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Abstract

The rapid expansion of the Internet of Things has led to the proliferation of com-
putational resources in the physical world, which are now embedded in everyday
objects and environments. The Aggregate Computing (AC) has emerged as a
promising approach to tackle the complexity of designing and coordinating these
systems, by shifting the focus from individual devices to programming the global
behavior of whole computational collectives. There are several state-of-the-art im-
plementations of this paradigm, one of them being Scala Fields (ScaFi), which
targets the Java Virtual Machine (JVM). Concurrently, other implementations
have been developed to bring AC also to resource-constrained, “thin” devices that
cannot support the JVM, such as FCPP, which is based on the C++ programming
language. The Rust Fields (RuFi) project aims to democratize the development of
AC applications by exploiting the Rust programming language’s features of per-
formance, safety and expressiveness to provide a minimal functional core for AC
that can be used on multiple platforms, including thin devices. In this paper, we
will present the design and development of a module for the RuFi framework that
will enable the distributed execution of RuFi-based aggregate programs.
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“The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it.”

(Mark Weiser, 1991)
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Chapter 1

Introduction

The current trends from Internet of Things (IoT) are ushering in a new era for

the interaction between humans and computing devices. The steady growth in the

number of objects that are embedded with computational power and connection

capabilities presents numerous opportunities and challenges. This environment

has favored the birth of a new vision of the future of computing: Pervasive Com-

puting (PC) [Sat01]. According to this vision, computational resources, which

are now deeply intertwined with the physical world to the point of being almost

invisible, operate and coordinate in an increasingly dynamic environment, where

decentralized and peer-to-peer interactions are expected to be increasingly impor-

tant. In this world, the AC paradigm offers an encouraging shift of focus on the

design of the systems of the future, where the emphasis will now be on the global

behavior of collections of devices, rather than on the individual devices themselves

[BPV15]. The development of this new field has already led to the creation of very

important and well-researched computational models, languages and frameworks.

However, the current state of the art in AC frameworks are for the most part

based on the JVM, exploiting its vast ecosystem. One important example of such

a framework is ScaFi: a project that utilizes the JVM-based Scala language to

deliver a powerful and flexible Domain Specific Language (DSL) and toolkit for

AC. Nevertheless, relying on the JVM has some drawbacks, one of the most im-

portant being the fact that it comes with additional costs in terms of memory and

computational resources, which we cannot assume are always available on every
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device that could be part of the PC vision. It is in this perspective that the FCPP

framework was born: to exploit C++’s performance and widespread support on

many architectures to bring AC to thin devices. Within this varied context, the

RuFi project aims to leverage the Rust programming language’s features of mem-

ory safety, performance and expressiveness to provide a minimal functional core

for AC that can be used on multiple platforms, including thin devices, and build

high-level APIs on top of it. This thesis’ work takes the core features developed

in the RuFi project and builds up from them by testing and improving the API

of the previous work and using them as a basis for the design and development

of a Rust-based platform that will enable the distributed execution of aggregate

programs written in Rust, taking a step towards the goal of bringing AC to thin

devices. By the end of this thesis, it will be possible to write aggregate programs

in Rust using a comprehensively tested core set of constructs and then execute

them on a distributed network of devices.

Structure of the Thesis The structure of the thesis is designed to provide

a basis for its context and objectives, and then use it as a foundation to fully

describe the proposed solution. First, a comprehensive overview of important

concepts will be given in the Background section (Chapter 2). Here, the reader

will be introduced to the concepts of Field Calculus (FC), AC and the state of the

art regarding FC implementations, as well as the main concepts and features of the

Rust programming language. The main goal of the thesis and the requirements

to achieve it will be presented in the Analysis and Requirements section (Chapter

3). Then, the thesis will describe the proposed solution in the Design section

(Chapter 4). Here, the reader will be introduced to the RuFi framework, starting

from the high-level architecture and then diving into the details and functioning

of its modules. In particular, a thorough description of notable implementation

challenges and choices made will be given in the Implementation section (Chapter

5). Finally, the Validation section (Chapter 6) will describe the validation process

for the RuFi framework, which has been done on multiple axes, including unit

testing, integration testing, user acceptance testing and memory profiling.

2 CHAPTER 1. INTRODUCTION



Chapter 2

Background

Presented in this chapter are some core concepts that serve as a knowledge base

upon which this thesis is built. First, we will introduce the reader to the concept

of AC. Then we will examine ScaFi, a state-of-the-art implementation of AC, that

inspired this thesis’s project. Finally, we will introduce the Rust programming

language, which is the language of choice for the implementation of the project.

2.1 Aggregate Programming and Field Calculus

Aggregate programming [BV16] is a programming approach that aims to shift the

focus on the individual device perspective that is typical of traditional program-

ming approaches, which inevitably entangles the system’s behavior design with

aspects of distributed systems design (such as efficient and reliable communica-

tion, coordination and fault tolerance) to an approach that raises the abstraction

level from individual devices to large aggregations of devices. It does so by ex-

ploiting the concepts of computational fields and FC [AVD+19, VDB13].

Within the FC, a computational field is a function mapping every computa-

tional device in a network, represented by a dynamic and reflexive neighboring

relationship between devices, to a computational object. Depending on the com-

putational object in question, there can be many examples of computational fields:

• Scalar fields: a field that maps every device to the value of some sensor
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2.1. AGGREGATE PROGRAMMING AND FIELD CALCULUS

reading;

• Vector fields: a field that maps every location in the network to a set of

the best routes to reach it;

• Boolean fields: a field that represents the area around an object of interest;

The FC main goal is to “capture a set of key ingredients of programming

languages supporting the creation of computational fields: composition of fields,

functions over fields, the evolution of fields over time, construction of fields of

values from neighbors, and restriction of a field computation to a sub-region of the

network [VDB13]”.

This calculus is based on the idea of “expressing aggregate system behavior by

a functional composition of operators that manipulate (evolve, combine, restrict)

continuous fields [VDB13]”

A key concept of Field Calculus is that these aggregate-level specifications can

also be interpreted as a local set of rules that define the iterative asynchronous

execution of computation rounds. The local, round-based computational model for

device δ is represented in the fig. 2.1

Computational Model

1. sleep for some time;

2. gather incoming messages from neighbors in the form of neighboring fields

mapping neighbors identifiers to their shared computation values;

3. perceive contextual information through sensors;

4. retrieve stored information about the previous round execution;

5. evaluate the program P, manipulating the data values received by neighbors,

perceived from the context or retrieved from local memory;

6. store some data to be used in the following round and emit a message to all

neighbors with information about the computation outcome;

7. go back to sleep.

It is said that the device δ fires when performing the steps 2-6.

4 CHAPTER 2. BACKGROUND
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Figure 2.1: The local, round-based computational model for device δ

2.1.1 Field Calculus’ Syntax

The core syntax of the FC is shown in fig. 2.2, where we can see the following

elements:

• a program P, consisting of a sequence of function declarations and a main

expression;

• function declarations F, which consists of the name of the function d, a list

of variables x̄ representing parameters, and a function body e;

• expressions e model an entire field evolution. A more detailed explanation

of expressions is given in section 2.1.2;
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P ::= F e program

F ::= def d(x̄){e} function declaration

e ::= x | v | (x̄) → e | if(e0){e1}{e2} | nbr{e} | rep(e0){(x) → e} expression

f ::= d | b| (x̄) → e function name

v ::= l | ϕ value

l ::= c(l̄)| f local value

ϕ ::= δ̄ 7→ l̄ neighbouring field value

Figure 2.2: Field Calculus syntax[AVD+19].

