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INTRODUCTION 

The process of data acquisition is the basis of biomedicine. It is often time-demanding 

and requires the subject to perform tasks in a lab and to wear sensors. Applying these 

sensors to the subject requires time, trained personnel, and a laboratory or specialised 

location. One example is human movement’s reconstruction through stereo-

photogrammetry. This method is considered the gold standard of movement analysis 

but requires more than one specialised camera and some time to prepare the subject for 

the acquisition (markers placement). Although it is an exceptionally reliable method, 

it presents some limitations: it is time-consuming, it is not available to everybody, it 

requires a lab, and it must be performed in the presence of qualified personnel. 

To improve data collection, we must look for reliable instrumentation that can be 

placed everywhere, does not require much time to set up, and can be quickly started by 

the user himself. 

Given the spread of device cameras capable of registering 3D information, the asserting 

of the AI, and the general desire for real-time stream of information processing, oak-d 

devices seem to answer all this demand. We are talking about a low price, compact 

camera, easy to program and high-performance devices that are ideal for carrying 

around and experimenting with.  

This project aims to prove that a marker-less 3D landmark acquisition through the 

exploitation of an end-to-end pipeline, the improvement of already-coded programs 

from GitHub, and the development of a calibration protocol is not only possible but 

also valuable. 

In particular, the goals of this thesis are:  

● Establish a calibration protocol for the cameras. 

● Obtain intrinsic and extrinsic parameters. 

● Acquiring and processing a point cloud that represents and adheres to the subject 

figure. 
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● Find the best work conditions for an end-to-end pipeline. 

● Camera’s parameters tuning.  

● Register and process the landmarks’ displacement.  

● Explore and exploit the camera’s features to enhance the performance of all the 

points above. 

More generally, one of the objectives is to highlight the device's functionality, strong 

suits and limitations. Moreover, gathering all the information about the device and 

integrating them with field tests can give future users a better overview of the oak-d’s 

capabilities. 

Lastly, this paper intends to propose a new method to morph the point cloud acquired 

into a human mesh for a better reconstruction and simulation of missing points.  
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1. DEVICES  

1.1 Hardware overview 

Two types of devices were used:  

● 1 OAK-D: The baseboard has three on-board cameras that implement stereo and 

RGB vision and are piped directly into the OAK SoM (System on Module) for 

depth and AI processing. The data is then output to a host via USB 3.1 Gen1 

(Type-C). This OAK camera uses a USB-C cable for communication and power. 

It supports both USB2 and USB3 (5 GB or 10 GB). 

Price= $249 

The Main features are: 

⮚  OAK-D is 4 TOPS of processing power (1.4 TOPS for AI-RVC2 (robotic 

vision) 

⮚ Run any AI model, even custom-architecture/built ones - models need 

to be converted. 

⮚ Encoding: H.264, H.265, MJPEG - 4K/30FPS, 1080P/60FPS 

⮚ Computer vision (CV): wrap/de-wrap, resize, crop via Image 

Manipulation node, edge detection, feature tracking. You can also run 

custom CV functions. 

⮚ Stereo depth perception with filtering, post-processing, RGB-depth 

alignment, and high configurability 

⮚ Object tracking: 2D and 3D tracking with ObjectTracker node. 

⮚ Integrated BNO085, a 9-axis IMU 

https://docs.luxonis.com/en/latest/pages/model_conversion/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/image_manip
https://docs.luxonis.com/projects/api/en/latest/components/nodes/image_manip
https://docs.luxonis.com/projects/api/en/latest/samples/EdgeDetector/edge_detector
https://docs.luxonis.com/projects/api/en/latest/samples/FeatureTracker/feature_tracker
https://docs.luxonis.com/en/latest/pages/tutorials/creating-custom-nn-models/
https://docs.luxonis.com/en/latest/pages/tutorials/creating-custom-nn-models/
https://docs.luxonis.com/projects/api/en/latest/samples/StereoDepth/depth_post_processing
https://docs.luxonis.com/projects/api/en/latest/samples/StereoDepth/rgb_depth_aligned
https://docs.luxonis.com/projects/api/en/latest/samples/StereoDepth/rgb_depth_aligned
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#currently-configurable-blocks
https://docs.luxonis.com/projects/api/en/latest/components/nodes/object_tracker/
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Figure 1 The OAK-D device. 

 

Camera Specs Colour camera Stereo pair 

Sensor 
IMX378 (PY004 AF, PY052 

FF) 

OV9282 (PY003

) 

DFOV / HFOV / 

VFOV 
81° / 69° / 55° 89° / 80° / 55° 

Resolution 12MP (4056×3040) 1MP (1280×800) 

Focus 
AF: 8 cm - ∞ or FF: 

50 cm - ∞ 

FF: 19.6 cm - 

∞ 

Max Frame rate 60 FPS 120 FPS 

F-number 1.8 ±5% 2.0 ±5% 

https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/sensors/imx378/#imx378
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/sensors/ov9282/#ov9282
https://fov.luxonis.com/?horizontalFov=69&verticalFov=55&horizontalResolution=4056&verticalResolution=3040
https://fov.luxonis.com/?horizontalFov=80&verticalFov=55&horizontalResolution=1280&verticalResolution=800
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This OAK camera has a baseline of 7.5 cm - the distance between the left and 

the right stereo camera. Minimal and maximal depth perception (MinZ and Max) 

depends on camera FOV, resolution, and baseline.  

● Ideal depth range: 70 cm - 12m 

● MinZ: ~20 cm (400P and extended), ~35 cm (400P OR 800P, extended), 

~70 cm (800P) 

Lens size 1/2.3 inch 1/4 inch 

Effective Focal Length 4.81 mm 2.35 mm 

Pixel size 1.55 µm x 1.55 µm 3 µm x 3 µm 
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Figure 2 OAK-D device layout and dimensions 

https://docs.luxonis.com/projects/api/en/latest/tutorials/configuring-stereo-depth/#short-range-stereo-depth
https://docs.luxonis.com/projects/api/en/latest/tutorials/configuring-stereo-depth/#stereo-extended-disparity-mode
https://docs.luxonis.com/projects/api/en/latest/tutorials/configuring-stereo-depth/#stereo-extended-disparity-mode
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● Depth accuracy: 

o 0.7m - 4m: below 1% absolute depth error 

o 4m - 7m: below 2% absolute depth error 

o 7m - 12m: below 3% absolute depth error 

● Operative temperature between -20° and 50°.  

