
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Design and implementation of a
scalable domain specific language
foundation for ScaFi with Scala 3

Tesi di laurea in:
Paradigmi di Programmazione e Sviluppo

Relatore
Prof. Mirko Viroli

Correlatore
Dott. Gianluca Aguzzi

Candidato
Luca Deluigi

IV Sessione di Laurea

Anno Accademico 2022-2023

ii

Abstract

In the field of macroprogramming, one of the prominent engineering techniques
is aggregate computing, which allows the definition of the overall behavior of a
network of devices or agents through a single program, called the aggregate pro-
gram. ScaFi is an aggregate programming framework that comprises an internal
Domain Specific Language (DSL) written in Scala 2 with supporting components
for simulation, visualization, and execution of aggregate systems, based on the
Field Calculus formal language and computational model. Recently, a new formal
language and computational model called Exchange Calculus has been proposed,
extending the expressiveness of Field Calculus while simplifying its set of primitive
constructs. In the meantime, Scala 2 has been succeeded by Scala 3, which intro-
duces a relevant set of new features and improvements over its predecessor. These
two novelties have promoted the development of a new ScaFi, called ScaFi-XC, en-
tirely redesigned to be formally based on Exchange Calculus and to make the best
use of its new host language, Scala 3, enhancing the original ScaFi with a more
expressive and flexible DSL. This thesis presents the design and implementation
of ScaFi-XC, focusing on the core DSL and associated components such as the
engine and the simulator. In conclusion, ScaFi-XC has been successfully imple-
mented and tested, delivering the expected results and fulfilling the requirements
of the stakeholders, which are mainly the researchers and developers of the original
ScaFi. Nevertheless, there is still work to be done to have a complete and stable
version of the framework, such as porting all the support modules and improving
the simulator.

iii

iv

To my past self who always looked forward to this achievement.

v

vi

Acknowledgements

I would like to thank my supervisor, Professor Mirko Viroli, and his research team,
in particular Gianluca Aguzzi and Roberto Casadei, for having supported me and
having allowed me to work on this thesis. Thanks for all your time and guidance.

Next, I would like to thank my family, who supported my studies and my
choices and accompanied me on this journey.

A special thanks goes to my beloved Giada, who has always been by my side
in the past years, supporting and helping me to overcome the difficulties I encoun-
tered, and accompanying me in my new life in Rimini.

Finally, I would like to thank all my close friends, with whom I have shared
great moments, studying with the Spaceteam, playing board games with Zuga
Rèmni, living the university with S.P.R.I.Te., and working with EasyDesk. These
names represent the best groups of people I ever met and had the pleasure to pass
my time with.

vii

viii

Contents

Abstract iii

1 Introduction 1

2 State of the art 5

2.1 Protelis . 6

2.2 FCPP . 6

2.3 ScaFi . 8

2.4 XC: Scala DSL Implementation . 8

3 Background 11

3.1 The Exchange Calculus . 11

3.1.1 System model . 12

3.1.2 NValues . 13

3.1.3 The “exchange” primitive 15

3.1.4 Alignment . 17

3.1.5 Formalization of XC . 18

3.1.6 Implementing FC primitives with exchange 18

3.2 Scala 3 . 19

3.2.1 General considerations on Scala 3 19

3.2.2 Values in Scala . 20

3.2.3 New control syntax and significant indentation 20

3.2.4 Traits and classes . 24

3.2.5 Algebraic Data Types . 27

3.2.6 Singleton objects . 29

3.2.7 Functional programming with Scala 3 29

3.2.8 Contextual Abstractions . 31

3.2.9 The Scala 3 type system . 32

3.2.10 Explicit nulls and the Scala 3 type hierarchy 34

3.2.11 Multiversal Equality . 35

CONTENTS ix

CONTENTS

4 Analysis 37
4.1 Requirements analysis . 37
4.2 ScaFi . 39

4.2.1 Foldhood semantics in ScaFi 42

5 Design 43
5.1 Designing a scalable internal Domain Specific Language 43

5.1.1 Prototype 1: Extension Methods 45
5.1.2 Prototype 2: Context parameter in constructors 48
5.1.3 Prototype 3: Implicit parameter in methods 53
5.1.4 Prototype 4: Mixin composition 53

5.2 Final design of the core DSL . 55
5.2.1 Design of the XC operational semantics 58
5.2.2 The Engine . 61

5.3 Network-based sensors . 63
5.4 The simulator . 65

6 Implementation 67
6.1 Implementation of the XC operational semantics 67

6.1.1 The stack-based semantics implementation 70
6.2 The build system . 72
6.3 The “FoldhoodLibrary” . 72
6.4 Context-based constraints on shared values 73
6.5 Integration with the Alchemist simulator 75

7 Evaluation 79
7.1 Unit tests . 79
7.2 Acceptance tests . 80
7.3 Continuous Integration . 82
7.4 Code Style . 82

8 Conclusion and Future Work 83

x CONTENTS

List of Figures

3.1 XC system model, from the point of view of the wake-up event ϵ42
pictured in green. 15

3.2 Scala type hierarchy with explicit nulls disabled. 35
3.3 Scala type hierarchy with explicit nulls enabled. 36

4.1 ScaFi project organization. 41

5.1 Final design: UML diagram of the AggregateFoundation. 56
5.2 Final design: UML diagram of the ExchangeCalculusSemantics

mixin composition. 57
5.3 The engine: UML diagram of the Network interface. 62
5.4 The engine: UML diagram of the Context interface and the Engine

class. 63
5.5 UML diagram of the simulator module. 66

6.1 Exchange Calculus context mixins: UML diagram of the mixin lay-
ers in package common, stripped of transitive dependencies. 68

6.2 Exchange Calculus context mixins: UML diagram of the mixin lay-
ers in package exchange, stripped of transitive dependencies. 69

6.3 Example of value tree produced by the program in Listing 6.1. . . . 71
6.4 Snapshot of the Alchemist simulation of the program in Listing 6.6,

with the configuration in Listing 6.5. 77

LIST OF FIGURES xi

LIST OF FIGURES

xii LIST OF FIGURES

List of Listings

2.1 Gradient distance from a source in Protelis. 7
2.2 Gradient distance from a source in FCPP. 7
2.3 Gradient distance from a source in ScaFi. 8
2.4 Gradient distance from a source in XC Scala 2 DSL. 9
3.1 Implementation of a network-wide gradient, called distanceTo, us-

ing the XC language. 17
3.2 Examples of syntax using braces in Scala 2. 21
3.3 Examples of syntax avoiding braces in Scala 3. 22
3.4 Example of syntax using end statements in Scala 3. 23
3.5 Advanced example of usage of traits, know as service-oriented de-

sign. The code was taken from the Scala 3 book. 26
3.6 Example of sum types in Scala 3. 28
3.7 Example of a singleton object in Scala 3. 29
3.8 Example of extension methods usage in Scala 3. 30
3.9 Example of currying and partial application in Scala 3. 31
3.10 Example of opaque type alias and covariant override in Scala 3. . . 33
3.11 Example of match types in Scala 3. 34
4.1 Using a library component in ScaFi. 42
5.1 Prototype 1 - Aggregate Foundation and helper type classes. 46
5.2 Prototype 1 - Syntax definitions. 48
5.3 Prototype 1 - Exchange Calculus Semantics. 49
5.4 Prototype 1 - Syntax implementations in terms of the exchange

semantics. 50
5.5 Prototype 1 - Example usage by an aggregate program developer. . 50
5.6 Prototype 1 - Example usage by a library developer. 51
5.7 Prototype 2 - Field Calculus syntax definition. 51
5.8 Prototype 2 - Example usage by a library developer. 52
5.9 Prototype 3 - Example usage by a library developer. 54
5.10 Prototype 4 - Example usage by a library developer. 55
5.11 Final design - distanceTo implementation in the GradientLibrary. 59
5.12 Supported syntaxes for invoking the exchange primitive. 60

LIST OF LISTINGS xiii

LIST OF LISTINGS

6.1 Example of aggregate program that produces the value tree in Fig-
ure 6.3. 70

6.2 Usage example of the FoldhoodLibrary. 73
6.3 Definition of the Shareable and NotShareable type classes. 74
6.4 Usage example of the Shareable type class, that demonstrates a

violation of the constraint. 75
6.5 Example of Alchemist configuration file. 76
6.6 Example of aggregate program that can be run with the Alchemist

simulator. 76
7.1 GradientWithObstacleTest acceptance test. 81

xiv LIST OF LISTINGS

Chapter 1

Introduction

The importance of Collective Adaptive Systems (CASs) engineering is increasing

along with the growing prevalence of large-scale cyber-physical systems, driven by

the already pervasive Internet of Things (IoT) and edge computing trends [1, 2].

CASs are a particular subcategory of situated, distributed systems in which a

collection of individuals, also called agents, exhibits a non-chaotic behavior char-

acterized by self-* properties, such as self-organization, self-healing, and self-

configuration. Many of the self-* properties cannot be derived from an individual

perspective confined to the behavior of a single agent, but rather they are emergent

from the complex and dynamic network of interactions within the system and with

the environment. As a consequence, obtaining such properties requires a holistic

approach to the design and programming of CASs, which is not straightforward

to achieve with traditional software engineering techniques.

Topologically, CASs can be considered a subset of Multi Agent Systems (MASs),

and the programming of their behavior as a whole can be referred to as Macro-

programming [3]. In the context of macroprogramming, a prominent paradigm

is that of aggregate computing, where a single program, called the aggregate pro-

gram, defines the overall behavior of a network of devices or agents [3]. Aggregate

computing provides benefits to development productivity thanks to four main fac-

tors [4]: the macro-level stance, which abstracts over low-level details about the

individual behavior of agents and their communication media, the compositional-

ity, promoting the creation of complex behavior by combining simpler ones, the

CHAPTER 1. INTRODUCTION 1

formality, allowing theoretical analyses and formal verification of its properties,

and the practicality, thanks to the availability of tools supporting programming

and simulation of CASs.

Among these tools, an in-depth analysis is dedicated to the ScaFi, an aggre-

gate programming framework that comprises an internal Domain Specific Lan-

guage (DSL) written in Scala 2 with supporting components for simulation, visu-

alization, and execution of aggregate systems, based on the Field Calculus (FC)

formal language and computational model [4]. Internal DSLs are distinguished

from external DSLs by the fact that they are embedded in a host language, such

as Scala, and that they exploit the flexibility of their host’s syntax to resemble a

different language even though they are implemented as libraries.

Recently, a new formal language and computational model called Exchange

Calculus (XC) has been proposed, extending the expressiveness of FC while sim-

plifying its set of primitive constructs [5]. In the meantime, Scala 2 has been

succeeded by Scala 3, which introduces a relevant set of new features and improve-

ments over its predecessor. These two novelties have promoted the development

of a new ScaFi, entirely redesigned to be formally based on XC and to make the

best use of its new host language, Scala 3. That project is the main subject of this

thesis. Named “ScaFi-XC”, it has the ambition to scale, meaning to grow with the

demand of its user without losing its qualities, such as expressiveness, reusability,

maintainability, readability, and performance.

Structure of the Thesis The thesis is structured as follows. In Chapter 2,

the state of the art is reviewed, focusing on prominent frameworks and tools such

as Protelis, FCPP, ScaFi, and an experimental implementation of XC in Scala.

Chapter 3 discusses the background information necessary for understanding the

thesis, including discussions on the Exchange Calculus and Scala 3, covering top-

ics such as the type system, explicit nulls, and multiversal equality. Chapter 4

conducts a comprehensive analysis, beginning with a detailed examination of the

requirements, followed by the analysis of the current state of the ScaFi framework,

from which this project originates. Chapter 5 outlines the design process, starting

with the study of four proposed prototypes, and culminating in the final design

of the core DSL and associated components such as the engine and the simulator.

2 CHAPTER 1. INTRODUCTION

Chapter 6 focuses on the implementation details, covering aspects such as the im-

plementation of the XC operational semantics, the build system, and integration

with the Alchemist simulator. Chapter 7 presents the evaluation methodology

and results, including unit tests, acceptance tests, continuous integration, and

techniques employed for code quality and maintainability. Finally, Chapter 8 con-

cludes the thesis and provides insights into future work and potential extensions

or improvements.

CHAPTER 1. INTRODUCTION 3

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art

In the field of aggregate programming [6], multiple frameworks, tools, and exper-

iments have been developed and made available as public resources to support a

wide variety of use cases, using different languages and design approaches. Among

the state-of-the-art tools in this field are ScaFi1 [4], Protelis2 [7], and FCPP3 [8]

which have been briefly described in their fundamental characteristics in this chap-

ter, with a particular emphasis on ScaFi, of which ScaFi-XC is a redesign and

reimplementation. Each of the mentioned libraries is backed by a robust, coherent

theoretical foundation, that provides consistency and guarantees the emergence

of global properties in derived CASs. The theoretical framework that serves as

the basis for all cited implementations is the FC [9], specifically its higher-order

version, the Higher-Order Field Calculus (HFC) [10]. FC, as well as its variants,

is a type-safe, formal language for aggregate programming [9, 11] presented with

its operational and denotational semantics, respectively describing the local and

global interpretation of field expressions [11]. From a developer perspective, the

key aspect of FC is the possibility of focusing on the denotational semantics of

field constructs, abstracting away from the local interpretation of expressions and

implementation of the constructs. In recent years, a new formal language called

XC [5] has been developed, which is a promising evolution of FC. XC [5] has the

potential to supersede FC entirely since it is a simpler yet more expressive language

1https://github.com/scafi/scafi
2https://github.com/Protelis/Protelis
3https://github.com/fcpp/fcpp

CHAPTER 2. STATE OF THE ART 5

https://github.com/scafi/scafi
https://github.com/Protelis/Protelis
https://github.com/fcpp/fcpp

2.1. PROTELIS

that can be used to implement all the FC constructs while retaining their original

semantics. ScaFi-XC and FCPP in its current version are based on this newer

formal language, further described in Chapter 3, where FC and XC are briefly

compared. Some additional experiments with the implementation of XC already

exist, such as imperative-xc4 and XC: Scala DSL Implementation5 [12], with the

latter described in Section 2.4.

2.1 Protelis

Protelis is an external domain-specific language derived from the discontinued

Proto, whose syntax resembles that of C or Java. However, Protelis is purely func-

tional, albeit dynamically typed, and uses a virtual machine written in Java [7] for

interpretation. As an external DSL, Protelis syntax is close to the FC language it

implements, which distinguishes it from internal DSLs like ScaFi and FCPP. As a

result, domain branching in Protelis is more transparent in its conditional control

statements, such as the if statement, while, in internal DSLs, custom operators

must be used to avoid conflicts with the host language’s homonymous constructs.

Further information on domain branching can be found in Section 3.1.4. Never-

theless, the Protelis environment comes with some costs, such as a lack of compiler

support for type checking, as it uses duck typing. Additionally, IDE support is

exclusively available for the Eclipse platform, as Protelis is based on the Xtext

framework [13]. Moreover, external DSLs like Protelis cannot benefit from the

community of developers and libraries of a general-purpose language such as Scala

or C++, which are the host languages for ScaFi and FCPP, respectively.

An example of a gradient distance written using Protelis can be found in List-

ing 2.1.

2.2 FCPP

FCPP is an internal domain-specific language that is written in C++ and is de-

signed for achieving high efficiency and performance for devices with limited re-

4https://github.com/cric96/imperative-xc
5https://github.com/scafi/artifact-2021-ecoop-xc

6 CHAPTER 2. STATE OF THE ART

https://github.com/cric96/imperative-xc
https://github.com/scafi/artifact-2021-ecoop-xc

2.2. FCPP

�
1 module org:protelis:tutorial:distanceTo

2

3 def myPosition() = self.getDevicePosition()

4

5 def nbrRange() = nbr(myPosition()).distanceTo(myPosition())

6

7 share (d <- POSITIVE_INFINITY) {

8 // Must be executed outside the ’if’ block!

9 let shortestPathViaNeighborhood = foldMin(POSITIVE_INFINITY, d + nbrRange()

)

10 if (env.has("source")) { 0 } else { shortestPathViaNeighborhood }

11 }� �
Listing 2.1: Gradient distance from a source in Protelis.

Listing 2.2: Gradient distance from a source in FCPP.�
1 //! @brief Computes the distance from a source with a custom metric through

adaptive bellmann -ford.

2 template <typename node_t , typename G, typename = common :: if_signature <G, field <

real_t >() >>

3 real_t abf_distance(node_t& node , trace_t call_point , bool source , G&& metric) {

4 internal :: trace_call trace_caller(node.stack_trace , call_point);

5

6 return nbr(node , 0, INF , [&] (field <real_t > d) {

7 return min_hood(node , 0, d + metric (), source ? 0 : INF);

8 });

9 }� �

sources like microcontrollers and embedded systems [8]. Although FCPP was

originally based on FC, it has been updated to support XC. As stated in the

paper, FCPP suffers more limitations than ScaFi when it comes to avoiding con-

flicts with the host language, resulting in a less “clean” syntax [8]. Additionally, it

lacks integration with the Java environment, which is in turn natively supported

by ScaFi, being written in Scala. Another critical difference between the design of

FCPP and ScaFi is the presence of explicit field types, which are absent in ScaFi

thanks to its design around foldhood operations, as described in Section 2.3.

Listing 2.2 represents an example of how gradient distance can be written using

FCPP.

CHAPTER 2. STATE OF THE ART 7

2.3. SCAFI

Listing 2.3: Gradient distance from a source in ScaFi.�
1 def gradient(source: Boolean): Double =

2 rep(Double.PositiveInfinity){ distance =>

3 mux(source) { 0.0 } {

4 foldhoodPlus(Double.PositiveInfinity)(Math.min)(

5 nbr{distance} + nbrRange

6)

7 }

8 }� �
2.3 ScaFi

ScaFi, short for Scala Fields, is a framework for aggregate programming featuring

an internal DSL written in pure Scala 2 [4] and implementing a variant of the HFC.

