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Sommario

In questa tesi viene presentata un’esposizione introduttiva sulla teoria geometrica
dell’informazione quantistica. La trattazione inizia dalla teoria geometrica del-
l’informazione classica, definendo le varietà statistiche e la metrica informativa di
Fisher e, infine, dimostrando la disuguaglianza di Cramér-Rao. Successivamente,
viene introdotta la formulazione geometrica della meccanica quantistica: partendo
dai postulati nella loro formulazione vettoriale, vengono definiti gli operatori di
densità e viene mostrato come il prodotto interno dello spazio di Hilbert induca
la metrica di Fubini-Study sullo spazio proiettivo di Hilbert. Nell’ultima parte, le
due descrizioni geometriche vengono collegate definendo l’informazione quantistica
di Fisher come generalizzazione di quella classica e trovando che coincide, a meno
di un fattore costante, con la metrica di Fubini-Study. Si conclude utilizzando
questa descrizione per dimostrare la versione quantistica della disuguaglianza di
Cramér-Rao, risultato centrale della teoria della stima quantistica (QET).



Abstract

This thesis presents an introductory exposition on the information geometry of
quantum mechanics. The treatment begins with classical information geometry,
defining statistical manifolds and the Fisher information metric, and finally demon-
strating the Cramér-Rao inequality. Subsequently, the geometric formulation of
quantum mechanics is introduced: starting from the postulates in their vectorial
formulation, density operators are defined, and it is shown how the inner product of
the Hilbert space induces the Fubini-Study metric on the projective Hilbert space.
In the last part, the two geometric descriptions are connected by defining Fisher
quantum information as a generalization of the classical one and finding that it
coincides, up to a constant factor, with the Fubini-Study metric. The conclusion
employs this description to demonstrate the quantum version of the Cramér-Rao
inequality, a central result of quantum estimation theory (QET).
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Introduction

Quantum mechanics is a fundamental theory that provides a mathematical frame-
work for modeling the states and evolution of physical systems, as well as pre-
dicting the results of observations. Its development began around 1900 to explain
physical phenomena that classical mechanics couldn’t account for, such as black-
body radiation and the photoelectric effect. By the early 1930s, the theory had
been rigorously formulated, and many of its predictions had been experimentally
confirmed.

One of the distinctive features of quantum mechanics is that the state of a
quantum system only determines the probabilities of measurement outcomes, not
the outcomes themselves. This suggests the possibility of interpreting quantum
states as a generalization of probability distributions and extending the mathemat-
ical tools of probability theory to the quantum domain. The two mathematical
formalisms can be precisely connected through their geometric descriptions.

The geometrical approach to quantum mechanics emerged in the 1970s and has
led to significant theoretical and experimental advancements. In this approach,
the state of a quantum system is represented by a point in a set called the state
space. This state space is a Hilbert space, i.e., a complex vector space with an
inner product. The system’s evolutions are then described by trajectories in the
state space and from the properties of the Hilbert space a rich geometric structure
arises. The study of this structure has provided insights into quantization, the
nature of entanglement, and has predicted phenomena such as the Berry phase
and the Aharonov-Bohm effect.

Information geometry, developed in the 1940s, studies probability theory from
a geometric perspective. Probability distributions are represented as points in a
set, and assigning coordinates to a subset is equivalent to considering a family of
probability distributions with parameters. A distance between probability distri-
butions can be defined that measures how easy it is to distinguish them based
on observed outcomes. This distance endows the set with a geometric structure,
which has been used to study statistical models and develop parameter estimation
theory. The Cramér-Rao bound, a key result of information geometry, provides
a lower bound on the efficiency of parameter estimation from measurement out-
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comes.
In the 1990s, it was shown that the intrinsic geometry of quantum systems can

be understood as a generalization of an information geometric structure. In this
view, estimating the state of a quantum system is a generalization of a parameter
estimation problem in probability theory. This approach is known as quantum
estimation theory (QET), and the quantum Cramér-Rao bound dictates a limit to
the amount of information retrievable from a quantum system. Many other results
from information geometry were generalized in this way to quantum mechanics,
bringing significant advances to the theory of quantum information (QI) in general.

Quantum information and quantum estimation theory form the theoretical
foundation of various rapidly developing quantum technologies such as quantum
computing, quantum metrology, quantum sensing, and quantum cryptography.
Among them, QET plays a crucial role in quantum metrology, which aims to
achieve high-precision measurements by leveraging the quantum properties of the
systems involved.

Outline

This thesis provides an introductory exposition of the information geometrical
structure of quantum systems, focusing on quantum estimation theory and the
quantum Cramér-Rao bound. The treatment is limited to pure states of finite-
dimensional quantum systems.

In Chapter 1, we introduce the theory of information geometry and classical
parameter estimation. We begin by defining the manifold of probability distribu-
tions on finite sample spaces and the relationship between random variables and
representations of tangent vectors. Next, we introduce the relative entropy as a
squared pseudo-distance and use it to induce a Riemannian structure on the man-
ifold of probability distributions, known as the Fisher information metric. Finally,
we utilize this geometric structure to state and prove the Cramér-Rao bound.

In Chapter 2, we discuss the geometric formulation of quantum mechanics.
We first state the postulates of quantum mechanics in terms of vectors in the
Hilbert space, in the finite-dimensional case. Then, we define quantum states as
equivalence classes of physically indistinguishable state vectors and identify them
with pure density operators, restating the postulates of quantum mechanics using
these terms. Lastly, we demonstrate that the Hilbert space is a fiber bundle with
the space of quantum states as the base space. With this description, we use the
inner product of the Hilbert space to intrinsically define a Riemannian structure
on the space of quantum states: the Fubini-Study metric.

In Chapter 3, we explore the generalization of information geometry to quan-
tum mechanics and introduce quantum estimation theory. We begin by highlight-
ing several analogies between the geometric structure of quantum states and the
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one of probability distributions. Then, we define the quantum Fisher information,
which generalizes the classic Fisher information through the symmetric logarith-
mic derivative (SLD), and find that it is equal to the Fubini-Study metric up to
a constant factor. Finally, we define quantum estimators and derive the quantum
Cramér-Rao bound.
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Chapter 1

Geometry of probability
distributions

1.1 Manifolds of probability distributions
In this section, we introduce the differential geometrical description of probability
distributions and statistical models. The treatment mainly follows the one of [1],
where further details can be found.

1.1.1 Space of probability distributions

Consider a random process and the set X of all its possible outcomes. We call this
set the sample space, and we will only consider random processes for which it is
finite. Then, a probability distribution on X is a function p ∈ RX ∶= {f ∣ f ∶X → R}
which satisfies

p(x) ≥ 0 ∀x ∈ X and ∑
x∈X

p(x) = 1 (1.1.1)

where p(x) represents the probability of the outcome x.
Further, every function A ∈ RX represents a real random variable, as it maps

every outcome of a random process to a number. Then the expectation value of A
when the underlying probability distribution is p is expressed by

Ep[A] ∶= ∑
x∈X

p(x)A(x) (1.1.2)

Also, given two random variables A,B their covariance is

Covp[A,B] ∶= Ep[(A −Ep[A])(B −Ep[B])] (1.1.3)

and so the variance of a random variable A is

Vp[A] ∶= Covp[A,A] = Ep[(A −Ep[A])2] (1.1.4)
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Let now N be the cardinality of X . To have a picture of RX we can index the
outcomes and consider the natural isomorphism between RX and RN

f ↔ (f(x1), . . . , f(xN)) (1.1.5)

then it’s easy to recognize that the space of probability distributions is a convex
subset of the affine subspace A1 ∶= {f ∈ RX ∣ ∑x∈X f(x) = 1}. In particular, it is
the set resulting from the convex mixing of the trivial probability distributions
fk(xi) = δik, represented by the unit vectors of RN . Finally, it’s also interesting to
consider the inner product induced on RX by the Euclidean one of RN . Let p be
a probability distribution and A a random variable, then

p ⋅A = ∑
x∈X

p(x)A(x) = Ep[A] (1.1.6)

1.1.2 Statistical models and manifolds

We call an n-dimensional statistical model on X a family of probability distribu-
tions that are globally parametrized by n real-valued variables. Formally this is
a subset S of the space of probability distributions with an invertible function
ψ∶S → Ξ ⊆ Rn, so that we may write

S = {pξ ∣ ∃ ξ = (ξ(1), . . . , ξ(n)) ∈ Ξ∶pξ = ψ−1(ξ)} (1.1.7)

where pξ(x) may be equivalently written as p(x; ξ) or p(x; ξ(1), . . . , ξ(n)). This
definition of a statistical model reflects the act of hypothesizing an underlying
model, that may depend on some parameters, for the generation of the random
variable’s samples. Then only a subset, here represented by S, of all the possible
probability distributions is considered as a candidate of the underlying probability
distribution, and every candidate probability distribution is identified uniquely by
the corresponding parameters, here represented by ξ.

We now introduce some additional requirements to statistical models so that
we may define well-behaved manifolds from them. Firstly we regard S as a subset
of A1 equipped with the topology induced by the standard one of RN . Then we
assume that

Ξ is an open set
ψ is a C∞ diffeomorphism from S to Ξ

(1.1.8)

This allows us to differentiate the probability distributions with respect to the
parameters so that ∂ip(x; ξ) is well defined, where we wrote ∂i ∶= ∂

∂ξ(i)
. These

conditions also imply that the pair S and ψ form a chart of S. Then for any
another statistical model on S with parametrization ψ′∶S → Ξ′ ⊆ Rn that follows
eq. (1.1.8), the composed function ψ′○ψ−1∶Ξ→ Ξ′ will be a C∞ diffeomorphism. By

7



considering all the possible parametrizations of this kind we may treat S as a C∞-
differentiable manifold, where statistical models are the charts and the different
parametrizations are the coordinate systems; we call manifolds like these statistical
manifolds.

From our definitions, it is clear that the maximal dimension of a model is
n = N − 1 and that every statistical manifold is a submanifold of

P ∶= {p ∈ RX ∣ p(x) > 0 ∀x ∈ X and ∑
x∈X

p(x) = 1} (1.1.9)

that we call the manifold of probability distributions. Notice that P is the interior
of the space of probability distributions, this is because from our definitions follows
that every (N − 1)-dimensional statistical manifold must be an open subset of A1.

1.1.3 The tangent space and its representations

We will now study tangent vectors of statistical manifolds looking for useful sta-
tistical interpretations of them. To do this we will use the fact that, as explained
in section 1.1.1, P can be embedded in the space of random variables RX . Then
we can try to also embed the tangent spaces in RX in some meaningful ways, thus
linking tangent vectors and random variables.

The mixture representation

Since P is an open subset of the affine space A1 we can naturally identify the
tangent space at every point with the displacement vector space

A0 ∶= {A ∈ RX ∣ ∑
x∈X

A(x) = 0} (1.1.10)

This is the natural embedding of Tp(P) that arises from the trivial embedding of
P in RX , in fact for any X ∈ Tp(P) we can define

X(m)(x) ∶=X(p(x)) (1.1.11)

then by considering a parametrization {ξ(i)} of P and its relative coordinate basis
{∂i} we have that

∂
(m)
i (x) = ∂ip(x; ξ) ∈ A0 (1.1.12)

since
∑
x∈X

∂ip(x; ξ) = ∂i ∑
x∈X

p(x; ξ) = 0 (1.1.13)

Finally, from eq. (1.1.8) follows that ∂ip(x; ξ) are N −1 linearly independent func-
tions and thus

X(m)↔X (1.1.14)
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is an isomorphism and

Tp(P) ∼ T (m)p (P) ∶= {X(m) ∣X ∈ Tp(P)} = A0 ∀p ∈ P (1.1.15)

We call X(m) the mixture representation or m-representation of X.

The exponential representation

Since Tp(P) is an (N − 1)-dimensional vector space, for every p we may try to
identify it to the subspace of RX orthogonal to p with respect to the inner product
defined in eq. (1.1.6). This is interesting given the statistical meaning of the inner
product between a generic element of RX and a probability distribution. For every
p ∈ P the orthogonal space is

A�p ∶= {A ∈ RX ∣ p ⋅A = Ep[A] = 0} (1.1.16)

that is the space of random variables with null expectation value when the under-
lying probability distribution is p.

