceDB Fake 0.9239 -
insightface-swapped Fake 0.2739 -
LRS3 Real 0.9387 -
MegaFS Fake 0.3737 -
Ms-Celeb-1M Real 0.6340 -
reface Fake 0.3925 -
simswap-swapped Fake 0.4536 -
stable-diffusion Fake 0.3486 -
StyleGAN3 Fake 0.2031 -
synthesis-generated Fake 0.3140 -
tedx Real 0.8840 -
TPDNE Fake 0.1305 -
unstable-diffusion Fake 0.3627 -
VGGFace Real 0.9483 -
Wav2lip Fake 0.2972 -

Table 4.6: Performances of the UFC paper trained on FaceForensics
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FFHQ and youtube datasets. However, these results can be justified: youtube

is the original dataset from which all other FaceForensics datasets containing

faked images were created, while FFHQ is the dataset used to create FFHQ-

GFPGAN. Furthermore, we noted that the simswap-swapped dataset is partic-

ularly challenging to classify, likely due to its association with more complex

deepfake generation techniques.

Failing to improve these results, we chose to veer toward a new paper.

4.2 SBI Paper

In contrast to the previous study, we had access to the model’s weights. This

allowed us to investigate whether the performancemetrics obtained from eval-

uating the model on the CelebDF test set matched those reported in the pa-

per. Additionally, instead of using Xception as the backbone, the authors

opted for EfficientNetB5. This decision provided an opportunity for us to

explore the effects of varying input sizes on performance through experimen-

tation: 256x256, 380x380, and 456x456. While I was curious about this

experiment, I understood that EfficientNetB5 typically works with an input

size of 456x456. However, in their repository, the images had been resized

to 380x380. Upon comparing the results, a significant disparity became ap-

parent. Table 4.8 clearly shows inconsistencies between the Area Under the

Curve (AUC) reported in the paper and the values obtained through our eval-

uations with different input dimensions. It is possible that the original study

employed a different evaluation methodology, which unfortunately we could

not ascertain from the paper itself. Due to these discrepancies and encountered

limitations, we made the decision to refrain from replicating the reported re-

sults by training a model from scratch. Instead, we proceeded directly with

the implementation of the model in our own experimentation.

The next experiment involves training the SBImodel using the FaceForen-

sics dataset stored in the workstation. It’s important to recall that this method



4.2 SBI Paper 39

UCF Model trained on Multiple Datasets

Name Type (Real/Fake) Accuracy AUC

In-Domain Datasets

Defacto-morphs Fake 1.0 -
faceapp-morph Fake 0.7707 -
FaceForensics/actors Real 0.9758 -
FaceForensics/Deepfakes Fake 0.9702 -
FaceForensics/Face2Face Fake 0.9907 -
FaceForensics/FaceSwap Fake 0.9883 -
FaceForensics/NeuralTextures Fake 0.9341 -
FaceForensics/youtube Real 0.7377 -
FFHQ Real 0.4444 -
FFHQ-GFPGAN Fake 0.9988 -
Ms-Celeb-1M Real 0.9998 -
StyleGAN3 Fake 0.9801 -
tedx Real 0.9824 -
VGGFace Real 0.9794 -

Out-of-Distribution Datasets

blendswap-swapped Fake 0.5765 -
CelebA Real 0.8598 -
CelebA-GFPGAN Fake 0.9762 -
CelebDF Fake+Real 0.6179 0.6878
Cheap-Morphs Fake 0.7895 -
DeeperForensics Fake+Real 0.1370 0.3590
DFDM Fake 0.9284 -
faceapp-faceswap Fake 0.6468 -
FRLL-Morphs Fake 0.6138 -
iFakeFaceDB Fake 0.5630 -
insightface-swapped Fake 0.4771 -
LRS3 Real 0.9722 -
MegaFS Fake 1.0 -
reface Fake 0.9848 -
simswap-swapped Fake 0.1132 -
stable-diffusion Fake 0.9514 -
synthesis-generated Fake 0.9993 -
TPDNE Fake 0.9984 -
unstable-diffusion Fake 0.8755 -
Wav2lip Fake 0.3208 -