Besides the DSL, which represents the core of ScaFi, the framework offers addi-

tional components for the simulation, visualization, and deployment of aggregate

programs. Scafi cross-compiles for Scala 2.11, 2.12, and 2.13, while its core and

simulator packages are also cross-built for JavaScript (JS) using Scala.js [14].

The most notable aspect of its DSL is the foldhood semantics, which abstracts

over the concept of field or neighbouring value, as shown in Listing 2.3. In that

usage example, the foldhoodPlus operator invokes and collects the results of the

passed expression for each neighbor, including itself, accumulating all of them

into a single value using Math.min. With this approach, nbr, which is the main

communication primitive of FC, can be utilized seamlessly in combination with

local values, eliminating the requirement for a lift operator that would typically

be necessary to operate with field types, such as in FCPP or in the “XC: Scala

DSL Implementation” experiment, as described in Section 2.4. As a limitation of

the approach, nbr cannot be used outside one of the foldhood variants.

A more thorough examination of ScaFi can be found in Section 4.2.

2.4 XC: Scala DSL Implementation

The first implementation of XC in Scala is based on ScaFi and presented in the

XC papers [5] [12]. This implementation uses Scala 2. Although ScaFi hides the

field abstraction from the user, NValues had to be explicitly implemented in this

experiment, given the new semantics they provide. The Scala 2 implicit conversions

8 CHAPTER 2. STATE OF THE ART

2.4. XC: SCALA DSL IMPLEMENTATION

Listing 2.4: Gradient distance from a source in XC Scala 2 DSL.�
1 def distanceTo(source: Boolean , metric: NValue[Double]): Double =

2 exchange(Double.PositiveInfinity)(n =>

3 mux(source) {

4 0.0

5 } {

6 (n + metric).withoutSelf.fold(Double.PositiveInfinity)(Math.min)

7 }

8)� �
allowed for the implementation of an automatic conversion from local values to

NValues, as explained in the XC paper and Section 3.1.2. In the experiment,

publicly available on GitHub6 under the Apache 2.0 License and on Zenodo [15], the

FC constructs have been implemented using exchange, the only communication

primitive of XC, suggesting a new syntax for a pure Scala XC, later taken as

inspiration for ScaFi-XC.

An example of a gradient distance written with this DSL can be found in

Listing 2.4.

6https://github.com/scafi/artifact-2021-ecoop-xc

CHAPTER 2. STATE OF THE ART 9

https://github.com/scafi/artifact-2021-ecoop-xc

2.4. XC: SCALA DSL IMPLEMENTATION

10 CHAPTER 2. STATE OF THE ART

Chapter 3

Background

This chapter discusses the two main driving factors that led to a major re-design

of ScaFi, which are the introduction of the XC and the release of Scala 3. On one

hand, XC opens the way for considerable design improvements given the simpler set

of foundational constructs it requires, consisting of the single primitive exchange,

from which the entire language takes its name. Additionally, it provides new

opportunities for aggregate program developers, enabled by the expressiveness of

XC, regarding, in particular, the possibility of sending differentiated messages to

neighbors using the exchange primitive [5]. On the other hand, Scala 3 introduces

significant language changes and improvements from Scala 2 while maintaining

binary retro-compatibility. This promotes the rewriting of Scala 2 libraries to

leverage new language features while providing cross-builds to Scala 2 through the

Scala 3 compiler “Dotty”1.

3.1 The Exchange Calculus

XC is a language that formalizes a tiny set of key mechanisms, sufficient to ex-

press the overall behavior of a distributed collective adaptive systems in a declar-

ative fashion [5]. This language provides two types of semantics, operational and

denotational. The operational semantics defines the local interpretation of XC

mechanisms on each device, while the denotational semantics abstracts away the

1https://github.com/lampepfl/dotty

CHAPTER 3. BACKGROUND 11

https://github.com/lampepfl/dotty

3.1. THE EXCHANGE CALCULUS

operational semantics details and provides an interpretation of these mechanisms

at the network level. Therefore, operational semantics guides the implementation

of XC as a framework, while denotational semantics is the sole knowledge base

required when programming a CAS using this language. Finally, the XC language

generalizes over FC and is derived from the typed lambda calculus [5].

XC is built upon the following fundamental components:

• the basic system model and its assumptions;

• the data type for neighboring values, NValues ;

• the only communication primitive, exchange, which allows sending differen-

tiated messages to neighbors;

• the concept of alignment, which enables functional composition of distribute

behavior [5].

3.1.1 System model

Similarly to FC, XC targets a system modeled as a collection of devices gener-

ally equipped with sensors and/or actuators. These devices repeatedly compute

execution rounds of the same program and exchange asynchronous messages

with their respective neighbors [5]. In this environment, devices can experience

failures, reboots, network outages, and dynamic neighborhood changes. At each

execution round, a device independently gathers a local context, consisting of in-

bound messages from neighbors, sensors data, and memory of its previous round

of execution, if any, and then it atomically executes the XC program acting on

its local context [5]. The program can result in an output, that comprises side

effects such as actuation, as well as, implicitly, the messages to send to neighbors

for coordination [5]. At the end of each round, a device begins waiting for an

arbitrary time lapse, during which the device is considered “sleeping”. Once the

sleep time is over, the device “wakes up” and starts the next execution round [5].

During sleep, a device must still collect inbound messages and apply two policies:

last-message buffering and last-message dropping.

12 CHAPTER 3. BACKGROUND

3.1. THE EXCHANGE CALCULUS

Last-message buffering means that every message received by a device is col-

lected in a buffer and kept until some established criterion determines its expira-

tion, even across multiple execution rounds [5]. As a result, the message expiration

is also the minimum time that a device takes to realize that a neighbor has disap-

peared, either because of a failure or a neighbor network change.

Last-message dropping means that every message received by a device super-

sedes the last message, still in the buffer, coming from the same device. [5] This

implies a notion of identity of devices, which is a way to recognize a neighbor’s

identity to discard obsolete messages coming from them.

Communication between devices defined in XC is agnostic of the message

exchange medium, channel, network topology, or discovery mechanisms. Messages

in such a model are subject to traditional distributed systems communication

properties, such as unpredictable delays and drops [5]. In addition, for XC and its

implementations, a device memory of its previous execution round result can be

treated as a self-message effectively. In this perspective, a device reboot, which in

practice consists of a complete loss of memory, is modeled as a self-message drop,

thereby simplifying the communication model in the operational semantics.

3.1.2 NValues

XC features two kinds of values: local values and neighboring values (NValues or

nvalues). Local values l refer to all the traditional types A like integer, float, list,

and so on. NValues, instead, are a map w from device identifiers δi to local values

li, where the default local value l is denoted with l[δ1 7→ l1, ..., δn 7→ ln] [5].

NValues refer to values coming from neighbors, which, in highly decoupled

distributed systems, almost always consist of a subset of all devices. This scenario

may occur when other devices are out of reach in a spacial-dependent neighboring

relationship. The default value is used when evaluating a NValue w = l[δ1 7→
l1, ..., δn 7→ ln] for a given δi with δi not present in w. The notation above can thus

be read as “the nvalue w is l everywhere (i.e. for all neighbors) except for devices

δ1, ..., δn with values l1, ..., ln, respectively” [5].

CHAPTER 3. BACKGROUND 13

3.1. THE EXCHANGE CALCULUS

For example, in Figure 3.1, the device δ2 wakes up for computation ϵ42 and

processes a nvalue w = 0[δ1 7→ 5, δ3 7→ 4, δ4 7→ 2], which corresponds to the

messages carrying the scalar values 5, 4, and 2 sent by devices δ1, δ3, and δ4,

respectively, some of which while device δ2 was asleep. For all other devices, the

entry in w evaluates to 0. After the computation, δ2 sends out the messages

represented by w′ = 0[δ1 7→ 7, δ4 7→ 1]. For instance, 7 is sent to δ1, 1 to δ4, and

0 to all other neighbors, such as δ3. Evaluation of a nvalue for a given δ′ can be

noted as w(δ′) and its result is the local value l′ if δ′ 7→ l′ is in w, or the default

value l of w. For w′, w′(δ1) is 7, and w′(δ3) is 0. Another notation used in the

paper is A, to indicate the type of a nvalue w = l[δ1 7→ l1, ..., δn 7→ ln] where

l1, ..., ln are of type A [5].

NValues generalize local values, in the sense that a local value l with type A can

be automatically converted to a nvalue l[] with type A, with l as the default value

for every device [5]. This approach simplifies the formalization of XC, where local

values and nvalues are treated uniformly [5]. The same principle can be applied to

functions, whereby they can be implicitly “lifted” to operate on NValues. This can

be achieved by applying said functions pointwise on the content of the maps, using

the default values where required [5]. For example, given w1 = 1[δ1 7→ 2, δ3 7→ 4]

and w2 = 3[δ1 7→ 5, δ2 7→ 6], w3 = w1 +w2 = 4[δ1 7→ 7, δ2 7→ 7, δ3 7→ 7]. Another

example is w4 = w1 +1 = 2[δ1 7→ 3, δ3 7→ 5], which uses the automatic promotion

of 1 to 1[].

NValues can be folded over, using the built-in function nfold(f : (A,B) →
A,w : B, l : A) : B, which takes an accumulator function f repeatedly applied to

neighbors’ values in a nvalue, excluding the value for the self device, starting from

a base local value l, and using the default value of w for neighbors not present

in the map [5]. For example, given a device δ1 performing a nfold operation

on w = 3[δ1 7→ 10, δ2 7→ 1, δ3 7→ 2] while the current set of its neighbors is

{δ3, δ4}, then nfold(+,w, 1) = 6. Given that nvalues are agnostic to the ordering

of elements, i.e., the ordering of device identifiers in the map, f is assumed to be

associative and commutative [5].

Additional built-in operations on nvalues are self(w : A) : A which returns

the local value w(δ) for the self device δ, and updateSelf(w : A, l : A) : A which

14 CHAPTER 3. BACKGROUND

3.1. THE EXCHANGE CALCULUS

Figure 3.1: XC system model, from the point of view of the wake-up event ϵ42
pictured in green.

returns a new nvalue with the same content of w but with the value for the self

device replaced by l [5]. Given the built-in function uid that returns the device

identifier of the self device, the following property holds: self(w) = w(uid). The

complete syntax for XC is available in the original paper [5, p. 4].

3.1.3 The “exchange” primitive

The following description is based on the original paper for XC [5]. The only

communication primitive present in XC is the function

exchange(ei, (n) ⇒ return er send es)

which is defined using syntactic sugar and translates to

exchange(ei, (n) ⇒ (er, es))

The evaluation of the primitive follows three steps:

1. the device evaluates the expression ei to obtain the initial local value li;

CHAPTER 3. BACKGROUND 15

3.1. THE EXCHANGE CALCULUS

2. n is substituted with the nvalue w of messages received from neighbors for

this exchange, using li as the default value for w, and the device evaluates

the expression er to the value vr to be returned;

3. the device evaluates the expression es to obtain a nvalue ws to be sent to

neighbors such as δ′, that will use their corresponding value ws(δ
′) in their

next execution round.

As a shorthand,

exchange(ei, (n) ⇒ return e send e)

can be written as

exchange(ei, (n) ⇒ retsend e)

according to the XC paper [5].

Two examples of reusable functions written in XC can be seen in Listing 3.1.

There, mux(cond, e1, e2) is a conditional expression that first evaluates cond, e1,

and e2, and then returns the value of e1 if cond is true, or the value of e2 otherwise.

mux is useful to avoid breaking the alignment of the network by using conditionals,

as explained in Section 3.1.4. In the examples provided, senseDist is a network-

based sensor that returns the nvalue containing the distances to neighbors, ab-

stracting over the way the device obtains the measurements, with Infinity as its

default value used for all other devices. distanceEstimate computes the mini-

mum distance from a source using the distance sensor and the neighbors estimate

n of their minimum distance from the same source. distanceTo computes the

minimum distance from a source determined by a boolean expression src, which

is represented as a gradient with value:

• 0 in all the devices where src is true;

• the distance from the closest source in all the devices where src is false that

are connected to at least one source;

• Infinity otherwise.

16 CHAPTER 3. BACKGROUND

3.1. THE EXCHANGE CALCULUS

Listing 3.1: Implementation of a network-wide gradient, called distanceTo, using
the XC language.�

1 def distanceEstimate(n : num): num {

2 nfold(min, n + senseDist, Infinity)

3 }

4

5

6 def distanceTo(src: bool): num {

7 exchange(Infinity, (n) => retsend mux(src, 0, distanceEstimate(n)))

8 }� �

3.1.4 Alignment

A program can execute multiple exchanges in a single round and XC ensures that

messages are dispatched to corresponding exchange expressions using the concept

of alignment. The corresponding exchange expressions are those that are located

in the same position within the Abstract Syntax Tree (AST) and same stack

frame, thus ensuring correct alignment in case of branches, function calls, and

recursion [5]. As a consequence, the evaluation of an aggregate program implicitly

builds a tree representation, called value tree. All the aligned devices replicate and

then exchange the value tree with each other, including the device itself in the

next rounds.

Conditionals such as if (cond) e1 else e2 interfere with alignment because only

the exchange operations in the same position within the AST and stack frame

align [5]. As a consequence, exchange only aligns across devices that take the

same branch of all the conditionals that are the parent or the ancestor of the

exchange operation in the AST.

Alignment controls the evaluation of sub-expressions, in particular the evalu-

ation of expressions involving nvalues, because in such expressions only aligned

neighbors are considered. As a result, every if expression splits the network

into two non-communicating sub-networks, with each device evaluating a different

branch based on the condition [5]. These isolated sub-networks are also referred

to as sub-domains or simply domains.

CHAPTER 3. BACKGROUND 17

3.1. THE EXCHANGE CALCULUS

3.1.5 Formalization of XC

XC is formalized in the paper [5] in its syntax, operational semantics, and denota-

tional semantics. The language takes inspiration from Meta Language (ML) and is

a standard functional language with a classic Hindley-Milner type system. Its for-

malization makes XC type sound and deterministic once extended with value-tree

typing and configuration typing [5].

3.1.6 Implementing FC primitives with exchange

Since FC primitives and expressiveness can be implemented through XC, XC in-

herits all the findings reported in the literature that hold for FC. These include

eventual recovery and stabilization after transient changes [16], independence from

the density of devices [17], real-time error tolerance, and convergence [18]. Fur-

thermore, the list of benefits extends beyond these [5]. Additionally, XC opens the

possibilities for writing programs not expressible with FC, thanks to the expres-

siveness of the exchange primitive which allows sending differentiated messages

to neighbors. In FC, the concept of field, also called neighboring value, is defined

as a neighbor-dependent value consisting of a map ϕ = δ 7→ l from neighbors to

local values, which can be promoted to nvalue with any valid default value l. This

preserves the behavior of programs written in FC but interpreted within XC [5].

FC presents three main primitives, all implementable through XC:

• nbr, used to access the neighbors’ values [11];

• rep, used to compute a new value of an expression based on the result of the

same expression in the previous round [11];

• share, used to efficiently access neighbors’ values while computing a new

value from the previous result with a single primitive [19].

The nbr primitive can be implemented as:

nbr(e : A) : A = exchange(e, (n) ⇒ return n send e)

18 CHAPTER 3. BACKGROUND

3.2. SCALA 3

The rep primitive can be implemented as:

rep(ei : A){(x) ⇒ en} : A = exchange(ei, (x) => retsend en[x := self(x)])

The share primitive can be implemented as:

share(ei : A){(x) ⇒ en} : A = self(exchange(ei, (x) => retsend en))

3.2 Scala 3

Scala is a statically typed, general-purpose programming language designed to

express common programming patterns in a concise, elegant, and type-safe way.

Scala 3 is the latest major release of the Scala language, a high-level programming

language that combines object-oriented and functional programming paradigms.

It is compiled using the Dotty compiler2, which is based on the Dependent Object

Types (DOT) calculus [20], while Scala 2 is compiled using the scalac compiler3.

This section provides an overview of the main features of Scala 3, that are relevant

for the re-design of ScaFi while also highlighting the differences between Scala 2

and Scala 3.

3.2.1 General considerations on Scala 3

Even though Scala 3 introduces breaking changes in the syntax from Scala 2, most

of the code written in Scala 2 can be compiled with Dotty and is also binary

compatible with Scala 2. The Scala community has exploited this possibility to

avoid reimplementing a new standard library for Scala 3, using the Scala 2 standard

library instead, rewritten to be cross-compiled for both Scala 2 and Scala 3.

Natively, Scala 2 and Scala 3 compile to Java Virtual Machine (JVM) byte-

code, but Scala 3 also supports the JS and LLVM backends, which are used to

compile Scala code to JavaScript and native code, respectively. These compiler

2https://github.com/lampepfl/dotty
3https://github.com/scala/scala

CHAPTER 3. BACKGROUND 19

https://github.com/lampepfl/dotty
https://github.com/scala/scala

3.2. SCALA 3

backends exist thanks to community-driven projects45 [14]. The provided support

for cross-platform distribution, together with the popularity of Scala for distributed

systems development [21] and the flexibility of the upgraded language features for

advanced internal DSL design, makes Scala 3 a valuable choice for a new ScaFi

implementation based on XC.

3.2.2 Values in Scala

In Scala, every value has a type, which follows the type hierarchy explained in

Section 3.2.10. When declaring a new variable or field as a container of a value, the

type can either be explicitly declared or inferred by the compiler. Every declaration

of a variable or field must be preceded by the val keyword for an immutable value

or the var keyword for a mutable value. Immutable values cannot be reassigned,

while mutable values can be reassigned, but their type cannot be changed. It is

worth noting that val does not guarantee that the value itself is immutable, but

only that the reference to the value cannot be changed.