Now we wish to find a natural isomorphism between Tp(P) and A�p. One way
to do this that will prove to be useful is to consider the following alternative
embedding of P in RX

p↦ lnp ∈ RX (1.1.17)

then, for any X ∈ Tp(P) we can define

X(e)(x) ∶=X(lnp(x)) = X(p(x))
p(x) (1.1.18)

and by considering a parametrization {ξ(i)} of P and its relative coordinate basis
{∂i} we have that

∂
(e)
i (x) = ∂i lnp(x; ξ) ∈ A�p (1.1.19)

since
Ep[∂i lnp(x; ξ)] = ∑

x∈X

p(x; ξ)∂ip(x; ξ)
p(x; ξ) = ∑x∈X

∂ip(x; ξ) = 0 (1.1.20)

It’s easy to prove that the linear independence of ∂i lnp(x; ξ) follows from the one
of ∂ip(x; ξ) and thus

X(e)↔X (1.1.21)

is an isomorphism and

Tp(P) ∼ T (e)p (P) ∶= {X(e) ∣X ∈ Tp(P)} = A�p ∀p ∈ P (1.1.22)

We call X(m) the exponential representation or e-representation of X.
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From their definitions, we have that the two representations of a tangent vector
X ∈ Tp(P) are related as follows

X(m)(x) =X(e)(x)p(x) (1.1.23)

and that while T (m)p (P) is the same for every p, T (e)p (P) varies since the set of ran-
dom variables with null expectation value will differ depending on the underlying
probability distribution.

1.2 The information metric
In this section, we derive and justify the Fisher information metric. We start by
showing that the relative entropy can be thought of as a squared pseudo-distance
on the space of probability distributions, following the approach of [2]. Next, we
discuss the relationship between the metric tensor of a Riemannian manifold and
its squared geodesic distance, and we generalize it to divergences as in [1]. Lastly,
we show that the relative entropy is a divergence and from it, we derive the Fisher
information metric.

1.2.1 Relative entropy

Given a statistical manifold, we may ask ourselves if a certain metric can be
naturally defined on it. Such a metric would give rise to a Riemannian connection
and consequently to a geodesic distance between elements of the manifold. For
this reason, we should first find a statistical meaning to the notion of distance
between probability distributions and only then try to find a metric coherent with
it.

One natural way to proceed is to consider how hard it is to distinguish a prob-
ability distribution from another one by extracting some samples. More precisely
let’s assume that a random process has an underlying probability distribution q
and that Ns samples are generated. Then we can consider the probability that the
resulting frequencies fi of the samples correspond to the probabilities pi of another
probability distribution p.

For simplicity, let’s consider the N = 2 case, i.e. the case of binomial distribu-
tions. Let q = (t,1 − t) and p = (r,1 − r) be two probability distributions. Then if
Ns samples are drawn with underlying probability q, the probability PNs(p) that
the obtained frequencies correspond to p is given by

PNs(p) = (
Ns

Ns ⋅ r
)tNs⋅r(1 − t)Ns⋅(1−r)
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then by assuming r ≠ 0,1 and using Stirling’s formula, we obtain the following
asymptotic behavior for Ns →∞

PNs(p) ∼ exp{−Ns[r ln(
r

t
) + (1 − r) ln(1 − r

1 − t)]} (1.2.1)

so the probability decreases exponentially with Ns times the factor in the square
parenthesis. This factor only depends on the probability distributions p and q, and
one may recognize it from statistics as the relative entropy of the two distributions.
For a generic finite sample space X , the relative entropy is defined as

S(p ∥ q) ∶= ∑
x∈X

p(x) ln(p(x)
q(x)) (1.2.2)

More generally it can be shown that the following theorem holds [2, pg. 42]

Theorem 1 (Sanov’s Theorem). Let E ⊂ P be a closed set of probability distri-
butions without isolated points. Then if Ns samples are drawn with underlying
probability distribution q ∈ P, the probability PNs(E) that the obtained frequencies
correspond to an element in E has the following asymptotic behavior

PNs(E) ∼ e−NsS(p∗∥q) for Ns →∞ (1.2.3)

where p∗ is the element of E for which S(p∗ ∥ q) is smallest.

Roughly speaking, this shows that the greater the relative entropy S(p ∥ q)
the faster the probability of obtaining frequencies in a small neighborhood of p
decreases with the number of samples drawn with underlying probability q. In
this view, relative entropy can serve as a kind of distance between probability
distributions, but with some caveats. From the definition in eq. (1.2.2) relative
entropy has the following properties

S(p ∥ q) ≥ 0 ∀p, q ∈ P (1.2.4)
S(p ∥ q) = 0 ⇐⇒ p = q (1.2.5)

but it is not symmetric and it doesn’t follow the triangle inequality, so it is not a
metric distance. We may ask ourselves if the asymmetry is an accident of our defi-
nition of relative entropy or if it is inherent in the distinguishability of probability
distributions. The latter turns out to be true, as shown by the following example.

Example. Consider two coins, one fair and one with heads on both sides. We want
to pick one and guess which one it is just by tossing it multiple times. Clearly, the
game is not symmetric in the choice of the coin; in fact, if we pick the fair coin
the first time we will get a tail we will be sure that we picked the fair one, while
if we pick the double-head one we will only get heads but this result will always be
also compatible with a fair coin that, by chance, is only giving heads.
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This game is precisely a problem of distinguishability of probability distribu-
tions. In fact, we have the N = 2 sample space and two probability distributions:
p = (0.5,0.5) (the fair coin) and q = (1,0) (the double-head coin), so the two rela-
tive entropies are S(p ∥ q)→∞ and S(q ∥ p) = ln 2. If we pick the fair coin for large
Ns the obtained frequencies will approach p; then we consider the probability of
obtaining these frequencies if the underlying distribution was q. This probability
is identically 0, and it is coherent with Sanov’s theorem since S(p ∥ q)→∞ and so
PNs(p) ∼ e−Ns⋅∞ = 0. Otherwise, if we pick the double-head coin the frequencies will
always match exactly q, and the probability of getting this if the underlying distri-
bution was q is 0.5Ns . This is coherent with Sanov’s theorem since S(q ∥ p) = ln 2
and so PNs(q) ∼ e−Ns⋅ln 2 = 0.5Ns .

Even though relative entropy doesn’t follow triangle inequality, it can be shown
to follow a generalization of the Pythagorean theorem [2, pg. 43]

Theorem 2 (Generalized Pythagorean theorem). Let E ⊂ P be a convex set and
consider p ∈ E and q ∈ P ∖ E . Then

S(p ∥ q) ≥ S(p ∥ p∗) + S(p∗ ∥ q) (1.2.6)

where p∗ is the element of the boundary ∂E for which S(p∗ ∥ q) is smallest.

This is a generalization of the Pythagorean theorem in the sense that if it was
stated in terms of the Euclidean distance squared, the angle between pp∗ and p∗q
would be obtuse and so eq. (1.2.6) would be the corollary of the Pythagorean
theorem for obtuse triangles. This suggests that the relative entropy may be
regarded as an asymmetric distance squared and as we will see this is enough to
define a metric on the manifold.

1.2.2 Squared Riemannian distances

Now that we have some notion of distance, we explore how to define a coherent
metric on the manifold. First, we shall study this for a Riemannian distance. The
notation and the definitions will follow the ones of [3].

Let (M,g) be a Riemannian manifold where g is the metric tensor, then con-
sider a point p ∈M . We define the exponential map in p as follows

Expp ∶ TpM →M, Expp(v) ∶= γv(1) (1.2.7)

where v ∈ Tp and γv ∶ [0,1] → M is the unique geodesic tangent to v in p, i.e.
satisfying γv(0) = p and γ′v(0) = v. In general, this map will be well-defined
only from a neighborhood of the origin of Tp to a neighborhood of p, since only
locally the uniqueness of the geodesic curve is guaranteed. By eventually further
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restricting the neighborhood, this map will also be 1-1 since locally the geodesic
curves don’t cross.

Then in this neighborhood, we have the inverse of the exponential map that
maps q ↦ vq ∈ TpM so that γvq(1) = q. Since γvq is the only geodesic connecting p
and q, the geodesic distance between them will be

L(p, q) = ∫
1

0

√
gγvq (λ)(γ′vq

(λ), γ′vq
(λ))dλ (1.2.8)

Because γvq is a geodesic, by definition we have that γ′vq
(λ) is parallel transported

along the curve and so

gγvq (λ)(γ′vq
(λ), γ′vq

(λ)) = gp(vq,vq) ∀λ ∈ [0,1] (1.2.9)

Finally then, we get

L(p, q) = ∫
1

0

√
gp(vq,vq)dλ =

√
gp(vq,vq) = ∥vq∥ (1.2.10)

and so v̂q = vq/L(p, q).
Now chose a vector dp ∈ TpM and let q = Expp(dp). Then, let Γd̂p be the

unique geodesic curve such that Γd̂p(0) = p and Γ′
d̂p
(0) = d̂p. Clearly, this is the

following reparametrization of γdp

Γd̂p(l) = γdp(
l

∥dp∥) = γdp(
l

L(p, q)) (1.2.11)

and so q = Γd̂p(L(p, q)).
Now let {x(i)} be a coordinate system for the neighborhood; from the Taylor

expansion of Γ(i)
d̂p
(l) in l = 0 we get

Γ
(i)

d̂p
(l) = Γ(i)

d̂p
(0) +

dΓ
(i)

d̂p
(l)

dl

RRRRRRRRRRRRRl=0
⋅ l +O(l2) (1.2.12)

then, from Γd̂p(0) = p, Γ′d̂p(0) = d̂p and q = Γd̂p(L(p, q)) we get that

q(i) = p(i) + d̂piL(p, q) +O(L2(p, q)) = p(i) + dpi +O(∥dp∥2) (1.2.13)

for every q in the image of Γd̂p. Then, combining eq. (1.2.10) and eq. (1.2.13) we
get

L2({p(i)},{p(i) + dpi})→ L2(p, q) = gijdpidpj for small dpi (1.2.14)
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We define L2
p ∶M → [0,+∞), L2

p(q) ∶= L2(p, q) and consider its Taylor expansion
in q = p

L2
p({p(i) + dpi}) =

1

2
[∂i∂jL2

p(q)]
q=p
dpidpj +O(dp3) (1.2.15)

where the first derivative vanishes because p is a minimum of L2
p. Then we get

g
(p)
ij =

1

2
[∂i∂jL2

p(q)]
q=p

(1.2.16)

so the metric tensor in p is proportional to the Hessian matrix of L2
p in p. This is

possible because the Hessian matrix of any C2 function of a differentiable manifold
evaluated in a critical point is a (02) tensor.

We have thus found a way to recover the metric tensor from its squared Rie-
mannian distance.

1.2.3 Divergences

As argued in the last paragraph of section 1.2.1, relative entropy has some proper-
ties of squared distances and so we may try to find a metric tensor coherent with
it as we did in section 1.2.2.

Let M be a differentiable manifold and D( ⋅ ∥ ⋅ ) ∶ M ×M → [0,+∞) a C2

function (possibly asymmetric) satisfying

D(p ∥ q) ≥ 0 and D(p ∥ q) = 0 ⇐⇒ p = q ∀p, q ∈M (1.2.17)

Then, given a coordinate system {ξ(i)} on M we have that every pair of points
(q, q′) ∈M ×M has coordinates ({ξ(i)},{ξ(i)′}) and we use the following notation
for partial derivatives in one of the two terms on the diagonal (p, p)

D[∂i ∥ ⋅ ]∶p↦ [∂iD(q ∥ q′)](q,q′)=(p,p)
D[ ⋅ ∥ ∂i ]∶p↦ [∂′iD(q ∥ q′)](q,q′)=(p,p)

From the fact that the diagonal (p, p) is a constant surface of minima of D
follows that

D[∂i ∥ ⋅ ] =D[ ⋅ ∥ ∂i ] ≡ 0 (1.2.18)

so the diagonal is also a constant surface of the derivatives of D. Then by further
deriving parallel to the diagonal, we get

(∂i + ∂′i)D[ ⋅ ∥ ∂j ] =D[ ⋅ ∥ ∂i∂j ] +D[∂i ∥ ∂j ] ≡ 0
(∂j + ∂′j)D[∂i ∥ ⋅ ] =D[∂i∂j ∥ ⋅ ] +D[∂i ∥ ∂j ] ≡ 0
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where we used the fact that since D is C2 we can swap second-order derivatives.
Finally, we get

D[∂i∂j ∥ ⋅ ] =D[ ⋅ ∥ ∂i∂j ] = −D[∂i ∥ ∂j ] =∶ g(D)ij (1.2.19)

where from the fact that the diagonal is a surface of minima, it follows that
the previous expression defines a (symmetric) positive semi-definite tensor. From
eq. (1.2.18) and eq. (1.2.19) it follows that denoting

D
(R)
p ∶ q ↦D(p ∥ q) and D

(L)
p ∶ q ↦D(q ∥ p)

to second order, we get

D
(R)
p (q) =

1

2
g
(D)
ij dξidξj +O(dξ2) and D

(L)
p (q) =

1

2
g
(D)
ij dξidξj +O(dξ2)

where dξi ∶= ξ(i)p − ξ(i)q
and so to the lowest order, the asymmetry is not present.