Table 4.7: Performances of the UFC paper trained on a combination of differ-
ent Datasets
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SBI Their Pretrained Weights Evaluation (AUC)
Using different images sizes

Test Set 256x256 380x380 456x456 Paper Result

CelebDF 0.5894 0.7084 0.7107 0.9287

Table 4.8: Performance evaluation of the provided pretrained weights on SBI
using different resolutions. The experiments reveal a lack of correspondence
between the reported results in the paper and the obtained results.

only utilizes real images as input, so we’ll only consider datasets within Face-

Forensics that contain real images, namely actors and youtube. As shown in

Figure 4.1, the training appears to progress in the right direction. However,

there are occasional spikes in the loss, which I suspect are associated with

more complex portions of the data.

Figure 4.3: Visualization of losses, accuracies, and AUC obtained during the
initial training with the SBI model on the FaceForensics dataset.

I assessed the collected data across various datasets, as displayed in Ta-

ble 4.9. As anticipated, exclusively utilizing the YouTube and actors datasets

from FaceForensics did not produce satisfactory results. The trend observed

leans towards classifying the images as real. In datasets containing fake im-

ages, the results consistently performed poorly. Considering the significant

gap between within-domain and out-of-domain datasets, it is evident that this

model struggles with generalization.

Aware of the unsatisfactory results obtained previously, we conducted sev-

eral experiments using different combinations of datasets containing real im-

ages. However, these experiments did not produce noteworthy results. Table
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SBI Model trained on FaceForensics

Name Type (Real/Fake) Accuracy AUC

In-Domain Datasets

FaceForensics/actors Real 0.9708 -
FaceForensics/youtube Real 0.9949 -

Out-of-Distribution Datasets

blendswap-swapped Fake 0.2277 -
CelebA Real 0.9763 -
CelebA-GFPGAN Fake 0.2362 -
CelebDF Fake+Real 0.4098 0.5334
Cheap-Morphs Fake 0.4502 -
DeeperForensics Fake+Real 0.9503 0.4758
Defacto-morphs Fake 0.6927 -
DFDM Fake 0.7093 -
faceapp-faceswap Fake 0.0305 -
faceapp-morph Fake 0.0821 -
FaceForensics/Deepfakes Fake 0.6428 -
FaceForensics/Face2Face Fake 0.1393 -
FaceForensics/FaceSwap Fake 0.4829 -
FaceForensics/NeuralTextures Fake 0.0292 -
FFHQ Real 0.8586 -
FFHQ-GFPGAN Fake 0.2170 -
FRLL-Morphs Fake 0.0565 -
iFakeFaceDB Fake 0.3277 -
insightface-swapped Fake 0.2063 -
LRS3 Real 0.9890 -
MegaFS Fake 0.7519 -
Ms-Celeb-1M Real 0.9825 -
reface Fake 0.2750 -
simswap-swapped Fake 0.1841 -
stable-diffusion Fake 0.4409 -
StyleGAN3 Fake 0.1753 -
synthesis-generated Fake 0.3899 -
tedx Real 0.9762 -
TPDNE Fake 0.0683 -
unstable-diffusion Fake 0.2264 -
VGGFace Real 0.9818 -
Wav2lip Fake 0.2972 -

Table 4.9: Performances of the SBI model trained on FaceForensics
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4.10 presents the evaluation of the best-performing model trained on Actors,

YouTube, Ms-Celeb-1M, VGGFace, and LRS3 datasets. It’s worth noting that

the results appear to be relatively stable compared to the previous experiment

or even show a slight decline, indicating no significant improvement.

Experiments were also performed finetuning the model using the weights

provided by the authors. Unfortunately, no noteworthy results are reported.

One interesting experiment that we did not include involved training themodel

solely on the LRS3 dataset. Interestingly, this model achieved results above

the average of the tested SBI models. However, since it deviated from the

main focus of our generalization task, we decided to proceed with the study

of a new paper.

