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Chapter 1

Introduction

1.1 Text-to-3D Generation

In today’s world, there’s a significant demand for 3D digital content across various

fields, such as gaming, film, virtual reality, architecture, and robotics. Developing

these models requires extensive artistic skills and knowledge in 3D design, making

the training of skilled 3Dmodelers a challenging task. With the growing importance

of 3D model creation, leveraging generative AI technology to produce high-quality

and scalable 3D models has become crucial. Furthermore, AI models capable of

converting text descriptions into 3D models are proving invaluable in empowering

both beginners and experts in the field of 3D content creation.

Generating 3Dmodels from textual descriptions posesmore challenges than creating

2D images. 3D models are complex, consisting of unstructured and diverse forms

of data that defy the straightforward application of conventional 2D deep learning

techniques. Unlike the uniform structure of 2D images, 3D models can be repre-

sented through voxels, point clouds, meshes, and implicit functions, each requiring

consideration of their unique representation for effective deep learning. The suc-

cess of generating 3D models significantly depends on the chosen representation’s
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ability to accurately convey geometry and topology. Additionally, while there are

extensive datasets for text-to-image generation, the scarcity and lower quality of an-

notated 3D data sets hamper the development of text-to-3D technologies.

However, recent technological advancements have ushered in new opportunities

for text-to-3D modeling. Neural Radiance Fields (NeRF) [21], for example, have

shown promise in 3D reconstruction and view synthesis tasks, leveraging real-world

photographs to train models that can interpolate between multiple viewpoints with

high precision and consistency. NeRF’s neural-based approach allows for high-

resolution sampling and simpler optimization compared to traditional methods, ef-

fectively addressing the issue of 3D data scarcity. Moreover, the progress in diffu-

sion models [8], driven by vast text-image pair datasets, has significantly advanced

AI-generated content. By integrating these models with pre-trained text-to-image

generators, new methodologies for optimizing 3D modeling have emerged, show-

casing the synergy between different AI technologies in enhancing 3D content cre-

ation.

Overall, this work conducts the first yet comprehensive benchmark of efficient text-

driven 3D generation models. The rest of this work is organized as follows:

• Background (chapter 2): introduces the mian components behind text-to-3D

generation

• Models (chapter 4): presents the core idea of each model implemented in this

work

• Benchmarks (chapter 3): summarizes the benchmarks and the metrics used to

evaluate generated 3D shapes

• Experiments (chapter 5): summarizes the assumptions and the configurations

on top of which each experiment is conducted
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• Results (chapter 6): presents the results of each experiment and the compari-

son between the results obtained by other researchers

Efficient Generation While recent work on text-conditional 3D object generation

has shown promising results, the state-of-the-art methods typically require multiple

GPU-hours to produce a single sample. This is in stark contrast to state-of-the-

art generative image models, which produce samples in a number of seconds or

minutes [11]. In the other hand, comparing images and 3D shape generation is not

fair because of the inherent complexity of 3D data itself. Considering the main

purpose of this research is crucial to take into account this discrepancy in order to

”fairly” define which are the key aspects that we need to consider when evaluating

the ”performances” of an efficient text-driven 3D generation model.

1.2 Evaluation

Issues

Recent methods in text-to-3D leverage powerful pre-trained diffusion models to ex-

ploit NeRF and Gaussian Splatting optimization techniques. Notably, these meth-

ods are able to produce high-quality 3D scenes without training on 3D data. Due

to the open-ended nature of the task, most studies evaluate their results ”manually”

through subjective case studies.

Data Representation Matters

Generative networks that use voxels and implicit representations require significant

computational resources and struggle with detail fidelity, while the Marching Cubes

[16] method also falls short in capturing intricate details. Point cloud representa-

tions, which use numerous 3D points to form shapes, suffer from uncertainty and

ambiguity due to a lack of local and overall topological connections, affecting shape
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accuracy. Meshes offer a balance between geometry and topology but pose diffi-

culties in generative network design due to their irregularity, impacting the detail of

generated shapes.

Popular Evaluation Method

Most of the research relies on a process simplified as ”human survey”: authors of a

given modelX present their results to anonymous human users and ask them to rate

the quality of the resulting 3D shape (related to a given text prompt) compared to the

3D shapes obtained with other methods or models developed by different researches.

This process is repeated for a large number of prompts and models, and the results

are then averaged to obtain a final score for each model. This final score is used to

capture the preference of the human users for the 3D shapes generated by a given

model X compared to the 3D shapes generated by other models. This approach

presentes several issues regarding the reliability of the results. First, the process is

subjective and biased by the human users’ preferences. Second, the process is time-

consuming and expensive in terms of human resources. Third, the dataset of text

prompts used to evaluate the results may be biased and limited to a specific domain

or topic. Fourth, the process is not scalable since it since it requires a large number

of human users and not reproducible since the human evaluators are not always the

same subjects. Fifth, the process is not objective since it does not provide a clear

and quantitative measure of the quality of the 3D shapes generated by a given model

X .

Main Components

The considerations explained in section 1.2 present a challenge in quantitatively ad-

dressing the question: ”How has current progress in Text-to-3D gone so far?” [5].
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Authors of the research T3Bench [5] proposed to conduct the evaluation of text-

to-3D models using a benchmark that consists of two main components: 3D Quality

and Prompt Coherence. These components are used to evaluate the performance of

text-to-3D models in terms of the quality of the generated 3D shapes and the coher-

ence between the text prompts and the generated 3D shapes.

This approach tries to address the issue of finding a balance respect the quality vs

prompt-coherence trade-off. Indeed, we can develop models which are able to gen-

erate high-quality 3D shapes but are not able to capture the semantic relationships

between the input prompt and the 3D shape, or we can develop models which are

able to capture the semantic relationships between the input prompt and the 3D shape

but are not able to generate high-quality 3D shapes.

3D Quality

If we forget, just for a moment, about the fact that in our research we assume that all

3D shapes are generated starting from a text prompt, we can reason about how can

we effectively evaluate the quality of the 3D shapes generated by a given model X

while focusing only on the generated 3D shape itself. In principle, we don’t need to

look at the input prompt to determine if a given 3D shape has a good quality (e.g.

presents fine-grained details, has a good topology, …) or not (e.g. presents artifacts,

coarse representation of the main features, …). One of the most basic approach1 to

evaluate the quality of a generated 3D objects is to exploit existing algorithms used

to assess the quality of generated images (e.g. Inception Score (IS)[35]) and metrics

for quantifying the realism and diversity of images (e.g. Fréchet Inception Distance

(FID)[7]).
1in order to exploit existing metrics for evaluating the quality of generated images, previous works
simply apply these algorithms taking as input multiple renderings of their generated 3D objects
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Prompt Coherence

The most challenging part of the evaluation process is to determine the coherence

between the text prompts and the generated 3D shapes. This is a very though task

since it requires to evaluate the semantic relationships between the input prompt

(text) components and 3D shape (visual) features.

Input prompts may contain a wide range of information, from simple descrip-

tions of the 3D shape to complex and abstract concepts like colors, materials, ori-

entations, sourroundings description and weird combinations of these ones. Weird

combinationsmay be considered as a combination of different concepts that are not

usually found together in the real world, like a ”red metallic elephant flying in the

sky”.

In chapter 3 we will two main approaches: the first one is based on exploit exist-

ing evaluation metrics for text-to-image generation models, while the second one is

based on the use of a new evaluation research called T3Bench [5] which try to focus

on defining a more ”general”method to evaluate text-driven 3D generation results.

1.3 Our Approach

In this chapter we cover the main ”components” of our contribution, which summa-

rize the main steps we have followed to conduct the first yet comprehensive bench-

mark of efficient text-driven 3D generation models.

The final list of the models that we have analyzed and implemented in this work is

presented in Table 1.1.
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Acronym Date Research Title

LucidDreamer [15] 2023/11/19 LucidDreamer: Towards High-Fidelity Text-to-
3D Generation via Interval Score Matching

Cap3D [19] 2023/06/12 Scalable 3D Captioning with Pretrained Models

HiFA [48] 2023/05/30 HiFA: High-fidelity Text-to-3D Generation with
Advanced Diffusion Guidance

ProlificDreamer [43] 2023/05/25 ProlificDreamer: High-Fidelity and Diverse Text-
to-3D Generation with Variational Score Distilla-
tion

Shap-E [11] 2023/05/03 Shap-E: Generating Conditional 3D Implicit
Functions

TextMesh [40] 2023/04/24 TextMesh: Generation of Realistic 3D Meshes
From Text Prompts

Fantasia3D [2] 2023/03/24 Fantasia3D: Disentangling Geometry and Appear-
ance for High-quality Text-to-3D Content Cre-
ation

Point-E [25] 2022/12/16 Point-E: A system for generating 3D point clouds
from complex prompts

SJC [41] 2022/12/01 Score Jacobian Chaining: Lifting Pretrained 2D
Diffusion Models for 3D Generation

Magic3D [17] 2022/11/18 Magic3D: High-Resolution Text-to-3D Content
Creation

LatentNeRF [20] 2022/11/14 Latent-NeRF for Shape-Guided Generation of 3D
Shapes and Textures

DreamFusion [29] 2022/09/29 DreamFusion: Text-to-3D using 2D Diffusion

Table 1.1: List of all Text-Driven 3D Generation models implemented and analyzed
in this research. Models are sorted by date of publication.
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Personal Contribution

The main contributions of this work are focused on collecting and implementing

most recent text-driven 3D generation models. In particular, we focused on theEffi-

cient 3D Generation task, by constraining the available hardware and the maximum

generation time of each selected model.

We started by collecting and analyzing more than 40 of the most recent re-

searches on text-driven 3D generation. For each of this research we focused on

collecting and analyzing the following information:

• date of publication

• source code availability

• required hardware (e.g. number of GPUs, memory, etc.)

• generation time statistics (e.g. how long it takes to generate a single 3D shape)

• possible training/fine-tuning requirements (e.g. some models may require a

pre-traning phase of some components of the architecture, or may require a

fine-tuning phase on a specific dataset to generate high-quality 3D shapes)

In order to conduct a proper evaluation and analysis, we have been forced to filter

out all of the works which satisfy the following criteria:

• research too old (i.e. published before the year 2022)

• source code not available

• missing specifications regarding the required hardware

• models which do not satisfy the efficiency contraints defined in section 5.1

Once we have obtained the most prominent researches by following the above steps,

we then proceed to filter out all of the models which satisfy the following criteria:

• priors too complex to be integrated ”at scale” e.g. some models requires, in

addition to the text prompt, also an image representing the ”sketch” of the 3D

shape to be generate
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• model checkpoints not available (formodels which require a pre-training phase)

• source code too complex to be adapted in the time frame established for this

work

Efficient Generation

For limited scope of this work, we have only characterized the efficiency of each

model in terms of computational resources such as hardware requirements and

generation time complexity.

Hardware Requirements These are the minimum hardware requirements to run

the model and generate a single 3D shape. The hardware requirements are expressed

in terms of the number of GPUs, the amount of memory (VRAM), and the type of

GPU required to run the model.

Generation Time This is the time required to generate a single 3D shape. The

generation time is expressed in terms of the number of seconds/minutes/hours re-

quired to generate a single 3D shape.

In chapter 5 we provide detailed information about the constraints that we have im-

posed on the hardware requirements and the generation time of each model. A sum-

mary of the hardware requirements and the generation time of each model analyzed

in this work is presented in Table 1.2.

Implementation Details

Regarding the implementation of the selected models, we have started by collecting

the source code of each model mainly available on the Github platform. Then, we

have proceeded to adapt the source code to our needs, by fixing any possible bug

and by creating a standard interface for the generation of 3D shapes.
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Model Gener. Time Hardware

LucidDreamer [15] 35 minutes 1x NVIDIA A100

Cap3D-ShapE [19] 2 minutes 1x NVIDIA RTX3090

Cap3D-PointE [19] 4 minutes 1x NVIDIA RTX3090

HiFA [48] 100 minutes 1x NVIDIA A100

ProlificDreamer [43] 4 hours 1x NVIDIA A100

Shap-E [11] 1 minute 1x NVIDIA RTX3090

Fantasia3D [2] 45 minutes 1x NVIDIA A100

Point-E [25] 3 minutes 1x NVIDIA RTX3090

SJC [41] 25 minutes 1x NVIDIA A100

Magic3D [17] 40 minutes 1x NVIDIA A100

LatentNeRF [20] 65 minutes 1x NVIDIA A100

DreamFusion [29] 30 minutes 1x NVIDIA A100

Table 1.2: Generative models generation time and hardware specifications.

This interface is then used to generate 3D shapes on a large scale, by using the

same text prompt dataset for each model. The results of the generation are then

exported as 3D meshes, and then they have been used as input for our custom eval-

uation pipeline.

Finally, we have develop a standardized evaluation pipeline, which include all the

metrics described in chapter 3. This pipeline is used to comprehensively evaluate a

specific 3D shape generated starting from:

• a text prompt

• a model (selected from the ones implemented in this work)

• an optional prior configuration (please refers the chapter 4 to see which priors

are available for each model)



Chapter 2

Background

2.1 Data Representation

3D data can have different representations [1], divided into Euclidean and non-

Euclidean. 3D Euclidean data has a potential grid structure, which allows global

parameterization and a common coordinate system. These properties make extend-

ing existing 2D deep learning paradigms to 3D data a simple task, where convolution

operations remain the same as 2D. On the other hand, 3D non-Euclidean data does

not have a grid array structure and is not globally parameterized. Therefore, extend-

ing classical deep learning techniques to such representations is a challenging task

[13].

Euclidean Data

The Euclidean data preserves the attribute of the grid structure, with global param-

eterization and a common coordinate system. The major 3D data representations in

this category include voxel grids and multi-view images.
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Figure 2.1: Hierarchy of several 3D data representations, grouped by Euclidean and
non-Euclidean data.

Multi-View Images

The advancement of computer vision technology, combined with significant in-

creases in computational power and the latest innovations in digital cameras, has

made it simpler to capture extensive quantities of high-resolution images.

A multi-view image dataset compiles several images of an object or scene from

various angles, such as the front, side, and top, to create a comprehensive collection.

