
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Design and Implementation of a
Prototype Open Benchmarking
Platform for Collective Adaptive

Systems

Tesi di laurea in:
Laboratorio di Sistemi Software

Relatore
Prof. Danilo Pianini

Correlatore
Prof. Lukas Esterle

Candidato
Paolo Penazzi

IV Sessione di Laurea

Anno Accademico 2022-2023

ii

Abstract

In every domain of scientific research, the comparison between innovative solutions
and the state of the art is crucial. This practice enables the evaluation of whether
the system under examination outperforms the established reference, either com-
prehensively or in specific aspects. In various fields of computer science, tools have
been developed to benchmark new and existing solutions. On the other hand, in
the domain of collective adaptive systems, a conspicuous gap exists in software
designed to facilitate such comparisons.

The primary objective of this thesis is to create a prototype for a benchmark-
ing platform focused on Collective Adaptive Systems (CAS). By making use of
existing simulators available in the market, the aim is to establish a comprehen-
sive framework for testing, validating, and comparing these dynamic systems. The
presented platform is designed to allow users to define benchmarks, execute them,
and extract results of interest - all while preserving flexibility and extensibility.
This inherent adaptability allows for the incorporation of additional simulators
into the testbed.

An experiment has been executed to validate the framework’s anticipated func-
tionalities and understand its strengths and weaknesses. This analysis serves the
purpose of identifying areas for future improvement within the tool.

iii

iv

Contents

Abstract iii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Collective Adaptive Systems 2

1.2.2 Testing and Simulation . 4

1.2.3 Alchemist . 5

1.2.4 NetLogo . 8

1.3 Objectives . 9

2 Design 11

2.1 Domain Analysis . 11

2.1.1 Ubiquitous Language . 11

2.1.2 User Stories . 12

2.2 Requirements . 13

2.2.1 User Requirements . 13

2.2.2 Functional Requirements . 13

2.2.3 Non-Functional Requirements 14

2.3 Architecture . 14

2.3.1 Benchmark Configuration 18

2.3.2 Benchmark Results . 20

2.4 Extension . 22

2.5 Simulators . 23

3 Implementation 25

3.1 Framework . 25

3.2 Technologies . 32

3.2.1 Framework technologies . 32

3.2.2 DevOps technologies . 33

CONTENTS v

CONTENTS

4 Validation 39
4.1 Testing . 39

4.1.1 Unit Testing . 39
4.1.2 Integration Testing . 40

4.2 Evaluation . 42

5 Conclusion and Future Work 47

51

Bibliography 51

vi CONTENTS

List of Figures

1.1 Some examples of CAS. 3
1.2 Alchemist meta-model. 6
1.3 Alchemist reaction. 6
1.4 A grid of nodes in Alchemist. 7
1.5 NetLogo interface. 8

2.1 Abstract architecture of the testbed. 15
2.2 Abstract execution of a benchmark. 15
2.3 Detailed architecture of the system. 16
2.4 Detailed benchmark execution. 17
2.5 Simulator’s output processing. 21

3.1 Benchmark Model. 26
3.2 Git Flow. 33

4.1 NetLogo simulation launched by the framework. 41
4.2 Alchemist simulation launched by the framework. 42
4.3 Case of study: Benchmark result A. 45
4.4 Case of study: Benchmark result B. 45

LIST OF FIGURES vii

LIST OF FIGURES

viii LIST OF FIGURES

List of Listings

2.1 Benchmark configuration file structure: Strategy section. 18
2.2 Benchmark configuration file structure: NetLogo simulator section. 19
2.3 Benchmark configuration file structure: Alchemist simulator section. 20
3.1 Benchmark model. 25
3.2 SupportedSimulator enum. 26
3.3 Parsing of the input file. 27
3.4 ConfigFileHandler interface. 27
3.5 Listener interface. 28
3.6 CSV file cleaning in Alchemist. 28
3.7 ScenarioOutput implementation. 29
3.8 BenchmarkOutput implementation. 29
3.9 BenchmarkResult and ScenarioResult implementation. 29
3.10 Controller implementation. 30
3.11 Controller: createExecutor method. 30
3.12 Executor interface. 31
3.13 NetlogoExecutor class. 31
3.14 Custom task to generate the JAR file. 34
3.15 CI/CD workflow: build job. 35
3.16 CI/CD workflow: release job. 35
4.1 Parser tests. 39
4.2 Case of study: benchmark configuration file. 42
4.3 Case of study: Alchemist input file. 43
4.4 Case of study: gradient program A. 43
4.5 Case of study: output processing function. 44
4.6 Case of study: gradient program B. 45

LIST OF LISTINGS ix

LIST OF LISTINGS

x LIST OF LISTINGS

Chapter 1

Introduction

1.1 Motivation

In scientific research, new solutions are developed in order to improve what is

defined as the state of the art. This implies that, at some point, two different

solutions must be compared to define which one performs better, either overall or

in specific aspects. The result of this comparison must be a clear and objective

metric, that does not leave room for personal interpretation. Additionally, it is

essential to use a widely adopted, standard test protocol that executes two different

algorithms on the same problem, under the same conditions, with the possibility of

reproducing experiments. The lack of such a protocol raises concerns regarding the

reproducibility of scientific publications, as happened in some fields of Computer

Science [13, 19]. The creation of a benchmarking and testing framework can solve

these problems, by setting a standard for the comparison of different solutions.

In some application domains, such as security [17], IoT [15], and many more [14,

32], tools have been developed for benchmarking. In other fields, like Autonomic,

Organic Computing, and Collective Adaptive Systems (CAS), such frameworks

have not been created yet [8, 18]. This absence led us to focus on Collective

Adaptive Systems (CAS) [24].

CHAPTER 1. INTRODUCTION 1

1.2. BACKGROUND

1.2 Background

1.2.1 Collective Adaptive Systems

Collective Adaptive Systems (CAS) are a complex type of distributed network

which are composed of many heterogeneous entities, each with its own capabilities

and goals. These systems are characterized by the ability to adapt their behavior

to dynamically changing open-ended environments [9] and by the pursuit of a

collective goal. The latter is achieved through the collaboration of the systems’

entities, without a specific external or internal central control [20, 21]. In fact,

CAS often adopts cooperative operating strategies to run distributed decision-

making mechanisms [2]. The properties and behavior of these systems make them

particularly challenging to test and evaluate their performance [3].

Nowadays, many systems are adaptive and collective. Examples include drone

swarms tasked with monitoring an area (as Figure 1.1a shows), wearable devices

to manage crowd congestion during a public event (represented in Figure 1.1b),

cars on streets connected to handle traffic [24].

Figure 1.1b is provided by 1.

CAS programming The spread of these systems has led to a shift in computa-

tion, which is now divided and distributed across various devices in the network,

introducing an additional level of complexity in programming these systems. De-

velopers must consider issues such as communication between devices, concurrency,

or failures. Furthermore, as these systems grow in complexity, it becomes chal-

lenging to create solutions that are extensible, modular, and easily testable [10].

Several approaches have been identified over the years for programming CAS, or

more generally, adaptive distributed systems.

Agent-based models [22] associate each device with the behavior of an agent

[29], which has sensors and actuators to interact with the environment and the

ability to communicate with other agents. This is the paradigm used in the Net-

Logo simulator.

1https://www.unibo.it/it/studiare/dottorati-master-specializzazioni-e-altra-
formazione/insegnamenti/insegnamento/2023/483706

2 CHAPTER 1. INTRODUCTION

1.2. BACKGROUND

(a) Drone swarm.

(b) Crowd management.

Figure 1.1: Some examples of CAS.

The SCEL language [25], the first to use the paradigm defined as attribute-

based programming, establishes a formal approach to the interaction between de-

vices. This paradigm defines the system as a series of devices, each with a set of

attributes representing the properties of the component.

Aggregate programming is a new approach to developing complex distributed

systems that abstract from individual devices, focusing on programming the col-

lective. Through a layer that handles and hides some problematic aspects of these

networks, such as communication between devices and details of individual enti-

ties, it is possible to simplify the design and maintenance of these systems [6, 7].

Aggregate programming is based on the concept of a computational field, which

is a global map associating each device in the network with its local value, and on

that of field calculus, a minimal core that provides basic constructs for working

with fields [34]. Other notable approaches exist, including SOTA [1] and TOTA

[23].

CHAPTER 1. INTRODUCTION 3

1.2. BACKGROUND

1.2.2 Testing and Simulation

In every field of engineering, testing is a fundamental part of the development

process. It refers to the process carried out to verify and validate a system, ac-

cording to its requirements [30]. Testing is important to evaluate the behavior of

newly developed algorithms against state-of-the-art solutions. This allows us to

understand whether a newly developed solution is better than an existing one in

a certain scenario.

