
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Dipartimento di Informatica - Scienza e Ingegneria

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

A Web-based approach for ecosystems
of heterogeneous Digital Twins

Tesi di laurea in
Pervasive Computing

Relatore
Prof. Alessandro Ricci

Correlatori
Prof. Andrei Ciortea
Dott. Samuele Burattini

Candidato
Andrea Giulianelli

Quarta Sessione di Laurea

Anno Accademico 2022-2023

ii

Abstract

The Digital Twin paradigm is growing in popularity in both academia and in-
dustry as an approach that can virtualize entities existing in the real world. In
particular, Digital Twins refer to the ability to clone and mirror a Physical Asset
during its life cycle through a software counterpart that consumers can exploit.
Over the years, its wide applicability in different application domains resulted in
the loss of uniformity in modeling and development, leading to the creation of
vertical and closed silos. In recent years, some proposals from academia have
tried to conceptualize an open and interoperable vision for the creation of Digital
Twins ecosystems that mirror entire portions of reality. In particular, the Web of
Digital Twins (WoDT) vision aims at the creation of open, distributed, and dy-
namic ecosystems of connected Digital Twins creating a cross-domain and cross-
organization service-oriented layer. This thesis proposes a Web-based design of
the Web of Digital Twins vision that, exploiting a uniform interface that leverages
Web technologies, aspires to the creation of ecosystems of heterogeneous Digital
Twins, implemented with possibly different technologies. Moreover, part of the
objective is the creation of a compatibility layer towards other popular paradigms,
such as the Web of Things. The Web-based Web of Digital Twins supports the
composition of discoverable and navigable ecosystems of cross-domain and cross-
organizational Digital Twins that can serve as an open and interoperable service
layer for applications on top. The idea resulted in the drafting of two specifica-
tions, for the obtainment of WoDT-compliant ecosystems, and in the creation of
an abstract architecture that supports their implementation. The feasibility of the
design has been proved through a prototypical implementation and subsequently
exemplified through a use-case scenario.

iii

iv

To my family.

v

vi

Acknowledgements

First of all, I would like to sincerely thank the supervisor of this thesis, Prof.
Alessandro Ricci. You have been a source of inspiration for me during my uni-
versity career, and working with you during my thesis has been an honor for me.
You always made me feel part of the working group and always gave voice to my
doubts and ideas, supporting me, especially in the most difficult moments. I also
thank you for making my experience at the University of St. Gallen possible and
allowing me to go through one of the most challenging experiences of my life.

Then, I would like to thank Dott. Samuele Burattini for likewise being essential
throughout this thesis. I am so grateful for all the support and guidance, especially
during the first months when the idea was still rough. I wish you the best in your
career, wherever it takes you.

I would like to thank all the people I met during my experience at the University
of St. Gallen. First of all, Prof. Andrei Ciortea for welcoming me into the research
group by providing me with everything I needed to work while feeling as much at
home as possible. Thank you for all the interesting discussions and for sharing
your knowledge and experience with me. Also, I would like to thank Prof. Simon
Mayer and all the other people with whom I had the pleasure to work or chat
during the working days, Jan, Ivan, Jessie, Lukas, Jannis, and Matteo.

This thesis is just the last piece of the puzzle of these university years, which
I will always remember. They have been years full of fulfillment and tears, joys
and sorrows, but I would do it all over again, the same way. A key part of this
journey was my family, who supported and spurred me every day, believing in me
under all circumstances. It is hard to find the right words to describe what it all
means to me, but I want to thank you for teaching me what it means to love and
be loved, to pursue a passion, to face difficulties and come out on top, to know
how to fall and then get back up, and to always be there for each other. You were
incredible during my experience abroad, and it is also thanks to you that I was
able to carry it through, only you know what it meant to me. Thank you, Michi,
for teaching me to face my fears by seeing them from a different point of view.

Finally, I would like to thank all the people who have been present during these
years. First of all, I would like to thank Beatrice, for being by my side during this

vii

viii

past year supporting me in everything, and giving me a place of peace. Thank you
to Marco, my best friend, for being there after all these years. I wish you the best,
you are the living example of never giving up, in front of anything. Finally, thank
you to all my friends, including Maria, Davide, Giacomo, Andrea, and Angela.

Thank you all, it was great, and I hope more joy like this will come in the
future.

Contents

Abstract iii

1 Introduction 1

2 Background 3

2.1 State of the art on Digital Twins 3

2.1.1 Definitions and characteristics 3

2.1.2 Survey on popular technologies 9

2.1.3 Limitations of the current approaches 17

2.2 Web of Digital Twins . 18

3 Contribution: Web-based WoDT 25

3.1 Objective . 25

3.2 Idea . 26

3.3 Contributions overview . 27

3.4 Requirements . 27

3.4.1 Functional requirements . 27

3.4.2 Non-functional requirements 30

3.4.3 Implementation requirements 31

4 Analysis of the Web for a Web-based WoDT 33

4.1 Web and REST . 33

4.1.1 REST Architectural Style 34

4.1.2 Web resources: identification and versioning 40

4.1.3 Semantic Web . 42

4.1.4 Linked Data . 43

4.2 Web of Things: vision and comparison 46

4.2.1 Overview of the WoT paradigm 46

4.2.2 Digital Twins in Web of Things 50

4.2.3 Comparison between Digital Twins and WoT Things 51

ix

x CONTENTS

5 WWoDT: the Web-based WoDT 59
5.1 High-level description . 59
5.2 Specifications . 62

5.2.1 WoDT Digital Twin Specification 62
5.2.2 WoDT Digital Twins Platform Specification 74

5.3 Abstract Architecture . 78
5.3.1 WoDT Digital Twin . 80
5.3.2 WoDT Digital Twins Platform 83
5.3.3 Interaction flows . 83

6 Prototype 87
6.1 Prototype design . 87

6.1.1 WoDT Digital Twins Platform 88
6.1.2 WoDT Digital Twin: Azure Digital Twins 88
6.1.3 WoDT Digital Twin: WLDT Framework 90

6.2 Prototype implementation . 93
6.2.1 WoT-based DTD and WoDT Vocabulary 93
6.2.2 Azure Digital Twins based WoDT Digital Twin 98
6.2.3 White Label Digital Twins based WoDT Adapter 101
6.2.4 WoDT Digital Twins Platform 102
6.2.5 DevOps technologies and practices 105

6.3 Example use case . 107
6.3.1 Use case description . 108
6.3.2 Results . 111

7 Conclusions 117
7.1 Future Work . 119

List of Figures

2.1 Typical Architecture with Eclipse Ditto 11
2.2 Example of an Azure Digital Twins graph 14
2.3 Scheme of Azure Digital Twins possibilities of integration 15
2.4 Physical Assets and corresponding Digital Twins — Source: [44] . . 19
2.5 The WoDT Layered View — Source: [44] 19
2.6 The WoDT bidirectional shadowing process 21
2.7 The WoDT Distributed Knowledge Graph 22
2.8 Abstract Architecture defined in the Web of Digital Twins vision . 23

4.1 Architectural overview of the Memento protocol 41
4.2 Example of Basic Container . 45
4.3 Example of Direct Container with a non-Container subject 45
4.4 Direct interaction in Web of Things 50
4.5 Intermediaries in Web of Things . 50

5.1 High-level architecture of a WoDT ecosystem 61
5.2 Proposed Abstract Architecture . 79
5.3 UML Sequence diagram for WoDT Digital Twin registration 84
5.4 UML Sequence diagram for ecosystem query 85
5.5 UML Sequence diagram for WoDT Digital Twin observation 86

6.1 Prototype design of the WoDT Digital Twin based on Azure Digital
Twins . 89

6.2 Abstract architecture of a Digital Twin with the WLDT Framework 90
6.3 Components of the WLDT Framework 91
6.4 Prototype design of theWoDT Digital Twin based onWLDT Frame-

work . 92
6.5 Scheme of the proposed use case scenario 109
6.6 Partial visualization of the WoDT Digital Twins Platform Knowl-

edge Graph of the Smart City organization 116

xi

xii LIST OF FIGURES

Listings

2.1 Example of a Ditto Thing . 11
2.2 Example of a DTDL model . 14
4.1 Example of a WoT Thing Description – Source: [32] 48
6.1 Example of a patch event from Azure Digital Twins 98
6.2 Example of a mapped event by the Azure Function 99
6.3 Usage of the WoDT Digital Adapter to create WoDT-compliant

Digital Twins . 102
6.4 Implementation of the WoDT Platform Engine 104
6.5 DTDL model of the Ambulance Digital Twin 110
6.6 SPARQL Query to obtain the traffic lights of the interested inter-

section . 112
6.7 SPARQL Query result of the Listing 6.6 112
6.8 Digital Twin Descriptor of the Traffic light A 113
6.9 Partial WoDT Digital Twins Platform Knowledge Graph of the

Smart City organization . 115
6.10 DTKG of the Ambulance WoDT Digital Twin 116
6.11 DTKG of the Traffic Light A WoDT Digital Twin 116

xiii

xiv LISTINGS

Chapter 1

Introduction

In the last decade, the Digital Twin paradigm has been one of the most active
research fields in both academia and industry, with already several systems and
technologies based on this vision. Digital Twins refer to the ability to clone a
Physical Asset through a software counterpart for its entire life cycle. This creates
a digitalized version that can be exploited at the application level, mirroring and
augmenting its capabilities.

The Digital Twin paradigm has been applied in various domains as an approach
that can virtualize entities existing in the real world, creating software counterparts
that provide services over them. Several Digital Twin-based solutions have been
tested and adopted in many domains including Healthcare, Manufacturing, and
Smart Cities, finding interesting approaches and contributing to the advancement
of the supporting technologies.

However, the wide applicability of the paradigm, over the years, has led to the
proliferation of different definitions and different supporting technologies, resulting
in the creation of vertical silos that prevent the possibility of representing portions
of reality digitalized and navigable by the applications.

Despite this, some visions coming from academia try to fully exploit the Digi-
tal Twin paradigm, seeing its value not only in the single Digital Twin but in the
creation of entire ecosystems that represent and mirror entire portions of reality
offering an interoperable and navigable interface. In particular, the Web of Digital
Twins [44] vision aims at the creation of open, distributed, and dynamic ecosys-
tems of connected Digital Twins creating a cross-domain and cross-organization
service-oriented layer. Therefore, openness and interoperability are suggested as
two fundamental building blocks of the modern Digital Twins.

This thesis aims to implement and contribute to the Web of Digital Twins
vision through an approach that addresses heterogeneity in Digital Twins ecosys-
tems, aspiring for ecosystems where Digital Twins are not created with custom
technologies built around the Web of Digital Twins vision, but where they can use

1

2 CHAPTER 1. INTRODUCTION

any existing technology suited for their use case and fit equally into the ecosystem.
In this scenario, consumers can navigate ecosystems regardless of the underlying
technologies by leveraging a uniform interface, an idea drawing from the design
rationale behind the Web architecture. This thesis proposes an approach based on
the Web architecture, standards, protocols, paradigms, and technologies for the
creation of dynamic, open, and long-lived systems that foster a uniform interface
in the ecosystems.

This thesis work is the result of a collaboration with the University of St.
Gallen, specifically with the Interaction and Communication based Systems re-
search group, experts in hypermedia systems. The thesis work was carried out
entirely at the University of St. Gallen, which hosted me for the thesis period.

Thesis Structure Chapter 2 provides an overview of the state of the art on
Digital Twins and an in-depth analysis of the Web of Digital Twins vision. After-
ward, Chapter 3 describes in depth the objective and the idea that characterize
the thesis work, and defines the requirements of the system. Chapter 4 provides
an overview of the subset of the Web standards, protocols, and paradigms that
have been selected, and compares the Digital Twin paradigm to the Web of Things.
Subsequently, Chapter 5 presents the proposed design, for which a prototypical im-
plementation and an example use case are provided in Chapter 6. Finally, Chapter
7 concludes this thesis by summarizing and discussing the main contributions and
the future directions that can be studied and explored.

Chapter 2

Background

This chapter introduces the Digital Twins paradigm with an overview of the state
of the art of the concept and with a more detailed description of the Web of Digital
Twins vision, which is the one followed in this thesis.

2.1 State of the art on Digital Twins

This section provides the definition and the characteristics of the Digital Twin
paradigm. Subsequently, the most popular technologies that implement the paradigm,
and an overview of their limitations are presented.

2.1.1 Definitions and characteristics

The Digital Twin concept was created by Michael Grieves and presented at the
University of Michigan. The idea goes back to 2002 as part of his ideal vision of
Product Lifecycle Management systems [24] presented to the industry as “Concep-
tual Ideal for PLM”. This conceptual model was used in the first PLM courses at
the University of Michigan in early 2003, where it was referred to as the Mirrored
Spaces Model [26]. Then, Michael Grieves in [25] and [26] formalizes the term
Digital Twin, providing the first definition:

The Digital Twin is a set of virtual information constructs that fully
describes a potential or actual physical manufactured product from the
micro atomic level to the macro geometrical level. At its optimum, any
information that could be obtained from inspecting a physical manufac-
tured product can be obtained from its Digital Twin. [26]

In the Grieves’s vision, Digital Twins are seen as a concept and set of technolo-
gies used to aid manufacturing systems throughout the product life-cycle, even

3

4 CHAPTER 2. BACKGROUND

before the creation of the physical product. The manufacturing sector played a
crucial role in shaping the definition of many aspects and characteristics of Digital
Twins. It was also one of the first fields to test and verify the real applicability
and advantages of Digital Twins in a large-scale and highly complex context. In
fact, before Digital Twins and IoT, the only way to know the state of a physical
object, a machine, or the company in general was to be in proximity to it in order
to carry out analyses. So, the information was inseparable from the physical ob-
ject. The objective of Digital Twins was already from the beginning to allow the
representation of such information at the Digital level to enable Digital copies of
real-world objects [25][26].

Initially, when the concept was presented by Grieves in 2003, the available tech-
nologies for modeling and mirroring physical objects were limited and immature.
This slowed down the evolution and the research around Digital Twins.

The quick rise and development of communication technologies, simulation
techniques, the spread of other paradigms like the Internet of Things (IoT), and
the advances in Artificial Intelligence, allowed a renewed interest in Digital Twins
with a vast set of implementations and definitions.

The initial vision was based on Grieves’s experience in manufacturing. After
applying the Digital Twin paradigm in various domains, including Healthcare,
and Smart Cities, it started to seem possible to virtualize any physical object
present in the real world. In addition to that, also Augmented and Virtual Reality,
Virtualization, and Artificial Intelligence influenced and enriched the Digital Twin
concept as we know it today [39].

This renewed interest allowed expanding the Digital Twin concept as a software
entity that can model, represent, mirror, and augment the behavior, the state, and
the functionalities of a Physical Asset [39].

As a result, it was needed a more general vision and a definition of the Digital
Twin concept that was able to include all these new visions and ideas. Minerva et
al. in [39], proposed a new definition:

A Digital Twin is a comprehensive software representation of an indi-
vidual physical object. It includes the properties, conditions, and be-
havior(s) of the real-life object through models and data. A Digital
Twin is a set of realistic models that can simulate an object’s behavior
in the deployed environment. The Digital Twin represents and reflects
its physical twin and remains its virtual counterpart across the object’s
entire lifecycle. [39]

In addition to that, Minerva et al. in [39] individuated the state-of-the-art
characteristics of a Digital Twin.

2.1. STATE OF THE ART ON DIGITAL TWINS 5

Identity The mirrored Physical Assets must be univocally identifiable, and so
also the associated Digital Twins need to have a unique identifier to make them
addressable in the software space. Each Digital Twin has an identifier, which
allows it to be distinguished from other Digital Twins, and a pointer to the asso-
ciated Physical Asset. Following this idea, multiple Digital Twins, with different
identifiers, can be associated with the same Physical Asset. In addition, Minerva
et al. consider the addition of a time and a space dimension to separate and ex-
actly identify the Digital Twins in a specific environment at a specific period. The
time could be used to determine exactly what instance of the Physical Asset is
represented by the Digital Twin.

Representativeness and Contextualization The Digital Twin should be able
to represent, at the Digital level, the mirrored Physical Asset. At the same time,
creating a model that can fully describe it accurately is a very difficult task and
not always the goal.

A Digital Twin must be described by a model designed and developed with
the main goal of representing all the elements that are necessary and sufficient to
qualify the Digital Twin as representative of the interested Physical Asset within
the target context.

Contextualizing a Digital Twin means that it is described by the model el-
ements that are necessary and sufficient to represent the Physical Asset in the
specific context under consideration.

Reflection Reflection is a property that complements those of Representative-
ness and Contextualization. This characteristic imposes that a Digital Twin must
be able to adequately and promptly reflect the mirrored Physical Asset state,
events, and actions. The state does not have to be reflected exactly in the Digital
Twins. There may be several transformation functions that relate the values of
the Physical Asset to the values stored in the Digital Twin replica.

Replication This characteristic emphasizes the potential for physical objects
to be virtualized and replicated multiple times in their Digital Twins. A Digital
Twin is a software entity that can be scaled and replicated based on demand using
modern virtualization techniques.

Entanglement The Digital Twin must always maintain an up-to-date view of
the current state of the associated Physical Asset.

To this end, a connection between the Physical Asset and the associated Digital
Twins is required to ensure the transfer of data in real-time or near-real-time.

Minerva et al. considered three characteristics of the Entanglement process:

6 CHAPTER 2. BACKGROUND

• Connectivity : there should be a direct or indirect means to communicate the
status changes and related data between the Physical Asset and the Digital
Twins. Direct communication relies on a direct communication link between
the Physical Asset and the Digital Twin. Indirect communication relies on
a third party – acting as a gateway or as an observer – for sending and
receiving information.

• Promptness : each type of Physical Asset or Application domain has different
time requirements. The Digital Twin must be able to reflect the current state
of its Physical counterpart. To be able to do this, the Physical Asset must
be able to support an exchange of information that allows the Digital Twin
not to miss any event. In particular, the Digital Twin update time must be
less than the average state change time of the Physical Asset.

• Association: it represents the communication type between the Physical
Asset and the Digital Twin. There are two types: unidirectional and bidi-
rectional. In the former, the information is exchanged in only one direction,
so from the Physical Asset to the Digital Twin or vice versa. In bidirectional
communication instead, the information can be exchanged freely in both di-
rections, enabling the execution of actions dependent on the current state of
the Digital Twin.

Persistency Applications rely exclusively on Digital Twins to obtain informa-
tion. Therefore, the Digital Twin, being a software entity separated from its Phys-
ical Asset, must be made persistent over time storing its data and maintaining its
availability over time.

Memorization Digital Twins should have the ability to store and represent all
the relevant present and past data, taking into account the Representativeness and
Contextualization property. This characteristic enables consumers to analyze past
states, and events, solve queries, understand the behavior of the associated Phys-
ical Asset, and make predictions within the same space or in other environments
(what-if questions, stress tests, and more).

Composability It represents the ability to group several objects into a com-
posed one and then observe and control the behavior of the composed object
as well as the individual components. Composability offers a way to abstract and
manage the complexity of large systems and focus only on the relevant parts within
the target context.

2.1. STATE OF THE ART ON DIGITAL TWINS 7

Accountability/Manageability Digital Twins should not break when Physi-
cal Assets do, so they require precise and prompt management that allows them to
enter into a recovery state when needed. Moreover, when the Entanglement pro-
cess has some type of error, there must exist a way to quickly restore and resume
operation with minimal loss of state information.

Augmentation Physical Assets usually come with a predefined set of function-
alities that cannot be modified during their life-cycle.

Instead, Digital Twins can leverage software dematerialization to offer new
functionalities like properties or actions that exist only at the software level and can
change over time. This opens up infinite possibilities for developing and providing
additional services and functionality through software alone.

Ownership Ownership in Digital Twins can be conceived in two ways: data
and Digital Twin ownership. The first one is related to the data produced by the
Digital Twin itself, and it is important to determine and regulate the ownership
and usage rights of these data. The second one is related to the ownership of the
Digital Twin in terms of its software entity. The associated Physical Asset usually
has an owner but from it, it is possible to create a set of Digital Twins that do
not necessarily share the same ownership.

Servitization The Servitization concept, linked to the Augmentation one, re-
lates to the possibility of offering in the market the association of a product with
services, functionalities, processes, and access to data of a Physical Asset by means
of software capabilities, tools, and interfaces. All of these characteristics described
previously enable this functionality. In fact, through Representativeness, Contex-
tualization, Reflection, and Memorization it is possible to memorize the status
information of the Digital Twin. Afterward, thanks to Entanglement, it is possi-
ble to maintain a continuous bidirectional channel which can be exploited through
Augmentation to provide the interface to recall the various services. Therefore, it
is easy to understand how Digital Twins represent a launching pad on the business
side. Servitization is laying the foundations for a change in the sale of products,
pushing the economy based on product ownership, to an economy based on “pay
per usage”.

Predictability Digital Twins generate data about properties and events coming
from the Physical Asset.

The data can be used to identify patterns, predict anomalies, or understand
the behavior of a Physical Asset in a simulated environment (for example what-if
scenarios via its Digital Twin). Digital Twins and their data can be integrated

8 CHAPTER 2. BACKGROUND

with Artificial Intelligence to enable new services and features for predictions and
simulations, which can also be provided through forms of Augmentation.

Many initiatives already use Digital Twins for predictions, with NASA [23]
being a major example.

Some properties discussed herein are foundational for a Digital Twin, i.e., with-
out them, there is no real DT implementation; while others extend and increase
the intrinsic value of the Digital Twin relation. This is the result of the work of
Minerva et al. to try to obtain a definition for a general-purpose Digital Twin.

However, upon analysis of the results from academia and industry, it becomes
apparent that several definitions of Digital Twins exist, each influenced and en-
riched by the domain in which they are used. This is because, as previously stated,
Digital Twins are not only useful in manufacturing but also in any domain where a
software replica of a Physical Asset is beneficial in certain scenarios. The absence
of a shared definition is a significant issue because it prevents the exploitation of
their full potential and the creation of Digital Twins ecosystems due to the lack
of a shared definition and standards.

To date, there is not a vision or definition that is enough general and shared
among experts which can be referred to implement interoperable solutions. In
May 2020, Microsoft and other co-founders created the first consortium to es-
tablish standards regarding Digital Twins: the Digital Twin Consortium1. The
Digital Twin Consortium aims to establish global standards that facilitate the
cross-organizational sharing and use of information generated by Digital Twins to
help advance the use of this technology in many sectors, from aerospace to natu-
ral resources. The consortium is creating a glossary2 with the intent of providing
shared definitions about Digital Twins. Their definition of a Digital Twin is the
following:

A digital twin is a virtual representation of real-world entities and pro-
cesses, synchronized at a specified frequency and fidelity3.

It is possible to notice that the Digital Twin Consortium introduces the con-
cepts of frequency and fidelity, which are two fundamental characteristics in the
modern vision that it is considered and described later in this thesis.

In addition, ISO (International Organization for Standardization) published a
standard for Digital Twins to formalize the concepts and the terminology [1], and
ETSI (European Telecommunications Standards Institute) is writing a technical
report more related to interoperability [2].

1https://www.digitaltwinconsortium.org/
2https://www.digitaltwinconsortium.org/glossary/glossary/
3https://www.digitaltwinconsortium.org/glossary/glossary/#digital-twin

https://www.digitaltwinconsortium.org/
https://www.digitaltwinconsortium.org/glossary/glossary/
https://www.digitaltwinconsortium.org/glossary/glossary/#digital-twin

2.1. STATE OF THE ART ON DIGITAL TWINS 9

Further relevant initiatives include the National Digital Twin Programme [20],
the UK initiative to create an ecosystem of interconnected Digital Twins for data
exchange [31] based on a set of principles called “The Gemini Principles” [27].

2.1.2 Survey on popular technologies

From 2002 several commercial solutions tried to enter the market. The availability
of the technologies and the spread of the paradigm to several application domains
attracted not only the academic world but also industries worldwide to design and
develop solutions for Digital Twins. Most of them are centered on the application
domain where they are involved, but some others are born with a more generic
point of view, especially the Azure Digital Twins service from Microsoft.

The main solutions available on the market are:

• Eclipse Ditto4: it is an open-source middleware, by the Eclipse team, which
helps create Digital Twins of IoT devices.

• Azure Digital Twins5: Azure Digital Twins is a PaaS (Platform as a Service)
cloud service that allows the creation of Digital Twins graphs. They are
based on models of entire environments.

• AWS IoT TwinMaker 6: it is the Amazon solution to build Digital Twins of
Physical and Digital systems. AWS IoT TwinMaker was born to integrate
the Digital Twins paradigm in real-world systems such as buildings, factories,
industrial equipment, and production lines, so a more industry-related vision
that is reflected in its metamodel and visualization features.

• Bosh IoT Things7: it is a solution that allows applications to manage Digital
Twins for their IoT devices, creating a software layer that abstracts from the
Physical layer. It is based internally on Eclipse Ditto.

• XM Pro Digital Twins8: they offer a platform where the Digital Twin
paradigm is integrated with Artificial Intelligence to analyze data and pro-
vide several services that can support industries and their value chain.

After having provided an overview of the main solutions, the two most popular
and complete ones, Eclipse Ditto and Azure Digital Twins, are described in a more
structured way.

4https://eclipse.dev/ditto/index.html
5https://learn.microsoft.com/en-us/azure/digital-twins/
6https://aws.amazon.com/it/iot-twinmaker/
7https://docs.bosch-iot-suite.com/things/getting-started/twin/
8https://xmpro.com/

https://eclipse.dev/ditto/index.html
https://learn.microsoft.com/en-us/azure/digital-twins/
https://aws.amazon.com/it/iot-twinmaker/
https://docs.bosch-iot-suite.com/things/getting-started/twin/
https://xmpro.com/

10 CHAPTER 2. BACKGROUND

Eclipse Ditto

Eclipse Ditto is an open-source middleware that helps build Digital Twins of IoT
Devices. Each device is abstracted into its Digital Twin, following the paradigm
“Device as a Service”. The Digital Twin paradigm is applied in a domain-agnostic
manner to provide an abstraction layer for IoT devices. This layer can be used by
the application layer without requiring knowledge of the underlying technologies.

Eclipse Ditto is not a complete Digital Twin Platform. Instead, it manages
only the Digital Twins abstractions without implementing any IoT protocols to
communicate with the actual devices. For this reason, it relies on other solu-
tions for device connectivity, such as Eclise Hono9, MQTT Brokers like Eclipse
Mosquitto10 or Apache Kafka11 broker via custom “connections”. A connection
represents a communication channel for the exchange of messages between any
service and Ditto. Ditto supports one-way and two-way communication over con-
nections. This enables consumer/producer scenarios as well as fully-fledged com-
mand and response use cases. An example of its typical Architecture can be seen
in Figure 2.1.