Finally, if g(D)ij is positive definite we say that D is a divergence, then 1
2g
(D)
ij

defines a metric tensor and so a unique Riemannian structure on the manifold.
The induced squared Riemannian distance coincides at the lowest order near the
diagonal with the divergence.

1.2.4 The Fisher information metric

We now go back to the relative entropy, we report the definition given in sec-
tion 1.2.1

S(p ∥ q) ∶= ∑
x∈X

p(x) ln(p(x)
q(x))

this is a C2 function of P ×P and it follows eq. (1.2.17). So for any model S with
parameters {ξ(i)} we can define

g
(S)
ij = S[ ⋅ ∥ ∂i∂j ] = ∂′i∂′j ∑

x∈X

p(x; ξ) ln( p(x; ξ)
q(x; ξ′))∣

ξ=ξ′

(1.2.20)

And so we have

g
(S)
ij = −∑

x∈X

p(x)∂i∂j lnp(x; ξ) = −Ep[∂i∂j lnp(x; ξ)] (1.2.21)

and equivalently

g
(S)
ij = Ep [

1

p2(x)∂ip(x; ξ)∂jp(x; ξ)] = Ep[∂i lnp(x; ξ)∂j lnp(x; ξ)] (1.2.22)

= ∑
x∈X

∂ip(x; ξ)∂jp(x; ξ)
p(x) (1.2.23)
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where we used the fact that

∑
x∈X

∂i∂jp(x; ξ) = ∂i∂j ∑
x∈X

p(x; ξ) = 0 (1.2.24)

Since we know that any g(D)ij is positive semi-definite, g(S)ij will be positive definite
if and only if it is invertible. It can be easily shown that if the functions ∂ip(x; ξ)
are linearly independent, then g

(S)
ij is invertible and thus positive definite. Then,

relative entropy is a divergence and in fact, it is also known as Kullback-Leibler
divergence or information divergence.

Finally, then, GF ∶= {g(S)ij } defines a metric tensor at every point and it is
known as the Fisher information metric. This is, up to a constant factor, the
unique metric induced by the relative entropy, and it plays a focal role in the
geometrical modeling and interpretation of statistics.

1.2.5 The geometry of P
The Fisher metric defines the inner product ⟨ ⋅ , ⋅ ⟩p between tangent vectors of a
point p ∈ P . Let us now express this inner product through the representations we
defined in section 1.1.3. Given two tangent vectors X,Y ∈ TpP from eq. (1.2.22)
we find that

⟨X,Y ⟩p = Ep[X(e)Y (e)] (1.2.25)

while from eq. (1.2.23) we get

⟨X,Y ⟩p = ∑
x∈X

X(m)(x)Y (m)(x)
p(x) (1.2.26)

= ∑
x∈X

X(m)(x)Y (e)(x) = ∑
x∈X

X(e)(x)Y (m)(x) (1.2.27)

These expressions will prove to be very useful in section 1.3.
We notice that in neither representation the inner product is the Euclidean one

induced by RX on the respective embeddings. For such a representation we would
have that

⟨X,Y ⟩p = ∑
x∈X

X(0)(x)Y (0)(x) (1.2.28)

then it’s easy to guess that the embedding

p↦ 2
√
p =∶ p(0) (1.2.29)

is the one whose representation of the tangent spaces

X(0) ∶=X(2√p) = X(p)√
p
, X ∈ Tp(P) (1.2.30)
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follows eq. (1.2.28). This means that the information geometry of P , i.e. the
geometry induced on it by the Fisher metric, is that of an N -dimensional round
sphere (of radius 2) since

∑
x∈X

p(x) = 1 Ô⇒ ∑
x∈X

p2
(0)(x) = 4 (1.2.31)

1.3 Parameter estimation
In this section, we will use the Riemannian structure of the Fisher metric to derive
interesting results of probability theory and parameter estimation, following the
treatment in [1]. First, we will define parameter estimators and their variance-
covariance matrix. Next, we will show that the Fisher metric links the variance of
random variables with the differential of their expectation value. Lastly, we will
use these results to state and prove the Cramér-Rao bound.

1.3.1 Unbiased estimators

Consider a random process and an n-dim statistical model S = {pξ ∣ ξ ∈ Ξ} of it, as
defined in section 1.1.2; it is often the case that from a measured sample x ∈ X we
want to estimate the parameters ξ of the underlying probability distribution, that
we assume to be in S.

The estimation is represented by a function

ξ̂ = (ξ̂(1), . . . , ξ̂(n))∶X → Ξ ⊆ Rn (1.3.1)

that we call estimator. Each component ξ̂(i) is a random variable, and we say that
ξ̂ is an unbiased estimator if

Epξ [ ξ̂ ] = (Epξ [ξ̂(1)] , . . . ,Epξ [ξ̂(n)]) = ξ ∀ξ ∈ Ξ (1.3.2)

i.e. if for each pξ ∈ S the expectation value of the estimator is the correct parameter
ξ.

Then for an unbiased estimator, we may represent the deviation from the true
parameters with the variance-covariance matrix of the estimator Vξ [ ξ̂ ] ∶= {vijξ }
where

vijξ ∶= Covpξ [ξ̂(i), ξ̂(j)] = Epξ [(ξ̂(i)(x) − ξi) (ξ̂(j)(x) − ξj)] (1.3.3)

In particular, the elements on the diagonal are the variances of the components of
the estimator.
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1.3.2 Variance and expectation value

For a generic random variable A ∈ RX we may define a real function E[A] on P
that maps every probability distribution p to the expectation value of A when the
sample is generated with p as underlying probability distribution

E[A]∶P → R p↦ Ep[A] (1.3.4)

Since this is a function of the manifold P , at every point p we may consider its
differential (dE[A])p. This is the element of the cotangent space T ∗p (P) such that
for any tangent vector X ∈ Tp(P) we have

(dE[A])p(X) =X(E[A]) (1.3.5)

Also, because a metric is defined on P we have a natural isomorphism between
tangent and cotangent vectors, thus the gradient of E[A] is the tangent vector
defined by

⟨(gradE[A])p,X⟩p = (dE[A])p(X) =X(E[A]) ∀X ∈ Tp(P) (1.3.6)

We now state and prove the following theorem that relates the deviation of a
random variable to the gradient of its expectation value

Theorem 3. For any random variable A ∈ RX we have that

(gradE[A])(e)p = A −Ep[A] ∀p ∈ P (1.3.7)

where the gradient is the dual tangent vector of the differential with respect to the
Fisher metric.

Proof. For every X ∈ Tp we have

X(E[A]) = ∑
x∈X

X(p(x))A(x) = ∑
x∈X

X(m)(x)A(x)

= Ep[X(e)A] = Ep[X(e)(A −Ep[A])]

where in the last equation we used the fact that Ep[X(e)] = 0. We notice that

Ep[A −Ep[A]] = 0 Ô⇒ (A −Ep[A]) ∈ T (e)p (P)

and so there must exist a tangent vector Y ∈ Tp(P) such that Y (e) = (A −Ep[A]).
Then

X(E[A]) = Ep[X(e)Y (e)] = ⟨X,Y ⟩p
and so from eq. (1.3.6) we have that Y = (gradE[A])p and so

(gradE[A])(e)p = A −Ep[A]
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We also get the following

Corollary 3.1. For any random variable A

Vp[A] = ∥(dE[A])p∥2p (1.3.8)

Proof. Follows from theorem 3 noticing that

∥(dE[A])p∥2p = ⟨(gradE[A])p, (gradE[A])p⟩p
= Ep[(A −Ep[A])2]

Let now S be an n-dim statistical manifold, since it is a submanifold of P we
have that Tp(S) is a linear subspace of Tp(P) for every p ∈ S. Then the gradient
of the restriction on S of a function of P is its orthogonal projection on Tp(S). In
particular, we have that

Tp(P) = Tp(S)⊕ Tp(S)⊥ (1.3.9)

and so we may uniquely decompose

(gradE[A])p = v∥ + v⊥ v∥ ∈ Tp(S), v⊥ ∈ Tp(S)⊥ (1.3.10)

then we find that ∀X ∈ Tp(S)

⟨(gradE[A]∣
S
)p,X⟩p =X(E[A]) = ⟨v∥ + v⊥,X⟩p = ⟨v∥,X⟩p (1.3.11)

and so (gradE[A]∣
S
)p = v∥.

Finally, we have the following theorem relating the variance of a random vari-
able and the sensitivity of its expectation value to the changes in the model pa-
rameters

Theorem 4. Given a statistical manifold S, for any random variable A we have
that

Vp[A] ≥ ∥(dE[A]∣S)p∥2p (1.3.12)

where the equality holds if and only if

A −Ep[A] ∈ T (e)p (S) (1.3.13)

Proof. Follows immediately from Corollary 3.1 and eq. (1.3.11)
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1.3.3 The Cramér-Rao bound

We are now in the position to state and prove an important result of parameter
estimation theory

Theorem 5 (Cramér-Rao bound). Let S = {pξ ∣ ξ ∈ Ξ} be an n-dim statistical
model of P. Then, for any unbiased estimator ξ̂ the variance-covariance matrix
Vξ[ξ̂] satisfies

Vξ[ξ̂] ≥ G−1F (pξ) (1.3.14)

in the sense that Vξ[ξ̂] −G−1F (pξ) is positive semi-definite.

Proof. Let A = ciξ̂(i) where c is an arbitrary element of Rn. Then A is a random
variable with Epξ[A] = ciξi and

Vpξ[A] = Epξ[(ciξ̂(i)(x) − ciξi)(cj ξ̂(j)(x) − cjξj)]
= Epξ[ci(ξ̂(i)(x) − ξi)(ξ̂(j)(x) − ξj)cj]
= civijξ cj

Then letting p = pξ from theorem 4 we get

civ
ij
ξ cj ≥ ∥(dE[A]∣S)p∥2p

where, in the coordinate basis of {ξ(i)}

∥(dE[A]∣
S
)p∥2p = (∂iE[A])pgij(p)(∂jE[A])p
= cigij(p)cj

and so, finally
ci(vijξ − gij(pξ))cj ≥ 0

An unbiased estimator that saturates eq. (1.3.14) is called an efficient estimator
and is the best unbiased estimator in the sense that its variance is minimum
between all unbiased estimators. It’s important to notice that an efficient estimator
doesn’t always exist. This result shows that the efficiency with which we can
infer the underlying probability distribution of a process is deeply linked with the
information geometry of the model.
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Chapter 2

Geometry of quantum states

2.1 Quantum mechanics
In this section the foundations of quantum mechanics are described, following the
approach of [4]. We first state the postulates in terms of state vectors of the
Hilbert space. Then, we define quantum states as equivalence classes of physically
indistinguishable state vectors and show that their space is the complex projective
space. Lastly, we identify quantum states with pure density operators and we
restate the postulates of quantum mechanics using these terms.

2.1.1 The postulates of quantum mechanics

Quantum mechanics is a fundamental theory that provides a mathematical frame-
work for modeling the states and evolution of physical systems, as well as predicting
the results of observations. In what follows will state the postulates of quantum
mechanics, roughly following the treatment in [4].

Postulate 0 (The Hilbert space). Any isolated physical system is associated with a
complex Hilbert space i.e. a, possibly infinite-dimensional, complex vector space H
with an inner product ⟨⋅, ⋅⟩ that is also complete with respect to the metric induced
by the inner product.

If the Hilbert space is finite-dimensional with dimension N , then it is isomor-
phic to CN with a hermitian form as the inner product. In what follows we will
only study systems that are associated with a finite-dimensional Hilbert space.