 

Most of the power is consumed by the RVC2, so the power consumption mostly 

depends on the workload of the VPU: 

⮚ Base consumption + camera streaming: 2.5W - 3W 

⮚ AI subsystem consumption: Up to 1W 

⮚ Stereo depth pipeline subsystem: Up to 0.5W 

⮚ Video Encoder subsystem: Up to 0.5W 

 

The total power consumption can be up to ~5W if you are using all the features 

at 100% at the same time. To reduce the power consumption, you can reduce 

FPS of the whole pipeline - that way, subsystems will not be utilized at 100% 

and will consume less power. In this way, it is not necessary to plug the power 

supply cable since USB supplies enough power. 

 

● 2 OAK-D-LITE: same Spatial AI functionality as OAK-D with a smaller weight 

and form factor. It supports the same USB as OAK-D. 

Price: $149 

The key features are: 

⮚ 4 TOPS of processing power (1.4 TOPS for AI - RVC2 NN Performance) 

⮚ Run any AI model, even custom-architecture/built ones - models need to be 

converted. 

https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2/#rvc2-nn-performance
https://docs.luxonis.com/en/latest/pages/model_conversion/
https://docs.luxonis.com/en/latest/pages/model_conversion/
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⮚ Encoding: H.264, H.265, MJPEG - 4K/1080P 

⮚ Computer vision: wrap/de-wrap, resize, crop via ImageManip node, edge 

detection, feature tracking. You can also run custom CV functions. 

⮚ Stereo depth perception with filtering, post-processing, RGB-depth 

alignment, and high configurability 

⮚ Object tracking: 2D and 3D tracking with ObjectTracker node. 

 

 

Figure 3 OAKD- lite device 

● Width: 91 mm 

● Height: 28 mm 

● Length: 17.5 mm 

● Baseline: 75 mm 

● Weight: 61 g 

Camera Specs Colour camera Stereo pair 

Sensor 
IMX214 (PY047 AF, PY062 

FF) 
OV7251 (PY013) 

DFOV / HFOV / 

VFOV 
81° / 69° / 54° 86° / 73° / 58° 

https://docs.luxonis.com/projects/api/en/latest/components/nodes/image_manip
https://docs.luxonis.com/projects/api/en/latest/samples/EdgeDetector/edge_detector
https://docs.luxonis.com/projects/api/en/latest/samples/EdgeDetector/edge_detector
https://docs.luxonis.com/projects/api/en/latest/samples/FeatureTracker/feature_tracker
https://docs.luxonis.com/en/latest/pages/tutorials/creating-custom-nn-models/
https://docs.luxonis.com/projects/api/en/latest/samples/StereoDepth/depth_post_processing
https://docs.luxonis.com/projects/api/en/latest/samples/StereoDepth/rgb_depth_aligned
https://docs.luxonis.com/projects/api/en/latest/samples/StereoDepth/rgb_depth_aligned
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#currently-configurable-blocks
https://docs.luxonis.com/projects/api/en/latest/components/nodes/object_tracker/
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/sensors/imx214/#imx214
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/sensors/ov7251/#ov7251
https://fov.luxonis.com/?horizontalFov=69&verticalFov=54&horizontalResolution=4208&verticalResolution=3120
https://fov.luxonis.com/?horizontalFov=73&verticalFov=58&horizontalResolution=640&verticalResolution=480
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Camera Specs Colour camera Stereo pair 

Resolution 13MP (4208×3120) 480P (640×480) 

Focus 
AF: 8 cm - ∞ OR FF: 

50 cm - ∞ 

Fixed-Focus 

6.5 cm - ∞ 

Max Frame rate 35 FPS 120 FPS 

F-number 2.2 ± 5% 2.0 ± 5% 

Lens size 1/3.1 inch 1/7 inch 

Effective Focal 

Length 
3.37 mm 1.3 mm 

Pixel size 1.12 µm x 1.12 µm 3 µm x 3 µm 

 

 

Figure 4 OAK-D lite device layout and dimensions 
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This OAK camera has a baseline of 7.5 cm - the distance between the left and the right 

stereo camera. Minimal and maximal depth perception (MinZ and Max) depends on 

camera FOV, resolution, and baseline.  

● Ideal depth range: 40 cm - 8m 

● MinZ: ~20 cm (480P, extended), ~35 cm (480P) 

● Depth accuracy (See 480P, 75 mm baseline distance OAKs for details): 

o 40 cm - 3m: below 2% absolute depth error 

o 3m - 6m: below 4% absolute depth error 

o 6m - 8m: below 6% absolute depth error 

● Operative temperature between -20° and 50° 

Most of the power is consumed by the RVC2, so the power consumption mostly 

depends on the workload of the VPU: 

● Base consumption + camera streaming: 2.5W - 3W 

● AI subsystem consumption: Up to 1W 

● Stereo depth pipeline subsystem: Up to 0.5W 

● Video Encoder subsystem: Up to 0.5W 

The total power consumption can be up to ~5W if you are using all the features 

at 100% at the same time. To reduce the power consumption, you can reduce 

FPS of the whole pipeline - that way, subsystems will not be utilized at 100% 

and will consume less power. 

The difference between OAKD AND OAKD-LITE are: 

⮚ Mono cameras have lower resolution (640×480 instead of 1280×800) 

⮚ There is no power jack, as most users just use the USB-C for power 

delivery, which provides 900mA at 5V and is enough for most use cases. 

However, some functions (e.g., inference, video encoding) can lead to 

https://docs.luxonis.com/projects/api/en/latest/tutorials/configuring-stereo-depth/#short-range-stereo-depth
https://docs.luxonis.com/projects/api/en/latest/tutorials/configuring-stereo-depth/#stereo-extended-disparity-mode
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/depth_accuracy/#id1
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2/#rvc2
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large current spikes, so there is a chance that hosts like RPi will not be 

able to provide enough power. In that case, you should use a Y-adapter. 