This is particularly valuable because acquiring 3D data from the real world can be a

lengthy process, yet deep learningmodels require vast datasets for effective training.

Thus, the primary benefit of multi-view image datasets lies in their ability to provide

ample data. However, a limitation of multi-view images is that they don’t exactly

qualify as 3Dmodel data. Nonetheless, they serve as a crucial intermediary between

2D and 3D visual representations. Recently, NeRF [21] has been introduced as an

innovative technique for 3D reconstruction. It is particularly adept at meeting the

substantial data needs of learning-based, generalizable NeRF methods that utilize

extensive multi-view datasets [13].
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Non-Euclidean Data

The second type of 3D data representation is non-Euclidean data. This type of data

does not have global parametrization or common coordinate systems, which makes

it difficult to extend 2D deep learning paradigms. Much effort has been made in

learning this data representation and applying Deep Learning techniques.

Pointcloud

Point clouds consist of an unordered collection of discrete data points that represent

the form of three-dimensional objects within a three-dimensional space. These data

points are typically considered non-Euclidean due to their unstructured nature on

a global scale. Nonetheless, they can be viewed as collections of small, globally

parametrized Euclidean subsets [13]. The classification of a point cloud’s structure

hinges on the choice between focusing on its global or local attributes. In many

cases, the emphasis is on capturing an object’s overarching features for complex

analyses, leading to the classification of point clouds as inherently non-Euclidean.

Despite their straightforward acquisition, the uneven distribution of point clouds

poses challenges for processing them using conventional 2D neural networks. Com-

pared to voxel-based methods, point clouds offer a more precise depiction of three-

dimensional shapes, as the 3D coordinates of the points directly convey the object’s

geometry. This efficiency and clarity have made point clouds a subject of interest

among researchers.

Mesh

3D meshes [42] are a widely used form of representing 3D shapes. They consist

of polygons, known as faces, which are defined by vertices that represent points in

3D space. These vertices are linked together based on a connectivity list, outlining

their interconnections. Since meshes only represent the object’s surface, they are
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relatively compact, facilitating the modeling of point relationships through the con-

nectivity of surface points. However, when considering the broader perspective, 3D

meshes represent non-Euclidean data. The local geometry of a mesh can be viewed

as part of Euclidean space, but within this space, certain Euclidean properties, such

as shift-invariance, operations in vector spaces, and universal parameterization sys-

tems, do not apply clearly [13]. This complexity makes deep learning applications

for 3D meshes notably challenging [45].

Figure 2.2: Different 3D shape representations, using: (a) voxels, (b) pointcloud,
(c) mesh, (d) SDF. [45]

2.2 3D Learning

Recently, implicit neural representations (INRs) have become popular for encoding

3D assets. To represent a 3D asset, INRs typically map 3D coordinates to location-

specific information such as density and color. In general, INRs can be thought of

as resolution independent, since they can be queried at arbitrary input points rather

than encoding information in a fixed grid or sequence.

In the following sections, we will review some of the most popular INRs, such as

Neural Radiance Fields (NeRF), and Gaussian Splatting.
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Neural Radiance Fields (NeRF)

NeRF. Neural Rediance Field (NeRF)[21] is a neural network-based implicit repre-

sentation of 3D scenes, which can render projection images from a given viewpoint

and a given position.

As presented in Figure 2.3, NeRF authors approach is based on the following steps:

(a) they synthesize images by sampling 5D coordinates (location and viewing

direction) along camera rays

(b) they feed those locations into an MLP to produce a color and volume density

(c) they use volume rendering techniques to composite these values into an image

(d) being this rendering function differentiable, they can optimize their scene

representation by minimizing the residual between synthesized and ground

truth observed images

Figure 2.3: An overview of neural radiance field (NeRF) scene representation and
differentiable rendering procedure.

Specifically, they represent a continuous scene as a 5D vector-valued functionwhose

input is a 3D location x = (x, y, z) ∈ R3 and 2D viewing direction d = (θ, ϕ) ∈ R2

and whose output is an emitted color c = (r, g, b) and a volume density σ. More-

over, they express direction as a 3D Cartesian unit vector d and approximate this

continuous 5D scene representation with an MLP network FΘ : (x, d) → (c, σ) and
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optimize its weights Θ to map from each input 5D coordinate to its corresponding

volume density and directional emitted color.

Rendering of images from desired perspectives can be achieved by integrating color

along a suitable ray r = o + td (with near and far bounds tn and tf is) for each pixel

in accordance with the volume rendering equation[21]:

Ĉ(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t), d) dt

T (t) = exp
(

−
∫ t

tn

σ(r(s)) ds
)

The transmission coefficient T (t) is defined as the probability that light is not ab-

sorbed from the near-field boundary tn to t. In order to train NeRF network and

optimize the predicted color Ĉ to fit with the ray R corresponding to the pixel in

the training images, gradient descent is used to optimize the network and match the

target pixel color by loss[21]:

L =
∑
r∈R

||C(r) − Ĉ(r)||22

In pratice, NeRF authors implemented a lot of additional steps1 to make the training

process feasible. The final result is a neural network that can render high-quality

images of a 3D scene from any viewpoint, given a set of input images and their

camera poses.

1such like hierarchical sampling, 3D positional encoding, approximating the continuos formulation
of Ĉ with quadrature rule, implementing a loss strategy based on coarse+fine rendering,…
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Gaussian Splatting

Gaussian Splatting[12] is a method for representing 3D scenes and rendering novel

views. It can be thought of as an alternative to NeRF[21]-like models, and just like

NeRF back in the day, Gaussian splatting led to lots of new research works that

chose to use it as an underlying representation of a 3D object for various use cases.

Before diving into the details of Gaussian Splatting, it is important to remark that

this method, in principle, do not involve any neural network at all. This technique

can be simply thought of as a way to represent a 3D scene as a set of points in space.

Representation With this method, a 3D shape is represented with a set of 3D

points, where each point is a 3D Gaussian with its own unique parameters that are

fitted (per scene) such that renders of this object match closely to the known 3D

scene priors (e.g. original formulation starts from a set of 2D images and their cam-

era poses).

Each 3D Gaussian is parametrized by:

• Mean µ interpretable as location x, y, z;

• Covariance Σ;

• Opacity σ(α), a sigmoid function is applied to map the parameter to the [0, 1]

interval;

• Color parameters (e.g. (R, G, B) values for standard color representation,

spherical harmonics (SH) coefficients, …).

As for the covarianceΣ, it is chosen to be anisotropic by design, that is, not isotropic.

Practically, it means that a 3D point can be an ellipsoid rotated and stretched along

any direction in space. It could have required 9 parameters, however, they cannot be

optimized directly because a covariance matrix has a physical meaning only if it’s

a positive semi-definite matrix. Using gradient descent for optimization makes it
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hard to pose such constraints on a matrix directly, that is why it is factorized instead

as follows:

Σ = RSST RT

such factorization is known as eigendecomposition of a covariance matrix and can

be understood as a configuration of an ellipsoid where:

• R is a 3x3 rotation matrix analytically expressed with 4 quaternions.

• S s a diagonal scaling matrix with 3 parameters for scale;

On one hand, each point effectively represents a limited area in space close to its

mean µ, according to its covariance Σ. On the other hand, it has a theoretically

infinite extent meaning that each Gaussian is defined on the whole 3D space and

can be evaluated for any point.

Image Formation Given a set of 3D points, possibly, the most interesting part is

to see how can it be used for rendering: it turns out that NeRFs[21] and Gaussian

splatting share the same image formation model. For more details, please refer both

to NeRF[21] and Gaussian Splatting[12] papers.

Rendering The Image Formation tells us how to get a color in a single pixel.

Although, to render an entire image, it’s still necessary to traverse through all the

H × W rays, just like in NeRF, however, the process is much more lightweight

because:

• for a given camera, each 3D point can be projected into 2D in advance, before

iterating over pixels (hence, when a Gaussian is blended for a few nearby

pixels, we won’t need to re-project it over and over again);

• there is no MLP to be inferenced H × W × P times for a single image, 2D

Gaussians are blended onto an image directly;
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• there is no ambiguity in which 3D point to evaluate along the ray, no need

to choose a ray sampling strategy2: a set of 3D points overlapping the ray of

each pixel is discrete and fixed after optimization;

Figure 2.4: A conceptual difference between NeRF and Gaussian Splatting. (left)
query a continuous MLP along the ray. (right) blend a discrete set of Gaussians
relevant to the given ray .

Figure 2.4 shows a conceptual difference between NeRF and Gaussian Splatting:

while NeRF queries a continuous MLP along the ray, Gaussian Splatting blends a

discrete set of Gaussians relevant to the given ray.

Sorting Algorithm The last concept that we have to introduce is the creation of a

sorting algorithms by Gaussian Splatting authors.

In practice, this algorithm does:

1. sort 3D points by depth (i.e. proximity to an image plane);

2. group them by tiles;

The first operation is needed to compute transmittance, and the latter allows to limit

the weighted sum for each pixel to α-blending of the relevant 3D points only (or

their 2D projections, to be more specific).

Thanks to sorting, the rendering of each pixel can be reduced to α-blending of pre-

ordered points from the tile the pixel belongs to.
2as we have to do in NeRF-like models
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Figure 2.5: View frustums, each corresponding to a 16x16 image tile. Colors have
no special meaning. The result of the sorting algorithm is a subset of 3D points
within each tile sorted by depth.

2.3 Text-Driven 3D Generation

Recent breakthroughs in text-to-image synthesis have been driven by diffusionmod-

els trained on billions of image-text pairs. Adapting this approach to 3D synthesis

would require large-scale datasets of labeled 3D data and efficient architectures for

denoising 3D data, neither of which currently exist[29]. In the below sections we

are going to how DreamFusion[29] authors circumvent these limitations by using a

pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis.

We we start by introducing the concept of diffusion models and how they can be

used to generate 3D data. Then, we will introduce the concept of Score Distillation

Sampling (SDS) and how it can be used to guide the generation of 3D data.

Diffusion Models

Diffusion models are inspired by non-equilibrium thermodynamics. They define a

Markov chain of diffusion steps to slowly add random noise to data and then learn to

reverse the diffusion process to construct desired data samples from the noise. When

the diffusion consists of small amounts of Gaussian noise, it is sufficient to set the

sampling chain transitions to conditional Gaussians too, allowing for a particularly

simple neural network parameterization.
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Forward Process In the forward process, diffusion model (DDPM) destroys the

training data by gradually adding Gaussian noise. It starts from a data sample x0 and

iteratively generates noisier samples xt with q(xt|xt−1) using a Gaussian diffusion

kernel for integer timesteps t ∈ [0, T ]:

q(x1:T |x0) :=
T∏

t=1
q(xt|xt−1) q(xt|xt−1) := N (xt;

√
1 − βtxt−1, βtI)

Intuitively, this process gradually adds Gaussian noise to a signal, with the amount

of noise added at each timestep determined by some noise (variance) schedule {βt ∈

(0, 1)}T
t=1 (i.e. hyperparameter). Usually, the noise schedule is set such that, by the

final timestep t = T , the sample xT contains almost no information (i.e. it looks

like Gaussian noise)[8].

Figure 2.6: The Markov chain of forward (reverse) diffusion process of generating
a sample by slowly adding (removing) noise[8].

Reverse Process If we can reverse the above process and sample from q(xt−1|xt),

we will be able to recreate the true sample from a Gaussian noise input, xT ∼

N (0, I). To train a diffusion model, we approximate q(xt−1|xt) as a neural network

pθ(xt−1|xt) We can then produce a sample by starting at random Gaussian noise xT

and gradually reversing the noising process until arriving at a noiseless sample x0.

pθ(x0:T ) := p(xT )
T∏

t=1
pθ(xt−1|xt) pθ(xt−1|xt) := N (xt−1; µθ(xt, t), Σθ(xt, t))

More details regarding a possible conditioned generation and the so called Condi-

tional and Unconditional Classifier Guidance can be found in the work of Dhariwal
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et al. [3] and Ho et al. [9].

Stable Diffusion Models

Latent diffusion model3 (LDM)[34] runs the diffusion process in the latent space

instead of pixel space, making training cost lower and inference speed faster. It has

beenmotivated by the observation that most bits of an image contribute to perceptual

details and the semantic and conceptual composition still remains after aggressive

compression. LDM loosely decomposes the perceptual compression and semantic

compression with generative modeling learning by first trimming off pixel-level re-

dundancy with autoencoder and then manipulate/generate semantic concepts with

diffusion process on learned latent.

First Stage The first stage train an encoder to produce latents z = E(x) and a

and a decoder to produce reconstructions x̃ = D(z). The encoder and decoder

are trained in tandem to minimize a perceptual loss between x̃ and x, as well as a

patchwise discriminator loss on x̃.

Second Stage After the first stage is completed, in the second stage a diffusion

model is trained directly on encoded dataset samples. In particular, each dataset ex-

ample xi is encoded into a latent zi , and then zi is used as a training example for

the diffusion model. To generate new samples, the diffusion model first generates a

latent sample z, and then D(z) (i.e. the decoder trained in the first stage) yields an

image.

The diffusion and denoising processes happen on the latent vector z which has

lower dimensionality than the original used image x (which is mapped in the pixel

space). The denoising model is a time-conditioned U-Net, augmented with the

cross-attention mechanism to handle flexible conditioning information for image
3usually called Stable Diffusion Model
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generation (i.e. the textual input prompt in our scenario). A general architecture of

the LDM is depicted in Figure 2.7.

Figure 2.7: The architecture of latent diffusion model[34].

Score Distillation Sampling

Score Distillation is a method that enables using a diffusion model as a critic4. It has

been introduced in DreamFusion[29] for guiding 3D generation. To perform score

distillation, noise is first added to a given image (parametrized by the parameters of

a differentiable generator). Then, the diffusion model is used to predict the added

noise from the noised image. Finally, the difference between the predicted and added

noises is used for calculating per-pixel gradients.