The chosen inner product allows us to define a canonical isomorphism between
H and its dual vector space H∗, where for every Z ∈ H its dual functional is defined
as

Z∗ ≡ fZ ∶ H → C fZ(X) = ⟨Z,X⟩ ∀X ∈ H (2.1.1)
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We also define tensors T of type (pq) as multilinear maps

T ∶ H∗p ×Hq → C (2.1.2)

where vectors can be identified with tensors of type (10) and dual vectors with
tensors of type (01). Operators, which are linear maps from H to itself, can be
identified with (11) tensors. For any operator A, the corresponding tensor TA is
defined as

TA(X∗,Y) =X∗(AY) = ⟨X,AY⟩ (2.1.3)

The tensor product ⊗ between two tensors T and T ′ of type (pq) and (p′q′) is a tensor
of type (p+p′q+q′

) defined as

(T ⊗ T ′)(X∗1, . . . ,X∗p+p′ ,Y1, . . . ,Yq+q′)
= T (X∗1, . . . ,X∗p,Y1, . . . ,Yq) ⋅ T ′(X∗p+1, . . . ,X∗p+p′ ,Yq+1, . . . ,Yq+q′)

In particular, given a vector Y and a dual vector X∗, their tensor product is the
operator

A(Z) =X∗(Z) ⋅Y = ⟨X,Z⟩ ⋅Y (2.1.4)

The adjoint of any operator A is the operator A† such that

⟨A† X,Y⟩ = ⟨X,AY⟩ ∀X,Y ∈ H (2.1.5)

It can be shown that this is always well-defined for finite-dimensional Hilbert spaces
and that (A†)† = A. There are two families of operators that will be instrumental
to the formulation of the remaining postulates: unitary operators and self-adjoint
operators. Unitary operators are defined as operators U that preserve the inner
product, i.e.

⟨UX,UY⟩ = ⟨X,Y⟩ ∀X,Y ∈ H (2.1.6)

From eq. (2.1.5), it’s easy to show that

U is unitary ⇐⇒ UU† = I i.e U−1 = U† (2.1.7)

from which also follows UU† = U†U. Self-adjoint operators are defined as operators
A that are equal to their adjoint, i.e.

⟨AX,Y⟩ = ⟨X,AY⟩ ∀X,Y ∈ H (2.1.8)

or, equivalently, A = A†. From their definition follows immediately that

⟨AX,X⟩ = ⟨X,AX⟩ = ⟨AX,X⟩ ∈ R ∀X ∈ H (2.1.9)

We can now state the remaining postulates of quantum mechanics for the finite-
dimensional case.
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Postulate 1 (The state vectors). Every non-zero vector of the Hilbert space com-
pletely characterizes a possible state of the system, we call such vectors state vec-
tors. We thus have that the elements of

H0 ∶= H ∖ {0} (2.1.10)

describe all the possible states of the system.

For state vectors, we will also use the Dirac notation writing vectors as ∣ψ⟩ and
their dual as ⟨ψ∣. An exhaustive treatment of this notation may be found in [5].

Postulate 2 (Unitary evolution). The state vectors of a closed system evolve only
through unitary transformations of the Hilbert space. That is, the time evolution
of any state vector ∣ψ(t)⟩ is given by

∣ψ(t2)⟩ = U(t1, t2) ∣ψ(t1)⟩ (2.1.11)

where U(t1, t2) is a unitary operator that only depends on t1 and t2.

We may interpret this as requiring that the evolution of a closed system pre-
serves the structure we defined on the set H, that is the vector space structure
and the inner product space structure. Thus we expect the transformations to
be invertible, and linear and to preserve the inner product; in this sense, unitary
operators are the automorphisms of the Hilbert space.

Postulate 3 (Quantum measurements). Quantum measurements are described by
a collection of pairs M = {(Mx, x)}x∈X of measurement operators Mx and out-
comes x ∈ X such that the following completeness equation is satisfied

∑
x∈X

M†
xMx = I (2.1.12)

where I is the identity operator. Then, given a system in a state described by a
state vector ∣ψ⟩, the probability distribution of the outcomes is

p(x) = ⟨ψ∣M
†
xMx∣ψ⟩
⟨ψ∣ψ⟩ (2.1.13)

Finally, any interaction with the system that leads to the measurement of a specific
outcome x transforms any state vector ∣ψ⟩ before the measurement to a new state
vector ∣ψ′⟩ after the measurement according to

∣ψ′⟩ =Mx ∣ψ⟩ (2.1.14)

that depends on the outcome measured.
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The probabilities of eq. (2.1.13) are well defined since

p(x) = ∥Mx ∣ψ⟩∥2

∥∣ψ⟩∥2
≥ 0 ∀x (2.1.15)

∑
x∈X

p(x) = ⟨ψ∣∑xM
†
xMx∣ψ⟩

⟨ψ∣ψ⟩ = 1 (2.1.16)

We thus have that for any fixed measurement every state vector defines a proba-
bility distribution on the outcomes. In this sense, quantum states can be thought
of as a generalization of probability distributions.

Quantum measurements define both the probability distributions and the state
obtained after the measurement. If we are only interested in the measurement
per se we can equate quantum measurements that share the same probability
distributions, so that

M ∼M′ ⇐⇒ M†
xMx =M

′†
x M

′
x ∀x ∈ X (2.1.17)

and the equivalence classes that follow are known as positive operator-valued mea-
sures (POVMs). Then the following holds

Theorem 6 (POVMs). Positive operator-valued measurements are uniquely de-
termined by a collection of pairs E = {(Ex, x)}x∈X of positive self-adjoint operators
and outcomes x ∈ X such that

∑
x∈X

Ex = I (2.1.18)

Given a system in a state described by a state vector ∣ψ⟩, the probability distribution
of the outcomes is

p(x) = ⟨ψ∣Ex∣ψ⟩⟨ψ∣ψ⟩ (2.1.19)

Then the POVM of a quantum measurement M is

E(M) = {(E(M)x =M†
xMx, x)}x∈X (2.1.20)

Example: the qubit

The simplest non-trivial kind of quantum system is the one modeled by the 2-
dimensional Hilbert space H = C2: the qubit. The name refers to the fact that it
can be regarded as a quantum version of the classical two-state system, the bit.

To perform explicit calculations we can express C2 vectors, dual vectors and
operators with column vectors, raw vectors and square matrices respectively. Thus,
for a fixed orthonormal basis {∣0⟩ , ∣1⟩} we can write

∣0⟩ = (1
0
) ∣1⟩ = (0

1
) (2.1.21)
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so that any state vector ∣ψ⟩ = c0 ∣0⟩ + c1 ∣1⟩ is expressed as

∣ψ⟩ = (c0
c1
) with ci ∈ C (2.1.22)

Then any operator O is represented by a 2 × 2 complex matrix

O = (c1,1 c1,2
c2,1 c2,2

) with ci,j ∈ C (2.1.23)

Self-adjoint operators are the Hermitian matrices, i.e., matrices equal to their
conjugate transpose. A well-known real basis for 2 × 2 Hermitian matrices is the
following

1 = (1 0
0 1
) σ1 = (

0 1
1 0
) σ2 = (

0 −i
i 0

) σ3 = (
1 0
0 −1) (2.1.24)

where 1 is the identity matrix and σi are the Pauli matrices. Any self-adjoint
operator A can thus be expressed as

A = a01 + a1σ1 + a2σ2 + a3σ3 = a01 + a⃗ ⋅ σ⃗, a⃗ = (a1, a2, a3) (2.1.25)

where a0 ∈ R and a⃗ ∈ R3.
Unitary operators are the 2×2 unitary matrices, i.e., invertible matrices whose

inverse is equal to their conjugate transpose. Then they form a group under matrix
multiplication so that any unitary matrix U can be expressed as

U = eiA with A = A† (2.1.26)

and thus the general unitary evolution of a qubit is given by

U = exp [i(a01 + a⃗ ⋅ σ⃗)] = exp [iα1] ⋅ exp [i
θ

2
n̂ ⋅ σ⃗] (2.1.27)

= eiα (cos θ
2
1 + i sin θ

2
n̂ ⋅ σ⃗) (2.1.28)

where we used the notation α = a0, θ
2 = ∥a⃗∥ and n̂ = a⃗

∥a⃗∥ that will be useful later on.
Finally, the positive operators of POVMs are the positive semidefinite matrices,

i.e., Hermitian matrices whose eigenvalues are all non-negative. For 2×2 matrices,
this means that the determinant and the trace are non-negative.
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2.1.2 PVM and observables

There is a special class of quantum measurements we will be interested in: projection-
valued measurements (PVM). PVMs are quantum measurements where the mea-
surement operators {Px} are required to be orthogonal projectors, i.e.

P †
x = Px ∀x (2.1.29)

P 2
x = Px ∀x (2.1.30)

and to form a complete set of orthogonal projectors

PxPy = δxyPx ∀x, y (2.1.31)
∑
x

Px = I (2.1.32)

To understand these definitions we first state an important theorem from linear
algebra about self-adjoint operators, a complete treatment and proof can be found
in [6].

Theorem 7 (Spectral theorem). Let H be a finite-dimensional complex Hilbert
space and A a self-adjoint operator on H. Then there exists an orthonormal basis
of eigenvectors of A with real eigenvalues.

This means that for any self-adjoint operator, we may decompose the Hilbert
space in orthogonal linear subspaces of eigenvectors with the same eigenvalue, the
eigenspaces.

For any orthogonal projector P , we can show that

P ∣ψ⟩ = λ ∣ψ⟩ Ô⇒ P 2 ∣ψ⟩ = λ2 ∣ψ⟩ = P ∣ψ⟩ = λ ∣ψ⟩
Ô⇒ λ2 = λ
Ô⇒ λ = 0,1 (2.1.33)

and, given an orthonormal base of eigenvectors {∣ei⟩} we may partition it into the
two subsets {∣e(0)j ⟩} and {∣e(1)k ⟩} respectively of eigenvectors with eigenvalue 0 and
1. Then by expressing a generic vector as a linear combination of this base, we
have that

∣ψ⟩ =∑
i

⟨ei∣ψ⟩ ∣ei⟩ Ô⇒ P ∣ψ⟩ =∑
k

⟨e(1)k ∣ψ⟩ ∣e
(1)
k ⟩ (2.1.34)

so that any orthogonal projector "orthogonally projects" vectors to its eigenspace
with eigenvalue 1, which is thus also its image.

We can now recognize that a set of orthonormal projectors is complete when
the spaces on which they project are orthogonal (eq. (2.1.31)) and add up to all
the Hilbert space (eq. (2.1.32)). With this setting, it can be easily shown that the
following corollary holds
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Corollary 7.1. Any self-adjoint operator A with eigenvalues {λi} may be expressed
in terms of the projectors Pi of its eigenspaces as

A =∑
i

λiPi (2.1.35)

We thus have that, intuitively, PVMs are defined by decomposing the Hilbert
space into orthogonal subspaces and then assigning a certain outcome to each one.
In fact, if ∣ψx⟩ is in the projected space of Px the probability distribution of the
outcomes will be

p(y) = ⟨ψx∣P
†
y Py ∣ψx⟩

⟨ψx∣ψx⟩
= δxy (2.1.36)

and also, after the measurement, any state vector is projected onto the subspace
of the outcome

∣ψ′⟩ = Px ∣ψ⟩ (2.1.37)
With this interpretation, it’s easy to recognize an interesting property of PVMs:
repeating the same PVM multiple times while the Hilbert space is evolving with
the identity operator (i.e. is not changing) always leads to identical results. In
fact, after the first measurement, if the measured outcome was x, we will have that

∣ψ′
(0)⟩ = Px ∣ψ⟩ (2.1.38)

for any initial vector state ∣ψ⟩. Then, repeating the same measurement, we will
have the probability distribution

p(y) = ⟨ψ∣P
†
x P

†
y Py Px∣ψ⟩

⟨ψ∣P †
x Px∣ψ⟩

= δxy (2.1.39)

and so we will get with certainty the same result. After the measurement, we will
have the state vector

∣ψ′
(1)⟩ = PxPx ∣ψ⟩ = Px ∣ψ⟩ (2.1.40)

and we can reiterate the same argument for the following measurements.
When considering well-defined measurable properties of a system, we may re-

quire repeated measurements to always give the same outcome if the system re-
mains unchanged in between. From this intuitive concept follows the definition
of an observable as a PVM with real-valued outcomes. Then, from Corollary 7.1,
there is a 1-1 relationship between observables and self-adjoint operators through
eq. (2.1.35), allowing us to identify any observable with its self-adjoint operator

{Pi, λi}↔ A =∑
i

λiPi (2.1.41)

The expectation value of the observable when the system is in a state described
by a state vector ∣ψ⟩ is then given by

E[A] =∑
i

λi pi =∑
i

λi
⟨ψ∣P †

i Pi∣ψ⟩
⟨ψ∣ψ⟩ = ⟨ψ∣A∣ψ⟩⟨ψ∣ψ⟩ (2.1.42)
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Example: the qubit

We have already seen that any self-adjoint operator A can be expressed as

A = a01 + a⃗ ⋅ σ⃗ with a0 ∈ R, a⃗ ∈ R3 (2.1.43)

and so these also represent the observables of the qubit.
Let us now consider some examples of quantum measurements. In particular,

we will consider the problem of discerning between two states of a qubit. This is
an example of a quantum estimation problem.