⮚ Robotics Vision Core 2 (RVC2) chip-down design, instead of connecting 

the OAK-SoM to the baseboard  

⮚ Sensor connectors are shorter and take up less space. 

All the information above and the datasheet are available with all the data sheets in the 

Luxonis® web page [12]. 

  

https://docs.luxonis.com/projects/hardware/en/latest/pages/DM6010/#y-adapter
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2/#rvc2
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1099/#oak-som
https://www.luxonis.com/
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2. CALIBRATION 

Camera calibration is a fundamental task in computer vision and is crucial in various 

applications such as 3D reconstruction, object tracking, augmented reality, and image 

analysis. Accurate calibration ensures precise measurements and reliable analysis by 

correcting distortions and estimating intrinsic and extrinsic camera parameters. Each 

camera records the scene in its own 2D image plane exploiting the pinhole camera 

mode, then in consideration of each objective’s distortion, the “disparity” algorithm 

computes the third dimension. In this chapter, we are going to discuss the importance 

of calibration and its techniques. It is important to distinguish the “formal calibration”: 

starting from the intrinsic parameter and tuning the external one to reduce the 

measurement error, and the “device parameter calibration” is due to better acquiring 

the body and its landmarks (see parameter optimization chapter). “Formal calibration” 

stands for a procedure that starts from known parameters (intrinsic and extrinsic 

parameter), that are given for or extracted from the device camera and known distances 

between objects. 

2.1 Intrinsic and extrinsic parameters 

Intrinsic parameters are:  

● Focal length, expressed in pixels. 

● Coordinate of the point of intersection between the optical axis and the image 

plane. (pinhole) 

● Distance between the two cameras on the board. 

The first two parameters are obtained through these lines of codes through which the 

developer let the user access the cameras intrinsic: 

intrinsic=calib data.set Camera Intrinsics (dai. CameraBoardSocket.RIGHT) 

intrinsic=calib data.set Camera Intrinsics (dai. CameraBoardSocket.LEFT) 
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The output of these two functions is a 3×3 matrix where the elements [1,1] and [2,2] 

are the focal length expressed in pixels, while the elements [1,3] and [2,3] are the 

coordinates of the point of intersection. 

Let’s throw some the definition: 

Focal length:” The distance between the centre of a lens or curved mirror and its focus.” 

Optical axis:” The straight line passing through the geometrical centre of a lens and 

joining the two centres of curvature of its surfaces.” 

Image plane:” The plane that contains the object's projected image and lies beyond the 

back focal plane.” 

2.2 Pinhole model 

The camera obscura, or pinhole image, is a natural optical phenomenon, at first 

theorised by the Arab physicist Ibn al-Haytham and then implemented by Giambattista 

Della Porta in his Magia Naturalis in 1558.  

This method is amazingly simple: the 

reflection of the object goes into a small hole 

in a box. A lens positioned in the hole projects 

an image on a surface. 
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Figure 5 Optical axis and focal length 

Figure 6 Pinhole model 

https://en.wikipedia.org/wiki/Ibn_al-Haytham
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So, let’s talk about the pinhole camera model. 

What we want to do is: take a point in 3D and transform it into 2D coordinates. For 

example, the tree in the figure above is in 3D, but the image is projected in 2D. Let’s 

look at the formulas: 

 

Point P’ is the point in 3D coordinates, f is the focal distance, and x, y, z are the 3D 

coordinates. So, we have a matrix 3×4 that multiplies a 4-element column vector, and 

as a result, we have a 3×1 vector.  

As we can see, zp remains unchanged, and we can introduce cx and cy, which are the 

coordinates of the optical axis’s intersection point with the image plane (pinhole). 

 

Figure 7 Projection of a 3d point in a 2d plane. 
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So, there is a point P at a x1 x2 x3 coordinate, 

where x1 x2, x3 is the coordinate system’s axis 

while in O, the origin of the coordinate 

system, there is the pinhole. Plus, since f>0 

there is an image plane in the back, which 

contains Y1 and Y2 axis, which are parallel to 

X1 and X2. The origin R is called the centre 

of the image. The point Q is in relation to the 

coordinate system Y1, Y2. f is the focal length 

and is the coordinate of R along the negative direction of X3. 

So, being y1 and y2, the coordinates of point Q in the Y1-Y2 coordinate system, we want 

to link Q to P.  

From another view, we 

see how there is a 

construction of two 

similar triangles where the 

catheti of the QOW 

triangle are -Y1 and f, 

while the triangle OPG 

has x1 and x3 as catheti. 

So, the following equations hold: 

  

 

that can be summarized as: 
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Figure 8 Image plane, centre of the image, focal 

length representation. 

Figure 9 Catheti representation from side view 
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In conclusion, we have established a relationship between the coordinates in the image 

plane and the principal coordinate system, and we can see that the point’s coordinates 

are flipped due to the minus sign. 

2.3 Disparity 

Our goal is to find a way to assign 3D coordinates to an object in a 3D space. It is 

impossible to do so with one camera, but as the word “stereo-photogrammetry” 

suggests, we need at least two cameras.  

As aforementioned, we have 2 cameras and so two image planes. We want to establish 

the distance between a certain point and a global reference system. Leaving aside the 

reference system for a moment and focusing solely on the distance, how can we do it? 

Looking at the difference of the coordinates of the same point in the image planes of 

the two cameras, as referred to in the image below. 

 

 

 

 

 

Disparity refers to the distance between two corresponding points in a stereo pair's left 

and right image. When calculating the disparity, each pixel in the disparity map gets 

assigned a confidence value from 0 to 255 by the stereo-matching algorithm as: 

● 0 - maximum confidence that it holds a valid value 

● 255 - minimum confidence, so there is more chance that the value is incorrect 
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Figure 3 disparity schematization. Figure 10 Disparity schematization 



17 
 

Disparity and depth are inversely related. As disparity decreases, depth increases 

exponentially depending on baseline and focal length. Meaning, if the disparity value 

is close to zero, then a minor change in disparity generates a substantial change in 

depth. Similarly, if the disparity value is big, then substantial changes in disparity do 

not lead to a substantial change in depth. By considering this fact, depth can be 

calculated using this formula:  

depth = focal length in pixels * baseline / disparity in pixels 

2.4 Distortion 

The pinhole model has a big problem: it does not take into account the camera 

distortion. 