Adaptive systems testing introduces a series of challenges and difficulties, many

of which stem from the intrinsic nature of these systems. Given their complexity,

the use of a single simulator is not sufficient to test all their features. In fact, it

is often necessary to employ multiple simulators and combine the results obtained

to understand the system’s behavior. This technique is termed co-simulation and

introduces various issues, such as communication delays, approximations, and diffi-

culties in synchronizing simulators [31]. Since these systems are adaptive and react

to mutations in their environment, it is natural to want to support the injection

of changes [8]. Therefore, a complete testbed must be able to command different

existing tools, support various execution environments, and allow the user to test

the system in its entirety.

In Computer Science, the simulation is the process of executing software in a

controlled environment to evaluate its behavior. Simulations can be used to test

the correctness of a program, evaluate its performance, or understand its behavior

in a specific scenario. The key point of a simulation is to execute the software

under controlled and repeatable conditions to compare different executions [13].

This cannot be done without a simulator, which provides the user with all the

tools needed to run the simulation [4, 5]. The importance of simulators becomes

clear when testing CAS. Creating a real environment to test a program, such as a

network of 100 drones or a crowd of 1000 people, is not feasible. Simulators allow

us to deploy a virtual environment where we can run the program and evaluate its

behavior.

Within the domain of CAS, numerous simulators provide an environment for

testing these systems, either in some aspects or in their entirety. This is the case for

4 CHAPTER 1. INTRODUCTION

1.2. BACKGROUND

ns-3 2, a discrete-event network simulator, the Repast suite [26], a family of agent-

base modeling platforms, and OMNeT++ 3, a modular, component-base C++

simulation library. Given their central role in this study, the subsequent sections

will extensively examine other simulators, specifically Alchemist and NetLogo.

1.2.3 Alchemist

Alchemist [27] is an open-source tool for simulating complex distributed systems. It

is termed a meta-simulator because it is based on generic abstractions. The meta-

model of Alchemist, as Figure 1.2 and Figure 1.3 show, is inspired by biochemistry

and consists of various entities 4:

• Molecule The name of a data item.

• Concentration The value associated with a molecule.

• Node A container of molecules and concentrations. Disposed inside the

environment.

• Environment The abstraction for the space. It contains nodes and can tell

the position of a node in the space and the distance between two nodes.

• Linking Rule A rule that defines the relation between nodes.

• Reaction Events fired according to a time distribution and set of conditions.

• Condition A function that takes the current environment as input and

outputs a boolean and a number. The output influences the execution of the

corresponding reaction.

• Action Models a change in the environment.

The key to the Alchemist’s extensibility is the very generic interpretation of

molecules and concentrations. An incarnation maps this generic chemical abstrac-

tion to a specific use case. Alchemist supports four incarnations: SAPERE [12],

2https://www.nsnam.org/
3https://omnetpp.org/
4https://alchemistsimulator.github.io/

CHAPTER 1. INTRODUCTION 5

1.2. BACKGROUND

Figure 1.2: Alchemist meta-model.

Figure 1.3: Alchemist reaction.

the first supported incarnation, based on the concept of Live Semantic Annotation

6 CHAPTER 1. INTRODUCTION

1.2. BACKGROUND

(LSA), ScaFi [11], which is a Scala-based library and framework for Aggregate Pro-

gramming, Protelis [28], a programming language for aggregate computing, and

Biochemistry incarnation. Figure 1.4 shows some nodes in the Alchemist simulator

interface.

Figure 1.4: A grid of nodes in Alchemist.

CHAPTER 1. INTRODUCTION 7

1.2. BACKGROUND

1.2.4 NetLogo

NetLogo5 is a programmable modeling environment for simulating natural and

social phenomena. It was created at the Center for Connected Learning and

Computer-Based Modeling (CCL) at Northwestern University, directed by Uri

Wilensky.

NetLogo is particularly well suited for modeling complex systems developing

over time. Users can program the behavior of thousands of independent agents to

see how the system-level behavior emerges from the interactions of the agents.

It also comes with the Models Library, a large collection of pre-written simula-

tions that can be used and modified. These simulations can be explored to observe

their behavior under various conditions.

An example of a NetLogo simulation is depicted in Figure 1.5. It uses the Fire

model which simulates the spread of a fire through a forest. It shows that the fire’s

chance of reaching the right edge of the forest depends critically on the density of

trees.

Figure 1.5: NetLogo interface.

5https://ccl.northwestern.edu/netlogo/

8 CHAPTER 1. INTRODUCTION

1.3. OBJECTIVES

1.3 Objectives

This thesis aims to partially address the absence of a benchmarking platform

by developing a prototype [33, 35]. The testbed must be designed to allow the

user to define a benchmark, execute it, and compare the result to state-of-the-

art solutions. To assess the system’s behavior, the framework relies on existing

simulators in the market. Given the large number of these tools, the testbed must

be flexible and extensible to include support for new simulators later on without

compromising the functionality of those already integrated or the framework as

a whole [16]. Recognizing that users may focus on various aspects of CAS, it is

essential to establish generic and customizable metrics for their evaluation. With

this work, the aim is to provide the foundations for a standard way to test and

compare various solutions in the CAS domain.

Thesis structure In the discussion of this work, we will start with the design

of the framework, as discussed in Chapter 2. In particular, we conduct a domain

analysis, define the requirements, and then provide a detailed description of the

system architecture. Chapter 3 delves into the implementation details, describing

how various components of the framework were developed and the technologies

employed. Chapter 4 outlines the testing of the platform, verification of integration

with supported simulators, and presents a case study to validate adherence to the

requirements defined in the analysis phase. Finally, in Chapter 5, we analyze the

work done and explore potential future developments.

CHAPTER 1. INTRODUCTION 9

1.3. OBJECTIVES

10 CHAPTER 1. INTRODUCTION

Chapter 2

Design

2.1 Domain Analysis

A domain-driven approach was employed in the development of this work.

2.1.1 Ubiquitous Language

To better understand the problem domain and to avoid confusion, a ubiquitous

language was defined. These concepts were then utilized in the framework devel-

opment and can be found in the work.

CHAPTER 2. DESIGN 11

2.1. DOMAIN ANALYSIS

Term Meaning

Testing The overall process carried out to verify and validate a system,

according to requirements, to promote the desired internal and

external quality and to mitigate risks in development and prod-

ucts.

Testbed A platform for rigorous, transparent and replicable environment

for experimentation and testing

Solution A set of algorithms leading to achieving goals and overcoming the

problem posted

Scenario Contains all the information about the test execution: the simu-

lation platform, the metrics, the input parameters

Simulator A software that allows the user to see how its program would

behave in a real environment

Table 2.1: Domain Ubiquitous Language

2.1.2 User Stories

User Stories were also defined to clarify the users’ needs and thus what features

the framework should support.

User Story

...As a user, I want to be able to create a benchmark.

...As a user, I want to be able to use different simulators.

...As a user, I want to be able to define and execute different sce-

narios.

...As a user, I want to be able to define a solution.

...As a user, I want to be able to define how the output of the

benchmark will be processed.

...As a user, I want to be able to compare my solution to others.

Table 2.2: Domain Ubiquitous Language

12 CHAPTER 2. DESIGN

2.2. REQUIREMENTS

It is worth noting that the expected users of the framework are researchers and

developers, i.e., people with a strong technical background and knowledge of the

domain.

2.2 Requirements

2.2.1 User Requirements

User requirements express the needs of the user and identify which actions the

user should be able to perform. The following requirements are extracted from the

previous domain analysis:

• It should be possible to define a benchmark.

• It should be possible to define a scenario.

• It should be possible to apply a solution to an existing scenario.

• It should be possible to download and use different simulators.

• It should be possible to execute a benchmark.

• It should be possible to define which metric to extract from the benchmark’s

output.

• It should be possible to compare the results of different solutions.

• It should be possible to extend the framework to support new simulators.

2.2.2 Functional Requirements

Functional requirements define the features and the functions of the framework.

These derive from the user requirements.

• The framework should allow the user to define a benchmark.

• The framework should allow the user to define a scenario.

• The framework should allow the user to run a scenario with any solution.

CHAPTER 2. DESIGN 13

2.3. ARCHITECTURE

• The framework should allow the user to use different simulators, providing

a way to download them.

• The framework should allow the user to execute a benchmark.

• The framework should allow the user to define which metric to extract from

the benchmark’s output.

• The framework should allow the user to compare the results of different

solutions.

• The framework should allow the user to add support for new simulators.

2.2.3 Non-Functional Requirements

Non-functional requirements define the quality attributes of the framework.

• The framework should facilitate the user in testing collective adaptive sys-

tems.

• The framework should not limit the user in any way, to the extent that

specific simulators permit.

• The framework must provide an easy and clean way to define a benchmark

and all its components.

• The framework must provide an easy and clean API to add support for new

simulators.

2.3 Architecture

The testbed is a framework that sits between the user and the various simulators.

The user specifies which benchmark to run. The execution of the benchmark is

then handled by the testbed, which takes care of running the various scenarios in

the respective simulators and collecting the results.