Eclipse Ditto follows a model composed of these main elements:

• Thing : it represents the Digital Twin concept, and it is defined by a Thing
ID.

• Definition: it links a Thing to its model that defines its capabilities. Eclipse
Ditto does not have a type system. Therefore, it utilizes either the Web of
Things (WoT) Thing Model or Eclipse Vorto. Definitions can be specified
both for Ditto Things and Features. Moreover, when described through a
WoT Thing Model, the associatedWoT Thing Description of the Ditto Thing
is automatically generated.

• Attribute: used to model the static properties of a Digital Twin within their
Ditto Thing.

• Feature: used to manage data and functionalities of a Digital Twin within
their Ditto Thing. Each Feature is identified by a Feature ID. It can adhere
to a Feature Definition – modeled with either WoT Thing Model or Eclipse
Vorto – that specifies the structure. The structure is composed of a list of
properties.

• Policy : Things and other entities can be configured with fine-grained access
control by Developers.

9https://eclipse.dev/hono/docs/
10https://mosquitto.org/
11https://kafka.apache.org/

https://eclipse.dev/hono/docs/
https://mosquitto.org/
https://kafka.apache.org/

2.1. STATE OF THE ART ON DIGITAL TWINS 11

Figure 2.1: Typical Architecture with Eclipse Ditto
Source: https://eclipse.dev/ditto/index.html

• Messages : Eclipse Ditto allows to route messages to devices. Messages can
model both actions or events. Additional control or retention policies are
not supported.

In Listing 2.1 there is an example of a Ditto Thing with the elements described
so far.

Listing 2.1: Example of a Ditto Thing�
1 {

2 "thingId": "the.namespace:theName",

3 "policyId": "the.namespace:thePolicyName",

4 "definition": "org.eclipse.ditto:HeatingDevice :2.1.0" ,

5 "attributes": {

6 "someAttr": 32,

7 "manufacturer": "ACME corp"

8 },

9 "features": {

10 "heating -no1": {

11 "properties": {

12 "connected": true ,

13 "complexProperty": {

https://eclipse.dev/ditto/index.html

12 CHAPTER 2. BACKGROUND

14 "street": "my street",

15 "house no": 42

16 }

17 },

18 "desiredProperties": {

19 "connected": false

20 }

21 },

22 "switchable": {

23 "definition": ["org.eclipse.ditto:Switcher :1.0.0"],

24 "properties": {

25 "on": true ,

26 "lastToggled": "2017 -11 -15 T18:21Z"

27 }

28 }

29 }

30 }
� �
In the following, the weaknesses and the strengths of Eclipse Ditto are analyzed.

Weaknesses Currently, Eclipse Ditto does not ensure that Properties and Fea-
tures follow the types and the structure defined in the Definitions. This is because
Eclipse Ditto does not have an internal type system and it does not perform any
additional check on the provided Definitions.

The metamodel focuses on IoT devices, making it challenging to use as a
general-purpose solution. Moreover, relationships between Digital Twins are not
modeled explicitly.

In addition, actions are not modeled explicitly. They are obtained viaMessages,
but Eclipse Ditto does not perform any type of check, so it is not possible to enforce
actions or payloads directly within the Model.

Strengths Eclipse Ditto’s Live Channel enables bidirectional communication,
simplifying the process of performing actions on Physical Devices.

The Thing history – Eclipse Ditto >= 3.2.0 – can be retrieved and/or
streamed to other services. So, there are plenty of opportunities for data anal-
ysis, predictions, and simulation techniques also based on AI.

Policies offer a very granular way to manage permissions and privileges that
allow Eclipse Ditto to be used also in critical and industrial applications – for
example in Bosh IoT Things deployments.

Events and Change notifications, using the Web Socket API, can be exploited
to enable the Digital Twins observation pattern.

In addition, connections allow services such as Apache Kafka and RabbitMQ to
be used in pipelines for observing, aggregating, and analyzing Digital Twins data
within deployments.

In conclusion, it is one of the best solutions for Digital Twins in the IoT sce-
nario.

2.1. STATE OF THE ART ON DIGITAL TWINS 13

Azure Digital Twins

One of the most versatile and general-purpose solutions on the market is the one
offered by Microsoft with Azure Digital Twins. Azure Digital Twins (ADT) is
a PaaS (Platform as a Service) cloud service that allows the creation of Digital
Twins graphs based on models of entire environments. The Azure Digital Twins
metamodel is domain-agnostic, making it suitable for use in any application do-
main.

Digital Twins in Azure Digital Twins are described using models. The models
are defined in a JSON-LD-based language called Digital Twins Definition Language
(DTDL) created by Microsoft. The metamodel followed by ADT and DTDL
consists of:

• Properties : they are used to model the Digital Twin state – both static and
dynamic. The Azure Digital Twins instance stores only the last value of each
property, so no historical data is retained in the service itself.

• Relationships : in Azure Digital Twins, relationships between Digital Twins
are part of the metamodel. This enables the creation of graphs of Digital
Twins (Figure 2.2) that mirror the relationships existing between Physical
Assets in the real world. Each Relationship has a direction, and it can also
have associated properties.

• Events : they are enabled by both Telemetry data and by the Azure Digital
Twins’s Event Notification system that allows the design of pipelines for the
integration with external services.

Once the Developer has defined the Digital Twins models, it is possible to use
them to create Digital Twins that represent each specific entity in the environment
and exploit relationships to form the graph of Digital Twins as described in the
Figure 2.2.

Other minor elements that are allowed in DTDL models are components and
telemetry. In addition, DTDL models in Azure Digital Twins support inheritance.
Not all the features of DTDL12 are supported by Azure Digital Twins. Examples
of not supported features are DTDL commands and multiplicity of relationships.

DTDL models are identified by an @id field. This field only identifies the
model itself. Each Digital Twin, instantiated from a model, has another identifier
to identify the Digital Twin itself. From a DTDL model it is possible to create
n instances, each one with a different identifier. These identifiers are valid and
unique only within the Azure Digital Twins instance, so they are not global. In
Listing 2.2 there is an example of a DTDL model with some elements described
so far.

12https://github.com/Azure/opendigitaltwins-dtdl/tree/master

https://github.com/Azure/opendigitaltwins-dtdl/tree/master

14 CHAPTER 2. BACKGROUND

Figure 2.2: Example of an Azure Digital Twins graph

Listing 2.2: Example of a DTDL model�
1 {

2 "@id": "dtmi:com:adt:dtsample:home;1",

3 "@type": "Interface",

4 "@context": "dtmi:dtdl:context ;3",

5 "displayName": "Home",

6 "contents": [

7 {

8 "@type": "Property",

9 "name": "name",

10 "schema": "string"

11 },

12 {

13 "@type": "Relationship",

14 "@id": "dtmi:com:adt:dtsample:home:rel_has_floors ;1",

15 "name": "rel_has_floors",

16 "displayName": "Home has floors",

17 "target": "dtmi:com:adt:dtsample:floor ;1"

18 }

19]

20 }
� �
The Azure Digital Twins service itself, like Eclipse Ditto, only allows for the

creation and management of Digital Twins and the storage of the current status
and relationships of the Digital Twins. So it does not store their history or handle
the connectivity part with the associated Physical Assets. Microsoft adopts a
completely event-driven approach, enabling the creation of pipelines with other
services to obtain all the necessary features. This approach is highly scalable
because each microservice can scale based on the needs.

Azure Digital Twins can be driven with data and events from any service like
Azure IoT Hub, Logic Apps, custom services, and more – see Figure 2.3. These
kinds of data flow enable the collection of telemetry from physical devices in the
environment and the processing of this data using the Azure Digital Twins graph

2.1. STATE OF THE ART ON DIGITAL TWINS 15

Figure 2.3: Scheme of Azure Digital Twins possibilities of integration
Source:

https://learn.microsoft.com/en-us/azure/digital-twins/overview

in the cloud.
Azure Digital Twins can be configured to send events and data to other down-

stream services for storage or additional services (Figure 2.3). To achieve this, it
is possible to configure an event-route with custom data filters to expose events
and send them to an endpoint that can be connected to the external service of
interest. Azure Digital Twins supports three types of endpoints: Event Hubs13,
Event Grid14, Service Bus15.

The following is a brief description of the main Azure services that can be used
in a pipeline with Azure Digital Twins:

• Azure IoT Hub16: handles the connections to Physical Devices and all the
technologies and protocols. If it is part of a pipeline with Azure Functions
it is possible to implement bidirectional channels with Digital Twins. This
would allow obtaining data from Physical Devices through Azure IoT Hub.
The data would be sent to Azure Digital Twins to update the Digital replicas,
which will generate events observed by the services in the pipeline. These

13https://learn.microsoft.com/en-us/azure/event-hubs/
14https://learn.microsoft.com/en-us/azure/event-grid/
15https://learn.microsoft.com/en-us/azure/service-bus-messaging/
16https://learn.microsoft.com/en-us/azure/iot-hub/

https://learn.microsoft.com/en-us/azure/digital-twins/overview
https://learn.microsoft.com/en-us/azure/event-hubs/
https://learn.microsoft.com/en-us/azure/event-grid/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/
https://learn.microsoft.com/en-us/azure/iot-hub/

16 CHAPTER 2. BACKGROUND

services can execute analysis, decide actions, and invoke them on the Digital
Twins, which are then reflected on the Physical Assets via IoT Hub.

• Azure Functions17: a serverless FaaS (Function as a Service) solution that
allows portions of code to be specified with the possibility of automatic scal-
ing. It is useful for business logic and data processing, data ingress, mapping,
or as a simple bridge between Azure services.

• Azure SignalR18: provides real-time functionality to applications over HTTP.
This service can be used in combination with events from Azure Digital
Twins that relate to graph updates to implement observation of Digital
Twins.

• Azure Data Explorer 19: it can be used to store, retrieve and analyze the
history of Digital Twins.

In addition, the Azure Digital Twins graph can be queried via the Azure Digital
Twins Query system using an SQL-like query language called Azure Digital Twins
query language to obtain all the stored information.

In the following, the weaknesses and the strengths of Azure Digital Twins are
analyzed.

Weaknesses The main weakness of the Azure Digital Twins service is that it is
mostly a closed system:

• It is not possible to create relationships between Digital Twins of different
Azure Digital Twins instances, or with Digital Twins external to Azure.

• Ad-hoc, even if powerful, query language.

• Ad-hoc, even if expressive, language to model Digital Twins.

In addition, the metamodel of Azure Digital Twins does not support DTDL
commands, preventing the modeling of Digital Twins’ actions. In the same way,
Augmentation is complex and requires several steps to be implemented and man-
aged effectively.

Finally, Authentication and Authorization in Azure Digital Twins are imple-
mented at a coarse-grained level, with RBAC permissions granted only at the
instance level, without any options at the Digital Twin level.

17https://learn.microsoft.com/en-us/azure/azure-functions/
18https://learn.microsoft.com/en-us/azure/azure-signalr/
19https://learn.microsoft.com/en-us/azure/data-explorer/

https://learn.microsoft.com/en-us/azure/azure-functions/
https://learn.microsoft.com/en-us/azure/azure-signalr/
https://learn.microsoft.com/en-us/azure/data-explorer/

2.1. STATE OF THE ART ON DIGITAL TWINS 17

Strengths Azure Digital Twins can leverage the Microsoft experience in cloud
solutions, and this is visible in the scalability and flexibility of the offered services.

The DTDL, despite being an ad-hoc language, is highly flexible and expressive.
In addition, the associated metamodel includes relationships, allowing the creation
of graphs.

Azure Digital Twins has a very powerful query system and great tool support.
Some related tools are: Azure Digital Twins Explorer to view and manage the
Digital Twin graph and models, Azure 3D Scene Studio to offer 3D Visualization
opportunities, DTDL Extensions for VS Code to help Developers during their
modeling tasks and more.

Currently, it is one of the best solutions on the market for general-purpose
Digital Twins.

2.1.3 Limitations of the current approaches

The concept of Digital Twin extends beyond the current proposals. Some scenarios
require the digitalization of portions of reality that can be exploited at the appli-
cation level, and so it is needed an approach that is able to reflect the dynamicity
and the relationships that exist between the Physical Assets in their corresponding
Digital Twins. This requires the removal of silos in favor of interoperability for
the creation of Digital Twins ecosystems that can be exploited and navigated by
consumers. There are several examples of this need, from manufacturing, where
it is important to connect the different entities involved and be able to observe
their dynamicity in terms of both state and relationships, to healthcare or smart
cities, where several software solutions to real-world problems can be supported
by digitalized and contextualized portions of reality that can be exploited at the
application level.

In the analyzed commercial solutions, there is a tendency to ease the creation
of vertical applications specialized in their application domain. They generally
use custom protocols and data types to access Digital Twins in a closed-system
manner. Furthermore, metamodels and features often rely on the definition and
domain of interest in which the technology was developed. This can create chal-
lenges when attempting to establish relationships with Digital Twins implemented
using different technologies, making integration impossible.

However, the situation is not better from an academic perspective either. The
literature so far is full of closed-system proposals for the virtualization of individual
Physical Assets.

In this situation, it is impossible to support a shared and interoperable Digital
Twin ecosystem on which services and consumers can reason.

These problems limit the advantages and the opportunities that can be ex-
ploited. The section below analyzes a modern vision, followed by this thesis,

18 CHAPTER 2. BACKGROUND

based on the creation of Web of Digital Twins [44].

2.2 Web of Digital Twins

The previous section has already outlined the main limitations with today’s Digital
Twins, specifically the siloing of current vision and solutions that prevent the
modeling of ecosystems of Digital Twins, increasingly useful in today’s problems.
The dominant view developed in the literature so far is about the virtualization
of individual physical assets, in a closed-system perspective.

An open-system perspective that allows multiple organizations to participate
in open and interoperable Digital Twin ecosystems is useful [45] to support the
described needs. The Digital Twin principles and paradigm can be extended to
the virtualization of complex realities composed of interrelated assets, possibly
belonging to different domains and different organizations, in a more open-system
perspective [44] [45]. To achieve this, standards and/or agreements in Digital Twin
design and development and an abstract, expressive, and domain-independent con-
ceptual model are fundamental.

The Web of Digital Twin (WoDT) vision [44] was born with the intent of cre-
ating open, distributed, and dynamic ecosystems of connected Digital Twins that
are cross-domain and cross-organizational, enabling interoperability of informa-
tion. This results in the Digital Twin as a Service approach, where Digital Twins
are no more vertical silos associated with their applications.

In this new vision, it is possible to refine the definition of a Digital Twin as:

Digital Twins refer to the ability to clone a Physical Asset (PA) through
a software counterpart during its life cycle. The Digital Twin has a
model that reflects all the properties, relationships, and characteristics
of the physical asset that are important for the analyzed context.

This vision is broader than any vision analyzed before, considering the opportu-
nity of virtualizing Physical Assets not limited to objects. Every strategic Physical
Asset of an organization must have a corresponding Digital Twin, mirroring its
state, relationships, and services at the digital level, resulting in an ecosystem of
connected Digital Twins that reflect, and optionally augment, the physical world.
The term Physical Asset includes Physical objects, places, and people, but also
activities and processes as shown in the Figure 2.4

In the literature, this pervasive vision has strong affinities with the idea of
mirror worlds as introduced by D. Gelernter in [22]. Mirror Worlds are “software
models of some chunk of reality”, like a “true-to-life mirror image trapped inside
a computer”.

The definition of Web of Digital Twins is:

2.2. WEB OF DIGITAL TWINS 19

Digital
Twins

Physical
Assets

EMERGENCY
VEHICLE

BIOMEDICAL
DEVICE

OPERATING
ROOM

HOSPITALIZED
PATIENT

PHYSICIAN /
NURSE

ONGOING
TRAUMA

ONGOING
SURGERY

HEALTHCARE
USER PHARMACY

Figure 2.4: Physical Assets and corresponding Digital Twins — Source: [44]

Digital Twin Layer

REAL WORLD

Physical Asset Layer

S
H

A
D

O
W

IN
G WoDT

SOFTWARE APPS

Application Layer

Application Service Agent

O
B
S
ER

V
E

&
 A

C
T

PATIENT

PHYSICIAN EMERGENCY
VEHICLEMEDICAL

DEVICEHOSPITAL

Figure 2.5: The WoDT Layered View — Source: [44]

A Web of Digital Twins can be conceived as an open, distributed, and
dynamic ecosystem of connected Digital Twins, functioning as an in-
teroperable service-oriented layer for applications running on top, es-
pecially smart applications and multiagent systems. [44]

The Web of Digital Twins aims to create an interoperable vision where Digital
Twins can be created and have relationships across multiple application domains
and multiple organizations. In this view, the ecosystem of Digital Twins acts as a
shared medium used by consumers (e.g., agents, MAS) to perceive, observe, and
act upon the Physical World (Figure 2.5).

Each Digital Twin in WoDT is based on a model M of the corresponding
Physical Asset (PA). The model of Digital Twins in Web of Digital Twins is
defined by:

• Properties : represent the observable attributes of the PA, as variables that
can change dynamically according to the evolution of the PA state.

• Relationships : allow to mirror real-world relationships between the PAs in
the “digital world” as relationships or links between their associated Digital

20 CHAPTER 2. BACKGROUND

Twins to form the Digital Twins ecosystem, the Web of Digital Twins.

• Events : represent PA’s domain events that can be observed via its Digital
Twin.

Given the model M, the dynamic state SDT of a DT can be defined by a tuple:

SDT =< P,R,E, t >

where P is the current set of properties, R is the current set of relationships,
E is the current sequence of events generated so far, and t is a logical timestamp
representing the current time. The representation provided by the Digital Twin
is about concepts that concern the Physical Asset at the domain level enabling
agents and applications on top to reason on the Digital Twins as if they were
directly interacting with the Physical Assets.

Ideally, a Digital Twin in a WoDT could host or be implemented with multiple
concrete models of the same Physical Asset, capturing different aspects and con-
textualizing different application domains. Depending on the clients, appropriate
models are then used.

Digital Twins must be dynamic to be able to correctly represent the current
state of the real world. The creation and the disposal of Digital Twins must re-
flect the dynamism of the associated Physical Asset. Like properties, to correctly
represent the PAs, relationships must be created dynamically, and explicitly rep-
resented in the WoDT at the DT level. These relationships should change over
time to reflect the PAs’ activities.

The process that allows to keep the Digital Twin state SDT synchronized with
the associated Physical Asset – according to the model M – is the shadowing
process. The shadowing process is a fundamental building block of a Digital Twin
in a WoDT, and it consists of a bidirectional channel that allows the exchange
of data. A Digital Twin model also provides actions that consumers can use to
control and manage the Physical Assets directly from their Digital Twins. This
is of interest for the shadowing process because actions are propagated from the
Digital Twin to the Physical Asset. The Digital Twin state is not automatically
updated after actions invocations as it still depends on the shadowing process and
so in case on the consequences of the action on the Physical Asset as shown in the
Figure 2.6.

Not all the shadowing processes andmodels are equal. Digital Twins’ shadowing
process and model are described in terms of Fidelity. Fidelity meta-data for a
Digital Twin is like an assurance that it makes respect to its ability to mirror the
Physical Asset of interest. Different consumers may be interested in different levels
of Fidelity, and so they may choose different Digital Twins based on that.

2.2. WEB OF DIGITAL TWINS 21

Figure 2.6: The WoDT bidirectional shadowing process

The data collected from the shadowing process – apart from updating the
current state of the DT – constitute the so-called digital thread and pose the base
for the implementation of the Memorization characteristic of Digital Twins as
described by Minerva et al. in [39].

As previously described for the metamodel, Digital Twins in a WoDT reflect the
relationships of Physical Assets in the real world. Considering that Physical Assets
can have relationships with Physical Assets from other organizations, accordingly
Digital Twins can have cross-organizational relationships. An approach that can
cope with different ontologies to form cross-domain and cross-organizational Web
of Digital Twins is needed. The semantic modeling of each virtualized physical
asset into a corresponding DT is an aspect of primary importance to foster inter-
operability and openness, as well as the development of intelligent applications on
top [44]. For this reason, each Digital Twin of a Web of Digital Twins is described
by a Knowledge Graph that follows the domain representation of the Physical
Asset and its model M. A Web of Digital Twins is therefore represented by a Dis-
tributed Knowledge Graph that links independent Knowledge Graphs, which may
be based on different domain-specific ontologies, ground to the related physical
asset contexts – see Figure 2.7.

As seen in the Figure 2.5 a Web of Digital Twins is meant to define a cross-
application distributed base layer continuously shadowing the real world bridging
the digital and physical levels [44]. Each Digital Twin could serve as-a-service for

22 CHAPTER 2. BACKGROUND

Figure 2.7: The WoDT Distributed Knowledge Graph
Each node needs to be considered an independent Knowledge Graph for a Digital

Twin in the WoDT

different applications at the same time. In addition to that, for the same Physical
Asset multiple and independent Digital Twins can be available, each one with a
different model, specialized for different applications.

In this scenario, Applications, Agents, and MAS can be situated in the real
world through the layer composed by the Digital Twins.

A Web of Digital Twins exposes to its consumers (e.g., Applications, Agents,
and MAS) the following interaction primitives :

• Action invocation: a Digital Twin can mirror also the actions provided by
the Physical Asset to command/control it. A consumer can request the in-
vocation of an action/command to the Digital Twin that, via bidirectional
shadowing, will redirect the request to the associated Physical Asset. The ac-
tion invocation cannot change automatically the Digital Twin state, because
it will always only depend on the shadowing process.

• Query : it allows performing a one-shot request to query the current state.
Queries can be performed at the Digital Twin level (e.g., obtain the value
of a property), or at the Web of Digital Twins graph level (e.g., get all the
lamps in a room).

• Observation: as the query primitive, it can be seen at two different levels:
Digital Twin level, and Web of Digital Twin graph level. It allows a consumer
to subscribe and receive all the events and updates from either the interested
Digital Twin or from the entire ecosystem graph.

2.2. WEB OF DIGITAL TWINS 23

S
H

A
D

O
W

IN
G

Application Service Agent

Physical
Assets

Ev
en

t-D
riv

en
En

gi
ne

Digital Adapter (DA)

Physical Asset Adapter (PAA)

M
anagem

ent
Interface

Binding & Shadowing Module

Model Execution Engine Augmentation Engine

Knowledge Graph Engine

State Manager

WoDT Platform

Communication Layer

Digital Twin ManagerDistributed
Knowledge Graph

Engine

Cache & Storage

PA

DT
DTDT

PA
PA

PA
PA

DT DT

DIGITAL TWIN

WoDT PLATFORM

Digital
Layer

O
B
S
ER

V
E

&
 A

C
T

Figure 2.8: Abstract Architecture defined in the Web of Digital Twins vision
Source: [44]

Each interaction primitive cannot interfere with or block the shadowing process.
So, updates from the Physical World are the priority. This is fundamental to
designing Digital Twins and a platform that supports the Web of Digital Twins
model.

In [44] an Abstract Architecture fulfilling all the requirements of the Web of
Digital Twins model is defined. The architecture, described in Figure 2.8, is com-
pletely event-driven and is based on three main types of events:

• ePA: these are events from the Physical Assets derived from changes in real-
world state.

• eDT : these are events that represent changes in the Digital Twin state.

• ei: these are internal events that guide the functioning of the Digital Twin.

The architecture is composed of components that are internal to each Digital
Twin in the ecosystem and components that are outside, part of a Web of Digital
Twins “platform”.

The components inside each single Digital Twin are:

• Physical Asset Adapter : handles the connection with the Physical Asset, and
it manages the ePA events from and to the associated Physical Asset.

• Building & Shadowing Module: handles the binding process that associates
the Physical Asset to the Digital Twin and the perpetual shadowing process
to keep the Physical Asset and the Digital Twin in synch.

24 CHAPTER 2. BACKGROUND

• Event-driven Engine: it is the engine that binds together all the internal
components of a Digital Twin.

• Model Execution Engine: allows the Digital Twin Developer to make the
Digital Twin model operational and defines how the model influences the
Digital Twin state and behavior.

• State Manager : it has the responsibility of managing the Digital Twin state
consistently.

• Knowledge Graph Engine: it is the engine that manages the Knowledge
Graph of the Digital Twin, including the links to other Digital Twins.

• Cache & Storage: it implements the storage and caching functionalities.

• Management Interface: it is the interface exposed to other Digital Twins, to
the WoDT Platform, and external entities for administration and services.

• Digital Adapter : it allows consumers to interact with the Digital Twins and
use the provided Interaction primitives.

• Augmentation Engine: it is the component that implements the augmenta-
tion within the Digital Twin.

The components of the WoDT Platform are:

• Distributed Knowledge Graph Engine: it provides the means to navigate the
entire ecosystem (WoDT) Knowledge Graph.

• Digital Twin Manager : it manages the Digital Twins lifecycle, offering typ-
ical lookup services such as white and yellow pages.

• Communication Layer : it allows consumers to use the services provided by
the WoDT Platform.

Chapter 3

Contribution: Web-based WoDT

3.1 Objective

After having given a brief overview of the motivations of this thesis and having
provided the essentials of the necessary background, it is appropriate to understand
more deeply what the objective of this thesis is and the contributions that are
proposed.

As described above, nowadays, we are assisting in the spreading of closed-
system proposals for the virtualization of individual Physical Assets used for ver-
tical applications. This is not a universally bad thing, surely there are use cases
where even individual and vertical Digital Twins are very useful, but these types
of proposals do not allow us to fully exploit the advantages offered by the Digital
Twin paradigm that could be used in modeling general and open ecosystems of
Digital Twins where relationships reflect the ones between the associated Physical
Assets, enriching the data available to consumers. As stated, the Web of Digital
Twins vision [44], the one followed by this thesis, aims to create an interoperable
service layer where Digital Twins can be created and have relationships across
multiple application domains and multiple organizations.

The objective of the thesis is to try to propose an implementation of the Web
of Digital Twins vision [44] to obtain the possibility for interoperability and open-
ness between Digital Twins of different domains, organizations that use different
existent technologies, and create an open, discoverable, and navigable ecosystem
of Digital Twins that can serve as a service layer for applications on top.

So the objective is to propose an implementation that is aligned with Web of
Digital Twins but at the same time allows the creation of ecosystems composed of
heterogeneous Digital Twins in a way that is similar to the National Digital Twin
program [20]. This need comes from the fact that it is challenging to create a single
technology or a single platform and expect that everybody will use it. Therefore,

25

26 CHAPTER 3. CONTRIBUTION: WEB-BASED WODT

there is the need to cope with existing technologies, standards, and affirmed similar
paradigms and try to understand the similarities, and differences to make them
interoperable and enable the advantages of the Web of Digital Twins vision.