The figure below presents the three types of optical distortion. 

 

The optical distortion is a deviation from rectilinear projection, a 

projection in which straight lines in a scene remain straight in an 

image.  

In most cases it is due to defects in the camera’s objective. 
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Figure 11 Types of 

optic distortion 

https://en.wikipedia.org/wiki/Rectilinear_projection
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The pinhole camera model describes the image projection as a linear operator when 

working in projective spaces. Lens distortion produces a non-linear displacement of 

points after their projection. 

Usually, it is a good approximation to model the lens distortion with the polynomial 

radial distortion model: 

  

Where ki and pi are distortion parameters. So, we have to find a way to calculate those 

parameters and represent optical distortion. 

2.5) Charuco boards 

“Charuco” is a word pun that comes from the union between the words “chessboard” 

and “Aruco.” 

 

Figure 12 Charuco board composition. 



19 
 

Aruco markers and boards are extremely useful due to their fast detection and their 

versatility. However, one of the problems of Aruco markers is that the accuracy of their 

corner positions is not too high, even after applying subpixel refinement. 

On the contrary, the corners of chessboard patterns can be refined more accurately 

since two black squares surround each corner. However, finding a chessboard pattern 

is not as versatile as finding an Aruco board: it has to be completely visible, and 

occlusions are not permitted. 

A ChArUco board tries to combine the benefits of these two approaches. 

The ArUco part is used to interpolate the position of the chessboard corners so that it 

is versatile enough to be used as a marker board since it allows occlusions or partial 

views. Moreover, since the interpolated corners belong to a chessboard, they are fully 

accurate in terms of subpixel accuracy. 

When high precision is necessary, such as in camera calibration, Charuco boards are a 

better option than standard Aruco boards. 

 

 

2.6 Parameters calibration 

Starting from known distances, such as the side of the black square in the Charuco 

board, we can calculate the distortion parameter and calibrate the cameras. The script 

calinbrate.py which can be found in the depthai repository, is executed through the 

command line: 

python3 calibrate.py -s [side of the square] -brd [directory of the .json file] 

the inputs are the length of the square’s side expressed in cm; the location where is 

stored the .json file corresponding to our device. The .json file is also present in the 

depthai repository under the “resources” folder.  

https://github.com/luxonis/depthai/tree/main
https://github.com/luxonis/depthai/tree/main
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For a correct calibration procedure, it is necessary to print the charuco board on a flat 

screen or use a paper sheet glued on a hard and flat surface. Then, measure the side of 

the black square on the charuco board with a ruler The square’s length must be at least 

of 2.2 cm, although the program does not work.  

The user must frame the charuco board from various angles and “take picture” of the 

charuco board by pressing the space tab.  

The protocol used was:  

1) Measure the length of the box printed on the screen. 

2) Start the program with the correct inputs. 

3) Frame the charuco board. 

4) Press the space tab to take a picture.  

5) Move the camera. 

6) Repeat from point 3 from various angulations. 

7) Press the s key to start the auto-calibration. 

I suggest taking at least 3 pictures from each angulation chosen and having a total of 

39 pictures. The device has three cameras, so each time we take a picture, we have 3 

separate frames captured. My protocol reckons on 3 pictures from the left, 3 picture 

from the right, 3 from the top and 3 from the bottom view and one with the charuco 

board at the centre of the view that engulf the whole frame. 

 

 

Figure 13 Output grill made of point. 
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Every time a picture is taken, a grill made of points is shown. Each point represents the 

vertex of the squares on the board.  

After pressing “s,” the device calibration starts. This is a completely autonomous 

procedure. It is based on the Zhang, starting from a known distance (the side of the 

square). For every picture took, the error is calculated and printed on the screen. 

 

 

Figure 14 Visual output of the calibration procedure 

 If the calibration was successful the message: “EEPROM CALIBRATED” is shown 

to the user, and the calibration parameters are overwritten on the eproon(user 

modifiable rom) ), otherwise, if the error is considered too high, the device aborts the 

procedure informing us that the calibration was failed. 

This ends the calibration phase.  
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3. POINTCLOUD(PCL) ACQUISITION 

One major aspect of this technology is the fact that we work “on” the whole subject, 

and there are no actual markers, so the whole body is under analysis through the point 

cloud recessing. This comes in handy if we want to reconstruct the body surface (see 

post-processing PCL chapter). A point cloud is a discrete set of data points in a given 

space. The points may represent a 3D shape or object. Each point position has its set 

of Cartesian coordinates (X, Y, Z). All the cameras present a field of view, but the 

information that comes from them is bidimensional. We are interested in the 

reconstruction of a 3D PCL, but how is it possible? 

 

 

 

3.1 PCL in oak-d 

All the devices we are using present a set of 3 cameras: one colour camera and two 

black and white cameras. The 3D reconstruction is performed mostly (see multiple 

device chapter) by the black and white cameras. Each camera presents a FOV. The 

point cloud is fulfilled by the intersection of the 2 cameras’ FOV. When an object or a 

point is visible by the 2 cameras, the disparity is computed and so the distance of such 

object from the camera is recorded. 
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As the figure above shows, there are dark spots in the point cloud. Since depth is 

calculated from disparity, which requires the pixels to overlap, there is inherently a 

vertical band on the left side of the left mono camera and on the right side of the right 

mono camera, where depth cannot be calculated, since it is seen by only 1 camera. Plus, 

close to the camera, the two cons of vision don’t overlap so for a short range Dv, the 

point cloud is not available. The formulas to calculate such spaces are: 

 

 

So, for B we have: 

B = 2 * Dv * tan (HFOV/2) * W / F 

B = 2 * Dv * tan (HFOV/2) * W / (2 * D * tan (HFOV/2)) 

B = W * Dv / D 

F
i
g
u
r
e 
S
E
Q 
F
i
g
u
r
e 
\
* 
A
R
A
B
I
C 
1
5 

Figure 15 Cameras FOV 



24 
 

where HFOV is the Horizontal Field of view and BL the length of the baseline. So, the 

shorter the BL, the closer we can acquire the PCL. 