3.2.3 New control syntax and significant indentation

Scala 3 introduces a new syntax for control expressions, as well as new rules that

allow the indentation alone to replace the use of curly braces. Both these changes

are aimed at making the code more readable and concise, sometimes noticeably

closer to the natural language. For instance, in Listing 3.2, the if expression is

written with the traditional syntax, while in Listing 3.3 the same expression is

written using the new syntax. The same is true for the for expression, the while

loop, and the match expression.

In cases where a code block consists of many lines that make it difficult to

follow the indentation, the new syntax can be augmented with end statements, as

demonstrated in Listing 3.4.

4Scala.js at https://scala-js.org
5Scala Native at https://scala-native.org

20 CHAPTER 3. BACKGROUND

https://scala-js.org
https://scala-native.org

3.2. SCALA 3

Listing 3.2: Examples of syntax using braces in Scala 2.�
1 if (x < 0) {

2 println("negative")

3 } else if (x == 0) {

4 println("zero")

5 } else {

6 println("positive")

7 }

8

9 val y = if (a < b) { a } else { b }

10

11

12 val ints = List(1, 2, 3, 4, 5)

13 for (i <- ints) println(i)

14

15 val doubles = for (i <- ints) yield i * 2

16

17

18 var z = 1

19 while (z < 3) {

20 println(z)

21 z += 1

22 }

23

24

25 val result = i match {

26 case 1 => "one"

27 case 2 => "two"

28 case _ => "other"

29 }

30

31

32 class Person(var firstName: String , var lastName: String) {

33 def printFullName () = {

34 println(s"First name: $firstName")
35 println(s"Last name: $lastName")
36 }

37 }

38

39 val p = new Person("John", "Stephens")� �

CHAPTER 3. BACKGROUND 21

3.2. SCALA 3

Listing 3.3: Examples of syntax avoiding braces in Scala 3.�
1 if x < 0 then

2 println("negative")

3 else if x == 0 then

4 println("zero")

5 else

6 println("positive")

7

8 val y = if a < b then a else b

9

10

11 val ints = List(1, 2, 3, 4, 5)

12 for i <- ints do println(i)

13

14 val doubles = for i <- ints yield i * 2

15

16

17 var z = 1

18 while

19 z < 3

20 do

21 println(z)

22 z += 1

23

24

25 val result = i match

26 case 1 => "one"

27 case 2 => "two"

28 case _ => "other"

29

30

31 class Person(var firstName: String , var lastName: String):

32 def printFullName () =

33 println(s"First name: $firstName")
34 println(s"Last name: $lastName")
35

36 val p = Person("John", "Stephens")� �

22 CHAPTER 3. BACKGROUND

3.2. SCALA 3

Listing 3.4: Example of syntax using end statements in Scala 3.�
1 object test:

2 val x = 0

3 val i = 1

4

5 if x < 0 then

6 println("negative")

7 end if

8

9 val ints = List(1, 2, 3, 4, 5)

10 for i <- ints do

11 println(i)

12 end for

13

14 var z = 1

15 while z < 3 do

16 println(z)

17 z += 1

18 end while

19

20 val result = i match

21 case 1 => "one"

22 case 2 => "two"

23 case _ => "other"

24 end result

25

26 class Person(var firstName: String , var lastName: String):

27 def printFullName () =

28 println(s"First name: $firstName")
29 println(s"Last name: $lastName")
30 end printFullName

31 end Person

32 end test� �

CHAPTER 3. BACKGROUND 23

3.2. SCALA 3

3.2.4 Traits and classes

Traits are a powerful feature that replaces Java’s interfaces and abstract classes

and were first introduced as a mechanism to organize behavior into small, modular

units [22]. In Scala, traits can be used to define interfaces and to provide partial

implementations and can be composed and mixed into other traits or classes. With

Scala 3, traits are now able to have parameters like classes do, enhancing their

expressiveness. Furthermore, Scala 3 introduces new rules for the instantiation of

classes that enable the avoidance of the new keyword, as shown in Listing 3.3. This

feature is called universal apply methods and is implemented by the generation

of apply methods for classes when the user does not provide one, during the

compilation. Another enabling factor is the special role given to methods named

apply, which in Scala can be invoked without the need to specify the method name.

When combined with companion objects, described in Section 3.2.6, it is often

possible to replace auxiliary constructors in classes with multiple apply methods

in the companion object, which is a typical pattern in Scala. Anonymous classes

can also be used to instantiate a trait or abstract class by providing a concrete

implementation of abstract methods on the fly. In addition, traits, classes, and

singleton objects can be nested, and they can access each other’s private members,

just like in Java.

If the definition of something depends on another from a different package, it

is possible to use the import keyword to import the needed definitions. import

statements can be put at the beginning of a file or inside a block and can be

used to import a single definition, a group of definitions, or all definitions from a

package. Additionally, Scala supports import aliases to avoid name clashes. Since

Scala 3, import aliases have a dedicated syntax, following the pattern import A

as B, where A is the fully qualified original name and B is the alias.

An advanced example of trait usage can be found in Listing 3.56, which shows

how to use traits in a service-oriented way, a design pattern that promotes the use

of traits to define services and their dependencies and to compose services into a

single class [23]. In the mentioned example, some advanced features of Scala are

presented, such as abstract type members, nested traits, and self-type annotations.

6https://docs.scala-lang.org/scala3/book/domain-modeling-oop.html

24 CHAPTER 3. BACKGROUND

https://docs.scala-lang.org/scala3/book/domain-modeling-oop.html

3.2. SCALA 3

The self-type annotation is a way to declare that a trait must be mixed into a class

that extends another trait, and it is used to express dependencies between traits

without resorting to inheritance. Self-type annotations allow the composition of

traits to be more flexible and less coupled and delay the choice of trait order of

linearization to the class that mixes them.

Object-oriented programming in Scala 3

In Scala, methods for classes, traits, enums, and objects can be defined using the

def keyword, as shown in Listing 3.3. Abstract methods do not have a body and

must be overridden by concrete subclasses, while concrete methods have a body

and can be overridden by subclasses. Moreover, Scala allows a method with no

arguments to be overridden by a field with the same name. Additionally, meth-

ods can serve as operators using infix notation, enabling invocation with a single

argument without using the dot or parentheses, as demonstrated in Listing 5.12.

This feature provides flexibility in defining custom operators and developing DSLs.

Since Scala 3, the infix keyword must precede def to explicitly denote the intent

of defining custom operators.

Even though method overloading is still possible, the Java generic type erasure

rules apply in Scala too, and must be taken into account when defining overloaded

methods. In Scala, it is often possible to avoid method overloading by using default

arguments, which are arguments that are automatically assigned a value if no value

is provided by the caller, as shown in Listing 3.8. Scala 3 improves the default way

to handle most method invocation ambiguities with the @targetName annotation,

allowing the specification of a unique name for the method once compiled to JVM

bytecode.

Thanks to automatic eta expansion, methods can be used in place of func-

tion values, and its implementation has been improved in Scala 3 to be almost

completely seamless.

One of the most important features of Scala is the ability to define type mem-

bers, which are members of a class or trait that define types, and can be used as

types in the same way as classes or traits, as shown in Section 3.2.9. Abstract

type members prevent Scala traits’ and classes’ sources from growing in size both

CHAPTER 3. BACKGROUND 25

3.2. SCALA 3

Listing 3.5: Advanced example of usage of traits, know as service-oriented design.
The code was taken from the Scala 3 book.�

1 trait SubjectObserver:

2

3 type S <: Subject

4 type O <: Observer

5

6 trait Subject:

7 self: S =>

8 private var observers: List[O] = List()

9 def subscribe(obs: O): Unit =

10 observers = obs :: observers

11 def publish () =

12 for obs <- observers do obs.notify(this)

13

14 trait Observer:

15 def notify(sub: S): Unit

16

17

18 object SensorReader extends SubjectObserver:

19 type S = Sensor

20 type O = Display

21

22 class Sensor(val label: String) extends Subject:

23 private var currentValue = 0.0

24 def value = currentValue

25 def changeValue(v: Double) =

26 currentValue = v

27 publish ()

28

29 class Display extends Observer:

30 def notify(sub: Sensor) =

31 println(s"${sub.label} has value ${sub.value}")
32

33

34

35 import SensorReader .*

36

37 // setting up a network

38 val s1 = Sensor("sensor1")

39 val s2 = Sensor("sensor2")

40 val d1 = Display ()

41 val d2 = Display ()

42 s1.subscribe(d1)

43 s1.subscribe(d2)

44 s2.subscribe(d1)

45

46 // propagating updates through the network

47 s1.changeValue (2)

48 s2.changeValue (3)� �

26 CHAPTER 3. BACKGROUND

3.2. SCALA 3

vertically and horizontally, as they can often replace generic type parameters with

all the benefits of member inheritance, such as overriding and composition. Type

parameters, as well as type members, can be constrained with upper bounds and

lower bounds, using the operators <: and >:, respectively, such as in Type <:

Supertype and Type >: Subtype. Additionally, generic types also support type

variance control, which is used to specify how the subtyping relationship between

two generic types is related to the subtyping relationship between their type ar-

guments as explained in depth in the dedicated section below.

3.2.5 Algebraic Data Types

The union of the object-oriented and the functional programming paradigms within

Scala has promoted the use of algebraic data types, a kind of composite type that

resembles mathematical operations between types. Examples of such types are

sum types, product types, and intersection types. In Scala 2 these can be imple-

mented using sealed traits, case classes, and inheritance, respectively. However,

since Scala 3, the syntax for defining these types has been simplified and clarified,

as elaborated in the following paragraphs.

Sum types

Since Scala 2, sum types were enabled by the sealed modifier on traits or ab-

stract classes, which prevents inheritance outside the file where the sum type is

defined. This way, it is possible to define a finite set of subtypes to check for in

pattern matching. Moreover, the ability to define a singleton instance with the

object keyword inheriting from the sum type enables the use of sum types for

implementing enumerations. With the introduction of Scala 3, the enum keyword

simplifies the syntax in both the mentioned use cases, as shown in Listing 3.6.

Additionally, with Scala 3, the | operator can be used for sum type options in

type definitions, for matching any pattern of a list in pattern matching, and for

defining discriminated union types of the form A | B.

CHAPTER 3. BACKGROUND 27

3.2. SCALA 3

Listing 3.6: Example of sum types in Scala 3.�
1 // Scala 3 enum sum type

2 enum Option [+T]:

3 case Some(x: T)

4 case None

5

6 // Scala 2 sum type

7 sealed trait Option [+T]

8 case class Some[+T](x: T) extends Option[T]

9 case object None extends Option[Nothing]� �
Product types

Product types, supported since Scala 2, are enabled by the features provided by

case classes, which are Scala’s implementation of the concept of records in func-

tional programming. Case classes are equipped with compiler-generated methods

for pattern matching, equality, copying, and printing. In case classes, constructor

parameters are public immutable fields by default, and the copy method can be

used to create a new instance with specified fields altered. An example of a case

class can be found in Listing 3.6.

Intersection types

Since Scala 2, it is possible to define a type as the intersection of other types

using the with keyword, which is also used for mixin composition. Mixin compo-

sition is the practice of combining multiple traits into a class, resembling multiple

inheritance, but with the compromise of avoiding the diamond problem through

linearization [24]. Mixin composition is employed in ScaFi to declare dependencies

of programs, as shown in Listing 4.1.

Starting with Scala 3, the with keyword is deprecated for type definitions,

such as in method arguments, in favor of the & operator. This operator is also

used for pattern matching, as in Listing 5.11, within the distanceTo signature.

Although deprecated for type definitions, the with keyword is still used for mixin

composition in the definition of traits and classes.

28 CHAPTER 3. BACKGROUND

3.2. SCALA 3

Listing 3.7: Example of a singleton object in Scala 3.�
1 import scala.math.*

2

3 class Circle(radius: Double):

4 import Circle .*

5 def area: Double = calculateArea(radius) // can access the private method

6

7 object Circle:

8 private def calculateArea(radius: Double): Double =

9 Pi * pow(radius , 2.0)

10

11 val circle1 = Circle (5.0)

12 circle1.area // Double = 78.53981633974483� �
3.2.6 Singleton objects

In Scala, the object keyword is used to define singleton objects which are classes

with only one instance. Singleton objects serve as a replacement for Java’s static

methods and fields and can be used to define utility methods and constants, as well

as to implement the companion object pattern. This pattern promotes the use of a

singleton object to hold methods and fields that are not specific to any instance of

a class but are still related to the class itself. A class with a companion object can

access the private members of the companion object, and vice versa, provided that

they share the same name and are defined in the same file. Moreover, singleton

objects can be used to implement traits to create modules, such as factories for

collections. An example of a singleton object used as a companion of a class can

be found in Listing 3.7.

3.2.7 Functional programming with Scala 3

Scala offers many features typical of Functional Programming (FP) languages, in-

cluding lambdas, higher-order functions (i.e., functions that accept or return other

functions), currying, algebraic data types, and a standard library of immutable

collections. Lambdas, also known as anonymous functions, can be treated as any

other value, thus passed as arguments, or returned as results. In Scala, lambdas

are defined using the => operator, which is also used for defining function types

such as A => B, where A denotes the input type and B denotes the output type.

In some cases, it is possible to write lambdas with a more concise syntax, using

CHAPTER 3. BACKGROUND 29

3.2. SCALA 3

Listing 3.8: Example of extension methods usage in Scala 3.�
1 case class Circle(x: Double , y: Double , radius: Double = 1.0)

2

3 extension (c: Circle)

4 def circumference: Double = c.radius * math.Pi * 2

5

6 val circle = Circle(0, 0, 5)

7 println(circle.circumference) // 31.41592653589793

8

9 val circle2 = Circle(0, 0) // radius is 1.0, the default value

10 println(circle2.circumference) // 6.283185307179586� �
the placeholder for the input argument, as shown in Listing 6.2.

Scala 3 introduces new varieties of function types:

• dependent function types, where the result type can depend on the function’s

parameters, such as type members (an example can be found in Listing 5.11);

• polymorphic function types, that accept type parameters, explained in Sec-

tion 3.2.9;

• context function types, that accept only context parameters, explained in

Section 3.2.8.

Following the principles of FP, domain models should be immutable and de-

prived of behavior. More specifically, the behavior should be defined in terms of

pure functions implemented in modules as extension methods, which are methods

that can be added to existing types without modifying their source code. Starting

with Scala 3, extension methods have obtained a dedicated syntax that avoids

the cumbersome use of implicit classes, as shown in Listing 3.8. However, some

additional attention is needed when extension method names overlap with class

methods, as the compiler prioritizes class methods, potentially shadowing conflict-

ing extension methods. In such cases, it may be necessary to invoke the extension

explicitly from the instance that provides it, passing the extended instance as the

first argument.

Currying is the process of transforming a function that accepts multiple argu-

ments into a sequence of functions, each taking a subset of the arguments, thus

30 CHAPTER 3. BACKGROUND

3.2. SCALA 3

Listing 3.9: Example of currying and partial application in Scala 3.�
1 // Currying a function

2 def add(x: Int)(y: Int): Int = x + y

3

4 // Partial application of a curried function

5 val addTwo = add(2) _

6

7 // Usage

8 val result = addTwo (3) // result = 5� �
simplifying the function’s usage with partial applications. An example of currying

and partial application of a function is present in Listing 3.9.

3.2.8 Contextual Abstractions

In Scala, contextual abstractions derive from the core concept of term inference,

which is the ability of the compiler to synthesize a “canonical” term for a given

type. Examples of features enabled by term inference are extension methods, type

classes, context parameters, and context bounds. While in Scala 2 almost every

feature related to contextual abstractions was enabled by the implicit keyword,

Scala 3 contextual abstractions have been redesigned to be more explicit on the

intent of their usage, with the introduction of new ad-hoc keywords for each use

case: given, using, and extension. The given keyword is used to define a

given instance, which is a value to be passed as a context parameter in methods or

constructors that require one. The using keyword defines such context parameters,

which are method parameters requiring a given instance available in scope and

correspond to implicit parameters of Scala 2. If given instances are not passed

explicitly as context parameters, the compiler performs term inference to search for

given instances in scope to fulfill context parameters at every method invocation.

Starting with Scala 3, context parameters can be anonymous, and given instances

can be abstract. The extension keyword is now necessary to define extension

methods, enabling the addition of methods to existing types without altering their

source code, as explained in Section 3.2.7. To retrieve the value of an anonymous

context parameter of type T Scala 3 provides the summon[T]: T method, replacing

Scala 2’s implicitly[T] method.

Context bounds in the form T: Type are syntactic sugar for context parameters

CHAPTER 3. BACKGROUND 31

3.2. SCALA 3

with a more concise syntax, that gets desugared by the compiler to a context pa-

rameter of type Type[T]. For example, in Listing 5.11, N:Numeric:UpperBounded

is desugared to two new context parameters in the form (using Numeric[N],

UpperBounded[N]). An abstract class like Type[T] designed to add behavior to

any closed data type without sub-typing is called a type class.

Given instances can be imported and exported using the import and export

keywords. However, in Scala 3, given imports and given exports require the given

keyword, even where a wildcard is used, enhancing clarity regarding their origin

within the current scope. Moreover, Scala 3 allows for anonymous concrete given

instances, for which the compiler synthesizes a name automatically. This feature

is useful to avoid polluting the namespace with names that are not meant to be

used directly by the user, because often given instances are imported by their type

instead of by their name.

Starting with Scala 3, implicit conversions are defined by providing given in-

stances of the type Conversion[From, To] and must be enabled with a compiler

flag to prevent warnings when conversion is silently applied before passing an

argument to a function call. By default, the Scala compiler provides implicit con-

versions for primitive types, such as Int to Long.