4.3 Locate and Verify Paper

As a first step, the results also had to be replicated in this paper. The dataset

used for training is again FaceForensics and the parameters remained the de-

fault ones. Specifically, the image resolution chosen by the authors is 299x299,

the batch size equals 8 and is associated with a learning rate of 5e-4. The op-

timizer is adam and again the backbone is xception. In addition, as a dataset,

the dataset with 10k elements was used for some preliminary experiments, and

later the dataset with 50k elements was used permanently. As evident from

Table 4.11, the results obtained are distant from the anticipated outcomes out-

lined in the paper.

Despite the disappointing results obtained earlier, I continued to evaluate

the outcomes presented in Table 4.12. As anticipated, the results are extremely

low. It’s important to highlight that the model struggled to capture the main

features of the actors dataset, resulting in very poor performance despite it

being an in-domain dataset. Additionally, there are several datasets where the

model’s performance falls below 0.10, rendering it unusable.

To provide a comprehensive overview, I want to mention that there were



4.3 Locate and Verify Paper 43

SBI Model trained on Multiple Datasets

Name Type (Real/Fake) Accuracy AUC

In-Domain Datasets

FaceForensics/actors Real 0.9165 -
FaceForensics/youtube Real 0.9806 -
LRS3 Real 0.9957 -
Ms-Celeb-1M Real 0.9957 -
VGGFace Real 0.9830 -

Out-of-Distribution Datasets

blendswap-swapped Fake 0.6063 -
CelebA Real 0.9788 -
CelebA-GFPGAN Fake 0.3000 -
CelebDF Fake+Real 0.5201 0.6164
Cheap-Morphs Fake 0.4100 -
DeeperForensics Fake+Real 0.7724 0.5788
Defacto-morphs Fake 0.6674 -
DFDM Fake 0.9548 -
faceapp-faceswap Fake 0.0381 -
faceapp-morph Fake 0.0638 -
FaceForensics/Deepfakes Fake 0.8061 -
FaceForensics/Face2Face Fake 0.2711 -
FaceForensics/FaceSwap Fake 0.4882 -
FaceForensics/NeuralTextures Fake 0.1541 -
FFHQ Real 0.9225 -
FFHQ-GFPGAN Fake 0.2995 -
FRLL-Morphs Fake 0.0239 -
iFakeFaceDB Fake 0.1049 -
insightface-swapped Fake 0.3040 -
MegaFS Fake 0.6491 -
reface Fake 0.3387 -
simswap-swapped Fake 0.5410 -
stable-diffusion Fake 0.4032 -
StyleGAN3 Fake 0.1088 -
synthesis-generated Fake 0.4733 -
tedx Real 0.9347 -
TPDNE Fake 0.0267 -
unstable-diffusion Fake 0.2305 -
Wav2lip Fake 0.0974 -

Table 4.10: Performances of the SBI model trained on a combination of dif-
ferent Datasets
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SPSL Result Reproduction (AUC)

Test Set Trained Model Paper Result

FaceForensics 0.7796 0.9980
CelebDF 0.5465 0.8600

Table 4.11: Reproduction of results for the LAV model. Both models were
trained using the FaceForensics dataset, and the evaluations presented here
are based on the test sets from both FaceForensics and CelebDF datasets.

two experiments conducted: one where dropout was removed and another

where data augmentation was removed. The aim was to determine if these

two techniques were overly aggressive and hindering proper model training.

However, the results were slightly worse than those presented in Table 4.12,

so I chose not to include them. Additionally, it seems that the model is unable

to generate masks associated with manipulation areas. The obtained results

show masks identical to those given as input, contrary to expectations. This

discrepancy suggests that either themodule inside themodel is not functioning

properly or it has not been implemented correctly. In any case, we decided to

move forward.

4.4 SPSL Paper

In this paper, unlike others, we did not conduct a replication of results because

the model is already implemented with necessary modifications (made during

the study of the UCF paper) within DeepFakeBench[49]. Therefore, our first

experiment involved training using default values reported in the repository

and the FaceForensics dataset. To provide further detail, we reduced the batch

size to 16 from 32 due to GPU limitations, which required us to also adjust

the learning rate to 1.414e-4. This adjustment ensures stability and conver-

gence during training by aligning the learning rate with the new batch size.