• a value v can be either a neighboring field ϕ or a local value l. When the

device δ fires, l represents data produced by δ, while ϕ represents a field that

maps neighbors of δ to their local values;

• in a higher-order extension of the model proposed in [AVD+19], l can be

either a data value or a function value;

2.1.2 Informal Semantics

Hereby are presented the four core field manipulation expressions, previously men-

tioned in the section 2.1.1:

• rep(e0){(x) → e} is the “repeat” construct, representing time evolution and

it is used to dynamically changing fields. At each computation round, the

device δ yields the result of the application of the anonymous function (x) →
e to the value of the rep expression at the previous round, then the same

anonymous function is applied to the initialization expression e0;

• nbr{e} is the neighboring field construction expression, modeling device-to-

neighbor interaction and mapping each neighbor of δ to the result of the

expression e;

• if(e0){e1}{e2} 1 represents domain restriction. It is a lazy-evaluating branch

1In some of the current implementations of FC, including the one presented in this thesis,
this expression is often called “branch”
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construct, computing e1 on devices in the restricted domain Dt where e0 is

true and e2 on devices in the restricted domain Df where e0 is false. Since

the device delta does not compute the other branch of the expression, there

are two important consequences:

– any nbr{e} expression in the opposite branch of the domain cannot

communicate with the device δ since it never computes it;

– if δ evaluated e1 in its previous rounds, all rep-expressions in e2 will

start from scratch. Similarly, values stored for rep-expressions in e1 will

be lost so that also they will start from scratch in the next round.

This means that the evaluation of e1 and e2 proceeds in complete isolation

from one domain to the other;

• e(e1, ..., en), where n >= 0 and e evaluates to a field of function values, is

the function call expression.

2.2 The ScaFi Framework

ScaFi is one of the most actively researched and maintained implementations of

AC. It is hosted in the Scala language, a powerful and expressive JVM-based

language that brings functional programming to the JVM ecosystem to achieve

expressiveness, safety and scalability. Although ScaFi is not the only AC imple-

mentation, compared to other aggregate programming languages it “provides a

more high-level platform that might support agile prototyping for research and

easier integration with other tools and environments for distributed systems (cf.

the Web and Android) [AVD+19]”, representing a valuable tool for scientific re-

search.

ScaFi Architecture

ScaFi, as a software artifact, consists of Scala DSL and API modules for writing,

testing and running aggregate programs. The architecture of the ScaFi framework

shown in figure 2.3 consists of the following components:

CHAPTER 2. BACKGROUND 7



2.2. THE SCAFI FRAMEWORK

Figure 2.3: The ScaFi Architecture

• scafi-commons: provides basic abstractions and utilities such as temporal

and spatial abstractions;

• scafi-core: provides the aggregate programming DSL, consisting of syntax,

semantics and a virtual machine together with a standard library of func-

tions;

• scafi-stlib-ext: provides extra functionalities that require external depen-

dencies and hence are kept separate from the core;

• scafi-simulator: provides a basic support for simulating aggregate systems;

• scafi-simulator-gui: provides a graphical user interface for the simulator;

• spala: provides an actor-based aggregate computing middleware based on

the Akka framework;

• scafi-distributed: provides an integration layer between Scafi and spala;

In particular, this thesis follows up on a project that will be later introduced

which took inspiration from a subset of the scafi-core module.
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2.3. FCPP

2.3 FCPP

FCPP [Aud20] is an implementation of the FC model based on the C++ program-

ming language. It has been designed and developed to bring the AC paradigm to

resource-constrained devices that cannot support the JVM. It does so by provid-

ing an extensible C++ library and a performance-oriented simulator that allows

the developer to speed up the development process of aggregate programs.

FCPP Architecture

The FCPP library consists on several header files, divided in three main conceptual

layers, as shown in fig. 2.4

Figure 2.4: The FCPP Architecture

• components: this layer provides core abstractions such as node and net,

that are obtained by combining a sequence of components in a mixin-like

fashion;

• aggregate functions: this layer provides the actual implementation of the

FC as templated functions that use node and net in their specification;

• data structures: this layer provides the implementation of the data struc-

tures used by the components and the aggregate functions layers.

CHAPTER 2. BACKGROUND 9



2.4. THE RUST PROGRAMMING LANGUAGE

2.4 The Rust Programming Language

The Rust Programming Language[KN] is a multi-paradigm, general-purpose pro-

gramming language designed originally for systems-level development. It strives

to achieve both execution speed and memory safety and efficiency while provid-

ing zero-cost abstractions and high-level features that are unusual for low-level

programming languages such as C or C++. In this section, we will go through

Rust’s main features and asses whether this language is suitable to develop an AC

implementation that can run on thin devices or not.

2.4.1 Rust’s Basic Features

Variables and mutability

Like the majority of today’s programming languages, Rust supports storing values

inside variables for referencing them in various sections of the program.

The developer can store a value inside a variable through a let statement:�
1 let x = 5;
� �

In Rust, even if it is a statically typed language, the type of the variable can

be omitted thanks to the type inference mechanism. This means that the compiler

can figure out the type of the variable by looking at the value assigned to it. In

this case, the type of x is i32, which is a 32-bit signed integer.

Another important feature of Rust variables is that they are immutable by

default. This means that once a value is assigned to a variable, it cannot be

changed. For example, the following code will not compile:�
1 let x = 5;

2 x = 6; // error: cannot assign twice to immutable variable ‘x‘
� �
Instead, the developer can opt out of the mutability by using the mut keyword:�

1 let mut x = 5;

2 x = 6; // this code compiles
� �
10 CHAPTER 2. BACKGROUND



2.4. THE RUST PROGRAMMING LANGUAGE

Data Types

The Rust language supports a wide range of data types that can be both found

in low-level programs and in high-level designs. These data types can be divided

into two main categories: scalar types and compound types. For scalar types, the

following are supported:

• Integers: both signed and unsigned integers of different sizes. In particular,

rust supports 8, 16, 32, 64, and 128-bit signed and unsigned integers;

• Floating-point numbers: both 32 and 64-bit floating-point numbers;

• Booleans: a boolean type that can be either true or false;

• Characters: the language’s most primitive alphabetic type, represented by

a single Unicode scalar value.

For compound types, the following are supported:

• Tuples: the simplest form of product type in Rust, represented by a collec-

tion of values of possibly different types;

• Arrays: a collection of values of the same type. Unlike other languages,

Rust arrays have a fixed length.

In addition to these compound types, Rust offers several other collections; for

example:

• Vectors: a collection of values of the same type. Unlike the arrays, Rust

vectors have a dynamic length;

• Strings: a growable UTF-8 encoded string type;

• Hash Maps: a collection of key-value pairs, implemented as a hash table.

CHAPTER 2. BACKGROUND 11
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2.4.2 The Ownership System

Rust’s Ownership System is its most unique feature and is a core part of how the

language achieves memory safety without the need for a garbage collector. The

term ownership refers to a set of rules that govern how a program’s memory is

managed and it is enforced by the compiler, meaning that if a program violates

them, it won’t compile. This means that none of these features will cause runtime

overhead for the program.

Ownership Rules

The Rust’s ownership rules are the following:

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

This means that a variable’s validity (and presence in memory) is tied to the

scope of the variable’s owner: when the owner’s scope is over, the compiler will

automatically call the drop function on every owned variable, freeing the memory

associated with it and making it so that the variable is no longer valid.

Moving and Copying

The ownership system has implications on what happens when a variable of a

certain type is copied. For example in the following code:�
1 let x = 5;

2 let y = x;
� �
The value of x is copied into y. This means that there are now two variables

on the stack both with the value of 5. This is possible because x is an integer-type

variable, and integers have a fixed and known size at compile time, so they can be

pushed cheaply onto the stack.

However, if we analyze the following code:

12 CHAPTER 2. BACKGROUND
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�
1 let s1 = String ::from("hello");

2 let s2 = s1;
� �
Since s1 is a String type, which does not have a known size at compile time,

s1 will consist of a pointer in the stack, pointing to a heap-allocated memory that

contains the actual string data, as shown in the fig. 2.5.

Figure 2.5: Representation of the memory layout of a string in Rust

When s1 gets copied into s2, only the pointer in the stack is copied, so that

the memory layout of the program will look like the one in fig. 2.6.

Figure 2.6: Representation of the memory layout of a string in Rust after the copy
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According to the ownership rules, when s1 and s2 go out of scope, one may

think that the memory will be freed twice, causing a double-free error. However,

in reality, after the copy, the compiler will not consider s1 to be valid anymore,

so when s1 goes out of scope, the memory will be freed only once, as shown in

fig. 2.7.