3.2.9 The Scala 3 type system

Scala, being a statically typed language, has all the benefits of early error detec-

tion, better performance, and robust tooling support. However, it also provides

a flexible environment typical of dynamically typed languages, thanks to features

like type inference, type parameters, and type members. Built upon a variant of

the Hindley-Milner type system, Scala’s type inference system supports subtyp-

ing, generics, and type bounds, as Java does. Additionally, Scala offers many type

system features absent in Java, such as type variance, type aliases, type members,

covariant and contravariant overriding, higher-kinded types Furthermore, starting

with Scala 3, the type system features opaque type aliases, structural types, depen-

dent function types, improved type lambdas, polymorphic function types, context

function types, and match types. In the following paragraphs, the most relevant

features of the Scala 3 type system are explained.

32 CHAPTER 3. BACKGROUND

3.2. SCALA 3

Listing 3.10: Example of opaque type alias and covariant override in Scala 3.�
1 class A:

2 def method[T](it: Seq[T]): Iterable[T] = it

3

4 class B extends A:

5 opaque type X[T] = Seq[T] // opaque type alias

6 override def method[T](it: Seq[T]): X[T] = // X is subtype of Iterable

7 it.reverse

8

9 val b = new B()

10 val res1: B#X[Int] = b.method(Seq(1, 2, 3))

11 println(res1) // prints List(3, 2, 1)

12

13 val res2 = b.method(res1) // Found: (Playground.res1 : Playground.B#X[Int])

Required: Seq[Any]� �
Type variance allows specifying how the subtyping relationship between two

generic types is related to the subtyping relationship between their type arguments.

In Scala, the variance of a type parameter can be declared with the + and -

symbols, which are used to declare a type parameter as covariant or contravariant,

respectively, else the type parameter is invariant by default. A usage example of

a variant annotation is present in Listing 3.6.

Type aliases are used to define new names for existing types, which are often

more descriptive or shorter than the original names. Type aliases can be parame-

terized and can be recursive. Their syntax is the same for defining type members,

using the type keyword, as shown in Listing 3.10. Opaque type aliases are a new

feature of Scala 3 that allows defining a type alias that is not interchangeable with

its underlying type, hiding it from consumers.

Covariant overrides enable the overriding of superclass methods with methods

that have more specific return types, as shown in Listing 3.10.

Higher-kinded types allow the definition of types and methods that work on

generic types regardless of their actual type arguments, only requiring a fixed arity

of type parameters. Scala types are partitioned into kinds based on the top type

of which it is a subtype, such as Any, [+X] =>> Any, [X, +Y] =>> Any. Higher-

kinded types have a kind that counts at least one type arrow, such as List of

kind [+X] =>> Any, Option of kind [+X] =>> Any, and Map of kind [X, +Y] =>>

CHAPTER 3. BACKGROUND 33

3.2. SCALA 3

Listing 3.11: Example of match types in Scala 3.�
1 type Elem[X] = X match

2 case String => Char

3 case Array[t] => t

4 case Iterable[t] => t� �
Any, but potentially even a type whose kind is [X] =>> [Y] =>> Any, such as a

type class for a type constructor. Scala 3 adds support for kind polymorphism,

allowing the definition of type parameters that accept types of any kind, through

the special syntax T <: AnyKind.

Type lambdas are simply anonymous type constructors, that starting from

Scala 3 have a new concise syntax thanks to the type operator =>>. For instance,

[X, Y] =>> Map[Y, X] is a binary type constructor that maps arguments X and

Y to the type Map[Y, X].

Context functions are functions that accept only context parameters as input.

Starting with Scala 3, context functions can be treated as values thanks to context

function types, which can be distinguished from standard function types by the

presence of the ?=> operator in place of the => operator.

Match types are conditional type aliases that allow the definition of a type as

the result of a pattern match between types, and are available only in Scala 3. An

example of match types can be found in Listing 3.11.

3.2.10 Explicit nulls and the Scala 3 type hierarchy

The Dotty compiler offers experimental features that alter the language in various

ways. Two examples of experimental features relevant to ScaFi-XC are explicit

nulls and multiversal equality.

Explicit nulls are enabled by the “-Yexplicit-nulls” flag, which modifies

the type hierarchy of Scala making reference types non-nullable. With explicit

nulls disabled, the type system looks like the one in Java, pictured in Figure 3.2.

Conversely, with explicit nulls enabled, the type system resembles Kotlin’s, where

34 CHAPTER 3. BACKGROUND

3.2. SCALA 3

Figure 3.2: Scala type hierarchy with explicit nulls disabled.

null safety is a key part of the language, as depicted in Figure 3.3. Nullable values

with that option enabled can still be defined using sum types, such as in Type |

Null. Scala 3 provides the extension method .nn to convert a nullable value to

a non-nullable one through casting. If the value was null at runtime, this forced

conversion results in a NullPointerException.

3.2.11 Multiversal Equality

The Scala 3 compiler with the “-language:strictEquality” flag enabled forbids

universal equality, that allowed comparing any two values regardless of their types

using the == operator, which under the hood invoked the equals method. With

that flag enabled, universal equality is replaced with multiversal equality, which

allows comparing two values of type X and Y only if a given instance of CanEqual[X,

Y] can be found. Implementing CanEqual[X, Y] instances can be automated with

type class derivation, a feature of Scala 3 that allows the compiler to synthesize

given instances following rules defined by the user, often based on compositions of

algebraic data types.

CHAPTER 3. BACKGROUND 35

3.2. SCALA 3

Figure 3.3: Scala type hierarchy with explicit nulls enabled.

36 CHAPTER 3. BACKGROUND

Chapter 4

Analysis

This chapter defines the scope, requirements, and use cases of ScaFi-XC, based

on the expectations of the stakeholders, consisting of ScaFi developers and re-

searchers. A priority analysis is conducted using the MoSCoW method, ensuring

that the work stays focused on delivering key features while meeting technical

constraints and user preferences.

4.1 Requirements analysis

Since the very beginning, ScaFi-XC aimed to redesign ScaFi using Scala 3 to

improve the quality of the code, including but not limited to readability, main-

tainability, and reusability. This time, the implementation is based on XC as the

theoretical foundation, through which the FC constructs could be implemented.

The project started interviewing the stakeholders, including developers and

researchers who developed the original ScaFi and still use it, in order to understand

their needs and expectations.

The key users identified for the library are:

• End users, that are the developers who will use the library to implement

their aggregate programs;

• Library developers, who will extend the library with new features, constructs,

and syntax;

CHAPTER 4. ANALYSIS 37

4.1. REQUIREMENTS ANALYSIS

• Researchers, who will experiment with the calculus foundations and could

benefit from reusing existing libraries.

During the stakeholder interviews, a comprehensive list of functional and tech-

nical requirements emerged, which were then carefully curated and prioritized

through extensive discussions and feedback sessions.

Functional requirements are the features that the library must provide to the

users. The following are the most relevant functional requirements identified:

F.1 redesign and implement a new Application Programming Interface (API) for

the core packageSection 4.2;

F.2 redesign and implement the tests package with acceptance tests, easy to

read and understand, and that can be used as examples;

F.3 use the XC as the foundation of the (default) implementation of constructs,

while still providing a FC based API;

F.4 develop an Alchemist incarnation1 [25], enabling ScaFi-XC programs to run

on the well-tested and widely used Alchemist simulator;

F.5 develop a minimal, pure Scala 3 simulator to run tests and examples without

the need for external dependencies;

F.6 provide a new API for the core package that allows developers to import

arbitrary ScaFi libraries and constructs into their programs without conflicts,

in a seamless way;

F.7 prefer keeping the original, abbreviated names for core constructs like nbr

and rep, as they are widely adopted and recognized within the community,

promoting consistency and familiarity;

F.8 conduct experiments with Scala 3 to explore and achieve new compile time

features for ScaFi, to enhance code quality and elevate the overall user ex-

perience.

1https://github.com/AlchemistSimulator/Alchemist

38 CHAPTER 4. ANALYSIS

https://github.com/AlchemistSimulator/Alchemist

4.2. SCAFI

Technical requirements are the constraints and guidelines that the library

must follow to ensure the quality of code and user experience.

T.1 use Scala 3 as the host language to leverage its advanced features and en-

hancements;

T.2 enable quality options on the Scala 3 compiler such as explicit nulls (Sec-

tion 3.2.10) and multiversal equality (Section 3.2.11);

T.3 employ Simple Build Tool (SBT) as build system;

T.4 cross-build the project for scala-js2;

T.5 cross-build the project for scala-native3;

T.6 lint the code with scalafix 4 and/or scalafmt5;

T.7 avoid using third-party libraries for the core package dependencies.

Following the identification of requirements, a comprehensive discussion and

prioritization process was undertaken, guided by the Must, Should, Could, Won’t

(MoSCoW) method. The results are outlined in detail in Table 4.1.

Finally, before starting with the design of the solution, given that the project is

a redesign of an existing library, the requirements were compared with the existing

ScaFi library to identify the differences and similarities.

4.2 ScaFi

The ScaFi repository6 is organized in modules, as illustrated in Figure 4.1. For

most of the use cases, only a small subset of the modules should be imported.

The ScaFi-XC project primarily focuses on redesigning and implementing the core

package, implicitly including commons module, as well as the simulator and tests

packages. However, it should be noted that the simulator implementation planned

2https://www.scala-js.org
3https://scala-native.org
4https://scalacenter.github.io/scalafix
5https://scalameta.org/scalafmt
6https://github.com/scafi/scafi

CHAPTER 4. ANALYSIS 39

https://www.scala-js.org
https://scala-native.org
https://scalacenter.github.io/scalafix
https://scalameta.org/scalafmt
https://github.com/scafi/scafi

4.2. SCAFI

Table 4.1: Requirements prioritization.
Requirement MoSCoW Priority
F.1 must high
F.2 must high
F.3 must high
F.4 could low
F.5 must high
F.6 should average
F.7 should average
F.8 won’t low
T.1 must high
T.2 should high
T.3 must high
T.4 could low
T.5 could low
T.6 should low
T.7 should average

for this project will be a minimal version written in pure Scala 3, as opposed to

the existing simulator module, which is a complex and feature-rich suite of tools

for simulating aggregate programs in space and time. Porting the remaining mod-

ules, which encompass various Graphical User Interface (GUI) implementations,

demos, and integration with Akka7 for actual deployment of real-world aggregate

applications, is out of the scope of ScaFi-XC, and will be addressed in Chapter 8.

Within the core package of the coremodule, the Core trait serves as the root of

the family of traits. It defines the set of abstract type members and traits, such as

Context, that represents the context of the aggregate program execution. A trait

Language defines a Constructs trait with the core syntax of FC, such as rep,

nbr, and foldhood, plus additional utilities such as mid(): ID for retrieving

the device own identifier and sense[A](name: CNAME): A for sensing a value

from the environment. Furthermore, the RichLanguage trait extends Language

with additional constructs, such as branch, foldhoodPlus, and maxHood. The

Semantics trait implements the FC constructs, the value tree building, and the

foldhood context semantics. More insights on the foldhood semantics are provided

7https://akka.io

40 CHAPTER 4. ANALYSIS

https://akka.io

4.2. SCAFI

Figure 4.1: ScaFi project organization.

in Section 4.2.1. In addition to that, the core module contains other packages,

such as lib offering standard libraries, and the utilities to provide a fully-fledged

aggregate program execution environment called incarnation. The distributed

and spala modules enable ScaFi to run on real-world distributed applications

by leveraging integration with the Akka framework 8 and with other supportive

libraries such as Java Swing and the Play Framework 9. Lastly, the simulator

and affiliated modules provide an advanced simulation suite featuring spacial and

temporal simulation alongside multiple GUI options, including a tridimensional

renderer.

To use a library component in ScaFi, the user must mix in the library trait

with the AggregateProgram base class, as shown in Listing 4.1. As a consequence,

all the transitive dependencies of the mixed-in libraries become visible within the

scope of the program, necessitating careful construction of libraries to avoid con-

flicts.

Once the program is defined within the main method of the AggregateProgram

8https://akka.io
9https://www.playframework.com

CHAPTER 4. ANALYSIS 41

https://akka.io
https://www.playframework.com

4.2. SCAFI

Listing 4.1: Using a library component in ScaFi.�
1 class MyProgram extends AggregateProgram with BlockG with BlockS { /*...*/ }� �

extension, the user can execute the program on the simulator through the Launcher.

This specialized extension of Scala’s App trait provides a launch method to start

the simulation with one of the available GUIs.

ScaFi-XC aims to redesign and implement the core package to maintain the

feasibility of integrating an equally sophisticated simulation suite while improving

the overall quality of the code and the user experience.

4.2.1 Foldhood semantics in ScaFi

ScaFi employs the concept of a stateful “virtual machine” as its core to monitor

the context of expression evaluation within the aggregate program. The virtual

machine not only tracks nested invocations of core constructs, but also the scope

of foldhood expressions. These are evaluated for each neighbor of the device, and

the results of the evaluations are combined into a single value. By adopting this

approach, ScaFi avoids the definition of an explicit type for fields, resulting in a

clean syntax but leaving the awareness of the underlying field-like nature of the

foldhood semantics to the user. For instance, the invalidity of expressions like

nbrnbrx within a foldhood is something that the user must be aware of, as it is

not enforced by the compiler or the virtual machine.

42 CHAPTER 4. ANALYSIS

Chapter 5

Design

The design of ScaFi-XC has been divided into three main phases. In the first part,

four design prototypes have been developed in order to determine the optimal user

experience for three key users: the program developer, the library developer, and

finally a new foundation researcher, representing a novel addition to the use cases

of an aggregate programming library.

In the second part, the final version of the DSL has been designed, taking the

best features from the prototypes and integrating them into a new core DSL for

ScaFi-XC. Additionally, an execution context for aggregate programs made with

ScaFi-XC, called “engine”, has been designed.

In the third and final part, the design process concerned the execution engine

and the simulator.

The first and second part cover requirements F.1, F.3, F.6, F.7, and T.1, while

the third covers requirement F.5 from Section 4.1.

5.1 Designing a scalable internal Domain Spe-

cific Language

The process of designing a new core DSL for ScaFi-XC has been carried out through

rapid prototyping of four competing designs of different DSLs, each coming with

a set of advantages and disadvantages, highlighted using code snippets for every

key user. Prototipation has been necessary to explore the design space and to

CHAPTER 5. DESIGN 43

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

understand the trade-offs between different design options, as well as to test in

practice the interactions of different combinations of language features. For each of

the four prototypes, a brief description of the design choices and the programming

experience is provided, followed by the final design described in Section 5.2. Each

prototype is named after the Scala 3 feature it is mainly based on, and each aims

to separate the definition of the syntax from the definition of the semantics, and

separate the definition of the semantics from the actual implementation. This

way, more than one semantics can be defined for the same syntax, and more than

one implementation can be defined for the same semantics, allowing for more

flexible customization and composition. While the XC [5] is the only semantics

considered for implementation within the scope of ScaFi-XC, the design should

be flexible enough for potential future “calculi” to be implemented as alternative

foundations. It is worth noting that there exists a subtle distinction between

the semantics and syntax of the same formal calculus in practice. In the case

of XC, both the syntax and the semantics consist of two methods, branch and

exchange. The difference lies in the role of the two methods in the two contexts:

in the syntax, they are constructs that the programmer uses to write programs,

and should be treated as an API at all effects, while in the semantics, they are

constructs that the programmer uses to implement all the supported syntaxes API,

meaning they are not part of an API used by aggregate programs and are focused

on being as complete and simple to implement as possible. For instance, the

exchange method of the ExchangeCalculusSyntax trait is focused on its usage

experience, attempting to imitate the syntax provided in the paper, meanwhile the

xcexchange method of the ExchangeCalculusSemantics has protected visibility

and its signature provides only the most complete and expressive version of the

exchange primitive presented in the paper [5].

Each of the four prototypes retains the separation between syntax definitions,

semantic definitions, syntax support declaration, and semantics implementations,

and considers the programmer experience of all the three key users. For brevity,

only the most relevant advantages and disadvantages are highlighted, and the full

code of the prototypes is available in the project repository git history, under the

git tag experiments1, after which the code got removed to avoid confusion with

1https://github.com/ldeluigi/scafi-xc/tree/experiments

44 CHAPTER 5. DESIGN

https://github.com/ldeluigi/scafi-xc/tree/experiments

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

the final design.

5.1.1 Prototype 1: Extension Methods

In this design, an AggregateFoundation base trait defines a common syntax for

all the aggregate programming foundations, such as the existence of a type called

AggregateValue[T] that represents a collection of values coming from neighbor-

ing devices, including self. The AggregateFoundation trait also defines a set of

abstract extension methods that provide basic functionalities for aggregate values,

such as lifting for composition and mapping, folding for reduction, methods for

retrieving the value for the current device or exclude the current device, mimick-

ing the functionalities of the foldhood and foldhoodPlus of ScaFi, as shown in

Listing 5.1. In the example, the source of the Liftable and Foldable type classes

is included for completeness, but they are not part of the AggregateFoundation

source file as they are located in the commons module.

By defining an abstract type member AggregateValue[T], semantics like XC

can override it to model any kind of specific interface, such as NValues, on top of

which they can provide any additional behavior and syntax, following the pattern

of family polimorphism. Implicitly, this design abandons the “field-transparent”

semantics of the foooldhood* methods of ScaFi in favor of having explicit field

types, similarly to FCPP (Section 2.2) and the XC DSL experiment (Section 2.4).

Nevertheless, a semantics design that replicates that lost feature can still be im-

plemented with an extension of AggregateFoundation that provides a foldhood

construct that works the same as the foldhood* methods of ScaFi.

Aggregate Semantics such as ExchangeCalculusSemantics are defined as a

trait that extends AggregateFoundation. A semantics trait can provide a concrete

type for the abstract type member AggregateValue[T], even if the type refers to

a trait and not a concrete implementation.