Figure 2.1 depicts the architecture of the testbed at the highest level.

14 CHAPTER 2. DESIGN

2.3. ARCHITECTURE

User

Testbed
interact

simulator1

simulator2

simulatorN

run

Figure 2.1: Abstract architecture of the testbed.

The typical user interaction with the testbed is shown in Figure 2.2. The user

starts the testbed, which executes all the scenarios specified in the benchmark

configuration file, and then displays the results to the user.

Figure 2.2: Abstract execution of a benchmark.

Diving deeper into the architecture, we can see that the testbed consists of

different components, each with a specific role. Figure 2.3 is a more detailed

CHAPTER 2. DESIGN 15

2.3. ARCHITECTURE

image of the system’s architecture.

User

run configuration

Executor

Sim N

Sim 2

Sim 1

startstart

File
System

save results

Parser

+parse(path: String): Benchmark

Controller

+run(configFilePath: String)

read
Console

results

View

+render()

Listener

+read()

Testbed

Figure 2.3: Detailed architecture of the system.

The main component of the Testbed is the controller, which is the entry point

of the framework and handles the entire benchmark execution. The Parser is the

component responsible for translating user-written specifications in YAML into a

data structure that represents the benchmark model. If there are manipulations

to be made on a configuration file, they will be performed by a Parser component,

specific to each simulator, before the actual parsing. The Executor is responsible

for starting the simulator and generating the correct command to invoke the sim-

ulator. For each started simulator, the corresponding Listener is then launched.

The latter reads the simulator’s output, cleans the file from unnecessary elements,

and saves it in a data structure. Once the benchmark execution is complete, a

post-processing function is applied to the benchmark output to obtain a result of

interest, and it is displayed to the user by the View.

To better understand the testbed’s functioning, it is useful to analyze the exe-

16 CHAPTER 2. DESIGN

2.3. ARCHITECTURE

cution of a benchmark, which is depicted in Figure 2.4.

Figure 2.4: Detailed benchmark execution.

The configuration file is given as input to the controller, which performs some

checks on the file’s integrity. Once passed, the controller hands the configuration

file to the parser, which, after modifying the file (if necessary), returns to the

controller a data structure called BenchmarkModel. The model contains all the

information about the benchmark to be executed. At this point, each scenario

CHAPTER 2. DESIGN 17

2.3. ARCHITECTURE

defined by the user must be launched. The execution is carried out in the order

specified by the user. For each scenario, a command to start the simulator is

generated and launched. The framework then waits for the simulation to finish.

Once it is done, the framework reads the results returned in output by the simulator

and saves them in a data structure. When the data from all scenarios has been

collected, a user-defined transformation is applied to extract results of interest.

The latter are finally displayed to the user, either through the console or in a GUI.

2.3.1 Benchmark Configuration

The design of the input file system is a crucial aspect of the framework. It should

enable the user to define a benchmark simply and intuitively, without limiting the

user in any way. It also needs to be flexible enough to allow the addition of new

simulators without breaking the existing structure.

The input file is composed of two main sections, namely Strategy and Simula-

tors.

Strategy The strategy section provides generic information about the testbed

configuration, rather than simulator-specific instructions. Currently, it only in-

cludes the execution order of the scenarios, a mandatory parameter that defines

the sequence in which the scenarios will be executed. Additional strategy parame-

ters could be added in the future to support other features, such as multi-threaded

execution.

Listing 2.1 shows a possibile definition of the Strategy section in a benchmark

configuration file.

Listing 2.1: Benchmark configuration file structure: Strategy section.

1 strategy:

2 executionOrder:

3 - Alchemist -sapere -tutorial

4 - NetLogo -tutorial

5 - Alchemist -protelis -tutorial

Simulators The simulators section contains the configuration of the simulators

used in the benchmark. Each simulator has a name, a path, and a list of scenarios.

18 CHAPTER 2. DESIGN

2.3. ARCHITECTURE

The name is mandatory and must be written exactly as it appears in the testbed

documentation. The path is optional and is used to specify the path of the exe-

cutable simulator. If not specified, the framework will assume that the simulator

is in the same directory as the testbed.

Scenario The scenario configuration is more complex, as it depends on which

simulator is used to run the scenario. This section contains:

• name the name of the scenario. This is mandatory and should match the

name in the execution order list.

• description a brief explanation of the scenario. This is optional.

• input a list of all the input files needed to run the scenario. This parameter

is optional to take into account a scenario that does not require any input

file.

• postProcessing the script that will be used to process the scenario output.

This parameter is optional.

• repetitions the number of times that the scenario should be run. This

parameter is optional and defaults to 1.

• duration the duration of the simulation. This parameter can be used to

overwrite the value present in the simulator-specific configuration file, if the

simulator supports it. This parameter is optional.

Listing 2.2 shows a possible definition of the Simulators section in a benchmark

configuration file using NetLogo as a simulator.

Listing 2.2: Benchmark configuration file structure: NetLogo simulator section.

1 simulators:

2 - name: NETLOGO

3 simulatorPath: "./ NetLogo␣6.4.0/"

4 scenarios:

5 - name: NetLogo -tutorial

6 description: A tutorial to NetLogo

7 input:

8 - "../src/main/resources/netlogo/netlogo -tutorial.xml"

9 - "./ models/IABM␣Textbook/chapter␣4/Wolf␣Sheep␣Simple␣5.nlogo"

CHAPTER 2. DESIGN 19

2.3. ARCHITECTURE

10 repetitions: 3

11 postProcessing: "./ processing/netlogo -tutorial.py"

Listing 2.3 depicts the configuration of two scenarios run by the Alchemist

simulator.

Listing 2.3: Benchmark configuration file structure: Alchemist simulator section.

1 simulators:

2 - name: Alchemist

3 simulatorPath: "./"

4 scenarios:

5 - name: Alchemist -protelis -tutorial

6 description: A tutorial to Alchemist and Protelis incarnation

7 input: ["src/main/resources/alchemist/protelis -tutorial.yml"]

8 repetitions: 1

9 duration: 10

10 - name: Alchemist -sapere -tutorial

11 description: A tutorial to Alchemist and Sapere incarnation

12 input: ["src/main/resources/alchemist/sapere -tutorial.yml"]

13 repetitions: 1

14 duration: 100

15

2.3.2 Benchmark Results

A critical part of the framework design is related to what is presented to the user

at the end of the benchmark execution.

As Figure 2.5 shows, each simulator has its own method of providing simulation

results. Certain simulators return a CSV file, others a text file, and some even

utilize snapshots. Managing all these diverse cases within the framework is not

feasible, which is why two methods are provided to obtain the desired results:

through an external scripting file or by implementing a listener and a processing

function.

In the first case, an external scripting file is used to process the simulator’s

output. Once the simulation is complete, the controller invokes the script specified

in the Scenario configuration. Upon execution completion, the framework reads

the results from a predefined JSON file, namely result.json. This file must contain

data in the form of ScenarioResult, which will be defined below.

In the second case, the Listener interface is employed. It takes the file outputted

20 CHAPTER 2. DESIGN

2.3. ARCHITECTURE

Testbed

simulator1 simulator2 simulatorN

run

CSV
File

Plain
Text snapshots

produces produces produces

Benchmark
Result

Processing
Script

Listener

Benchmark
Output

Processing
Function

Figure 2.5: Simulator’s output processing.

CHAPTER 2. DESIGN 21

2.4. EXTENSION

by the simulator and transforms it into an internal framework data structure,

the BenchmarkOutput. A post-processing function must then be implemented,

taking the BenchmarkOutput as input and returning a BenchmarkResult. This

solution split the process into two phases, the read of the output simulator and the

transformation of the data in a significant result. This allows the implementation

of a method to read the output of a simulator and to use it in combination with

various processing functions to obtain results of different natures.

We define output concepts:

• Scenario Output the output of a single scenario. It is a map that associates

each metric with its value.

• Benchmark Output the output of the entire benchmark. It is a map that

associates each scenario with its Scenario Output.

These concepts represent the data returned at the end of the benchmark ex-

ecution as generated by the simulator. This data must be processed to extract

useful information for the user.

We define result concepts, which represent the data the user desires, obtained

by processing the benchmark’s output.

• Scenario Result the result of a single scenario. It contains a description of

the result and its value.

• Benchmark Result the result of the entire benchmark. It is a list of

Scenario Result.

2.4 Extension

One of the main goals of this work is to create a flexible system that can be ex-

tended to support different simulators. The architecture was designed considering

this objective. Each component of the system has a general behavior, independent

of the simulator but incomplete. This will be then integrated with the specific

behavior related to the simulator defined in a subclass.

Users interested in adding support for a new simulator must do the following

steps:

22 CHAPTER 2. DESIGN

2.5. SIMULATORS

• Implement the Executor interface.

• Implement the Listener interface. Optional.