We start by considering a qubit that we know to be in one of two possible
orthonormal states, ∣0⟩ or ∣1⟩. Then we can consider a PVM

{(P0, λ0), (P1, λ1)} ∶ P0 = ∣0⟩ ⟨0∣ = (
1 0
0 0
) , P1 = ∣1⟩ ⟨1∣ = (

0 0
0 1
) (2.1.44)

that corresponds to the observable

A = (λ0 0
0 λ1

) (2.1.45)

when λ0 and λ1 are real numbers. Then the probability distributions of the out-
comes are

p∣0⟩(λ0) = (1 0) ⋅ (1 0
0 0
) ⋅ (1

0
) = 1 p∣0⟩(λ1) = (1 0) ⋅ (0 0

0 1
) ⋅ (1

0
) = 0

p∣1⟩(λ0) = (0 1) ⋅ (1 0
0 0
) ⋅ (0

1
) = 0 p∣1⟩(λ1) = (0 1) ⋅ (0 0

0 1
) ⋅ (0

1
) = 1

so that we can distinguish with certainty between the two states.
Consider now the same problem but where the two states are not orthogonal,

for example, ∣0⟩ and ∣+⟩ = 1√
2
(∣0⟩ + ∣1⟩). Then the previous PVM will lead to the

following probability distributions

p∣0⟩(λ0) = 1 p∣0⟩(λ1) = 0

p∣+⟩(λ0) =
1√
2
(1 1) ⋅ (1 0

0 0
) ⋅ 1√

2
(1
1
) = 1

2

p∣+⟩(λ1) =
1√
2
(1 1) ⋅ (0 0

0 1
) ⋅ 1√

2
(1
1
) = 1

2

so that if the measured outcome is λ1 we are certain that the state was ∣+⟩, but if
the measured outcome is λ0 we cannot distinguish them. Thus if the two initial
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states are equally likely, three times out of four we will not be able to distinguish
them and it can be shown that this is the best we can do with a PVM for two
non-orthogonal states.

We can improve our results by considering a POVM. In particular, we can
consider the following POVM

E = {(E1, λ1), (E2, λ2), (E3, λ3)} (2.1.46)

E1 = ∣1⟩ ⟨1∣ = (
0 0
0 1
) , E2 = ∣−⟩ ⟨−∣ =

1

2
(+1 −1−1 +1) , E3 =

1

2
(+1 +1+1 −1) (2.1.47)

where ∣−⟩ = 1√
2
(∣0⟩−∣1⟩), orthogonal to ∣+⟩. Then one can verify that the probability

distributions of the outcomes are

p∣0⟩(λ1) = 0 p∣0⟩(λ2) =
1

2
p∣0⟩(λ3) =

1

2

p∣+⟩(λ1) =
1

2
p∣+⟩(λ2) = 0 p∣+⟩(λ3) =

1

2

so that half of the time we can distinguish them. It can be shown that this
is the best we can do for two non-orthogonal states so that in this sense there
is a degree of indistinguishability between non-orthogonal states, similar to the
indistinguishability of probability distributions we discussed in section 1.2.1.

2.1.3 Quantum states

Following postulates 1 to 3, if we are given a state vector for the system, we can
determine how it will evolve under unitary evolutions, the probability distributions
of the outcomes of quantum measurements, and the vector state we will obtain
after those measurements, depending on the outcomes. We may then ask if there
are multiple state vectors that yield the same probabilities for any measurement
and continue to do so after any unitary evolution or measurement. Such two
vectors would be completely equivalent in their predictions, and we can regard
them as describing the same quantum state. This leads to an equivalence relation
between state vectors, so that quantum states are the equivalence classes.

We start by requiring that two equivalent state vectors have the same proba-
bility distributions for any measurement. This means that

∣ψ⟩ ∼ ∣ψ′⟩ ⇐⇒ ⟨ψ∣M†
xMx∣ψ⟩
⟨ψ∣ψ⟩ = ⟨ψ

′∣M†
xMx∣ψ′⟩
⟨ψ′∣ψ′⟩ ∀x (2.1.48)

for any quantum measurement {(Mx, x)}. It’s easy to see that a sufficient condition
is

∃ c ≠ 0 ∈ C ∶ ∣ψ′⟩ = c ∣ψ⟩ (2.1.49)
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since for any operator Mx

⟨ψ′∣M†
xMx∣ψ′⟩
⟨ψ′∣ψ′⟩ = ∥c∥

2

∥c∥2 ⋅
⟨ψ∣M†

xMx∣ψ⟩
⟨ψ∣ψ⟩ (2.1.50)

Then by choosing Mx = ∣ψ⟩ ⟨ψ∣, it’s easy to show that eq. (2.1.49) is also a necessary
condition.

We also note that for any operator A

A(c ∣ψ⟩) = cA ∣ψ⟩ ∀c ∈ C (2.1.51)

so that any operator has a well-defined action on equivalence classes. In particular,
this holds for unitary operators and measurement operators, and so two state
vectors in the same equivalence class will remain in the equivalence class after any
unitary evolution or measurement.

We have thus proved that quantum states are the equivalence classes of

∣ψ⟩ ∼ ∣ψ′⟩ ⇐⇒ ∃ c ≠ 0 ∈ C ∶ ∣ψ′⟩ = c ∣ψ⟩ (2.1.52)

Then for any state vector ∣ψ⟩, its quantum state is

[∣ψ⟩]
∼
= {c ∣ψ⟩ ∀c ≠ 0 ∈ C} (2.1.53)

and so the space of quantum states is isomorphic to the set of 1-dim linear sub-
spaces of H, also called complex lines. This set is known as the projective Hilbert
space and is denoted as PH. When H = CN , the projective space is known as the
n-dimensional complex projective space CPn, where n = N − 1. Equation (2.1.53)
leads to the intrinsic definition of a surjective projection map

π ∶ H0 → PH π(∣ψ⟩) = [∣ψ⟩]∼ (2.1.54)

that maps every state vector to its quantum state.

Example: the qubit

For the qubit, the projective space is the 1-dimensional complex projective space
CP1. We can get a sense of the structure of this space considering the expression
of a general state vector as a linear combination of an orthonormal basis {∣0⟩ , ∣1⟩}

∣ψ⟩ = c0 ∣0⟩ + c1 ∣1⟩ with c0 = ∥c0∥eiα, c1 = ∥c1∥eiβ ∈ C (2.1.55)

so that ∥∣ψ⟩∥2 = ∥c0∥2 + ∥c1∥2. Every state vector with the same quantum state is
given by

∣ψ′⟩ = c ∣ψ⟩ with c = ∥c∥eiγ ∈ C ∖ {0} (2.1.56)
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so that the quantum state doesn’t depend on the norm and the global phase of
the state vector. We can then choose a representative for each quantum state by
fixing the norm of the state vector to 1 and the phase of the first coefficient to 0,
that is

∣ψ⟩ = c0 ∣0⟩ + c1 ∣1⟩↦
∥c0∥√

∥c0∥2 + ∥c1∥2
∣0⟩ + ∥c1∥√

∥c0∥2 + ∥c1∥2
ei(β−α) ∣1⟩ (2.1.57)

so that any quantum state can be represented by a state vector of the form

∣ψ⟩ = cos θ
2
∣0⟩ + eiϕ sin θ

2
∣1⟩ with θ ∈ [0, π], ϕ ∈ [0,2π[ (2.1.58)

where we have that when θ = 0 or θ = π the expression is independent of ϕ. Then
θ and ϕ can be regarded as the polar coordinates of a 2-sphere of quantum states
with the north pole corresponding to ∣0⟩ and the south pole to ∣1⟩. This is known
as the Bloch sphere and is a representation of the projective space CP1 for a fixed
orthonormal basis.

2.1.4 Density operators

We have seen that quantum states are the 1-dimensional linear subspaces of H,
so we can identify them with some orthogonal projectors. The only additional
requirement is that the projected spaces must be 1-dim, i.e., they must be rank-1
orthogonal projectors. From eq. (2.1.34), we know that for any rank-1 projector,
there must exist a normalized vector ∣ẽ⟩ such that

Pẽ ∣ψ⟩ = ⟨ẽ∣ψ⟩ ∣ẽ⟩ ∀ ∣ψ⟩ ∈ H0 (2.1.59)

and so from eq. (2.1.4), we have

Pẽ = ∣ẽ⟩ ⟨ẽ∣ (2.1.60)

In the context of quantum mechanics, the set of rank-1 orthogonal projectors is
known as the set of pure density operators and is denoted as D.

We now define a candidate for the projection map to pure density operators

Π ∶ H0 →D Π(∣ψ⟩) = ∣ψ⟩ ⟨ψ∣⟨ψ∣ψ⟩ ∶= ρψ (2.1.61)

This map is well-defined since for every ∣ψ⟩ we have that ρψ is self-adjoint, idem-
potent and

ρψ =
∣ψ⟩ ⟨ψ∣
⟨ψ∣ψ⟩ = (

1

∥∣ψ⟩∥ ∣ψ⟩)(⟨ψ∣
1

∥∣ψ⟩∥) (2.1.62)
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so that it is of rank 1. This map also has a well-defined action on quantum states
since

(c ∣ψ⟩)(⟨ψ∣ c∗)
(⟨ψ∣ c∗)(c ∣ψ⟩) =

∣ψ⟩ ⟨ψ∣
⟨ψ∣ψ⟩ ∀c ≠ 0 ∈ C (2.1.63)

so that it defines the map

f ∶ PH →D f([∣ψ⟩]∼) = Π(∣ψ⟩) = ρψ (2.1.64)

Finally, we can prove that f is invertible, allowing us to identify quantum states
with density matrices. The map is 1-1 since given any two state-vectors ∣ψ⟩ and
∣ϕ⟩, we have that

ρψ = ρϕ Ô⇒ ρψ ρϕ = ρϕ

Ô⇒ ∣ψ⟩ ⟨ψ∣ϕ⟩ ⟨ϕ∣
⟨ψ∣ψ⟩ ⟨ϕ∣ϕ⟩ =

∣ϕ⟩ ⟨ϕ∣
⟨ϕ∣ϕ⟩

Ô⇒ ⟨ψ∣ϕ⟩
⟨ψ∣ψ⟩ ∣ψ⟩ = ∣ϕ⟩

Ô⇒ ∣ψ⟩ ∼ ∣ϕ⟩

Then, since any rank-1 orthogonal projector can be expressed as in eq. (2.1.60),
we also have that f is surjective. We have thus proved that

PH ∼D (2.1.65)

through the intrinsic map f , so we may identify quantum states with pure den-
sity operators, and the two projection maps π and Π are the same under this
identification.

We now want to restate postulates 1 to 3 in terms of pure density matrices. To
do so, we will need the concept of the trace of an operator. For a finite-dimensional
Hilbert space, we may define the trace of an operator A as the linear functional

tr(A) =∑
i

⟨ei∣A∣ei⟩ , {∣ei⟩}o.n.basis (2.1.66)

where it can be shown that the expression on the right is independent of the choice
of the orthonormal basis. The trace also has the following cyclic property

tr(AB) = tr(BA) (2.1.67)

so that for any number of operators A1, . . . ,An, we have

tr(A1 . . .An) = tr(AnA1 . . .An−1) (2.1.68)

We also have the following result from linear algebra
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Theorem 8. Let H be a finite-dimensional complex Hilbert space and A any self-
adjoint operator on H. Then

tr(A) =∑
i

λi (2.1.69)

where {λi} are the eigenvalues of A repeated according to their algebraic multiplic-
ity.

One immediate consequence of this theorem is that an orthogonal projector is
of rank 1 if and only if it has a unitary trace. Then we may equivalently define
pure density operators in the following, more common, way

D ∶= {ρ ∈ L ∣ ρ† = ρ, ρ2 = ρ, tr(ρ) = 1} (2.1.70)

We can now reformulate postulate 1 as

Postulate 1 (Quantum states). The set of all the possible quantum states of a
system is the projective space of the system’s Hilbert space. Then every quantum
state is uniquely determined by a pure density operator ρ ∈D

Given a unitary evolution of the system, we can compute the evolution of any
density operator as follows. Any initial quantum state can be expressed as

ρ(t1) = ∣ψ(t1)⟩ ⟨ψ(t1)∣ (2.1.71)

where ∣ψ(t1)⟩ is a normalized state vector, then for any unitary evolution U(t1, t2)
we have that ∣ψ(t2)⟩ remains normalized and

ρ(t2) = ∣ψ(t2)⟩ ⟨ψ(t2)∣
= U(t1, t2) ∣ψ(t1)⟩ ⟨ψ(t1)∣U †(t1, t2)
= U(t1, t2)ρ(t1)U †(t1, t2)

so that we can reformulate postulate 2 as

Postulate 2 (Unitary evolution). The Hilbert space of a closed system evolves
only through unitary transformations. Coherently, the time evolution of any pure
density operator ρ(t) describing the quantum state of the system is given by

ρ(t2) = U(t1, t2)ρ(t1)U †(t1, t2) (2.1.72)

where U(t1, t2) is a unitary operator that only depends on t1 and t2.