For instance, the ExchangeCalculusSemantics provides a concrete implemen-

tation for AggregateValue[T] corresponding to NValues[ID, T], where ID is an

abstract type member for device identifiers. Additionally, the semantics provides

an abstract given instance of CanEqual[ID, ID] to provide equality comparisons

between device identifiers, as well as the core XC constructs: xcexchange and

CHAPTER 5. DESIGN 45

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

Listing 5.1: Prototype 1 - Aggregate Foundation and helper type classes.�
1 // Foldable.scala

2 trait Foldable[F[_]]:

3 extension [A](a: F[A]) def fold[B](base: B)(acc: (B, A) => B): B

4

5 // end Foldable.scala

6

7 // Liftable.scala

8 trait Liftable[F[_]]:

9 extension [A](a: F[A]) def map[B](f: A => B): F[B]

10

11 def lift[A, B, C](a: F[A], b: F[B])(f: (A, B) => C): F[C]

12

13 def lift[A, B, C, D](a: F[A], b: F[B], c: F[C])(f: (A, B, C) => D): F[D]

14

15 object Liftable:

16 def lift[A, B, C, F[_]: Liftable](a: F[A], b: F[B])(f: (A, B) => C): F[C] =

17 summon[Liftable[F]]. lift(a, b)(f)

18

19 def lift[A, B, C, D, F[_]: Liftable](a: F[A], b: F[B], c: F[C])(f: (A, B, C) =>

D): F[D] =

20 summon[Liftable[F]]. lift(a, b, c)(f)

21

22 // end Liftable.scala

23

24 // AggregateFoundation.scala

25 trait AggregateFoundation:

26 type AggregateValue[T]

27

28 given lift: Liftable[AggregateValue]

29 given fold: Foldable[AggregateValue]

30 given convert[T]: Conversion[T, AggregateValue[T]]

31

32 // Default builtins

33 extension [T](av: AggregateValue[T])

34 def onlySelf: T

35

36 def withoutSelf: AggregateValue[T]

37

38 def nfold[B](base: B)(acc: (B, T) => B): B =

39 av.withoutSelf.fold(base)(acc)

40

41 end AggregateFoundation

42 // end AggregateFoundation.scala� �

46 CHAPTER 5. DESIGN

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

xcbranch, corresponding to the exchange primitive and the domain branching

behavior of XC. These core constructs of the semantics are protected in visibility

because they are meant to be invoked only through a facade that corresponds to

one or more syntax of a calculus, whereas abstract given instances are public as

they are meant to be available to libraries that depend on a specific semantics.

The syntaxes for both FC and XC are shown in Listing 5.2, and the XC seman-

tics is shown in Listing 5.3. Finally, Listing 5.4 shows the implementation of the

syntaxes in terms of the XC semantics.

One notable feature of having a facade defined using extension methods is that

the compatibility layer between a semantic and a syntax is provided through the

implementation of a given instance, much like a written proof that a syntax can be

obtained extending a given semantics. The proof can summon other given instances

of supported syntax in order to define a proof dependent on another proof, as shown

in Listing 5.4. Another significant feature is the possibility to import dependencies

and preferred syntax/facade with an import statement at the beginning of the file,

instead of having to mix in traits like in ScaFi. Additionally, this design allows

implementing a new library by simply writing new extension methods of a generic

language L that extends AggregateFoundation and the required other syntaxes, as

shown in Listing 5.6. This allows libraries to be singleton objects, imported where

needed with a top-level import statement. One hidden feature of this design is

the possibility to hide, by default, transitive library dependencies, something that

ScaFi could not allow because it used a mixin composition where every library

was a trait that mixed in other traits, thus exposing all the dependencies of the

mixed-in traits.

Even though this design proves to be very flexible and extensible, it has a few

drawbacks. The most important one is the impossibility of invoking an exten-

sion method without the “.”, having at best to invoke constructs on this, as in

Listing 5.5. The next prototypes focus on overcoming this limitation at any cost,

even if it means losing some of the flexibility and clarity of the design, in order to

provide empirical evidence of the trade-offs between the different design choices.

CHAPTER 5. DESIGN 47

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

Listing 5.2: Prototype 1 - Syntax definitions.�
1 // ExchangeCalculusSyntax.scala

2 trait ExchangeCalculusSyntax[L <: AggregateFoundation]:

3 extension (language: L)

4 def exchange[T](initial: language.AggregateValue[T])(

5 f: language.AggregateValue[T] => (language.AggregateValue[T], language.

AggregateValue[T]) |

6 language.AggregateValue[T],

7): language.AggregateValue[T]

8 // end ExchangeCalculusSyntax.scala

9

10 // FieldCalculusSyntax.scala

11 trait ClassicFieldCalculusSyntax[L <: AggregateFoundation]:

12 extension (language: L)

13 def nbr[V](expr: => language.AggregateValue[V]): language.AggregateValue[V]

14 def rep[A](init: => A)(f: A => A): A

15 def share[A](init: => A)(f: A => A): A

16 // end FieldCalculusSyntax.scala� �
5.1.2 Prototype 2: Context parameter in constructors

Even though the second prototype is based on the use of a context parameter that

passes a semantics instance down to every construct invocation, the folding and

lifting functionalities are provided through abstract given instances of type classes

declaring extension methods, as per prototype 1. Libraries, as well as core syn-

taxes, are defined as classes and traits, respectively, that take a context parameter

of type L, short for Language, that must be a subtype of AggregateFoundation,

as shown in Listing 5.7. Libraries dependent on other libraries must either in-

stantiate their dependencies or require a context parameter that provides them,

as shown in Listing 5.8. This approach has the side effect that the type member

AggregateValue present in the AggregateFoundation is seen as a different type

for every dependent method of every library, thus making passing an aggregate

value from a library method to another impossible. This forced each semantics,

library, and syntax to have a generic type constructor parameter AV[] that gen-

eralizes and uniformizes the type of the aggregate value for all the dependencies,

making them compatible again. Listing 5.8 also shows how this design, with the

additional cost of a static import for dependencies methods and given instance,

allows to invoke constructs such as branch or distanceTo with having to use the

. operator and the same applies to user programs.

Having to explicitly import the methods from dependencies inside every library

48 CHAPTER 5. DESIGN

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

Listing 5.3: Prototype 1 - Exchange Calculus Semantics.�
1 trait ExchangeCalculusSemantics extends AggregateFoundation:

2 type ID

3 given idEquality: CanEqual[ID, ID] = CanEqual.derived

4

5 case class NValues[ID, +V](default: V, values: MapView[ID, V]):

6 def apply(id: ID): V = values.getOrElse(id, default)

7

8 override type AggregateValue[T] = NValues[ID, T]

9

10 protected def xcbranch[T](cond: AggregateValue[Boolean])(th: => AggregateValue[T

])(

11 el: => AggregateValue[T],

12): AggregateValue[T]

13

14 protected def xcexchange[T](init: AggregateValue[T])(

15 f: AggregateValue[T] => (AggregateValue[T], AggregateValue[T]),

16): AggregateValue[T]

17

18

19 def self: ID // the id of the current device

20

21 def neighbors: AggregateValue[ID] // the ids of the neighboring devices

22

23

24 override given lift[ID]: Liftable [[V] =>> NValues[ID, V]] with

25 extension [A](a: NValues[ID, A])

26 override def map[B](f: A => B): NValues[ID, B] =

27 NValues[ID, B](default = f(a.default), values = a.values.mapValues(f))

28

29 override def lift[A, B, C](a: NValues[ID , A], b: NValues[ID , B])(f: (A, B)

=> C): NValues[ID, C] =

30 ??? // omitted for brevity

31

32 override def lift[A, B, C, D](a: NValues[ID , A], b: NValues[ID , B], c:

NValues[ID, C])(

33 f: (A, B, C) => D,

34): NValues[ID, D] = ??? // omitted for brevity

35

36 override def fold: Foldable[AggregateValue] = ??? // omitted for brevity

37

38 override given convert[ID , V]: Conversion[V, NValues[ID, V]] with

39 def apply(v: V): NValues[ID, V] = NValues[ID , V](default = v, values = MapView

.empty)

40

41 extension [T](av: NValues[ID, T])

42 override def onlySelf: T = av(self)

43 override def withoutSelf: NValues[ID, T] = av.copy(values = av.values.

filterKeys(_ != self))

44

45 end ExchangeCalculusSemantics� �

CHAPTER 5. DESIGN 49

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

Listing 5.4: Prototype 1 - Syntax implementations in terms of the exchange se-
mantics.�

1 given ExpressiveFieldCalculusSyntax[ExchangeCalculusSemantics] with

2 extension (language: ExchangeCalculusSemantics)

3 override def rep[A](init: => language.AggregateValue[A])(

4 f: language.AggregateValue[A] => language.AggregateValue[A],

5): language.AggregateValue[A] =

6 language.exchange(init)(prev => f(prev.onlySelf))

7

8 override def nbr[A](expr: => language.AggregateValue[A]): language.

AggregateValue[A] =

9 language.exchange(expr)(n => (n, expr))

10

11 override def share[A](init: => language.AggregateValue[A])(

12 f: language.AggregateValue[A] => language.AggregateValue[A],

13): language.AggregateValue[A] =

14 language.exchange(init.onlySelf)(f)

15

16 given ClassicFieldCalculusSyntax[ExchangeCalculusSemantics] with

17 extension (language: ExchangeCalculusSemantics)

18 override def nbr[V](expr: => NValues[language.ID, V]): NValues[language.ID,

V] =

19 summon[ExpressiveFieldCalculusSyntax[ExchangeCalculusSemantics]]

20 .nbr(language)(expr)

21 override def rep[A](init: => A)(f: A => A): A =

22 summon[ExpressiveFieldCalculusSyntax[ExchangeCalculusSemantics]]

23 .rep(language)(init)(nv => nv.map(f))

24 .onlySelf

25 override def share[A](init: => A)(f: A => A): A =

26 summon[ExpressiveFieldCalculusSyntax[ExchangeCalculusSemantics]]

27 .share(language)(init)(nv => nv.map(f))

28 .onlySelf� �

Listing 5.5: Prototype 1 - Example usage by an aggregate program developer.�
1 // the runtime defines the vm implementations

2 // while the engine defines context and exchange implementations

3 object AggregateProgramDeveloper extends ExchangeCalculusRuntime with Engine:

4

5 // a program can either subclass an interpreter

6 private class MyProgram extends ExchangeCalculusInterpreter:

7

8 override def main(): Any =

9 this.rep(1)(_ + 1)

10

11 // the following tests simulate a single round of execution

12 @main def test1 (): Unit =

13 val p = MyProgram ()

14 val c: Context = EngineContext ()

15 println(p(c))� �

50 CHAPTER 5. DESIGN

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

Listing 5.6: Prototype 1 - Example usage by a library developer.�
1 object AggregateLibraryDeveloper:

2 // libraries can either be syntactic or semantic

3 // semantic library make sense only for a specific semantics

4 // syntactic library just rely on common syntax between semantics

5

6 // if any library is needed , the import must be explicit:

7 import it.unibo.scafi.xc.extensions.language.syntax.library.BasicGradientLibrary

.*

8

9 // example of syntactic library that works for many foundations:

10 extension [L <: AggregateFoundation: ClassicFieldCalculusSyntax: BranchingSyntax

](lang: L)

11

12 def distanceToGateways[D: Numeric: UpperBounded](

13 local: Boolean ,

14 gateway: Boolean ,

15 distances: lang.AggregateValue[D],

16): lang.AggregateValue[D] =

17 lang.branch(local)(summon[UpperBounded[D]]. upperBound)(lang.distanceTo[D](

gateway , distances))

18

19 // example of semantic library which only works for one foundation

20 // in this case we need differentiated messages of xc calculus

21 extension (language: ExchangeCalculusSemantics)

22

23 def randomMessages (): language.AggregateValue[Int] =

24 language.neighbors.map(_ => Random.nextInt ())

25 end AggregateLibraryDeveloper� �

Listing 5.7: Prototype 2 - Field Calculus syntax definition.�
1 trait ClassicFieldCalculusSyntax[AV[_], L <: AggregateFoundation[AV]](using L):

2 def nbr[V](expr: AV[V]): AV[V]

3 def rep[A](init: A)(f: A => A): A

4 def share[A](init: A)(f: A => A): A� �

CHAPTER 5. DESIGN 51

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

Listing 5.8: Prototype 2 - Example usage by a library developer.�
1 object AggregateLibraryDeveloper:

2 // libraries can either be syntactic or semantic

3 // semantic library make sense only for a specific semantics

4 // syntactic library just rely on common syntax between semantics

5

6 // if any library is needed , the import must be explicit , and it must be

instantiated

7

8 // example of syntactic library that works for many foundations:

9 class MyLibrary1[AV[_], L <: AggregateFoundation[AV]](using

10 lang: L,

11 dependency: BasicGradientLibrary[AV, L],

12 branching: BranchingSyntax[AV, L],

13):

14

15 import branching._

16 import dependency._

17 import lang.{ _, given }

18

19 def distanceToGateways[D: Numeric: UpperBounded](

20 local: Boolean ,

21 gateway: Boolean ,

22 distances: lang.AggregateValue[D],

23): lang.AggregateValue[D] =

24 branch(local)(summon[UpperBounded[D]]. upperBound)(distanceTo[D](gateway ,

distances))

25

26 // alternative example of syntactic library that instantiate the dependencies

itself:

27 class MyLibrary1b[AV[_], L <: AggregateFoundation[AV]](using

28 lang: L,

29 calculus: ClassicFieldCalculusSyntax[AV, L],

30 branching: BranchingSyntax[AV, L],

31):

32 private val dependency = BasicGradientLibrary[AV , L]()

33

34 import dependency._

35 import lang.{ _, given }

36 import branching._

37

38 def distanceToGateways[D: Numeric: UpperBounded](

39 local: Boolean ,

40 gateway: Boolean ,

41 distances: lang.AggregateValue[D],

42): lang.AggregateValue[D] =

43 branch(local)(summon[UpperBounded[D]]. upperBound)(distanceTo[D](gateway ,

distances))

44

45 // example of semantic library that works only for a specific foundation:

46 class MyLibrary2[ID](using lang: ExchangeCalculusSemantics[ID]):

47 import lang._

48

49 def randomMessages (): NValues[ID, Int] =

50 neighbors.map(_ => Random.nextInt ())

51 end AggregateLibraryDeveloper� �

52 CHAPTER 5. DESIGN

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

of programs, added to the necessity of instantiating libraries, makes this design

very cumbersome to use. The next prototype attempts to improve the usability

by returning to libraries defined as singleton objects, having each construct take

the context parameter that were in the library class constructor in this prototype.

5.1.3 Prototype 3: Implicit parameter in methods

This prototype design shares some similarities with the previous one, but it has

a different approach to the problem of passing the semantics instance to the con-

structs, and to dealing with library dependencies. In this design, libraries are

singleton objects, where each method takes a context parameter for the seman-

tics and a context parameter for every syntax needed as a dependency, as shown

in Listing 5.9. Alternatively, a library method can instantiate its syntax depen-

dencies and only take a context parameter for the semantics, in a similar way to

the previous prototype. Even though the issue of library dependencies is solved,

syntax dependencies are still cumbersome to use and still require static imports

inside the body of the methods to invoke the constructs without the . operator.

In addition to that, AggregateFoundation still needs the generic aggregate value

type constructor parameter to make syntax dependencies compatible with each

other.

The last prototype represents a return to the original mixin-oriented design

used in ScaFi and its purpose is closer to a comparison baseline rather than a

design alternative, but it is still useful for the last design phase where the best

features of all the prototypes will be cherry-picked and combined.

5.1.4 Prototype 4: Mixin composition

In this design, the AggregateFoundation trait is the same as in prototype 1

(see Listing 5.1), without the need for the generic type constructor for aggregate

values, because syntaxes, semantics, and the foundation are meant to become

part of the same type hierarchy, and a type member for aggregate values will

be the same for all the mixed-in traits. For instance, given a semantics such as

ExchangeCalculusSemantics, giving proof for the support for a syntax means to

define a trait to be mixed in with the semantics, that implements the syntax in

CHAPTER 5. DESIGN 53

5.1. DESIGNING A SCALABLE INTERNAL DOMAIN SPECIFIC
LANGUAGE

Listing 5.9: Prototype 3 - Example usage by a library developer.�
1 object AggregateLibraryDeveloper:

2 // libraries can either be syntactic or semantic

3 // semantic library make sense only for a specific semantics

4 // syntactic library just rely on common syntax between semantics

5

6 // if any library is needed , the import must be explicit , and it must be

instantiated

7

8 // example of syntactic library that works for many foundations:

9 object MyLibrary:

10

11 def distanceToGateways[AV[_], L <: AggregateFoundation[AV], D: Numeric:

UpperBounded](using

12 lang: L,

13 branching: BranchingSyntax[AV, L],

14 classicFieldCalculusSyntax: ClassicFieldCalculusSyntax[AV, L],

15)(

16 local: Boolean ,

17 gateway: Boolean ,

18 distances: lang.AggregateValue[D],

19): lang.AggregateValue[D] =

20 import lang.convert , branching._

21 branch(local)(summon[UpperBounded[D]]. upperBound)(distanceTo[AV , L, D](

gateway , distances))

22

23 // example of semantic library that works only for a specific foundation:

24 class MyLibrary2[ID](using lang: ExchangeCalculusSemantics[ID]):

25 import lang._

26

27 def randomMessages (): NValues[ID, Int] =

28 neighbors.map(_ => Random.nextInt ())

29 end AggregateLibraryDeveloper� �

54 CHAPTER 5. DESIGN

5.2. FINAL DESIGN OF THE CORE DSL

Listing 5.10: Prototype 4 - Example usage by a library developer.�
1 trait BasicGradientLibrary:

2 self: AggregateFoundation with ClassicFieldCalculusSyntax with BranchingSyntax =

>

3

4 def distanceEstimate[D: Numeric: UpperBounded](

5 estimates: AggregateValue[D],

6 distances: AggregateValue[D],

7): D = Liftable

8 .lift(estimates , distances)(_ + _)

9 .nfold(summon[UpperBounded[D]]. upperBound)(

10 summon[Numeric[D]].min ,

11)

12

13 def distanceTo[D: Numeric: UpperBounded](

14 source: Boolean ,

15 distances: AggregateValue[D],

16): D =

17 rep[D](summon[UpperBounded[D]]. upperBound)(n =>

18 branch(source)(summon[Numeric[D]]. zero)(distanceEstimate[D](n, distances)).

onlySelf ,

19)

20

21 def hopDistance[D: Numeric: UpperBounded](source: Boolean): D =

22 distanceTo(source , summon[Numeric[D]]. one)

23 end BasicGradientLibrary� �
terms of the semantics. Libraries are defined, like in ScaFi, with mixin traits that

declare their dependencies using self-type annotations, as shown in Listing 5.10.