• If some manipulations on the input file are needed, implement the Config-

FileHandler interface.

• Extend the SupportedSimulator enum by adding the new simulator.

• Update the Controller to take into account the new simulator.

2.5 Simulators

Since the framework relies on external simulators to run a benchmark, the users

must have these simulators installed on their machines. Various solutions were

evaluated to address this issue, each with its pros and cons.

• Include all supported simulators in the application: while this solution en-

sures that the simulators are present, it has drawbacks. Forcing the user

to download all supported simulators may be impractical, especially if they

only need a few of them or already have them installed. Additionally, this

would significantly increase the application size.

• Let the user download the simulators: this is the simplest solution, as it

shifts the responsibility of downloading the required simulators to the user.

However, it degrades the user experience as users cannot immediately use

the framework after downloading it.

• Hybrid solution: simulators are not included in the framework. However, if

the testbed does not detect them during benchmark execution, it automati-

cally downloads them. This solution is more complex but has proved to be

the most effective after the analysis.

CHAPTER 2. DESIGN 23

2.5. SIMULATORS

24 CHAPTER 2. DESIGN

Chapter 3

Implementation

In this chapter, we will dive deeper into the implementation of the framework.

3.1 Framework

Benchmark Model The benchmark model is the data structure that represents

the benchmark to be executed. It matches the structure of the input file to allow

easy parsing, as shown in Figure 3.1.

Each concept of the model is implemented as a data class in Kotlin, which is a

class that only contains data and does not have any functionality. The Serializable

annotation is used to allow the model to be serialized and deserialized from YAML.

This annotation is provided by the ”org.jetbrains.kotlinx:kotlinx-serialization-json”

library. Listing 3.1 shows the implementation of the benchmark model.

Listing 3.1: Benchmark model.

1 @Serializable

2 data class Benchmark(

3 val strategy: Strategy ,

4 val simulators: List <Simulator >

5)

6 @Serializable

7 data class Strategy(

8 val executionOrder: List <String > = emptyList (),

9)

10 @Serializable

11 data class Simulator(

12 val name: SupportedSimulator ,

CHAPTER 3. IMPLEMENTATION 25

3.1. FRAMEWORK

Figure 3.1: Benchmark Model.

13 val simulatorPath: String = "",

14 val scenarios: List <Scenario >,

15)

16 @Serializable

17 data class Scenario(

18 val name: String ,

19 val description: String = "",

20 val input: List <String > = listOf (),

21 val postProcessing: String = "",

22 val repetitions: Int = 1,

23 val duration: Int = 0,

24)

To account for the possibility of adding new simulators, the SupportedSimulator

enum was created.

Listing 3.2: SupportedSimulator enum.

1 enum class SupportedSimulator {

26 CHAPTER 3. IMPLEMENTATION

3.1. FRAMEWORK

2 ALCHEMIST ,

3 NETLOGO ,

4 }

As Listing 3.2 shows, the enum contains all the simulators supported by the

framework. When a new simulator is added, it must be added to this enum.

This forces the user to extend each component of the system to support the new

simulator.

Parser The parser is the component responsible for translating the user-written

specifications in YAML into a data structure that represents the benchmark model.

The library ”com.charleskorn.kaml:kaml” is used to provide an easy and clean way

to parse the input file as shown in Listing 3.3.

Listing 3.3: Parsing of the input file.

1 val inputFile = File(path)

2 val benchmark = Yaml.default.decodeFromString(Benchmark.serializer (), inputFile.

readText ())

In certain scenarios, the configuration file for a scenario must be modified before

being returned to the controller. This is the case for the duration parameter,

which can be specified in the benchmark specification file. This parameter may

change the duration of the execution of a scenario, overriding the simulator’s input

file. To achieve this, a ConfigFileHandler interface, which is implemented by

each simulator-specific component, was created. This interface contains a single

method, handle, which takes the scenario configuration as an input. Listing 3.4

shows the ConfigFileHandler interface.

Listing 3.4: ConfigFileHandler interface.

1 interface ConfigFileHandler {

2 fun editConfigurationFile(scenario: Scenario)

3 }

For example, the Alchemist implementation of the ConfigFileHandler interface

reads the duration parameter from the scenario configuration and injects it to the

Alchemist input file, overriding it.

CHAPTER 3. IMPLEMENTATION 27

3.1. FRAMEWORK

Listener The listener is implemented as an interface with a read method, as

Listing 3.5 shows, which takes the path to the CSV file as input and returns a

ScenarioOutput. Saving simulation results in a CSV file is a standard and widely

used approach, which is why this is the preferred method to read the simulator’s

output. In case it is not available as an option, the listener interface can be ex-

tended to implement a custom read function. The logic for reading from a CSV

file is implemented directly in the Listener interface, while the clearCSV method

is not implemented and must be handled by the specific simulator’s listener. In

general, the clearCSV function should clean the file from all unnecessary infor-

mation, leaving the CSV file only with headers and values; otherwise, the reading

will not be performed.

Listing 3.5: Listener interface.

1 interface Listener {

2 fun read(path: String = ""): ScenarioOutput

3 fun clearCSV(path: String)

4 }

The Alchemist implementation for the ClearCSV method is depicted in List-

ing 3.6

Listing 3.6: CSV file cleaning in Alchemist.

1 override fun clearCSV(path: String) {

2 val lines = Files.readAllLines(Paths.get(path), StandardCharsets.UTF_8)

3 val regexPatterns = listOf(

4 Regex("#.*#"),

5 Regex("#$"),
6 Regex("# $"),
7 Regex("# T.*"),

8)

9 val dataLines = lines.filter { line ->

10 !regexPatterns.any { pattern -> pattern.matches(line) }

11 }

12 val finalLines = dataLines.map { line ->

13 val modifiedLine = line.replace(Regex("# "), "")

14 modifiedLine

15 }

16 Files.write(Paths.get(path), finalLines , StandardCharsets.UTF_8)

17 }

28 CHAPTER 3. IMPLEMENTATION

3.1. FRAMEWORK

Output and Result The concept of Scenario Output is implemented as a map

that associates each metric with its value. The metric is represented as a String,

while the value is represented as a list of Any. An instance of ScenarioOutput is

shown in Listing 3.7.

Listing 3.7: ScenarioOutput implementation.

1 typealias ScenarioOutput = Map <String , List <Any >>

2 // "timeSteps" -> [10, 20, 30, 40]

3 // "meanError" -> [0.54 , 0.32, 0.12, 0.05]

The BenchmarkOutput is implemented as a map that associates each scenario

with its Scenario Output. The scenario is represented as a String, generated using

the pattern scenarioName-runNumber. Listing 3.8 shows an instance of Bench-

markOutput.

Listing 3.8: BenchmarkOutput implementation.

1 typealias ScenarioOutput = Map <String , List <Any >>

2 // "NetLogo -Tutorial -1" -> ScenarioOutput (...)

3 // "NetLogo -Tutorial -2" -> ScenarioOutput (...)

4 // "Alchemist -Protelis -1" -> ScenarioOutput (...)

The Scenario Result is implemented as a data class, which contains a descrip-

tion of the result, its values, and the type of visualization to be used to show the

data. The Benchmark Result is implemented as a list of Scenario Result. List-

ing 3.9 shows the implementation of the ScenarioResult along an instance of it and

the BenchmarkResult.

Listing 3.9: BenchmarkResult and ScenarioResult implementation.

1 data class ScenarioResult(

2 val description: String ,

3 val value: List <Any >,

4 val visualisationType: VisualisationType ,

5)

6 typealias BenchmarkResult = List <ScenarioResult >

Data types as generic as possible are employed to support the widest range of

data types. To enhance code quality and readability, the discussed data structures

are defined using type aliases. These allow one to define a custom name for a

data type and use it anywhere in the project, instead of the original definition. In

addition, this allows application domain concepts to be tied into the code.

CHAPTER 3. IMPLEMENTATION 29

3.1. FRAMEWORK

Controller After parsing the benchmark configuration file, the Controller begins

to execute every Scenario in the order specified by the user.

Listing 3.10: Controller implementation.

1 val scenarioNameOrder: List <String > = benchmark.strategy.executionOrder

2 val scenarioMap: Map <String , Triple <Simulator , Scenario , Int >> = benchmark.

simulators

3 .flatMap { simulator ->

4 simulator.scenarios.map { scenario ->

5 scenario.name to Triple(simulator , scenario , scenario.repetitions)

6 }

7 }.toMap()

8 scenarioNameOrder.forEach { scenarioName ->

9 val (simulator , scenario , repetitions) = scenarioMap.getOrElse(scenarioName)

{

10 throw IllegalArgumentException("Scenario $scenarioName not found")

11 }

12 for (i in 1.. repetitions) {

13 runBlocking {

14 println("[TESTBED] Running scenario $scenarioName in ${simulator.
name} simulator. Run number $i")

15 createExecutor(simulator.name , simulator.simulatorPath , scenario)

16 readSimulatorOutput(simulator , scenario , i)

17 }

18 }

19 }

As Listing 3.10 shows, the Controller creates a map containing all the scenarios

and their respective simulators, and then iterates over the map, executing each

scenario. It is important to note that each scenario execution is strictly sequential.