3.2 Idea

The idea for this thesis is inspired by some recent works that try to exploit the
Web as an application architecture for the creation of dynamic, open, and long-
lived systems [11][12]. These systems adopt the architectural style of the Web
— REST [18] — to inherit its properties. Central to the Web architecture, the
hypermedia, is now increasingly used for designing highly scalable, dynamic, open,
and interoperable systems such as the Linked Data Platform [47] and the Web of
Things [35]. These systems have some requirements and characteristics that are
similar to the Digital Twins ones, so the Web is an interesting approach to explore.

Therefore, in this thesis, there is the will to research and explore the use of
the Web as the application architecture, the REST architectural style, and the
Web standards and protocols for the creation of WoDT ecosystems composed of
heterogeneous Digital Twins supported by existent technologies. Specifically, there
is the will to understand what is required and redact some form of specifications
that WoDT-complaint Digital Twins and Platforms must follow to be able to
create ecosystems of Digital Twins that follow the Web of Digital Twins vision.

The characteristics of the Web and REST can be exploited for the creation of
a description and management layer for Digital Twins that allows the creation of
interoperable and open ecosystems. One of the main constraints of the REST ar-
chitectural style that helps here is the uniform interface, which allows information
hiding.

In addition to the use of existing technologies, popular paradigms must also be
considered. Specifically, the Web of Things paradigm is very popular in the Web
scenario and has already explored some ideas to integrate devices as first-class
entities into the Web, experimenting with the digitalization of Physical Assets.
Moreover, it has a renewed interest in Digital Twins, proposing several use cases
and deployment scenarios where Digital Twins are involved [35]. Digital Twins
and WoT Things, from an external point of view, seem not so distant. For this
reason, to provide a solution that may also be considered by the Web of Things
community or at least to be as open as possible, a compatibility layer between
the two could be researched and if possible provided. Hence, a deeper study and
analysis is needed on the Web standards, protocols, paradigms, and on the REST
architectural style to be able to propose a Web-based design.

3.3. CONTRIBUTIONS OVERVIEW 27

3.3 Contributions overview

Following the objective and the idea, the contributions of this thesis can be summed
in the following ones:

• Analysis and alignment : a subset of the Web standards, protocols, and
paradigms has been selected to support the requirements of the proposed
idea. In particular, for the Web of Things paradigm, a comparison and an
alignment, with Digital Twins in theWeb of Digital Twins vision is provided.

• Web-based Web of Digital Twins : this is the main contribution of the thesis
and it is related to the actual design and prototypical implementation of the
Web of Digital Twins vision using the Web as an application architecture to
enable interoperable, open and heterogeneous ecosystems.

3.4 Requirements

After the description of the main idea of the Web-based Web of Digital Twins, it
is necessary to state its high-level requirements. In this section, the functional,
non-functional, and implementation requirements will be briefly discussed and
analyzed, paving the way for the analysis of the Web standards, protocols, and
paradigms to support the idea. Obviously, the requirements and the characteristics
from the Web of Digital Twins vision, described in the section 2.2, are implicit and
the base for the ones presented in this section. It is worth remembering that in the
Web of Digital Twins vision, the ecosystems are enabled by two main elements:
the Digital Twins (in the following referred to as WoDT Digital Twins to highlight
their compatibility with the WoDT vision) and the Web of Digital Twins Platform
(WoDT Platform or WoDT Digital Twins Platform). In addition, by Consumers
are meant any entity – person, agent, service, and so on – that wants to interact
with any WoDT Digital Twins or any WoDT Digital Twins Platform.

3.4.1 Functional requirements

Metamodel WoDT Digital Twins must offer the Web of Digital Twins meta-
model as described in [44] and in section 2.2. Considering the objective of the
thesis, i.e. having heterogeneous ecosystems composed of Digital Twins developed
with different technologies and platforms, each WoDT Digital Twin must map its
internal metamodel – used by the technology at hand – to that of the Web of
Digital Twins.

28 CHAPTER 3. CONTRIBUTION: WEB-BASED WODT

Shadowing WoDT Digital Twins must implement a single, bidirectional, and
consistent shadowing process as defined in the Web of Digital Twins vision.

Descriptions WoDT Digital Twins must be described in terms of:

• Metadata: it includes DT’s high-level metadata and the description of all the
exposed interfaces for the provided interaction patterns. The DT’s metadata
is necessary for the interaction with Consumers and to enable the WoDT
Digital Twins to be able to join the WoDT ecosystem. This is the intersection
point that can enable the compatibility layer with Web of Things.

• Current state: it describes the current state – snapshot – of the WoDT
Digital Twin as a navigable Knowledge Graph. The current state includes
each element of the metamodel:

– Properties’ current values

– Current relationships’ instances: the target must be the global identifier
of the target WoDT Digital Twin

– Current set of available actions

The Knowledge Graph must be generated by the WoDT Digital Twin itself
following its reference ontologies based on its domain of interest. All of this
allows you to work with a WoDT Digital Twin as if you were working directly
with the Physical Asset it mirrors.

A Consumer must be able to navigate between and within both types of descrip-
tions.

Memorization WoDT Digital Twins may optionally store their old data to offer
old versions of their descriptions, especially their state in a specific moment in the
past, to Consumers. The memorization service, when available, is intended as
another Interaction pattern, and as such must be adequately described.

Augmentation WoDT Digital Twins may optionally offer augmented proper-
ties, events, or actions that must be differentiated from the Physical Assets ones.
Moreover, their interfaces must be adequately described inside the descriptions.

Creation of a Web of Digital Twins The Web of Digital Twins paper [44]
suggests the use of a WoDT Digital Twins Platform to support the creation of the
WoDT ecosystems. The WoDT Platform should provide all the services that a
single WoDT Digital Twin alone is not capable of supplying – at least efficiently.

3.4. REQUIREMENTS 29

The Platform must manage the Web of Digital Twins – so the WoDT ecosystem
– of an organization or even of multiple organizations, spanning different domains
and act as the service layer described in [44]. The ecosystem should be built by
the merging of the registered WoDT Digital Twins’ data. It should be possible to
register a WoDT Digital Twin to a WoDT Platform in at least two ways:

• Automatically by the DT : WoDT Digital Twins must be able to register/add
themselves to a Platform (or multiple ones).

• Manually by the administrator of the WoDT Platform: The WoDT Platform
administrator must be able to manually register/add a WoDT Digital Twin
— discovered in any way — to the WoDT Platform.

Within the same WoDT Platform, more WoDT Digital Twins can be associated
with the same Physical Asset.

The flexibility in the registration process and the possibility of having cross-
organizational and cross-domain ecosystems enables the creation of custom views
of the real world that are contextualized and contain only the relevant information
for the problem at hand. Digital Twins are exploited as a way to access and
reason over the reality of interest. So, the same WoDT Digital Twin can be part
of different ecosystems to create a contextualized view of reality composed of only
the necessary blocks.

The WoDT Platform must represent and expose the ecosystem via a Knowledge
Graph – the WoDT Digital Twins Platform Knowledge Graph.

Interaction patterns The WoDT Digital Twins and the WoDT Platforms must
offer the interaction patterns described in the Web of Digital Twins vision. In
addition to them, the WoDT Platforms should provide the multi-model directory
service that from a Physical Asset identifier returns all the registeredWoDT Digital
Twins that are associated with it within the Platform ecosystem.

Another important interaction pattern is the Navigation:

• It should be possible to easily navigate within and between the ecosystems
exploiting the relationships that exist between WoDT Digital Twins

• It should be possible to navigate from a WoDT Digital Twin – that acts
as an ecosystem entry-point for a Consumer – to all the WoDT Platforms
where it is registered (or it has been registered) allowing the navigation, and
the request of services, in each ecosystem where it is part of.

30 CHAPTER 3. CONTRIBUTION: WEB-BASED WODT

Compatibility layer Web of Digital Twins does not have the objective of com-
peting with the other paradigms. For this reason, the idea of interoperability and
openness can be extended to the possibility of compatibility with other paradigms.

As described in the section 3.2, an interesting paradigm that can be compatible
with the Web of Digital Twins is Web of Things. Hence, each WoDT Digital Twin
should offer a compatibility layer towards theWeb of Things that allows Consumers
to reason on a WoDT Digital Twin as a WoT Thing – if they want or have the
necessity.

The proposed design must be general enough to support compatibility with
additional or different paradigms and technologies.

3.4.2 Non-functional requirements

Identification In the Digital Twin paradigm, the identification is a fundamental
element. A Digital Twin mirrors a Physical Asset, so it is important to precisely
state how they are both identified:

• WoDT Digital Twins must be identified uniquely globally. A WoDT Digital
Twin identifier must not change during its lifecycle.

• Physical Assets must be identified with the best-suited identifier that reflects
their domain, e.g., a license plate for a car, a health card number for a person,
and so on. It may not be global, but it must be unique within its domain of
interest.

Heterogeneity This requirement copes with the need to create Web of Digital
Twins ecosystems composed of heterogeneous Digital Twins. WoDT Digital Twins
data, metadata, and interaction patterns must be exposed via a Uniform Inter-
face to provide information and technological hiding. This enables consumers to
abstract away from the particular technology or platform – Digital Twin Builders
e.g., Azure Digital Twins, Eclipse Ditto, and so on – used under the hood by the
WoDT Digital Twin Developers, allowing the seamless creation of heterogeneous
ecosystems.

Independence WoDT Digital Twins should be able to exist alone and within
the Platform, enabling the DT-as-a-Service vision. Following this requirement,
consumers interact:

• with Digital Twins for the services that are offered at the Digital Twin level
– obtainment of the WoDT Digital Twin Knowledge Graph, observation, and
so on – using the descriptions stated above.

3.4. REQUIREMENTS 31

• with the Platform to have access to the application service layer enabled by
the Platform Knowledge Graph on the ecosystem of WoDT Digital Twins.

Openness and Interoperability WoDT Digital Twins must have the possibil-
ity to create cross-organization and cross-domain relationships, resulting in ecosys-
tems composed of more organizations that deal with multiple domains.

Moreover, the openness is related also to the support of different protocols
for the implementation of the interaction patterns. The protocols used in the
exposed Interaction patterns must not be enforced by design. Interaction patterns
must be described semantically through the use of Hypermedia controls. In this
way, the resulting descriptions are independent of the specific protocols needed by
the WoDT Digital Twin Developers. For example, in some constrained scenarios
HTTP is too heavy and CoAP is a necessity.

Dynamicity WoDT Digital Twins should be able to cope with completely dy-
namic updates in their state and their model. In the same way, WoDT Platforms
should be able to cope with the dynamicity of the registered WoDT Digital Twins
and provide an updated view of the ecosystem.

Deployment WoDT Digital Twins should be able to be deployed in the best-
suited network node i.e., on the Cloud, the Fog, or the Edge, without additional
constraints. Hence, they should always be able to join the Web of Digital Twins
ecosystem regardless of their deployment type.

Fidelity As stated previously, how to express Fidelity is still an open problem.
Hence, the goal for this thesis is to specify where there could be the need to put
Fidelity metadata.

3.4.3 Implementation requirements

REST architectural style Considering the necessity for a dynamic, open, and
long-lived system that exposes an interoperable Uniform Interface, the WoDT
Digital Twins and the WoDT Digital Twins Platforms must be designed following
the REST architectural style – to inherit all the properties – and exploit Web
technologies, standards, and protocols.

32 CHAPTER 3. CONTRIBUTION: WEB-BASED WODT

Chapter 4

Analysis of the Web for a
Web-based WoDT

In the previous chapter, the contributions of this thesis were defined, identifying
a Web-based implementation of the Web of Digital Twins vision. Following the
requirements stated in the section 3.4, the subset of the Web standards, protocols,
and paradigms have been selected, and this chapter provides an overview of the
results. Subsequently, the comparison between Web of Things and the Digital
Twins paradigm is provided to feed the ensuing design of the idea.

4.1 Web and REST

The first step is certainly the study of the Web and its REST architectural style
for the creation of dynamic, open, and long-lived systems.

The World Wide Web was created by Tim Berners-Lee while working at CERN
[4] as an attempt to persuade CERN management that a global hypertext system
was in CERN’s interests for the management of general information about accel-
erators and experiments conducted at CERN. [4] discusses the problems of loss
of information about complex evolving systems and derives a solution based on a
distributed hypertext system.

From there was born the World Wide Web [5] as a shared information space
through which people and machines could communicate [6]. The World Wide
Web was intended as a distributed hypermedia system. Hypermedia is defined
by the presence of application control information embedded within, or as a layer
above, the presentation of information [18]. Distributed Hypermedia allows the
presentation and control information to be stored at remote locations [18].

The REST Architectural Style was developed as an abstract model of the Web
Architecture. It was used to guide the redesign and definition of the Hypertext

33

34 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

Transfer Protocol (HTTP) and Uniform Resource Identifier (URI) [18].
The important lesson from the World Wide Web design is that the World

Wide Web has succeeded in large part because its software architecture has been
designed to meet the needs of an Internet-scale distributed hypermedia application
[18]. One radical design decision by Tim Berners-Lee, with respect to the vision of
Hypertext created by Ted Nelson [40], was the possibility of having broken links,
allowing to refer to non-existent or not available resources.

In the following, the REST Architectural Style, the protocols, and the paradigm
of interest for this thesis are presented. The provided descriptions are not intended
as exhaustive because they will only cover the necessary and sufficient parts to be
able to understand the contents of this thesis and the design of the Web-based Web
of Digital Twins.

4.1.1 REST Architectural Style

First, it is needed a definition of architectural style:

An architectural style is a coordinated set of architectural constraints
that restricts the roles and the features of architectural elements and
the allowed relationships among those elements within any architecture
that conforms to that style. [18]

The first version of REST was developed by Roy Thomas Fielding between
October 1994 and August 1995, primarily as a means for communicating Web
concepts while developing the HTTP/1.0 specification and the initial HTTP/1.1
proposal. REST was ultimately defined by Roy Thomas Fielding in his doctoral
dissertation in 2000 [19].

To define the architecture of the Web and so its architectural style, it was
necessary to understand the requirements of the Web. The objective was to build
a system capable of providing a universally consistent interface to this amount of
structured information in a way that can be referenced and used by others without
having a local copy, in an interoperable and scalable way.

The requirements were the following ones, from [18].

Low Entry-Barrier Considering the objective of creating a shared information
space based on the voluntary participation of people and machines, a low entry
barrier was needed.

The chosen user interface was the Hypermedia due to its simplicity, generality,
and the possibility of freely structure information through the use of hypermedia
relationships (links). This choice allowed authors to reference information that
may be temporarily or permanently unavailable or that did not exist yet, allowing

4.1. WEB AND REST 35

for partial availability. This was a difficult decision in terms of style, as it resulted
in links no longer being globally consistent, which contrasted with the definitions
at the time.

Simplicity was also a goal for the sake of application developers since all the
protocols were text-based, so easy to test and analyze.

Extensibility Each system that is intended to be long-lived must be designed
considering the possibility of changes in the requirements. The Web is one of these
systems.

Distributed Hypermedia — Latency The typical use case of the Web is the
transfer of large amounts of data, so large-grained data transfers. The Web is based
on hypermedia interaction which usability is highly sensitive to the user-perceived
latency, i.e., the time between selecting a link and the rendering of a usable result.
For these reasons, the Word-Wide Web architecture needs to minimize network
interactions.

Internet-Scale The Web is intended to be an Internet-scale distributed hyper-
media system. Moreover, the entire system is not under the control of a single
entity.

Then, architectural elements need to be scalable and robust to handle unantic-
ipated loads or malformed/malicious data. Each architectural element has some
constraints to provide anarchic scalability:

• Clients cannot be expected to maintain knowledge of all servers

• Servers cannot be expected to retain the knowledge of the state across re-
quests

• Back-pointers in hypermedia data are not allowed

In addition to that, the deployment of architectural elements must be com-
pletely independent to allow old and new implementations to co-exist without
preventing the use of the new features and capabilities of newer implementations.

The requirements just described were used to derive the abstract model of the
World-Wide Web creating the REST architectural style:

REST (Representational State Transfer) is a coordinated set of ar-
chitectural constraints that attempts to minimize latency and network
communication, while at the same time maximizing the independence

36 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

and scalability of component implementations. This is achieved by plac-
ing constraints on connector semantics, where other styles have focused
on component semantics. REST enables the caching and reuse of in-
teractions, dynamic substitutability of components, and processing of
actions by intermediaries, in order to meet the needs of an Internet-
scale distributed hypermedia system. [18]

The name “Representational State Transfer” is intended to evoke an image
of how a well-designed Web application behaves: a network of Web pages forms
a virtual state machine, allowing a user to progress through the application by
selecting a link or submitting a short data-entry form, with each action resulting
in a transition to the next state of the application by transferring a representation
of that state to the user [18].

The REST architectural style was defined by a set of constraints taken from
the following existent architectural styles:

• Client-server : the separation of concerns between the architectural elements
improves the portability of the user interface and the scalability of the server.
In addition to that, this enhances the deployment because components, being
separated, can evolve independently.

• Stateless : means that each request should contain all the necessary data
without the possibility to refer to an old request. This has the pros of
improving the visibility (easy to monitor), reliability (easy to recover from
partial failures), and scalability (server components don’t need to store state
and can free the resources quicker) of the system with the tradeoff of de-
creasing network performances due to the increase in payload dimension (for
the repetitive data) and reducing the control of the server on the application
state.

• Cache: added as a way to improve network efficiency by implicitly or explic-
itly labeling data as cacheable or not. This architectural style, which tries
to mitigate the effects of the stateless architectural style, has the advantage
of reducing the necessary round trips increasing efficiency, scalability, and
user-perceived performance at the cost of a reduction in reliability due to
stale data.

• Uniform Interface: to obtain generality, the REST architectural style empha-
sizes a uniform interface between components. This increases the visibility of
interactions, simplifies the overall system architecture, and enables informa-
tion hiding. The cost of having a uniform interface is that it was optimized
for the common case of the Web – large-grain hypermedia data transfer –

4.1. WEB AND REST 37

eliminating the possibility of being specific to application needs. It is formed
by the union of four constraints: identification of resources, manipulation of
resources through representations, self-descriptive messages and hypermedia
as the engine of the application state (HATEOAS).

• Layered System: it is possible to compose an architecture of hierarchical
layers that cannot see beyond the immediate layer with which they are in-
teracting. In this way, the overall system is simpler because each layer only
knows about a single layer. Additionally, it increases the system scalability
and security because intermediaries can be: load balancers, shared caches,
or reverse proxies. The stateless constraint is essential for the presence of
this constraint. Components that are between client and servers are called
intermediary components, and they act as both a client and a server to for-
ward, with possible translation, requests and responses. The two main types
of intermediary components are: proxy and gateway (reverse proxy).

• Code-On-Demand : it is an optional constraint that extends client function-
alities by downloading and executing code on the client. It simplifies clients
and improves the system’s extensibility, reducing visibility.

The base concepts of REST are resources and representations. REST com-
ponents communicate by transferring a representation of a resource in a format
matching one of an evolving set of standard data types, selected dynamically based
on the capabilities or desires of the recipient and the nature of the resource [18].
So, the uniform interface enables encapsulation.

Resources are the key abstraction of information in REST. Any information
that can be named and is important enough to be referenced as a thing itself can
be a resource, even non-virtual objects (physical objects). They allow authors to
reference the concept rather than the specific representation. A resource R is a
temporally varying membership function MR(t), which for time t maps to a set
of values: resource representations and/or resource identifiers. As said previously,
references to a resource can be made even before its existence – in that case,
the function returns an empty set. Each resource has a resource identifier. The
identifier used on the Web is the URI [9].

Resource’s current or intended state is captured by representations. A repre-
sentation is a sequence of bytes, plus representation metadata to describe those
bytes [18]. The message control data defines how the receiving component will
use the representation. Moreover, when a resource can be described with multiple
representations, content negotiation can be used to select the best one. Usually,
content negotiation happens for the negotiation of the representation media type.

Hence, resources identify concepts, so possibly Digital Twins, instead repre-
sentations are used to manipulate resources. This enables the information-hiding

38 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

principle because a client is restricted to the manipulation of representations rather
than directly accessing the implementation of a resource. The latter constraint will
be used to enable the uniform interface and the information hiding in the Web-
based Web of Digital Twins.

REST concepts of “request” and “response” may have the appearance of a
remote invocation style, but REST messages are targeted at a conceptual resource
rather than an implementation identifier for a remote procedure or method.

RESTful APIs

Nowadays, the term HTTP RESTful API is very common but if we consider
the pure version of REST most of the APIs are not RESTful, and they instead
implement it only at certain levels.

It is worth considering that the Hypertext Transfer Protocol (HTTP), and the
Constrained Application Protocol (CoAP) for constrained devices, are the only
protocols designed specifically for the transfer of resource representations. Back
in the day, REST was used to identify problems in old versions of HTTP and to
create the HTTP/1.0 and the HTTP/1.1 proposals. However, creating an HTTP
API does not directly mean that we are creating an API that follows and respects
all the REST constraints and principles.

About this, the creator of REST, Roy Thomas Fielding, wrote an article [16]
where he states that all the pure REST API – so the one that can be called REST-
ful – must be hypertext-driven. To be “hypertext-driven” – and not merely RPC
over HTTP – means that the uniform interface constraint must be implemented
completely. The part that usually is missing is the “Hypermedia as the Engine
of Application State” (HATEOAS) that, instead, it is fundamental to enable a
uniform interface with self-descriptive messages and so to be able to manipulate
resources through their representations without accessing out-of-band informa-
tion. In addition, it is fundamental to use the right media type or an ontology to
give semantics to representations and so to enable the “self-descriptive messages”
constraint. To respect the “self-descriptive messages” constraint, each resource
representation should carry enough information to describe how to process the
message.

The REST architectural style does not impose any semantics to HTTP methods
– also because REST is independent of HTTP – but instead in [16] is stated that
at most are media types that tells the client either what method to use or how to
determine the method to use, or it is obtained following the ontology used in the
representation.

In conclusion, a REST API should be used with no prior knowledge beyond
the initial URI and the set of standardized media types that are appropriate for
the intended audience [16].

4.1. WEB AND REST 39

In 2008, Leonard Richardson proposed the Richardson Maturity Model that
breaks down the principal elements of a REST approach in levels of maturity
where the higher your API is the more it is aligned with the REST principles. It
is composed of four levels:

• Level 0 : this is the starting point where HTTP is used merely as a transport
system for remote interaction without using the mechanisms of the Web.
This is usually similar to Remote Procedure Invocation, with a singular
endpoint for all the requests.

• Level 1 : in this level, resources are introduced, and different URIs are used
for the requests.

• Level 2 : this level is characterized by the use of HTTP methods to define
operations on resources. This is where most of the public REST APIs stand.

• Level 3 : in this level, the use of hypermedia is introduced following HA-
TEOAS.

Level 3 of the Richardson Maturity Model (RMM) is not enough for defining a
RESTful API because it misses the concept of self-descriptive messages. Following
this confusion, the Hypermedia Maturity Model1 (HMM) was created to make
Hypermedia API more clear, taking the RMM Level 3 and splitting it into four
additional levels. The more an API goes up in these levels, the more it is self-
descriptive, satisfying both HATEOAS and self-descriptive messages constraints.

• HMM Level 0 : this is the RMM Level 3, where hypermedia can be encoded
in an ad-hoc way with no semantics that allows a client to recognize it as a
link to process it. This solution requires out-of-band documentation.

• HMM Level 1 : at this level, media types that model links as first-class
features are used, and so they are recognizable and usable directly from the
message. This is perfectly fine with read-only APIs. An example of HMM
Level 1 media type is JSON-HAL [33].

• HMM Level 2 : at this level, also forms are introduced as first-class entities
in the media type. This level allows describing and representing form-like
hypermedia controls. An example is the Siren media type [49].

• HMM Level 3 : a representation of resources at this level does not just de-
scribe the actions that are possible to take, but also describes the data itself.
Automated interactions can occur when data is self-descriptive and adheres
to the self-descriptive messages constraint. An example is Hydra [36].

1https://8thlight.com/insights/the-hypermedia-maturity-model

https://8thlight.com/insights/the-hypermedia-maturity-model

40 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

4.1.2 Web resources: identification and versioning

This section presents the best practices and the protocols for identifying and ver-
sioningWeb resources. The knowledge presented here will be used in theWeb-based
Web of Digital Twins.

Information vs. Non-information resources

Considering that Digital Twins can be seen as Web resources, the comparison
between information and non-information resources must be analyzed to be able
to accurately design the identifiers and the interaction patterns.

A Uniform Resource Identifier is a compact string of characters for identify-
ing an abstract or physical resource [9]. As previously stated, a resource can be
anything from virtual entities to non-virtual ones. Then, URIs need to identify
not just virtual resources but also real-world objects like people, cars, or abstract
entities. In [46] these entities are called real-world objects or things.

When dealing with real-world objects it is necessary to be able to identify the
object itself and its representations otherwise this overlapping can lead to confusion
when used in semantic descriptions [46] with questions like: “Are we referring to
the object itself or its representation?”.

Sauermann et al. address this problem in [46] providing two different solutions
that remain compatible with Semantic Web and Linked Data principles and allow
retrieving a representation of real-world objects based on their URI.

There should be no confusion between identifiers for Web documents
and identifiers for other resources. URIs are meant to identify only
one of them, so one URI can’t stand for both a Web document and a
real-world object. [46]

A real-world object is also called a non-information resource, instead a Web
document is called an information resource. To be called information resource all
its essential characteristics must be able to be conveyed in a message and this is
not the case for real-world objects. Considering Mario as a person, we may like
him, but we may not like his homepage. Here it is possible to understand the need
for two different URIs and also the need to be able to “jump” from the resource
Mario to its representation.

Hash URIs One possible component of a URI is the fragment. A URI that
contains a fragment cannot be retrieved directly, its root resource – where there
is the information resource – must be retrieved before. For this reason, the first
solution to the problem is to use hash URI for non-information resource. This
permits to refer to non-information resources without creating ambiguity.

4.1. WEB AND REST 41

303 URIs The second solution derives from the httpRange-14 resolution [15]
and it consists in the use of the 303 See Other HTTP Status code to indicate
that the requested resource is a non-information resource. To complete the re-
sponse, the Location HTTP Header must point to the document that contains
the representation of the resource, and so the information resource.

Memento protocol

When navigating the Web, usually we obtain only the current version and repre-
sentation of a resource. In some cases, it is interesting the possibility of obtaining
the historical representation of a resource for several use cases, such as analysis.