Diffusion Models Recap

Diffusion models[8] consist of a forward process q that slowly removes structure

from data x by adding noise, and a reverse process or generative model p that slowly

adds structure starting from noisisy data zt. This generative model p is trained to

slowly add structure starting from random noise p(zT ) = N (0, I) with transitions
4i.e. using it as a loss without explicitly back-propagating through the diffusion process
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pϕ(zt−1|zt). Transitions are typically parameterized as pϕ(zt−1|zt) = q(zt−1|zt, x =

x̂ϕ(zt; t) where q(zt−1|zt, x) is a posterior distribution derived from the forward

process and x̂ϕ(zt; t) is a learned approximation of the optimal denoiser. Training

the generative model with a (weighted) evidence lower bound (ELBO) simplifies to

a weighted denoising score matching objective for parameters ϕ[8]:

LDiff(ϕ, x) = Et∼U(0,1),ϵ∼N (0,I)
[
w(t) ∥ϵϕ(zt; t) − ϵ∥2

2

]
(2.1)

where w(t) is a weighting function that depends on the timestep t.

Authors have focused on building text-to-image diffusionmodels that learn ϵϕ(zt; t, y)

conditioned on text embeddings y through the use of CFG5[9] which jointly learns

an unconditional model to enable higher quality generation via a guidance scale pa-

rameter:

ω : ϵ̂ϕ(zt; y, t) = (1 + ω)ϵϕ(zt; y, t) − ωϵϕ(z; t)

SDS

DreamFusion[29] authors invesigated how existing approaches for sampling from

diffusion models generate a sample that is the same type and dimensionality as the

observed data themodel was trained on [37]. Though conditional diffusion sampling

enables quite a bit of flexibility, diffusion models trained on pixels have traditionally

been used to sample only pixels.

They are not interested in sampling pixels6; they instead want to create 3Dmod-

els that look like good images when rendered from random angles. Such models

can be specified as a Differentiable Image Parameterization [22], where a differen-

tiable generator g transforms parameters θ to create an image x = g(θ).

For 3D, they let θ be parameters of a 3D volume and g a volumetric renderer. To
5Classifier-Free Guidance
6we are analyzing how we can exploit diffusion models to learn 3D data structures
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learn these parameters, they required a loss function that can be applied to diffusion

models.

Their approach leverages the structure of diffusion models to enable tractable sam-

pling via optimization7. They optimized over parameters such that x = g(θ) looks

like a sample from the frozen diffusion model8.

First attempt in reusing the diffusion training loss in Equation 2.1 to find modes

of the learned conditional density p(x|y) results in minimizing the diffusion training

loss with respect to a generated datapoint x = g(θ) as:

θ⋆ = argminθ LDiff(ϕ, x = g(θ))

In practice, they found that this loss function did not produce realistic samples. As a

consequence, by furter investigating, they discovered that omitting the U-Net Jaco-

bian term leads to an effective gradient for optimizing DIPs with diffusion models9:

∇θLSDS(ϕ, x = g(θ)) ≜ Et,ϵ

[
w(t)(ϵ̂ϕ(zt; y, t) − ϵ)∂x

∂θ

]

7i.e. a loss function that, when minimized, yields a sample
8to perform this optimization, we need a differentiable loss function where plausible images have
low loss, and implausible images have high loss

9they found that the U-Net Jacobian term is expensive to compute since it requires backpropagating
through the diffusion model U-Net
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Benchmarks

3.1 CLIP

Recent advances in multimodal learning have enabled the development of cross-

modalmatchingmodels such as CLIP (Contrastive Language-Image Pre-training)[31]

which learn shared representations from image-text pairs. This models is able to pro-

duce a scalar score that indicates whether an image and its associated caption match

or not.

CLIP Similarity

The CLIP Similarity between an image and a caption is computed as the cosine sim-

ilarity between the image and caption embeddings both respectively obtained from

the visual and textual encoders of the CLIP[31] model. Hence, given an image with

visual CLIP embedding v and a candidate caption with textual CLIP[31] embedding

c, the CLIP Similarity is computed as:

CLIP-Simil(c, v) = cos(c, v)

= c · v

max(||c||2 · ||v||2, ϵ)
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where ϵ is a small constant to avoid division by zero.

Taking into account that CLIP model’s weights are trained to maximize the scaled

cosine similarity of truly corresponding image/caption pairs while simultaneously

minimizing the similarity of mismatched image/caption pairs, the higher the simi-

larity score, the more likely the caption and the image are semantically related.

CLIP Score

Authors of CLIP-Score [6] performed a numerical anaylis of the CLIP-Similarity

metric and they discovered that, despite the cosine similarity, in theory, can range

from [−1, 1] they [6]:

1. never observed a negative cosine similarity

2. generally observed values ranging from roughly in the range of [0, 0.4]

Hence, also following the results obtained by another research [47], they defined the

CLIP-Score as a rescaled version of the original CLIP-Similarity formulation. For

an image with visual CLIP embedding v and a candidate caption with textual CLIP

embedding c, they set a scaling factor w and formulated the CLIP-Score as:

CLIP-Score(c, v) = w ∗ max(CLIP-Simil(c, v), 0)

= w ∗ max(cos(c, v), 0)

where w = 2.5.

This particular value of w attempts to stretch the range of the score distribution to

[0, 1]. Authors justify this rescaling operation by arguing that:

while such a monotonic rescaling operation doesn’t affect ranking re-

sults, for reporting purposes, it can be easier to compare raw values if
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they are on a scale more closely-aligned with other evaluation metrics

(e.g., from roughly zero to roughly one). [6].

CLIP R-Precision

Park et al.[28] in 2021 introduced a new evaluation metric called CLIP R-Precision.

This metric was designed to combine the goal of the R-Precision metric with the

powerful image-text vector representations of the CLIP[31] model.

R-Precision Metric used to evaluate the correctness of the generated images with

respect to the given caption. It calculates the top-R retrieval accuracy when retriev-

ing the matching text tp from T text candidates using the generated image i as a

query. The retrieval function is based on a similarity score which should represent

the semantic similarity between the image and the text respect to the context of the

given task. Given a set of text non-matching textual candidates t1, t2, . . . , tT ∈ T ,

the original matching text tp and the generated image i, the R-Precision is 1 if the

matching text tp is ranked in the top-R positions (based on the similarity score), oth-

erwise it is 0.

CLIP R-Precision starts from the definition of the R-Precisionmetric and it extends

it by replacing the original similarity function with the CLIP-Similarity in order to

exploit the powerful image-text vector representations of the CLIP[31] model. In

our scenario, text candidates are the prompts used to generate the 3D shapes and the

images are the renderings extracted from the 3D objects themselves1.

1considering that we render multiple images for each shape, the similarity score between a generated
3D object and the corresponding input prompt is computed as the maximum similarity score among
all the possible combinations of (prompt, renderingi)
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3.2 T3Bench

As already introduced in section 1.2 evaluating the performance of text-to-3D mod-

els is a challenging task and, at the same time, the open-ended nature of the task

makes it difficult to quantitatively assess the state of progress in Text-to-3D ad-

vancements.

For this reason, as we have already introduced in section 1.2, the authors of

T3Bench [5] proposed a new benchmark for evaluating text-to-3D models in order

to address the lack of a systematic approach in benchmarking current progress on

text-to-3D methods [5]. In particular, they presented two main issues:

• a lack of a standard set of diverse, challenging test textual inputs [5].

• an absence of a set of comprehensive metrics to quantitatively measure the

quality of the generated 3D scenes [5].

CLIP comparison T3Bench authors reported that several previous works assess

3D generation quality by rendering the generated 3D model into a single 2D image

and measuring its alignment with the text prompt through CLIP metrics (e.g. sim-

ilarity, score, r-precision, ...). Nevertheless, they highlight that these methods only

consider one view of the 3D scene, failing to assess the overall 3D quality [5].

The authors introduced two automated evaluation metrics designed to account for

multi-view data. One metric evaluates the subjective quality of created 3D scenes,

while the other measures how well these scenes match the text descriptions pro-

vided. To compute these metrics, an initial step involves capturing a series of 2D

images from various angles and focal points of the 3D scenes. The first metric (Qual-

ity) assigns scores to these images using text-image scoring models and aggregates

these scores into a comprehensive quality measurement through regional convolu-

tion techniques. Conversely, the second metric (Alignment) employs multi-view
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captioning and analysis by a large language model (LLM) to determine how closely

the 3D information aligns with the textual information in the input text prompt.

Figure 3.1: T3Bench: general overview of all the steps included in the evaluation
pipeline of both Alignment and Quality metrics.

Quality Metric

T3Bench [5] authors highlight the importance of evaluating the quality of generated

3D scenes with a comprehensive approach due to the significance of spatial geom-

etry information. They suggest that single viewpoint evaluation is insufficient and

proposes a method that includes selecting appropriate viewpoints to better reflect

the scene’s quality and considering area coverage to examine global geometry and

avoid biases towards locally optimal views. This method involves a detailed captur-

ing and scoring procedure for a more reliable assessment of 3D quality. Figure 3.2

shows the main stages of this evaluation pipeline.

This method can be summarized in the following steps [5]:

1. Multi-Focal Capturing: authors employ five different focal lengths to cap-

ture renderings of the given mesh at each location in order deal with the issue

of inappropriately choosing at priori too long or too short focal length values.

2. Multi-View Capturing: in order to capture the 3D scene as completely as
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(a) 2-level Icosahedron (b) Multi-View Capturing (c) Regional Convolution

Figure 3.2: T3Bench Quality metric main components.

possible, the authors capture an image rendering from all the vertices of a

level-2 icosahedron (which has 161 locations) built around the origin.

These first two steps produce as output a set of 5 images for each of the (161) loca-

tions of the icosahedron, for a total of 805 images foreach 3D object. Now we see

how these images are scored and combined into a single overall quality measure-

ment for the given 3D object.

The final steps are the following [5]:

3. Multi-Focal Scoring: at each location, they select the best rendering by scor-

ing the 5 given images with a text-image scoring models (i.e. ImageReward

[44]) and then they select the best one by taking the maximum score among

these 5 (which represent the hypothetical best focal length for the given loca-

tion).

4. Scoring and Regional Convolution: once they obtained the best rendering

score for each location2, they design a regional convolution mechanism to

smooth out each score over its local region3. They treat the icosahedron as

a graph composed of vertices and edges, and perform mean pooling on the
2161 scores, one foreach location of the icosahedron
3given a position of the icosahedron, its local region is defined as a set of N adjacent locations
belonging to a pre-defined neighborhood function
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graph with the following recursive formula4:

s
(t+1)
i = 1

|N(i) + 1|

s
(t)
i +

∑
j∈N(i)

s
(t)
j



where s
(t)
i is the score of point i on the icoshedron at t-th iteration, N(i) is the

set of neighboring points of i, and |N(i)| is the number of neighbors of i. The

superscript (t + 1) denotes the score after the (t + 1)-th iteration5.

After all these steps, T3Bench author select the highest score from all viewpoints as

the final quality score for the 3D generation.

Quality Scores Normalization The authors normalize the final quality score from

the range [−2.5, 2.5] to the range [0, 100] [5].

Alignment Metric

In addition to the evaluation from the quality aspect, the alignment between 3D se-

mantic information and text is another crucial aspect that should be considered.

To measure the prompts alignment between different modalities, the authors utilize

a 3D-to-text caption pipeline similar to Cap3D [19] to capture the 3D scene on the 12

locations of a level-0 icosahedron, each of which is captioned using a text-to-image

model (i.e. BLIP [14]). Then, they employ GPT-4 [4] to merge these captions, re-

sulting in the final 3D caption for the object [5].

4the goal of this formula is to smooth out the score over each local region since standard averaging
of scores across all locations may not be appropriate, as most views, e.g., top or bottom, are not
suitable for evaluation [5]

5authors choosed a total of t = 3 iterations as it ensures a balance between adequate smoothing and
over-smoothing.[5]
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Finally, they ask to GPT-4 [4] to rate the similarity between the computed caption

described above and the textual prompt used for generating the 3D object. The rating

score extracted fromGPT-4 is used as the final alignment score for the 3D generation

[5].

Alignment Score Normalization The authors normalize the final alignment score

from the range [1, 5] to the range [0, 100] [5].



Chapter 4

Models

Recentmethods for text-to-3D synthesis typically fall into one of two categories[25]:

1. High Efficient Models: methods which train generative models directly on

paired (text, 3D) data or unlabeled 3D data. While these methods can leverage

existing generative modeling approaches to produce samples efficiently, they

are difficult to scale to diverse and complex text prompts due to the lack of

large-scale 3D datasets.

2. High Qualitative Models: methods which leverage pre-trained text-image

models to optimize differentiable 3D representations (section 2.3). These

methods are often able to handle complex and diverse text prompts, but re-

quire expensive optimization processes to produce each sample (section 2.3).

Furthermore, due to the lack of a strong 3D prior, these methods can fall into

local minima which don’t correspond to meaningful or coherent 3D objects.
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4.1 High Efficient Models

Point-E

Starting from the two main categories presented in the initial paragraph of this chap-

ter, authors of Point-E[25] propose to combine the benefits of both categories by

pairing a text-to-image model with an image-to-3D model.

They propose to use a text-to-image model that leverages a large corpus of (text,

image) pairs, allowing it to follow diverse and complex prompts, while, at the same

time, to use an image-to-3D model trained on a smaller dataset of (image, 3D) pairs.

Then, To produce a 3D object from a text prompt, they first sample an image

using the text-to-image model, and then sample a 3D object conditioned on the sam-

pled image.

As we can see also in Table 1.2, both of these steps can be performed in a number

of seconds, and do not require expensive optimization procedures.

Method

They break the generation process into three steps[25]:

1. they generate a synthetic view conditioned on a text caption by exploiting a

3-billion parameter GLIDE[24] model finetuned on rendered 3Dmodels from

their dataset

2. they produce a coarse pointcloud1 (section 2.1) conditioned on the synthetic

view by using a conditional, permutation invariant diffusionmodel (section 2.3)

3. they produce a fine pointcloud2 (section 2.1) conditioned on the low-resolution

pointcloud (step 2) and the synthetic view (step 1) by using a similar (but
11,024 points
24,096 points
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smaller) diffusionmodel which is additionally conditioned on the low-resolution

pointcloud

Figure 4.1: Point-E method overview.

Conversely to most of the models presented in this work, they train their mod-

els on a dataset of several million 3D models and associated metadata. They

process the dataset into rendered views, text descriptions, and 3D point clouds with

associated RGB colors for each point.