The baseline length determines another aspect of the PCL clarity. 

 If the depth results for close-in objects look weird, this is likely because they are below 

the minimum depth-perception distance of the device. 

To calculate this minimum depth-perception distance, we use the depth formula and 

choose the maximum value for the disparity_in_pixels parameter (keeping in mind that 

it is inversely related to minimum depth-perception, so the maximum value will yield 

the smallest result).  

MinZ=focalLength*baseline/95 

For example, OAK-D has a baseline of 7.5 cm, focal_length_in_pixels of 882.5 pixels, 

and the default maximum value for disparity_in_pixels is 95. By using the depth 

formula, we get: 

 

min_distance = focal length in pixels * baseline / disparity in pixels = 882.5 * 7.5 cm 

/ 95 = 69.67 cm or roughly 70 cm. 

This parameter does not affect our type of acquisition that much, since it is important 

to have the whole body in the image frame, we operate at a longer distance (2 to 3 m). 

The maximum depth perception distance depends on the accuracy of the depth 

perception. 

 

 

 

https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#depth-perception-accuracy
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#depth-perception-accuracy
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 Looking at the depth formula above, we can see that either a larger baseline distance 

or a larger focal length will result in further depth at the same disparity. In these cases, 

the depth accuracy will be higher. 

Focal length is the distance between the camera lens and the image sensor. The larger 

the focal length, the narrower the FOV. 

So, to get long-range depth perception, we can increase the baseline distance and/or 

decrease the FOV. 

 

The formula used to calculate max distance is an approximation, but as follows: 

Dm = (baseline/2) * tan ((90 - HFOV / HPixels) *pi/180) 

Where HPixels is the height of the frame expressed in pixels. 

So, using this formula for existing models, the theoretical max distance for OAK-D 

(7.5 cm baseline) is: 

Dm = (7.5/2) * tan ((90 - 71.9/1280) *pi/180) = 3825.03 cm = 38.25 meters 

If greater precision for long-range measurements is required, consider enabling 

Subpixel Disparity or using a larger baseline distance between mono cameras.  

3.2 Subpixel method 

Subpixel mode improves the precision and is especially useful for long-range 

measurements. It also helps for a better estimation of surface normal. 

Besides the integer disparity output, the Stereo engine is programmed to dump the 

memory cost volume, that is 96 levels (disparities) per pixel, then software 

interpolation is done on Shave, resulting in a final disparity with 3 fractional bits, 

resulting in significantly more granular depth steps (8 additional steps between the 

integer-pixel depth steps), and also theoretically, longer-distance depth viewing - as 

the maximum depth is no longer limited by a feature being a full integer pixel-step 
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apart, but rather 1/8 of a pixel. In this mode, stereo cameras 

perform 94 depth steps * 8 subpixel depth steps + 2 (min/max values) = 754 depth 

steps 

Moreover, adding subpixel fractional bits, at most 5, shifts the limit cap to 3010 layers 

according to the formula:  

unique_values=94*2^subpixel_bits+2 

This method enhances the depth of the point cloud to the detriment of the disparity.  
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4. LANDMARK RECOGNITION  

As said, our camera does not follow any actual marker. The landmark recognition is 

performed by an AI algorithm and an end-to-end pipeline that could run a specific 

Python script on the embedded camera's CPU/GPU or on the computer’s GPU. Our 

goal is to have a fully automated and autonomous program that can identify a local 

reference system and give some visual feedback to the user. Moreover, through the 

pointcloud reconstruction, we have further information about body surface 

reconstruction. 

 

4.1 Blazepose 

BlazePose (Full Body) is a pose detection model developed by Google that can 

compute (x, y, z) coordinates of 33 skeleton key points, 16 more than Common Objects 

in Context (COCO). 

BlazePose consists of two machine-learning models: a Detector and an Estimator. The 

Detector cuts out the human region from the input image, while the Estimator takes an 

image of the detected person as input and outputs the key points.  

BlazePose outputs the 33 key points according to the following ordering convention. 
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Figure 16 Blazepose stick diagram and landmarks. 

  

The Detector is a Single-Shot Detector (SSD) based architecture. Given an input image, 

it outputs a bounding box and a confidence score. After the detection of the key points, 

they are drawn on the output video of the human body. Each key point is linked to an 

anatomic landmark and records the movement of that region in 3 coordinates. 

There are two ways to use the Detector. The first is the box mode, where the bounding 

box is determined from its position (x, y) and frame size (width, height). The second one 

is the alignment mode, where the scale and angle are determined from (kp1x, kp1y) 

and (kp2x, kp2y), and bounding box including rotation can be predicted. 

The first output of the Estimator are landmarks, the second one is flags. The landmarks 

are made of 165 elements for the (x, y, z, visibility, presence) for every 33 key points. 

The z-values are based on the person’s region of interest (ROI). The ROI is a small 

portion of the body placed between the hips or, if that region is not visible, between 

the shoulders. Only in the ROI the distance - the z coordinate - is calculated through 
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disparity. Although, all the key points have the z coordinate calculated through GHUM 

(3D human shape modelling pipeline).  

Key points between the hips and the camera have z negative, and beyond the hips have 

z positive value.  

The flags are visibility and presence; those are stored and are converted to probability 

by applying a sigmoid function. The visibility flag returns the probability of key points 

that exist in the frame and are not occluded by other objects. The presence one returns 

the probability of key points that exist in the frame. [1] 

Then, the key points’ coordinates are converted to a world reference system and stored 

in a “.csv” file. In fact, these are distances between the landmark and the ROI, so it is 

necessary to establish a relative reference system. An Aruco marker is used to do so. 