In [13][50] is proposed the Memento protocol as a straightforward extension of
HTTP that adds a time dimension to the Web, allowing the navigation of older
representations and the negotiation in the time dimension. This idea is directly
linked to the Memorization requirement described previously, and for this reason,
the Memento protocol was explored as a possible candidate to implement it.

The protocol defines four main concepts which interact as defined in Figure 4.1:

URI- R URI- G

URI- M1

URI- M2

Original Resource TimeGate Mementos

HTTP GET
Accept- Datetime: Tj

HTTP GET
Accept- Datetime: Ti

HTTP Link
memento

HTTP Link
original

HTTP Link
original

HTTP Link
timegate

HTTP Link
original

Figure 4.1: Architectural overview of the Memento protocol

• Original resource: the original resource for which we want to access prior
versions.

42 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

• Memento: it is a web resource that consists of a prior version of the Original
resource. So it is the historicized version of the Original resource in some
past point in time.

• TimeGate: it is the Web resource that implements the datetime negotiation
and helps clients in finding the right Memento, of the Original resource, for
their preferred datetime.

• TimeMap: it is the Web resource that offers the list of URIs of Mementos
for an Original resource.

In [13] are specified all the HTTP Headers required to correctly implement the
protocol and enable the uniform interface over the resource versioning.

4.1.3 Semantic Web

The Web-based Web of Digital Twins has the objective of creating a navigable
Knowledge Graph of the ecosystem that can contain domain data. For this reason,
a technology that links semantic data is needed. The Semantic Web is the Web-
based solution to this problem.

The Semantic Web was born in 2001 from an idea of Tim Berners-Lee et al.
[8] as a collection of standard technologies to realize the Web of Data.

At the time, the issue was that web content was only intended for human
consumption, making it impossible for computers to automatically process its se-
mantics. The Semantic Web is not a separate Web but an extension of the current
one, in which information is given well-defined meaning, facilitating collaboration
between computers and humans [8]. Being able to pass from the Web of documents
to the Web of Data enabled the definition of rules for making inferences on data,
allowing for logical data augmentation based on imposed properties.

To implement the Semantic Web, it is needed a model of data that allows infor-
mation to be distributed over the Web [3]. The Resource Description Framework
(RDF) provides the model for data and a syntax so that independent parties can
exchange and use it. RDF is designed mainly to be read and understood by com-
puters. RDF can be serialized in different syntaxes such as Turtle [43], XML [21],
and JSON-LD [48]. The model is based on triples [8] composed by: subject, pred-
icate, and object. The Semantic Web model enables the creation of Knowledge
Graphs where triples are connected to form the Web of Data.

The Semantic Web technology stack includes a vast set of technologies such as:

RDFS RDF Schema (RDFS) provides a data-modeling vocabulary for RDF
data. RDF Schema is an extension of the basic RDF vocabulary [10].

4.1. WEB AND REST 43

OWL The W3C Web Ontology Language (OWL) is a Semantic Web language
designed to represent rich and complex knowledge about things, groups of things,
and relations between things. OWL is a computational logic-based language such
that knowledge expressed in OWL can be exploited by computer programs, e.g.,
to verify the consistency of that knowledge or to make implicit knowledge explicit.
OWL documents, known as ontologies, can be published on the World Wide Web
and may refer to or be referred from other OWL ontologies [28].

SPARQL The SPARQL Protocol and RDF Query Language (SPARQL) is a
query language [30] and protocol [14] for RDF. The SPARQL Protocol [14] de-
scribes a means for conveying SPARQL Queries and updates to a SPARQL pro-
cessing service via HTTP.

4.1.4 Linked Data

In Tim Berners-Lee’s vision, the Semantic Web was not just a way to have se-
mantics in a piece of data that is published somewhere, but it was a lot more,
it represented the possibility of enabling a semantic layer composed by data –
expressed with Semantic Web technologies – linked together that can be navigated
and queried to find other, related data [7].

In [7] Tim Berners-Lee proposed the term Linked Data to name this possibility,
enabled by the Semantic Web, to have data linked and expressed in RDF. To be
called Linked data data must respect these four principles [7]:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the stan-
dards (RDF*, SPARQL).

• Include links to other URIs so that they can discover more things.

By following Linked Data principles, datasets become interconnected, creating
a network of knowledge. This interconnectedness allows for a richer understanding
of data by traversing relationships.

Linked Data principles prescribe a way to build a uniform interface for the
Web of Data, so they are essential to connect the Semantic Web. These principles
are exploited to enable the navigation requirement that characterizes the WoDT
Digital Twins Platform Knowledge Graph.

Once defined the principles under the concept of Linked Data, it was necessary
to clarify and extend them in order to provide a protocol for managing Linked
Data using the Web.

44 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

The Linked Data Platform (LDP) [47] specifies an HTTP-based protocol for
reading/writing Linked Data on the Web. It does so by:

• imposing further constraints on HTTP requests and responses used to ma-
nipulate Linked Data – the HTTP protocol is too under-specified for inter-
operability

• imposing constraints on the lifecycle and representation of resources hosted
on an LDP-compliant server

In particular, it is a Linked Data specification defining a set of integration
patterns for building RESTful HTTP services that are capable of reading/writing
RDF data. A Linked Data Platform is any client, server, or client/server combi-
nation that conforms in whole or in sufficient part to the LDP specification, which
defines techniques for working with Linked Data Platform Resources over HTTP
[47].

LDP-compliant servers support two types of Linked Data Platform Resources :
LDP RDF Sources that are resources represented in RDF, and LDP Non-RDF
Sources that are resources using other formats, like images, HTML, and so on.

The LDP recommendation [47] describes a special type of LDP RDF Source
called Container which acts as a container of Linked Data Platform Resources.
For example, a client could access the URI of a container on an LDP at some uni-
versity to list all the curriculums and for each one all the courses and the teachers.
Moreover, Containers respond to all the read/write requests for a resource. There
are three different types of Containers: Basic Container, Direct Container, and
Indirect Container. The difference between the three is in terms of the triples that
are generated when a resource is added to the Container itself.

Basic Container It is the most basic variant of LDP Container providing generic
storage in an LDP Server that generates only containment triples (Figure 4.2).
Containment triples are a set of triples, maintained by the LDP Container (LDPC),
that lists documents created by the LDPC but not yet deleted. These triples al-
ways have the form:

<LDPC URI> ldp:contains <document-URI>

Direct Container It adds flexibility on top of Basic Container, providing the
possibility of managing membership triples (Figure 4.3). Membership triples use a
domain-specific vocabulary and allow the creation of custom relationships to the
new LDP Resource created.

4.1. WEB AND REST 45

Figure 4.2: Example of Basic Container
Source: [38]

Figure 4.3: Example of Direct Container with a non-Container subject
Source: [38]

Indirect Container It is very similar to Direct Container, except that it is
capable of having members whose URIs can be any resources rather than fixing
it to the original URIs. The member URI of the membership triple could be
based on the content of the newly inserted documents. Considering the example
in Figure 4.3, the member URI is the one associated with the foaf:depiction

membership triple that can be associated with any other URI, based on the inserted
photo document or any information or non-information resource.

The recommendation in [47] defines the set of rules for HTTP operations to
work compatibly with the Linked Data Platform.

The Linked Data Platform was studied and analyzed but not adopted in the
Web-based Web of Digital Twins due to its strict HTTP-based design and because
the current requirements are not aligned with the advantages that the Linked
Data Platform provides and the problems that it solves. Its adoption would have
resulted only in additional constraints, complexity, and verbosity.

46 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

4.2 Web of Things: vision and comparison

The requirements in section 3.4 set the need for a compatibility layer towards Web
of Things. In this section, the Web of Things (WoT) paradigm is described and
analyzed, comparing it with respect to the Digital Twin paradigm to establish
their affinities and differences.

4.2.1 Overview of the WoT paradigm

Internet of Things was created to promote the networking and interoperability
of devices by enabling devices to connect at the network layer via the Internet
Protocol (IP). However, at some point, it became apparent that devices also need to
interoperate at the application layer to fully exploit the advantages of the Internet
of Things vision.

Following this need, starting in 2007 theWeb of Things (WoT) [51][29] paradigm
was created exploiting theWorldWideWeb as a middleware for enabling application-
layer interoperability. The Web of Things is the ability to use modern Web stan-
dards and the REST architectural style on embedded devices as an application
layer over Internet of Things. In this way, any application can use and create
mashups of different IoT devices (so WoT Things) no matter what technology,
network protocol, or standard is used under the hood. This vision, starting in
2017, was standardized by the W3C [35][32][34].

The paradigm is based on a simple abstraction called Thing. The definition of
Thing is:

An abstraction of a physical or a virtual entity whose metadata and
interfaces are described by a WoT Thing Description, whereas a virtual
entity is the composition of one or more Things. [35]

Following this definition, everything can be abstracted in terms of aWoT Thing
described by its WoT Thing Description [32]. Then, the WoT Thing Description
is no more than a way to describe an interface, the “entry point” of an IoT instance
or a virtual entity. The WoT Things are used in the Web of Things paradigm to
represent at the conceptual level the abstractions that form the Web of Things
and that allow the interoperability layer on top of IoT devices.

The metamodel offered by Web of Things [35] used to model WoT Things –
via their WoT Thing Descriptions – consists of three elements, also called Inter-
action affordances : Properties, Events and Actions. An Interaction affordance
contains the metadata of a Thing that shows and describes the possible choices
to Consumers, thereby suggesting how they may interact with the Thing [35]. In
particular:

4.2. WEB OF THINGS: VISION AND COMPARISON 47

• Property : it exposes the state of a WoT Thing. Properties can be read, and
optionally they may be writable and observable.

• Event : it exposes the events of the WoT Thing to consumers. Events can be
generated at different levels: at the software level by the Thing itself (e.g.,
update of a Property) or by the associated IoT device (e.g., engine problem
in a car).

• Action: it allows Consumers to invoke a function of the WoT Thing. Actions
can be used for different objectives: manipulate the state, invoke a physical
action on the associated IoT device, and so on.

As stated previously, the Thing Description is used to describe a WoT Thing,
and it is composed of five parts:

• Metadata: that describes the Thing itself such as its ID, type, title, descrip-
tion, and so on.

• Interaction Affordances : they describe how the Thing can be used in terms
of Properties, Events and Actions, so implicitly its model.

• Schemas : data schemas exchanged in input and output.

• Security Definitions : they provide metadata about the security mechanism
necessary to use the Thing.

• Web links : they represent relationships with other Web resources (including
other WoT Things as well).

An example of a Thing Description can be seen in Listing 4.1.
The Thing Description, thanks to its general and domain-independent meta-

model, can be used to describe any interface on the Web. Every Thing must have
its Thing Description. In the provided example, it is possible to notice that each
Interaction Affordance has its own Protocol Binding. A Protocol Binding is the
mapping from an Interaction Affordance to concrete messages of a specific protocol
that enable Consumers to use the parent affordance [32]. The Thing is an abstrac-
tion, so an entity that exists independently of the Protocol Bindings specified in
its Thing Description, so they are completely optional.

WoT Thing Descriptions follow the Thing Description Information Model [32]
that consists of a set of class definitions that define the “abstract model” of a com-
pliant Thing Description. In addition, to be able to serialize and deserialize them,
in [32] it is provided the mapping of the TD Information Model to JSON-LD [48].
Mapping to JSON-LD also allows Consumers who do not understand semantics
to consume the Thing Descriptions through classic JSON libraries. Moreover, to

48 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

Listing 4.1: Example of a WoT Thing Description – Source: [32]�
1 {

2 "@context": [

3 "https ://www.w3.org /2022/ wot/td/v1.1",

4 { "saref": "https :// w3id.org/saref #" }

5],

6 "id": "urn:uuid :300 f4c4b -ca6b -484a-88cf -fd5224a9a61d",

7 "title": "MyLampThing",

8 "@type": "saref:LightSwitch",

9 "securityDefinitions": {

10 "basic_sc": {" scheme ": "basic", "in": "header "}

11 },

12 "security": "basic_sc",

13 "properties": {

14 "status": {

15 "@type": "saref:OnOffState",

16 "type": "string",

17 "forms": [{

18 "href": "https :// mylamp.example.com/status"

19 }]

20 }

21 },

22 "actions": {

23 "toggle": {

24 "@type": "saref:ToggleCommand",

25 "forms": [{

26 "href": "https :// mylamp.example.com/toggle"

27 }]

28 }

29 },

30 "events": {

31 "overheating": {

32 "data": {"type": "string"},

33 "forms": [{

34 "href": "https :// mylamp.example.com/oh"

35 }]

36 }

37 }

38 }
� �

4.2. WEB OF THINGS: VISION AND COMPARISON 49

support also all the Consumers that do not support the JSON representation for-
mat, the Thing Description Ontology2 was created allowing the implementation of
the TD Information Model in RDF.

Considering the REST architectural style, these approaches allow the exchange
of Thing Descriptions to respect the REST self-descriptive messages constraint.
In addition, also the HATEOAS constraint is fulfilled – to enable the Uniform
Interface constraint of REST – by the use of hypermedia controls as serialization
of Protocol Bindings. A hypermedia control is the machine-readable description
of how to activate an affordance [35]. Thing Descriptions support two types of
hypermedia controls:

• Links : they allow having relationships with other Web resources – including
other WoT Things – and they are used for discovery and navigation. To be
self-descriptive, W3C WoT Links follows the Web Linking specification [41],
so they are composed of:

– a link context

– a relation type

– a link target

– some target attributes (optional)

• Forms : they are used to describe the Protocol Bindings of the specified
Interaction Affordances available to consumers. They operate as “request
templates” for consumers to submit the request for an affordance. To allow
the support of IoT protocols and the creation of self-descriptive messages,
WoT Binding Templates [34] can be used.

The Thing Descriptions are used in a lot of different domains. For this reason,
they provide a way to enable the possibility of adding domain-related knowledge
through the TD Context Extensions [35]. TD Context Extensions are used to inte-
grate additional semantics to the content of the Thing Description. For example,
in the Listing 4.1 the SAREF ontology is used. It is the mechanism that is used
to import additional Protocol Bindings and Binding Templates [34].

In addition, the W3C Web of Things recommendation [35] specify the Thing
Model as a way to describe classes of Things that have the same capabilities,
allowing the creation of templates for Thing Descriptions. Their definition is
useful only to describe the model of a class of Things, but it is not enough to
enable consumers to interact with the single instances.

In Web of Things deployments, various topologies are possible. The main two
are, that are described in [35] are:

2https://www.w3.org/2019/wot/td

https://www.w3.org/2019/wot/td

50 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

Direct interaction It is the simplest topology where the consumer has direct
access to the real Thing and so to the real entity behind it (Figure 4.4). The Thing
Description can be directly exposed by the IoT devices or by software service on
top of the entity.

Figure 4.4: Direct interaction in Web of Things
Source: [35]

Intermediaries Several patterns introduce the need to have an Intermediary
between the consumer and the real Thing (Figure 4.5). Intermediaries are soft-
ware entities that can be used for proxying between devices and networks or to
enable the WoT Digital Twin paradigm. In the former case, the Intermediary is
usually used to implement additional security mechanisms (such as TLS), to pro-
vide additional Protocol Bindings, or to generally augment Things capabilities. In
the latter case instead, they are used to providing state caching, deferred updates,
or services like predictions or simulation.

Figure 4.5: Intermediaries in Web of Things
Source: [35]

4.2.2 Digital Twins in Web of Things

Recently, the Web of Things community has developed a renewed interest in Dig-
ital Twins. In the WoT Recommendation [35], Digital Twins are defined in the
following way:

A digital twin is a type of Virtual Thing that resides on a cloud or edge
node. Digital Twins may be used to represent and provide a network

4.2. WEB OF THINGS: VISION AND COMPARISON 51

interface for real-world devices which may not be continuously online,
may be able to run simulations of new applications and services before
they get deployed to the real devices, may be able to maintain a history
of past state or behaviour, and may be able to predict future state or
behaviour. [35]

Digital Twins in Web of Things are enabled by a topology that includes In-
termediaries. The task of the Intermediary is to provide state caching, deferred
updates, and all the services that the Digital Twin may expose.

The definitions and the examples provided offer a vision that seems similar
to the modern ones. However, the W3C WoT Recommendation [35] does not
elaborate on the requirements and the typical characteristics of a WoT Digital
Twin nor does it provide details on Digital Twin implementation. They define
Digital Twins only as a general concept that could be represented as a WoT Thing
and so described by a Thing Description. This is not necessarily bad, as it opens
up opportunities for comparison and possible alignments with the vision followed
by this thesis, Web of Digital Twins.

4.2.3 Comparison between Digital Twins and WoT Things

Following the idea described in the section 3.2 and considering the popularity of the
Web of Things paradigm [35] is necessary to analyze it in depth and try to provide a
first – personal – comparison between Digital Twins andWoT Things that permits
to understand if, and in case how, it is possible to provide an integration of the
two paradigms.

In the following, the comparison is described from different points of view to
analyze the differences and the similarities in a structured way. Consider that the
comparison is performed on the versions of the recommendations available at the
time of the analysis, so the one referenced [35] [32]. New features that emerged
after are not considered.

Definition

It is interesting to start the comparison from the definitions of the two concepts.
We already defined both of them, but to ease the reader the definitions are proposed
again here.

Digital Twin

Digital Twins refer to the ability to clone a Physical Asset (PA) through
a software counterpart during its life cycle. The Digital Twin has a

52 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

model that reflects all the properties, relationships, and characteristics
of the physical asset that are important for the analyzed context. [39][44]

WoT Thing

An abstraction of a physical or a virtual entity whose metadata and
interfaces are described by a WoT Thing Description, whereas a virtual
entity is the composition of one or more Things. [35]

One of the points that outstands among the others in the Digital Twin definition
is the fact that it is a real software entity that stores the Digital Twin’s state and
enables different types of services and computations. So, when Digital Twins are
involved it means that the corresponding software entities are deployed somewhere
and mirror the associated Physical Assets – objects, people, processes, and so on.
One advantage of being a software entity is that it can exist even before the
Physical Asset exists, and so can mirror it for the entire life-cycle [39].

Instead, WoT Things are “abstractions” that do not consider an additional
software entity as a mandatory element in the architecture. So, WoT Things are
a more general concept that is useful as an abstraction to represent and describe
something that may use a software entity. The Thing – and so its Description –
could be:

• directly exposed by the Physical Asset : this case is more common on IoT
devices. This possibility is in contrast with the Digital Twin vision.

• exposed by an Intermediary : exploiting the layered system constraint of the
REST architectural style. This one provides a software entity used for state
caching and related services, that is placed on top of the Physical Asset,
abstracting it at the digital level. These Intermediaries could act as the
“software entities” that are missing from the Things to be able to represent
a Digital Twin.

Metamodel

The metamodel defines the modeling capabilities of the paradigm. In the following,
the possibilities of WoT Things are compared to the Digital Twin metamodel.

Properties In Digital Twins, properties are read-only because they can be up-
dated only by the shadowing process. In addition, Digital Twins’ properties are
observable by default.

In WoT Things properties can always be read and optionally be writable. In
addition, their observability is not mandatory.

4.2. WEB OF THINGS: VISION AND COMPARISON 53

As it is possible to see, in both paradigms it is possible to model both static
and dynamic properties. The difference here is focused on the possibility of writing
the value of a property – not allowed on Digital Twins, optional in WoT Things –
and on the observability optionality.

Relationships In Digital Twins, relationships are a first-class concept that is
fundamental to enable the Web of Digital Twins. Considering that they model
the relationships between Physical Assets in the real world, relationships between
Digital Twins are dynamic, domain-oriented, observable, read-only and so man-
aged via the shadowing process.

In WoT Things it is possible to create generic links with other Web resources
– including other WoT Things, but not restricted to them. Links follow the Web
Linking specification [41], so they can also be domain-oriented, but they are not
treated as a first-class element of the Thing’s metamodel so they can not be ob-
served by consumers – it is not possible to specify an Interaction Affordance and
a Protocol Binding for them. Finally, they can be dynamic, but they are not
read-only.

Events Events are very similar in both paradigms, with the possibility of mod-
eling Physical Asset’s or augmented events.

Actions Actions are very similar in both paradigms. Consumers can request
the invocation of an action that is executed directly on the Physical Asset or
augmented.

Interaction patterns

The Digital Twin paradigm, and in particular the Web of Digital Twins vision,
provides several interaction patterns at the individual and at the ecosystem level
that can be exploited by Consumers. It is needed to understand if WoT Things
can support them and at which level.

Snapshot Digital Twins’ current state must be available to Consumers. This
allows the Consumer to obtain the complete state of the associated Physical Asset
as if he is directly interacting with it. Moreover, if Memorization property is
considered, it should be possible to request a Snapshot of a past instant in time.

In WoT Things we cannot specify a form at the Thing level to obtain the
complete view over a Thing, and so there is no concept of a Snapshot of the

54 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

whole Thing3. However, there is the possibility to specify additional properties to
represent the complete state of a Thing – but only in the latest state.

Observation In Digital Twins, Consumers can observe the state evolution – so
the snapshot evolution.

Instead, WoT Things does not provide a way to observe the whole Thing
because it does not allow observation forms at the Thing level4. It is possible to
observe properties and events independently, but not links.

Action invocation As defined previously, Digital Twins can have actions that
can be exploited by consumers in their logic.

Action invocation is natively supported by WoT Things. Consumers can re-
quest the invocation of an action described in the Thing Description.

Ecosystem interactions At the ecosystem level, Digital Twins offer two main
interaction patterns: query and observation. Both of them require Platform sup-
port to be enabled.

The same applies to WoT Things that does not specify anything about inter-
action at the ecosystem level. However, following the REST architectural style, it
is possible to build layered systems providing Intermediaries that can expose these
services.

Features

Bidirectional shadowing In Digital Twins the shadowing process is a central
feature because it allows the Digital Twins to mirror in real-time the associated
Physical Assets. As it is bidirectional, it also enables the mirroring of actions
towards the Physical Assets. This results in a software counterpart that can fully
replicate the Physical Assets.

Generic WoT Things, being abstract concepts not necessarily supported by a
software entity that maintains the state, do not have a well-defined and specific
shadowing process. Instead, if we consider the more specific view over WoT Dig-
ital Twins [35], where Intermediaries are involved, then there are possibilities to
represent the current state of the Physical Asset and, at the same time, mirror the
actions to it.

3From the Web of Things (WoT) Thing Description 1.1, recently published as the new rec-
ommendation, additional support is provided and could be exploited in the future.

4Also for the Observation Interaction pattern, the newly released Web of Things (WoT) Thing
Description 1.1 recommendation provides support to be exploited in the future.

4.2. WEB OF THINGS: VISION AND COMPARISON 55

Memorization Being able to represent a Physical Asset means not only to be
able to represent its present state but also to retain its past data which can be
used to offer services like predictions, simulation, and so on. This functionality is
important in Digital Twins because Consumers can obtain the Digital Twin state
in a specific point in the past.

The WoT recommendation does not address data historicization. This is evi-
dent in the WoT model as it lacks a mechanism for correctly specifying versioning
metadata, leaving the responsibility to external services or ontologies. One possible
solution at the implementation level is to use Intermediaries to provide Memoriza-
tion functionalities. However, this solution does not solve the expressivity problem
of the WoT model.

Augmentation Digital Twins can offer new properties, actions, or events totally
at the software level, so not originally supported by the Physical Asset, resulting
in an augmentation of its capabilities.

Things that are directly exposed by the IoT devices cannot expose augmented
properties, actions, or events because the augmentation layer is missed – i.e.,
the Physical Asset directly exposes the elements. Instead, if Intermediaries are
involved, even WoT Things can expose augmented elements.

Quality attributes

Openness and Interoperability For the objective of this thesis, in Digital
Twins openness is more related to the possibility of having relationships in an
ecosystem composed of more organizations that deal with different domains. It is
important that Physical Assets and Consumers can communicate with the tech-
nology or the protocol most fitted to their needs, but the main goal here is to
support multi-organizational and multi-domain scenarios.

Instead, in WoT Things, considering that the Web of Things paradigm is born
to cope with heterogeneity in the IoT scenario, it is more related to the technology
and protocol openness.

Fidelity One of the new and emerging concepts in Digital Twins is Fidelity.
Although Fidelity is yet an open problem – representation, control, and so on – it
is one of the concepts that differentiate Digital Twins from the other paradigms.

Web of Things does not describe anything that is related to the Fidelity con-
cept, and WoT Things are Things despite their ability to mirror the associated
Physical Asset. This is because the Thing abstraction simply represents an inter-
operable and open interface.

56 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

Discussion

At first glance, Web of Things and Digital Twins seem not so different, but ana-
lyzing them more deeply it is possible to note some main problems in the Web of
Things view compared to the Digital Twins one:

• Things are not necessarily supported by a software entity : in the generic vi-
sion – so without considering WoT Digital Twins – WoT Things are only
mere abstractions, so they may not be supported by any additional soft-
ware layer. This poses several problems in their ability to cope with some
Digital Twins features such as Bidirectional Shadowing, Memorization, and
Augmentation.

• Not complete and writable metamodel : Digital Twins have strong require-
ments in terms of metamodel, and the WoT Things one has some pitfalls
when dealing with Digital Twins one:

– Properties may be writable and are not observable by default : a Thing
may be modified by a Consumer, instead a Digital Twin must not – it
only relies on the shadowing process.

– Weak concept of Relationship: Things have only the concept of generic
link. Moreover, they are writable and cannot be observed by Con-
sumers.

• Missing Interactions at the Thing level : the Web of Things recommendation
does not provide a way to get and observe the complete status – Snapshot –
of a Thing.

• Absence of the Fidelity concept : the Web of Things recommendation does
not contain anything related to the Fidelity concept with respect to Things.

Some of the issues, such as the weakness of the Relationship concept, the
Memorization feature, and the Interaction patterns at the Thing level, stem from
the expressive limitations of the current WoT model which prevent them from
being accurately discerned and specified. However, in some cases, it can be solved
through the “specialization” of the Web of Thing recommendation, which means
adding constraints to Things to be able to model what is mandatory for a Digital
Twin. For this reason, it is possible to exploit the features made available by the
Web of Things recommendation to create Things that respect the principles of
Digital Twins. In particular, the integration point can be obtained through the
WoT Thing Description that could serve as a descriptor of a Digital Twin.

Therefore, this thesis work tries to provide a compatibility layer towards Web
of Things proposing that:

4.2. WEB OF THINGS: VISION AND COMPARISON 57

A Digital Twin can be considered as a WoT Thing, but not every WoT
Thing can be considered a Digital Twin.