Figure 2.7: Representation of the memory layout of a string in Rust after the copy
and the end of the scope of s1

In this case, it is said that the variable s1 has been moved into s2. This means

that s1 is no longer valid and cannot be used anymore. This happens because, by

default, Rust does not create deep copies of variables of types that don’t have a

known size at compile time. After all, creating a deep copy of such a variable would

cause the allocation of a new memory block on the heap, an expensive operation

both in terms of execution time and memory usage. If the developer needs to

create deep copies of variables stored in the heap, they can explicitly use the clone

method, which will create a new memory block on the heap and copy the data

into it.
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Ownership and Functions

Similarly to what happens during the variable assignment, passing a variable to a

function will cause it, depending on its type, to be moved or copied, as shown in

the listing 2.4.2.�
1 fn main() {

2 let s = String ::from("hello");

3 takes_ownership(s);

4 let x = 5;

5 makes_copy(x);

6

7 }

8

9 fn takes_ownership(some_string: String) {

10 println!("{}", some_string);

11 }

12

13 fn makes_copy(some_integer: i32) {

14 println!("{}", some_integer);

15 }
� �
Returning values from functions will also cause ownership to be transferred, as

shown in the listing 2.4.2.�
1 fn main() {

2 let s1 = gives_ownership ();

3

4 let s2 = String ::from("hello")

5

6 let s3 = takes_and_gives_back(s2);

7 }

8

9 fn gives_ownership () -> String {

10 let some_string = String ::from("yours");

11 some_string

12 }

13

14 // This function takes a String and returns one

15 fn takes_and_gives_back(a_string: String) -> String {

16 a_string

17 }
� �
References and Borrowing

Instead of taking ownership of a variable and then returning it to the caller, it is

possible to pass a reference to the variable to the function, so that the function can
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use the variable without taking ownership of it. For a function to take a reference

to a variable, it is sufficient to prefix the type definition of the variable with an

ampersand (&). By default, references are immutable, meaning that the function

cannot modify the value of the variable. If the function needs to modify the value

of the variable, it is possible to take a mutable reference to it by using the &mut

keyword.

2.4.3 Functional Features of Rust

In this subsection, we will discuss some of the Functional Programming (FP)-

adjacent features of Rust.

Product Types

In FP, product types are types that combine n values of possibly different types.

In Rust, it is possible to define Product types by using the struct keyword. In

particular, one can define a product type in two ways as shown in the listing 2.4.3.�
1 // Simple tuple struct without named fields

2 struct Point(i32 , i32);

3

4 // Struct with named fields

5 struct Person {

6 name: String ,

7 age: u8,

8 address: String ,

9 }
� �
It is also possible to add functionality to the ADTs created by using the impl

keyword, as shown in the listing 2.4.3.�
1 struct Point(i32 , i32);

2

3 impl Point {

4 pub fn new(x: i32 , y: i32) -> Point {

5 Point(x, y)

6 }

7

8 pub fn x(&self) -> i32 {

9 self.0

10 }

11

12 pub fn y(&self) -> i32 {
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13 self.1

14 }

15 }
� �
Sum Types and Pattern Matching

In FP, a sum type represents a choice between some types. In Rust, we can define

Sum types by using the enum keyword. It is also possible to perform pattern

matching over a sum type, as it is shown in the listing 2.4.3.�
1 // Here we define a simple sum type

2 enum List {

3 Cons(i32 , Box <List >),

4 Nil ,

5 }

6

7 // This function returns an Option that contains a reference to the first element

of the list

8 fn head(list: &List) -> Option <&i32 > {

9 // In Rust , we can use pattern matching to destructure a sum type

10 match list {

11 List::Cons(value , _) => Some(value),

12 List::Nil => None ,

13 }

14 }
� �
Polymorphism

Rust supports polymorphism through traits. Rust’s traits are similar to Haskell’s

typeclasses and they allow us to define a particular functionality that a particular

type has. For example, we can implement Haskell’s Show typeclass in Rust as

shown in the listing 2.4.3.�
1 // Here we define a trait for converting a type to a string.

2 trait Show {

3 fn show(&self) -> String;

4 }

5

6 // Then we can implement it for some types.

7 impl Show for Point {

8 fn show(&self) -> String {

9 format!("({}, {})", self.x(), self.y())

10 }

11 }
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12

13 // Traits can also be automatically derived in some cases.

14 #[ derive(Debug)]

15 struct Point3D(i32 , i32 , i32);

16

17 // Traits can also be used as bounds for generic types.

18 fn print_showable <T: Show >(s: T) {

19 println!("{}", s.show());

20 }
� �
Lambdas and Closures

In FP, lambda functions or anonymous functions, are functions that are not bound

to a name. Moreover, closures are lambda functions that can “capture” the en-

vironment in which they are defined. In Rust, both lambdas and closures are

supported, though they are both called closures. Like in other languages, Rust

closures can be assigned to variables and passed to functions. When defining a

closure in Rust, it is important to reason about the ownership of the variables that

are captured by it. The listing 2.4.3 shows some examples of closures in Rust.�
1 // A simple closure that adds 5 to a number. Note that the type

2 // parameter of x can be omitted.

3 let add_five = |x: i32| x + 5;

4

5 // An example of a closure that captures its environment

6 fn add_prefix () -> impl Fn(&str) -> String {

7 let prefix = "Mr.";

8 // This closure needs to take ownership of prefix , so it isn ’t freed when the

scope of the add_prefix function ends.

9 move |string: &str| format!{"{} {}", prefix , string}

10 }
� �
Iterators

The Iterator pattern allows to traverse collection of elements in a particular man-

ner, performing some task on each element in turn. The iterator is responsible for

the traversal logic so that the developer does not need to reimplement it each time.

In Rust, the Iterator pattern is implemented through the Iterator trait, which is

implemented by the standard library’s collections:�
1 trait Iterator {

2 type Item;
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3 fn next(&mut self) -> Option <Self::Item >;

4 //Other default methods omitted

5 }
� �
The developer can also implement the Iterator trait for his custom types, en-

abling many functionalities that are divided into the following categories:

• Consumer Adaptors: these are methods that take ownership of the it-

erator because they traverse it using its next method, thus consuming it.

Examples of consumer adaptors are reducing methods like sum;

• Iterator Adaptors: these are methods that don’t take ownership of the

iterator, since they take an iterator and return another, modified one. An

example of an iterator adaptor is the map method, which applies a function

to each element of the iterator;

Error Handling

Rust provides mechanisms for error handling that are equivalent of the ones we

can find in most of the modern functional programming languages: Options and

Results. The Option type models a value that can be absent and is implemented

through an enum that can have two variants: Some, which contains a value, and

None, which represents the absence of the value. This type offers many functions

to manipulate its hypotetical value, such as map, for each and unwrap, which

attempts to get the value of the enum if present, panicking (the Rust equivalent of

throwing an exception) if the value is not present. Another common mechanism

for error handling in rust is the Result type, which represents a computation that

may fail. This type is similar to the “Either” type of some functional languages

like Haskell or Scala, and it is also implemented with an enum that can have two

variants: Ok, which contains a value, and Err, which contains an error value. This

type also offers many functions to operate with it, such as unwrap, unwrap or, map

and map err. Since both of these types are enums, it is possible to deconstruct

them via pattern matching.
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2.4.4 Metaprogramming in Rust

In computer science, metaprogramming is the technique by which a programmer

can write code that generates or manipulates other code. In Rust, this technique

is enabled by its powerful macro system. There are two main families of macros

in Rust: declarative macros and procedural macros.

Declarative Macros

Declarative macros are the most common type of macros in Rust. They are invoked

similarly to functions, however, they can have a variable number of arguments

and can be called with different types of parenthesis. At their core, declarative

macros are similar to match expressions, but instead of matching against a value,

they match against the Rust code that is passed to the macro, which can also

include but it’s not limited to expressions. The listing 2.4.4 shows an example of

a declarative macro that implements the vec! macro.�
1 #[ macro_export ] // export the macro to make it visible to other modules

2

3 // macro_rules! is a macro that defines a new macro with the name and body that

follows the invocation

4 macro_rules! vec {

5 // The macro ’s body is similar to a match expression and can contain several

(...) => { ... } cases

6 // If the code passed to the macro matches the pattern , the code in the block

is expanded

7 // In this case , this pattern matches a list of expressions separated by

commas.

8 // The $() syntax is used to define a variable. In this case , $x is of type

expr , which means it can match any Rust expression.

9 // There are several types of variables that can be used in a macro , such as

expr , ident , block , etc.