Input images were resized to a resolution of 256x256 pixels. The optimizer



4.4 SPSL Paper 45

Locate and Verify Model trained on FaceForensics

Name Type (Real/Fake) Accuracy AUC

In-Domain Datasets

FaceForensics/actors Real 0.8538 -
FaceForensics/Deepfakes Fake 0.9490 -
FaceForensics/Face2Face Fake 0.9070 -
FaceForensics/FaceSwap Fake 0.7674 -
FaceForensics/NeuralTextures Fake 0.9463 -
FaceForensics/youtube Real 0.2539 -

Out-of-Distribution Datasets

blendswap-swapped Fake 0.7233 -
CelebA Real 0.7757 -
CelebA-GFPGAN Fake 0.4008 -
CelebDF Fake+Real 0.6354 0.5465
Cheap-Morphs Fake 0.7363 -
DeeperForensics Fake+Real 0.3127 0.5023
Defacto-morphs Fake 0.0075 -
DFDM Fake 0.7595 -
faceapp-faceswap Fake 0.3024 -
faceapp-morph Fake 0.3076 -
FFHQ Real 0.6433 -
FFHQ-GFPGAN Fake 0.2278 -
FRLL-Morphs Fake 0.0177 -
iFakeFaceDB Fake 0.1294 -
insightface-swapped Fake 0.7307 -
LRS3 Real 0.1290 -
MegaFS Fake 0.4574 -
Ms-Celeb-1M Real 0.2726 -
reface Fake 0.2077 -
simswap-swapped Fake 0.8347 -
stable-diffusion Fake 0.6780 -
StyleGAN3 Fake 0.4106 -
synthesis-generated Fake 0.0376 -
tedx Real 0.0404 -
TPDNE Fake 0.2170 -
unstable-diffusion Fake 0.5645 -
VGGFace Real 0.4684 -
Wav2lip Fake 0.8174 -

Table 4.12: Performances of the Locate and Verify model trained on Face-
Forensics
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employed was Adam, and data augmentation techniques applied included flip-

ping, rotating, blurring, adjusting brightness and contrast, and setting quality

limits. Despite some fluctuations, the training appears to proceed smoothly,

as demonstrated by Figure 4.4.

Figure 4.4: Visualization of various losses and metrics recorded during the
initial training session with the SPSL model on the FaceForensics dataset.

Subsequently, an evaluation was conducted on FaceForensics, as shown in

Table 4.13, which led to results that were not extraordinary but encouraging

nonetheless. The model appears to have captured some key characteristics of

deepfakes but struggles with certain datasets in particular.

Intrigued by the technique employed, I sought to understand the impact

of the Fourier transform on the final results. To investigate this, I conducted

an experiment comparing the performance of the model with and without this

transform. The results shown in Table 4.14 demonstrate how the introduced

layer using the fourier transform has a positive impact by going on to signifi-

cantly improve performance.

As usual, in this case, attempts were made to introduce new datasets into
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SPSL Model trained on FaceForeniscs

Name Type (Real/Fake) Accuracy AUC

In-Domain Datasets

FaceForensics/Deepfakes Fake 0.9661 -
FaceForensics/Face2Face Fake 0.9841 -
FaceForensics/FaceSwap Fake 0.9851 -
FaceForensics/NeuralTextures Fake 0.9086 -
FaceForensics/youtube Real 0.8208 -