Referring to what has been said, an example of a Thing that cannot be con-
sidered a Digital Twin is a sensor that directly exposes its Thing Description to
describe the interfaces to access its latest value without any additional software
layer. This one cannot be considered a Digital Twin because it does not have
the required software entity to provide the basic functionalities of a Digital Twin.
Finally, a WoT Digital Twin that does not offer the basic interaction patterns
described above is only considered a Digital Twin in the WoT vision, and not in
the Web of Digital Twins one – followed in this thesis.

58 CHAPTER 4. ANALYSIS OF THE WEB FOR A WEB-BASED WODT

Chapter 5

WWoDT: the Web-based WoDT

Following the requirements, and the analysis of the Web standards, protocols, and
paradigms, this chapter presents the proposed design for the Web-based Web of
Digital Twins (WWoDT). The chapter begins with a high-level overview of the
proposed idea and architecture, highlighting the need for the provided Specifica-
tions for creating WoDT-compliant ecosystems of Digital Twins. Afterward, the
Abstract Architecture of the system is described.

5.1 High-level description

The creation of ecosystems of heterogeneous Digital Twins requires the support of
dynamic, open, and long-lived systems. TheWeb and its REST architectural style,
as stated in the section 3.2, were used in several systems [11][12] to inherit their
properties, and in the same way they are exploited in this thesis for the design of
the Web-based Web of Digital Twins.

The base idea of the work is centered over the need forWoDT-compliant Digital
Twins and WoDT-compliant Platforms that can cooperate and co-exist within the
same ecosystem despite their technology, domain, or organization in a seamless and
interoperable way. To achieve this, the responsibilities, the metadata, the features,
the interaction patterns, and so on need to be specified. This thesis provides two
Specifications that are the base for the proposed work:

• WoDT Digital Twin Specification

• WoDT Digital Twins Platform Specification

The details of these Specifications will be described afterward, for the moment
it is only needed to understand that any Digital Twin that wants to join a WoDT
ecosystem must follow the WoDT Digital Twin Specification, becoming a WoDT

59

60 CHAPTER 5. WWODT: THE WEB-BASED WODT

Digital Twin. Moreover, any WoDT ecosystem is enabled by a software platform
that follows the WoDT Digital Twins Platform Specification – also called WoDT
Digital Twins Platform.

WoDT Digital Twins are identified by a URI and they are described by:

• Digital Twin Knowledge Graph (DTKG): it models the current state of a
WoDT Digital Twin as a navigable Knowledge Graph. This Knowledge
Graph is generated by the WoDT Digital Twin itself using its reference
ontologies – based on its domain of interest. The DTKG enables Consumers
to obtain the current state of the associated Physical Asset directly from its
Digital replica, with all the advantages described before.

• Digital Twin Descriptor (DTD): it allows a WoDT Digital Twin to present
itself to generic Consumers and WoDT Digital Twins Platforms. It is similar
to an API Specification for a Web service or a Thing Description for a WoT
Thing, and it contains the exposed interfaces and the metadata about a
WoDT Digital Twin. In addition to that, it enables a compatibility layer
towards the technology or protocol used to implement it (such as Web of
Things).

Both descriptions are formalized compatibly with the Linked Data principles. The
separation is only at the RDF-document level, both of them are Knowledge Graphs
on which it is possible to reason altogether.

The high-level architecture that describes the interactions between the elements
of a WoDT ecosystem is shown in Figure 5.1.

Specifically, the WoDT Digital Twins Platform is a software entity that man-
ages the creation of the WoDT Digital Twins Platform Knowledge Graph by merg-
ing the Digital Twins Knowledge Graphs obtained from the registered WoDT Dig-
ital Twins. Based on the WoDT Digital Twins Platform Knowledge Graph, the
WoDT Digital Twins Platform offers services at the application level and acts as
a service layer to enable applications on top of it.

As per requirement, the WoDT Digital Twins can register themselves to the
WoDT Digital Twins Platforms, or they can be added by Platform administra-
tors so that everyone can compose their Web of Digital Twins. In this vision,
each WoDT Digital Twins can be part of different Platforms (as shown in the
Figure 5.1). Indeed, a single Digital Twin can be of interest for different realities.
For example, a Digital Twin of a person may be of interest to the national health
system, to the company for which he works, to the gym he goes to every day, and
so on. This precisely enables the creation of contextualized Web of Digital Twins,
such as the Cesena’s WoDT, the National Health System’s WoDT, or the Andrea’s
WoDT, that enable the creation of digital and contextualized representation of the

5.1. HIGH-LEVEL DESCRIPTION 61

Figure 5.1: High-level architecture of a WoDT ecosystem

reality of interest exploiting Digital Twins – implemented with the different tech-
nologies available – which are in relation among themselves in a cross-domain and
cross-organizational vision. The proposed requirements and design serve to go in
this direction.

In the registration process, the Digital Twin Descriptor (DTD) is used to
present the WoDT Digital Twin to the WoDT Digital Twins Platform. The Plat-
form uses the DTD to understand how to observe the WoDT Digital Twin in
order to receive its Digital Twin Knowledge Graph (DTKG) snapshots. Then, the

62 CHAPTER 5. WWODT: THE WEB-BASED WODT

Platform merges the received DTKGs and DTDs altogether, building the WoDT
Digital Twins Platform Knowledge Graph used to provide services to Consumers
and applications on top. The WoDT Digital Twins Platform Knowledge Graph
is an overall view of all or part of the ecosystem, a navigable Knowledge Graph
that contains both domain data and metadata of all the registered WoDT Digital
Twins. It is necessary to have a centralized view supporting the services that rea-
son at the ecosystem level or need to aggregate data. This is a different approach
with respect to distributed queries that simplifies the consistency of queries with
the tradeoff of having a centralized view.

In addition, the WoDT Digital Twins use the DTD also to present themselves
to Consumers who want to interact directly with them – for data retrieval, actions,
and so on.

The DTD does not impose constraints over communication protocols and tech-
nologies, and the DTKG represents the current state of the Digital Twin as if it
came directly from the Physical Asset. That, in addition to the REST architec-
tural style and the use of vocabularies and ontologies within messages, enables
the interoperability and the Uniform Interface all over the WoDT ecosystem. The
obtained Uniform Interface hides the technologies used internally by the Digital
Twins and Platforms developers, enabling heterogeneity.

As shown in the Figure 5.1, Consumers can interact either with the WoDT
Digital Twins Platform or with the WoDT Digital Twins directly – DT-as-a-
Service –, respecting the independence requirement described previously (3.4.2).

5.2 Specifications

In this section, the most prominent concepts of the WoDT Digital Twin Speci-
fication and the WoDT Digital Twins Platform Specification are described. The
Specifications are the basis for all the work done and proposed in this thesis.
However, they are not complete, so they are still in a draft state.

All the details about the requirements and the terminology definitions are not
proposed again, as they have already been described in the previous sections.

5.2.1 WoDT Digital Twin Specification

The WoDT Digital Twin Specification serves as an additional layer built on top
of existing Digital Twins, allowing them to join WoDT ecosystems despite the
technologies or protocols used internally. Therefore, it attaches itself to the ex-
isting shadowing process. A WoDT-compliant Digital Twin is designed exploiting
existing Web technologies and standards and following the REST architectural
style.

5.2. SPECIFICATIONS 63

Identification: WoDT Digital Twin

A WoDT Digital Twin must be identified by a URI, that allows it to be identified
uniquely globally.

A WoDT Digital Twin URI must not change, therefore it must remain the same
for the whole lifecycle (PURL-like services). Hence, different URIs mean different
Digital Twins and vice versa:

URI1 ̸= URI2 <=> DT1 ̸= DT2

Identification: Physical Asset

As stated in the requirements (section 3.4.2), a Physical Asset must be identified
with the best-suited identifier that reflects its domain, e.g., a license plate for a
car, a health card number for a person, and so on. The Physical Asset Identifier
(PHID) may not be global, but it must be unique within its domain of interest.
The reason is that the identifier, reflecting the domain, depends on the specific
Physical Asset at hand and on the domain in which it is inserted. Moreover, the
Physical Asset Identifier – in the usual case – cannot be hosted, so it cannot be a
URI or a URL for example, and hence it must be a generic ID.

Metamodel

A WoDT Digital Twin must follow the Web of Digital Twins metamodel. Specif-
ically, in this specification the metamodel is considered not only composed of
Properties, Relationships, and Events but also of Actions that represent the ac-
tions that can be invoked on the Physical Asset by interacting with its Digital
Twin (one of them).

In the following, the constraints for each element of the metamodel are pre-
sented:

• Properties : they must be read-only, dynamic, and observable. Properties
must be read-only because they must be modified dynamically through the
shadowing process and no other external entity can modify them. For exam-
ple, if a Digital Twin of a light bulb is considered, no one except the light
bulb itself can set its current state (through shadowing).

• Relationships : relationships must be read-only (updated only through the
shadowing process), dynamic, observable, and unidirectional. In addition,
they must reflect an existing domain-oriented relationship between the asso-
ciated Physical Assets.

• Events : events must be observable and domain-oriented.

64 CHAPTER 5. WWODT: THE WEB-BASED WODT

• Actions : they must be explicitly modeled to reflect the complete state of the
associated Physical Asset. A Digital Twin may expose different protocols to
invoke each action. In addition, as stated previously, Digital Twin’s actions
do not change directly the state of the Digital Twin, but they can generate
a change in the Physical Asset state.

Interaction patterns

After having described what are the offered Interaction patterns, it is necessary
to start to describe more specifically how they must be provided. Each WoDT
Digital Twin must be completely autonomous, in the sense that it should not rely
on external entities to carry out its work.

Snapshot AWoDT Digital Twin must provide an affordance to access its current
snapshot, its Digital Twin Knowledge Graph. A WoDT Digital Twin is a non-
information resource, and it is identified by a URI. An HTTP GET request on the
WoDT Digital Twin URI, following [46] and [15], must respond with a 303 (See

Other) status code that must have the Location HTTP header set to the URL
of the current representation of the Digital Twin Knowledge Graph, offering the
Snapshot interaction pattern.

For this initial specification, the Memorization functionality applies only to
the Digital Twin Knowledge Graph. Therefore, a WoDT Digital Twin may offer
its Consumers older versions of the DTKG. Considering that the DTKG is a web
resource and that it is needed to provide historicization at the resource level, the
Memento protocol was chosen. Hence, each WoDT Digital Twin that wants to
implement Memorization must follow the Memento protocol [13][50]. Each differ-
ent historical version of a Digital Twin Knowledge Graph becomes a Memento
identified and located by a URL. A WoDT Digital Twin, when implementing the
Memento protocol, must offer a Memento TimeGate that guides the Consumers
to the right Memento and it must include the required HTTP Link Headers in the
responses (defined by the protocol).

Observation A WoDT Digital Twin must provide an affordance to observe its
Digital Twin Knowledge Graph evolution. Each time a Digital Twin changes, the
Consumer must be notified with the new consistent snapshot. The observation
pattern can be offered with multiple and different protocols like WebSockets or
WebSub.

Action invocation Consumers must be able to invoke the actions provided by
a WoDT Digital Twin. The protocol bindings and the required inputs must be

5.2. SPECIFICATIONS 65

described within the Digital Twin Descriptor, where multiple protocols may be
supported.

Usually, the available actions change depending on the state of the Physical
Asset and the corresponding WoDT Digital Twin. For this reason, the Digital
Twin Knowledge Graph must list all the invokeable actions in the current state.
If a Consumer tries to invoke an action when it is not available – considering its
state – the WoDT Digital Twin must deny the execution and inform the Consumer
using the best-suited strategy with respect to the protocol used for the request.

Descriptions: Digital Twin Descriptor

WoDT Digital Twins have one and only one Digital Twin Descriptor. Therefore,
the multimodel idea [44], where multiple Digital Twin models can be defined for
the same Physical Asset to capture different aspects, is obtained through different
WoDT Digital Twins, with different URIs, that are associated with the same
Physical Asset.

Physical Assets during their lifecycle could change their model. For this reason,
the Digital Twin Descriptor, apart from being always aligned with the Physical
Asset model, must be versioned accordingly. In this way, each change is reflected
in its version, and Consumers – and caches – can understand if the resource is
stale or not.

The contents of a Digital Twin Descriptor depend only on the WoDT Digital
Twin model, so they do not depend on its current state. Therefore, no property
values, relationship instances, or available actions are described in the Digital Twin
Descriptor. Instead, it contains a complete description of the WoDT Digital Twin
in terms of metadata and affordances – with all the supported protocols – to access
its state and interfaces.

At the specification level, to enable interoperability and create a Uniform In-
terface, there are two main choices: a custom media-type or the use of existing
media types in addition to a vocabulary or an ontology. The first solution is not
ideal for the Digital Twin Descriptor because the goal is to also be aligned with the
Semantic Web community and use the Descriptor as an enabling element for com-
patibility with other paradigms, such as the Web of Things. For this reason, the
strategy followed and proposed in this thesis is to have an RDF-based Digital Twin
Descriptor to enable the Uniform Interface. RDF-based representations provide
more flexibility in this context because they essentially move the interoperability
problem one layer above – from media types to vocabularies. This added flexibility
is what would allow the use of automated inference with formal alignments (via
owl:sameAs, subclasses, and so on) that enable compatibility. Therefore, the spec-
ification only provides an Abstract conceptual model – following a similar approach
to the WoT recommendation [32] – for the Digital Twin Descriptor that can be

66 CHAPTER 5. WWODT: THE WEB-BASED WODT

implemented with the preferred and compatible paradigm. In this scenario, the
WoDT Digital Twins Platforms need to describe the supported implementation
of the Digital Twin Descriptor – so the ones that they support in the registration
process.

In the following, it is presented the Digital Twin Descriptor’s Abstract concep-
tual model using a tabular representation:

• Element : the name of the element of the Abstract conceptual model.

• Mandatory : it indicates if the element presence is mandatory or not (abbre-
viated with Mand. in the following tables).

• Value type: the data type used to represent the element value.

• Description: a short description summarizing the rationale for the element.

Digital Twin Descriptor root The content of a Digital Twin Descriptor is
described in table 5.1. Any Digital Twin Descriptor implementation must respect
the contents described in table 5.1.

Table 5.1: Structure of the Digital Twin Descriptor

Element Mand. Value type Description
Version yes string The version of the Digital Twin

Descriptor of the WoDT Digital
Twin.

WoDT Digital
Twin URI

yes URI The URI of the WoDT Digital
Twin.

Physical Asset
Identifier

yes string The ID of the associated Physical
Asset (PHID).

WoDT Digital
Twin type

yes URI The value must be the class – in
the domain ontology – that repre-
sents the Digital Twin type.

Shadowing la-
tency

no number The latency in the shadowing pro-
cess. The value is expressed in
milliseconds.

Deployment
country

no string The country where the WoDT
Digital Twin is deployed. The
value is expressed according to
ISO 3166-1 alpha-3 standard.

continues on next page

5.2. SPECIFICATIONS 67

Memento
TimeGate

no* URL The Memento TimeGate HTTP
URL. *It is mandatory only when
Memorization is available on the
WoDT Digital Twin.

WoDT Digital
Twins Platforms

yes List of URL The WoDT Digital Twins Plat-
forms where the WoDT Digital
Twin is present (registered or
added). The list may be empty
– when it is not registered to any
platform.

Observation af-
fordance

yes List of
Form

The affordances to observe the
evolution of the Digital Twin
Knowledge Graph. It is a list be-
cause it is possible to specify dif-
ferent protocols.

Properties yes List of
Property

All the possible properties of a
WoDT Digital Twin. The list may
be empty – when it does not have
any property relevant to the con-
text.

Events yes List of
Event

All the events emitted by a WoDT
Digital Twin. The list may be
empty – when it does not emit any
event relevant to the context.

Relationships yes List of Rela-
tionship

All the possible relationships of a
WoDT Digital Twin. The list may
be empty – when it does not have
any relationship type relevant to
the context.

Actions yes List of Ac-
tion

All the possible actions offered by
a WoDT Digital Twin. The list
may be empty – when it does not
offer any action relevant to the
context.

Property Each Property of a WoDT Digital Twin represented in the Digital
Twin Descriptor must respect the contents described in Table 5.2.

68 CHAPTER 5. WWODT: THE WEB-BASED WODT

Table 5.2: Structure of a Property in the Digital Twin
Descriptor

Element Mand. Value type Description
Property value
type

yes URI The type of the property value.

Domain predi-
cate

yes URI The URI that identifies the
domain-related predicate used to
describe the property in the
Knowledge Graph.

Is Augmented yes boolean It states if the property is an aug-
mented one or not. If not, it
means that it is mirrored from the
associated Physical Asset.

Tolerance no number The tolerance in the value, with
respect to the real value, pre-
sented by the WoDT Digital
Twin.

Read affordance yes List of
Form

The affordance to read the cur-
rent value of the property. It is a
list because it is possible to spec-
ify different protocols.

Observation af-
fordance

yes List of
Form

The affordance to observe the evo-
lution of the value of the property.
It is a list because it is possible to
specify different protocols.

Event Each Event of a WoDT Digital Twin represented in the Digital Twin
Descriptor must respect the contents described in Table 5.3.

Table 5.3: Structure of an Event in the Digital Twin
Descriptor

Element Mand. Value type Description
Event data type yes Data

Schema
The data structure of the data
sent within the event.

continues on next page

5.2. SPECIFICATIONS 69

Is Augmented yes boolean It states if the event is an aug-
mented one or not. If not, it
means that it is mirrored from the
associated Physical Asset.

Observation af-
fordance

yes List of
Form

The affordance to observe the
event. It is a list because it is pos-
sible to specify different protocols.

Relationship Each Relationship of a WoDT Digital Twin represented in the
Digital Twin Descriptor must respect the contents described in Table 5.4.

Table 5.4: Structure of a Relationship in the Digital Twin
Descriptor

Element Mand. Value type Description
Target type yes URI The type of the target WoDT Dig-

ital Twin.
Domain predi-
cate

yes URI The URI that identifies the
domain-related predicate used to
describe the relationship in the
Knowledge Graph.

Read affordance yes List of
Form

The affordance to read the active
instances of the relationship. It is
a list because it is possible to spec-
ify different protocols.

Observation af-
fordance

yes List of
Form

The affordance to observe the evo-
lution of the instances of the rela-
tionship. It is a list because it is
possible to specify different proto-
cols.

Action Each Action of a WoDT Digital Twin represented in the Digital Twin
Descriptor must respect the contents described in Table 5.5.

70 CHAPTER 5. WWODT: THE WEB-BASED WODT

Table 5.5: Structure of an Action in the Digital Twin
Descriptor

Element Mand. Value type Description
Action type yes URI The URI that identifies the type

of the action at the domain level.
Consumers use this type to select
and recognize the needed action
(e.g., saref:ToggleCommand).

Is Augmented yes boolean It states if the action is an aug-
mented one or not. If not, it
means that it is mirrored from the
associated Physical Asset.

Required input no Data
Schema

The input data structure that the
action takes as input.

Action ID yes string The Action ID used to refer to
the action inside the Digital Twin
Knowledge Graph.

Action invoca-
tion affordance

yes List of
Form

The affordance to invoke the ac-
tion. It is a list because it is pos-
sible to specify different protocols.

Data Schema It describes the structure of the data being sent. Its serialization
depends on the specific implementation. For example, a Thing Description-based
implementation could use the Data Schema structure [32].

Form It contains all the protocol information that is necessary for automatic
handling – without out-of-band data. In addition to that, the form must contain
the media type1 that describes the serialization used for sending and receiving the
data with the protocol defined in the form. The bindings between the media type
and the Data Schema are defined by the specific implementation of the Digital
Twin Descriptor. For example, a Thing Description-based implementation could
use Web of Things Binding Templates [34].

The Digital Twin Descriptor enables the WoDT Digital Twins to present them-
selves to Consumers without the need for out-of-band information or fixed inter-
faces. This is aligned with the constraints to obtain a Uniform Interface in the

1https://www.iana.org/assignments/media-types/

https://www.iana.org/assignments/media-types/

5.2. SPECIFICATIONS 71

REST architectural style, in particular to the self-descriptive messages and hyper-
media as the engine of application state (HATEOAS) ones.

Fidelity As said previously, for the Fidelity concept the objective is not to pro-
vide a comprehensive definition, but instead to start to think about the places
where it is useful. Fidelity meta-data acts as an assurance that the Digital Twin
makes respect to its ability to mirror the Physical Asset of interest. For this reason,
we can immediately see that a Consumer must be able to understand how good
the WoDT Digital Twin is in mirroring the Physical Asset. As it is possible to note
in the Abstract conceptual model, Fidelity metadata is useful even in the Digital
Twin Descriptor. In fact, there is Fidelity metadata that needs to be specified
independently of the particular state of the WoDT Digital Twin. In the proposed
Abstract conceptual model, Fidelity is composed of two different concepts: Latency
and Tolerance.

Latency is described by the latency in the shadowing process, and by the
country of deployment of the WoDT Digital Twin itself. The first one is useful to
understand the latency in the shadowing process itself, so the time needed for the
WoDT Digital Twin to be in sync. The second one is needed by Consumers to
be able to estimate the possible network delay in communications with the WoDT
Digital Twin.

Tolerance refers to the tolerance in the property’s value concerning the actual
value sensed in the real world. This is because properties’ values usually come
from data acquired by sensors, so for Consumers tolerance may be necessary. The
tolerance, in the Digital Twin Descriptor, is considered with the same unit of
measurement in which the property value is represented.

HTTP Link Headers The Digital Twin Descriptor can be hosted by the WoDT
Digital Twin itself, or it may be hosted by an external entity. This flexibility comes
from the fact that the Consumers are always able to navigate to it via the HTTP
Link Header within the Digital Twin Knowledge Graph – Snapshot – response, as
it will be described later. However, any request for the Digital Twin Descriptor
has to include the following HTTP Link Headers in its response:

• HTTP Link Header to the WoDT Digital Twin Platforms where the associ-
ated WoDT Digital Twin is registered

– optional : it is optional because a WoDT Digital Twin may not be
registered on any Platform. In addition, there could also be a case
where there are multiple links because, as described earlier, a WoDT
Digital Twin may register itself or be registered to different WoDT
Digital Twins Platforms at the same time.

72 CHAPTER 5. WWODT: THE WEB-BASED WODT

– the relation type is registeredToPlatform. It must be formalized in
an ontology and provided as an extension relation type, as described in
the Web Linking specification [41].

– A consumer can use the links to navigate in theWoDT ecosystems where
the WoDT Digital Twin is registered, and perform queries or access the
provided services. These are the same links that are included in the
”WoDT Digital Twins Platforms” field in the Digital Twin Descriptor
– Table 5.1.

• HTTP Link Header to the Digital Twin Knowledge Graph of the associated
WoDT Digital Twin

– mandatory

– the relation type is currentStatus. It must be formalized in an ontol-
ogy and provided as an extension relation type, as described in the Web
Linking specification [41].

– It allows jumping easily from the DTD to the DTKG.

Caching In addition, Digital Twin Descriptors may be cached, reducing network
latencies. To enable the caching mechanisms, a WoDT Digital Twin can include
the following HTTP Headers in the Digital Twin Descriptor’s response:

• Cache-control : the type of Cache-control can be chosen by the DT Devel-
oper.

• ETag : it needs to identify the specific version of the resource.

• Last-modified : to be compatible with the RFC 9110 [17], the Last-modified
HTTP Header is recommended.

Finally, a WoDT Digital Twin must be able to respond to conditional GET
requests for its Digital Twin Descriptor. If the resource has not changed, the
response has the 304 (Not Modified) status code, instead, if the resource has
changed, the response has the 200 (OK) status code and returns the current version
of the Digital Twin Descriptor.

Descriptions: Digital Twin Knowledge Graph

The Digital Twin Knowledge Graph (DTKG) is generated by the WoDT Digital
Twin based on the current state and domain ontology. It must be aligned with
the metadata within the Digital Twin Descriptor, resulting in a domain-oriented
description of the current state of the WoDT Digital Twin.

5.2. SPECIFICATIONS 73

Following its name, the Digital Twin Knowledge Graph is a Knowledge Graph
where the subject of each triple is the WoDT Digital Twin URI itself. This Knowl-
edge Graph contains:

• Properties values : the current values of the properties. There cannot be
links to access properties in the current state, but there must be values that
Consumers can directly read. Properties in the Digital Twin Knowledge
Graph are represented as triples : the predicate is the property’s domain
predicate specified in the Digital Twin Descriptor, and the object is the
current value of the property.

• Current relationships : the current instances of relationships in which the
WoDT Digital Twin – so the associated Physical Asset – is involved. In the
current state only the current set of relationships are of interest, not all the
possible ones. This allows us to represent the current situation of the asso-
ciated Physical Asset more realistically. Relationships in the Digital Twin
Knowledge Graph are represented as triples : the predicate is the relation-
ship’s domain predicate specified in the Digital Twin Descriptor, and the
object is the URI of the linked WoDT Digital Twin. As per requirement,
the linked WoDT Digital Twin may be owned by a different organization
(openness and interoperability).

• Current set of possible actions : current set of actions that can be invoked on
the WoDT Digital Twin based on its current state. Hence, it is a subset of all
the actions. In the Digital Twin Knowledge Graph, for each possible action
there is a triple that has as predicate availableActionId (to be defined in
the WoDT ontology) and as object the Action ID associated with the action
in the Digital Twin Descriptor. Therefore, a Consumer can understand which
actions can be executed from the DTKG and then, following the HTTP Link
Header, navigate to its DTD to get the affordances to invoke them.

Consumers obtain the Digital Twin Knowledge Graph invoking the Snapshot
interaction pattern. As stated before, an HTTP GET request on the WoDT Dig-
ital Twin URI responds with the 303 (See Other) status code indicating in the
Location HTTP Header the URL of the Digital Twin Knowledge Graph. This
enhances the navigation between different WoDT Digital Twins (by their relation-
ships) and allows it to be compatible with the Linked Data principles.

Fidelity Regarding Fidelity, a possible idea – that needs further exploration – is
the option of having a Fidelity score in the Digital Twin Knowledge Graph. The
Fidelity score could be obtained by a formula designed by the DT Developer and
based on both the Fidelity metadata within the Digital Twin Descriptor – to weight

74 CHAPTER 5. WWODT: THE WEB-BASED WODT

the different elements depending on the objective of the Digital Twin – and the
current status of the Digital Twin to be able to understand how the Digital Twin
is performing with respect to the motivation for which it was designed originally.
The objective is to provide Consumers a way to understand quantitatively how
much a WoDT Digital Twin can reflect accurately its associated Physical Asset,
and how much it can trust the data for high-risk decisions. Moreover, only the
WoDT Digital Twin Developer or Designer can extract the formula because it is
the only one that can weigh the Fidelity characteristics of the DT itself.