An overview of the Point-E method is illustrated in Figure 4.1.

A cactus with pink flowers An elegant feather-quill ink pen An antique glass perfume bottle A sparkling crystal chandelier

(a) (b) (c) (d)
(T3B)Alignm. = 75.00 (T3B)Alignm. = 0.00 (T3B)Alignm. = 25.00 (T3B)Alignm. = 25.00
(T3B)Quality = 42.66 (T3B)Quality = 04.63 (T3B)Quality = 47.52 (T3B)Quality = 04.43

Table 4.1: Point-E: (a) prompt with the highest T3Bench Alignment score, (b)
prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.

Shap-E

Authors of Shap-E [11] proposed a novel approach to generate diverse and complex

3D implicit representations. They combined and scaled up several of the existing
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approaches to arrive at Shap-E, a conditional generative model for diverse and com-

plex 3D implicit representations.

First, they trained a Transformer-based encoder to produce INR parameters for

3D assets. Next, they trained a diffusion model on outputs from the encoder. Un-

like previous approaches, they produced INRs which represent both NeRF[21] (sec-

tion 2.2) and meshes simultaneously, allowing them to be rendered in multiple ways

or imported into downstream 3D applications[11].

Authors have also highlighted that, compared to Point-E[25] (section 4.1), their

models converge faster and obtain comparable or superior results while sharing the

same model architecture, datasets, and conditioning mechanisms [11].

Method

Before analyze in details the method, it is important to remark that in this work they

trained all of their models on a large dataset of 3D assets with corresponding

renderings, point clouds, and text captions. This approach goes in the opposite

direction of most of the other models presented in this work, as we discuss in the

following sections.

In their method, they first train an encoder to produce implicit representations, and

then train diffusion models on the latent representations produced by the encoder.

This method proceeds in two steps:

1. they train an encoder to produce the parameters of an implicit function given

a dense explicit representation of a known 3D asset; in particular, the encoder

produces a latent representation of a 3D asset which is then linearly projected

to obtain weights of a multi-layer perceptron (MLP);

2. they train a diffusion prior on a dataset of latents obtained by applying the

encoder to their dataset; this model is conditioned on either images or text
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descriptions;

Figure 4.2: Shap-E encoder overview.

An overview of the Shap-E encoder architecture is illustrated in Figure 4.2.

A bright, yellow rubber duck A sparkling diamond ring in a velvet
box

An ivory candlestick holder A chameleon perched on a tree
branch

(a) (b) (c) (d)
(T3B)Alignm. = 25.00 (T3B)Alignm. = 100.0 (T3B)Alignm. = 25.00 (T3B)Alignm. = 25.00
(T3B)Quality = 4.50 (T3B)Quality = 53.60 (T3B)Quality = 63.73 (T3B)Quality = 4.50

Table 4.2: Shap-E: (a) prompt with the highest T3Bench Alignment score, (b)
prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.
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Cap3D

Authors of Cap3D [19] proposed a method to automate 3D object annotation. Their

key insight is to leverage the abundance of knowledge in pretrained image-text mod-

els to remedy the lack of existing 3D-text data.

The core of their data collection process is to apply an image captioning model

(BLIP [14]) to a set of 3D asset renders, use an image-text alignment model (CLIP

[31]) to filter captions, and apply a language model (GPT4 [4]) to fuse the filtered

captions across views.

Since they have released their new created annotated 3D dataset, following their

experiments, we have tested the improvements gathered by this new dataset by fine-

tuning3 two of our already implemented models: Point-E[25] and Shap-E[11].

We will refer to these finetuned versions as Cap3D-Point-E and Cap3D-Shap-E.

A rusty, abandoned bicycle A rusty, vintage metal key A dented brass trumpet A vintage plaid woolen blanket

(a) (b) (c) (d)
(T3B)Alignm. = 75.00 (T3B)Alignm. = 00.00 (T3B)Alignm. = 25.00 (T3B)Alignm. = 50.00
(T3B)Quality = 51.93 (T3B)Quality = 08.02 (T3B)Quality = 73.26 (T3B)Quality = 4.50

Table 4.3: Cap3D-Point-E: (a) prompt with the highest T3Bench Alignment score,
(b) prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.

3through the adaption of ControlNet[46] and LORA[10] for Stable Diffusion finetuning
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A bright, yellow rubber duck A ripe watermelon sliced in half A bright, yellow rubber duck A fuzzy pink flamingo lawn
ornament

(a) (b) (c) (d)
(T3B)Alignm. = 100.0 (T3B)Alignm. = 25.00 (T3B)Alignm. = 100.0 (T3B)Alignm. = 75.00
(T3B)Quality = 54.10 (T3B)Quality = 04.66 (T3B)Quality = 54.10 (T3B)Quality = 4.66

Table 4.4: Cap3D-Shap-E: (a) prompt with the highest T3Bench Alignment score,
(b) prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.

4.2 High Qualitative Models

DreamFusion

As introduced in section 2.3, DreamFusion[29] introduced Score Distillation Sam-

pling (SDS) with the goal of creating a method in which a pre-trained diffusion

model can be used as a loss within a generic continuous optimization problem to

generate 3D assets from text. Since the diffusion model directly predicts the up-

date direction, they did not need to backpropagate through the diffusion model; the

model simply acts like an efficient, frozen critic that predicts image-space edits[29].

To synthesize a scene from text, they initialized a NeRF-like model4 with random

weights, then they repeatedly render views of that NeRF[21] from random camera

positions and angles, using these renderings as the input to their score distillation

loss function that wraps around the difussion model. As they demonstrated, simple

gradient descent with this approach eventually results in a 3D model (parameterized

as a NeRF[21]) that resembles the text[29].
4more details can be found in section 2.2
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Method

For each text prompt, they train a randomly initialized NeRF from scratch. Each

iteration of DreamFusion optimization performs the following:

Figure 4.3: DreamFusion method overview.

1. Randomly sample a camera and light

2. Render an image of the NeRF from that camera and shade with the light

3. Diffuse the rendering and reconstruct it with a (frozen) conditional diffusion

model to predict the injected noise ϵ̂ϕ(zt|y; t)5

4. compute gradients of the SDS loss with respect to the NeRF parameters

5. update the NeRF parameters using an optimizer

An overview of the DreamFusion method is illustrated in Figure 4.3.

Latent-NeRF

Authors of LatentNeRF[20] adapted the Score Distillation (section 2.3) introduced

byDreamFusion[29] to the computationally efficient Latent DiffusionModels, which

apply the entire diffusion process in a compact latent space of a pretrained autoen-

coder. As NeRFs operate in image space, a naive solution for guiding it with la-

tent score distillation would require encoding to the latent space at each guidance
5this contains structure that should improve fidelity, but is high variance, hence subtracting the in-
jected noise ϵ produces a low variance update direction (ϵ̂ϕ − ϵ) that is backpropagated through the
rendering process to update the NeRF MLP parameters[29].
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A vintage porcelain doll with a frilly
dress

A velvet cushion stitched with
golden threads

A vintage porcelain doll with a frilly
dress

A vintage plaid woolen blanket

(a) (b) (c) (d)
(T3B)Alignm. = 75.00 (T3B)Alignm. = 25.00 (T3B)Alignm. = 75.00 (T3B)Alignm. = 50.00
(T3B)Quality = 79.70 (T3B)Quality = 04.48 (T3B)Quality = 79.70 (T3B)Quality = 04.43

Table 4.5: DreamFusion(IF): (a) prompt with the highest T3Bench Alignment score,
(b) prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.

step[20]. Instead, they propose to bring the NeRF to the latent space, resulting in a

model so called Latent-NeRF.

Method

First, instead of representing their NeRF[21] (section 2.2) in the standard RGB

space, they propose a model which operates directly in the latent space of the LDM6.

Secondly, they show that after training, one can easily transform a Latent-NeRF back

into a regular NeRF in order to enable further refinement in RGB space[20].

An overview of the Latent-NeRFmethod is illustrated in Figure 4.4. The training

process can be summarized as follows[20]:

1. they render the scene from a random view point to produce a feature map z

2. z is noised with ϵ according to a random diffusion step t.

3. The noised version of z (i.e., xt) is denoised using Stable Diffusion[34], with

the input text prompt
6Latent Diffusion Model
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Figure 4.4: Latent-NeRF method overview.

4. the input noise is subtracted from the predicted noise7 to approximate per-

pixel gradients that are back propagated to the NeRF representation

A cactus with pink flowers A sleek stainless steel teapot A cactus with pink flowers A gleaming silver saxophone

(a) (b) (c) (d)
(T3B)Alignm. = 75.00 (T3B)Alignm. = 00.00 (T3B)Alignm. = 75.00 (T3B)Alignm. = 25.00
(T3B)Quality = 84.99 (T3B)Quality = 04.43 (T3B)Quality = 84.99 (T3B)Quality = 04.44

Table 4.6: Latent-NeRF: (a) prompt with the highest T3Bench Alignment score,
(b) prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.

Magic3D

DreamFusion[29] has demonstrated the utility of a pre-trained text-to-image diffu-

sion model to optimize Neural Radiance Fields (NeRF)[21], achieving remarkable
7extracted from the Stable Diffusion Model [34]
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text-to-3D synthesis results.

However, authors ofMagic3D highlighted that the method has two inherent lim-

itations[17]:

1. extremely slow optimization of NeRF

2. low-resolution image space supervision on NeRF8

These choices result in two key limitations[17]:

1. high-resolution geometry or textures cannot be obtained9

2. the utility of a large global MLP for volume rendering is both computationally

expensive as well as memory intensive10

Method

Following the limitations in the DreamFusion[29] method, Magic3D authors ad-

dress these limitations by utilizing a two-stage optimization framework.

Figure 4.5: Magic3D method overview.

First, they obtain a coarse model using a low-resolution diffusion prior and accel-

erate with a sparse 3D hash grid structure11 (i.e. two single-layer neural networks,
8leading to low-quality 3D models with a long processing time.
9since the diffusion model only operates on 64×64 images.
10making this approach scale poorly with the increasing resolution of images.
11this hash grid encoding[23] allows them to represent high-frequency details at a much lower com-
putational cost.
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one predicting albedo and density and the other predicting normals).

Then, using the coarse representation as the initialization, they further optimize a

textured 3D mesh model with an efficient differentiable renderer interacting with a

high-resolution latent diffusion model. Moreover, while rendering the mesh, they

increased the focal length to zoom in on object details, which is a critical step to-

wards recovering high-frequency details[17].

An overview of the Magic3D method is illustrated in Figure 4.5.

A chameleon perched on a tree
branch

A tattered world map with stained
edges

A vintage porcelain doll with a frilly
dress

A shimmering emerald pendant
necklace

(a) (b) (c) (d)
(T3B)Alignm. = 100.0 (T3B)Alignm. = 00.00 (T3B)Alignm. = 75.00 (T3B)Alignm. = 25.00
(T3B)Quality = 49.21 (T3B)Quality = 10.53 (T3B)Quality = 82.36 (T3B)Quality = 04.56

Table 4.7: Magic3D(IF): (a) prompt with the highest T3Bench Alignment score,
(b) prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.

SJC

Since diffusionmodels learns to predict a vector field of gradients, authors of SJC[41]

to apply chain rule on the learned gradients and back-propagate the score of a diffu-

sion model through the Jacobian of a differentiable renderer, which they instantiate

to be a voxel radiance field. This setup aggregates 2D scores at multiple camera

viewpoints into a 3D score, and repurposes a pretrained 2D model for 3D data gen-

eration.
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Method

SJC[41] introduce amethod that converts a pretrained 2D diffusion generativemodel

on images into a 3D generative model of radiance fields, without requiring access

to any 3D data. They highligh how the key insight is to interpret diffusion models

as learned predictors of a gradient field12, often referred to as the score function of

the data log-likelihood.

Authors named their method Score Jacobian Chaining (SJC) as they apply the chain

rule on the estimated score, which is the gradient of the log-density function with

respect to the data.

Diffusion Model Diffusion models can be interpreted as modeling ∇x log pσ(x),

i.e. the denoising score at noise level σ. Generating a sample from a diffusion model

involves repeated evaluations of the score function from large to small σ level, so

that a sample x gradually moves closer to the data manifold. Despite other perspec-

tive, here they are primarily motivated from the viewpoint that diffusion models

produce a gradient field.

They investigated the possibility of applying the chain rule to the learned gradients.

Consider a diffusion model on images. An image x may be parameterized by some

function f with parameters θ, i.e., x = f(θ). Applying the chain rule through the

Jacobian ∂x
∂θ

converts a gradient on image x into a gradient on the parameter θ [41].

Their method uses differentiable rendering to aggregate 2D image gradients over

multiple viewpoints into a 3D asset gradient, and lifts a generative model from 2D to

3D. They parameterize a 3D asset θ as a radiance field stored on voxels and choose

f to be the volume rendering function.
12often referred to as the score function of the data log-likelihood
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A cactus with pink flowers A pirate flag with skull and
crossbones

A cactus with pink flowers A vibrant, handmade patchwork
quilt

(a) (b) (c) (d)
(T3B)Alignm. = 75.00 (T3B)Alignm. = 00.00 (T3B)Alignm. = 75.00 (T3B)Alignm. = 75.00
(T3B)Quality = 72.71 (T3B)Quality = 06.49 (T3B)Quality = 72.68 (T3B)Quality = 04.46

Table 4.8: SJC: (a) prompt with the highest T3Bench Alignment score, (b) prompt
with the lowest T3Bench Alignment score, (c) prompt with the highest T3Bench
Quality score, (d) prompt with the lowest T3Bench Quality score.

Fantasia3D

Author of Fantasia3D [2] propose a newmethod for high-quality text-to-3D content

creation. Key to Fantasia3D is the disentangled modeling and learning of geometry

and appearance. For geometry learning, they rely on a hybrid scene representation,

and propose to encode surface normal extracted from the representation as the input

of the image diffusion model. For appearance modeling, they introduce the spatially

varying bidirectional reflectance distribution function (BRDF) into the text-to-3D

task, and learn the surface material for photorealistic rendering of the generated

surface.