Out-of-Distribution Datasets

blendswap-swapped Fake 0.4683 -
CelebA Real 0.9003 -
CelebA-GFPGAN Fake 0.4899 -
CelebDF Fake+Real 0.5542 0.7763
Cheap-Morphs Fake 0.7290 -
DeeperForensics Fake+Real 0.7851 0.5214
Defacto-morphs Fake 0.4925 -
DFDM Fake 0.9612 -
faceapp-faceswap Fake 0.1438 -
faceapp-morph Fake 0.1666 -
FaceForensics/actors Real 0.6517 -
FFHQ Real 0.7415 -
FFHQ-GFPGAN Fake 0.7083 -
FRLL-Morphs Fake 0.2386 -
iFakeFaceDB Fake 0.5008 -
insightface-swapped Fake 0.3537 -
LRS3 Real 0.8282 -
MegaFS Fake 0.5667 -
Ms-Celeb-1M Real 0.5219 -
reface Fake 0.3069 -
simswap-swapped Fake 0.5504 -
stable-diffusion Fake 0.6633 -
StyleGAN3 Fake 0.3354 -
synthesis-generated Fake 0.3379 -
tedx Real 0.7747 -
TPDNE Fake 0.2057 -
unstable-diffusion Fake 0.6203 -
VGGFace Real 0.8514 -
Wav2lip Fake 0.1534 -

Table 4.13: Performances of the SPSL paper trained on FaceForensics
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SPSL Input Comparison (AUC)

Test Set SPSL SPSL without Transformation

CelebDF 0.7763 0.6578
DeeperForensics 0.5214 0.5176

Table 4.14: Comparison of the Area Under the Curve (AUC) performance
metrics for SPSLmodels with and without Fourier transformation on different
test sets. The results highlight the impact of the transformation technique on
model performance.

the training in the hope of some improvement in the results. Among the var-

ious experiments conducted, the best combination obtained was found to in-

clude: FaceApp-Morph, Actors, Deepfakes, Face2Face, FaceSwap, Neural-

Textures, YouTube, FFHQ, Ms-Celeb-1M, Reface, StyleGAN3, TEDx, and

the experiment can be observed in Table 4.15. Our findings suggest that

this model performs slightly better overall. It works well with most datasets,

but there are a few, like Wav2lip and VGGFace, where it either matches or

even underperforms compared to the previous model trained on FaceForen-

sics. Also, this model seems to struggle more in detecting real faces accu-

rately.

Some experiments were also carried out by varying the learning rate and

sample size. The former was useful to see if themodel converged in the correct

way, and the latter was ideal to give the model more stability. However, the

results are not noteworthy; in fact, the reults are very similar to the values in

Table 4.15. For this reason we stopped working on this paper.
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SPSL Model trained on Multiple Datasets

Name Type (Real/Fake) Accuracy AUC

In-Domain Datasets

faceapp-morph Fake 0.8744 -
FaceForensics/actors Real 0.9827 -
FaceForensics/Deepfakes Fake 0.9752 -
FaceForensics/Face2Face Fake 0.9904 -
FaceForensics/FaceSwap Fake 0.9864 -
FaceForensics/NeuralTextures Fake 0.9386 -
FaceForensics/youtube Real 0.8179 -
FFHQ Real 0.8280 -
Ms-Celeb-1M Real 0.8376 -
reface Fake 0.9861 -
StyleGAN3 Fake 0.9017 -
tedx Real 0.9879 -

Out-of-Distribution Datasets

blendswap-swapped Fake 0.8948 -
CelebA Real 0.2603 -
CelebA-GFPGAN Fake 0.6730 -
CelebDF Fake+Real 0.6092 0.7054
Cheap-Morphs Fake 0.5610 -
DeeperForensics Fake+Real 0.3827 0.4063
Defacto-morphs Fake 0.1662 -
DFDM Fake 0.9736 -
faceapp-faceswap Fake 0.8208 -
FFHQ-GFPGAN Fake 0.3370 -
FRLL-Morphs Fake 0.9214 -
iFakeFaceDB Fake 0.9999 -
insightface-swapped Fake 0.5986 -
LRS3 Real 0.9470 -
MegaFS Fake 0.9950 -
simswap-swapped Fake 0.3368 -
stable-diffusion Fake 0.8827 -
synthesis-generated Fake 0.8579 -
TPDNE Fake 0.9002 -
unstable-diffusion Fake 0.6911 -
VGGFace Real 0.4025 -
Wav2lip Fake 0.1800 -

Table 4.15: Performances of the SPSL model trained on a combination of
different Datasets
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4.5 Cross Evaluation

The Table 4.16 presents a comparison of various deepfake detection mod-

els in terms of their performance on out-of-distribution (OOD) datasets us-

ing accuracy metrics. The models analyzed include UCF-FaceForensics (Ta-

ble 4.6), UCF-MultiDatasets (Table 4.7), SBI-FaceForensics (Table 4.9), SBI-

MultiDatasets (Table 4.10), LAV-FaceForensics (Table 4.12), SPSL-FaceForensics

(Table 4.13), and SPSL-MultiDatasets (Table 4.15). The key findings are:

• UCF-MultiDatasets demonstrates the highest overall accuracy (ALL)

among all models, indicating superior performance across all datasets.