10 ( $( $x:expr ),* ) => {

11 {

12 let mut temp_vec = Vec::new();

13 // This special syntax allows to perform a repetition over the

elements of the input

14 $(
15 temp_vec.push($x);
16 )*

17 temp_vec

18 }

19 };

20 }
� �
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This thesis will not introduce the reader to procedural macros, as they consti-

tute a deeply technical topic that is not relevant to the scope of this work.

2.4.5 Why Rust

As shown in the previous sections, Rust is a general-purpose programming lan-

guage designed with a focus on performance and safety, while providing many of

the high-level abstractions that are typical of modern programming languages. In

particular, it has comparable performance to C and C++, while also granting a

higher degree of robustness coming from the borrow checker, which ensures mem-

ory safety and a strong type system that enforces type safety. These features

make Rust a good choice for developing software that could be run both on thin

devices and in more performant systems, and thanks to its cross-compilation fea-

tures, it simplifies the task of maintaining a codebase that can be run on different

platforms. Moreover, Rust’s powerful macro system allows for the possibility of

writing a high-level DSL, making it a good candidate for implementing an AC

framework that can standardize the development of aggregate programs.

2.5 Towards a Rust-based AC Implementation:

the RustFields Project

The RustFields Project[CMPV23] was the first attempt to bring AC to thin devices

by exploiting a modern programming language like Rust. The project aimed to

reach its goals by developing two lines of research:

• A pure, Rust-based implementation of AC in the same vein as the ScaFi

framework;

• Amixed approach that aims to mix ScaFi’s highly expressive API with Rust’s

performance and efficiency;
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2.5.1 RustFields Architecture

As stated in the official documentation of the project:

“ Since the project was meant as an exploration of different options for bringing

aggregate programming into native contexts, we decided to explore both solutions.

The resulting architecture reflects this choice: in fact, we decided to develop a

standalone aggregate programming framework in the Rust language, while also

experimenting with different ways to integrate it with the Scala ScaFi’s ecosystem.

”

The resulting architecture reflects this choice and this is made evident in the

diagram in fig. 2.8.

Figure 2.8: The RustFields Architecture

In the architecture diagram shown in fig. 2.8, the RuFi-core is responsible for

implementing in Rust the core concepts of the new AC implementation, structured

in a way that is somewhat similar to the ScaFi’s core. Then, an integration layer

was built on top of the Rust core to allow communication between Scala and Rust

code. From then, the project development was divided into two main branches:

• The expansion of the RuFi core, which aimed to serve as a base for a fully-

fledged AC implementation in Rust;
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• The development of the integration layer, aimed to bring the best of both

worlds by allowing the developer to use the expressive API of ScaFi with the

performance and efficiency of Rust.

The design of the RuFi-core component is of particular interest since this thesis

aims to expand it and further develop an AC implementation in Rust, and it will

be discussed later in the Chapter 4.

CHAPTER 2. BACKGROUND 23



2.5. TOWARDS A RUST-BASED AC IMPLEMENTATION: THE
RUSTFIELDS PROJECT

24 CHAPTER 2. BACKGROUND



Chapter 3

Analysis and Requirements

In this chapter, we will present the goal of this thesis and describe how it will be

achieved. From here, an organized structure of requirements will be presented.

3.1 Thesis’ Goal

This thesis is within the same scope and ambit as the RustFields project, i.e. en-

abling the execution of aggregate programs on thin devices that would not support

the JVM. Specifically, this thesis aims to continue in this direction through the

development of four objectives:

1. test, validate and possibly improve the design of the RuFi-core module;

2. develop a new module, RuFi-distributed, that will enable the distributed

execution of aggregate programs within a network of devices;

3. develop and test an aggregate program that can be executed on a network

of devices;

4. implement a demonstration of the whole system’s functioning.

3.2 Requirements Breakdown Structure

From the thesis’ goal and objectives, it is possible to devise a set of tasks that

need to be accomplished. Each task can be further refined in sub-tasks that
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constitute the requirements for the main task completion. Following this approach,

a complete breakdown of the requirements emerges, as shown in this section.

1. RuFi-core: this requirement category is related to the objective 1: testing

and improving the RuFi-core module.

(a) expand the “by round” test suite;

(b) implement functions to assert the equivalence of two aggregate pro-

grams;

(c) expand the test suite with “by equivalence” tests;

(d) investigate how to simplify the development of aggregate programs via

Rust’s macros;

2. RuFi-distributed: this requirement category is related to the objective 2:

developing the RuFi-distributed module.

(a) design an abstraction for networking operations;

(b) implement a structure to be exchanged as a message between processes

or machines;

(c) implement the serialization logic for Export;

(d) design an abstraction for a message queue;

(e) design an abstraction for neighbor discovery;

(f) implement the computational model shown in 2.1;

3. Aggregate Program: this requirement category is related to the objective

3: developing and testing an aggregate program.

(a) Implementation: implement a simple gradient aggregate program us-

ing core constructs and builtins:

i. implement the mux construct;

ii. implement the foldhood plus builtin;

iii. implement the gradient program;

(b) Validation: test and validate the aggregate program via unit testing;
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4. Demonstration: this requirement category is related to the objective 4:

implementing a demonstration of the whole system’s functioning.

(a) implement a simulation of the aggregate program execution locally on

a single process;

(b) implement a simulation of the aggregate program execution distributed

across multiple processes hosted by the same machine;

(c) implement a simulation of the aggregate program execution distributed

across multiple machines;

(d) Reduce Memory Footprint: this subset of requirements is an enabler

for the main goal of bringing AC to thin devices:

i. profile memory consumption;

ii. reduce clone operations inside function implementations where pos-

sible;

iii. change the core constructs and builtins to accept references to the

Virtual Machine instead of owning it;
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Chapter 4

Design

This chapter aims to give the reader a comprehensive view of this thesis’ design.

First, we will present the architectural design of the system, then we will shift the

focus on the detailed design, where the system will also be described in terms of

behavior and interaction.

4.1 Architectural Design

In this section, we will present and discuss RuFi’s architectural design, shown in

fig. 4.1.

In the figure, we can see the following components:

• rf-core: this component defines key abstractions, such as the fundamental

aggregate operators, builtins and a virtual machine;

• rf-distributed: this component defines concepts related to the distributed

execution of aggregate programs. In particular, it defines core abstractions

related to networking and message passing, as well as an implementation of

the computational model discussed in 2.1;

• rf-distributed-impl: this component exposes a standard implementation

for the concepts defined in rf-distributed. The choice of separating the

abstraction definitions and the implementations in two modules will be dis-

cussed in chapter 5;
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Figure 4.1: RuFi’s architectural design

• rf-gradient: this component is a library exposing the gradient algorithm as

an aggregate program.

4.1.1 RuFi Core

As mentioned in 4.1, the module RuFi Core contains all the fundamental abstrac-

tions needed to start writing and evaluating aggregate programs. Its structure is

represented by the diagram in figure fig. 4.2.

• round vm: This module defines a virtual machine for executing and eval-

uating aggregate programs and also other related concepts like the VM’s

status, the path, the execution context and the device exports, all of which

will be discussed in more detail in section 4.2;

• lang: this module defines the fundamental aggregate operators, such as rep,

nbr, foldhood, branch and some important builtin functions like foldhood plus

and mux ;

• macros: this module exports some declarative macros that aim to simplify

the writing of aggregate programs;
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Figure 4.2: RuFi Core’s architectural design

• execution: this module contains functions for evaluating aggregate pro-

grams alongside the virtual machine.
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4.1.2 RuFi Distributed

This module, as described in 4.1, defines concepts related to the distributed ex-

ecution of aggregate programs. Its structure is represented by the diagram in

fig. 4.3.

Figure 4.3: RuFi Distributed’s architectural design

In the diagram, we see the following elements:

• network: this module defines abstractions for networking operations;

• mailbox: this module defines the logic of incoming message processing;

• time: this module defines some time-related operations that can be leveraged

during the execution cycle;

• discovery: this module exposes traits for the discovery of possible neighbors

and the logic for setting up neighboring sensors;

• platform: this module brings all the other functionalities together through

the platform structure, which is responsible for managing the execution cycle

of the aggregate programs;
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4.2 Detailed Design

This subsection aims to explain in more detail some design choices that are impor-

tant to understanding the whole system. After that, the system will be analyzed

in terms of behavior and interaction.