 

Figure 17 aruco marker 4×4 

 During the calibration phase, we had to choose the type of marker that composed the 

charuco board. If we used Aruco 4×4 marker during the calibration phase, the system 

recognizes only such type of markers, not, for example, aruco 5×5 markers. Once the 

marker is recognized, the reference system is drawn upon the marker itself, and rotation 

and translation vectors are calculated using the command “cv2.aruco. 

estimatePoseSingleMarker ().”  
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After this, the rotation matrix is computed with the Rodrigues' rotation formula and 

stored in a .txt file. The transition vector is stored, too. To give some feedback to the 

user, the angle between the side of the user and the left arm is shown. The figure below 

shows a real time acquisition where the reference system is drawn while the subject 

moves the arm. Note that even when the arm occludes a landmark, the stick diagram is 

still adherent to the body.  

 

 

 

 

 

 

 

 

Figure 18 Blaze Pose running with local reference system and feedback to the user. 
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Here are reported the formulas to obtain the coordinates in the local reference system. 

 

Figure 19 Schematization of BlazePose coordinate computation. 

 

CP= CO+OP 

OP+PP’=OP’ 
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4.2 Blazepose VS HOGCV 

Leaving aside the body tracking, why is it preferable to use Blazepose instead of the 

HOGCV detector? 

OpenCV features an implementation for an extremely fast human detection method 

called HOG (Histograms of Oriented Gradients). This method is trained to detect 

pedestrians, which are humans mostly standing up and fully visible. So, one should not 

expect it to work well in other cases. Moreover, this method is gradient-based, so it is 

expensive in terms of memory and GPU performance. 

 

Figure 20 HOGCV output 

As already explained, Blazepose is a machine learning-based algorithm that uses 

“MediaPipe Pose Landmarker” to detect landmarks of human bodies in an image or 

video.  

Mediapipe uses Lightweight ML models all while preserving accuracy, domain-

specific processing - including vision, text and audio, end-to-end acceleration across 

CPU and GPU, complex pipeline graph with multiple models and states, Cross-
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platform deployment to Android, iOS, web, and bare metal. In conclusion, Blazepose 

is a more efficient and less memory-demanding machine learning-based algorithm. 

Regarding body tracking, the HOG method does not have this feature. So, we proceed 

to compare Blazepose with Open Pose. Open Pose is a real-time multi-person human 

pose detection library that has shown, for the first time, the capability to jointly detect 

the human body, foot, hand, and facial key points on single images. OpenPose can 

detect a total of 17 body key points.  

 

Figure 21 OpenPose stick diagram 

As said before, this model presents 16 fewer key points, does not implement a real-

time 3D evaluation, and is more memory-demanding. Although it is more precise and 

reliable. In fact, Openvivo is the “Gold standard” for markerless body tracking. [2], 

[2].  
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4.3 GHUM 

Generative 3D Human Shape and Articulated Pose Models is a statistical, articulated 

3D human shape modelling pipeline within a fully trainable, modular, deep learning 

framework. It uses over 60.000 diverse human configurations for training to provide a 

generic human model of different resolutions consisting of 10.168 vertices. Given a 

training set of human body scans, represented as an unstructured point cloud, where 

the number of points P varies, we learn a statistical human model X(α) ∈ R representing 

the variability of body shapes and natural deformation due to articulation. Since X(α) 

= M (θ, X˜ (β b), ∆X˜ (θ), ∆X˜ f (β f), C(X˜), ω) (1) where: 

-      X˜ (β b) ∈ R 3V is the identity-based rest shape in A pose, with β b a low-

dimensional embedding vector encoding body shape variability.  

- ∆X˜ f (β f), is the facial expression at neutral head pose controlled by low-dimensional 

latent code β f;  

- c = C(X˜) ∈ R 3J are skeletal joint centres dependent on the body shape, θ ∈ R 3×(J+1) 

is a vector of skeleton pose parameters consisting of 3 rotational DOFs in Euler angles 

for each joint, and 3 translational variables at the root, ω ∈ R V ×Ia, pose-dependent 

corrective blend shapes ∆X˜ (θ)   
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Figure 22 GHUM’s block diagram. 

  

 Starting from a skeleton K in dependencies of the joint (J) we can estimate the pose 

and through the skinning procedure, the body model is linked to the stick diagram. 

Finally, from the body model, Blazepose predicts the z coordinate in relation to C, its 

joints centres, and computes the distance between ROI and each key point. As already 

mentioned, the shape is detected by the Detector, the pose by the Estimator [4] 

4.4 Parameter optimization  

As mentioned above, there is a list of parameters that the user could change to optimize 

the blaze pose algorithm.  

● min_pose_detection_confidence= this is the minimum confidence score for the 

pose detection to be considered successful. 

● min_pose_presence_confidence= this indicates     the minimum confidence score 

of pose presence score in the pose landmark detection 

● min_tracking_confidence= this parameter is the minimum confidence score for 

the pose tracking to be considered successful. 
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Each of these parameters has a value range between 0.0 and 1.0, where 0 is considered 

zero confidence and 1 is maximum confidence. The tuning of these parameters depends 

on our goals. If we are interested in the presence of the body and want to be sure of the 

presence of the body, it is suggested to set a high value for pose presence confidence 

and low value for tracking and pose detection. However, if we are interested in tracking 

movement’s body, it is suggested to use lower value for pose presence and higher for 

detection and tracking. In accomplishing tasks such as walking, it is inevitable that key 

points appear and disappear from the frame due to occlusion by the body's parts. Blaze 

pose has the possibility to track the key points that are not visible within a certain 

confidence. 

Which value to assign to the parameters really depends on the situation. Factors to take 

in account are: 

● illumination: the room must be well illuminated, no matter from natural or 

artificial light, as long as there are no overshadowing phenomena [5] 

● clothes: avoiding black or solid one block-colour clothing in general is 

recommended.  

● distance: it is vital to have the whole body in the frame 

● room furniture: avoid objects that resemble the human shape to avoid affections 

or occlusions of the ROI. 
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4.5 Post processing of the point cloud 

Why do we need an algorithm that simulates a body model when we can acquire a 3D 

point cloud and establish the coordinates of each point? 

Manly for 2 reasons: 

● the typical aspect of a point cloud is this: 

 

Figure 23 Unpolished pointcloud 

 

The richness of outliers makes it practically impossible to have a reasonable number 

of points to establish the coordinates of each landmark. Nevertheless, this is a static 

pose, so all the key points are visible within the color camera frame, but during a task, 

like walking, the visibility of the points is not guaranteed. 