This model also exhibits the highest accuracy for both real and fake

OODdatasets, suggesting strong performance on out-of-distribution im-

ages.

• SBI-FaceForensics performs exceptionally well on real OOD datasets,

while SPSL-MultiDatasets excels on fake OOD datasets.

• LAV-FaceForensics has the lowest overall accuracy, indicating com-

paratively poorer performance across datasets.

• SBI-MultiDatasets and SPSL-FaceForensics show reasonable perfor-

mance but are outperformed byUCF-MultiDatasets in terms of overall

accuracy.

These findings suggest that UCF-MultiDatasets is the most robust model

for deepfake detection, offering strong performance across various datasets.

However, other models may excel in specific areas, such as detecting real or

fake out-of-distribution images. Further analysis and experimentation could

provide deeper insights into the strengths and weaknesses of each model, con-

tributing to the advancement of deepfake detection technology.
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Models Comparisons Out-of-Distribution using Accuracy

Model ALL Real OOD Fake OOD OOD

UCF-FaceForensics (4.6) 0.6699 0.8379 0.3984 0.6182
UCF-MultiDatasets (4.7) 0.8396 0.9160 0.7384 0.8272
SBI-FaceForensics (4.9) 0.6360 0.9607 0.3058 0.6333
SBI-MultiDatasets (4.10) 0.6559 0.9453 0.3484 0.6469
LAV-FaceForensics (4.12) 0.4676 0.3882 0.4284 0.4083
SPSL-FaceForensics (4.13) 0.6480 0.7528 0.4496 0.5282
SPSL-MultiDatasets (4.15) 0.7632 0.5366 0.6935 0.6151

Table 4.16: Comparison of model performances on Out-of-Distribution data
using accuracy metrics. ’ALL’ represents the weighted average accuracy
across all datasets, while ’Real OOD’ and ’Fake OOD’ denote the average
accuracy on datasets containing real and fake images, respectively. ’OOD’ in-
dicates the overall weighted average accuracy on Out-of-Distribution datasets.
Metrics in bold represent the best values, those in underlined the second best.
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Discussion

In the course of implementing and experimenting with various models, one of

the primary challenges arises from the necessity to work with code written by

others and modify it to suit one’s own purposes. Central to overcoming this

challenge is gaining a thorough understanding of the repository’s structure,

comprehensively grasping the associated research paper, and delving into the

intricate details of how data flows within the model.

A notable observation is the inconsistency between the results reported

in different papers and those obtained in personal experiments. While sev-

eral factors may contribute to this, I tend to attribute it to the diverse range of

datasets available, which simulates real-world scenarios and thus introduces

complexity. This diversity allows for a deeper assessment of the effective-

ness of various tools. I also believe that some of the simplifications applied

(e.g. sampling and mixed precision) may have led to discrepancies between

the paper’s results and my own. However, despite the presence of repository

code, ambiguities in certain steps outlined in the paper can contribute to errors

during implementation.

Onemajor challenge faced during these experiments is the inconsistency in

performance when using datasets that are different from the ones used during

training. This inconsistency occurs even within epochs that are close together

in time. This variability not only makes the experiments less reliable but also
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makes it difficult to reproduce results, making the experimentation process

very complex. When we visually examine the graphs showing the loss on test

sets for various out-of-distribution datasets, we see this inconsistency clearly.

The graphs show unstable patterns with many peaks and smaller peaks, high-

lighting the irregularity in performance.