4.2.1 RuFi Core

Round VM

The Round Virtual Machine is the operating heart of the RuFi framework. It is

responsible for managing the state of the computation and generating the Abstract

Syntax Tree (AST) of the aggregate program. Each core language construct lever-

ages the VM functionalities in its implementation. In the class diagram in figure

4.4, we can see the elements that compose the VM.

The Slot is a representation of a core construct of the AC inside the AST. A

Path is a sequence of Slots, denoting a chain of aggregate operations.

The Export represents the entire AST of the aggregate program, decorated with

the value computed at each Path, and it is shared between neighbors during each

computation round.

The VMStatus encapsulates the execution state: it has a representation of the

execution stack and the current Path being evaluated.

The Context represents the execution context for the device and contains relevant

information such as the device identifier and the device’s sensors alongside the

exports of all the neighbors. This means that during the computation process,

each device has the AST of its neighbors. This aspect is crucial to implement

neighboring operations.

The RoundVM is responsible for generating the AST and evaluate functions, and it

does so with the nest 5.2.1 function, which gets executed whenever a core construct

is called and causes the VM to push a new Slot into the current Path. A more

detailed explanation of this function will be given in chapter 5.
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Figure 4.4: Round VM class diagram

Language

The language includes all the core constructs and built-in functions. Since each

core construct call should grow the AST by one Slot, each language construct and

built-in function has a dependency on the RoundVM, and so do the expressions

that can be passed to them. This is reflected in their signatures, as shown in listing

4.2.1.�
1 mod lang {

2 pub fn nbr <A, F>(vm: &mut RoundVM , expr: F) -> A

3 where

4 // F is a generic type bound that represents a function that takes a

mutable reference to a RoundVM and returns a value of type A

5 F: Fn(&mut RoundVM) -> A,
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6 {

7 //call vm.nest with the Nbr slot , passing also expr to it and then return

the result

8 }

9

10 pub fn rep <A, F, G>(vm: &mut RoundVM , init: F, fun: G) -> A

11 where

12 F: Fn(&mut RoundVM) -> A,

13 // G is a generic type bound that represents a function that takes a

mutable reference to a RoundVM and a value of type A and returns a

value of type A

14 G: Fn(&mut RoundVM , A) -> A,

15 {

16 //...

17 }

18

19 pub fn foldhood <A, F, G, H>(vm: &mut RoundVM , init: F, aggr: G, expr: H) -> A

20 where

21 F: Fn(&mut RoundVM) -> A,

22 // G is a generic type bound that represents an aggregator function that

takes two values of type A and returns a value of type A

23 G: Fn(A, A) -> A,

24 H: Fn(&mut RoundVM) -> A,

25 {

26 //...

27 }

28

29 pub fn branch <A, B, TH, EL >(vm: &mut RoundVM , cond: B, thn: TH, els: EL) -> A

30 where

31 // B is a generic type bound that represents a function that takes no

arguments and returns a boolean

32 B: Fn() -> bool ,

33 // TH and EL are generic type bounds that represent functions that take a

mutable reference to a RoundVM and return a value of type A.

34 // TH is the type of the function that will be called if the condition is

true , and EL is the type of the function that will be called if the

condition is false.

35 // We need two different type bounds here because in Rust , closures have

unique types , even if they have the same signature.

36 TH: Fn(&mut RoundVM) -> A,

37 EL: Fn(&mut RoundVM) -> A,

38 {

39 //...

40 }

41 }
� �
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4.2.2 RuFi Distributed

The Distributed module of RuFi has the goal of enabling the distributed execution

of aggregate programs. A key concept defined in this module to reach this goal

is the Platform. This structure is responsible for managing the execution cycle of

aggregate programs, as well as the communication between neighbors, and it does

so by leveraging the other concepts defined in the module. A representation of the

main concepts in the module is shown in fig. 4.5.

Figure 4.5: RuFi Distributed class diagram

A more detailed explanation of the module’s components’ functioning will be

given in sections 4.2.3 and 4.2.4.

4.2.3 Behavior

In this section, we will showcase the behavior of a device when executing an ag-

gregate program, which is represented by the activity diagram in fig. 4.6.

The activities represented in the diagram 4.6 closely resemble the computa-

tional model in 2.1. It is worth noting that the proposed behavior represents a

synchronous execution cycle, where all the steps are performed in a sequential or-

der. It is possible to extend this design to support the asynchronous execution of
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Figure 4.6: Device behavior

some of the steps like the discovery process, which could be done in parallel with

the computation cycle. However, this solution would require the employment of an

asynchronous runtime, which is a requirement that can be costly for certain device

architectures. As such, the proposed design takes into account the synchronous

case, leaving the asynchronous one to future developments.

4.2.4 Interaction

In this section, we will describe the interaction between devices during the dis-

tributed execution of an aggregate program, focusing in particular on the net-

working operations design. Although there is no strict requirement for the com-

munication protocol between devices, the proposed design models the interaction

between nodes via a publish-subscribe model akin to the one used in popular pro-

tocols like MQTT. As such, the following sequence diagrams will feature a Broker
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participant, whose design falls out of this thesis’ scope, who is responsible for

forwarding and broadcasting messages between devices.

Network Creation

The behavior of the system when a device is added to the network is represented

by the sequence diagram in fig. 4.7.

Figure 4.7: Network creation

1. The device first instantiates a new Network with an initial list of discovered

neighbor topics;

2. the Network subscribes to the neighbors’ topics via the Broker;

3. if the subscription is successful, a reference to the Network is returned to the

device; if not, an Err is returned instead.

Message Passing

The behavior of the system when a device sends a message to its neighbors is

represented by the sequence diagram in fig. 4.8.
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Figure 4.8: Message passing

1. The Device i subscribes to the topic of Device 1;

2. when Device 1 publishes a message, the Broker forwards it to Device i via

its Network instance;

3. when Device i starts a new computation cycle, one of the first steps is to

check the mailbox for incoming messages;

4. the Device i finds among other messages the one sent from Device 1, adding

the Export it to its Context for the current computation cycle.

CHAPTER 4. DESIGN 39



4.2. DETAILED DESIGN

40 CHAPTER 4. DESIGN



Chapter 5

Implementation

This chapter aims to provide an overview of important implementation choices, as

well as highlight the technologies used to develop the RuFi framework.

5.1 Crate Structure

At the highest level, the framework consists of multiple library crates. In Rust, a

crate is a standalone module that can be included as a dependency inside a project

via the cargo package manager. There are three types of crates in Rust:

• Binary crates are crates that can be compiled into an executable. An exam-

ple of a binary crate can be a program that runs on a device and utilizes the

RuFi framework.

• Library crates are crates that can be used as a dependency in other projects.

• Proc Macro crates are library crates that expose procedural macros.

The development of RuFi followed a convention that is common in the Rust

community for large projects, and that is the use of a workspace. A workspace is a

directory that contains multiple Rust crates, and it is defined by a Cargo.toml file

that lists the crates that are part of the workspace. Apart from this detail, each

crate inside the workspace is a standalone Rust project with its specific dependency

management and build configuration. In particular, there are five different library

crates in the RuFi workspace:

CHAPTER 5. IMPLEMENTATION 41



5.2. RUFI CORE

• rf-core contains the RuFi core implementation.

• rf-distributed contains the RuFi distributed implementation.

• rf-gradient contains the implementation of the gradient aggregate pro-

gram.

• rf-distributed-impl contains an implementation for the traits defined in-

side rf-distributed.

• rufi has a dependency on all the other crates and re-exports them under a

common namespace. Thanks to Rust conditional compilation, it is possible

to conditionally include or exclude entire modules from the dependency tree

via the mechanism of cargo features, making this crate a convenient tool

to access all the framework functionalities in a single, configurable depen-

dency.