Given any quantum measurement {(Mx, x)} and a quantum state ρ we have
that

ρ = ∣ψ⟩ ⟨ψ∣ Ô⇒ p(x) = ⟨ψ∣M †
xMx∣ψ⟩ = ∥Mx ∣ψ⟩∥2 (2.1.73)
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for some normalized state vector ∣ψ⟩. Then by choosing

Mx ∣ψ⟩
∥Mx ∣ψ⟩∥

(2.1.74)

as the first element of an orthonormal basis, we have that

tr(Mx ρM
†
x) =

⟨ψ∣M †
xMx∣ψ⟩ ⟨ψ∣MxM

†
x∣ψ⟩

∥Mx ∣ψ⟩∥2
= ∥Mx ∣ψ⟩∥2 (2.1.75)

so that we can reformulate postulate 3 as

Postulate 3 (Quantum measurements). Quantum measurements are described by
a collection of pairs {(Mx, x)} of measurement operators Mx and outcomes x such
that the following completeness equation is satisfied

∑
x

M†
xMx = I (2.1.76)

where I is the identity operator. Then, given a system in a quantum state described
by a pure density operator ρ, the probability distribution of the outcomes is

p(x) = tr(Mx ρM
†
x) (2.1.77)

Finally, any interaction with the system that leads to the measurement of a spe-
cific outcome x transforms the quantum state ρ before the measurement to a new
quantum state ρ′ after the measurement according to

ρ′ = Mx ρM
†
x

tr(Mx ρM
†
x)

(2.1.78)

that depends on the outcome measured.

At last, we have that the expectation value of an observable A when the system
is in a quantum state described by a pure density operator ρ is

E[A] =∑
i

λi tr(Pi ρP †
i ) = tr(ρA) (2.1.79)

Example: the qubit

Pure density operators for the qubit are the self-adjoint operators with one eigen-
value equal to 1 and the other equal to 0. Then pure density operators are repre-
sented by 2 × 2 Hermitian matrices with trace 1 and determinant 0. Expressing a
generic Hermitian matrix A as in eq. (2.1.25) it can be shown that

tr(A) = 2a0 det(A) = a20 − ∥a⃗∥2 (2.1.80)
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so that for any pure density operator, we have that a0 = 1
2 and ∥a⃗∥ = 1

2 . Then we
can represent any pure density operator as

ρ = 1 + n⃗ ⋅ σ⃗
2

with n⃗ ∈ R3 ∶ ∥n⃗∥ = 1 (2.1.81)

where we recognize the Bloch sphere representation of the quantum states of the
qubit.

2.2 The manifold of quantum states
In this section, we discuss the differential geometrical structure of the complex
projective space. We start by showing that both the Hilbert space and its complex
projective space are complex manifolds, and we recognize that the inner product
of the Hilbert space induces an intrinsic metric on itself. We show that the Hilbert
space is a fiber bundle with the complex projective space as base space. Finally,
through this structure, we induce an intrinsic metric to the complex projective
space, the Fubini-Study metric. The treatment is based on [7], [8] and [2] in
general, and on [3] for the theory of fiber bundles and Lie groups; more details and
different prospectives can be found in these references.

2.2.1 Geometry of the Hilbert space

Complex manifolds are defined in analogy with real ones with the requirement
of being locally isomorphic to CN for some N and with holomorphic transition
functions between charts [9]; the tangent space at each point is thus also isomorphic
to CN . Every N -dimensional complex manifold is also a 2N -dimensional real
manifold where every complex coordinate basis {e1, . . . , eN} corresponds to a real
coordinate basis {e1, . . . , eN , ie1, . . . , ieN}, this manifold is called the realification
of the original complex one.

Finite-dimensional Hilbert spaces are isomorphic to CN for some N and so they
are also trivial complex manifolds. Moreover, there is a canonical isomorphism
between the tangent space at each point and the Hilbert space itself

T∣ψ⟩H ∼ H with
∂

∂θ
↔ d ∣ψ(θ)⟩

dθ
∣
θ=0

=∶ ∣dψθ⟩ (2.2.1)

so that the inner product on the Hilbert space defines an inner product on the
complex tangent space of every point, i.e., it defines a complex (02) tensor field on
the manifold. Hilbert spaces also are metric spaces with respect to the distance
induced by the inner product

d(X,Y) = ∥X −Y∥ =
√
⟨X −Y,X −Y⟩ ∀X,Y ∈ H (2.2.2)
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For finite-dimensional Hilbert spaces, the inner product is a hermitian form that
may be expressed as

⟨X,Y⟩ = h(X,Y) = g(X,Y) + iw(X,Y) (2.2.3)

where g is a real-valued symmetric bilinear form and w is a real-valued antisym-
metric bilinear form. Then, the distance may be expressed as

d(X,Y) =
√
g(X −Y,X −Y) (2.2.4)

so that the real part of the inner product also defines a metric tensor on the Hilbert
space as explained in section 1.2.2, endowing it with a Riemannian structure.

We thus have that the space of state vectors H0 is also a complex manifold
with the Riemannian structure

g∣ψ⟩(∣dψ1⟩ , ∣dψ2⟩) = Re [⟨dψ1∣dψ2⟩] (2.2.5)

This metric tensor is intrinsically derived from the structure of the Hilbert space
and so it is invariant under unitary transformations. The set U(N) of unitary
transformations of CN is a Lie group and so the Lie algebra of its left-invariant
vector fields are the killing vector fields of the Hilbert space. The integral curves
of these vector fields also preserve the norm of the points in the Hilbert space, and
it can be shown that in each point their tangent vectors form a real (2N − 1)-
dimensional linear subspace of the tangent space. From this follows that the
integral curves of the killing vector fields mesh to form a foliation of the realified
Hilbert space where each leaf is the set of state vectors with a fixed norm and is
thus isomorphic to S2N−1. Then each leaf is a (2N − 1)-dimensional submanifold
of the realified Hilbert space and inherits a Riemannian structure.

2.2.2 Fiber bundle structure of the Hilbert space

We are now interested in the geometry of the space of quantum states. For start
we have that, with a sound choice of coordinates, one can easily verify that CPn

is also a complex manifold [2, pg. 108]. Then tangent vectors of PH can be
intrinsically mapped to operators of H as follows

∂

∂θ
∈ TρD↦ dρθ with dρθ(X) =

d

dθ
[ρ(θ)(X)]∣

θ=0

∀X ∈ H (2.2.6)

where from the linearity of differentiation follows that dρθ is a well-defined linear
operator on H.

Now we may ask ourselves if there is a natural way to induce a metric on PH
from the one of H. Such an intrinsic metric would lead to a natural notion of
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distance between quantum states. To do this we will start by investigating the
relationship between H and PH as complex manifolds.

Firstly let us now recall the intrinsic projection map of eq. (2.1.54)

π ∶ H0 → PH ∣ψ⟩↦ [∣ψ⟩]∼ = {c ∣ψ⟩ ∀c ≠ 0 ∈ C}

it can be shown that it is a smooth surjective map between the two manifolds so
that we may regard H0 as a fiber bundle with base space PH. The fibers of the
fiber bundle are the orbits of the action on H0 of the abelian Lie group

C0 = {c ⋅ I ∣ ∀c ≠ 0 ∈ C} (2.2.7)

Since this group acts smoothly and transitively on the fibers, we have that the
fibers are isomorphic to C0, and the fiber bundle is a principal fiber bundle.

One way to induce a metric on PH would be to find a natural embedding of it
into H0. It is a known result from the theory of principal fiber bundles that if such
an embedding existed, then the fiber bundle would be the trivial H0 = PH ×C0.
Since this is not the case, there is no natural embedding, i.e., there is no way
to choose a representative state vector for every quantum state in terms of the
structure of the Hilbert space only.

2.2.3 The Fubini-Study metric

Now that we have described the fiber bundle structure that links H0 and PH, we
introduce two concepts that will be instrumental in our aim of inducing a metric
on the space of quantum states: the push-forward of vectors and the pull-back of
1-forms.

Given a fiber bundle X with base space B, the projection map π ∶ X → B
allows us to locally project any smooth curve on the fiber bundle to a smooth
curve on the base space. From this follows that we have a natural map

dπx ∶ TxX → Tπ(x)B ∀x ∈X (2.2.8)

such that given any smooth curve γ(t) with γ(0) = x, then

dπx(γ′(0)) =
d

dt
[π(γ(t))]∣

t=0

(2.2.9)

where we have used the identification of tangent vectors with equivalence classes
of curves. From the linearity of the differentiation follows that dπ is also linear.
Then the push-forward is the map between the tangent bundles of the fiber bundle
and the base space such that

dπ ∶ TX → TB with dπ(x, v) = (π(x), dπx(v)) (2.2.10)
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The pull-back of 1-forms is the dual map of the push-forward. Given any 1-form
α ∈ T ∗

π(x)
B, we define its pull-back on T ∗xX as the 1-form α′ ∈ T ∗xX such that

α′(v) = α(dπx(v)) ∀v ∈ TxX (2.2.11)

Then we have that given a 1-form in the cotangent space of some point of the
base space, we can pull it back to the cotangent spaces of the entire corresponding
fiber of the fiber bundle. From this follows that the pull-back is defined as a map
from entire fields of 1-forms in the base space to entire fields of 1-forms in the
fiber bundle. This is in contrast with the push forward since for vector fields to
be pushed forward, it would be necessary that every vector on the same fiber was
pushed to the same vector on the corresponding element of the base space. Finally,
using the tensor product, we can similarly define the push-forward of (p0) tensors
and the pull-back of (0q) tensor fields.

The structure we want to project onto PH is the (02) metric tensor field, and
so we cannot simply push it forward. The fiber bundle we are interested in, H0, is
also a Riemannian principal fiber bundle. As we will see, this allows us to uniquely
lift vector fields from the base space to the fiber bundle.

Given a fiber bundle X as before, we have that at every point x ∈X, the curves
through x that remain on the same fiber are projected to single points on the base
manifold so that the push-forward of their tangent vectors must be the null vector.
We define the vertical subspace of TxX as the kernel of the push-forward

Vx ∶= kerdπx ⊆ TxX (2.2.12)

Then a vector field is vertical if its value at every point is in the vertical subspace.
For a general fiber bundle, there may not be any vertical vector fields since the
vertical subspaces may not be a smooth subset of its tangent bundle. If X is
also a principal fiber bundle with structure group G, we have that the fibers are
given by the mesh of left-invariant vector fields of G. Then the vertical vector
fields are precisely the left-invariant vector fields of G, and the vertical subspace
is isomorphic to the Lie algebra of G at every point

Vx ∼ gG (2.2.13)

We may also choose at every point x ∈ X a horizontal subspace Ox, i.e., a
complementary subspace to the vertical one so that

TxX = Vx ⊕Ox (2.2.14)

In general, there is no intrinsic way to choose a horizontal subspace at every point,
but ifX is also a Riemannian manifold, then we can define the horizontal subspaces
as the orthogonal complements of the vertical ones

Ox ∶= V ⊥x (2.2.15)
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and horizontal vector fields are defined in analogy with the vertical ones. We
thus have a well-defined notion of vertical motion, tangent to the fibers, and of
horizontal motion, orthogonal to the fibers.