The main advantage of this design is the possibility to invoke constructs without

the . operator, as shown in Listing 5.10, while the main disadvantage is the need

to inherit from all the transitive dependencies together in the program class, and

having to honor a global construct naming consistency both in all the libraries and

in the semantics implementation.

5.2 Final design of the core DSL

Taking inspiration from the best features of all the prototypes, the final design

was developed and showcased with a presentation in front of the research group,

which provided positive feedback on the resulting user experience. The final design

consists of an AggregateFoundation similar to prototypes 1 and 4, with core

syntaxes and libraries defined as traits for a mixin composition. The twist is that

libraries are instead defined as singleton objects, able to be imported with a top-

CHAPTER 5. DESIGN 55

5.2. FINAL DESIGN OF THE CORE DSL

Figure 5.1: Final design: UML diagram of the AggregateFoundation.

commons

foundation

I SafeIterable + A

iterator: Iterator[A]
toIterable: Iterable[A]
fold[A1 >:() A](z: A1)(op: (A1, A1) =>A1): A1

...

I Aggregate F[A] <: SafeIterable[A]

≪extension: F[A]≫withoutSelf: SafeIterable[A]
≪extension: F[A]≫onlySelf: A

I Liftable F[]

lift[A, B](a: F[A])(f: A =>B): F[B]
lift[A, B, C](a: F[A], b: F[B])(f: (A, B) =>C): F[C]
≪extension: F[A]≫map[B](f: A =>B): F[B]
lift[A, B, C, F[]: Liftable](a: F[A], b: F[B])(f: (A, B) =>C): F[C]

...

I AggregateFoundation

≪type≫AggregateValue[T] <: SafeIterable[T]
≪given≫aggregate: Aggregate[AggregateValue]
≪given≫liftable: Liftable[AggregateValue]

A
≪self: AggregateFoundation≫

DeviceAwareAggregateFoundation

≪type≫DeviceId
≪given≫idEquality: CanEqual[DeviceId, DeviceId]
self: DeviceId

device: AggregateValue[DeviceId]

level import statement, without having visibility on transitive dependencies and

without having to mix them in together with the semantics in the program class.

The disadvantage of this design would have been the different invocation syntax

for library constructs versus core syntax constructs such as nbr and rep. This

disadvantage has been overcome by defining a facade library for every core syntax,

hiding the “language.” prefix necessary for invoking core syntax constructs, with

the small cost of having to write a facade library for every future syntax developed

by researchers. An Unified Modeling Language (UML) diagram of the final model

for the foundation is shown in Figure 5.1.

Figure 5.2 shows the UML diagram of the ExchangeCalculusSemantics mixin

composition, which is the only semantics implemented for the scope of this project.

Thanks to this design, the gradient construct, also known as distanceTo, can

be defined to work with any aggregate semantics that supports the field calculus

syntax, and thanks to Scala context bounds it can also be defined to work with any

56 CHAPTER 5. DESIGN

5.2. FINAL DESIGN OF THE CORE DSL

Figure 5.2: Final design: UML diagram of the ExchangeCalculusSemantics

mixin composition.

foundation

syntax

semantics

exchange

syntaxes

I AggregateFoundation

≪type≫AggregateValue[T] <: SafeIterable[T]
...

A
≪self: AggregateFoundation≫

DeviceAwareAggregateFoundation

≪type≫DeviceId
...

A
≪self: AggregateFoundation≫

BranchingSyntax

branch[T](cond: Boolean)(th: =>T)(el: =>T): T

A
≪self: AggregateFoundation≫

ExchangeCalculusSyntax

exchange[T](initial: AggregateValue[T])(
f: AggregateValue[T] =>RetSend[AggregateValue[T]],
): AggregateValue[T]

A
≪self: AggregateFoundation≫

FieldCalculusSyntax

nbr[A](expr: A): AggregateValue[A]
rep[A](init: A)(f: A =>A): A
share[A](init: A)(f: AggregateValue[A] =>A): A

I ExchangeCalculusSemantics

≪given≫nvalues: NValuesOps[AggregateValue, DeviceId]
≪given≫convert[T]: Conversion[T, AggregateValue[T]]

br[T](cond: Boolean)(th: =>T)(el: =>T): T
xc[T](init: AggregateValue[T])(
f: AggregateValue[T] =>(AggregateValue[T], AggregateValue[T]),
): AggregateValue[T]

I NValuesOps NV[], DeviceId

≪extension: NV[T]≫default: T
≪extension: NV[T]≫values: MapView[DeviceId, T]
≪extension: NV[T]≫set(id: DeviceId, value: T): NV[T]
≪extension: NV[T]≫get(id: DeviceId): T
≪extension: NV[T]≫apply(id: DeviceId): T

A
≪self: ExchangeCalculusSemantics≫

BranchingExchangeSemantics

A
≪self: ExchangeCalculusSemantics≫

ExchangeSemantics

A
≪self: ExchangeCalculusSemantics≫

FieldCalculusByExchangeSemantics

CHAPTER 5. DESIGN 57

5.2. FINAL DESIGN OF THE CORE DSL

numeric type that supports an upper bound, such as Double. The resulting code

for the distanceTo construct is shown in Listing 5.11, which resembles the syntax

of the prototype DSL of Listing 2.4. The provided snippet demonstrates how this

design effectively achieves the goals pursued by the other design prototypes:

• invocation of library and core constructs without the . operator;

• declaration of library dependencies with top-level imports, that hide transi-

tive dependencies;

• generic definition of the constructs for high reusability;

• clean declaration of the core syntax dependencies, using a “language” con-

text parameter and intersection types;

• possibility to resolve naming conflicts with import aliases;

• reuse of all the libraries and programs dependent on a set of syntaxes by re-

implementing them through the next generation of aggregate programming

calculi;

5.2.1 Design of the XC operational semantics

By abstracting common features of aggregate programming languages such as FC

and XC into the AggregateFoundation trait, the ExchangeCalculusSemantics

can focus on the peculiarities of the XC semantics, such as NValues and the

exchange primitive. AggregateFoundation provides an abstract definition of an

AggregateValue type, with the only feature to be iterable. The reason is that

whatever the next aggregate calculus semantics will be, it is expected to pro-

vide some kind of notion of field, which should allow iterating over values from

neighbors, including self. Additionally, AggregateFoundation provides the API

to exclude the value for self from an AggregateValue, as well as to retrieve the

value for self only, using extensions method inspired by the XC DSL experiment

of Section 2.4. Referencing self has an important role in aggregate programs, and

it was put here to provide all libraries and programs with that feature. Finally,

AggregateFoundation provides the means to combine and map aggregate values

58 CHAPTER 5. DESIGN

5.2. FINAL DESIGN OF THE CORE DSL

Listing 5.11: Final design - distanceTo implementation in the GradientLibrary.�
1 import it.unibo.scafi.xc.abstractions.Liftable .*

2 import it.unibo.scafi.xc.abstractions.boundaries.UpperBounded

3 import it.unibo.scafi.xc.language.foundation.AggregateFoundation

4 import it.unibo.scafi.xc.language.syntax.FieldCalculusSyntax

5

6 import FieldCalculusLibrary.share

7 import CommonLibrary.mux

8 import Numeric.Implicits .*

9

10 object GradientLibrary:

11 def distanceEstimate[N: Numeric: UpperBounded]

12 (using language: AggregateFoundation)(

13 neighboursEstimates: language.AggregateValue[N], // path dependent type

14 distances: language.AggregateValue[N],

15): N = lift(neighboursEstimates , distances)(_ + _).withoutSelf.min

16

17 def distanceTo[N: Numeric: UpperBounded](using

18 language: AggregateFoundation & FieldCalculusSyntax ,

19)(source: Boolean , distances: language.AggregateValue[N]): N =

20 share[N](summon[UpperBounded[N]]. upperBound)(av =>

21 mux(source)(

22 summon[Numeric[N]]. zero

23)(

24 distanceEstimate(av, distances)

25)

26)� �
with the lift operator and the map extension method. This is a necessary differ-

ence from the formal calculi, where aggregate values such as NValues or fields allow

to be treated as their underlying generic type, and are transparent when combined

or mapped as if they were local values. For example, in XC, an expression e writ-

ten to work with local values of type T can be used with an aggregate value of type

NValues[T] without any modification. In Scala, instead, this is not possible, and

operations on local values need to be lifted to work on aggregate values too. Unary

operations have to be lifted too and work as the mapping function f: A => B for

the map extension method available on an AggregateValue[A]. As mentioned in

the previous section, abstracting common features into a common foundation for

all the semantics allows the reuse of all the libraries and programs depending on

those features, while also retaining the possibility to re-implement differently in a

new aggregate calculus semantics.

To allow the definition, in the future, of an aggregate calculus without explicit

device identifiers exposed in the API, all the features related to explicit device

identifiers in the calculus have been grouped and modeled as an optional mixin

CHAPTER 5. DESIGN 59

5.2. FINAL DESIGN OF THE CORE DSL

Listing 5.12: Supported syntaxes for invoking the exchange primitive.�
1 def exchange[T](initial: AggregateValue[T])(

2 f: AggregateValue[T] => RetSend[AggregateValue[T]]

3): AggregateValue[T]

4

5 import RetSend .{ *, given } // necessary to enable some of the styles below

6

7 // To send and return the same value:

8 exchange (0)(value => f(value))

9 exchange (0)(value => retsend(f(value)))

10

11 // To send and return potentially different values:

12 exchange (0)(value => (f(value), f2(value)))

13 exchange (0)(value => ret (f(value)) send f2(value)) // infix style

14 exchange (0)(value => ret(f(value)).send(f2(value)))

15 exchange (0)(value => RetSend(f(value), f2(value)))� �

called DeviceAwareAggregateFoundation. The mixin defines an abstract type

member DeviceId and the means to compare them with ==, that is a given instance

of CanEqual[DeviceId, DeviceId]. In addition to that, it provides two abstract

methods, one called self that returns the device identifier of the current device,

and another called device that returns an aggregate value of device identifiers,

including self, which is always known thanks to the network and it doesn’t need

to be computed with, for example, a nbr(self) invocation.

Therefore, the ExchangeCalculusSemantics is left only with the definitions of

its specific features, which are NValues additional operation on aggregate values,

automatic conversion from local values and NValues, the core constructs exchange,

here called xc, and branch, called br, to avoid conflicts with their counterparts

defined in the implemented syntaxes. The signature of the xcmethod has been sim-

plified to simplify its implementation, written only in its complete form with both

the return and send values explicitly passed as a couple, whereas the exchange

method of the syntax allows different call signatures to imitate the syntax of the

paper [5], as shown in Listing 5.12.

The concrete implementation of the XC operational semantics is discussed

partly in the next section, and partly in Section 6.1.

60 CHAPTER 5. DESIGN

5.2. FINAL DESIGN OF THE CORE DSL

5.2.2 The Engine

An Engine has been designed to be able to execute aggregate programs that use

an instance of the XC semantics trait as a context parameter. The Engine offers

a method called cycle which implements all the steps to be executed in a single

round of an aggregate program. The steps can be summarized into the following:

1. instantiation of the semantics, whose implementation is called Context, using

information coming from the Network, such as inbound messages and the

device identifier;

2. execution of the aggregate program, which is a function that takes the

Context as a context parameter and returns a Result, which is the result

of the evaluation of the aggregate program;

3. collection of the Export, which is a bundle containing all the outbound mes-

sages;

4. sending of the Export to the Network, which will deliver the messages to the

intended recipients.

A Context is defined as an interface that takes inbound messages as input, called

Import, gets altered by the aggregate program round of execution, and produces

outbound messages as output, called Export. More information about the imple-

mentation of a Context for the XC semantics can be found in Section 6.1. An

Import is defined as an alias for a map from device identifiers to generic values,

which for the only implemented context correspond to value trees. A ValueTree is

an Abstract Data Type (ADT) containing the values exchanged between devices

coupled with their path in the AST of the aggregate program, as described in the

XC paper [5]. Here a Path is defined as an alias for a List of generic tokens so

that every implementation of a semantic can control which type of token defines a

location inside the AST of the aggregate program. An Export instead is defined

as an alias for a MapWithDefault, because it can send a dedicated message to a

known neighbor and a default message to every other new neighbor of the device.

The Network is responsible for properly dispatching the messages to the intended

recipients and is pictured with UML in Figure 5.3.

CHAPTER 5. DESIGN 61

5.2. FINAL DESIGN OF THE CORE DSL

Figure 5.3: The engine: UML diagram of the Network interface.

commons

engine

network

C MapWithDefault K, V

...

C
≪type alias: Map[DeviceId, Value]≫

Import

DeviceId, Value

C
≪type alias: MapWithDefault[DeviceId, Value]≫

Export

DeviceId, Value

I Network DeviceId, Value

localId(): DeviceId
send(e: Export[DeviceId, Value]): Unit
receive(): Import[DeviceId, Value]

62 CHAPTER 5. DESIGN

5.3. NETWORK-BASED SENSORS

Figure 5.4: The engine: UML diagram of the Context interface and the Engine

class.

engine

network

context

C Engine DeviceId, Result, Value, N <: Network[DeviceId, Value], C <: Context[DeviceId, Value]

net: N

factory: ContextFactory[N, C]
program: C ?=>Result

cycle(): Result
...

I Network DeviceId, Value

localId(): DeviceId
send(e: Export[DeviceId, Value]): Unit
receive(): Import[DeviceId, Value]

I Context DeviceId, Value

inboundMessages: Import[DeviceId, Value]
outboundMessages: Export[DeviceId, Value]

I ContextFactory - N <: Network, + C >: Context

create(network: N): C

In summary, the Engine, uses a ContextFactory to repeatedly instantiate a

new Context for every cycle of the aggregate program execution, executes the

program against the context, and finally sends the result to the network. An UML

diagram of the Context and the Engine can be found in Figure 5.4.

5.3 Network-based sensors

In general, sensors and actuators are not part of the DSL of ScaFi-XC. In ScaFi,

sensors are modeled as a key-value dictionary, from String to Any, that casts the

value to the expected type. To improve the type safety and to have less error-prone

sensor access, in this design sensor and actuator design and implementation are

left to the user, that can provide them in three main ways:

1. by implementing an external library that interacts with the sensor and ac-

CHAPTER 5. DESIGN 63

5.3. NETWORK-BASED SENSORS

tuator hardware, which gets invoked by the aggregate program;

2. by extending the Context implementation with additional, type-safe sen-

sor and actuator methods, invoked in the aggregate program in the form

ctx.sensorName() or summon[ContextImpl].sensorName();

3. by both extending the Context and implementing an external library as its

facade, to provide an API with static method signatures that can be invoked

in the aggregate program, in line with the style of the DSL.

This design choice has been made to keep the DSL as simple as possible and to

allow the user to choose the best way to interact with the sensor and actuator

hardware, as well as to allow the user to choose the best way to model the sensor

and actuator data, which can be very different from one application to another.

Nevertheless, network-based sensors, which are sensors whose measured values

differ for every visible neighbor, represent a special case. These sensors must

either be implemented following the second or the third way of the list above,

because a measurement must return an AggregateValue[T] where T is the type

of the measurement and the aggregate value contains a measurement for every

visible neighbor, including self.

The standard library included in the core module provides a network-based

sensor called DistanceSensor, due to its importance in common aggregate pro-

grams. In ScaFi, the corresponding construct is called nbrRange. If an aggregate

context implements the DistanceSensor[N: Numeric] trait, senseDistance: N

is available to be invoked in the aggregate program, and it returns a value of type

AggregateValue[N] containing the distance to every visible neighbor, including

self. The availability of the distance sensor in the context enables the invoca-

tion of library constructs based on that, such as the sensorDistanceTo of the

GradientLibrary which uses the sensors as metric for the distance to the neigh-

bors. The distance sensor is generic on the type of the measurement, as long as

it is a numeric type, to allow for different configurations, such as measuring with

floats, integers, or custom types that provide a Numeric given instance.

64 CHAPTER 5. DESIGN

5.4. THE SIMULATOR

5.4 The simulator

The simulator module serves both as a tool for developers to test their programs

in a controlled environment and as a fundamental component for the acceptance

tests. For the scope of this project, the simulator has been designed to be as simple

as possible, providing a minimal set of functionalities that are enough to test the

DSL and the libraries developed for it. As a result, the simulator is deterministic,

with discrete time, and models neighborhoods as a map from device identifiers

to a set of device identifiers. Nevertheless, the simulator implements basic real-

world network phenomena such as message loss and delay, as well as customizable

message retention time and device reboot/failures. Inside tests, a deterministic

simulator allows control of every aspect of the aforementioned features through

the use of policies, implementing the strategy pattern. In addition to that, in

manual tests, a random simulator could be used. The random simulator allows

the generation of randomized device networks and randomized policies to simulate

an environment closer to the internet, following a set of given parameters for the

probability distributions used in the implementation. This is particularly useful to

test the self-healing, self-organizing properties of aggregate programs. Tests can

be reproduced deterministically even in the random simulator thanks to the seed

parameter that controls the generation of pseudo-random numbers. The resulting

UML diagram of the simulator module design is shown in Figure 5.5.