A scenario is launched, the controller waits for the execution to finish, creates the

Listener to read the results and only then moves on to the next scenario. All the

results are saved in a data structure that will be displayed to the user by the View.

Listing 3.11: Controller: createExecutor method.

1 private fun createExecutor(simulator: SupportedSimulator , simulatorPath: String ,

scenario: Scenario) {

2 val executor: Executor = when (simulator) {

3 SupportedSimulator.ALCHEMIST -> executors.AlchemistExecutor ()

4 SupportedSimulator.NETLOGO -> executors.NetLogoExecutor ()

5 }

6 executor.run(simulatorPath , scenario)

7 }

Listing 3.11 shows the implementation of the createExecutor method. This

30 CHAPTER 3. IMPLEMENTATION

3.1. FRAMEWORK

function is responsible for creating the correct executor for the simulator. This is

one of the cases where the framework’s extensibility is evident. There must be an

executor for each supported simulator, therefore, this method must be updated

every time a new simulator is added.

Executor The Executor component is implemented as an interface, which is

extended by each specific simulator’s executor. To launch a simulator, a command

must be generated and executed. As shown in Listing 3.12, the generation and the

execution of the command are split into two methods, namely getCommand and

run. The execution of the command does not depend on the simulator, therefore

it is implemented in the Executor interface. The generation of the command, on

the other hand, is specific to each simulator. It is delegated to the classes that

extend the Executor interface, which are specific to each simulator.

Listing 3.12: Executor interface.

1 interface Executor {

2 fun run(simulatorPath: String , scenario: Scenario) {

3 val processBuilder = getCommand(simulatorPath , scenario)

4 val process = processBuilder.start()

5 val reader = BufferedReader(InputStreamReader(process.inputStream))

6 var line: String?

7 while (reader.readLine ().also { line = it } != null) {

8 println(line)

9 }

10 process.waitFor ()

11 }

12

13 fun getCommand(simulatorPath: String , scenario: Scenario): ProcessBuilder

14 }

Listing 3.13 shows the implementation of the getCommand method for the

NetLogo simulator.

Listing 3.13: NetlogoExecutor class.

1 class NetLogoExecutor : Executor {

2 override fun getCommand(simulatorPath: String , scenario: Scenario):

ProcessBuilder {

3 return ProcessBuilder(

4 "./ NetLogo_Console",

5 "--headless",

6 "--model",

7 scenario.input[1],

CHAPTER 3. IMPLEMENTATION 31

3.2. TECHNOLOGIES

8 "--setup -file",

9 scenario.input[0],

10 "--table",

11 "./ export.csv",

12)

13 .directory(File(simulatorPath))

14 .redirectErrorStream(true)

15 }

16 }

3.2 Technologies

3.2.1 Framework technologies

Kotlin Kotlin1 is a cross-platform, strong statically typed, general-purpose high-

level programming language with type inference. It took inspiration from several

programming languages including Java, Scala and others. Born as an object-

oriented programming language, it includes a lot of functional programming ele-

ments such as first-class support for higher-order functions and lambda literals.

The rise of Kotlin is testified by Google’s choice to adopt it as the official language

for Android development, replacing Java.

Originally, Kotlin was developed as a JVM language. The support for multi-

platform development was added recently. This has great advantages as it reduces

the time spent writing and maintaining the same code for different platforms while

retaining the flexibility and benefits of native programming.

YAML To provide the user with the ability to write a benchmark configuration

file, various options were considered, such as using JSON, YAML, Google Protobuf

or even developing a DSL. The choice fell on YAML2, a human-readable data

serialization language. It is a superset of JSON, which means that any valid JSON

file is also a valid YAML file. YAML is commonly used in applications where data

needs to be represented in a format that is easy for humans to read and write, as

well as for machines to parse and generate. It is used as a configuration language in

different projects, such as Kubernetes, Docker, GitHub Actions, and many more.

1https://kotlinlang.org/
2https://yaml.org/

32 CHAPTER 3. IMPLEMENTATION

3.2. TECHNOLOGIES

3.2.2 DevOps technologies

DevOps engineering is a software development methodology that aims at commu-

nication, collaboration and integration among all workers around an IT project.

This set of techniques responds to interdependencies between software develop-

ment and relative IT operations, allowing a faster and more efficient organization

of software products and services. The following paragraphs describe which De-

vOps techniques have been used in the making of the system, focusing on the

advantages that each procedure has brought.

Repository management The work is hosted on GitHub3 and uses Git4 as a

DVCS (Distributed Version Control System). A DVCS is a version control system

that allows multiple users to work on the same codebase at the same time and keeps

track of every change made. The project was developed following a customized

version of Git Flow, depicted in Figure 3.2.

Figure 3.2: Git Flow.

The repository consists of a master branch and several feature branches. The

master branch is the development reference, meaning that all the feature branches

originate from it, and at the end of their existence, they are merged into the

3https://www.github.com/
4https://www.git-scm.com/

CHAPTER 3. IMPLEMENTATION 33

3.2. TECHNOLOGIES

master branch. The feature branches are related to the developed features. For

each feature to be implemented, a feature branch was created, and at the end of the

development, a pull request was made to merge the content into the master branch.

All feature branches followed the following naming convention: feature/feature-

name

Build automation Build Automation refers to the automation of the build

lifecycle of a project, which is the process from source code to product release

and distribution. This allows automating operations that were previously done

manually, making software deployment more efficient and less error-prone. In this

work, Gradle5, one of the most famous and widely used build systems, was used.

Gradle is primarily used to manage dependencies with external libraries used in

the project (e.g., the library for parsing YAML files). With Gradle, it is possible

to define custom tasks, which are essentially atomic operations on the project that

have input and output files and can depend on other tasks. This functionality

has been leveraged to define the task that creates the framework’s JAR file, which

is then uploaded to GitHub during the release phase. Listing 3.14 shows the

implementation of the custom task to generate the JAR file.

Listing 3.14: Custom task to generate the JAR file.

1 tasks.withType <ShadowJar > {

2 archiveFileName.set("testbed.jar")

3 manifest {

4 attributes(

5 mapOf(

6 "Implementation -Title" to "Testbed",

7 "Implementation -Version" to rootProject.version.toString (),

8 "Main -Class" to "testbed.Testbed",

9),

10)

11 }

12 }

Continuous Integration Continuous Integration is a software development

practice in which developers regularly merge their code changes into a central

5https://gradle.org/

34 CHAPTER 3. IMPLEMENTATION

3.2. TECHNOLOGIES

repository, after which automated builds and tests are run. The key goals of con-

tinuous integration are to find and address bugs quicker, improve software quality,

and reduce the time it takes to validate and release new software updates. In this

work, GitHub Actions is used to automate the process of building, testing, and

deploying the framework. The workflow of a GitHub Action is defined in a YAML

file, which is stored in the repository under the path .github/workflows.

Listing 3.15 shows the build job of the CI/CD workflow, which runs the tests

on different operating systems.

Listing 3.15: CI/CD workflow: build job.

1 name: CI/CD Process

2

3 on:

4 workflow_call:

5 workflow_dispatch:

6

7 jobs:

8 build:

9 strategy:

10 matrix:

11 os: [windows -2022, macos -12, ubuntu -22.04]

12 runs -on: ${{ matrix.os }}

13 concurrency:

14 group: build -${{ github.workflow }}-${{ matrix.os }}-${{ github.event.number ||

github.ref }}

15 cancel -in-progress: true

16 steps:

17 - name: Checkout

18 uses: DanySK/action -checkout@0 .2.14

19 - name: Test

20 run: ./ gradlew test

Listing 3.15 depicts the release job of the CI/CD workflow. To run this step,

the build job must be completed successfully. This ensures that the tests are passed

before releasing the software. Then it proceeds to install Node, which is required

to run the semantic release tool, and finally runs the npm release command.

Listing 3.16: CI/CD workflow: release job.

1 jobs:

2 release:

3 concurrency:

4 # Only one release job at a time. Strictly sequential.

5 group: release -${{ github.workflow }}-${{ github.event.number || github.ref }}

CHAPTER 3. IMPLEMENTATION 35

3.2. TECHNOLOGIES

6 needs:

7 - build

8 runs -on: ubuntu -latest

9 if: >-

10 !github.event.repository.fork

11 && (

12 github.event_name != ’pull_request ’

13 || github.event.pull_request.head.repo.full_name == github.repository

14)

15 steps:

16 - name: Checkout

17 uses: actions/checkout@v4 .1.1

18 with:

19 token: ${{ secrets.GH_TOKEN }}

20 - name: Find the version of Node from package.json

21 id: node -version

22 run: echo "version=$(jq␣-r␣.engines.node␣package.json)" >> $GITHUB_OUTPUT
23 - name: Install Node

24 uses: actions/setup -node@v4 .0.2

25 with:

26 node -version: ${{ steps.node -version.outputs.version }}

27 - name: Release

28 env:

29 GH_TOKEN: ${{ secrets.GH_TOKEN }}

30 run: |

31 npm install

32 npx semantic -release

33

Versioning and Releasing For commits, Conventional Commits6 is used, a

convention that provides a set of possible commits, each with a different semantic,

allowing the definition of the software version number based on the commit history.