Intuitively, we can now lift any curve in the base space to the fiber bundle by
starting from a point on the fiber and then moving orthogonally to it. To precisely
define this concept, let us consider the restriction to Ox of the push-forward at
every point

dπ′x ≡ dπx∣Ox
∶ Ox ⊆ TxX → Tπ(x)B (2.2.16)

It can be shown that from the smoothness of the metric tensor field follows that
dπ′x defines a smooth map between the tangent bundles of the fiber bundle and
the base space. Then from our previous considerations follows that

kerdπ′x = {0} ∀x ∈X (2.2.17)

and thus dπ′x defines an isomorphism between Ox and Tπ(x)B at every point. We
can then uniquely define the horizontal lift vl(x) ∈ TxX to the fiber bundle of any
vector field v(y) ∈ TyB on the base space as

vl(x) = dπ′−1y (v(y)) , y = π(x) ∀x ∈X (2.2.18)

that is the unique horizontal vector field on the fiber bundle that projects to v(y).
We can now try to induce a metric tensor field on the base space by identifying

its action on vector fields with the action of the metric tensor of the fiber bundle
on the horizontal lift of the vector fields of the base space, i.e., given dy1, dy2 ∈ TyB

g′y(dy1, dy2) = gx(dπ′−1y (dy1), dπ′−1y (dy1)) (2.2.19)

where y = π(x). This is possible only if the scalar field resulting from the inner
product of the horizontal lifts is constant on the fibers; only in this case, we can
then push forward the scalar field to the base space and thus define the action
of the induced metric tensor field on the original vector fields. Requiring the
inner product of the horizontal lifts to be constant on the fibers is equivalent to
requiring it to be constant under the action of the structure group G. By definition,
horizontal lifts are invariant under the action of G, so the only requirement is that
the metric tensor field must be invariant, i.e., the left-invariant vector fields must
also be killing vector fields.

We have thus shown that we can induce a metric tensor field on the base space
of a Riemannian principal fiber bundle if the elements of the structure group are
isometries of the fiber bundle. As we have seen in section 2.2.1, the set of isometries
of H0 = CN

0 is the unitary group U(N), while its structure group is the abelian
group C0. Then not every element of the structure group is an isometry since

C0 = R+ ×U(1) c = ∥c∥ ⋅ eiθ ↔ (∥c∥, eiθ) (2.2.20)
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To proceed, we must first fibrate with R+ and induce a metric on the base of this
fibration. This is easily done since we can intrinsically define the embedding of
the projection as the normalized state vectors

∣ψ⟩↦ ∣ψ⟩
∥∣ψ⟩∥ =

∣ψ⟩√
⟨ψ∣ψ⟩

∈ H0 ∀ ∣ψ⟩ ∈ H0 (2.2.21)

so that the base space is one of the leaves of the foliation induced by U(N) on H0

S2N−1 = CN
0 /R+ (2.2.22)

as described in section 2.2.2, then it also inherits the Riemannian structure such
that

g∣ψ⟩(∣dψ1⟩ , ∣dψ2⟩) = Re [⟨dψ1∣dψ2⟩] (2.2.23)

for any normalized state vector ∣ψ⟩. Considering the restriction of the projection
map of eq. (2.1.54) on the set of normalized state vectors, we can repeat the same
arguments of section 2.2.2 and show that S2N−1 is a Riemannian principal fiber
bundle with structure group U(1) and base space

CPn = S2N−1/U(1) (2.2.24)

where n = N − 1. The structure group is then a one-parameter subgroup of the
isometry group, so we can induce a metric tensor field on CPn as described in this
section. This metric for CPn is known as the Fubini-Study metric gFS and is thus
intrinsically defined in terms of the structure of the Hilbert space only.

The pullback of the FS metric on state vectors

We first derive an explicit expression for the pullback of the Fubini-Study metric
on H0. From our definitions, we have that for any normalized state vector ∣ψ⟩

gFS(∣dψ1⟩ , ∣dψ2⟩) = g(dπ′−1ρ (dρ1), dπ′−1ρ (dρ2)) (2.2.25)

where ρ = π(∣ψ⟩) and dρi = dπ∣ψ⟩(∣dψi⟩). We first notice that the linear map

dπ′−1ρ ○ dπ∣ψ⟩ ∶ T∣ψ⟩H → O∣ψ⟩ (2.2.26)

must act as the identity on O∣ψ⟩ and must have kernel V∣ψ⟩, the same as dπ∣ψ⟩, so
that we can recognize it as the orthogonal projector on O∣ψ⟩. Since for every ∣ψ⟩,
the motion along its fiber is given by c ∣ψ⟩ for some complex number c, then

V∣ψ⟩ = {c ∣ψ⟩ ∀c ∈ C} (2.2.27)
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and so the projector to the vertical space is ρ. The projector to the horizontal
space is then (I − ρ) so that

dπ′−1ρ ○ dπ∣ψ⟩(∣dψ⟩) = (I − ρ) ∣dψ⟩ = ∣dψ⟩ − ⟨ψ∣dψ⟩ ∣ψ⟩ (2.2.28)

and for normalized state vectors we have

gFS(∣dψ1⟩ , ∣dψ2⟩) = Re[(⟨dψ2∣ − ⟨ψ∣ ⟨dψ2∣ψ⟩)(∣dψ1⟩ − ⟨ψ∣dψ1⟩ ∣ψ⟩)]
= Re[⟨dψ2∣dψ1⟩ − ⟨dψ2∣ψ⟩ ⟨ψ∣dψ1⟩] (2.2.29)

Finally, it can be similarly shown that for any state vector ∣ψ⟩ ∈ H0 and two tangent
vectors ∣dψ1⟩ , ∣dψ2⟩ ∈ T∣ψ⟩H we have

gFS(∣dψ1⟩ , ∣dψ2⟩) = Re [
⟨dψ2∣dψ1⟩
⟨ψ∣ψ⟩ − ⟨dψ2∣ψ⟩ ⟨ψ∣dψ1⟩

⟨ψ∣ψ⟩2
] (2.2.30)

The FS metric on pure density operators

We now want to derive an explicit expression for the Fubini-Study metric on CPn.
As we have seen, the first fibration projects the state vectors to the normalized
state vectors, which constitute a leaf of the foliation of submanifolds of H0 that are
meshed by the integral curves of the left-invariant vector fields of U(N). Then, at
any point of S2N−1, the tangent space is isomorphic to the Lie algebra of U(N).
This is the space of anti-hermitian operators since the action of any 1-parameter
subgroup of U(N) on a normalized state vector ∣ψ⟩ can always be locally expressed
as

U(θ) ∣ψ⟩ = eiAθ ∣ψ⟩ (2.2.31)

for some hermitian operator A. Then, for any tangent vector ∣dψ⟩ ∈ T∣ψ⟩S2N−1,
there must exist a unique hermitian operator A such that

∣dψ⟩ = d

dθ
(eiAθ ∣ψ⟩)∣

θ=0

= iA ∣ψ⟩ (2.2.32)

The push forward of this vector is then given by

dρ = d

dθ
(eiAθρe−iAθ)∣

θ=0

= (iAρ − ρiA)

= i[A,ρ] (2.2.33)
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We can then express the pullback of the Fubini-Study metric on S2N−1 in terms of
the push forward of the tangent vectors

gFS(∣dψ1⟩ , ∣dψ2⟩) = Re [⟨dψ2∣dψ1⟩ − ⟨dψ2∣ψ⟩ ⟨ψ∣dψ1⟩]
= Re [⟨ψ∣A2A1∣ψ⟩ − ⟨ψ∣A2∣ψ⟩ ⟨ψ∣A1∣ψ⟩]
= Re [tr (ρ (A2A1 −A2 ρA1))]

= 1

2
tr (ρA2A1 + ρA1A2 − ρA2 ρA1 − ρA1 ρA2)

= 1

2
tr ([A1, ρ] [ρ,A2]) =

1

2
tr (dρ1 dρ2) (2.2.34)

and so we find that the Fubini-Study metric on CPn is given by

gFS(dρ1, dρ2) =
1

2
tr (dρ1 dρ2) (2.2.35)
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Chapter 3

Quantum information

3.1 Quantum information geometry
In this section, we draw the connection between the geometry of probability dis-
tributions and the one of quantum states. We begin by defining the mixture
and exponential representations of tangent vectors to quantum states, using the
symmetric logarithmic derivative (SLD). Then we define by analogy the quantum
Fisher information and we find it to be equal to the Fubini-Study metric, up to
a constant factor. Lastly, we discuss in more depth the analogy between random
variables and observables through the definition of a symmetric generalized covari-
ance. The treatment is based on [1], [8] for the general theory and on [10], [11]
and [12] for the details of the pure state case.

3.1.1 Observables and the tangent space

As we have seen in section 2.1.1, quantum states can be interpreted as a gen-
eralization of probability distributions. We now want to further investigate the
parallelisms between the geometry of quantum states and the one of probability
distributions.

We start by recalling the representation of tangent vectors as linear operators,
from eq. (2.2.6) we have

X̃θ ≡
∂

∂θ
∈ TρPH ↦ dρθ ∈ TρD where dρθ =

d

dθ
[ρ(θ)]∣

θ=0

(3.1.1)

which is analogous to the mixture representation of tangent vectors to probability
distributions we defined in eq. (1.1.11), so that

X̃
(m)
θ ≡ dρθ ∀X̃θ ∈ TρPH (3.1.2)

and T
(m)
ρ PH ≡ TρD (3.1.3)
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In the last paragraph of section 2.2.3 it was shown that any tangent vector dρ ∈ TρD
can be expressed as

dρ = i[A,ρ] (3.1.4)

for some Hermitian operator A, thus dρ is also Hermitian and we may interpret it
as an observable. Further, we have

tr(dρθ) =
d

dθ
[tr(ρ(θ))] = 0 (3.1.5)

that is analogous to eq. (1.1.13).
To define the exponential representation of tangent vectors, we would have to

divide the mixture representation by the probability distribution itself. This is
not possible since we are dealing with operators, instead, we can use the implicit
expression of eq. (1.1.23) and symmetrize it to obtain

dρθ =
1

2
[ρL(ρ)θ +L

(ρ)
θ ρ] (3.1.6)

To precisely define this operator we express any dρ ∈ TρD as in eq. (3.1.4), so that
we obtain the following expression

i[A,ρ] = 1

2
{ρ,L(ρ)(A)} (3.1.7)

It can be proven that when ρ is Hermitian and positive semi-definite L(ρ)(A) is
determined for every operator A, up to a term that anticommutes with ρ. Then
L(ρ)(A) is known as the symmetric logarithmic derivative (SLD) and one can
also show that if A is Hermitian L(ρ)(A) is also Hermitian. Analogously with
probability distributions, the expectation value of the SLD is zero

E [L(ρ)] = tr(ρL(ρ)) = 1

2
tr(ρL(ρ) +L(ρ) ρ) = tr(dρ) = 0 (3.1.8)

regardless of the anticommutating term.
For pure density operators, we can find an explicit expression for the SLD as

follows
dρθ =

d

dθ
[ρ(θ)]∣

θ=0

= d

dθ
[ρ2(θ)]∣

θ=0

= ρdρθ + dρθ ρ (3.1.9)

so that we can set
L
(ρ)
θ = 2dρθ ∀dρθ ∈ TρD (3.1.10)

by implicitly fixing the anticommutating term. It will become clear in the next
sections that this choice has no effect on the geometry we will develop.
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We thus have that L(ρ)θ is analogous to the exponential representation of dρθ

X̃
(e)
θ ≡ L

(ρ)
θ ∀X̃θ ∈ TρPH (3.1.11)

and we can identify the space of exponential representations with the space of
mixture representations

T
(e)
ρ PH ≡ T (m)ρ PH ≡ TρD (3.1.12)

3.1.2 Quantum Fisher information

In light of the analogies between the space of quantum states and the space of
probability distributions, we can now try to define the Fisher information metric
for quantum states. We start from the formulation of the Fisher information metric
in terms of the exponential representation of tangent vectors, recalling eq. (1.2.25)

GF (X,Y ) = Ep[X(e)Y (e)] ∀X,Y ∈ TpP (3.1.13)

Then we can define the quantum Fisher information metric by analogy, symmetriz-
ing the arguments

GQF (X̃1, X̃2) = Eρ [
1

2
(L(ρ)1 L

(ρ)
2 +L

(ρ)
2 L

(ρ)
1 )] ∀X̃1, X̃2 ∈ TρPH

= tr
⎛
⎝
ρ
L
(ρ)
1 L

(ρ)
2 +L

(ρ)
2 L

(ρ)
1

2

⎞
⎠

(3.1.14)

= tr(1
2
{ρ,L(ρ)1 }L

(ρ)
2 ) = tr(L

(ρ)
1

1

2
{ρ,L(ρ)2 })

= tr (dρ1L(ρ)2 ) = tr (L
(ρ)
1 dρ2) (3.1.15)

The symmetrization of the arguments is necessary to ensure that the metric is
symmetric, and it is also the reason why the choice of the anticommutating term
in the SLD has no effect on the geometry. Then, from eq. (3.1.10), we have that
for pure quantum states

GQF (X̃1, X̃2) = 2 tr (dρ1 dρ2) (3.1.16)

= 4GFS(X̃1, X̃2) (3.1.17)

This shows that the Fubini-Study metric we defined intrinsically for pure quantum
states can be precisely interpreted as a quantum information metric.
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3.1.3 Symmetric covariance

Our analogy between the geometry of quantum states and the one of probability
distributions is now almost complete, but there are still some details to be clarified.
Firstly, we would want to treat observables as we treated random variables, but
while every tangent vector can be associated with an observable with zero expec-
tation value, the converse is not directly true. Let A be the set of observables of
H and ρ a pure density operator, then

TρD ⊂ A�ρ ∶= {A ∈ A ∣ Eρ[A] = 0} (3.1.18)

as can be easily checked by comparing the real dimensions of the two vector spaces.
Secondly, since operators don’t commute in general, we must define a sound gen-
eralization of the covariance, and as we will show, these two problems are related.