CHAPTER 5. DESIGN 65

5.4. THE SIMULATOR

Figure 5.5: UML diagram of the simulator module.

simulator

I Simulator Id, Result, C <: Context[Id, ?]

program: C ?=>Result

devices: Iterable[Id]
deviceNeighborhood: Map[Id, Set[Id]]
results: Map[Id, Result]

I DiscreteSimulator Id, Result, C <: Context[Id, ?]

tick(): Unit

C DeterministicSimulator
...

C RandomSimulator

delegate: DeterministicSimulator
...

66 CHAPTER 5. DESIGN

Chapter 6

Implementation

This chapter documents the implementation details of the models and libraries

designed, as well as additional tools and extensions developed as research exper-

iments and proof of concepts. The implementation of the core and simulator

modules has no external, third-party dependencies apart from the Scala standard

library, thus satisfying the requirement T.7 from Section 4.1. In particular, the

chapter covers the implementation of an experimental FoldhoodLibrary, that

demonstrates the expressiveness of the ScaFi-XC design by implementing an API

for foldhood and foldhoodPlus similar to the original ScaFi, and the prototype

of a different implementation of the AggregateFoundation trait, which adds com-

pile time assertions on the user code to prevent common mistakes and improve

the quality of aggregate programs, at the expense of more complicated signatures

of library methods, following requirement F.8 from Section 4.1. The chapter also

covers the integration of ScaFi-XC with the Alchemist simulator (requirement F.4

from Section 4.1), which enables graphical and more realistic simulations, as well

as additional proof of the functionality of ScaFi-XC.

6.1 Implementation of the XC operational se-

mantics

The implementation of the operational semantics as described in paper [5] fol-

lows the design of Section 5.2.1 by defining a concrete class that inherits from

CHAPTER 6. IMPLEMENTATION 67

6.1. IMPLEMENTATION OF THE XC OPERATIONAL SEMANTICS

Figure 6.1: Exchange Calculus context mixins: UML diagram of the mixin layers
in package common, stripped of transitive dependencies.

common

I MessageSemantics

≪type≫Envelope

open[T](a: Envelope): T
close[T](a: T): Envelope

A BasicMessageSemantics

≪type≫Envelope = Any

open[T](a: Envelope): T
close[T](a: T): Envelope

C InvocationCoordinate

key: String
index: Int

A
≪this: MessageSemantics≫

StackSemantics

currentPath: IndexedSeqView[InvocationCoordinate]
scope[T](key: String)(body: () =>T): T

A
≪this: StackSemantics & MessageSemantics & Context[...]≫

InboundMessageSemantics

≪type≫DeviceId
self: DeviceId

unalignedDevices: Set[DeviceId]
alignedDevices: Set[DeviceId]
alignedMessages: Map[DeviceId, Envelope]

A
≪this: StackSemantics & MessageSemantics & Context[...]≫

OutboundMessageSemantics

≪type≫DeviceId

unalignedDevices: Set[DeviceId]

outboundMessages: Export[DeviceId, ValueTree[InvocationCoordinate, Envelope]]
sendMessages[T](messages: MapView[DeviceId, T], default: T): Unit

I Context DeviceId, Value

inboundMessages: Import[DeviceId, Value]
outboundMessages: Export[DeviceId, Value]

partially partially

ExchangeCalculusSemantics. Given that the same class serves as context for

the execution of aggregate programs’ rounds, following the engine design of Sec-

tion 5.2.2, it implements the Context interface too.

The implementation is named BasicExchangeCalculusContext, because it is

meant to provide a simple yet readable and reliable implementation, without pur-

suing premature optimizations or additional features. A more advanced implemen-

tation could be developed in the future, maybe specifically tailored to some desti-

nation platform or network implementation. In order to maximize the reusability

of its code, the logic and behavior that compose the operational semantics has been

broken down into several mixin layers, with their dependencies declared through

self-type annotations and abstract members. These mixin layers have been or-

ganized into two packages based on their reusability: context.common with the

most general and reusable mixins, and context.exchange with the mixins that

are specific to the exchange calculus, as shown in Figures 6.1 and 6.2.

68 CHAPTER 6. IMPLEMENTATION

6.1. IMPLEMENTATION OF THE XC OPERATIONAL SEMANTICS

Figure 6.2: Exchange Calculus context mixins: UML diagram of the mixin layers
in package exchange, stripped of transitive dependencies.

common

exchange

A InboundMessageSemantics
...

A OutboundMessageSemantics
...

A
≪this: ExchangeCalculusSemantics≫

NValuesSemantics

≪type≫AggregateValue[T] = NValues[T]
≪given≫nvalues: NValuesOps[AggregateValue, DeviceId]
≪given≫liftable: Liftable[AggregateValue]
≪given≫convert[T]: Conversion[T, AggregateValue[T]]
≪given≫aggregate: Aggregate[AggregateValue]

device: AggregateValue[DeviceId]
alignedDevices: Set[DeviceId]

C NValues + T

default: T

unalignedValues: Map[DeviceId, T]

alignedValues: Map[DeviceId, T]
apply(device: DeviceId): T
iterator: Iterator[T]

A
≪this: ExchangeCalculusSemantics & ...≫

ConstructsSemantics

br[T](cond: Boolean)(th: =>T)(el: =>T): T
xc[T](init: AggregateValue[T])(
f: AggregateValue[T] =>(AggregateValue[T], AggregateValue[T]),
): AggregateValue[T]

I ExchangeCalculusSemantics

≪given≫nvalues: NValuesOps[AggregateValue, DeviceId]
≪given≫convert[T]: Conversion[T, AggregateValue[T]]

br[T](cond: Boolean)(th: =>T)(el: =>T): T
xc[T](init: AggregateValue[T])(
f: AggregateValue[T] =>(AggregateValue[T], AggregateValue[T]),
): AggregateValue[T]

partially

partially

CHAPTER 6. IMPLEMENTATION 69

6.1. IMPLEMENTATION OF THE XC OPERATIONAL SEMANTICS

Listing 6.1: Example of aggregate program that produces the value tree in Fig-
ure 6.3.�

1 def myProgram(using ExchangeCalculusSemantics): Int =

2 val _ = exchange (5)(nv1 =>

3 val _ = branch(true) {

4 val _ = nbr("a").fold("")(_ + _)

5 share(Some (2))(nv3 =>

6 val _ = exchange (3.22)(nv4 => nv4).fold (0.0)(_ + _)

7 Some(branch(false) { -1 } {

8 exchange(List (1))(nv => nv.map(_ ++ List(3, 7))).map(_.sum).onlySelf

9 }),

10)

11 } {

12 None

13 }

14 nv1 ,

15).onlySelf

16 branch(false) { 1 } { exchange (2)(nv => nv).onlySelf }� �
6.1.1 The stack-based semantics implementation

Without using Scala 3 macros everywhere an aggregate expression is written, the

AST of an aggregate program is not directly available to the semantics implemen-

tation. Consequently, the semantics implementation has to track the invocation

of its primitives into an explicit stack-like ADT, while building the Export value

tree using the paths traced by the stack. If a primitive invocation is nested inside

another, the invocation trace is pushed into the stack, and the nested expression is

evaluated, potentially growing the stack but leaving it unchanged at the end of the

evaluation, and then the trace is popped from the stack. This logic is implemented

in the scope method of StackSemantics and is employed by the xc implemen-

tation of exchange.ConstructsSemantics. For instance, the program in List-

ing 6.1, at the first execution round with the BasicExchangeCalculusContext,

would produce the value tree in Figure 6.3.

Alignment is implemented by comparing the current stack with the neighbor’s

value trees: if a path prefix is in common, the device is aligned with the given

neighbor. In order to distinguish exchange invocations that are not part of the

same conditional branch, it is necessary that the branch construct is invoked in

place of Scala’s if, and that the branch construct is implemented to push a branch

identifier into the stack using the scope method, thus misaligning devices who

took different branches. A known limitation and pitfall of this solution, besides

70 CHAPTER 6. IMPLEMENTATION

6.1. IMPLEMENTATION OF THE XC OPERATIONAL SEMANTICS

Figure 6.3: Example of value tree produced by the program in Listing 6.1.

exchange, 5

branch/true

exchange, ”a” exchange, Some(11)

exchange, 3.22 branch/false

exchange, List(1, 3, 7)

branch/false

exchange, 2

making programmers understand the need to use branch instead of if, is boolean

short-circuiting, which behaves similarly to the if construct, in the sense that

it can happen to skip the evaluation of some exchange calls without tracing the

conditional branch in the stack. When that happens, the resulting behavior is

unpredictable and will probably lead to runtime errors.

InboundMessagesSemantics is responsible for providing the set of currently

aligned devices as well as retrieving the values corresponding to the current traced

path from their value trees. OutboundMessagesSemantics is responsible for build-

ing the export value tree using the current path and the values passed to the

sendMessages method. Once the program round has completed, and the Engine

asks for the Export value tree, the sent messages are reorganized into a different

value tree for every known neighbor, plus the current device, because memory

is modeled as a self-message, and a default value tree for every new neighbor

that appears during sleep time. This is the reason why the Export is an alias

for a MapWithDefault while the Import is an alias for a Map, with both ADT

immutable.

Inside a value tree, values of different types are stored together under a common

type, and they need to be converted back to their original types when extracted

from the tree. For this reason, MessageSemantics offers two methods, open and

close, responsible for the conversion from and to the common type, defined with

an abstract type member called Envelope. In a real-world distributed system,

an Envelope could be a sequence of bytes, containing the serialized stream from

CHAPTER 6. IMPLEMENTATION 71

6.2. THE BUILD SYSTEM

shared objects. For the scope of ScaFi-XC, all the simulations are executed using

the MessageSemantics.Basic implementation, which simply casts the values to

and from Any, which works because the simulations are run in a single JVM, and

the Any type is the root of the Scala type hierarchy.

6.2 The build system

Following the requirements listed in Section 4.1, the chosen build system for the

project is SBT, in particular version 1.9.8, following requirement T.3 from Sec-

tion 4.1. The build tool has been customized with the following plugins:

• sbt-scalafix to lint the code with scalafix, further explained in Section 7.4,

following requirement T.6 from Section 4.1;

• sbt-scalafmt to lint the code with scalafmt, further explained in Section 7.4,

following requirement T.6 from Section 4.1;

• sbt-scalajs and bt-scalajs-crossproject to cross-build the project for

JavaScript with scala-js, following requirement T.4 from Section 4.1;

• sbt-scala-native and sbt-scala-native-crossproject to cross-build the

project for native with scala-native, following requirement T.5 from Sec-

tion 4.1.

In addition to that, the Dotty compiler has been customized with flags that en-

hance the quality of the code, such as the aforementioned explicit nulls and multi-

versal equality, but also enforcement for indentation over curly braces style, warn-

ings as errors, safe initialization checks, warnings on value discards, and more

(requirement T.2 from Section 4.1).

6.3 The “FoldhoodLibrary”

As a proof of concept of the expressiveness of the ScaFi-XC design, an experimental

library has been developed, called FoldhoodLibrary, which provides an API for

the foldhood and foldhoodPlus constructs as defined in the original ScaFi library,

72 CHAPTER 6. IMPLEMENTATION

6.4. CONTEXT-BASED CONSTRAINTS ON SHARED VALUES

Listing 6.2: Usage example of the FoldhoodLibrary.�
1 def foldhoodingPlusProgram(using ExchangeCalculusContextWithHopDistance): Int =

2 foldhoodPlus (0)(_ + _) {

3 nbr(self) + nbr("3").toInt + nbrRange

4 }� �
representing in a way an internal DSL written in terms of another. The library

works for any aggregate context that supports the FieldCalculusSyntax, and

implements foldhood, foldhoodPlus, nbr, and nbrRange for contexts that also

support DistanceSensor. The resulting API can be seen used in Listing 6.2,

where nbr is not the same as the one defined in FielCalculusLibrary but has a

different signature, that takes a lazy expression of type => T and returns a T. When

evaluating a foldhood, the expression is evaluated as is and the values passed to

nbr are recorded and returned in order, then shared with neighbors. Then, for each

aligned neighbor, the same expression is re-evaluated, this time substituting the

nbr return values with the ones coming from neighbors, in the right order to match

the expression. If the context implements the DistanceSensor trait, nbrRange can

be invoked to return the distance from the current node to the neighbor evaluated

in the foldhood. The only difference between foldhood and foldhoodPlus is that

the former does not include the expression value of the current node in the folding

result, while the latter does. The example of Listing 6.2 demonstrates that nbr

can be used with arguments of any type, as long as they type check in the foldhood

expression.

6.4 Context-based constraints on shared values

This proof of concept has been implemented on a different feature branch of the

repository, as it represents a very impactful change on the entire framework. The

idea is to use context bounds on every method that is supposed to share values with

neighbors or self, such as exchange, nbr, share, distanceTo, and so on. Through

these context bounds, the types able to be shared can be restricted by a set of

rules, that, if not satisfied, won’t provide the context parameter needed to invoke

the method. The type class used as bound is called Shareable, and its counterpart

CHAPTER 6. IMPLEMENTATION 73

6.4. CONTEXT-BASED CONSTRAINTS ON SHARED VALUES

Listing 6.3: Definition of the Shareable and NotShareable type classes.�
1 package it.unibo.scafi.xc.language.foundation

2

3 import scala.util.NotGiven

4 import scala.annotation.implicitNotFound

5

6 object DistributedSystemUtilities:

7 @implicitNotFound(

8 "Cannot share value of type ${T}. ${T} must be a primitive value type or a

serializable type , and it must not be marked as NotShareable",

9)

10 open class Shareable[T](using NotGiven[NotShareable[T]])

11

12 final class NotShareable[T]

13

14 given [T <: AnyVal | Serializable](using NotGiven[NotShareable[T]]): Shareable[T

] = Shareable[T]()

15 end DistributedSystemUtilities� �

negating it is named NotShareable, as shown in Listing 6.3. By default, in order

to allow libraries that abstract over the semantics implementation to share at the

very least primitive types and classes marked as Serializable, a global given in-

stance of Shareable is provided for subtypes of AnyVal or Serializable. Given

that the Shareable type class is marked as open and has a public constructor,

semantics and their implementations can extend the set of types that satisfy the

constraints, by providing additional given instances of the type class, and option-

ally adding ad-hoc behavior to the type class with extensions. As a side-effect,

the Shareable could potentially be instantiated manually to force any type to

be shareable, probably resulting in a runtime error during the actual serializa-

tion phase that would have occurred anyway without this whole feature enabled.

Nevertheless, in a typical scenario, the constraint works as expected, as shown in

Listing 6.4, where the Shareable constraint is violated by the attempt to share

a value of type AggregateValue[Int], while it is marked as NotShareable by

the AggregateFoundation. In the same snipped, the new signature of the nbr

method with the context bound shows how signatures get affected by this change,

in case it was merged and applied to the main branch.

74 CHAPTER 6. IMPLEMENTATION

6.5. INTEGRATION WITH THE ALCHEMIST SIMULATOR

Listing 6.4: Usage example of the Shareable type class, that demonstrates a
violation of the constraint.�

1 // New nbr definition:

2 def nbr[A: Shareable](using language: AggregateFoundation & FieldCalculusSyntax)(

3 expr: A,

4): language.AggregateValue[A] = language.nbr(expr)

5

6 // Bad usage example:

7 val _ = nbr(nbr(1))

8

9 // Compilation error:

10 //[error] -- [E172] Type Error: Test.scala :7:19

11 //[error] 7 | val _ = nbr(nbr(1))

12 //[error] | ^

13 //[error] |Cannot share value of type c.NValues[Int]. c.NValues[Int] must be a

primitive value type or a serializable type , and it must not be marked as

NotShareable.� �
6.5 Integration with the Alchemist simulator

As stated in the GitHub repo1, Alchemist is a simulator for pervasive, aggre-

gate, and nature-inspired computing. Originally, Alchemist was conceived as a

chemical-oriented multi-compartment stochastic simulation engine, generic enough

that could be adapted to simulate a wide range of systems, even if unrelated to

the chemistry domain [25]. The integration with Alchemist enables a whole new

simulation experience, thanks to the graphical interface and the ability to simulate

most of the relevant properties of real-world CAS. Integrating with the simulator

consists, in practice, of implementing an incarnation, which is a set of classes that

bridge the Alchemist models of molecule, reactions, and concentration with the

desired models of the simulation. Inside an Alchemist simulation of a network of

devices, each device is represented as a Node, and the incarnation implementation

adds to each node an implementation of a Network, an engine instance, and a

reference to the aggregate program to simulate. Each node has visibility over its

neighbors and takes care to send outbound messages to the right recipients when

invoked, after the execution round. During each of the rounds, the engine will

invoke the aggregate program using Java reflections, because the program’s fully

qualified name is passed as a string through the configuration file written in yaml.