HTTP Link Headers As specified in the requirements, it must be possible to
jump from the Digital Twin Knowledge Graph to the Digital Twin Descriptor.
Therefore, in the Snapshot response, an HTTP Link Header with relation type
hasDescriptor (to be defined in the WoDT ontology) that points to the URL of
the DTD must be set.

Caching The Digital Twin Knowledge Graph aims to provide a domain-oriented
representation for the WoDT Digital Twins and so of their associated Physical
Assets. It is needed always an up-to-date version, therefore it must not be cached
by general intermediaries, only the WoDT Digital Twins Platforms can. To avoid
intermediaries caching the DTKG, the HTTP Cache-control Header can be set
to the no-store value. In addition, in the DTKG response, there should be the
Last-Modified HTTP Header to state the date and time it was last updated.

5.2.2 WoDT Digital Twins Platform Specification

The WoDT Digital Twins Platform Specification defines the responsibilities, the
functionalities, and the constraints that a Platform must respect to form ecosys-
tems of heterogeneous WoDT Digital Twins, compatibly with the Web of Digital
Twins vision.

As stated, the Platform is needed to provide all the services that a single WoDT
Digital Twin alone is not capable of supplying, or supplying efficiently. The main
goal is the creation of the WoDT Digital Twins Platform Knowledge Graph ob-
tained by merging the DTKGs, and optionally the DTDs, of the registered WoDT
Digital Twins. The resulting Knowledge Graph describes the entire ecosystem of
an organization or even multiple organizations, spanning different domains and
acting as a navigable and discoverable service layer for the applications on top.
Based on the Platform Knowledge Graph, the service layer is enriched with addi-
tional services that are necessary for a Web of Digital Twins.

AWoDT-compliant Digital Twins Platform is designed and developed following
the REST architectural style.

5.2. SPECIFICATIONS 75

Management of the Platform ecosystem

The WoDT Digital Twins Platform Knowledge Graph is a living representation
of the ecosystem that Consumers can use to access and observe the real world,
from a Digital and immaterial replica. The ecosystem is formed by the registered
WoDT Digital Twins that are linked together in a graph, in particular a Knowledge
Graph. The following management services are necessary to manage the ecosystem
and each one can be implemented, compatibly with the REST architectural style,
with the preferred technology or protocol.

Registration and observation Following requirements, to be part of the Plat-
form ecosystem, a WoDT Digital Twin can register itself or it can be added to a
WoDT Digital Twins Platform providing the Digital Twin Descriptor.

WoDT Digital Twins Platforms provide an endpoint for the registration pro-
cess:

• The registration process takes the WoDT Digital Twin’s DTD as input. A
WoDT-compliant Digital Twins Platform should support all the compliant
implementations of the Digital Twin Descriptor.

• The registration can be finalized only if at least one protocol for the obser-
vation of the WoDT Digital Twin is supported by the Platform, otherwise it
must fail safely and compatibly with the protocol or the technology used.

• If the registration is performed by a Platform administrator and not by the
WoDT Digital Twin itself, then the Platform notifies the WoDT Digital Twin
of the registration by sending a request to the appropriate endpoint. Each
WoDT Digital Twin, that can be added externally, must offer a notification
endpoint.

The Platform, once the WoDT Digital Twin is registered, uses its Digital Twin
Descriptor to obtain the Observation interaction pattern endpoint and start ob-
serving its DTKG evolution. The received Digital Twin Knowledge Graphs are
merged with the other WoDT Digital Twins’ DTKG, building the WoDT Digital
Twins Platform Knowledge Graph. Moreover, also the Digital Twin Descriptors
may be merged in the WoDT Digital Twins Platform Knowledge Graph. This
enables more powerful queries that involve also Digital Twins metadata (e.g., de-
ployment country or fidelity or protocol constraints). Hence, both the Digital
Twin Knowledge Graph and the Digital Twin Descriptor are Knowledge Graphs.
The separation is just at the RDF-document level, it is only a design choice for
different reasons such as caching, usage, and so on, but it does not mean that they
need to be separated in the WoDT Digital Twins Platform Knowledge Graph.

76 CHAPTER 5. WWODT: THE WEB-BASED WODT

Therefore, the Platform does not connect directly to the registered WoDT
Digital Twins’ shadowing process, but they observe them like general Consumers.
This is because the shadowing process is the responsibility of each WoDT Digital
Twin which must be able to live alone or within an ecosystem.

The WoDT Digital Twins Platform Knowledge Graph, storing the latest snap-
shot of the registered WoDT Digital Twins, creates a local cache that Consumers
can exploit to ask for Digital Twins data. The Platform may be closer, from a
network-latency perspective, than the WoDT Digital Twin, so it could help in
reducing network latencies when essential for the Consumer. However, the local
cache may be temporarily outdated when the Consumer requests it, so it is a
trade-off. If the Consumer requires the most up-to-date state, he should request
it directly from the WoDT Digital Twin. Alternatively, if latency is an issue, it
may use the local cache on the Platform if it is more convenient. Following this
possibility, each registered WoDT Digital Twins URI, in the whole WoDT Digital
Twins Platform Knowledge Graph, is mapped to a local URL so built:

{platform url}/wodt/{wodt digital twin uri}

Mapping each registered WoDT Digital Twin, so even relationship targets when
registered, enables navigation directly at the Platform level in a centralized view
without the need to jump between different servers all over the world. At this URL,
a Consumer can get the local snapshot of the associated WoDT Digital Twin,
as described afterward. A way to get the original URI is offered and described
afterward.

WoDT Digital Twin’s Model update Any changes in the Physical Asset
model are reflected in the WoDT Digital Twin, specifically updating its Digital
Twin Descriptor (including its version). When this happens, the WoDT Digital
Twin must notify the WoDT Digital Twins Platforms where it is registered. A
WoDT Digital Twins Platform provides an endpoint for the Digital Twin Descrip-
tor update:

• The update process takes the updated Digital Twin Descriptor as input.

• The update can be finalized only if at least one protocol for the observation
of the WoDT Digital Twin is supported by the Platform, otherwise it must
fail safely and compatibly with the protocol or the technology used.

The update request is adequately processed, and it may result in the restart of the
observation process or the deletion of Digital Twin’s data.

5.2. SPECIFICATIONS 77

WoDT Digital Twin deletion When a registered WoDT Digital Twin is
deleted, it notifies the interested WoDT Digital Twins Platforms. A WoDT Dig-
ital Twins Platform provides an endpoint for the deletion notification that takes
as input only the WoDT Digital Twin URI. The request results in the deletion
of all the parts related to the WoDT Digital Twin from the WoDT Digital Twins
Platform Knowledge Graph and in the removal of the local snapshot endpoint.

Interaction patterns

The WoDT Digital Twins Platform Knowledge Graph is the base for all the ser-
vices provided at the Platform level. In the following, the Interaction patterns
that represent the service layer offered by the WoDT Digital Twins Platform to
Consumers are described.

Platform ecosystem snapshot An HTTP GET request on the WoDT Digi-
tal Twins Platform URL, following [46] and [15], must respond with a 303 (See

Other) status code that must have the Location HTTP header set to the current
representation of the WoDT Digital Twins Platform Knowledge Graph, offering
the Platform ecosystem snapshot interaction pattern. Considering HATEOAS
and self-descriptive messages constraints of REST, it is possible to insert in the
response the hypermedia controls to register a new WoDT Digital Twin to the
Platform. This would allow agents or Digital Twins to automate the registration
process.

Local WoDT Digital Twin snapshot As stated before, the WoDT Digital
Twins Platform Knowledge Graph creates a local cache that Consumers can ex-
ploit to ask for Digital Twins data. The Local WoDT Digital Twin snapshot
interaction pattern is meant to offer Consumers a way to access local snapshots.
An HTTP GET request on the mapped local URL returns the local data about
a WoDT Digital Twin. In addition, in the response, an HTTP Link Header with
relation type original is specified to point to the original WoDT Digital Twin
URI. Considering HATEOAS and self-descriptive messages constraints of REST, it
is possible to insert in the response the hypermedia controls to update the WoDT
Digital Twin DTD and to delete the WoDT Digital Twin from the Platform. This
would allow Digital Twins to automate lifecycle management operations. Appro-
priate authentication and authorization systems are necessary.

Query on the Platform Knowledge Graph AWoDT Digital Twins Platform
must provide an affordance to make SPARQL queries over the WoDT Digital Twins
Platform Knowledge Graph. A WoDT Digital Twins Platform exposes a SPARQL

78 CHAPTER 5. WWODT: THE WEB-BASED WODT

endpoint, compatible with the SPARQL 1.1 Protocol [14] (only query operations,
not updates), at the following URL:

{platform url}/wodt/sparql

The queries are performed only at the Platform level. However, following the
REST architectural style – and in particular the layered system constraint – it is
possible to create intermediaries that act as aggregators creating a complete or a
partial view over different ecosystems composed by the interested WoDT Digital
Twins Platforms allowing queries at a bigger scale.

Observation of the Platform Knowledge Graph A WoDT Digital Twins
Platform must provide an affordance to observe the evolution of the WoDT Digital
Twins Platform Knowledge Graph. The observation is only at the Platform level.
However, following the REST architectural style – and in particular the layered
system constraint – it is possible to create intermediaries that act as aggregators
creating a complete or a partial view over different ecosystems composed by the
interested WoDT Digital Twins Platforms allowing observation at a bigger scale.

Multi-model directory service A WoDT Digital Twins Platform must pro-
vide the multi-model directory service interaction pattern that from a Physical
Asset Identifier returns the URIs of all the associated WoDT Digital Twins that
are registered to the Platform. This interaction pattern is necessary because for
the same Physical Asset multiple and independent WoDT Digital Twins can be
available, each one with a different model, specialized for different applications.

5.3 Abstract Architecture

The Specifications are the basis for the creation of Web-based WoDT-compliant
ecosystems of heterogeneous Digital Twins. Starting from them, there is the need to
describe the internal responsibilities of each role, defining an Abstract Architecture
that Developers can follow for the implementation of a Web of Digital Twins. In
this section, the proposal for the Abstract Architecture is presented. It is not a
mandatory architecture that needs to be implemented to be compliant, but it is a
purely logical one to help describe components and responsibilities.

The proposed Abstract Architecture comes, apart from Specifications, from
the objective of realizing Web of Digital Twins ecosystems of heterogeneous Dig-
ital Twins where Digital Twins use different technologies under the hood, can be
deployed in the best-suited network node, and are useful alone and as part of an
ecosystem – DT-as-a-Service.

The Abstract Architecture is shown in Figure 5.2.

5.3. ABSTRACT ARCHITECTURE 79

DT / Twin Builder

WoDT Shadowing Adapter

DTKG EngineDTD Manager DT Event
Dispatcher

WoDT Digital Twin InterfacePlatform
Management
Interface

DTKG Store

    WoDT Digital Twin

DT Action
Queue

Ecosystem Management Interface WoDT Digital Twins Observer

WoDT Digital Twins Platform Knowledge Graph EngineEcosystem
Registry

WoDT Digital Twins Platform Interface

    WoDT Digital Twins Platform

Registration and management

DTKG observation

Consumer

Interaction patterns

Interaction patterns

Legend

Optional component

Mandatory component

Figure 5.2: Proposed Abstract Architecture

80 CHAPTER 5. WWODT: THE WEB-BASED WODT

The figure (Figure 5.2) shows both the internal components and the interac-
tions between the roles. In the figure, there is only one WoDT Digital Twin for
simplicity, but every WoDT Digital Twin is connected in the same way to the
Platform. The interactions are the ones described before in the Specifications:

• A WoDT Digital Twin can register, update, and delete itself to the WoDT
Digital Twins Platform. In addition, it can be notified about the registration
to a Platform.

• A WoDT Digital Twins Platform observes the WoDT Digital Twins’ DTKG
to build the WoDT Digital Twins Platform Knowledge Graph.

• Consumers can interact with both the WoDT Digital Twins Platform, for
services at the ecosystem level, and directly with the WoDT Digital Twins,
for services at the Digital Twin level. The interactions are based on the
Interaction patterns presented above.

5.3.1 WoDT Digital Twin

Starting from theWoDT Digital Twin, the identified components are the following:

Digital Twin or Digital Twin Builder It represents the technology used to
implement the Digital Twin. It could be a technology that allows the creation of a
single Digital Twin, e.g., Eclipse Ditto, or it could be a Digital Twin Builder like
Azure Digital Twins where multiple Digital Twins are managed. Both possibilities
must be considered to enable ecosystem heterogeneity. Based on the technologies
used here, the components on top could be more or less complex, considering their
gaps with respect to the requirements.

WoDT Shadowing Adapter TheWoDT Shadowing Adapter has the objective
of adapting the Digital Twin metamodel to the Web of Digital Twins metamodel
to cope with the gap present between the technology used and Web of Digital
Twins. Depending on the Digital Twin technology, this component may be more
or less complex. The WoDT Shadowing Adapter has the following responsibilities:

• Continuous observation of the Digital Twin or the Digital Twin Builder to
extend data to the upper components.

• Digital Twin ID mapping to its WoDT Digital Twin URI.

• Dispatch events from the Digital Twin via the DT Event Dispatcher to be
exposed by the WoDT Digital Twin Interface. This is needed only when the

5.3. ABSTRACT ARCHITECTURE 81

Digital Twin itself is not able to expose events to Consumers – allowing, at
the same time, their description in the Digital Twin Descriptor.

• Map the Digital Twin metamodel to the Web of Digital Twins metamodel.

• Map the data about its current status to a semantic representation that
follows its domain ontology. The predicates are the ones described in the
Digital Twin Descriptor. Therefore, it extends the Digital Twin shadowing
process, providing a domain-oriented representation that can be stored on
the DTKG Engine.

• Bridge the action invocation requests that are queued in the DT Action
Queue to the Digital Twin to execute them. This is needed only when the
Digital Twin itself is not able to expose actions to Consumers – allowing, at
the same time, their description in the Digital Twin Descriptor.

DTD Manager It is the component dedicated to the management of the Digital
Twin Descriptor. The DTD could be:

• Generated automatically by the component, processing the Digital Twin
model and obtaining the necessary information from the other components
of the architecture. The essential data needed is:

– Domain ontology : needed to associate the data from the Digital Twin
to domain predicates. Generally, it is a piece of information coded by
the Digital Twin Developer.

– Digital Twin model : obtained automatically from the Digital Twin tech-
nology used.

– Exposed interfaces : they are necessary to describe the affordances in
the Digital Twin Descriptor. Usually obtained from the WoDT Digital
Twin Interface or coded.

– Platforms to which is registered : from the Platform Management Inter-
face.

If the technology used is a Digital Twin Builder, then the DTD Manager
manages the DTD of each single Digital Twin. Finally, following a DTD
update, the DTD Manager must notify the Platform Management Interface
that spreads the update to the interested Platforms.

• Hard-coded by the Digital Twin Developer.

• Managed by a management API by the Digital Twin administrator.

82 CHAPTER 5. WWODT: THE WEB-BASED WODT

DTKG Engine It manages the Digital Twin Knowledge Graph of the WoDT
Digital Twin. If the technology used is a Digital Twin Builder, then it manages
the DTKG of each single Digital Twin. In addition, if the WoDT Digital Twin
supports Memorization, then when it is updated it will store the previous DTKG
in the DTKG Store, saving its history.

DTKG Store It stores the historical versions of the Digital Twin Knowledge
Graph. It is an optional component because Memorization is not mandatory for
a WoDT Digital Twin.

DT Event Dispatcher It manages events from the Digital Twin when the event
observation is not supported natively by the technology used. The WoDT Digital
Twin Interface exposes the events to the interested Consumers.

DT Action Queue It manages the action invocation request queue to be shad-
owed by the WoDT Shadowing Adapter when the action invocation from Con-
sumers is not natively supported by the technology used. The choice to have a
separate component is because it can buffer the action requests, leaving the WoDT
Shadowing Adapter the only responsibility to act as a bridge.

Platform Management Interface It manages the registration to the WoDT
Digital Twins Platforms. Specifically, its responsibilities are:

• Handling the Digital Twin Descriptor update and the deletion with notifica-
tions to the interested Platforms.

• Management of the registration notification endpoint for the registration to
a WoDT Digital Twins Platform by an external entity.

• Automatic registration to a specific set of WoDT Digital Twins Platform, if
configured to do so.

• Management of the list of WoDT Digital Twins Platforms to which the
WoDT Digital Twin is registered. If the technology used is a Digital Twin
Builder, then it manages a separate list for each Digital Twin.

WoDT Digital Twin Interface It offers the Interaction patterns described in
the WoDT Digital Twin Specification. To satisfy the requests, it interacts with
the other components of the architecture.

5.3. ABSTRACT ARCHITECTURE 83

5.3.2 WoDT Digital Twins Platform

For what concerns the WoDT Digital Twins Platform, the identified components
are the following:

Ecosystem Management Interface It handles the registration, the update,
and the deletion of the WoDT Digital Twins to the Platform. The Ecosystem
Management Interface is the responsible one for the validation of the Digital Twin
Descriptors and the registration notification to externally added WoDT Digital
Twins.

WoDT Digital Twins Observer The WoDT Digital Twins Observer observes
the registered WoDT Digital Twins to get their updated DTKG.

Ecosystem Registry The Ecosystem Registry contains the registry of all the
registered WoDT Digital Twins. Moreover, it contains the logic for the URI map-
ping.

WoDT Digital Twins Platform Knowledge Graph Engine It is the engine
that manages the WoDT Digital Twins Platform Knowledge Graph, handling the
continuous merging process of the DTKGs – and optionally of the DTDs – and
the deletion of deleted WoDT Digital Twins. It offers an interface to get the whole
Knowledge Graph, to get the local cached view over a registered WoDT Digital
Twin, and to perform a SPARQL Query on the Platform Knowledge Graph.

WoDT Digital Twins Platform Interface It offers the Interaction patterns
described in the WoDT Digital Twins Platform Specification. To satisfy the re-
quests, it interacts with the other components of the architecture.

5.3.3 Interaction flows

To clarify the relationships between the different components of the Abstract Ar-
chitecture, three base flows are discussed here, using UML Sequence Diagrams.

Registration process

The first one, shown in Figure 5.3, describes the interactions in the registration
process.

Assuming that the WoDT Digital Twin already knows the URL of the WoDT
Digital Twins Platform where it wants to register, the flow starts from the Plat-
form Management Interface that obtains the updated Digital Twin Descriptor

84 CHAPTER 5. WWODT: THE WEB-BASED WODT

Platform Management
Interface

Platform Management
Interface

DTD
Manager

DTD
Manager

WoDT Digital Twin
Interface

WoDT Digital Twin
Interface

Ecosystem Management
Interface

Ecosystem Management
Interface

Ecosystem
Registry

Ecosystem
Registry

WoDT DTs
Observer

WoDT DTs
Observer

Platform KG
Engine

Platform KG
Engine

Get DTD

DTD

Register (DTD)

Check DTD

alt [Invalid DTD]

invalid DTD

Registration Failure

[DTD ok]

DTD ok

Add DT

New DT

Merge DTD

Registration ok

Observe

Figure 5.3: UML Sequence diagram for WoDT Digital Twin registration

from the DTD Manager. After that, it sends the registration request, with the
DTD in the body, to the Ecosystem Management Interface of the Platform. The
Ecosystem Management Interface validates and checks the received DTD. If the
DTD is invalid, then it cannot proceed and returns the error to the Digital Twin
Platform Management Interface. Otherwise, if the DTD is valid, it can finalize
the registration process by adding it to the Ecosystem Registry and notifying the
WoDT Digital Twins Observer, to start observing the new WoDT Digital Twin,
and the WoDT Digital Twins Platform Knowledge Graph Engine, to merge the
new Digital Twin Descriptor to the Platform Knowledge Graph. Finally, the reg-
istration is confirmed to the WoDT Digital Twin, and the WoDT Digital Twins
Observer, as soon as it processes its Digital Twin Descriptor, starts observing the
newly registered WoDT Digital Twin.

Query on the WoDT Digital Twins Platform Knowledge Graph

The second one, shown in Figure 5.4, describes the interactions that are necessary
to query the WoDT Digital Twins Platform Knowledge Graph.

The Consumer, for simplicity, already knows the URL of the Platform. The
flow starts from the Consumer that performs the SPARQL query on the WoDT
Digital Twins Platform Interface. The latter requests the resolution of the query

5.3. ABSTRACT ARCHITECTURE 85

Consumer

Consumer

Platform
Interface

Platform
Interface

Platform KG
Engine

Platform KG
Engine

SPARQL Query

Query

Perform query

Result

Result

Result

Figure 5.4: UML Sequence diagram for ecosystem query

to the WoDT Digital Twins Platform Knowledge Graph Engine that returns the
results to the WoDT Digital Twins Platform Interface, immediately forwarded to
the Consumer. The Consumer now can process the results of the requested query.

It is interesting to note that in this case the Consumer is already aware of the
URL of the Platform, but it could also be the case that he is not. Thanks to the
consistency of the Specification, the Consumer can use any WoDT Digital Twin,
which he already knows, as an entry point for the ecosystem to be able to execute
queries on it. In fact, by obtaining the DTD of the entry point, the Consumer will
also obtain all the Platforms to which it is registered. This allows the Consumer
to be able to perform queries on all the available Platforms.

Observation of a WoDT Digital Twin

The third one, shown in Figure 5.5, describes the interactions that are necessary
for a Consumer to start to observe a WoDT Digital Twin.

After the Consumer obtains the URI of the interested WoDT Digital Twin,
maybe performing a query on the ecosystem, he can request its Digital Twin De-
scriptor to the WoDT Digital Twin Interface to get its Observation affordance.
The WoDT Digital Twin Interface obtains the latest Digital Twin Descriptor from
the DTD Manager and returns it to the Consumer. The Consumer processes the
DTD and uses the Observation affordance, against the WoDT Digital Twin In-
terface, to start observing the WoDT Digital Twin. When the Physical Asset
updates, it shadows the event to the Digital Twin that it is reflected to the WoDT

86 CHAPTER 5. WWODT: THE WEB-BASED WODT

Consumer

Consumer

WoDT Digital Twin
Interface

WoDT Digital Twin
Interface

DTD
Manager

DTD
Manager

DTKG
Engine

DTKG
Engine

WoDT Shadowing
Adapter

WoDT Shadowing
Adapter

DT
Technology

DT
Technology

Physical
Asset

Physical
Asset

Get DT DTD

Get DTD

DTD

DTD

Process DTD

Observe DT

Update event

Update event

Process update

New DTKG

Update DTKG

New DTKG update

New DTKG update

Figure 5.5: UML Sequence diagram for WoDT Digital Twin observation

Shadowing Adapter. The WoDT Shadowing Adapter processes the event and no-
tifies the DTKG Engine that updates its internal Knowledge Graph and notifies
the WoDT Digital Twin Interface. The WoDT Digital Twin Interface forward the
event to all the observers, including the Consumer.

Chapter 6

Prototype

In this chapter, it is described the prototype for the Web-based Web of Digital
Twins created to demonstrate the feasibility of the design proposed in the previ-
ous chapter. The chapter begins with a description of the prototype design that
concretizes the proposed Abstract Architecture. Afterward, a description of the
most prominent details of the prototype implementation is provided. Finally, to
demonstrate the effectiveness of the proposed design and the realized prototype,
an example use case is presented and described.

6.1 Prototype design

The objective of the thesis is to create ecosystems of heterogeneous Digital Twins
using the Web. So, following this need, the prototype exploits the proposed design
and proves the possibility of using different technologies for Digital Twins devel-
opment in the creation of ecosystems of heterogeneous Digital Twins. Moreover,
it is interesting to try different levels of generalization in the creation of WoDT-
compliant Digital Twins : the creation of a library (or an extension), and ad-hoc
approach (but easily generalizable). The first approach may be followed by Dig-
ital Twin developers or companies like Azure, Eclipse, and so on that want to
extend the WoDT support to all their instances, instead, the second one may be
the occasion for individual developers to integrate their creations into a WoDT
ecosystem.

The chosen technologies for Digital Twins are Azure Digital Twins and White
Label Digital Twins Framework (WLDT Framework). The first one was already
described in the Background chapter (2), and the second one is a framework pro-
posed at the academic level [42]. In addition, the Digital Twin Descriptor is
implemented using the Web of Things Thing Description enriched with an addi-
tional vocabulary that fills the gap with the Abstract Conceptual Model proposed

87

88 CHAPTER 6. PROTOTYPE

in the WoDT Digital Twin Specification.
The proposed prototype aims to test the feasibility of the design, so only basic

functionalities are needed. For this reason, the excluded features are:

• Digital Twins domain or augmented events

• Augmentation

• Usage of Digital Twins Builder: only single Digital Twins are managed.
This means that in the use of Azure Digital Twins, only one Digital Twin is
exposed as a WoDT-compliant Digital Twin.

• Memorization

6.1.1 WoDT Digital Twins Platform

The WoDT Digital Twins Platform prototype is designed following exactly the
Abstract Architecture described in the previous chapter.

6.1.2 WoDT Digital Twin: Azure Digital Twins

The WoDT Digital Twin based on the Azure Digital Twins service, shown in
Figure 6.1, uses the Azure stack to provide the Digital Twin technology.

As it is possible to note, the architecture is completely based and follows the
Abstract Architecture, leaving only the optional components outside. Hence, the
interesting part here is the pipeline design that acts as the Digital Twin technology.
The Azure-based pipeline is designed to be simple and cheap to deploy, so we
know that other solutions are possible – maybe better – but this one allowed us
to experiment with what we need simply and cheaply. The pipeline is composed
of the following services:

• Azure Digital Twins : the Azure Digital Twins service is, as described in the
Background, a PaaS (Platform as a Service) cloud service that allows the
creation of Digital Twins graphs based on models of entire environments. In
this case, only one of the Digital Twins in the graph is exposed as WoDT
Digital Twin.

The metamodel, except actions, followed by Azure Digital Twins is similar
to the Web of Digital Twins one and a direct mapping can be implemented.

So, this service was used to create and model the Digital Twin. Furthermore,
being all the Azure suite event-driven, the graph update events are sent along
the pipeline to be further processed and ready for the WoDT Shadowing
Adapter.