● It is memory demanding: 

Reconstructing the 3D coordinates through stereo is much more demanding than 

predicting them. So, the aspect of real-time reconstruction of Blazepose fails if we 

decide to use a “pure” stereo approach. 
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In fact, a polished point cloud is a key step to have a full 3D scan of the body to 

reconstruct the surface. Open3d is an open-source Python library that lets the user 

operate on point clouds.  

There are different functions for the reconstruction and cropping of the PCL. It uses 

triangular meshes to reconstruct surfaces and overall works well to store and 

reconstruct the point cloud. The limit is in the crop. There are only two ways to crop:  

● aligned bounding box (ABB). 

● oriented bounding box (OBB). 

Both bounding boxes encapsulate your geometry box. The same suggests ABB, which 

is aligned with the x, y, and z axes. The lines will always align with the global 

coordinate system if the user visualizes it. On the other hand, OBB has a rotation, which 

means it is not aligned with the coordinate system, but it could more tightly fit the 

geometry. Right now, the oriented bounding box is computed via PCA, which is far 

from optimal; hence, it does not produce the tightest possible fit. 

Not even ABB is optimal for body surface reconstruction since the cropped point cloud 

maintains the “image background,” as we saw in the figure above. 

To remove the background, it is necessary to implement a post-processing program 

that is gradient-based. For each point of the cloud, the least squares local plane is fitted 

to its k-nearest neighbours. The normal of each point is the eigenvector corresponding 

to the smallest eigenvalue of the covariance matrix. After estimating the normal of each 

point, then we consider k nearest neighbours for the sample point and afterwards cluster 

the normal of those k nearest neighbours with the agglomerative technique.[6] 
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Figure 24 Pseudocode for edges reconstruction 

For the point cloud that we saw, the edges were extracted using k=5 and threshold 

value=0.2. The result is: 

 

Figure 25 pointcloud edges extraction 

 

Then, the user can filter the point cloud with statistical_outlier_removal. By doing so, 

one removes points that are further away from their neighbours compared to the 

average for the point cloud. It takes two input parameters: pcd. 

remove_statistical_outlier (nb_neighbors, std_ratio) 
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● nb_neighbors allows specifying how many neighbours are taken into account in 

order to calculate the average distance for a given point. 

● std_ratio allows setting the threshold level based on the standard deviation of the 

average distances across the point cloud. The lower this number, the more aggressive 

the filter will be. The values used were neighbour =20000 and std=10-5. 

 

The point cloud polished resulting is:  

 

 

 

 

 

 

 

 

 

From this information is possible to extract a full 3D body scan through different 

acquisition of the same subject from different views or through the use of multiple 

devices (see multiple devices chapter). 

  

 

Figure 26. On the right, a heatmap along the z axis is applied, where the blue represents the closer point and the 

red the further point from the camera. On the left, the pointcloud polished. 
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5. FUNCTIONALITY 

The fundamental part of data acquisition is that the actual data is reliable. Big amount 

of data can stand for nothing if they are not suited for processing. Low frame rate, bad 

calibration, and general substandard data quality can make the acquisition erroneous 

and possibly hurt the subject.  

Live data management and elaboration are not the only choices we have. It is possible 

to work with pre-acquired data and then run the algorithms in post-processing. 

Moreover, a single device does not limit us, but we can use multiple cameras to 

improve the acquisition quality.  

5.1 Encode 

As seen in the table in the device chapter, the maximum operating frame rate of the 2 

types of cameras are 35 fps for the oak-d-lite RGB camera and 60 fps for the oak-d 

RGB camera, while for the black and white cameras, we are well above 100 fps.  

One problem with the body tracking algorithm is that the frame rate number drops 

when we operate in synchronicity between acquisition and data elaboration. Such a low 

value is unsuited for high-frequency movement like sprinting or running because it 

infringes the Shannon Theorem. Although the AI is guaranteed to work on two 

contiguous frames, a frame rate that does not respect the theorem leads to aliasing 

phenomena. 

The encoding process prevents this. The camera can encode the RGB camera and both 

greyscale cameras at the same time. The RGB is set to 1920×1080 and the greyscale is 

set to 1280×720 each, all at 30FPS, for example. Each encoded video stream is 

transferred over XLINK and saved in a separate file. Pressing CTRL+C will stop the 

recording and then convert it, using ffmpeg, into an .mp4 file to make it playable. Note 

that ffmpeg will need to be installed and runnable for the conversion to mp4 to succeed. 

The results are then stored in three files: “colour,” “left,” “right.” In order, they 

represent: the video captured by RGB cam, the right and left cams. These videos can 

be further elaborated on by Blazepose, feeding them as input into the videos' directory. 
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As said, it is guaranteed that the algorithm works on all the frames since it checks both 

the timestamp and the total number of frames. If we need a large number of frames that 

exceed the capabilities of the RGB cam, it is possible to acquire the same scene at 

different frame rates. As said, the Black and White cameras have higher frame rate 

caps This is possible by changing the line of code: 

device. getOutputQueue (name='ve1Out', maxSize=FPS) 

where ve1Out is the stream name, and maxSize the frame rate. 

Then, during the conversion, we must specify the FPS at which the video is encoded.  

The command line to write in the cmd is:   

ffmpeg -framerate FPS -i pathvideo -c copy pathstored 

where “pathvideo” is the path where the “.H264” or “.H265” video is stored and 

“pathstored” is the path where we want to store the mp4 converted video. 

 

5.2 Multiple devices 

A crucial step to a lab configuration is the possibility to frame the same scene from 

multiple POVs. The advantages of using multiple devices are:  

● Better point cloud acquisition: using multiple devices leads to an acquisition of 

the point cloud that better resembles the human structure. We can use 2 cameras 

on both sides of the subject and scan almost the entire body. Of course, there are 

going to be some dark spots due to occlusion and part of the body out of the 

camera FOV. 