A primary limitation of models aimed at generalization is their tendency

to excel with certain datasets while faltering with others, a phenomenon that

exacerbates the complexity of the testing process and diminishes the model’s

reliability. Identifying the optimal combination of datasets and parameters is a

daunting task that demands considerable expertise. Moreover, given the inher-

ent complexity of deep learning models, comprehending their inner workings

is exceedingly challenging. Additionally, while deepfake research is ongo-

ing, finding recent papers for implementation has proven to be challenging.

Nonetheless, I anticipate increased awareness and research investment in this

domain in the future.

Techniques such as dropout and data augmentation yield highly beneficial

outcomes in experiments of this nature, as evidenced by both the findings of

this thesis and the prevalence of these methods in analyzed papers.

Among the models employed, UCF-MultiDatasets appears to have outper-

formed others significantly. Interestingly, augmenting the UCF model with

additional datasets led to a notable improvement in Out-Of-Distribution met-

rics, by nearly 0.20. In contrast, the improvements in SBI and SPSL models

were marginal, with SBI increasing by only 0.02 and SPSL by approximately

0.10. Furthermore, there seems to be a consistent trend of better performance

with datasets containing real images compared to those with negative images.

One potential explanation could be the size of theMs-Celeb-1Mdataset, which

might introduce label imbalances.



5.1 Future Works 54

5.1 Future Works

To advance the generalization of deepfake detection models, it is essential to

have access to diverse and representative datasets for experimentation. As

demonstrated, the combination of datasets plays a crucial role in determining

the model’s performance. However, identifying the optimal dataset combina-

tion is not a straightforward task and requires systematic exploration. There-

fore, future research efforts should focus on curating comprehensive datasets

spanning various deepfake generation techniques, contexts, and visual attributes.

In addition to dataset curation, exploring the potential of data augmen-

tation techniques is imperative for enhancing model performance. Augmen-

tation methods such as the SBI technique hold promise in augmenting the

training data with diverse and realistic deepfake samples, thereby enabling

the model to better generalize to unseen variations. Investigating the efficacy

of novel augmentation strategies tailored specifically for deepfake detection

could yield further improvements in model robustness and accuracy.

Furthermore, future research endeavors could benefit from exploring al-

ternative model architectures and techniques to enhance the interpretability

and explainability of deepfake detection systems. For instance, integrating

additional layers or modules within the model, such as those inspired by the

SPSL model, could enable the identification of specific patterns or artifacts

indicative of deepfake manipulation. This approach not only enhances de-

tection performance but also provides valuable insights into the underlying

mechanisms driving deepfake generation.

Moreover, considering the dynamic nature of deepfake technology, contin-

uous monitoring and adaptation of detection models are essential to stay ahead

of emerging threats. Future studies should prioritize the development of adap-

tive learning mechanisms capable of dynamically updating model parameters

and strategies in response to evolving deepfake generation techniques.
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Conclusion

The issue of generalizing deepfake detection models represents a significant

challenge with profound implications for security systems worldwide. This

thesis has highlighted the complexity involved in achieving effective general-

ization in deepfake detection.

Deepfake technology continues to advance rapidly, posing increasingly

sophisticated threats across various sectors. As such, the imperative to develop

reliable detection mechanisms remains paramount. Despite the encountered

complexities and limitations, the findings of this research contribute valuable

insights to the field, each experiment and observation providing incremental

progress toward bolstering our defenses against manipulated media.

Furthermore, this study underscores the need for multidisciplinary collab-

oration involving researchers, engineers, policymakers, and industry stake-

holders. Addressing the challenge of generalization requires advancements

not only in machine learning algorithms and data processing but also a deeper

understanding of the social and technological factors driving the proliferation

of deepfake content.

Looking forward, sustained investment in research and innovation is es-

sential to improving the robustness and scalability of deepfake detection sys-

tems. By fostering collaboration and knowledge exchange within the research
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community, we can collectively work towards creating a safer digital environ-

ment. While the journey towards foolproof deepfake detection may be chal-

lenging, each incremental advancement brings us closer to a future where trust

and authenticity prevail in the digital realm.
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