6.1. PROTOTYPE DESIGN 89

Figure 6.1: Prototype design of the WoDT Digital Twin based on Azure Digital
Twins

• Azure Event Grid : events from Azure Digital Twins are sent to an event
route configured with an Azure Event Grid endpoint, a fully managed Pub
Sub message distribution service. This service allows exposing events from
Azure Digital Twins, which as described in the Background supports a lim-
ited amount of endpoints, and sending them along the preferred pipeline or
service.

• Azure Function: Azure Digital Twins send only patch events, so only the
changes that happened. To ease the WoDT Shadowing Adapter ’s work, an
Azure Function is used to obtain the full updated snapshot of the Digital
Twin, augmented with the data needed, to be sent to the WoDT Shadowing
Adapter via the Azure SignalR service.

• Azure SignalR: the Azure SignalR service is used to expose the snapshot
update events. In particular, this is the service used by theWoDT Shadowing
Adapter to extend the shadowing process of the internal Digital Twin to
become a WoDT-compliant Digital Twin.

90 CHAPTER 6. PROTOTYPE

The arrows in Figure 6.1 show the main dependencies among components. Par-
ticularly important here are the two with Azure Services. The first one, as already
described, is between Azure SignalR and the WoDT Shadowing Adapter. It is
needed to extend the shadowing process and receive the Digital Twin snapshots,
in the Azure Digital Twins metamodel, to be adapted to the Web of Digital Twins
metamodel. The second one, between the DTD Manager and the Azure Digi-
tal Twins instance, is needed to automatically create the Digital Twin Descriptor.
Specifically, the DTD Manager component retrieves the Digital Twin model stored
on Azure Digital Twins and converts it to a WoDT-compliant Thing Description
that is further enriched with the remaining elements needed.

The remaining part of the architecture follows the Abstract Architecture.

6.1.3 WoDT Digital Twin: WLDT Framework

The second type of WoDT Digital Twin proposed in the prototype is based on the
White Label Digital Twins Framework (WLDT Framework).

Before focusing on the proposed architecture, to better understand the com-
ponents, it is necessary to make a brief overview of the White Label Digital Twins
Framework. The White Label Digital Twins [42] is a framework that supports
the design and development of Digital Twins. It intends to maximize modularity,
re-usability, and flexibility to mirror any type of Physical Asset. The offered Dig-
ital Twin metamodel is aligned with the Web of Digital Twins one, allowing the
modeling of Properties, Events, Relationships, and Actions. The main idea for a
Digital Twin implemented with the framework is shown in Figure 6.2.

Figure 6.2: Abstract architecture of a Digital Twin with the WLDT Framework
Source: https://github.com/wldt/wldt-core-java

A WLDT instance provides a Digital Twin as a software entity that can be run
in the cloud or on the edge. The Physical Interface is the component in charge
of the shadowing process, while the Digital Interface handles the communication
with the Application layer.

https://github.com/wldt/wldt-core-java

6.1. PROTOTYPE DESIGN 91

More specifically, in Figure 6.3, the main components that make up the archi-
tecture of the WLDT Framework and that allow the implementation of a Digital
Twin are presented.

Figure 6.3: Components of the WLDT Framework
Source: https://github.com/wldt/wldt-core-java

• WLDT Engine: it is the core of the Digital Twin, and it orchestrates the
internal modules of the architecture. The component is defined by a multi-
thread engine that allows the execution of multiple workers simultaneously.

• WLDT Event Bus : it is the internal Event Bus that supports the exchange
of data between the components.

• WLDT Workers : a worker is the basic executable entity of the WLDT
Engine. Each active component of the architecture is implemented as a
WLDT Worker.

• Digital Twin State: it is the component that manages the mirrored and the
augmented state of the Digital Twin. The Digital Twin State is maintained
in sync with the associated Physical Asset through the Shadowing Model
Function that implements the shadowing process, receiving data from the
specified Physical Adapters (for state updates) and Digital Adapters (for
actions) and following the mappings specified by the Digital Twin Developer
to concretize the Digital Twin model.

• Physical Adapter : the Physical Interface, that communicates with the Physi-
cal Asset, uses several Physical Adapters to support different communication

https://github.com/wldt/wldt-core-java

92 CHAPTER 6. PROTOTYPE

types and protocols. Each Physical Adapter, apart from supporting a specific
protocol, is dedicated to a specific subset of properties, relationships, events,
and actions exposed by the Physical Asset through the specific protocol.

• Digital Adapter : the Digital Adapters, within the Digital Interface, are used
to expose the Digital Twin state and functionalities to the Application layer.
A Digital Twin Developer can define multiple Digital Adapters to support
and offer different protocols.

The WLDT Framework already implements all the generic components, leaving
the Developer only the duty to define the Shadowing Model Function, to concretize
the Digital Twin model, and the necessary Physical and Digital Adapters to enable
communication respectively with the Physical Asset and with Consumers.

Returning to the prototype, the proposed architecture of the WoDT Digital
Twin prototype based on the WLDT Framework is shown in Figure 6.4.

Figure 6.4: Prototype design of the WoDT Digital Twin based on WLDT Frame-
work

As shown, the components of the WLDT Framework are exploited to position
the necessary elements of the WoDT Digital Twin Abstract Architecture. Consid-
ering that the WLDT Framework metamodel is equal to the WoDT metamodel,
the WoDT Shadowing Adapter is not needed and all the remaining components
of the Abstract Architecture are provided at the Digital Interface level. In par-
ticular, to enable the creation of WoDT-compliant Digital Twins a specific Digital
Adapter – the WoDT Digital Adapter – is proposed. The WoDT Digital Adapter
includes the components of the Abstract Architecture, so the WoDT Digital Twin

6.2. PROTOTYPE IMPLEMENTATION 93

Interface, the Platform Management Interface, the DTD Manager, and the DTKG
Engine as subcomponents. In this way, the proposed Digital Adapter can sit on
the WLDT Framework architecture transparently, enabling any Digital Twin im-
plemented with the framework to become a WoDT Digital Twin. Hence, the
proposed design deals only with the necessary elements, maintaining the develop-
ment of the Physical Adapter and the Shadowing Model Function a responsibility
of the Digital Twin Developer.

Moreover, the metamodel alignment allows having direct support for all the
metamodel elements, in particular actions and events, unlike the solution proposed
with Azure Digital Twins (where actions have been left out for the moment).

6.2 Prototype implementation

Following the design proposed in the previous section, the description of the most
important details of the prototype implementation is provided. For each software
artifact, the technologies and, when needed, the prominent aspects of the code are
described.

Regarding the prototype, for simplicity and to develop only what was needed
for the example use case, the WoDT Digital Twins and the WoDT Digital Twins
Platform follow the REST architectural style without the HATEOAS constraint,
remaining at a lower maturity model.

6.2.1 WoT-based DTD and WoDT Vocabulary

As stated before, the WoT Thing Description is used to implement the Digital
Twin Descriptor. The Thing Description does not have the whole semantics needed
to represent the concepts of the Abstract conceptual model of the Digital Twin
Descriptor so a vocabulary to fill the gap, called theWoDT vocabulary, is provided.
The WoDT vocabulary is written using the common Semantic Web technology
stack composed of OWL (Web Ontology Language), RDFS (RDF Schema), and
RDF (Resource Description Framework).

Firstly, it is necessary to describe the mapping between the Abstract conceptual
model and the Thing Description model and then, based on that, define theWoDT
vocabulary.

In Table 6.1, the implementation of the Digital Twin Descriptor via the WoT
Thing Description is described. Consider that the mapping is performed on the
versions of the recommendations available at the time of the design, so the one
referenced [35] [32]. New features that emerged after are not considered.

94 CHAPTER 6. PROTOTYPE

Table 6.1: Mapping of the Abstract conceptual model to
the WoT Thing Description

Element Description
Version Data property – version – in the WoDT vocab-

ulary.
WoDT Digital Twin
URI

Set as the ID of the Thing, using the id field.

Physical Asset Identi-
fier

Data property – physicalAssetId – in the
WoDT vocabulary.

WoDT Digital Twin
type

Set as the @type field at the Thing level. This
allows to specify the type of Digital Twin using
the domain ontology.

Shadowing latency Object property in the WoDT vocabulary –
shadowingLatency – with a Duration range
from the OWL-time ontology.

Deployment country Data property – deploymentCountry – in the
WoDT vocabulary.

Memento TimeGate Defined exploiting the Hypermedia Controls vo-
cabulary definitions of the Thing Description.
In particular, it is set as a Link with the
timegate relation type, following theWeb Link-
ing Specification and the Memento protocol.

WoDT Digital Twins
Platforms

Defined exploiting the Hypermedia Controls
vocabulary definitions of the Thing Descrip-
tion. In particular, it is set as a Link
with a custom relation type defined in the
WoDT vocabulary as an Object property –
registeredToPlatform –, following the Web
Linking Specification.

Observation affordance At the time of the design, the Thing Descrip-
tion does not provide a way to observe the whole
Thing. For this reason, the chosen strategy is
to enforce the creation of a property named
snapshot that contains an observation form.
The snapshot property has the observable

and readOnly fields set to true.
continues on next page

6.2. PROTOTYPE IMPLEMENTATION 95

Properties Set using the Property interaction affordance of
the Thing Description. Each property has the
observable and readOnly fields set to true.

Events Set using the Event interaction affordance of the
Thing Description.

Relationships At the time of the design, the Thing Descrip-
tion does not provide a way to observe or add
metadata to Links. For this reason, the cho-
sen strategy is to model relationships with the
Property interaction affordance of the Thing De-
scription. Each property, that corresponds to a
Digital Twin relationship, has the observable

and readOnly fields set to true.
Actions Set using the Action interaction affordance of

the Thing Description.

In the tables 6.2, 6.3, 6.4, and 6.5 are described the mappings for each element
of the metamodel, respectively for Properties, Events, Relationships and Actions.

Table 6.2: Mapping of the Abstract conceptual model
Property to the WoT Thing Description

Element Description
Property value type Set via the @type field at the Property level.
Domain predicate Custom field that uses the domainPredicate

Object property defined in the WoDT vocab-
ulary as a field name. The value of the field is
the URI of the predicate associated with that
property using the domain ontology.

Is Augmented Custom field that uses the
augmentedInteraction Data property de-
fined in the WoDT vocabulary as a field name.
The value of the field is true in case the prop-
erty is an augmented one, false otherwise.

continues on next page

96 CHAPTER 6. PROTOTYPE

Tolerance Custom field that uses the propertyTolerance
Data property defined in the WoDT vocabulary
as a field name. The value is the tolerance of
the property as previously defined in the WoDT
Digital Twin Specification.

Read affordance Set as a Form instance specified with the
readproperty op field.

Observation affordance Set as a Form instance specified with the
observeproperty op field.

Table 6.3: Mapping of the Abstract conceptual model
Event to the WoT Thing Description

Element Description
Event data type Set with the data field of the Thing Description,

using the WoT DataSchema.
Is Augmented Custom field that uses the

augmentedInteraction Data property de-
fined in the WoDT vocabulary as a field name.
The value of the field is true in case the event
is an augmented one, false otherwise.

Observation affordance Set as a Form instance specified with the
subscribeevent op field.

Table 6.4: Mapping of the Abstract conceptual model
Relationship to the WoT Thing Description

Element Description
Target type Set via the @type field at the Property (rela-

tionship) level. This allows to specify the target
type using the domain ontology.

Domain predicate Custom field that uses the domainPredicate

Object property defined in the WoDT vocab-
ulary as a field name. The value of the field is
the URI of the predicate associated with that
relationship using the domain ontology.

continues on next page

6.2. PROTOTYPE IMPLEMENTATION 97

Read affordance Set as a Form instance specified with the
readproperty op field.

Observation affordance Set as a Form instance specified with the
observeproperty op field.

Table 6.5: Mapping of the Abstract conceptual model
Action to the WoT Thing Description

Element Description
Action type Set via the @type field at the Action level. This

allows to specify the action type using the do-
main ontology.

Is Augmented Custom field that uses the
augmentedInteraction Data property de-
fined in the WoDT vocabulary as a field name.
The value of the field is true in case the action
is an augmented one, false otherwise.

Required input Set with the input field of the Thing Descrip-
tion, using the WoT DataSchema.

Action ID Set as the name of the action in the Thing De-
scription Action array.

Action invocation affor-
dance

Set as a Form instance specified with the
invokeaction op field.

The Data Schema and the Form specified in the Abstract conceptual model
are mapped respectively to the DataSchema and the Form concept in the Thing
Description model.

All the Data and Object properties identified above have been modeled in the
WoDT vocabulary. In addition, the WoDT vocabulary contains the remaining
properties defined in the Specifications, so the predicates needed for the Digital
Twin Knowledge Graph (availableActionId) and the additional relation types
to be used in the HTTP Link Headers.

In conclusion, it is possible to note that the WoT Thing Description, appropri-
ately supported by the WoDT vocabulary, can implement a Digital Twin Descrip-
tor offering at the same time a compatibility layer towards the Web of Things. A
WoDT Digital Twin described by a Digital Twin Descriptor implemented with a
Thing Description can also be used by a Consumer as a WoT Thing.

98 CHAPTER 6. PROTOTYPE

6.2.2 Azure Digital Twins based WoDT Digital Twin

The WoDT Digital Twin based on the Azure stack, in particular on Azure Digital
Twins, was implemented simulating an ad-hoc approach that allows a Digital Twin
Developer to expose a Digital Twin, defined in its Azure Digital Twins instance, as
a WoDT Digital Twin allowing its integration in WoDT ecosystems. Therefore, it
is related to a specific Digital Twin, particularly the Ambulance Digital Twin that
will be described in the example use case. However, the proposed implementation
is easily generalizable to become a library and for this reason, it is described
without any reference to the use case.

Regarding the Azure services, one main issue with Azure Digital Twins is the
impossibility of modeling relationships with Digital Twins that live outside the
Azure Digital Twins instance itself. The targets in Azure Digital Twins rela-
tionships must be valid IDs of Digital Twins that are managed under the same
instance. The strategy followed in the prototype was to create a new Digital Twin
inside the instance for each target WoDT Digital Twin with which the original
one has a relationship in the ecosystem. Hence, the Digital Twin created is an
internal representation of the external WoDT Digital Twin that can be linked to
the original one. Moreover, the URI of the interested WoDT Digital Twin is set
as a property due to the impossibility of setting a URI as the ID of a Digital Twin
inside an Azure Digital Twins instance.

As described in the prototype design, the created Azure Digital Twins instance
sends all the events to the specified Azure Event Grid topic that redirects them to
the Azure Function described before. The Azure Function was developed in C#
and has the objective of adapting the patch events (specified in the Cloud Events
specification, Listing 6.1), sent by Azure Digital Twins, to complete and consistent
Digital Twin snapshots event to be sent to the WoDT Shadowing Adapter.

Listing 6.1: Example of a patch event from Azure Digital Twins�
1 {

2 "specversion": "1.0",

3 "id": "39d4abb9 -e3ee -4ed5 -ad17 -2243 a9784946",

4 "type": "Microsoft.DigitalTwins.Twin.Update",

5 "source": ...,

6 "data": {

7 "modelId": "dtmi:io:github:webbasedwodt:Ambulance ;1",

8 "patch": [

9 {

10 "value": 33,

11 "path": "/ fuelLevel",

12 "op": "replace"

13 }

14]

15 },

16 "subject": "ambulance",

17 "time": "2024 -02 -14 T15 :12:14.5044983+00:00" ,

18 "datacontenttype": "application/json",

19 "traceparent": ...

6.2. PROTOTYPE IMPLEMENTATION 99

20 }
� �
The Azure Function maps the patch event to a complete snapshot of the in-

terested Digital Twin, retrieving data from the Azure Digital Twin instance and
mapping the data to an internal JSON representation that the WoDT Shadowing
Adapter can easily parse. Here, no semantics is involved because data is only
exchanged between internal components, so not publicly exposed. An example,
derived from the event in Listing 6.1, is shown in Listing 6.2.

Listing 6.2: Example of a mapped event by the Azure Function�
1 {

2 "dtId": "ambulance",

3 "eventType": "UPDATE",

4 "eventDateTime": "2024 -02 -14 T15 :12:14.5044983+00:00" ,

5 "properties": {

6 "fuelLevel": 33,

7 "busy": true

8 },

9 "relationships": [

10 {

11 "$sourceId": "ambulance",

12 "$relationshipName": "rel_is_approaching",

13 "$targetId": "http :// localhost :3001/"

14 }

15]

16 }
� �
The event, shown in Listing 6.2, is sent to the WoDT Shadowing Adapter via

the Azure SignalR service.
The remaining components of the architecture were developed as a Kotlin ser-

vice on top of the Azure pipeline, as described in the prototype design. The service
was created following the principles of the Clean Architecture [37] which allowed the
correct separation of domain modeling, use cases, application logic, and everything
related to technologies and infrastructure. The use of this type of architecture has
made it possible to obtain excellent testability, extensibility, and maintainability.
Moreover, to better handle the flow of data between the various components and
to manage asynchronous computations, Kotlin Coroutines are used allowing an
event-driven communication orchestrated by an engine, called WoDTEngine. In the
following, an overview of the implementation of each component is provided.

Domain ontology mapping The DTKG and the DTD contain domain-related
data, so it is essential to be able to convert data from the Azure DTDL model
and from update events to the domain ontology that the Digital Twin is supposed
to offer to Consumers. For this reason, a concept of ontology (a Kotlin interface),
independent of any specific technology, was developed inside the service allowing
Digital Twin Developers to easily specify the mappings via a new class. To allow
that, an internal model of a Knowledge Graph was created to support the process.

100 CHAPTER 6. PROTOTYPE

WoDT Shadowing Adapter This component connects to the Azure SignalR
service subscribing to the update events from the Azure Digital Twins instance –
enhanced by the Azure Function. Internally, it uses the Microsoft SignalR client,
specifically its asynchronous Consumer. The received events are converted to a
Knowledge Graph, that is modeled using the previously defined ontology mapper,
and exposed to the other components via a SharedFlow. The read-only and public
Flow allows the component to expose the processed updates as events that can be
easily consumed.

DTD Manager This component automatically connects to the Azure Digital
Twins instance using the Azure Digital Twins SDK, retrieves the DTDL model
of the Digital Twin, and starting from it obtains the Digital Twin Descriptor
implemented via the WoT Thing Description to be provided to Consumers. To
support the creation of the Thing Description, the Sane City WoT Servient library
was used.

DTKG Engine It manages the current Digital Twin Knowledge Graph using
the Apache Jena library and exposes the flow of DTKGs through a Kotlin Flow to
be easily consumed. The Digital Twin Knowledge Graph is stored only in memory
for simplicity.

WoDT Digital Twin Interface It provides the Interaction patterns of the
WoDT Digital Twin, following the WoDT Digital Twin Specification. The Ktor
framework was used to implement the HTTPWeb Server and the REST APIs. The
observation affordance was provided via the WebSocket protocol and implemented
with Ktor.

Platform Management Interface It manages the registrations to the WoDT
Digital Twins Platforms. It offers the endpoint used by the Platforms to signal
its registration as an HTTP REST API using the Ktor server framework, and it
manages the communications with the WoDT Digital Twins Platforms using the
HTTP client offered by the Ktor client framework.

WoDT Engine An internal engine was developed to orchestrate the various
components of the architecture. Thanks to Kotlin Coroutines its development was
very straightforward and allowed to easily set up the launcher of the service that
has the only responsibility to inject the dependencies and start the engine.

6.2. PROTOTYPE IMPLEMENTATION 101

6.2.3 White Label Digital Twins based WoDT Adapter

The proposed design of the WoDT Digital Twin based on the WLDT Framework
eases the development of a library (wldt-wodt-adapter) that sitting on top of exist-
ing software enables the creation of WoDT-compliant Digital Twins. The library
was developed as an extension of the WLDT Framework providing a way to define
the domain ontology and, based on that, enabling the creation of WoDT Digi-
tal Twins through the usage of a custom Digital Adapter – the WoDT Digital

Adapter. Moreover, the library is published on the GitHub Packages Registry to
be easily imported by Digital Twin Developers.

Being based on the WLDT Framework, it was developed in Java. In the
following, an overview of the implementation of each component is provided.

Domain ontology mapping The domain ontology mapping follows the same
strategy chosen for the Azure-based WoDT Digital Twin. The library offers Digital
Twin Developers an interface – DTOntology – to implement to be able to map
internal data from the defined WLDT model to the domain ontology that the
WoDT Digital Twin has to offer to Consumers. It is completely independent of
any specific technology, so it is written in plain Java.

DTKG Engine It manages the current Digital Twin Knowledge Graph using
the Apache Jena library. It provides all the methods to update the current DTKG
based on the callback methods called on the WoDT Digital Adapter and to ob-
serve the evolution of the DTKG (based on the Observer pattern). The Digital
Twin Knowledge Graph is stored only in memory for simplicity.

DTD Manager This component automatically creates the Digital Twin De-
scriptor, implemented with the WoT Thing Description, based on the callback
methods called on the WoDT Digital Adapter. To support the creation of the
Thing Description, the Sane City WoT Servient library was used.

WoDT Digital Twin Interface It provides the Interaction patterns of the
WoDT Digital Twin, following the WoDT Digital Twin Specification. The HTTP
Web Server and the WebSocket protocol were implemented using the Javalin
framework.

Platform Management Interface It simply manages the registrations to the
WoDT Digital Twins Platforms. The Digital Twin, when starts, can automatically
register to the interested WoDT Digital Twins Platforms. The communications
with the Platforms are handled by the Java HTTP client.

102 CHAPTER 6. PROTOTYPE

The resulting WoDT Digital Adapter exploits the callback methods of the Digital
Adapter library class to orchestrate the components, offering the required features
for a WoDT Digital Twin. A Digital Twin Developer that wants to extend its
WLDT Digital Twin to be WoDT-compliant needs only to add the wldt-wodt-
adapter library to its dependencies and use the WoDT Digital Adapter passing
a valid implementation of the domain ontology mapper. In Listing 6.3 a simple
example of how a Digital Twin Developer can set up a WoDT-compliant Digital
Twin using the WLDT Framework and the wldt-wodt-adapter library.

Listing 6.3: Usage of the WoDT Digital Adapter to create WoDT-compliant Digital
Twins�

1 // Create the WLDT Engine

2 final WldtEngine digitalTwinEngine = new WldtEngine(

3 new MirrorShadowingFunction (),

4 "example -dt"

5);

6 // Add the Physical Adapter

7 digitalTwinEngine.addPhysicalAdapter(new ExamplePhysicalAdapter ());

8 // Add the WoDT Digital Adapter -- here the contribution

9 digitalTwinEngine.addDigitalAdapter(new WoDTDigitalAdapter(

10 "wodt -dt -adapter",

11 new WoDTDigitalAdapterConfiguration(

12 ...

13 new ExampleOntology (),

14 ...

15)

16));

17 // Start the WLDT Engine

18 digitalTwinEngine.startLifeCycle ();
� �
6.2.4 WoDT Digital Twins Platform

The WoDT Digital Twins Platform was developed from scratch, without any base
library or platform, in Kotlin. The Platform was created following the principles of
the Clean Architecture [37] which allowed, as stated before, the correct separation
of domain modeling, use cases, application logic, and everything related to tech-
nologies and infrastructure, in addition to the obtainment of excellent testability,
extensibility, and maintainability. The asynchronous computations and the event-
driven core of the Platform are managed through the use of Kotlin Coroutines.

For this thesis, the developed Platform supports the Digital Twin Descriptor
only implemented with the WoT Thing Description, and for the observation of
WoDT Digital Twins only supports the WebSocket protocol. The interactions
with the WoDT Digital Twins regarding registration and lifecycle activities are
HTTP-based.

In the following, an overview of the implementation of each component is pro-
vided.

6.2. PROTOTYPE IMPLEMENTATION 103

Ecosystem Management Interface This component was developed in two
parts. The first part is the controller of the HTTP REST APIs used for manag-
ing the WoDT Digital Twins registration and lifecycle. It is implemented using
the Ktor server framework. The second part includes the logic for checking the
validity and support of the provided Digital Twin Descriptors. It also signals the
registration of added WoDT Digital Twins (using the Ktor client framework) and
exposes the flow of WoDT Digital Twins that register or delete through a Kotlin
Flow for easy consumption.

WoDT Digital Twins Observer As soon as a new WoDT Digital Twin is
registered to the Platform, this component starts observing it using the WebSocket
protocol (with the Ktor client framework). The received Digital Twin Knowledge
Graphs are exposed to the interested components through a Kotlin Flow to be
easily consumed. Moreover, when a WoDT Digital Twin is deleted, it closes the
associated socket accordingly.

Ecosystem Registry This component manages the registry of all the regis-
tered WoDT Digital Twins and the URI/URL mappings, as described by the
WoDT Digital Twins Platform Specification. It is a plain Kotlin service without
infrastructure dependencies. It is used by several components of the Platform for
different purposes so, to avoid wrong usage of the component, different interfaces
for the different clients were created, following the ISP (Interface Segregation Prin-
ciple). It is not the only component where this principle is applied, but it is one
of the most prominent ones.

WoDT Digital Twins Platform Knowledge Graph Engine It implements
all the services on the WoDT Digital Twins Platform Knowledge Graph that other
components of the Platform need, compatibly with the WoDT Digital Twins Plat-
form Specification. In this implementation both the Digital Twin Knowledge
Graphs and the Digital Twin Descriptors are stored (in memory), experiment-
ing with the possibility of more powerful queries, as described before. The flow of
the updated version of the Platform Knowledge Graph is exposed through a Kotlin
Flow to be easily consumed. The Knowledge Graph is managed using the Apache
Jena library. This library is particularly useful for managing the query resolution
task. In particular, this component performs queries on the Platform Knowledge
Graph using an OWL Reasoner for the inference and following the SPARQL Pro-
tocol thanks to the support of Apache Jena. Specifically, it handles all the query
types such as SELECT, ASK, CONSTRUCT, and so on, and all the response con-
tent types such as CSV (Comma-separated values), TSV (Tab-separated values),
JSON, and so on. Even in this component is applied the ISP principle, separating

104 CHAPTER 6. PROTOTYPE

the writing and the reading responsibilities.

WoDT Digital Twins Platform Interface It provides the Interaction pat-
terns of the WoDT Digital Twins Platform, following the WoDT Digital Twins
Platform Specification. The HTTP Web Server and the WebSocket protocol (the
only protocol supported for observation) were implemented using the Ktor frame-
work.

WoDT Platform Engine The various components of the Platform and the
events they generate are orchestrated by an internal engine, called WoDT Platform

Engine. Its implementation, based on Kotlin Coroutines, is shown in Listing 6.4.