For starters, we require our generalized covariance to reduce to the variance of
the observable when evaluated on the diagonal

Covρ[A,A] = Vρ[A] = tr (ρ (A −Eρ[A])2) ∀A ∈ A (3.1.19)

Then by requiring it to be symmetric in its arguments, we are naturally led to the
definition

Covρ[A,B] ∶=
1

2
tr (ρ {A −Eρ[A],B −Eρ[B]}) ∀A,B ∈ A (3.1.20)

Since (A − Eρ[A]) always has zero expectation value, we can recognize that this
expression also defines for every quantum state an inner product in the space of
observables with zero expectation value

⟪A,B⟫ρ ∶=
1

2
E [{A,B}] ∀A,B ∈ A� (3.1.21)

Then this inner product coincides with the quantum Fisher metric when the ar-
guments are the exponential representations of tangent vectors

⟪L(ρ)1 , L
(ρ)
2 ⟫ρ = GQF (X̃1, X̃2) ∀X̃1, X̃2 ∈ TρPH (3.1.22)

This is no coincidence, and it can be shown that the definitions of the exponential
representation and the generalized covariance are deeply linked [1].

Let us now go back to the problem of associating every observable with zero
expectation value to the exponential representation of a tangent vector. We notice
that every observable A ∈ A can be thought of as an element of the Lie algebra of
U(N), and thus we can associate it with a tangent vector through the linear map

Mρ ∶ A→ TρD ∣ A↦ d

dθ
(eiAθρe−iAθ)∣

θ=0

= i[A,ρ] =∶ dρA (3.1.23)
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The kernel of this map is the linear subspace of the Lie algebra of U(N) that cor-
responds to the 1-parameter subgroups that leave the quantum state unchanged.
We notice that kerMρ is the set of observables that commute with the pure den-
sity operator of the quantum state, i.e, the set of observables for which the state
vectors of ρ are eigenvectors; let ρ = ∣ψ⟩ ⟨ψ∣ for some normalized state vector ∣ψ⟩,
then

[ρ,A] = 0 Ô⇒ ρA = Aρ
Ô⇒ A ∣ψ⟩ = Aρ ∣ψ⟩ = ρA ∣ψ⟩ = ⟨ψ∣A∣ψ⟩ ∣ψ⟩ (3.1.24)
Ô⇒ Aρ = Eρ[A]ρ (3.1.25)

Then any element of kerMρ can be expressed as

K = λ(k)ρ +K ′ with K ′ =K ′†, K ′ ρ = ρK ′ = 0 (3.1.26)

notice that the two components decompose the kernel in two linear subspaces
closed under commutation, thus they define two subgroups of U(N)

eiθλ
(k) ρ ∣ψ⟩ = eiθλ(k) ∣ψ⟩ eiθK

′ ∣ψ⟩ = eiθ⋅0 ∣ψ⟩ = ∣ψ⟩ (3.1.27)

The first is isomorphic to U(1) and is the subgroup that moves the state vectors
of ρ along the fiber. The second one is isomorphic to U(N −1) and leaves the state
vectors of ρ unchanged. Through the matrix representation of operators, we can
easily compute the real dimension of the lie algebra of U(N) to be N2 for any N .
Then the dimension of kerMρ is 1 + (N − 1)2 while the dimension of the domain
is N2, so that TρD has dimension 2N − 2 as we expected. 1

We consider now the restriction of Mρ to the observables with zero expectation
value in ρ

M
(0)
ρ ∣

A�ρ
∶ A�ρ → TρD (3.1.28)

From eq. (3.1.26) we can easily compute the real dimensions of the domain and of
the kernel of M(0)

ρ to be respectively N2 −1 and (N −1)2. Then the image of M(0)
ρ

must have a real dimension of 2N − 2, equal to the one of the tangent space, thus
proving that M

(0)
ρ is surjective. Then we also have that M

(0)
ρ maps TρD to itself

1This shows that we can define CPn
=

U(N)
U(1)×U(N−1)

. Through the same arguments, this
expression can be easily generalized to mixed states, so that the space of rank-m density matrices
is given by U(N)

U(m)×U(N−m)
. This is treated in detail in [8].

47



since

[L(ρ), ρ] = 0 Ô⇒ dρ = L(ρ) ρ = ρL(ρ)

Ô⇒ (dρ −L(ρ))ρ = ρ (dρ −L(ρ))
Ô⇒ iAρ − iρAρ −L(ρ)ρ = iρA − iρAρ − ρL(ρ)

Ô⇒ i[A,ρ] = [L(ρ), ρ]
Ô⇒ dρ = 0, L(ρ) = 0

where we considered dρ = i[A,ρ]. It follows that we can decompose the vector
space of observables with zero expectation value in ρ as

A�ρ = A�C(ρ) ⊕ TρD ∀ρ ∈D (3.1.29)

where A�
C(ρ)

is the set of zero expectation value observables that commute with ρ,
then we write

A = A(ρ)C +A(ρ) ∀A ∈ A�ρ
with A

(ρ)
C ∈ A�C(ρ) and A(ρ) ∈ TρD (3.1.30)

Finally, we can show that the inner product we defined on A ∈ A depends only
on the non-commuting part of the decomposition

⟪A,B⟫ρ =
1

2
tr (ρ{A, B})

= 1

2
tr (ρ{A(ρ)C +A(ρ), B

(ρ)
C +B(ρ)})

= 1

2
tr (ρ{A(ρ), B(ρ)}) + 1

2
tr (ρ{A(ρ), B(ρ)C })+

+ 1

2
tr (ρ{A(ρ)C , B(ρ)}) + 1

2
tr (ρ{A(ρ)C , B

(ρ)
C })

= 1

2
tr (ρ{A(ρ), B(ρ)}) = ⟪A(ρ),B(ρ)⟫ρ (3.1.31)

so that we can map every observable with zero expectation value in ρ to a tangent
vector of ρ through

A ∈ A�ρ ↦ Ã ∈ TρPH ∶ Ã(e) = A(ρ) ∈ TρD (3.1.32)

Then we have proved that

⟪A,B⟫ρ = GQF (Ã, B̃) (3.1.33)

completing our analogy.
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3.2 Quantum estimation
In this section, we will use the framework of quantum information geometry to state
and prove the quantum version of the results of probability theory and parameter
estimation that we presented in section 1.3. Quantum estimators will be defined
in the general case of POVMs, and we will prove the quantum Cramér-Rao bound.
The treatment is based on [1] and [13].

3.2.1 Variance and expectation value

The analogy between quantum states and statistical models we developed allows
us to prove the following results that connect vector fields on PH and observables.
We start with the quantum version of theorem 3.

Theorem 9. For any observable A ∈ A, we have

(gradE[A])(e)ρ = (A −Eρ[A])(ρ) ∀ρ ∈ PH (3.2.1)

where the gradient is the dual tangent vector of the differential with respect to the
quantum Fisher metric.

Proof. For every X̃θ ∈ TρPH, we have

X̃θ(E[A]) = tr(X̃θ(ρ)A) = tr(dρθA)
= tr (dρθ (A −Eρ[A]))

= tr(1
2
{ρ, L(ρ)θ } (A −Eρ[A]))

= 1

2
tr (ρL(ρ)θ (A −Eρ[A]) +L

(ρ)
θ ρ (A −Eρ[A]))

= ⟪L(ρ)θ , (A −Eρ[A])⟫ρ = ⟪L(ρ)θ , (A −Eρ[A])(ρ)⟫ρ

Then it also follows that

Corollary 9.1. For any observable A ∈ A,

Vρ[A] = ∥(dE[A])ρ∥2ρ (3.2.2)

We can now consider pure state models, i.e., submanifolds S of PH, and, using
the same arguments as in the classical case, we have

Theorem 10. Given a pure state model S, for any observable A, we have

Vρ[A] ≥ ∥(dE[A]∣S)ρ∥2ρ (3.2.3)

where the equality holds if and only if

(A −Eρ[A])(ρ) ∈ TρS (3.2.4)
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3.2.2 Quantum Cramér-Rao bound

We can now develop the quantum version of the Cramér-Rao bound for statistical
models. We will proceed similarly to the classical version, but we need to be careful
when treating multivariate models.

Let us consider an m-dimensional pure state model

S = {ρξ ∣ ξ = [ξ(1), . . . , ξ(m)] ∈ Ξ ⊆ Rn} (3.2.5)

where Ξ is the parameters set. We can define the unbiased estimators for the single
parameters as the observables

F (i) ∈ A ∶ Eρ[F (i)] = ξ(i) ∀ρ ∈ S (3.2.6)

Then, if we consider an m-tuple of single-parameter estimators

F⃗ = [F (1), . . . , F (m)] (3.2.7)

we can define the matrix Wξ[F⃗ ] = {wijξ } where

wijξ ∶= Covρξ[F (i), F (j)] = ⟪F (i) − ξ(i), F (j) − ξ(j)⟫ρξ (3.2.8)

so that on the diagonal we have the variances of the estimators of the individual
parameters

wiiξ = Vρξ[F (i)] (3.2.9)

We can then repeat the same arguments as for theorem 5 to prove the following
theorem.

Theorem 11. Let S = {ρξ ∣ ξ ∈ Ξ} be an m-dimensional pure state model of PH.
Then, for any m-tuple F⃗ of single-parameter estimators, the matrix Wξ[F⃗ ] satisfies

Wξ[F⃗ ] ≥ G−1F (ρξ) (3.2.10)

in the sense that Wξ[F⃗ ] −G−1F (ρξ) is positive semi-definite.

Unlike the classical case, the m-tuple of single-parameter estimators we defined
cannot be used as a multivariate estimator. Intuitively, this is because every single-
parameter estimator is a PVM and, unless the corresponding observables commute,
the order of the measurements changes the distributions of the outcomes.

A general quantum estimator is composed of a POVM M̂ with outcomes in a
set X and a classical estimator ξ̂ such that

M̂ = {(Mx, x)}x∈X and ξ̂ ∶ X → Ξ (3.2.11)
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This definition can be interpreted as performing a quantum measurement on a
system and then classically processing the results to estimate the parameters of
the original quantum state. By denoting

Eρ[ξ̂] ∶= ∑
x∈X

ξ̂(x)pρ(x) = ∑
x∈X

ξ̂(x)tr(ρMx) (3.2.12)

we say that a quantum estimator (M̂, ξ̂) is unbiased when

Eρξ[ξ̂] = ξ ∀ρξ ∈ S (3.2.13)

The variance-covariance matrix of the estimator is then Vξ[(M̂, ξ̂)] = {vijξ } where

vij = ∑
x∈X

(ξ̂(i)(x) − ξ(i))(ξ̂(j)(x) − ξ(j))tr(ρMx) (3.2.14)

and the following lemma holds.

Lemma 1. Let (M̂, ξ̂) be an unbiased estimator for a pure state model. Then

F (i) = ∑
x∈X

ξ(i)(x)Mx (3.2.15)

defines an m-tuple F⃗ of unbiased single-parameter estimators. Moreover, the fol-
lowing inequality holds

Vξ[(M̂, ξ̂)] ≥Wξ[F⃗ ] (3.2.16)

where the equality is satisfied if and only if M̂ is a PVM.

Proof. A complete proof can be found in [1, pg. 162].

We can thus finally state the quantum version of the Cramér-Rao bound, also
known as the Holevo-Helstrom theorem.

Theorem 12 (Quantum Cramér-Rao bound). Let (M̂, ξ̂) be an unbiased estimator
for a pure state model S = {ρξ ∣ ξ ∈ Ξ} of PH. Then its variance-covariance matrix
satisfies

Vξ[(M̂, ξ̂)] ≥ G−1QF (ρξ) =
1

4
G−1FS(ρξ) (3.2.17)

where GQF and GFS are the matrix representations, respectively, of the quantum
Fisher metric and the Fubini-Study metric of PH.

This important result sets an intrinsic limit to the amount of information re-
trievable from the state of a quantum system.
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