The following set of commits is used:

• Major Release

– Any commit terminating ! causes a breaking change

• Minor Release

– Commit type feat with any scope.

• Patch Release

6https://www.conventionalcommits.org/en/v1.0.0/

36 CHAPTER 3. IMPLEMENTATION

3.2. TECHNOLOGIES

– Commit type fix with any scope.

– Commit type docs with any scope.

– Commit type chore with scope core-deps.

• No Release

– Commit type test with any scope.

– Commit type ci with any scope.

– Commit type chore with scope deps.

– Commit type refactor with scope deps.

Thanks to the use of semantic release, it was possible to automate the versioning

and releasing of the software. Every time a push is made to the master branch,

semantic release calculates the version number and creates a release on GitHub,

uploading the necessary assets.

The version number is defined in the format X.Y.Z where X is a major version,

Y is the minor version and Z is the patch version.

CHAPTER 3. IMPLEMENTATION 37

3.2. TECHNOLOGIES

38 CHAPTER 3. IMPLEMENTATION

Chapter 4

Validation

4.1 Testing

4.1.1 Unit Testing

Unit testing is a software testing method to test individual units or components of

software. In this work, we used it to test the behavior of the various components

of the framework.

Given the nature of the work, most components require human judgment to

be tested. This is the case for the Executor and Listener components, which

are responsible for starting the simulator and reading its output, respectively. The

tests on this component were conducted by repeatedly running the framework with

different scenarios and checking the output manually. The Parser component, on

the other hand, was tested automatically, to check if the parser correctly translates

the input file into the benchmark model. Listing 4.1 shows the tests made on the

parser.

Listing 4.1: Parser tests.

1 class ParserTest: FreeSpec ({

2 "The parser" - {

3 val parser: Parser = ParserImpl ()

4 "should parse a partial input file" {

5 // ARRANGE

6 val expectedBenchmark = simpleBenchmarkBuilder ()

7 // ACT

8 val benchmark = parser.parse("src/test/resources/SimpleBenchmark.yml")

CHAPTER 4. VALIDATION 39

4.1. TESTING

9 // ASSERT

10 assert(benchmark == expectedBenchmark)

11 }

12 "should parse a full input file" {

13 val expectedBenchmark = fullBenchmarkBuilder ()

14 val benchmark = parser.parse("src/test/resources/FullBenchmark.yml")

15 assert(benchmark == expectedBenchmark)

16 }

17 "should fail to parse a wrong file" {

18 assertThrows <InvalidPropertyValueException > {

19 parser.parse("src/test/resources/WrongBenchmark.yml")

20 }

21 }

22 }

23 })

4.1.2 Integration Testing

Integration testing is a software testing method to test the behavior of the various

components of the software when integrated. In this work, we used it to test the

behavior of the simulators supported by the framework.

Checking if a simulator is running a scenario in the right way is not an easy

task to do automatically, as it requires human judgment. Therefore, the integration

tests are performed manually.

NetLogo NetLogo was tested by running one of the bundled models, namely

the Wolf Sheep Predation model.

The first time, the simulation was launched through the framework in head-

less mode, without a graphical interface. Several logs were added to monitor the

benchmark execution, and everything went as expected: the parser generated the

benchmark model, which was used by the controller and executor to launch the

simulation. At the end of the simulation, an output file containing the expected in-

formation was generated. This CSV file was then transformed into a data structure

within the framework containing the results.

The second execution was launched again through the framework, but this time

with the graphical interface activated, as Figure 4.1 shows. The same steps as

before were observed, with the addition of the simulation being visually displayed.

40 CHAPTER 4. VALIDATION

4.1. TESTING

After comparing the two executions and conducting further ones, no differences

were noticed. We can therefore say that NetLogo has been integrated correctly

into the framework.

Figure 4.1: NetLogo simulation launched by the framework.

Alchemist The same process was applied to test the integration with the Al-

chemist simulator.

To test the behavior of Alchemist, a program that computes the gradient, a

typical problem known in the literature was chosen. The first execution was done

with the graphical interface activated, which allowed verifying the correct execu-

tion of the simulation thanks to the graphical effects applied to the nodes. This

run is depicted in Figure 4.2. The second execution was done headless and pro-

vided the same results as the first. This process was repeated for both incarnations

supported by the framework, namely Protelis and Sapere.

CHAPTER 4. VALIDATION 41

4.2. EVALUATION

Figure 4.2: Alchemist simulation launched by the framework.

4.2 Evaluation

In this section, we will provide an example of how the framework can be used to

benchmark CAS.

Definition and execution of a benchmark We start by defining a problem,

which is the computation of the gradient in a grid of nodes. This is a known

scenario in the literature and consists of computing the distance of each node in

the grid from a source node. The solution to be tested is an implementation of

the gradient computation in the Sapere incarnation of Alchemist.

We create a benchmark configuration file, Listing 4.2, which contains all the

information about the benchmark to be executed.

Listing 4.2: Case of study: benchmark configuration file.

1 strategy:

2 executionOrder:

3 - Alchemist -SAPERE -gradient

4

5 simulators:

6 - name: ALCHEMIST

7 simulatorPath: "./"

8 scenarios:

9 - name: Alchemist -SAPERE -gradient

42 CHAPTER 4. VALIDATION

4.2. EVALUATION

10 description: Gradient computation.

11 input: "sapere -gradient.yml"

12 repetitions: 1

After the benchmark configuration file, we define the input file for the Alchemist

simulation. This file, as Listing 4.3 shows, contains the environment configuration

along with the export definition and the termination condition.

Listing 4.3: Case of study: Alchemist input file.

1 incarnation: sapere

2

3 launcher:

4 type: HeadlessSimulationLauncher

5

6 network -model:

7 type: ConnectWithinDistance

8 parameters: [0.35]

9

10 deployments:

11 type: Grid

12 parameters: [-5, -5, 5, 5, 0.25, 0.25, 0.1, 0.1]

13 contents:

14 in:

15 type: Rectangle

16 parameters: [-0.5, -0.5, 1, 1]

17 molecule: source

18 programs: *grad

19

20 export:

21 - type: CSVExporter

22 parameters: {fileNameRoot: export , interval: 5, exportPath: ./}

23 data:

24 - time

25 - molecule: gradient , value

26 property: value

27 aggregators: [mean]

28 value -filter: onlyfinite

29

30 terminate:

31 - type: afterTime

32 parameters: 100

We proceed to implement a first version of the gradient program as Listing 4.4

shows.

Listing 4.4: Case of study: gradient program A.

CHAPTER 4. VALIDATION 43

4.2. EVALUATION

1 _send: &grad

2 - {time -distribution: 0.1, program: ’{source}␣-->␣{source}␣{gradient ,␣0}’}

3 - {time -distribution: 1, program: ’{gradient ,␣N}␣-->␣{gradient ,␣N}␣*{gradient ,␣N

+#D}’}

4 - program: >

5 {gradient , N}{gradient , def: N2 >=N} --> {gradient , N}

6 - time -distribution: 0.1

7 program: >

8 {gradient , N} --> {gradient , N + 1}

9 - program: >

10 {gradient , def: N > 30} -->

11

Now we define the processing function, as Listing 4.5 depicts, which will be

in charge of aggregating the data and returning the result. The function is im-

plemented without the use of any external library, using pure Kotlin. It is not

recommended to do so, as Kotlin is not a data analysis language and the code

itself is not very readable.

Listing 4.5: Case of study: output processing function.

1 val timeValues = benchmarkOutput["Alchemist -SAPERE -gradient -1"]!!["time"]

2 val gradientValues = benchmarkOutput["Alchemist -SAPERE -gradient -1"]!!["value[

mean]"]

3 val timeToStabilize = gradientValues.reversed ().foldRight(Triple (0.00 , 0, 0)) {

value , acc ->

4 if (acc.second == 0) {

5 if (value == acc.first && value != 0.00) Triple(

6 acc.first ,

7 gradientValuesDouble.indexOf(acc.first),

8 acc.third - 1

9) else Triple(value , 0, acc.third + 1)

10 } else {

11 acc

12 }

13 }

14 return listOf(

15 ScenarioResult(

16 "Time to stabilize: ",

17 listOf(timeValuesDouble[timeToStabilize.third]),

18 VisualisationType.SINGLE_VALUE

19)

20)

The function looks at the gradient value and returns the time at which the

gradient stabilizes. A stable gradient is defined as two consecutive values that are

the same and different from zero. To make the comparison values of type Double

44 CHAPTER 4. VALIDATION

4.2. EVALUATION

are used, with a precision of two decimal places.