1https://github.com/AlchemistSimulator/Alchemist

CHAPTER 6. IMPLEMENTATION 75

https://github.com/AlchemistSimulator/Alchemist

6.5. INTEGRATION WITH THE ALCHEMIST SIMULATOR

Listing 6.5: Example of Alchemist configuration file.�
1 incarnation: exchange

2

3 network -model:

4 type: ConnectWithinDistance

5 parameters: [5]

6

7 _pool: &program

8 - time-distribution: 1

9 type: Event

10 actions:

11 - type: it.unibo.scafi.xc.alchemist.actions.RunScafiProgram

12 parameters: [it.unibo.scafi.xc.alchemist.main.TestProgram.

myProgram]

13

14 deployments:

15 - type: Rectangle

16 parameters: [200, 0, 0, 20, 20]

17 programs:

18 - *program

19

20 monitors:

21 type: SwingGUI

22 parameters:

23 graphics: alchemist -incarnation/src/main/resources/effect.json� �
Listing 6.6: Example of aggregate program that can be run with the Alchemist
simulator.�

1 def myProgram(using AlchemistContext [?]): Double =

2 sensorDistanceTo(self == 0)� �
For instance, if the configuration of Listing 6.5 is run with the program of

Listing 6.6, the expected output will be similar to the snapshot of Figure 6.4.

76 CHAPTER 6. IMPLEMENTATION

6.5. INTEGRATION WITH THE ALCHEMIST SIMULATOR

Figure 6.4: Snapshot of the Alchemist simulation of the program in Listing 6.6,
with the configuration in Listing 6.5.

CHAPTER 6. IMPLEMENTATION 77

6.5. INTEGRATION WITH THE ALCHEMIST SIMULATOR

78 CHAPTER 6. IMPLEMENTATION

Chapter 7

Evaluation

This chapter presents the evaluation techniques employed in the project, as well

as the tools used to ensure the quality of the codebase and the correctness of the

implementation. Mainly, the evaluation consists of passing the test suite, which

includes both unit and acceptance tests, while the quality of the code of libraries

and programs is partially ensured by the continuous integration pipeline and the

code style enforcement tools.

7.1 Unit tests

The unit test framework used for the project is ScalaTest, a popular testing

framework for Scala. All the unit tests are defined as traits or classes that de-

pend on a common trait called UnitTest, which provides a common testing DSL

called AnyFlatSpec, enhanced with the ShouldMatchers trait and other utilities,

that make the test assertions look like natural spoken language. Unit tests cover

the commons, core, and simulator modules. UnitTest is also the base for the

AcceptanceTest class of the tests module, to have a consistent testing style

across the whole project.

Given that the expected behavior of the aggregate programming libraries API

strictly relates to the chosen semantics that implements the necessary syntaxes,

the unit tests for the libraries are tied to the semantics they are tested with. For

the scope of the project, XC is the only semantics implemented, so the libraries are

CHAPTER 7. EVALUATION 79

7.2. ACCEPTANCE TESTS

tested against it. Unit tests for libraries always include a sample program using

the subject under test, and during the test cases, the program is executed in a test

environment and inspected, both for the expected results and for the expected

value tree produced by the test context.

Where possible, unit tests are written as traits, to be mixed in with the ac-

tual test classes, to avoid code duplication and to have a common set of tests

applied for different implementations of the same API, which must adhere to the

same behavior. Examples of these abstract tests can be found for collections and

abstractions of the commons module.

7.2 Acceptance tests

Acceptance tests are an important validation tool for the project, as they are the

only way to ensure that the libraries are working as expected in simulated scenarios.

The tests are aimed to be as readable as possible, using the unit test DSL, but also

hiding all the complexity of the simulation setup and execution. The idea is to use

acceptance tests both as a validation tool and as a documentation tool, on one side

proving the correctness of the implementations and on the other demonstrating

the usage and quality of aggregate programs written with the standard libraries.

In ScaFi-XC, acceptance tests extend the AcceptanceTest trait, which is a

subtype of UnitTest, and they are located in the tests module. As a conse-

quence, acceptance tests inherit the same assertion DSL used in unit tests, that is

AnyFlatSpec with ShouldMatchers, and the same utilities for testing, providing

consistency across the whole test suite.

One of the most important acceptance tests currently present is named

GradientWithObstacleTest, which is a simulation of a bi-dimensional grid-like

network of devices that compute a gradient from a source, with an obstacle in

the middle of the grid that appears halfway through the simulation, as shown in

Listing 7.1. The gradient is expected to be recalculated after the obstacle appears,

and the test checks that the devices adapt to the new environment, confirming

the self-organizing properties of the aggregate system and the functionality of the

library.

80 CHAPTER 7. EVALUATION

7.2. ACCEPTANCE TESTS

Listing 7.1: GradientWithObstacleTest acceptance test.�
1 class GradientWithObstacleTest extends AcceptanceTest with GridNetwork:

2 override type TestProgramResult = Double

3 val epsilon: Double = 0.0001

4 val obstacleGradient: Double = Double.PositiveInfinity

5 override def rows: Int = 10

6 override def columns: Int = 10

7 override def ticks: Int = 1600

8 def isSource(id: PositionInGrid): Boolean = id.row == 0 && id.col == 0

9 def isObstacle(id: PositionInGrid): Boolean = id.row > 0 && id.col == 4

10

11 def expectedGradient(id: PositionInGrid): Double =

12 if isObstacle(id) then obstacleGradient

13 else if id.col < 4 || id.row == 0 then Math.max(id.row , id.col).toDouble

14 else Math.max(id.row , id.col - 4).toDouble + 4

15

16 // Network:

17 // s * * * * * * * * *

18 // * * * * | * * * * *

19 // * * * * | * * * * *

20 // * * * * | * * * * *

21 // * * * * | * * * * *

22 // * * * * | * * * * *

23 // * * * * | * * * * *

24 // * * * * | * * * * *

25 // * * * * | * * * * *

26 // * * * * | * * * * *

27

28 override def device(row: Int , col: Int): SleepingDevice[PositionInGrid] =

29 SleepingDevice.WithFixedSleepTime(PositionInGrid(row , col), ((row + 1) * col %

3) + 1)

30

31 override def program(using TestProgramContext): Double =

32 val round = rep(0)(_ + 1)

33 branch(isObstacle(self) && round >= 200)(obstacleGradient)(distanceTo(isSource

(self), 1.0))

34

35 "The gradient" should "never be calculated for the obstacles" in:

36 results

37 .filter(kv => isObstacle(kv._1))

38 .foreach: (id, value) =>

39 value shouldBe obstacleGradient

40

41 it should "be calculated correctly with obstacles" in:

42 results.foreach: (id , value) =>

43 value shouldBe expectedGradient(id) +- epsilon

44 end GradientWithObstacleTest� �

CHAPTER 7. EVALUATION 81

7.3. CONTINUOUS INTEGRATION

7.3 Continuous Integration

Both unit and acceptance tests are run automatically by the continuous integration

pipeline, built with GitHub Actions1 and hosted by GitHub2. The pipeline is

invoked on every push to the repository, and it runs the tests on the latest version

of the codebase, as well as on every push on open pull requests, given that ScaFi-

XC is meant to be open source, under the Apache License 2.0.

7.4 Code Style

Having a consistent and “clean” coding style across the entire project contributes

to the maintainability and readability of the codebase. For this reason, automatic

code formatting and linting tools are used to enforce a consistent style across the

project. The tools put in place are scalafmt and scalafix, each with their own con-

figuration file and rule sets, specific for Scala 3. The code style is enforced by two

dedicated phases of the continuous integration pipeline, described in Section 7.3.

1https://github.com/features/actions
2https://github.com/ldeluigi/scafi-xc/actions

82 CHAPTER 7. EVALUATION

https://github.com/features/actions
https://github.com/ldeluigi/scafi-xc/actions

Chapter 8

Conclusion and Future Work

The objective of this work has been to develop a DSL foundation, which would

serve as the basis for a new framework named ScaFi-XC. The framework proposed

is intended to redesign and improve the ScaFi toolkit, is implemented using the

Scala 3 programming language, and is supported by the Exchange Calculus com-

putational model and formal language. The development of ScaFi-XC involved

prototyping, interviews, and the application of advanced programming patterns

with Scala 3. Continuous integration and acceptance testing were utilized to en-

sure the quality and reliability of the framework. The requirements for ScaFi-XC,

collected through interviews with stakeholders, have all been satisfied, including

optional ones, so the final result can be considered a success. However, the current

implementation covers only a fraction of the functionality offered by the original

ScaFi framework, leaving room for further extensions.

The concrete implementations presented here aim for simplicity, readability,

correctness, and reusability, deferring concerns about performance and efficiency

for future iterations. Furthermore, the developed simulator offers a very restricted

set of features in comparison to the original ScaFi simulator, needing improvements

to support more complex scenarios and one or more graphical interfaces for the

user to interact with the simulator. The following paragraphs provide a list of

possible future developments.

Performance optimization The current implementation of the context and the

simulator is not optimized for performance. For example, the context leverages the

CHAPTER 8. CONCLUSION AND FUTURE WORK 83

Map data structure to represent ValueTrees, which is not the most efficient data

structure for this purpose, as it stores multiple copies of all the common prefixes

of the keys.

Complete re-implementation of the core module The core module is the

foundation of the ScaFi framework, as it contains the basic building blocks for

the development of aggregate programs. In ScaFi-XC, it has been implemented

only partially, since the only advanced construct implemented is the gradient. A

comprehensive extension to include the full standard library is essential for the

framework’s completeness.

Enhancements of the simulator The current simulator does not support

many of the features of the original ScaFi simulator and is limited to discrete

time. Extensions of the implementation or a complete redesign can provide a

more comprehensive feature set, including support for graphical user interfaces.

Support for real-world distributed systems The original ScaFi allowed the

deployment of aggregate programs on real-world distributed systems with the

spala and distributed modules, currently absent in ScaFi-XC. Implementing

such support is a crucial step to consider ScaFi-XC a valid replacement for the

original ScaFi.

Experimental developments with aggregate programming The reusabil-

ity and the modularity of the new core module allow it to be extended with new,

experimental libraries and semantics, fostering research projects exploring novel

aspects of aggregate programming.

Adding more acceptance tests Most of the reliability of the framework comes

from the functionality and readability of its tests. In particular, acceptance tests

are designed to be proofreadable by experts in the field, and they are the most

important tests for the framework. Nevertheless, only a few acceptance tests are

currently present. Strengthening the test suite would enhance the reliability of the

framework, ensuring its robustness in a wider range of scenarios.

84 CHAPTER 8. CONCLUSION AND FUTURE WORK

Improvement of the Alchemist incarnation The integration with the Al-

chemist simulator is still a prototype. A more complete implementation would

enable more sophisticated simulation scenarios, such as those involving situated

agents, with sensors and actuators actively managed by the aggregate program.

Survey evaluation of the framework A survey evaluation of the framework

could be conducted to assess the usability and effectiveness of the framework in

the development of aggregate programs. Additionally, it could provide conclusive

results regarding the impact of the Context-based constraints on shared values

discussed in Section 6.4. Whether or not the proposed changes to the core represent

a valid improvement is still an open question, and a survey evaluation of the

proposal could provide a definitive answer.

In conclusion, while ScaFi-XC marks a significant step towards a new ScaFi

framework, there is still much work to be done. With continued development and

iteration, it has the potential to significantly contribute to the field of aggregate

programming, both as a development framework and as a research tool.

CHAPTER 8. CONCLUSION AND FUTURE WORK 85

86 CHAPTER 8. CONCLUSION AND FUTURE WORK

Bibliography

[1] G. D. Abowd, “Beyond weiser: From ubiquitous to collective computing,”

Computer, vol. 49, no. 1, pp. 17–23, 2016.

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE Per-

sonal Communications, vol. 8, no. 4, pp. 10–17, 2001.

[3] R. Casadei, “Macroprogramming: Concepts, state of the art, and opportuni-

ties of macroscopic behaviour modelling,” CoRR, vol. abs/2201.03473, 2022.

[4] R. Casadei, M. Viroli, G. Aguzzi, and D. Pianini, “Scafi: A scala dsl and

toolkit for aggregate programming,” SoftwareX, vol. 20, p. 101248, 2022.

[5] G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli, “The

exchange calculus (xc): A functional programming language design for dis-

tributed collective systems,” Journal of Systems and Software, vol. 210,

p. 111976, 2024.

[6] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the internet

of things,” Computer, vol. 48, pp. 22–30, Sep. 2015.

[7] D. Pianini, M. Viroli, and J. Beal, “Protelis: practical aggregate program-

ming,” in Proceedings of the 30th Annual ACM Symposium on Applied Com-

puting, SAC ’15, (New York, NY, USA), pp. 1846–1853, Association for Com-

puting Machinery, 2015.

[8] G. Audrito, “Fcpp: an efficient and extensible field calculus framework,”

in 2020 IEEE International Conference on Autonomic Computing and Self-

Organizing Systems (ACSOS), pp. 153–159, Aug 2020.

BIBLIOGRAPHY 87

BIBLIOGRAPHY

[9] M. Viroli, F. Damiani, and J. Beal, “A calculus of computational fields,”

in Advances in Service-Oriented and Cloud Computing: Workshops of ES-

OCC 2013, Málaga, Spain, September 11-13, 2013, Revised Selected Papers

2, vol. 393, pp. 114–128, 09 2013.

[10] G. Audrito, M. Viroli, F. Damiani, D. Pianini, and J. Beal, “A higher-order

calculus of computational fields,” ACM Trans. Comput. Logic, vol. 20, jan

2019.

[11] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini, “From

distributed coordination to field calculus and aggregate computing,” Journal

of Logical and Algebraic Methods in Programming, vol. 109, p. 100486, 2019.

[12] G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli, “Func-

tional programming for distributed systems with xc,” in 36th European Con-

ference on Object-Oriented Programming (ECOOP 2022) (K. Ali and J. Vitek,

eds.), vol. 222 of Leibniz International Proceedings in Informatics (LIPIcs),

(Dagstuhl, Germany), pp. 20:1–20:28, Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2022.

[13] L. Bettini, Implementing domain-specific languages with Xtext and Xtend.

Packt Publishing Ltd, 2016.

[14] S. Doeraene, “Cross-platform language design in scala.js (keynote),” in Pro-

ceedings of the 9th ACM SIGPLAN International Symposium on Scala, Scala

2018, (New York, NY, USA), p. 1, Association for Computing Machinery,

2018.

[15] R. Casadei, “scafi/artifact-2021-ecoop-xc: v1.2,” May 2022.

[16] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering

resilient collective adaptive systems by self-stabilisation,” ACM Trans. Model.

Comput. Simul., vol. 28, mar 2018.

[17] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering

resilient collective adaptive systems by self-stabilisation,” ACM Trans. Model.

Comput. Simul., vol. 28, mar 2018.

88 BIBLIOGRAPHY

BIBLIOGRAPHY

[18] G. Audrito, F. Damiani, M. Viroli, and E. Bini, “Distributed real-time

shortest-paths computations with the field calculus,” in 2018 IEEE Real-Time

Systems Symposium (RTSS), pp. 23–34, 2018.

[19] G. ”Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli, “”the share oper-

ator for field-based coordination”,” in ”Coordination Models and Languages”

(H. ”Riis Nielson and E. Tuosto, eds.), (”Cham”), pp. ”54–71”, ”Springer

International Publishing”, ”2019”.

[20] N. Amin, A. Moors, and M. Odersky, “Dependent object types,” 2012.

[21] D. Ghosh, J. Sheehy, K. K. Thorup, and S. Vinoski, “Programming language

impact on the development of distributed systems,” Journal of Internet Ser-

vices and Applications, vol. 3, no. 1, pp. 23–30, 2012.

[22] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black, “Traits: Composable

units of behavior,” in Proceedings of European Conference on Object-Oriented

Programming (ECOOP’03), vol. 2743 of LNCS, (Berlin Heidelberg), pp. 248–

274, Springer Verlag, July 2003.

[23] M. Odersky and M. Zenger, “Scalable component abstractions,” SIGPLAN

Not., vol. 40, p. 41–57, oct 2005.

[24] M. Odersky and M. Zenger, “Scalable component abstractions,” in Proceed-

ings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, OOPSLA ’05, (New York,

NY, USA), pp. 41–57, Association for Computing Machinery, 2005.

[25] D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented simulation of

computational systems with ALCHEMIST,” Journal of Simulation, vol. 7,

pp. 202–215, Aug. 2013.

[26] R. Casadei, Aggregate Programming in Scala: a Core Library and Actor-Based

Platform for Distributed Computational Fields. PhD thesis, Alma Mater Stu-

diorum - Università di Bologna, 2016.

BIBLIOGRAPHY 89

BIBLIOGRAPHY

[27] R. Casadei, D. Pianini, and M. Viroli, “Simulating large-scale aggregate mass

with alchemist and scala,” in 2016 Federated Conference on Computer Science

and Information Systems (FedCSIS), pp. 1495–1504, Sep. 2016.

90 BIBLIOGRAPHY

	Abstract
	Introduction
	State of the art
	Protelis
	FCPP
	ScaFi
	XC: Scala DSL Implementation

	Background
	The Exchange Calculus
	System model
	NValues
	The ``exchange'' primitive
	Alignment
	Formalization of XC
	Implementing FC primitives with exchange

	Scala 3
	General considerations on Scala 3
	Values in Scala
	New control syntax and significant indentation
	Traits and classes
	Algebraic Data Types
	Singleton objects
	Functional programming with Scala 3
	Contextual Abstractions
	The Scala 3 type system
	Explicit nulls and the Scala 3 type hierarchy
	Multiversal Equality

	Analysis
	Requirements analysis
	ScaFi
	Foldhood semantics in ScaFi

	Design
	Designing a scalable internal Domain Specific Language
	Prototype 1: Extension Methods
	Prototype 2: Context parameter in constructors
	Prototype 3: Implicit parameter in methods
	Prototype 4: Mixin composition

	Final design of the core DSL
	Design of the XC operational semantics
	The Engine

	Network-based sensors
	The simulator

	Implementation
	Implementation of the XC operational semantics
	The stack-based semantics implementation

	The build system
	The ``FoldhoodLibrary''
	Context-based constraints on shared values
	Integration with the Alchemist simulator

	Evaluation
	Unit tests
	Acceptance tests
	Continuous Integration
	Code Style

	Conclusion and Future Work