This is in contrast to existing text-to-3D methods, which commonly use implicit

scene representations, coupling the geometry and appearance via volume rendering

resulting in being suboptimal in terms of recovering finer geometries and achieving

photorealistic rendering[2].

Method

Authors, focused on disentangling the processes of modeling geometry and appear-

ance. An overview of the Fantasia3D method is illustrated in Figure 4.6.
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Figure 4.6: Fantasia3D method overview.

GeometryModeling They utilized a hybrid surface representation calledDMTET[36]

in order to allow explicit shape control and geometry learning. Moreover, for the ge-

ometry learning process, they introduced the concept of encoding a rendered normal

map as the input for shape encoding 13.

AppearanceModeling They introduced the full Bidirectional Reflectance Distri-

bution Function (BRDF) into text-to-3D content creation, enabling the learning of

surface materials for photorealistic rendering. This is a first in text-to-3D genera-

tion, facilitating the creation of high-quality 3D objects with realistic materials and

textures.

Learning andOptimization Both geometry and appearancemodels are optimized

using a loss derived from Score Distillation Sampling (section 2.3), back-propagated

through a pre-trained image diffusion model, specifically stable diffusion. More-

over, the approach supports flexible initialization, either as a 3D ellipsoid or a cus-

tomized 3D model provided by users, enabling control over the starting point of the

generation process [2].

TextMesh

Authors of TextMesh [40] highlighted the main downsides of the DreamFusion [29]

method:
13this is in contrasts with conventional approaches that typically encode color images
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A ceramic teapot with floral
patterns

A silver mirror with ornate detailing A ceramic teapot with floral
patterns

A shimmering emerald pendant
necklace

(a) (b) (c) (d)
(T3B)Alignm. = 75.00 (T3B)Alignm. = 00.00 (T3B)Alignm. = 75.00 (T3B)Alignm. = 50.00
(T3B)Quality = 62.90 (T3B)Quality = 04.69 (T3B)Quality = 62.90 (T3B)Quality = 04.40

Table 4.9: Fantasia3D: (a) prompt with the highest T3Bench Alignment score, (b)
prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.

1. it tends to produce objects with over-saturated colors due to the strong guid-

ance required to make the model converge

2. it represents the 3D scene in the form of a Neural Radiance Field (NeRF)[21]

(section 2.2), which renders the approach impractical to be used within stan-

dard computer graphics pipelines

Hence, they propose a novel method (i.e. TextMesh) for 3D shape generation from

text prompts, targeted at generating photorealistic 3D content in the form of standard

3D meshes. They argue that their generated 3D meshes significantly improve upon

the DreamFusion method for realism and can be directly utilized within standard

computer graphics pipelines and applications in AR or VR.

In summary, the authors of TextMesh propose the following contributions [40]:

1. they modify DreamFusion to model radiance in the form of a signed distance

function (SDF), to tailor the model towards mesh extraction

2. they propose a novelmulti-view consistent andmesh conditioned re-texturing,

enabling the generation of photorealistic 3D mesh models



4.2 High Qualitative Models 50

3. they experimentally show that their obtainedmeshes are geometrically of high

quality and showcase more natural textures than the current state-of-the-art,

whilst being ready to be deployed into pre-existing graphics pipelines

Method

To accomplish the above mentioned contributions, TextMesh modifies the Dream-

Fusion method to model radiance in the form of a signed distance function (SDF),

allowing by design easy extraction of the surface as the 0-level set of the obtained

volume. Furthermore, in an effort to enhance the mesh quality, they retexture the

output by leveraging another diffusion model conditioned on color and depth from

the mesh. To this end, they render the object from multiple viewpoints and use

diffusion to guide texture optimization to enhance realism and details. Neverthe-

less, when processing individual views independently, the refined texture exhibits

severe inconsistencies. Therefore, they propose to run several views simultaneously

through the diffusionmodel instead. To obtain the final texture, they then train on the

produced output views together with Score Distillation Sampling to ensure smooth

transitions.

Method steps are illustrated in Figure 4.7:

1. (top left) Given the input text prompt, they train their initial distance field

using Score Distillation Sampling (SDS) with view-dependent text prompting

and an Diffusion prior

2. (top right) then, they extract the mesh with marching cubes but, since the

obtained appearance lacks details and the colors tend to be oversaturated, they

render the color and depth from four orthogonal views of their mesh

3. (bottom right) and run these views jointly through StableDiffusion to generate

photorealistic and 3D consistent views of their mesh
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Figure 4.7: TextMesh method overview.

4. (bottom left) eventually, they finetune the mesh texture on the obtained views

together with a small SDS gradient to account for minor misalignments

An antique glass perfume bottle A rusty, abandoned bicycle An antique glass perfume bottle An antique wooden rocking horse

(a) (b) (c) (d)
(T3B)Alignm. = 75.0 (T3B)Alignm. = 00.0 (T3B)Alignm. = 75.0 (T3B)Alignm. = 50.0
(T3B)Quality = 74.7 (T3B)Quality = 06.4 (T3B)Quality = 74.7 (T3B)Quality = 04.6

Table 4.10: TextMesh(IF): (a) prompt with the highest T3Bench Alignment score,
(b) prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.
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Prolific-Dreamer

Authors ofProlificDreamer [43] highlighted howScoreDistillation Sampling (SDS)

(section 2.3) proposed by Poole, Jain, Barron, and Mildenhall [29] has shown great

promise in text-to-3D generation by distilling pretrained large-scale text-to-image

diffusionmodels, but suffers from over-saturation, over-smoothing, and low-diversity

problems. In this work, they propose to model the 3D parameter as a random vari-

able instead of a constant as in SDS and present variational score distillation (VSD),

a principled particle-based variational framework to explain and address the afore-

mentioned issues in text-to-3D.

They further present various improvements in the design space for text-to-3D such

as distillation time schedule and density initialization, which are orthogonal to the

distillation algorithm yet not well explored. In their work, they presented a system-

atic study of all these elements to obtain elaborate 3D representations.

Method

They first present Variational Score Distillation (VSD), which treats the correspond-

ing 3D scene given a textual prompt as a random variable instead of a single point

as in SDS [29].

Figure 4.8: ProlificDreamer VSD method overview.

VSD optimizes a distribution of 3D scenes such that the distribution induced on
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images rendered from all views aligns as closely as possible, in terms of KL di-

vergence, with the one defined by the pretrained 2D diffusion model. Under this

variational formulation, VSD naturally characterizes the phenomenon that multiple

3D scenes can potentially align with one prompt. To solve it efficiently, VSD adopts

particle-based variational inference, and maintains a set of 3D parameters as parti-

cles to represent the 3D distribution. They derive a novel gradient-based update rule

for the particles via the Wasserstein gradient flow and guarantee that the particles

will be samples from the desired distribution when the optimization converges[43].

Their update requires estimating the score function of the distribution on dif-

fused rendered images, which can be efficiently and effectively implemented by a

low-rank adaptation (LoRA) [10] of the pretrained diffusion model. The final algo-

rithm alternatively updates the particles and score function.

An overview of the Variational Score Distillation (VSD) approach is illustrated in

Figure 4.8.

A shiny red apple An old bronze ship’s wheel A vintage porcelain doll with a frilly
dress

A left-handed electric guitar painted
black

(a) (b) (c) (d)
(T3B)Alignm. = 75.00 (T3B)Alignm. = 100.0 (T3B)Alignm. = 50.00 (T3B)Alignm. = 50.00
(T3B)Quality = 84.99 (T3B)Quality = 43.10 (T3B)Quality = 77.12 (T3B)Quality = 04.46

Table 4.11: ProlificDreamer: (a) prompt with the highest T3BenchAlignment score,
(b) prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.
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HiFA

Authors of HiFA[48] highlighted how most existing methods use pre-trained text-

to-image diffusion models to optimize 3D representations (e.g. NeRF[21]) often

produce artifacts and inconsistencies across views due to their suboptimal optimiza-

tion approaches and limited understanding of 3D geometry.

In their work, they propose holistic sampling and smoothing approaches to achieve

high-quality text-to-3D generation, all in a single-stage optimization. They compute

denoising scores in the text-to-image diffusion model’s latent and image spaces. In-

stead of randomly sampling timesteps (also referred to as noise levels in denoising

score matching), they introduce a novel timestep annealing approach that progres-

sively reduces the sampled timestep throughout optimization. To generate high-

quality renderings in a single-stage optimization, they propose regularization for

the variance of z-coordinates along NeRF rays. To address texture flickering is-

sues in NeRFs, they introduce a kernel smoothing technique that refines importance

sampling weights coarse-to-fine, ensuring accurate and thorough sampling in high-

density regions.

We summarize their technical contributions for two crucial components of text-

to-3D generation: 3D representation and 3D optimization, which are outlined be-

low[48]:

1. to achieve photo-realistic and highly-detailed text-to-3D generation, they pro-

pose score distillation in both the latent and image space of the pre-trained

text-to-image diffusion models (moreover they introduce a timestep anneal-

ing approach for score distillation from text-to-image diffusion models);

2. to achieve sharp geometry quality through a single-stage training, they present

a regularization method applied to the variance of z-coordinates along NeRF

rays;
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3. to address flickering issues in NeRFs, they propose a kernel smoothing tech-

nique that refines the PDF estimation in coarse-to-fine importance sampling;

Method

Authors of HiFA revisit the integration of the SDS approach with NeRFs, aiming

to achieve photorealistic and high-quality text-to-3D generation through a single-

stage optimization. In contrast to existing text-to-3D generation work, they distill

the score in the text-to-image diffusionmodel’s latent and image spaces for enhanced

supervision. Moreover, they observe that the efficacy of the diffusion prior is limited

in previous works when timesteps (also referred to as noise levels in denoising score

matching) are randomly sampled during optimization.

Specifically, they observed that toward the end of the training process, the NeRF

becomes almost determined in representing a particular 3D asset. Thus, they found

that randomly sampling a large timestep drives the diffusion model to produce a de-

noised image that is distinct and unrelated to the original input rendering. This yields

inconsistent distillation from the diffusion model and compromised optimization of

NeRFs. To address this, they introduced a timestep annealing approach where the

timestep in the forward diffusion process inversely correlates with the square root

of the number of training iterations[48].

Figure 4.9: HiFA method overview.
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One of the main goal of their work is to maintain the flexibility and photo-realism

offered by the NeRF representation while at the same time achieving high-quality

text-to-3D generation through a single-stage training.

For this reason, they proposed two techniques to advance NeRF optimization.

Specifically, to address the cloudy geometry issue in NeRFs, they proposed a vari-

ance regularization that minimizes the variance of sampled z-coordinates distributed

along NeRF rays. They observed that this technique enables NeRFs to more accu-

rately represent crisp geometrical surfaces, thereby effectivelymitigating the cloudi-

ness issue[48].

Moreover, they proposed a kernel smoothing technique tailored for coarse-to-

fine importance sampling along NeRF rays without an increase in the computational

cost. This technique is inspired by the integrated positional encoding for spatial

points within a cone, previously proposed to tackle aliasing issues in a single image

view. In their case, the goal is to mitigate flickering issues across multiple views.

Specifically, they use a kernel to refine the probability density function (PDF) esti-

mated in the coarse sampling stage along a ray, which enables more comprehensive

sampling near asset surface regions in the refined stage. This technique notably en-

hances the fidelity of importance sampling[48].

An overview of the HiFA method is illustrated in Figure 4.9.

Lucid-Dreamer

Authors of Lucid-Dreamer[15] highlighted how most existing methods use pre-

trained text-to-image diffusionmodels to optimize 3D representations (e.g. NeRF[21])

often fall short in rendering detailed and high-quality 3D models.

This problem is especially prevalent as many methods base themselves on Score

Distillation Sampling (SDS)[29] (section 2.3). Their work identifies a notable de-

ficiency in SDS, that it brings inconsistent and low-quality updating direction for
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A cactus with pink flowers A dusty classic typewriter A cactus with pink flowers A shiny emerald green beetle

(a) (b) (c) (d)
(T3B)Alignm. = 75.00 (T3B)Alignm. = 25.00 (T3B)Alignm. = 75.00 (T3B)Alignm. = 75.00
(T3B)Quality = 81.92 (T3B)Quality = 04.45 (T3B)Quality = 81.92 (T3B)Quality = 04.44

Table 4.12: HiFA: (a) prompt with the highest T3BenchAlignment score, (b) prompt
with the lowest T3Bench Alignment score, (c) prompt with the highest T3Bench
Quality score, (d) prompt with the lowest T3Bench Quality score.

the 3D model, causing the over-smoothing effect. To address this, they propose a

novel approach called Interval Score Matching (ISM). ISM employs deterministic

diffusing trajectories and utilizes interval-based score matching to counteract over-

smoothing. Furthermore, they incorporate 3D Gaussian Splatting[12] (section 2.2)

into their text-to-3D generation pipeline.

Overall, the authors of Lucid-Dreamer have identified the following key contribu-

tions[15]:

1. an in-depth analysis of Score Distillation Sampling (SDS), the fundamental

component in text-to-3D generation, and identification of its key limitations

for providing inconsistent and low-quality pseudo-GTs;

2. in response to SDS’s limitations, they propose the Interval Score Matching

(with invertible diffusion trajectories and interval-based matching, ISM sig-

nificantly outperforms SDS with highly realistic and detailed results);

3. by integratingwith 3DGaussian Splatting[12] (section 2.2), theirmodel achieves

state-of-the-art performance, surpassing existing methods with less training

costs;
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Method

In their work, they reveal the pseudo-Ground-Truth (pseudo-GTs) generated by the

diffusion model are usually inconsistent and have low visual quality. Consequently,

all update directions provided by these pseudo-GTs are subsequently applied to the

same 3D model. Moreover, due to the average effect, the final results tend to be

over-smooth and lack of details[15].

Figure 4.10: LucidDreamer method overview.

To address these issues, they propose a novel approach called Interval Score Match-

ing (ISM). ISM improves SDS with two effective mechanisms. Firstly, by employ-

ing DDIM inversion, ISM produces an invertible diffusion trajectory and mitigates

the averaging effect caused by pseudo-GT inconsistency. Secondly, rather than

matching the pseudo-GTs with images rendered by the 3D model, ISM conducts

matching between two interval steps in the diffusion trajectory, which avoids one-

step reconstruction that yields high reconstruction error[15].