In Figure 4.3 we can observe the results of the benchmark execution, along

with the output data of the simulator.

Figure 4.3: Case of study: Benchmark result A.

Compare a new solution to the reference We want to create a new solution

for the gradient computation problem and compare it to the reference solution.

To do so, we can use the benchmark configuration file and the processing function

used for the reference solution, develop our own solution and run the benchmark

to get the result.

To define the solution we take the Alchemist input file and change the time

distribution of the reactions, as shown in Listing 4.6.

Listing 4.6: Case of study: gradient program B.

1 _send: &id001

2 - {time -distribution: 1, program: ’{source}␣-->␣{source}␣{gradient ,␣0}’}

3 - {time -distribution: 2, program: ’{gradient ,␣N}␣-->␣{gradient ,␣N}␣*{gradient ,␣N

+#D}’}

4 - program: >

5 {gradient , N}{gradient , def: N2 >=N} --> {gradient , N}

6 - time -distribution: 1

7 program: >

8 {gradient , N} --> {gradient , N + 1}

9 - program: >

10 {gradient , def: N > 30} -->

Figure 4.4 shows the results of the benchmark execution. It is now possible to

compare them against the reference solution.

Figure 4.4: Case of study: Benchmark result B.

CHAPTER 4. VALIDATION 45

4.2. EVALUATION

The objective of this case study was not to assess particular aspects or the

performance of a CAS. Instead, a basic metric was employed to estimate the

system’s stabilization speed. This experiment illustrated the feasibility of defining

a benchmark, executing it, and deriving a meaningful outcome for the user. It

serves as a reference for testing and evaluating new solutions without the need to

redefine the benchmark; modifications can be made solely by altering the solution.

As a result, the framework requirements outlined in the analysis phase are deemed

fulfilled.

46 CHAPTER 4. VALIDATION

Chapter 5

Conclusion and Future Work

The work presented in this thesis has resulted in the development of a testbed

prototype designed for benchmarking CAS. The objective of the framework was to

provide a tool that integrates the most widely used simulators in the field of CAS.

This allows users to assess a solution’s behavior in different scenarios, utilizing

different simulators, and facilitating the comparison of the obtained results.

To achieve this goal, the framework was designed to be flexible and extensible.

Users can express benchmark configurations in a straightforward and intuitive way,

and integrate new simulators without breaking the existing structure.

A pivotal aspect of the framework lies in its abstract design. Each system

component has a general behavior that is independent of the simulator, yet remains

incomplete. This architectural choice enables users to extend the framework by

incorporating specific logic for new simulators. For the users who are not interested

in introducing support for new simulators, the testbed still serves as a useful tool

for evaluating solution behavior in specific scenarios. Furthermore, the framework

promotes community collaboration, enabling individuals to define benchmarks and

share results. This approach allows users to incorporate their solutions into pre-

configured benchmarks, supporting result comparisons.

In our opinion, the testbed constitutes a promising foundation for the creation

of a comprehensive tool for testing CAS. It addresses the key challenges in the

development of an open benchmarking platform, providing a solid base for future

works.

CHAPTER 5. CONCLUSION AND FUTURE WORK 47

Future Works Despite the work that has been done, the testbed is still in its

early stages and some features are missing for it to become a complete tool for

testing CAS. The scientific community requires a high standard of quality and

reliability, and the framework must be able to provide it. This section will provide

a list of possible future works that could be done.

• Increase the number of supported simulators The framework currently

supports two simulators, Alchemist and NetLogo. In the field of CAS, there

are other simulators used to test different aspects of the systems. Supporting

a wide range of simulators is necessary for the framework to be useful and

relevant within the scientific community. Moreover, this would enable the

user to test the behavior of the system in its entirety.

• Multi-platform support At the time of writing, the testbed has been

developed for JVM platforms. Switching to Kotlin-Multiplatform would al-

low the framework to be compiled for different target platforms, such as

JavaScript, iOS, and native. The ability to provide support for different

platforms will help the framework to be more widely adopted.

• Graphical User Interface Currently, it is possible to interact with the

framework only through a Command Line Interface (CLI). The user experi-

ence is known to be one of the most important aspects of software, as it can

make the difference between a successful and an unsuccessful product. It is

fundamental to provide the user with a graphical interface to interact with

the application, both for the benchmark configuration and the visualization

of the results. Benchmarking often involves comparing data from different

solutions and a graphical interface would make this process easier and more

intuitive.

• Provide a way to download simulators At present, the framework re-

quires the user to download the simulators manually. Providing the user

with a way to download a simulator, using a simple command, would make

the framework more user-friendly. Moreover, this would ease the user from

the task of manually downloading the simulators.

48 CHAPTER 5. CONCLUSION AND FUTURE WORK

• Maintaining benchmarks history The comparison of new and existing

solutions to well-known problems is a fundamental aspect when developing

innovative solutions. Keeping a history of benchmark results in an online

repository would facilitate such comparisons. Currently, users lack access

to a database containing known benchmarks, various solutions, and their

respective results. Providing them with this database would streamline the

comparison process.

CHAPTER 5. CONCLUSION AND FUTURE WORK 49

50 CHAPTER 5. CONCLUSION AND FUTURE WORK

Bibliography

[1] Dhaminda B. Abeywickrama, Nicola Bicocchi, Marco Mamei, and Franco

Zambonelli. The SOTA approach to engineering collective adaptive systems.

Int. J. Softw. Tools Technol. Transf., 22(4):399–415, 2020.

[2] Alessandro Aldini. Design and verification of trusted collective adaptive sys-

tems. ACM Trans. Model. Comput. Simul., 28(2):9:1–9:27, 2018.

[3] Raquel Almeida, Henrique Madeira, and Marco Vieira. Benchmarking the

resilience of self-adaptive systems: A new research challenge. In 29th IEEE

Symposium on Reliable Distributed Systems (SRDS 2010), New Delhi, Pun-

jab, India, October 31 - November 3, 2010, pages 348–352. IEEE Computer

Society, 2010.

[4] Aykut Argun, Agnese Callegari, and Giovanni Volpe. Simulation of Complex

Systems. IOP Publishing, 2021.

[5] Rajive Bagrodia, Richard Meyer, Mineo Takai, Yu-an Chen, Xiang Zeng, Jay

Martin, and Ha Yoon Song. Parsec: A parallel simulation environment for

complex systems. Computer, 31(10):77–85, 1998.

[6] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate programming for

the internet of things. Computer, 48(9):22–30, 2015.

[7] Jacob Beal and Mirko Viroli. Aggregate programming: From foundations

to applications. In Marco Bernardo, Rocco De Nicola, and Jane Hillston,

editors, Formal Methods for the Quantitative Evaluation of Collective Adap-

tive Systems - 16th International School on Formal Methods for the Design

of Computer, Communication, and Software Systems, SFM 2016, Bertinoro,

BIBLIOGRAPHY 51

BIBLIOGRAPHY

Italy, June 20-24, 2016, Advanced Lectures, volume 9700 of Lecture Notes in

Computer Science, pages 233–260. Springer, 2016.

[8] Aaron B. Brown, Joseph L. Hellerstein, Matt Hogstrom, Tony Lau, Sam

Lightstone, Peter Shum, and Mary Peterson Yost. Benchmarking autonomic

capabilities: Promises and pitfalls. In 1st International Conference on Au-

tonomic Computing (ICAC 2004), 17-19 May 2004, New York, NY, USA,

pages 266–267. IEEE Computer Society, 2004.

[9] Antonio Bucchiarone and Marina Mongiello. Ten years of self-adaptive sys-

tems: From dynamic ensembles to collective adaptive systems. In Maurice H.

ter Beek, Alessandro Fantechi, and Laura Semini, editors, From Software

Engineering to Formal Methods and Tools, and Back - Essays Dedicated to

Stefania Gnesi on the Occasion of Her 65th Birthday, volume 11865 of Lecture

Notes in Computer Science, pages 19–39. Springer, 2019.

[10] Roberto Casadei and Mirko Viroli. Towards aggregate programming in scala.

In First Workshop on Programming Models and Languages for Distributed

Computing, PMLDC@ECOOP 2016, Rome, Italy, July 17, 2016, page 5.

ACM, 2016.

[11] Roberto Casadei, Mirko Viroli, Gianluca Aguzzi, and Danilo Pianini. Scafi:

A scala DSL and toolkit for aggregate programming. SoftwareX, 20:101248,

2022.