● Better acquisition of the landmark: As said, it is impossible to have all the key 

points in the FOV of the camera while completing a task. Even though Blazepose 

has coefficients of reliability, presence, and visibility to predict the key points’ 

trajectory eventually, it is better to have the key points well visible to the camera. 

In doing this, the risk of artefact and general errors decreases. 
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As said many times, we are looking for a real-time acquisition and rendering of the 

information, so the only way to acquire simultaneous images from different POVs 

is to use more cameras. It is good to specify that because there is the possibility of 

rotating the point cloud in a way that composes a volume, this procedure, of course, 

must be made in post-processing and needs the subject to be completely still.  

The point cloud is used as a reference system for the global reference system of the 

camera, so the image is presented as “the cameras see it.” This cannot be optimal if 

more devices participate in the acquisition since they are naturally placed in 2 

distinct positions of the room, meaning that the cameras’ placement must be 

registered: camera calibration. All that is needed is to execute the script 

calibration.py in the repository gen-2multiple-device and follow the instructions in 

the readme.txt.  

This procedure uses Open CV's findChessboardCorners to find the chequerboard, 

and “solvePnP” to compute the translation and rotation from the camera to the 

chequerboard.  

 

Figure 27. Hand movement 3D reconstruction. The reference system is built on top of a checkboard. The 

position of the board is computed in the calibration phase.  

All we must do is frame a chessboard in the camera view, press “p” and wait for the 

system to write a 3D reference system on the board. Then, select the second device 

and repeat the same procedure. The cameras and the chessboard must occupy the 

same space during the whole calibration and point cloud processing.  

https://github.com/luxonis/depthai-experiments/tree/master/gen2-multiple-devices
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In the same repository, the point cloud generator Phyton file is present. As above, 

read the readme.txt file before starting the acquisition. All this functionality does is 

unify and align the point cloud from the devices. The result is a wider 3D point 

cloud.  

For clarity, all the devices that compute the point cloud are synchronised. 
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6. LIMITATION AND FUTURE DEVELOPMENT 

6.1 Limitation 

This technology is far from perfect. Its prominent limitation is consistency. This stems 

from its versatility as a data acquisition device. It works in every situation and in every 

condition as long as the user has a computer, a cable, and a camera. However, it is easy 

to make incorrect acquisitions if the operator does not know what is happening. Most 

common errors come from an inaccurate calibration, so it is important to follow the 

protocol. Other limitations are due to the minZ value. As said before, for our kind of 

acquisition the subject is positioned far from the zone subjected to distortion, but this 

is not the case while working with multiple devices. If we want to work in small 

volume, staying away from the area subjected to distortion is hard.  

However, when working with longer distances, the operator must calibrate the system 

properly and ensure that the point cloud is present for the distance wanted. For 

example, the subpixel method and focus’s value are suited for the type of acquisition. 

Moreover, the camera method to calculate the distance, “disparity” precisely, does not 

perform well on flat surfaces such as walls. This happens because it is hard for black-

and-white cameras to establish given points on a solid color and a flat surface where 

there is no reference. Although, new models are equipped with infrared cameras that 

work better in this situation.  

Plus, the problems with point clouds that have already been discussed - visibility, 

polishing, and outlier detection - really depend on the background. So, making the 

subject stand out from the background is important. 

Regarding BlazePose, as said, it is a fast-processing AI but has a flaw in clipping the 

stick diagram to the body, especially in the lower limbs. Moreover, it is a prediction 

algorithm, even though the creator states it is not, since it uses GHUM, a statistical 

human shape modelling pipeline.  
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6.2 Future development 

Using the PCA method base is always risky. While working with the human body, we 

must consider soft tissue and body part deformation. Establishing a pose and making 

the model move accordingly is insufficient, like in GHUM or SMPL. SMPL is a 

realistic 3D model of the human body that is based on skinning and blending shapes 

and is learned from thousands of 3D body scans. Both methods present a real-time 

processing feature and a skinning procedure to link the stick diagram to the model. But 

is it worth sacrificing all this memory to elaborate a dummy and measure the 

landmark’s displacement on a human body’s surrogate? 

Given that it is possible to have a 3D scan of the body, establish the subject's pose and 

implement a neural network, the direction to follow is to work with the actual human 

figure [11].  

The idea is to adapt the point cloud in a human mesh as it happens in SMPL and 

GHUM, but the finality is to use the human model as a template and to overlap the 

point cloud on the mesh. The fitting of the point cloud on the mesh can be done by a 

neural network where the bias is the original mesh, the input is the landmark or point 

cloud from parts of the body (left leg, head, left forearm…) and the coefficients are a 

mix of the visibility and presence parameters and values on dependency of the 

anatomic part, like SMPL. The output is a set of points interpolated with the mesh 

preferred since there are three types of mesh models: male, female, and neutral gender. 

Here is an example of a mesh: 
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SMPL human body layer for PyTorchis is a differentiable PyTorch layer that 

deterministically maps from pose and shape parameters to human body joints and 

vertices. [7] 
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Figure 28 SMPL mesh example. 

http://smpl.is.tue.mpg.de/
https://pytorch.org/
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CONCLUSION 

To summarise, the strong suits of this technology are accessibility, in both price range 

and availability, usability, and simplicity of working with and program. Its versatility 

makes the device suited for many applications; its fast-paced processing units make it 

perfect for a feedback system for rehabilitation purposes. In the research of 

biomedicine, particularly the study of human movement, systems that could give real-

time feedback to the user are fundamental. Entertaining the subject during 

rehabilitation has been shown to increase both involvement and enhancement of the 

rehabilitation time and experience. As to this last point, gamification is the most 

effective way to keep the subject involved with the activity, but the devices’ availability 

limits the effectiveness of this method. Implementing an RGB cam rehabilitation 

method is important, since everybody owns a smartphone capable of running 

rehabilitation programmes. BlazePose is only one of many MediaPipe method based, 

capable of running on embedded CPU like phones or oak-devices. Moreover, since the 

majority of smartphones have more than one camera, experimenting with multi-camera 

devices resembles the working conditions of modern phones really well. Although 

these devices didn’t perform too well for diagnosis, this technology is quite new and 

further developments are expected.  
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