Finally, they show that their ISM is not only compatible with the original 3D model
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introduced in DreamFusion[29], but by utilizing a more advanced model – 3DGaus-

sian Splatting[12], their model achieves superior results compared to the state-of-

the-art approaches14 [15].

An overview of the Lucid-Dreamer method is illustrated in Figure 4.10.

An antique glass perfume bottle A bright blue plastic swimming
goggles

An antique glass perfume bottle A bright blue plastic swimming
goggles

(a) (b) (c) (d)
(T3B)Alignm. = 75.00 (T3B)Alignm. = 25.00 (T3B)Alignm. = 75.00 (T3B)Alignm. = 25.00
(T3B)Quality = 63.33 (T3B)Quality = 04.42 (T3B)Quality = 63.33 (T3B)Quality = 04.42

Table 4.13: LucidDreamer: (a) prompt with the highest T3Bench Alignment score,
(b) prompt with the lowest T3Bench Alignment score, (c) prompt with the highest
T3Bench Quality score, (d) prompt with the lowest T3Bench Quality score.

14other methods require multi-stage training, which is not needed in their model



Chapter 5

Experiments

5.1 Computational Resources Analysis

In section 1.1 we have introduced the concept of efficient 3D generation and we

have defined the challenges regarding how we can define a ”fair” balance between

the output quality and the efficiency associated to each model.

Moreover, in section 1.3 we have defined which types of efficiency components

we have constrained or bounded (mainly related to the computational resources

needed by each model) in this work in order to allow a fair comparison also in other

common scenarios.

Once we have considered all the previous aspects, we can focus on which definition

of an Efficient 3D Model we have used as baseline for all the experiments and the

results presented in this work. As already mentioned in section 1.3, we have mainly

characterized the efficiency of a 3D model in terms of generation time and hardware

requirements needed. The list containing all the details regarding the computational

resources originally used by the authors of all the models implemented in this work

is presented in Table 1.2.
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Efficient 3DModel is a model which is able to generate a 3D object in less than

10 minutes, using a single GPU and a maximum of 24GB of VRAM (we have

used a single NVIDIA RTX 3090 GPU in all of our experiments).

Considering that most of the selected models require from 30 minutes to 2 hours to

generate a single 3D shape, we have decided at priori (i.e. not experimentally) to

limit the maximum generation time of each model to 10 minutes in order to adhere

to possible real-world scenarios where the generation time is a critical factor. We

have analyzed the impact of this decision on the output quality of each model in

chapter 6.

Limiting the Total Generation Time

Most of the models we have used in our experiments do not have a built-in mecha-

nism to limit the total generation time. Generally, the concept of ”time” is not a pa-

rameter that can be directly expressed in the architectures of Deep Learning models.

This concept is a consequence of several factors, such as the model’s architecture,

the hardware used, the size of the input, the hyperparameters specified, the training

pipeline, the presence of multi-modal components, the stopping criterias defined,

the complexity of the task, and so on.

The above statements is valid also for all the models we have used in our experi-

ments. As we can see from Table 1.2, there are some models that already satisfy

the constraints regarding the maximum generation time that we have imposed in

section 5.1 while several other models do not.

In particular, for the models presented in section 4.1 which by construction

prefers very low generation time over quality, we had not imposed any additional

constraints. For all the other models presented in section 4.2 which conversely

prefers quality over generation time, we had limited the maximum generation time
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to 10 minutes.

Hence, the final question is: ”how did we limit the total generation time of a model

that does not have a built-in mechanism to do so?”.

In order to effectively limit the total generation time of each model, we have per-

fomed a comprehensive analysis of the generation statistics of each model. This

analysis has been conducted by monitoring the unbounded (i.e. without our effi-

ciency constraints) generation of each model on a single prompt and by analyzing

the average number of iterations per second needed by each model at each different

stage of its generation pipeline1.

Since most of our models exploit pre-trained text-to-imagemechanism (e.g. through

pre-trained Stable DiffusionModel [34]), we have focused on an alyzing the average

number of iterations per second regarding the final architecture optimization steps

commonly used by all the models (e.g. NeRF [21]MLP training, Gaussian Splatting

[12] parameters optimization, …).

Through this extraction, we have been able to define the maximum number of

iterations that each model can perform in any custom given amount of time. Indeed,

this value has been used as a stopping criteria for each model in order to limit the

total generation time following respect to our constraints (i.e. 10 minutes). The

results of this comprehensive analysis are presented in Table 5.1.

Efficiency vs Evaluation

In this section we want to point out some differences between our work and the work

of T3bench [5] in order to properly contextualize the results presented in chapter 6
1As explained in chapter 4 some models rely on a multi-stage generation pipeline through which
they generate intermediate representations (of the final 3D shape) in the earliest stages and then
they refine them in the later stages.
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Model Stage iters/sec Tot. Iters Tot. Time

LucidDreamer ∼ 1.40 it/s 850 iters < 10 min

HiFA ∼ 4.40 it/s 2650 iters < 10 min

ProlificDreamer

coarse 2.70 it/s 650 iters < 4 min

geometry 4.60 it/s 800 iters < 3 min

texture 2.75 it/s 500 iters < 3 min

TextMesh(IF) ∼ 5.75 it/s 3500 iters < 10 min

Fantasia3D
coarse 5.00 it/s 2400 iters < 8 min

texture 4.30 it/s 500 iters < 2 min

SJC ∼ 16.45 it/s 10000 iters < 10 min

Magic3D(IF)
coarse 5.85 it/s 1700 iters < 5 min

refine 4.30 it/s 1300 iters < 5 min

LatenNeRF
coarse 6.45 it/s 1900 iters < 5 min

refine 4.58 it/s 1300 iters < 5 min

DreamFusion(IF) ∼ 5.8 it/s 3500 iters < 10 min

Table 5.1: Models: detailed report of all the statistics related to each model (splitted
by stage) in terms of generative iterations and related generation time.

and compare the different approaches used in both works.

As already explained in chapter 1 and in section 3.2 the main goal of T3bench [5] is

to provide a benchmark for evaluating the comprehensive quality of text-driven 3D

generation shapes. Conversely, the main goal of our work is to exploit evaluation

metrics such as the ones defined in the T3Bench research in order to properly eval-

uate the 3D generation results obtained by putting strong constraints regarding the

efficiency of the models used.

This difference is remarkably evident if we consider, for instance, the constraint re-

lated to the maximum total number of iterations associated to each model. Since

T3Bench had not imposed any constraints regarding the efficiency of the models
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used, the authors of T3Bench have not limited the total number of iterations

associated to each model. Conversely, we have done the opposite in order to adhere

to our constraints regarding the efficiency of the models used.

Differences between these two approaches have been reported in Table 5.2 where

we have compared themaximum total number of iterations associated to each model

used in our work with the maximum total number of iterations associated to each

model used in the T3Bench work2. By looking at this results we can see that the

average3 maximum total number of iterations associated to the models used in our

work is significantly lower than the average3 maximum total number of iterations

associated to the models used in the T3Bench work. This aspect have highly influ-

enced our results as show in chapter 6.

Model T3B (iters) Ours (iters) Ours/T3B
ProlificDreamer 70k it 2k it 3% it
Fantasia3D 15k it 3k it 20% it
SJC 10k it 10k it 100% it
Magic3D(IF) 15k it 2.5k it 17% it
LatentNeRF 20k it 3k it 15% it
DreamFusion(IF) 10k it 3.5k it 35% it

Table 5.2: T3Bench comparison: detailed report of all the statistics related to each
model (splitted by stage) in terms of generative iterations and related generation
time.

5.2 Prompts Dataset

In chapter 6 we have presented the results of our experiments by using a dataset of

100 prompts. This dataset has been extracted from the T3Bench prompts dataset [5]

which originally contains three sets of 100 prompts each named single, multi and

surrounding. As stated by T3Bench authors:
2We have only reported the comparison for the model implemented by TBench authors.
3computed as the mean of the total number of iterations performed on each prompt
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The ”single” object set represents the simplest scenario to establish a

baseline level of performance, and the other two prompt sets (i.e. multi,

surrounding) introduce increased levels of difficulty by incorporating

additional information like surroundings or multiple objects. [5]

To generate these prompt sets, T3Bench authros used GPT-4 [4] to generate a large

pool of candidate prompts, and then they have manually filtered out prompts that

contain proper nouns or toponyms. Subsequently, they utilized ROUGE-L [18] to

quantify prompt similarity and incrementally remove highly similar prompts until

there remains a number of 100 distinct prompts with significant diversity in each

prompt set [5].

Unfortunately, this prompt selection strategy has led to the creation of a dataset

of prompts that is not well balanced in terms of features diversity and object’s sim-

ilarity. Indeed, some prompts are very similar to each other (e.g. different prompts

which specify different colors or features for the same object) while others are very

different (e.g. some prompts characterize objects not present in any other entry).

In the chapter 6 we have shown how this aspect has influenced the results of our

experiments.

Takining into account our constraints regarding the efficiency of the models used

(which, as a consequence, limit the generation capability of our models), we have

decided to use only the single group of 100 prompts in our experiments. This deci-

sion has been taken in order to adhere to the simplest scenario defined by T3Bench

authors and to allow us to compare the effects of the efficiency constraints on the

output quality of each model respect to the results obtained by them.



5.3 3D Priors Initialization 66

5.3 3D Priors Initialization

One of the main goal of our research is to analyze the impact of applying our custom-

defined efficiency constraints (section 1.3) to existing methods for generating 3D

shapes given natural language descriptions of the desired object.

In particular, we know that by limiting the time of generation of the 3D shapes,

we are implicitly limiting the generative capabilities of these models. Hence, since

we do not want to change neither the architecture of models nor our efficiency con-

straints, we have decided to explore the possibility of boosting the generative capa-

bilities of the models by exploiting pre-defined priors.

Most of the models which exploits an implicit parametrization of the 3D shapes,

start their training process by initializing a coarse 3D shape independently from the

input prompt.

Many researches presented in chapter 4 pointed out several issues by highlight-

ing that the most of the current text-to-3D models lack of what they are usually

called ”3D priors” or ”3D initialization bias” which leads to an higher probability

of generating 3D shapes that are not coherent with the input prompt.

For this reason, we have decided to explore the impact of using pre-defined 3D pri-

ors in order to boost the models’ generative capabilities.

We can summarize the priors used in our experiments as follows4:

1. SDF Bias: we can specify the properties of an elementary 3D shape (e.g.

a sphere, an ellipsoid, …) that should be used as a prior for the 3D shape

generation process;
4notice that our choice of priors is based on the availability of the models’ implementation
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2. Initial Prompt: we can specify a simpler5 textual prompt and exploit an ex-

ternal model to generate the initial 3D shape representation6;

Only three among all themodels that we have analyzed in chapter 4 and implemented

support the use of priors: LucidDreamer employs the Initial Prompt, while both

Fantasia3D and TextMesh(SD) support the SDF Bias prior initialization.

5.4 Diffusion Model Backbones

As already done in the other sections of this chapter, we have reported in Table 5.3

the different statistics regarding the number of iterations per second used by each

model divided by both the different stages of its generation pipeline and the stable

difussion backbone used.

Model Vers. Stage iters/sec Tot.Iters Tot.Time

TextMesh
IF ∼ 5.75 it/s 3500 iters < 10 min

SD ∼ 4.20 it/s 2500 iters < 10 min

Magic3D

IF
coarse 5.85 it/s 1700 iters < 5 min

refine 4.30 it/s 1300 iters < 5 min

SD
coarse 4.30 it/s 1300 iters < 5 min

refine 4.40 it/s 1300 iters < 5 min

DreamFusion
IF ∼ 5.8 it/s 3500 iters < 10 min

SD ∼ 4.45 it/s 2650 iters < 10 min

Table 5.3: Diffusion Backbones: detailed report of all the statistics related to each
model (splitted by stage) in terms of generative iterations and related generation
time.

We have mainly analyzed the impact of two different diffusion backbones by tak-

ing into account the efficiency constraint that we have set on the hardware used to
5compared to the one used for generating the final 3D shape
6before starting the training process
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generate the 3D shapes. The two diffusion backbones that we have considered are

StableDiffusion 1.5 (SD) and DeepFloyd (IF). Table 5.4 provide the references to

the source code of these diffusion backbones.

5.5 Implementation Details

We have already introduced in section 1.3 that one of the main discriminant factors

in the selection of the models to implement was the availability of open-source code.

This requirements allow us to present our results under the assumption that experi-

ments that we have conducted are reproducible and that the results are comparable

with the results of the original authors. Moreover, we have also mentioned in sec-

tion 1.3 that our approach, regarding the implementation phase, has been based on

several steps which we are going to describe in the following paragraphs.

First of all, we have started by collecting the source code of each model mainly

available on the Github platform. Then, we have proceeded to adapt the source

code to our needs, by fixing any possible bug and by creating a standard interface

for the generation of 3D shapes. This ”interface” allow anyone to easily generate

3D shapes on arbitrary dataset by simply defining as input the model and the text

prompts themself.

Secondly, we have develop a new interface to export the 3D shapes generated by

each model as 3D meshes. It is important to highlight that this is interface has been

tailored to each specific 3D output format generated by each model. For example,

some models generate 3D shapes in the form of pointclouds while some other don’t

generate 3D shapes at all (e.g. they generate latents vectors related to an INR that

need to be decoded in order to produce a valid 3D shape). Unfortunately, conversely

to what we have done for the generation process, we were not able to standardize

this interface considering the huge number of different requirements associated to
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each model output.

Thirdly, in order to maintain consistency respect to the results obtained by au-

thors of T3Bench [5], we copied the rendering pipeline defined in this research and

we used it to extract the renderings (i.e. multiple 2D images of a given 3D shape

taken from different point of views) from the 3D meshes generated by each model.

Finally, we have integrated both CLIP and T3Bench evaluation pipelines starting

from the rendering obtained in the previous step. The complete list containing the

source-code reference of each component of our implementation process is pre-

sented in Table 5.4.