5.2 RuFi Core

5.2.1 RoundVM

The listing 5.2.1 shows the Round Virtual Machine, which is represented by a Rust

struct that contains every dependency needed for executing its behavior.�
1 struct RoundVM {

2 context: Context ,

3 status: VMStatus ,

4 export_stack: Vec <Export >,

5 isolated: bool ,

6 }
� �
One of the most important functions of the RoundVM is the nest function,

which we can see in the listing 5.2.1.�
1 impl RoundVM {

2 // other RoundVM methods

3

4 pub fn nest <A: Clone + ’static + FromStr , F>(

5 &mut self ,

6 slot: Slot ,

7 write: bool ,
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8 inc: bool ,

9 expr: F,

10 ) -> A

11 where

12 F: Fn(&mut RoundVM) -> A,

13 {

14 self.status.push();

15 self.status.nest(slot);

16 let val = expr(self);

17 let res = if write {

18 let cloned_path = self.status.path().clone();

19 self.export_data ()

20 .get::<A>(& cloned_path)

21 .unwrap_or(

22 self.export_data ()

23 .put_lazy_and_return(cloned_path , || val.clone()),

24 )

25 .clone()

26 } else {

27 val

28 };

29 if inc {

30 self.status.pop();

31 self.status.inc_index ();

32 } else {

33 self.status.pop();

34 }

35 res

36 }

37 }
� �
The nest function takes as the parameters:

• self: a mutable reference to Self, the RoundVM;

• slot: the slot that should be written inside the Export;

• expr: an expression. In RuFi, expressions have the added parameter of a

mutable reference to the RoundVM, since they may be language constructs,

as will be later explained in this section;

• write: a boolean flag that determines if the value of the expression should

be written in the Export.

• inc: a boolean flag that determines if the index of the AST’s Slot in the

VMStatus should be incremented.
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The behavior of the function can be summarized as follows:

1. push the slot onto the current Path in VMStatus;

2. compute expr result;

3. if write is true, check if the export has a value for the current path, if not,

write the result to the export;

4. if inc index is true, increment the index of the VMStatus (for ast navigation);

5. return the expr result.

5.2.2 Language

The first strategy that can come to mind for implementing the Language would be

to have a Rust trait named “Language” that contains all the language constructs

as methods, and then implement it for the RoundVM via an impl Language for

block.

However, this approach has a major drawback: in fact, it clashes with Rust’s

borrowing rules. The listing 5.2.2 shows an erroneous attempt to implement the

Language trait for the RoundVM.�
1 trait Language {

2 fn nbr <A, F> (&mut self , f: F) -> A

3 where

4 F: Fn() -> A + Copy ,

5 A: Clone + ’static + FromStr;

6

7 // other constructs omitted for brevity

8 }

9

10 impl Language for RoundVM {

11 fn nbr <A, F> (&mut self , f: F) -> A

12 where

13 F: Fn() -> A + Copy ,

14 A: Clone + ’static + FromStr ,

15 {

16 self.nest(

17 Nbr(self.index()),

18 self.unless_folding_on_others (),

19 true ,

20 || match self.neighbor () {
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21 Some(nbr) if nbr != self.self_id () => match self.neighbor_val ::<A

>() {

22 Ok(val) => val ,

23 _ => f(),

24 },

25 _ => f(),

26 },

27 )

28 }

29 }
� �
The code shown so far is valid Rust code, but when attempting to implement

an aggregate program with this implementation, the flaws of this approach become

evident, as shown in the listing 5.2.2.�
1 fn main() {

2 let ctx = Context ::new(0, Default :: default (), Default :: default (), Default ::

default ());

3 let mut vm = RoundVM ::new(ctx);

4 let result: i32 = vm.nbr(|| 0); // This code compiles without errors and

result is 0.

5

6 let nested_result: i32 = vm.nbr(|| vm.nbr(|| 0)); // This code does not

compile: ‘vm‘ doesn ’t implement the Copy trait.

7 }
� �
The problematic line of code is the last one when we try to pass an aggregate

construct to the first nbr function. Since methods are not pure functions in Rust,

we need to pass a closure that captures the outer vm variable, on which we can

then call another aggregate construct. However, in order for the vm variable to

be captured, it needs to implement the Copy trait, because the closure needs to

have ownership of captured variables. Unfortunately, the RoundVM struct cannot

implement the Copy trait, since it contains the Export struct, which contains a

HashMap that has a non-Copy type as a value:�
1 pub struct Export {

2 pub slots: HashMap <Path , Rc<Box <dyn Any >>>,

3 }
� �
Since the size of Any values cannot be known at compile-time, any structure

that contains references to Any values cannot implement the Copy trait. It is

however possible for them to implement the Clone trait, via the smart pointer

“Rc”.
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The code in the following listing will then compile:�
1 let result = vm.nbr(|| vm.clone().nbr(|| 0));
� �

However, this solution has a major problem: whenever a structure is cloned, the

entire structure in memory is duplicated, meaning that every time the developer

of an aggregate program passes an aggregate construct to another, the memory

footprint of the program will increase.

The proposed implementation utilizes another approach: each aggregate con-

struct and built-in function is a pure Rust function that takes a mutable reference

to the RoundVM as a parameter. Each expression that can be passed to an ag-

gregate construct would then need a mutable reference to the RoundVM as a

parameter as well. In this way, we can combine aggregate constructs without the

need to copy or clone the RoundVM, making the code more memory-efficient. The

listing 5.2.2 shows the current implementation of the Language.�
1 // The language is now a public module that exposes pure functions

2 pub mod lang {

3

4 pub fn nbr <A, F>(vm: &mut RoundVM , expr: F) -> A

5 where

6 A : Clone + ’static + FromStr ,

7 F: Fn(&mut RoundVM) -> A,

8 {

9 vm.nest(

10 Nbr(vm.index ()),

11 vm.unless_folding_on_others (),

12 true ,

13 |vm| match vm.neighbor () {

14 Some(nbr) if nbr != vm.self_id () => match vm.neighbor_val ::<A>() {

15 Ok(val) => val ,

16 _ => expr(vm),

17 },

18 _ => expr(vm),

19 },

20 )

21 }

22

23 // other constructs omitted

24 }
� �
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5.3 RuFi Distributed

The rf-distributed and rf-distributed-impl crates are responsible for real-

izing the distributed execution of RuFi programs. The first crate contains the

definition of all the traits that are needed for this purpose, such as Network, Mail-

box and Time, as well as an implementation of the Platform since it is generic

in those traits. The second crate contains an implementation of the traits de-

fined in the first crate. The choice of having two separate crates is because the

implementation of some of the traits can be platform-specific. For example, the

rf-distributed-impl crate utilizes a popular MQTT library named Rumqtt [Byt] to

implement the Network trait. However, this library isn’t compatible to all archi-

tectures. Other very popular and widely used, libraries like the de-facto standard

asynchronous runtime Tokio [Nys] aren’t fully compatible with the entirety of de-

vices architectures. As such, the rf-distributed-impl crate is separated from the

rf-distributed crate so it can be replaced with a different implementation if needed.

5.3.1 Networking

One of the key abstractions that are present in RuFi Distributed is the Network

trait. This trait is responsible for providing the logic by which devices can send

and receive messages through the network. The listing 5.3.1 shows the definition

of the Network trait.�
1 pub trait Network {

2 fn send(&mut self , msg: Message) -> Result <(), Box <dyn Error >>;

3 fn receive (&mut self) -> Result <HashMap <i32 , Message >, Box <dyn Error >>;

4 }

5

6 #[ derive(Debug , Serialize , Deserialize )]

7 struct Message {

8 source: i32 ,

9 msg: Export ,

10 timestamp: SystemTime ,

11 }
� �
The strategy chosen to implement this trait is to have a struct that contains a

rumqttc-based MQTT Client and wraps it to adhere to the trait. Upon creation,

the struct will setup the MQTT Client and spawn a new thread that will handle

incoming messages, which will need to be “sent” back to the Network’s thread.
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In Rust, there are two ways for threads to communicate and share information,

the first one of which is through the message passing paradigm. The main idea is

represented by the slogan “Do not communicate by sharing memory; instead, share

memory by communicating”. To achieve this, Rust provides an implementation of

the channel abstraction, which is a general programming concept by which data

is sent from one thread to another. Channels have two halves:

• Sender : a cloneable type that can be used to send messages to the channel.

• Receiver : a cloneable type that receives messages from the channel.

The usage of the channel abstraction is shown in the listing 5.3.1.�
1 use std::sync::mpsc;

2 use std:: thread;

3

4 fn main() {

5 let (tx, rx) = mpsc:: channel ();

6

7 thread ::spawn(move || {

8 let val = String ::from("hi");

9 tx.send(val).unwrap ();

10 });

11

12 let received = rx.recv().unwrap ();

13 println!("Got: {}", received);

14 }
� �
So if we were to implement the communication between threads this way, the

sender half of the channel would be passed to the thread that handles incom-

ing messages (the “handler thread”), and the receiver half will remain inside the

Network instance to be used by client code to retrieve the messages (the “client

thread”). Whenever a packet is received from the handler thread, it will be sent

to the receiver half of the channel.