[12] Gabriella Castelli, Marco Mamei, Alberto Rosi, and Franco Zambonelli. Per-

vasive middleware goes social: The SAPERE approach. In Fifth IEEE Con-

ference on Self-Adaptive and Self-Organizing Systems, SASOW 2011, Ann Ar-

bor, MI, USA, October 3-7, 2011, Workshops Proceedings, pages 9–14. IEEE

Computer Society, 2011.

[13] Christian S. Collberg and Todd A. Proebsting. Repeatability in computer

systems research. Commun. ACM, 59(3):62–69, 2016.

[14] Jack Collins, Mark Robson, Jun Yamada, Mohan Sridharan, Karol Janik,

and Ingmar Posner. RAMP: A benchmark for evaluating robotic assembly

manipulation and planning. IEEE Robotics Autom. Lett., 9(1):9–16, 2024.

52 BIBLIOGRAPHY

BIBLIOGRAPHY

[15] Dairo de Ruck, Victor Goeman, Michiel Willocx, Jorn Lapon, and Vincent

Naessens. Linux-based iot benchmark generator for firmware security analysis

tools. In Proceedings of the 18th International Conference on Availability,

Reliability and Security, ARES 2023, Benevento, Italy, 29 August 2023- 1

September 2023, pages 19:1–19:10. ACM, 2023.

[16] Jozo J. Dujmovic. Universal benchmark suites. In MASCOTS 1999, Pro-

ceedings of the 7th International Symposium on Modeling, Analysis and Sim-

ulation of Computer and Telecommunication Systems, 24-28 October, 1999,

College Park, Maryland, USA, pages 197–205. IEEE Computer Society, 1999.

[17] Hamza Es-Samaali, Aissam Outchakoucht, Siham Benhadou, Oussama Moun-

nan, and Anas Abou El Kalam. Anomaly detection for big data security: A

benchmark. In BDET 2021: The 3rd International Conference on Big Data

Engineering and Technology, Singapore, June 25-27, 2021, pages 35–39. ACM,

2021.

[18] Xavier Etchevers, Thierry Coupaye, and Guy Vachet. Experiences in bench-

marking of autonomic systems. In Athanasios V. Vasilakos, Roberto Be-

raldi, Roy Friedman, and Marco Mamei, editors, Autonomic Computing and

Communications Systems, Third International ICST Conference, Autonomics

2009, Limassol, Cyprus, September 9-11, 2009, Revised Selected Papers, vol-

ume 23 of Lecture Notes of the Institute for Computer Sciences, Social Infor-

matics and Telecommunications Engineering, pages 48–63. Springer, 2009.

[19] Odd Erik Gundersen and Sigbjørn Kjensmo. State of the art: Reproducibil-

ity in artificial intelligence. In Sheila A. McIlraith and Kilian Q. Weinberger,

editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intel-

ligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence

(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Arti-

ficial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,

2018, pages 1644–1651. AAAI Press, 2018.

[20] Matthias M. Hölzl, Axel Rauschmayer, and Martin Wirsing. Engineering of

software-intensive systems: State of the art and research challenges. In Mar-

BIBLIOGRAPHY 53

BIBLIOGRAPHY

tin Wirsing, Jean-Pierre Banâtre, Matthias M. Hölzl, and Axel Rauschmayer,

editors, Software-Intensive Systems and New Computing Paradigms - Chal-

lenges and Visions, volume 5380 of Lecture Notes in Computer Science, pages

1–44. Springer, 2008.

[21] Serge Kernbach, Thomas Schmickl, and Jon Timmis. Collective adaptive

systems: Challenges beyond evolvability. CoRR, abs/1108.5643, 2011.

[22] Charles M. Macal and Michael J. North. Tutorial on agent-based modelling

and simulation. J. Simulation, 4(3):151–162, 2010.

[23] Marco Mamei, Matteo Vasirani, and Franco Zambonelli. Self-organizing spa-

tial shapes in mobile particles: The TOTA approach. In Sven Brueckner,

Giovanna Di Marzo Serugendo, Anthony Karageorgos, and Radhika Nagpal,

editors, Engineering Self-Organising Systems, Methodologies and Applications

[revised versions of papers presented at the Engineering Selforganising Ap-

plications (ESOA 2004) workshop, held during the Autonomous Agents and

Multi-agent Systems conference (AAMAS 2004) in New York in July 2004,

and selected invited papers], volume 3464 of Lecture Notes in Computer Sci-

ence, pages 138–153. Springer, 2004.

[24] Rocco De Nicola, Stefan Jähnichen, and Martin Wirsing. Rigorous engineering

of collective adaptive systems: special section. Int. J. Softw. Tools Technol.

Transf., 22(4):389–397, 2020.

[25] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. A

formal approach to autonomic systems programming: The SCEL language.

ACM Trans. Auton. Adapt. Syst., 9(2):7:1–7:29, 2014.

[26] Michael J North, Nicholson T Collier, Jonathan Ozik, Eric R Tatara,

Charles M Macal, Mark Bragen, and Pam Sydelko. Complex adaptive sys-

tems modeling with repast simphony. Complex Adaptive Systems Modeling,

1(1), March 2013.

[27] D Pianini, S Montagna, and M Viroli. Chemical-oriented simulation of com-

putational systems with ALCHEMIST. Journal of Simulation, 7(3):202–215,

aug 2013.

54 BIBLIOGRAPHY

BIBLIOGRAPHY

[28] Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: practical aggregate

programming. In Roger L. Wainwright, Juan Manuel Corchado, Alessio Be-

chini, and Jiman Hong, editors, Proceedings of the 30th Annual ACM Sym-

posium on Applied Computing, Salamanca, Spain, April 13-17, 2015, pages

1846–1853. ACM, 2015.

[29] Stuart Russell and Peter Norvig. A modern, agent-oriented approach to in-

troductory artificial intelligence. SIGART Bull., 6(2):24–26, 1995.

[30] Andreas Spillner, Tilo Linz, and Hans Schaefer. Software Testing Foundations:

A Study Guide for the Certified Tester Exam (3rd ed.). Rocky Nook, 2011.

[31] Casper Thule, Kenneth Lausdahl, Cláudio Gomes, Gerd Meisl, and Pe-

ter Gorm Larsen. Maestro: The INTO-CPS co-simulation framework. Simul.

Model. Pract. Theory, 92:45–61, 2019.

[32] Quan Tu, Shilong Fan, Zihang Tian, and Rui Yan. Charactereval: A chi-

nese benchmark for role-playing conversational agent evaluation. CoRR,

abs/2401.01275, 2024.

[33] Ante Vilenica and Winfried Lamersdorf. Benchmarking and evaluation sup-

port for self-adaptive distributed systems. In Leonard Barolli, Fatos Xhafa,

Salvatore Vitabile, and Minoru Uehara, editors, Sixth International Confer-

ence on Complex, Intelligent, and Software Intensive Systems, CISIS 2012,

Palermo, Italy, July 4-6, 2012, pages 20–27. IEEE Computer Society, 2012.

[34] Mirko Viroli, Giorgio Audrito, Ferruccio Damiani, Danilo Pianini, and Jacob

Beal. A higher-order calculus of computational fields. CoRR, abs/1610.08116,

2016.

[35] Yihan Zhang, Lyon Zhang, Hanlin Wang, Fabián E. Bustamante, and Michael

Rubenstein. Swarmtalk - towards benchmark software suites for swarm

robotics platforms. In Amal El Fallah Seghrouchni, Gita Sukthankar, Bo An,

and Neil Yorke-Smith, editors, Proceedings of the 19th International Confer-

ence on Autonomous Agents and Multiagent Systems, AAMAS ’20, Auckland,

New Zealand, May 9-13, 2020, pages 1638–1646. International Foundation for

Autonomous Agents and Multiagent Systems, 2020.

BIBLIOGRAPHY 55

BIBLIOGRAPHY

56 BIBLIOGRAPHY

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors, Prof.

Danilo Pianini and Prof. Lukas Esterle, who have supported and guided me

throughout this work. Thank you for consistently providing feedback and being

available for discussions.

I also want to thank my family, who has always supported me and never ceased

to offer their encouragement. A special thank goes to my girlfriend Rita, who has

been a constant source of support and love, always motivating me to be the best

version of myself. I want to express my gratitude to my friends, Dani, Magna, Ste,

Raffo, Enea and Luca, my university colleagues, and all the people who have been

part of my life during this journey.

BIBLIOGRAPHY 57

	Abstract
	Introduction
	Motivation
	Background
	Collective Adaptive Systems
	Testing and Simulation
	Alchemist
	NetLogo

	Objectives

	Design
	Domain Analysis
	Ubiquitous Language
	User Stories

	Requirements
	User Requirements
	Functional Requirements
	Non-Functional Requirements

	Architecture
	Benchmark Configuration
	Benchmark Results

	Extension
	Simulators

	Implementation
	Framework
	Technologies
	Framework technologies
	DevOps technologies

	Validation
	Testing
	Unit Testing
	Integration Testing

	Evaluation

	Conclusion and Future Work
	
	Bibliography