Component Type Library

Cap-ShapE
Model Cap3D[33]

Cap-PointE

ShapE
Model

Shap-E[27]

PointE Point-E[26]

LucidDreamer Model LucidDreamer[32]

HiFA

Model Threestudio[30]

ProlificDreamer

TextMesh

Fantasia3D

SJC

Magic3D

LatentNeRF

DreamFusion

T3B Aligment
Metric T3Bench[39]

T3B Quality

StableDifussion 1.5 Diffusion
Backbone

StabilityAI

DeepFloyd IF DeepFloyd[38]

Table 5.4: Developed components source code references.



Chapter 6

Results

In this chapter we present the results of our experiments. We start by comparing

our results with the ones obtained by T3Bench in section 6.1. Then, in section 6.2,

we present a comprehensive overview of the evaluation performed on all the models

that we have implemented in this work. Finally, in section 6.3, we present additional

results related to the investigation of the impact of the learning rate, the priors, and

the diffusion backbones on the quality of the generated images.

6.1 T3Bench Comparison

The first aspect that we want to analyze is the comparison between the scores ob-

tained by our efficient models1 and the scores originally obtained by the T3Bench

authors without imposing any boundary to the generation time or capacity of the

models. This comparison is shown in Table 6.1.

The first thing that we noticed is the evidence of two different trends regarding the

T3Bench Alignment and Quality scores.
1models for which we have defined a set of contraints regarding their generation capacity (i.e. time,
hardware).
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Model
T3Bench Results Our Results

Qual. Align. Avg. Qual. Align. Avg.

ProlificDreamer 51.1 47.8 49.4 26.7 47.3 37.0

Fantasia3D 29.2 23.5 26.4 16.1 43.0 29.6

SJC 26.3 23.0 24.7 23.6 44.0 33.8

Magic3D (SD) 38.7 35.3 37.0 27.4 49.5 38.5

LatentNeRF 34.2 32.0 33.1 18.1 40.3 29.2

DreamFusion (SD) 24.9 24.0 24.4 20.2 47.5 33.9

Table 6.1: Comparison between the scores obtained by our constrained models and
the scores originally obtained by the T3Bench authors without imposing any bound-
ary to the generation capacity (i.e. time, hardware) of the models.

In particular, we can observe that, most of the time, theAlignment scores are gen-

erally higher for our constrained models respect to the unconstrained models used

in the T3Bench research. Conversely, the Quality scores present an opposite trend,

with the original unconstrained models generally outperforming our constrained

models.

Figure 6.1 summarize these two different scores trends by showing the Alignment

andQuality scores of our models as a function of the time required to generate them.

The same scores for the T3Bench models are also shown for comparison.

These two different trends highlight the need of a deeper analysis for both the Align-

ment and Quality scores. In particular, we want to understand if these trends have

been affected by our efficiency constraints or if they are just a consequence of differ-

ent2 choices that we have made during the development of our generation/exporting

pipeline.
2respect to the T3Bench original research
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(a) T3Bench Alignment

(b) T3Bench Quality

Figure 6.1: Comparison of the T3Bench scores trends obtained in the original
T3Bench research and the ones obtained in our research. The scores are sorted by
the original unbonded time required by each model to generate a 3D shape.
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Alignment Scores At th beginning, we were not sure about the impact of our

efficiency constraints on the Alignment scores. In fact, since the Alignment score is

a measure of how much the generated shape and textual prompt are aligned, this is

the most important open question that we wanted to address.

Table 6.1 and Figure 6.1 show that, in general, the Alignment scores of our mod-

els are higher than the ones obtained by the T3Bench authors. This is a very in-

teresting result because it means that, despite the fact that we have imposed a set

of constraints to the generation of our models, we have not affected the Alignment

score in a significant way.

At the same time this result is in contrast for the results that we have obtained

for the Quality score which measure the ”intrinsic” quality of the 3D shape itself.

This leads to the following question: how is it possible that the Alignment of our

constrained models are higher than the ones obtained by the T3Bench authors, while

knowing that theQuality scores are generally lower (meaning that we are generating

more coarse and less detailed 3D shapes)?.

In order to answer to this question we have to briefly analyze the Alignment

score definition. As presented in the T3Bench research [5], the Alignment score is

a measure of how much the generated shape and textual prompt are aligned. This

means that, if we are able to generate 3D shapes which are more coherent to the

input prompt, we will obtain higher Alignment scores. T3Bench authors have em-

ployed BLIP [14] in order to describe renderings of 3D shapes and then use a Large

Language Model to bothmerge and score the generated descriptions. This process

has three main critical points:

1. image-to-text: obtaining a description of coarse and less detailed 3D shapes

may result in more generic and less detailed captions;

2. merging: asking a LLM to merge more generic and less detailed captions may

result in a more generic and less detailed description of the 3D shape;

3. scoring: scoring through a LLM the coherence between the text prompt and
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a more generic and less detailed description (of the 3D shape) may result in a

higher Alignment score (since the likelihood of captioning details not related

to the text prompt is lower by definition).

With this process, we can effectively evaluate only unconstrained models which

are able to generate 3D shapes with fine-grained details related to the input prompt.

Moving away from this assumption (as it is in our case), we may obtain a higher

Alignment scores for 3D shapes which are more generic and less detailed since the

merged captions will be more generic and, as a consequence, less prone to contain

descriptions of details which are not present in the input prompt.

Moreover, another critical point is on the choice of the LLM itself. Despite we, as

T3Bench authors, have employed the same ”type” of LLM (i.e. ChatGPT), due to

technical limitations we have used a different version of the model (ChatGPT

3.5-turbo) respect to the one used by the T3Bench authors (ChatGPT 4[4]).

Fursther research is needed in order to understand the impact of chooosing a

different version of the LLM used by T3Bench authors to merge the renderings cap-

tions (from BLIP) and score the merged captions in order to obtain the Alignment

scores.

Renderings in Table 6.2 reflects this discrepancy by showing how much the

Alignment scores of our constrained models are aligned with the ones obtained by

the unconstrainedmodels used in the T3Bench research (despite an huge gap in both

the Quality and generation time boundaries).

Quality Scores At the beginning, we expected that the Quality scores would have

been affected by our efficiency constraints in very evident way. Since the Quality

score is a measure of the ”intrinsic” quality of the 3D shape (which does not take into

account the input prompt), we expected that by constraining the generation time of

our models, we would have obtained, in general, 3D shapes which are more coarse
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(T3B)ProlificDreamer (T3B) Fantasia3D (T3B) SJC
(T3B)Align. = 100.0 (T3B)Align. = 75.00 (T3B)Align. = 100.0
(T3B)Qual. = 83.8 (T3B)Qual. = 63.8 (T3B)Qual. = 62.0

(OUR) ProlificDreamer (OUR) Fantasia3D (OUR) SJC
(OUR)Align. = 75.00 (OUR)Align. = 75.00 (OUR)Align. = 75.00
(OUR)Qual. = 27.29 (OUR)Qual. = 10.21 (OUR)Qual. = 72.69

(T3B) Magic3D (T3B) LatentNeRF (T3B) DreamFusion
(T3B)Align. = 100.0 (T3B)Align. = 100.0 (T3B)Align. = 100.0
(T3B)Qual. = 79.2 (T3B)Qual. = 86.3 (T3B)Qual. = 82.4

(OUR) Magic3D (OUR) LatentNeRF (OUR) DreamFusion
(OUR)Align. = 75.00 (OUR)Align. = 75.00 (OUR)Align. = 75.00
(OUR)Qual. = 61.85 (OUR)Qual. = 84.99 (OUR)Qual. = 77.17

Table 6.2: Comparison between the original scores obtained by T3Bench and the
ones obtained by our constrained generation respect to the prompt ”A cactus with
pink flowers”. The table shows the results for the 3D models ProlificDreamer, Fan-
tasia3D, SJC, Magic3D, LatentNeRF, and DreamFusion (all the ones analyzed by
T3Bench authors).
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and less detailed3 than the ones obtained by the T3Bench authors.

Table 6.1 confirm this expectation, and, at the same time Figure 6.1 shows how

the Quality trend between our constrained models and the unconstrained models

used in the T3Bench research only differs by an exponential scale factor. This means

that, while the Quality scores of our models are generally lower than the ones ob-

tained by the T3Bench authors, increasing the generation time of our models would

result in increasing ”proportionally” the Quality scores.

In the other hand, looking at the comparison between renderings in the Table 6.2

obtained by our constrained models and the ones obtained by the unconstrained

models used in the T3Bench research, we can see that Quality scores do not always

properly reflect the huge quality diffrence that we can see in the renderings.

For instance, by looking at the renderings (Table 6.2) of DreamFusion[29] we

can se that the difference between the Quality score obtained by our constrained

model (i.e. 77.17) and the score obtained by unconstrained model of T3Bench (i.e.

82.4) only differs by a 10% factor4 which does not properly represent the huge qual-

ity diffrence that we can see in the renderings.

As we can see in Table 6.1, while looking at the average T3Bench score, we can see

that these two very different trends neglect each others, resulting in a more balanced

average score for all models. At the same time, we can also highlight that, con-

versely to separately considering Alignment and Quality scores, our average scores

are closer to average scores obtained by T3bench authors with unconstrained mod-

els5.
3which may also still contain some artifacts ...
4over the full range of the Quality score ([0, 100]), this is a very small difference.
5ProlificDreamer [43] is the only exception
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Average Scores Despite the fact that, as presented in the T3Bench [5] research,

the average score should be a better indicator of the overall performance of the mod-

els, we have shown that the average scoremay be misleading in situations where the

Alignment and Quality scores are affected by different trends and numerical magni-

tudes. This is the case for our models and this is the reason why we have decided to

analyze the Alignment and Quality scores separately.

This intrinsic limitation of the average score (i.e. given by its formulation as the

arithmetic mean of the alignment and quality scores) also may lead to unproper

comparisons when we want to examine models taken from different researches. For

instance, if we consider the goals of our research, we can see that the average score

is not able to properly highlight the differences between our constrained models and

the unconstrained models used in the T3Bench research.

T3Bench vs Human Preference Conversely to what expressed by T3ench [5]

authors in their research, we have shown that these scores (especially the Alignment

score) are not always a good indicator of generic human preference in terms of 3D

shape evaluation.

For instance, if considering the results presented in Table 6.3, we can see the

comparison between the renderings obtained by our constrainedMagic3D[17]model

and the renderings obtained by the unconstrained Magic3D[17] model used in the

T3Bench research. In particular, this model (Magic3D[17]) has been chosen be-

cause it has:

1. the best Alignment score among our models;

2. the closest average score to its respective T3Bench unconstrained model;

and, as a consequence, it should be the one that is more ”similar” to its respective

unconstrained model used in the T3Bench research.
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A castle-shaped sandcastle A blooming potted orchid with
purple flowers

A fuzzy pink flamingo lawn
ornament

T3Bench Results

Our Results

(a) good (b) medium (c) bad

Table 6.3: Magic3D: comparison of the results obtained by T3Bench and by our
method for the three prompts sorted by decreasing scores of human preference.

By ”similar” we mean that, if the T3Bench scores are a good indicator of the human

preference, we should expect that the renderings obtained by our constrained model

are very close/similar to the ones obtained by the unconstrained model used in the

T3Bench research. Again, as we can see in Table 6.3, this is not the case and we can

also have an hint about how a generic human evaluator will score our renderings.

In the end, this confirms our suspicion about the fact that, at least for our sce-

nario, the T3Bench scores are not always a good indicator of the human preference

in terms of 3D shape evaluation.

Conclusion In conclusion, we need to remark that comparing the scores obtained

by our constrained models with the scores obtained by the T3Bench authors for the

same models is not completely ”fair”.

Indeed, the main goal of this section was to analyze the impact of our efficiency

constraints on the scores of our models6, extract the main trends related to how the
6respect to the scores obtained by the T3Bench authors which have not imposed any boundary to the
generation time or capacity of the models.
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(a) T3Bench Results (b) Our Results

Figure 6.2: Overview of the T3Bench average scores obtained by eachmodel, sorted
by research date.

Alignment andQuality vary as long as we constraint models which requires a gener-

ation of time progressively increasing and to understand if the T3Bench scores are

a good indicator of the human preference in terms of 3D shape evaluation in our

scenario.

Figure 6.2 depicts the general overview of the original average scores obtained by

the T3Bench authors and the average scores obtained by our constrained models.

6.2 Aggregated Results

In this section we would like to discuss the results of our experiments by comparing

the different scores obtain by each one of the models that we have implemented. In

particular, we want also to inspect the relationships between the CLIP and T3Bench

scores in order to better highligh possibile patterns and trends between these ones.

We have summarized the results of our experiments in Table 6.4. In this table, we

have reported the scores of theCLIP and T3Benchmetrics for each one of themodels

as long as the T3Bench average metric.

Table 6.11, Table 6.12 and Table 6.13 also present some renderings examples
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foreach implemented model and three different prompts statements.

Our Results

Model
CLIP T3Bench

Score RPrec. Qual. Align. Avg.

LucidDreamer 0.65 0.17 13.06 41.41 27.2

Cap-ShapE 0.71 0.40 18.31 44.95 31.6

Cap-PointE 0.69 0.30 16.03 40.25 28.1

HiFA 0.62 0.29 18.35 45.25 31.8

ProlificDreamer 0.69 0.46 26.68 47.25 37.0

ShapE 0.72 0.49 20.44 47.47 38.5

TextMesh (IF) 0.65 0.29 17.70 39.0 28.35

Fantasia3D 0.63 0.27 15.96 43.00 29.6

PointE 0.66 0.24 11.18 39.75 25.5

SJC 0.66 0.29 23.60 44.00 33.8

Magic3D (IF) 0.73 0.49 33.69 44.75 39.2

LatentNeRF 0.63 0.26 18.10 40.30 29.2

DreamFusion (IF) 0.65 0.30 19.55 42.50 31.0

Table 6.4: Scores: general overview of our constrained models’ performances. The
table shows the scores obtained by our models respect to all the integrated metrics.

Prompt Analysis The first thing that we can notice is that the quality of the results

is highly dependent on the prompt statement. In particular, we can observe that:

1. some prompts are always pretty good, regardless of the model used.