However, this approach has some drawbacks:

1. the receiver half of the channel needs to be actively polled to retrieve the

messages;

2. the channel is not bidirectional. This means that the handler thread cannot

store the messages and send them all at once on demand.

48 CHAPTER 5. IMPLEMENTATION



5.3. RUFI DISTRIBUTED

These drawbacks combined mean that the client thread would need to busy wait

for a single message from the network at every execution cycle, so the proposed

implementation utilizes a second approach: shared state concurrency. This is

a programming paradigm that allows multiple threads to access the same shared

state, and in Rust, it is done via the Mutex abstraction. This way, the handler

thread can directly and atomically push the incoming messages to the shared state

upon arrival, and the client thread can request them all at once from the Network

in a single call. Although programming concurrency through mutexes is generally

avoided, especially in high-level languages, due to the complexity it can bring to

the program, in this case, the mutex logic is confined to a relatively small portion

of the code and is not exposed to the client, so it has been chosen as a valid option.

The implementation for the Network trait exposed in the rf-distributed-impl

crate is the one in the listing 5.3.1.�
1 struct SyncMQTTNetwork {

2 client: rumqttc ::Client ,

3 mb: Arc <Mutex <Vec <Bytes >>>,

4 }

5

6 impl SyncMQTTNetwork {

7 pub fn new(

8 options: MqttOptions ,

9 topics: Vec <i32 >,

10 mqtt_channel_cap: usize ,

11 ) -> Result <Self , Box <dyn Error >> {

12 let (mut client , mut connection) = Client ::new(options , mqtt_channel_cap);

13 SyncMQTTNetwork :: subscribe_to_topics (&mut client , topics)?;

14 let mb: Arc <Mutex <Vec <Bytes >>> = Arc::new(Mutex::new(vec! []));

15

16 let mb_clone = Arc::clone(&mb);

17 thread ::spawn(move || {

18 loop {

19 for (_i, notification) in connection.iter().enumerate () {

20 match notification {

21 Ok(Incoming(rumqttc :: Packet :: Publish(msg))) => {

22 if let Ok(mut mb) = mb_clone.lock() {

23 mb.push(msg.payload);

24 }

25 }

26 _ => {}

27 }

28 }

29 }

30 });
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31 Ok(Self { client , mb })

32 }

33

34 fn subscribe_to_topics(client: &mut Client , topics: Vec <i32 >) -> NetworkResult

<()> {

35 for nbr in topics.clone() {

36 if let Err(e) = client

37 .subscribe(format!("nodes/{nbr}/ subscriptions"), QoS:: AtMostOnce)

38 {

39 return Err(e.into());

40 }

41 }

42 Ok(())

43 }

44 }

45

46 impl Network for SyncMQTTNetwork {

47 fn send(&mut self , msg: Message) -> Result <(), Box <dyn <Error >> {

48 let source = msg.source;

49 let to_send = serde_json :: to_vec (&msg)?;

50 self.client

51 .try_publish(

52 format!("nodes /{ source }/ subscriptions"),

53 QoS::AtMostOnce ,

54 false ,

55 to_send ,

56 )

57 .map_err (|e| e.into())

58 }

59

60 fn receive (&mut self) -> Result <HashMap <i32 ,Message >, Box <dyn Error >> {

61 let mut mailbox = MemoryLessMailbox ::new();

62

63 for u in self.mb.lock()?.iter() {

64 if let Ok(mex) = serde_json :: from_slice ::<Message >(u) {

65 mailbox.enqueue(mex)

66 }

67 }

68

69 Ok(mailbox.messages ())

70 }

71 }
� �
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5.4 RuFi Gradient

The RuFi Gradient crate contains an important example of what an aggregate

program in RuFi can be and what it looks like. Since one of the core premises of

FC is to provide key and reusable building blocks for aggregate computations, an

aggregate program is nothing more than a function that combines these building

blocks to achieve the desired behavior. The aggregate program could then be used

as a building block in a larger aggregate program, and so on.

The listing 5.4 shows the implementation of the RuFi Gradient aggregate pro-

gram:�
1 pub fn gradient(vm: &mut RoundVM) -> f64 {

2 fn is_source(vm: &mut RoundVM) -> bool {

3 vm.local_sense ::<bool >(& sensor("source")).unwrap ().clone()

4 }

5

6 rep(

7 vm,

8 |_| 0.0,

9 |vm1 , d| {

10 mux(

11 vm1 ,

12 is_source ,

13 |_vm| 0.0,

14 |vm2| {

15 foldhood_plus(

16 vm2 ,

17 |_vm| f64::INFINITY ,

18 |a, b| a.min(b),

19 |vm3| nbr(vm3 , |_vm| d) + 1.0,

20 )

21 },

22 )

23 },

24 )

25 }
� �
The core functions used in this program are:

• rep: the operator that denotes a dynamically changing field;

• mux : a branch variant that computes both the branches and returns the

result of the branch that is selected by the condition. Since both branches of

the operators are executed by the device, this construct does not restrict the
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domain like the branch operator. Instead, it is used for simple conditional

expressions;

• foldhood plus : a variant of the foldhood operator that excludes the device

from its neighborhood.

The is source function calls the Virtual Machine and reads a sensor that estab-

lishes if the device is a source. The aggregate program itself is a rep operation that

has an initial value for the distance d equal to 0.0. Then, inside the repetition,

there is a mux call that returns a value of 0.0 if the device is a source or else an

aggregation between neighboring values is performed via the foldhood plus builtin,

resulting in the minimum distance d + 1.0 being kept as a result of the whole

computation. In this way, the immediate neighbors of the source will compute a

value of 0.0+1.0, and the neighbors of the neighbors will compute 1.0+1.0, and so

on. For non-source devices that are not indirect neighbors of the source, the final

result will be the starting value for the foldhood operator of f64 :: INFINITY .

5.5 Macro-based DSL

One of the objectives of the RuFi project is to provide a user-friendly and high-level

DSL for writing aggregate programs. However, due to the Rust language’s syntax,

the current DSL isn’t as user-friendly and easily readable as the ScaFi DSL: in fact,

the developer of aggregate programs in RuFi needs to write a lot more boilerplate

code, mainly due to the RoundVM dependency of the core constructs and the

absence of high-level mechanisms like self-types and implicit parameters. The

listing 5.4 highlights this issue, as there are many instances where we explicitly

pass a RoundVM reference to an expression. To address this issue, we implemented

a set of declarative macros that can be used instead of the core constructs and

expands to a closure that takes a RoundVM reference as a parameter and passes

it to a core construct like in the following listing:�
1 #[ macro_export ]

2 macro_rules! rep {

3 ($init:expr , $fun:expr) => {{

4 |vm| rep(vm , $init , $fun)
5 }};
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6 }
� �
The listing 5.5 shows how we can avoid some boilerplate code by using the

macros instead of the core constructs when possible.�
1 pub fn gradient () -> fn(& RoundVM) -> f64 {

2 fn is_source(vm: &mut RoundVM) -> bool {

3 vm.local_sense ::<bool >(& sensor("source")).unwrap ().clone()

4 }

5

6 rep!(|_| f64::INFINITY , |vm1 , d| {

7 mux(

8 vm1 ,

9 is_source ,

10 |_| 0.0,

11 foldhood_plus! (|_| f64::INFINITY , |a, b| a.min(b), |vm2| {

12 nbr(vm2 , |_| d) + 1.0

13 }),

14 )

15 })

16 }
� �
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Chapter 6

Validation

The validation for this thesis’ work has been done on multiple axes, which will be

described in this chapter.

6.1 Unit Testing

The first layer of testing is the “Unit Testing”. In computer science, this term refers

to the act of analyzing and scrutinizing the smallest units of software possible. This

thesis adheres to Rust’s unit testing practices: each public module that is part of

the library has a corresponding and private testing module, annotated with the

conditional compilation macro #[cfg(test)], denoting this is a module that is

only compiled when the test suite is run.

Inside this module, it is possible to write test functions by annotating them with

the “#[test]” attribute. These functions can then be run with the “cargo test”

command.

As such, each module in the RuFi library crates has a corresponding testing module

containing unit test functions for them. For example, the listing 6.1 shows the unit

tests for the vm status module.�
1 // inside vm_status.rs

2

3 #[ cfg(test)]

4 mod test {

5 // this import directive lets us use the VMStatus struct and its methodss

6 use super ::*;
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7 use crate::path::Path;

8 use crate::slot::Slot ::{Nbr , Rep};

9

10 #[ test]

11 fn test_empty () {

12 let status = VMStatus ::new();

13 assert_eq!(status.path , Path::new());

14 assert_eq!(status.index , 0);

15 assert_eq!(status.neighbour , None)

16 }

17

18 #[ test]

19 fn test_fold_unfold () {

20 let mut status_1 = VMStatus ::new();

21 let mut status_2 = VMStatus ::new();

22 assert_eq!(status_1.neighbour , None);

23 assert!(!status_1.is_folding ());

24 status_1.fold_into(Some (7));

25 status_2.fold_into(Some (8));

26 assert_eq!(status_1.neighbour , Some (7));

27 assert!(status_1.is_folding ());

28 assert_eq!(status_2.neighbour , Some (8));

29 assert!(status_2.is_folding ())

30 }

31

32 // other test functions ...

33 }
� �

6.2 Integration Testing

Unit testing is a crucial practice in the development of software artifacts, but

testing each component in isolation is not sufficient to analyze every aspect of

the software produced. Another important practice is the act of testing some or

many components together, to ensure that their behavior when interacting is the

one expected, which is called “Integration Testing”. Again, this thesis adheres to

Rust’s integration testing practices: each library crate has a corresponding “tests”

directory, where integration tests are written. These tests are run with the “cargo

test” command, just like their unit counterpart.

Inside the tests directory, it is possible to create various source files for testing.

Each file is isolated from one another and is external to the library since it is

compiled as an individual crate: this means that the code inside these test files
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utilizes the library via its public API just like any other client code.

The listing 6.2 shows an example of an integration test for the RuFi library that

combines features coming from the RoundVM, Export and Language.�
1 #[ test]

2 fn export_should_compose () {

3 fn ctx() -> Context {

4 Context ::new(

5 0,

6 HashMap ::from ([( sensor("sensor"), Rc::new(Box::new (5) as Box <dyn Any >)

)]),

7 Default :: default (),

8 Default :: default (),

9 )

10 }

11

12 let expr_1 = |_vm: &mut RoundVM| 1;

13 let expr_2 = |vm: &mut RoundVM| rep(vm, |_vm1| 7, |_vm2 , val| val + 1);

14 let expr_3 = |vm: &mut RoundVM| {

15 foldhood(

16 vm,

17 |_vm1| 0,

18 |a, b| (a + b),

19 |vm2| {

20 nbr(vm2 , |vm3| {

21 *vm3.local_sense ::<i32 >(& sensor("sensor")).unwrap ()

22 })

23 },

24 )

25 };

26

27 let mut vm = init_vm ();

28 let _ = round(&mut vm, combine(expr_1 , expr_1.clone(), |a, b| a + b));

29 assert_eq! (2, vm.export_data ().root::<i32 >().clone());

30 }
� �
6.3 User Acceptance Testing

A third axes along which the thesis’ work has been validated is the “User Accep-

tance Testing”, which refers to the practice of testing the software in a real-world

scenario. In particular, this involved the development of a demo project that

exploits the RuFi framework to execute a gradient aggregate program within a

network of 5 devices, each one represented by a process running on a machine. At

an application level, the topology is linear, meaning each device i is a neighbor
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of the devices i + 1 and i − 1, excluding 1 and 5 which are the extremes of the

topology. At a deployment level, there are four processes each one simulating a

device running on a Desktop PC, while the fifth runs on a Raspberry Pi 3.

Each process communicates with the others through the MQTT protocol via the

public Mosquitto MQTT broker. A graphical representation of the network is

shown in fig. 6.1.

Figure 6.1: Network Topology

6.4 Memory Profiling

Another important aspect to consider while implementing a framework that aims

to bring AC to thin devices is memory usage. Although a deep and comprehensive

analysis of the memory usage of the RuFi framework is beyond the scope of this

thesis, a simple memory profiling with a particular focus on memory allocation

spikes has been done to ensure that the framework does not consume an exces-

sive amount of memory. In particular, the profiling has been executed for three

different execution cycles of the gradient aggregate program: 100, 300 and 500, at

a frequency of 60mhz and for two devices: the device number 1 and the device

number 3. These devices have been chosen because they have a different amount of

neighbors, which means we can see how processing multiple neighboring messages

can affect memory usage.
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The results are shown in fig. 6.2. The first group of columns shows the memory

usage for the device number 3, while the second group shows the memory usage

for the device number 1.

Figure 6.2: Memory profiling for the devices 3 and 1.

As we can see, the spike memory usage for the device with only one neighbor

rises much more slowly than the one with two neighbors.
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Chapter 7

Conclusion

The current landscape of Aggregate Programming frameworks highlights the op-

portunity to research and develop new solutions that can bring the paradigm to

a wider range of devices while providing a high-level, functional API. It is with

this objective in mind that we presented RuFi, a project that aims to leverage the

Rust programming language’s features of memory safety, performance and expres-

siveness to provide a minimal functional core for AC that can be used on multiple

platforms, including thin devices, and build high-level APIs on top of it. In par-

ticular, this thesis tackled the problems of validating and improving the existing

core of the RuFi framework, as well as the design and development of a new mod-

ule that would enable the distributed execution of Rust-based aggregate programs.

Starting by establishing a solid base regarding the context, paradigms and state-of-

the-art for Aggregate Computing and a solid foundation of the Rust programming

language concepts and idioms, we were able to identify a set of requirements and

goals for this thesis project, which were then used as a guide during the design and

development phases. Our analysis of the current state of the RustFields project

has highlighted the need for validation and improvement of the current core library,

as well as the need for a new module that would enable the distributed execution

of Rust-based aggregate programs. With these considerations in mind, we started

by thoroughly testing the core of the framework via unit testing and integration

testing, as well as developing a set of macros that will help reduce the amount of

boilerplate code one needs to write when defining an aggregate program. Then,
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we proposed the design of the new RustFields framework, RuFi, highlighting first

the architectural design of the project and its main components, and then delving

into the detailed design of such components. These designs were then used as

a guideline for the implementation phase, where we highlighted some important

tactical choices that were made. We also started collecting experimental data on

memory usage of the current RustFields framework, which will be useful for future

research and improvements.

7.1 Current Limitations

As of now, although the main goal of the thesis of providing a distributed execution

platform for the RustFields framework has been achieved, the higher-level objective

of supporting RuFi on all thin devices is still not fully accomplished. Experiments

on running the current RuFi framework in very resource-constrained devices like

the Esp32 have shown that the current implementation is not yet suitable for such

devices, as the memory usage is still too high, highlighting the need for further

research and improvement on the memory footprint of such a framework.

7.2 Future Work

The previous analysis of the limitations of the current RuFi implementation has

already suggested an important objective for future work. Nevertheless, there are

also other interesting directions to consider, such as:

• support asynchronous network communication and execution: as mentioned

before in section 5, the current solution is based on synchronous interfaces

and execution cycle. This highlights the opportunity to implement an asyn-

chronous version of the RuFi Platform that can manage and coordinate

the processes of networked communication, neighbor discovery and program

execution concurrently, allowing to take the most out of modern computer

architectures;

• support reified fields: in the current RuFi implementation, the FC’s concept

of Computational Field is technically not represented. Instead, it is derived
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by the RoundVM when executing a core construct. It would be interesting

to explore the possibility of reifying the Computational Field as a first-

class concept in the RuFi framework, allowing the constructs to explicitly

manipulate fields. This solution could streamline the core of the framework

as well as introduce the possibility of experimenting with other constructs

and extensions of the FC model;

• improve further the RuFi API and DSL: the current improvements on the

developer experience of the RuFi API and DSL are solely based on simple

Rust declarative macros and although they eliminate some of the boilerplate

code, they are still not as user-friendly as higher-level DSLs like ScaFi. A

possible future line of research could be leveraging the more powerful Rust

procedural macros, a subject that was not expanded in this thesis but could

offer many opportunities to improve the RuFi DSL.
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