2. some prompts are always very bad, regardless of the model used.

3. some prompts’ quality varies remarkably across models.

These three results are very interesting and they are, in some sense, in contrast with

the common belief that the ”quality” of the results is mainly dependent on the model

used.



6.2 Aggregated Results 81

At the beginning of our experiments, we were expecting that the quality of the

results would have been mainly dependent on the model used. However, we dis-

covered that some prompts are always very bad or pretty good, regardless of which

model we exploit to generate their respective 3D shapes.

The above analysis remarks the importance regarding the definition of a proper

dataset of prompts to be used for the evaluation of the models. Indeed, we have

already highlight the issues related to our prompt dataset in section 5.2 but we were

not expecting to discover such differences in the quality of the results among differ-

ent prompts.

Model Analysis The 3D data parametrization performed by each model becomes

a critical aspect while evaluating the results. Models which use more complex

parametrization techniques, such as LatentNeRF andMagic3D, are expected to per-

form better on complex prompts (sometimes even in a constrained scenario, as the

one as we are), while models which use simpler parametrization techniques, such as

Cap-PointE and PointE, are expected to perform better on simpler prompts. This is

a very interesting aspect that we would like to further investigate in the future7.

However, have observed that some models are able to perform well on a given com-

plex prompt and bad on other simple ones. This is the case of Cap-PointE[19] and

PointE[25] which perform bad on the prompt ”A cactus with pink flowers” and well

on the prompt ”A bright red fire hydrant”. Conversely, we have observed that some

models are able to performwell on a given complex prompt and bad on other simpler

ones. This is the case of ProlificDreamer[43] which performs well on the prompt

”A cactus with pink flowers” and bad on the prompt ”A bright red fire hydrant”.

7this also may pose an interesting challenge regarding the use of an hybrid approach based on the
complexity of the prompt statement.
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Figure 6.3: Comparison between the CLIP and T3Bench scores trends obtained
foreach model.

CLIP vs T3Bench Figure 6.3 shows the relationship between the CLIP-Score and

T3Bench scores for each one of the models. Since the obtained scores for bothCLIP-

Score and T3Benchmetrics lay in a very small interval (ourCLIP-Score values lay in

the interval [0.62, 0.73] and our T3Bench scores lay in the interval [40.25, 47.47]),

it is very difficult to find a clear relationship between these two metrics (despite in

principle we would expect a positive correlation between them).

However, we can observe that theCLIP-Score andT3Bench-Quality scores aremostly

positively correlated.

This is inline with our expectations considering that, being the T3Bench-Quality

an indication of the intrinsic quality of a given 3D Shape, it is expected that, for 3D

shapes with finer details and less artifacts, the renderings CLIP[31] embedding will

be more likely to be ”aligned”8 respect to the CLIP[31] text embeddings resulting

in a higher CLIP-Score (section 3.1).

In the other hand, the lack of a clear relationship between the CLIP-Score and
8the cosine distance between the text and image embeddings of CLIP will be smaller
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T3Bench-Alignment scores it is, unfortunately, very difficult to interpret. This may

be mainly due to both the issues of evaluating the coherence between a textual

prompts and a less detailed shapes9 (as the Quality scores highlight) and differences

in the implementation of T3Bench-Alignment itself respect to the original T3Bench

formulation[39]. Both of these aspects have been already discussed in section 6.1.

6.3 Additional Results

Since one the most important aspects of our work the evaluation of current text-

driven generative models at which we have applied several efficiency constraints

(section 1.3) we have decided to explore the impact of different configurations which

may help to improve the performance of our models.

Summarizing, we have explored the impact of different hyperparameters, priors

and diffusion backbones on the performance of our models. The results of these

experiments are presented in the following sections.

Hyperparameters

The first group of additional experiments is focused on the hyperparameters of the

models.

Our Results

Model CLIP T3Bench
name lr Score RPrec. Qual. Align. Avg.

Prolific Dreamer
x1 0.59 0.10 10.34 39.50 24.92

x5 0.69 0.46 26.68 47.25 37.00

Table 6.5: Scores: overview of how different hyperparameters values affect the final
scores obtained foreach metric.

9mainly obtained as effect of our efficiency constraints
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As we have already introduced in section 5.3, we have decided mainly to focus

only on the ProlicficDreamer model, as it is the one that requires the larger amount

of time to generate a 3D shape given a prompt (Table 1.2).

Table 6.5 shows the results of the experiments we have conducted. We have tested

two different learning rates scaler, x1 and x5, and we have used the same priors as

in the previous experiments.

As we can see from the results, the ProlicficDreamer model benefits from the

use of priors and from the increase of the learning rate. The CLIP-Score increases

from 0.59 to 0.69, the CLIP-RPrecision from 0.10 to 0.46, the T3Bench-Quality

from 10.34 to 26.68, and the T3Bench-Alignment from 39.50 to 47.25.

A bright, yellow rubber duck A castle-shaped sandcastle A delicate crystal champagne flute

LR x1

LR x5

Table 6.6: Comparison of the results obtained by the ProlificDreamer model using
different learning rate settings.

The renderings examples presented in Table 6.6 confirm the scenario described

above. Hence, we can conclude that the ProlicficDreamer model benefits from an

increased learning settings.
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Priors

The second group of additional experiments is focused on models which have the

possibility to exploit priors to properly initialize their 3D shape parametric repre-

sentation.

As we have already introduced in section 5.3, we have decided mainly to fo-

cus only 3 models which have the possibility to exploit priors, as they are also the

ones that have the lower CLIP-Score (Table 6.4) and the lower T3Bench-Quality

(Table 6.4) values.

Our Results

Model CLIP T3Bench
name prior Score RPrec. Qual. Align. Avg.

LucidDreamer
yes 0.65 0.17 13.06 41.41 27.24

no 0.56 0.07 7.96 38.38 23.17

Fantasia3D
yes 0.63 0.27 15.96 43.00 29.48

no 0.64 0.28 16.52 42.75 29.63

TextMesh(SD)
yes 0.58 0.13 8.40 39.51 23,95

no 0.53 0.05 9.06 32.00 20.53

Table 6.7: Scores: overview of how the usage of 3D intialization priors values affect
the final scores obtained foreach metric.

Table 6.7 shows the results of the experiments we have conducted. We have tested

LucidDreamer[15], Fantasia3D[2], and TextMesh(SD)[40] with and without priors

initialization.

As we can see from the results, LucidDreamer is the only model for which we

can see a significant improvement in the CLIP-Score and T3Bench-Quality when

using priors. The CLIP-Score increases from 0.56 to 0.65, and the T3Bench-Quality

from 7.96 to 13.06. In the other hand, Fantasia3D and TextMesh(SD) do not show
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any significant improvement when using priors.

A fragrant pine Christmas wreath A rainbow-colored umbrella A futuristic, sleek electric car model

Without Priors

With Priors

Table 6.8: Comparison of the results obtained by Fantasia3D with and without using
priors initialization for three different prompts.

The results obtained in Table 6.7 for Fantasia3D and TextMesh(SD) are not totally

aligned with a possibile human evaluation directly performed on some renderings

examples, as shown in Table 6.8. In fact, the renderings examples presented in

Table 6.8 confirm that the Fantasia3Dmodel highly benefits from the use of priors,

showing again some difficulties by the T3bench metrics capture little improvements

between these two different settings.

Diffusion Backbones

The third group of additional experiments is focused on models which have the pos-

sibility to exploit different diffusion backbones section 2.3 architectures to boost the

image generation process. As we have already introduced in section 5.4, we have

decided mainly to focus only 3 models which have the possibility to exploit different

diffusion backbones.
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Our Results

Model CLIP T3Bench
name type Score RPrec. Qual. Align. Avg.

DreamFusion
SD 0.66 0.40 20.17 47.50 33.84

IF 0.65 0.30 19.55 42.50 31.10

TextMesh
SD 0.53 0.05 09.06 32.00 20.53

IF 0.65 0.30 17.70 39.00 28.35

Magic3D
SD 0.70 0.48 27.41 49.50 38.46

IF 0.73 0.49 33.69 44.75 39.20

Table 6.9: Scores: overview of how different Diffusion Backbone affect the final
scores obtained foreach metric.

Table 6.9 shows the results of the experiments we have conducted. We have tested

DreamFusion, TextMesh, and Magic3D with the StableDiffusion (SD) and Deep-

Floyd(IF)[38] backbones.

A ceramic teapot with floral
patterns

A faux-fur leopard print hat A gold glittery carnival mask

StableDiffusion

DeepFloyd

Table 6.10: Magic3D: comparison of the results obtained by the StableDiffusion
(SD) and DeepFloy (IF) backbones for three different prompts.

As we can see from the results, TextMesh is the only model for which we can
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see a significant improvement in the CLIP-Score and T3Bench-Quality when us-

ing the DeepFloyd backbone. The CLIP-Score increases from 0.53 to 0.65, and the

T3Bench-Quality from 9.06 to 17.70. In the other hand,DreamFusion andMagic3D

do not show any significant improvement when using the DeepFloyd backbone.

The results obtained in Table 6.9 forMagic3D are not totally aligned with a possible

human evaluation directly performed on some renderings examples, as shown in

Table 6.10. In fact, the renderings examples presented in Table 6.10 confirm that

the Magic3D model highly benefits from the use of the DeepFloyd(IF) backbone,

showing again some difficulties by the T3bench metrics capture little improvements

between these two different settings.
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(1) LucidDreamer (2) Cap3D-ShapE (3) Cap3D-PointE (4) HiFA

(5) ProlificDreamer (6) ShapE (7) Fantasia3D (8) PointE

(9) SJC (10) Magic3D(IF) (11) LatentNeRF (12) DreamFusion

Table 6.11: Renderings extracted from all the implemented models for the prompt
”A cactus with pink flowers”.
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(1) LucidDreamer (2) Cap3D-ShapE (3) Cap3D-PointE (4) HiFA

(5) ProlificDreamer (6) ShapE (7) Fantasia3D (8) PointE

(9) SJC (10) Magic3D(IF) (11) LatentNeRF (12) DreamFusion

Table 6.12: Renderings extracted from all the implemented models for the prompt
”A bright red fire hydrant”.
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(1) LucidDreamer (2) Cap3D-ShapE (3) Cap3D-PointE (4) HiFA

(5) ProlificDreamer (6) ShapE (7) Fantasia3D (8) PointE

(9) SJC (10) Magic3D(IF) (11) LatentNeRF (12) DreamFusion

Table 6.13: Renderings extracted from all the implemented models for the prompt
”A fuzzy pink flamingo lawn ornament”.



Chapter 7

Conclusion

In this work we have presented a comprehensive anyalis of the most recent text-

driven 3D generation models. In particular, we have focused on evaluating the

performances of some of the most recent models by imposing strong efficiency con-

straints related to the hardware requirements and the generation time that eachmodel

is allowed to use.

The goals of our research were to evaluate the performances of these efficient mod-

els respect to results obtained originally by each research without any constraints

related to the generation configuration. Moreover, at the same time, we have inte-

grated a prominent recent benchmark focused on defining a new evaluation standard

for text-driven 3D generation models in order to assess the performances of these

models respect to the quality and coherence (respect to the input prompt) of the gen-

erated 3D shapes.

After selecting the most promising models, we have conducted a series of experi-

ments in order to asses the impact of our constraints on the general performances

of these models and we have investigated the possibility of enhancing these perfor-

mances by exploiting additional configurations (e.g. 3D priors initialization).
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Most of the models that we have selected mainly rely on the use of powerful pre-

trained diffusion models to optimize a 3D parametric representation of the object

described in the input prompt. Notably, these models are able to produce high-

quality 3D scenes without requiring any type of annotated 3D dataset. Due to the

open-ended nature of the task, most studies evaluate their results ”manually” through

subjective case studies.

In the other hand, we have explored the possibility of evaluating the perfor-

mances of these efficient models by exploiting a recent benchmark named T3Bench

in order to both deterministically and quantitatively assess the performances of these

models and, at the same time, evaluate the alignment of this benchmark respect to

human evaluation preferences.

Our results have shown that the overall fidelity of the generated 3D shapes highly

depends on both the prompt statement and the model used. In particular, we have

observed that the results obtained from some prompts are always very bad, while

the results obtained from some other prompts are always pretty good, regardless of

the model used.

In the other hand, we showed that the results obtained for another subset of

prompts vary remarkably across models mainly due to the fact that different models

exploit different 3D shape parametrization techniques.

As we were expecting, by constraining the generation time of each model, we have

observed that most of the models generate 3D shapes which are more coarse re-

spect to the ones obtained by the original researches. Despite this, some models are

suprisingly able to generate 3D shapes which capture the semantic relationships of

objects described in the input prompt and, at the same time, present a good level of

details and a good topology.



Conclusion 94

In other hand, we have observed that, especially for models which originally re-

quires a lot of computational time and resources, the generated 3D shapes are more

coarse and have an high presence of artifacts.

We have investigated the correlation between the results described above and the

scores obtained by the T3Bench benchmark. As we expected, since in general we

generate more coarse 3D shapes, we have observed that most of our constrained

models have obtained lower Quality scores respect to the original research.

Coversely, we have found that our Alignment scores are always higher respect

to the ones obtained in the original research. This result is very interesting consid-

ering that the renderings obtained from our 3D shapes are less detailed and, as a

consequence, present lower likelihood to be aligned respect to the input prompt.

In the Results section we have provided a detailed analysis of this aspect by ex-

ploring possibile causes of this behavior and by providing some examples of the

renderings obtained from our 3D shapes.

In conclusion, our work shows that there is a huge potential for future research in

the field of efficient text-driven 3D generation models. In particular, we believe that

there is still a need for further analyses on how an efficient model may better learn

more precise 3D shape details while capturing overall prompt semantic.

Moreover, such constrained scenario, pose a new challenge regarding the im-

portance of the definition of a proper dataset of prompts that have to be used for

evaluating these constrained models.

Finally, our results show howmuch the 3D quality highly depends on the prompt

statement. Hence, we believe that the relationship between the 3D data parametriza-

tion defined by each model and a proper balance of between 3D quality and text-

prompt coherence of the generated 3D shapes are the most interesting challenges

for future researches.
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