Listing 6.4: Implementation of the WoDT Platform Engine�
1 suspend fun start() = coroutineScope {

2 launch {

3 ecosystemManagementInterface.ecosystemEvents.collect {

4 if (it is NewDigitalTwinRegistered) {

5 launch {

6 woDTDigitalTwinsObserver.observeDigitalTwin(it.dtd)

7 }

8 platformKnowledgeGraphEngine.mergeDigitalTwinDescriptor(it.dtd)

9 } else if (it is DigitalTwinDeleted) {

10 woDTDigitalTwinsObserver.stopObservationOfDigitalTwin(it.dtURI)

11 platformKnowledgeGraphEngine.deleteDigitalTwin(it.dtURI)

12 }

13 }

14 }

15 launch {

16 woDTDigitalTwinsObserver.dtkgRawEvents.collect {

17 platformKnowledgeGraphEngine.mergeDigitalTwinKnowledgeGraphUpdate(

18 it.first ,

19 it.second

20)

21 }

22 }

23 platformWebServer.start()

24 }
� �
As it is possible to note, the HTTP client and server, implemented using the Ktor

framework, are used by different components. To better organize the code, free the
components from infrastructure dependencies, and to follow the Clean Architecture
principles, the classes WoDTPlatformHttpClient and WoDTPlatformHttpServer

have been created to contain all the related logic and have been properly injected
to the interested components. In this way, the actual components of the Platform
remain at a higher level of abstraction and are independent of the specific protocols
or implementation of the infrastructural concepts increasing their testability and
maintainability.

6.2. PROTOTYPE IMPLEMENTATION 105

6.2.5 DevOps technologies and practices

During the development of the prototype, modern DevOps technologies and prac-
tices were used. Their usage promotes small, incremental changes that are inte-
grated continuously, reducing the probability of failure. The several DevOps tools
available automatize as much as possible, leaving the use of human resources only
for the work that matters, not for repetitive tasks, improving the quality and the
organization of the code. The automation is possible because the DevOps culture
promotes highly tested code to be able to perform automatic operations, such as
automatic dependency updates, safely.

In the following, the overview of the used DevOps practices and technologies
is presented.

Workflow Organization

The prototype software artifacts, whose development is managed using Git, are
organized in a GitHub Organization, leveraging the GitHub hosting services.

The repositories that contain Kotlin or Java projects have been initialized
using respectively Kotlin and Java GitHub template repositories, to speed up the
set-up of all the used tools.

For an efficient usage of the Git branches, the Git-Flow branching model was
used. In particular, the exploited types of branches are:

• main: main branch that contains the code associated with releases.

• develop: development branch, contains the pre-production code integrating
the developed features.

• feature: support branch, used for the development of a specific feature, which
once completed will be integrated into the develop branch.

Moreover, to simplify the usage of the automatic versioning tools and to stan-
dardize the commit messages, the Conventional Commits specification1 was used.
The main types of commit used are: build, chore, ci, docs, feat, fix, refactor, style,
and test.

Compliance with the specification and the code quality standards are ensured
before each commit using ad-hoc git hooks.

Build Automation

Gradle was used to automate the source code compilation operations, dependency
management, and the configuration of the Kotlin and Java-based development

1https://www.conventionalcommits.org/en/v1.0.0/

https://www.conventionalcommits.org/en/v1.0.0/

106 CHAPTER 6. PROTOTYPE

environment. Gradle is a powerful and flexible tool for the build automation and
management of dependencies with a declarative syntax.

The DRY principle applies also to dependency management. For this reason,
to manage dependency in a more organized way, enabling automatic dependency
updates, the TOML Gradle Version Catalog was used.

Testing

To verify correct functioning, thanks to the Clean Architecture principles adopted,
it was possible to test each layer independently through the use of Unit-Tests. The
following frameworks were used for testing:

• Kotest2: it is a Kotlin testing framework. In particular, all the tests were
written using the StringSpec style, providing a declarative syntax.

• Junit5 3: it is a Java testing framework.

In addition, to test the respect of the Clean Architecture principles, the ArchU-
nit4 library was used to make tests over the system’s architecture.

Quality Assurance

A good practice of Build Automation and DevOps in general is the usage of code
quality assurance tools. The projects developed inKotlin and Java were configured
with tools for the Static Code Analysis, and Style Checking that automatically
perform code quality checks during the build process.

Continuous Integration

One of the most important DevOps practices is the Continuous Integration. The
Continuous Integration practice has the objective of continuously integrating the
code with the main development line to promptly identify integration problems and
improve the quality of the software, allowing a faster and more reliable development
process.

For each repository, a specific Continuous Integration workflow was designed
and developed using GitHub Actions5. The designed workflows are used to perform
the following tasks: build, code quality assurance, tests, release and delivery, and
documentation publication.

2https://kotest.io/
3https://junit.org/junit5/
4https://www.archunit.org/
5https://github.com/features/actions

https://kotest.io/
https://junit.org/junit5/
https://www.archunit.org/
https://github.com/features/actions

6.3. EXAMPLE USE CASE 107

Finally, to automate the software dependency updates, the Renovate6 and
Mergify7 bots have been used.

Continuous Delivery

The designed workflows for the Continuous Integration also support the Continu-
ous Delivery of the software artifacts.

In particular, for the Azure Digital Twins based WoDT Digital Twin and for
the WoDT Digital Twins Platform the respective Docker images are built, from
their Dockerfile, and published on theGitHub Container Registry. The published
images’ versions are automatically aligned with the releases on GitHub Release.

In addition, also the wldt-wodt-adapter library (for the WLDT-based WoDT
Digital Twins) is of interest for Continuous Delivery. The library is automatically
versioned and released on GitHub Release and delivered on GitHub Packages to
be easily used just by adding it as a dependency.

Versioning

The process that assigns a unique identifier to a particular software state, allowing
one to distinguish between the different states of a software product and to be able
to refer to it, is called Software Versioning.

The prototype (each software) is versioned according to the Semantic Version-
ing specification. According to it, the software version is composed of three num-
bers: Major, Minor, and Patch. Each change to the source code causes one of these
numbers to increase based on the importance of the changes made. In particular,
in the prototype, following the usage of the Conventional Commits specification
the version is automatically computed by analyzing the commits semantics. The
automatically computed version is used in the Continuous Integration and Delivery
workflows to automatically publish releases and software artifacts.

6.3 Example use case

In this section, the example use case used to demonstrate the effectiveness of the
proposed design and the realized prototype is described. Firstly, the scenario that
was implemented as a use case is defined and thereafter, the obtained results are
presented.

6https://www.mend.io/renovate/
7https://mergify.com/

https://www.mend.io/renovate/
https://mergify.com/

108 CHAPTER 6. PROTOTYPE

6.3.1 Use case description

A cross-domain and cross-organizational perspective must be taken to prove the
vision’s main characteristics. Hence, the objective is the creation of a scenario of
interest for different organizations involved in different domains, showing multi-
organization and multi-domain support. In the proposed use case, the Healthcare
and the Smart City domains live together and show an important way of using
information from a shared ecosystem of Digital Twins.

The scenario takes inspiration from the Major Trauma Management defined
in [44] taking into account only the effects of the first stage, the Emergency Call
Management. In particular, the focus is on the ambulance mission to reach the
patient and the management of the traffic lights on the ambulance route. Hence,
two organizations are involved: the Healthcare organization, which handles the
ambulance emergency missions, and the Smart City organization, which manages
the city. Each one has its own WoDT Digital Twins Platform, where they manage
their WoDT Digital Twins or add others from the ecosystem, and an application
layer, where the business logic and automated agents get executed. In particular,
the Smart City organization adds all the ambulance’s Digital Twins of the city,
including them as part of its WoDT Digital Twins Platform Knowledge Graph.
Hence, the Smart City application layer can observe the Web of Digital Twins
ecosystem and understand that an ambulance (whose WoDT Digital Twin is added
to the Smart City organization) needs to reach a patient or the hospital. Therefore,
it can run an automated agent that, reasoning on the current state of the world
(accessed through the contextualized replica offered by the WoDT Digital Twins
and queried through the WoDT Digital Twins Platform of its organization), can
manage the traffic lights to create a “green route” for the ambulances, from the
start to the endpoint. In addition to that, the Smart City application layer could
query the ecosystem to understand which vehicles are interested and warn them
about the next approaching ambulance. This can be useful for both autonomous
and non-autonomous cars. The former can automatically decide the best action to
take and so react promptly to the warning, and the latter can warn the driver about
the event. In conclusion, this simple scenario can help to reduce road accidents,
reduce intervention time, and increase road safety.

This scenario, shown in Figure 6.5, allows us to reason over the majority of the
requirements analyzed during this thesis.

In Figure 6.5 it is possible to note the establishment of the typical WoDT Lay-
ered View (described in the section 2.2) composed of three layers: the Physical
Asset layer, the Digital Twin layer, and the Application layer. As already stated,
the Application layer accesses the real world through the Digital Twin layer. The
Digital Twin layer, in this scenario, even if it is composed of the two organizations,
contains WoDT Digital Twins that are completely independent of the organiza-

6.3. EXAMPLE USE CASE 109

WoDT Digital Twins Platform
Web of Digital Twins of the Smart City Org

WoDT Digital Twins Platform
Web of Digital Twins of the Healthcare Org

Smart City systemHealthcare system

DTD

DTKG

Ambulance DT
DTD

DTKG

Intersection DT

DTD

DTKG

Traffic light A DT

DTD

DTKG

Traffic light B DT

DTD

DTKG

Traffic light C DT

smc:isApproaching

smc:containsTrafficLight

smc:containsTrafficLight

...

Consumers

DTD

DTKG

Mission A DT

hc:isInMission

Application layer
(Applications and Agents)

Digital Twin layer
(WoDT ecosystem)

Physical Asset layer
(Real world)

Figure 6.5: Scheme of the proposed use case scenario

tions to which they are registered. For example, the Ambulance WoDT Digital
Twin is registered to both Platforms. This highlights the respect of the Digital
Twin as a Service constraint.

Furthermore, it is necessary to prove the possibility of creating ecosystems of
heterogeneous Digital Twins where existent technologies are used and a compati-
bility layer towards existent popular paradigms is provided. For this reason, the
prototype, as described previously, is based on two different technologies for the
development of WoDT Digital Twins, Azure Digital Twins and the White La-
bel Digital Twins framework and a compatibility layer towards Web of Things is
offered (implementing the Digital Twin Descriptors with the WoT Thing Descrip-
tion).

The Ambulance Digital Twin is based on the ad-hoc Azure Digital Twins based

110 CHAPTER 6. PROTOTYPE

prototype, as described before. Being, an Azure-based Digital Twin, its model is
described by a DTDL file. The model is composed of two Properties and two
Relationships. The Properties are:

• busy : it states if the ambulance is busy or not.

• fuel level : it indicates the percentage of fuel available.

The Relationships are:

• part of a mission: it connects the Ambulance Digital Twin to the Mission
Digital Twin (not modeled in this scenario) in which the ambulance is in-
volved.

• is approaching : it mirrors the fact that the ambulance is approaching an
intersection.

Its model is shown in Listing 6.5.

Listing 6.5: DTDL model of the Ambulance Digital Twin�
1 {

2 "@id": "dtmi:io:github:webbasedwodt:Ambulance ;1",

3 "@type": "Interface",

4 "@context": "dtmi:dtdl:context ;2",

5 "displayName": "Ambulance",

6 "contents": [

7 {

8 "@type": "Property",

9 "name": "busy",

10 "schema": "boolean"

11 },

12 {

13 "@type": "Property",

14 "name": "fuelLevel",

15 "schema": "double"

16 },

17 {

18 "@type": "Relationship",

19 "@id": "dtmi:io:github:webbasedwodt:Ambulance:rel_is_part_of_mission ;1",

20 "name": "rel_is_part_of_mission",

21 "displayName": "The Ambulance is part of the mission",

22 "target": "dtmi:io:github:webwodt:ExternalDT ;1"

23 },

24 {

25 "@type": "Relationship",

26 "@id": "dtmi:io:github:webbasedwodt:Ambulance:rel_is_approaching ;1",

27 "name": "rel_is_approaching",

28 "displayName": "The Ambulance is approaching the intersection",

29 "target": "dtmi:io:github:webwodt:ExternalDT ;1"

30 }

31]

32 }
� �

6.3. EXAMPLE USE CASE 111

The Intersection and the Traffic lights Digital Twins are based on the WLDT
Framework and made WoDT-compliant with the developed library (wldt-wodt-
adapter). In both the Digital Twin types, the Physical Adapter is mocked, and the
Shadowing Model Function exactly mirrors the data without modifications. The
Intersection’s Digital Twin model is composed of only one relationship, contains
traffic light, that mirrors the relationship between the Intersection and the Traffic
lights of which is composed. Instead, the Traffic lights’ Digital Twin models are
composed of one Property and one Action. The Property, is on, is a simplified
representation of the Traffic light state by considering only the on and off state,
which can be switched by the switch Action. The Traffic lights A and B are part of
the previously described Intersection, contrary to C. The Traffic light C is added
to verify the correctness of the queries performed subsequently, introducing data
that is not useful.

Each organization creates its personalized view of reality, to observe and con-
textualize, also in terms of which WoDT Digital Twin to include in its WoDT
Digital Twins Platform Knowledge Graph. The Intersection, the Traffic light A,
the Traffic light B, and the Traffic light C WoDT Digital Twins register themselves
to the WoDT Digital Twins Platform of the Smart City organization, while the
Ambulance Digital Twin, apart from registering itself to the WoDT Digital Twins
Platform of the Healthcare organization, is added by the Platform administrator
to the WoDT Digital Twins Platform of the Smart City organization, to be able
to observe it.

According to the prototype implementations, a model mapping to the domain
ontology is specified for all the types of WoDT Digital Twins. In addition, consid-
ering that the Ambulance WoDT Digital Twin, the WoDT Digital Twins Platform,
and each WoDT Digital Twin created with the wldt-wodt-adapter library have a
Continuous Delivery pipeline that automatically builds and releases the associ-
ated Docker image, the deployment of the use case has been eased using Docker
compose.

6.3.2 Results

After the WoDT Digital Twins have all been registered to the WoDT Digital Twins
Platforms as described before, the Smart City application layer starts observing
the WoDT Digital Twins Platform Knowledge Graph of its organization using the
dedicated Platform’sWebSocket endpoint and handles every ambulance that wants
to approach any intersection. As soon as an ambulance approaches an intersection,
it will be mirrored at the Digital Twin layer by creating a relationship between the
Ambulance WoDT Digital Twin and the Intersection WoDT Digital Twin. The
Smart City application layer, observing the WoDT ecosystem, can understand the
new current state of the world and it:

112 CHAPTER 6. PROTOTYPE

• performs a SPARQL Query over its WoDT Digital Twins Platform Knowl-
edge Graph to understand which traffic lights are interested and their avail-
able actions. For simplicity, in the use case, the query is performed only
on the domain data, but with the prototypical implementation provided, it
could be possible to obtain directly also the DTD’s data to invoke the actions
without executing a separate request.

• obtains the Digital Twin Descriptors of the involved traffic lights to under-
stand how to invoke actions, using the returned metadata.

• performs the actions on the involved traffic lights, creating a “green route”
for the interested ambulance.

Firstly, the Smart City application layer performs the SPARQL Query shown
in Listing 6.6.

Listing 6.6: SPARQL Query to obtain the traffic lights of the interested intersection�
1 PREFIX smc: <https :// smartcityontology.com/ontology#>

2 PREFIX wodt: <https :// purl.org/wodt/>

3

4 SELECT ?trafficLight ?availableAction

5 WHERE {

6 <http :// localhost :4000/ wodt/http :// localhost :3000/ > smc:isApproaching

7 ?intersection .

8 ?intersection smc:containsTrafficLight ?trafficLight .

9 ?trafficLight wodt:availableActionId ?availableAction .

10 }
� �
The SPARQL Query contains only domain-related elements, allowing also Con-

sumers who are unaware of the Digital Twin Descriptor semantics to perform
queries over the WoDT ecosystem. In particular, this query can navigate the
graph and return the traffic lights of the interested intersection. The obtained
result, considering text/csv as accepted mime-type, is shown in Listing 6.7

Listing 6.7: SPARQL Query result of the Listing 6.6�
1 trafficLight ,availableAction

2 http :// localhost :4000/ wodt/http :// localhost :3003/ , switch

3 http :// localhost :4000/ wodt/http :// localhost :3002/ , switch
� �
Having the local URLs of the interested Traffic light WoDT Digital Twins, the

Smart City application layer can, apart from obtaining the DTD data directly from
the Platform as said before, extract the original WoDT Digital Twin URIs and
obtain the Digital Twin Descriptors. For example, the Digital Twin Descriptor of
the Traffic light A is shown in Listing 6.8 (is-on property affordances are hidden
to favor readability).

The Smart City application layer analyzes and navigates the Digital Twin De-
scriptors, implemented with the WoT Thing Description supported by the WoDT

6.3. EXAMPLE USE CASE 113

Listing 6.8: Digital Twin Descriptor of the Traffic light A�
1 {

2 "id": "http :// localhost :3002/" ,

3 "properties": {

4 "snapshot": {

5 "forms": [

6 {

7 "href": "ws:// localhost :3002/ dtkg",

8 "op": [

9 "observeproperty"

10],

11 "subprotocol": "websocket"

12 }

13],

14 "type": "string",

15 "observable": true ,

16 "readOnly": true

17 },

18 "is -on": {

19 "observable": true ,

20 "readOnly": true ,

21 "@type": "https :// www.w3.org /2001/ XMLSchema#boolean",

22 "https :// purl.org/wodt/domainPredicate": "https :// lampontology.com/

ontology#isOn",

23 "https :// purl.org/wodt/augmentedInteraction": false

24 }

25 },

26 "actions": {

27 "switch": {

28 "@type": "https :// lampontology.com/ontology#SwitchCommand",

29 "https :// purl.org/wodt/augmentedInteraction": false ,

30 "forms": [

31 {

32 "href": "http :// localhost :3002/ action/switch",

33 "op": [

34 "invokeaction"

35]

36 }

37]

38 }

39 },

40 "@type": "https :// smartcityontology.com/ontology#TrafficLight",

41 "@context": "https ://www.w3.org /2019/ wot/td/v1",

42 "https :// purl.org/wodt/version": "1.0.0" ,

43 "links": [

44 {

45 "href": "http :// localhost :4000/" ,

46 "rel": "https :// purl.org/wodt/registeredToPlatform"

47 }

48],

49 "https :// purl.org/wodt/physicalAssetId": "trafficLightA"

50 }
� �

114 CHAPTER 6. PROTOTYPE

vocabulary, searching for action of type SwitchCommand and checking, using the
SPARQL Query result (Listing 6.7), if the action can be executed in the current
state of the Digital Twin. Once, it finds the required actions, it gets all the meta-
data to request their invocation. Finally, it applies its logic to understand which
traffic lights need to be turned on or off depending on the ambulance route and
invoke the respective actions.

This simple use case demonstrates that Consumers can reason and act over
reality by accessing the Web of Digital Twins without caring about technologies
and the actual interaction with the Physical Assets. Each WoDT Digital Twin can
be used by organizations to build their view over reality and solve powerful queries
for the application layer. As stated, this use case only proves the main features
of the design, mainly the possibility of creating an ecosystem of heterogeneous
Digital Twins. All the other designed and implemented features have been tested
successfully separately (for example, the Multi-model directory service).

Furthermore, it is interesting to analyze the state of the WoDT Digital Twins
Platform Knowledge Graph of the Smart City organization when the ambulance
approaches the intersection (so when the SPARQL Query in the Listing 6.6 is exe-
cuted). A partial view, where only the data about the Ambulance, the Intersection,
and the Traffic light A WoDT Digital Twins is reported, is shown in Listing 6.9
and in Figure 6.6.

From the Listing 6.9, it is possible to analyze the personalized and contextual-
ized view over reality created by the Smart City organization, where relationships
between WoDT Digital Twins mirrors the dynamicity of the real world. In addi-
tion:

• DTKGs and DTDs data are mixed, enabling the possibility of powerful
queries by Consumers.

• each WoDT Digital Twin URI has been mapped to its local URL.

• it is a Knowledge Graph that can be easily navigated and queried.

Finally, even if it is possible to appreciate the Digital Twin Knowledge Graphs
directly in the Listing 6.9, the DTKGs of the Ambulance and of Traffic light A
WoDT Digital Twins are shown respectively in Listing 6.10 and Listing 6.11.

Each WoDT Digital Twin exposes the same uniform interface, and so Con-
sumers see them as Web Resources that they can use and navigate compatibly
with the Linked Data principles.

6.3. EXAMPLE USE CASE 115

Listing 6.9: Partial WoDT Digital Twins Platform Knowledge Graph of the Smart
City organization�

1 @prefix hc: <https :// healthcareontology.com/ontology#> .

2 @prefix smc: <https :// smartcityontology.com/ontology#> .

3 @prefix lp: <https :// lampontology.com/ontology#> .

4 @prefix td: <https :// www.w3.org /2019/ wot/td#> .

5 @prefix jsonschema: <https :// www.w3.org /2019/ wot/json -schema#> .

6 @prefix hctl: <https ://www.w3.org /2019/ wot/hypermedia#> .

7 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

8 @prefix wodt: <https :// purl.org/wodt/> .

9

10 <http :// localhost :4000/ wodt/http :// localhost :3000/ >

11 a hc:Ambulance;

12 hc:hasFuelLevel "87.0"^^ xsd:double;

13 hc:isBusy true;

14 wodt:physicalAssetId "AM3030T ";

15 wodt:version "1.0.0";

16 smc:isApproaching <http :// localhost :4000/ wodt/http :// localhost :3001/ >;

17 td:hasPropertyAffordance [

18 a smc:Intersection;

19 wodt:domainPredicate smc:isApproaching;

20 jsonschema:readOnly true;

21 td:isObservable true;

22 td:name "rel_is_approaching"

23];

24 ...

25 td:hasPropertyAffordance [a

26 jsonschema:StringSchema;

27 jsonschema:readOnly true;

28 td:hasForm [

29 hctl:forSubProtocol "websocket ";

30 hctl:hasOperationType td:observeProperty;

31 hctl:hasTarget "ws:// localhost :3000/ dtkg "^^xsd:anyURI

32];

33 td:isObservable true;

34 td:name "snapshot"

35];

36 ...

37

38 <http :// localhost :4000/ wodt/http :// localhost :3001/ >

39 a smc:Intersection;

40 wodt:physicalAssetId "intersectionPA ";

41 wodt:version "1.0.0";

42 smc:containsTrafficLight <http :// localhost :4000/ wodt/http :// localhost

:3003/ > , <http :// localhost :4000/ wodt/http :// localhost :3002/ >;

43 td:hasPropertyAffordance [

44 ...

45];

46 ...

47

48 <http :// localhost :4000/ wodt/http :// localhost :3002/ >

49 a smc:TrafficLight;

50 lp:isOn true;

51 wodt:availableActionId "switch ";

52 wodt:physicalAssetId "trafficLightA ";

53 wodt:version "1.0.0";

54 td:hasActionAffordance [

55 a lp:SwitchCommand;

56 td:hasForm [

57 hctl:hasOperationType td:invokeAction;

58 hctl:hasTarget "http :// localhost :3002/ action/switch "^^ xsd:anyURI

59];

60 td:name "switch"

61];

62 ...
� �

116 CHAPTER 6. PROTOTYPE

Ambulance

 http://localhost:4000/wodt/http://localhost:3000/

Intersection

 http://localhost:4000/wodt/http://localhost:3001/

Traffic Light B

 http://localhost:4000/wodt/http://localhost:3003/

Traffic Light A

 http://localhost:4000/wodt/http://localhost:3002/

smc:isApproaching

smc:containsTrafficLight

smc:containsTrafficLight

87.0 ^^ xsd:double

hc:hasFuelLevel

true

hc:isBusy

AM3030T

wodt:physicalAssetId
1.0.0

wodt:version

td:hasPropertyAffordance

smc:Intersection

rdf:type

rdf:type

smc:isApproaching

wodt:domainPredicate

true

true

jsonschema:readOnly

td:isObservable

hc:Ambulance
rdf:type

smc:TrafficLight

rdf:type

rdf:type

...

...

...

...

intersectionPA

wodt:physicalAssetId

1.0.0

wodt:version

true
lp:isOn

switch

wodt:availableActionId

trafficLightA

wodt:physicalAssetId

td:hasActionAffordance

lp:SwitchCommand

rdf:type

switch
td:name

td:hasForm

...

Figure 6.6: Partial visualization of the WoDT Digital Twins Platform Knowledge
Graph of the Smart City organization

Listing 6.10: DTKG of the Ambulance WoDT Digital Twin�
1 <http :// localhost :3000/ >

2 <https :// healthcareontology.com/ontology#hasFuelLevel >

3 "87.0"^^ < http ://www.w3.org /2001/ XMLSchema#double > ;

4 <https :// healthcareontology.com/ontology#isBusy >

5 true ;

6 <https :// smartcityontology.com/ontology#isApproaching >

7 <http :// localhost :3001/ > .
� �
Listing 6.11: DTKG of the Traffic Light A WoDT Digital Twin�

1 <http :// localhost :3002/ >

2 <https :// lampontology.com/ontology#isOn >

3 true;

4 <https :// purl.org/wodt/availableActionId >

5 "switch" .
� �

Chapter 7

Conclusions

Nowadays, we are assisting in the spreading of closed system proposals for the
virtualization of individual Physical Assets used for vertical applications. While
it is useful in some domains, the Digital Twin paradigm can be further exploited
for the digitalization of entire portions of reality.

The vision followed in this thesis, the Web of Digital Twins, aims to the cre-
ation of an interoperable service layer where Digital Twins are created and have
relationships across multiple domains and multiple organizations.

The thesis objective was to propose an implementation of the Web of Digital
Twins vision to obtain the possibility for interoperability and openness between
Digital Twins of different domains, organizations that use existent technologies,
and create an open, discoverable, and navigable ecosystem of Digital Twins that
can serve as a service layer for applications on top.

This thesis proposed an implementation of the Web of Digital Twins vision
for ecosystems of heterogeneous Digital Twins, by integrating key concepts and
methods from the theory and practice of the Web – Web architecture, standards,
protocols, and the REST Architectural style.

The thesis work resulted in the creation of two specifications – the WoDT
Digital Twin Specification and the WoDT Digital Twins Platform Specification –
and the design of an Abstract Architecture for the creation of a Web-based Web
of Digital Twins.

The Web-based Web of Digital Twins allows the creation of ecosystems of
heterogeneous Digital Twins, where each Digital Twin can be developed with
existing technologies and at the same time offers a compatibility layer towards the
Web of Things. Digital Twins become independent Web services that are used to
reason about the real world by creating personalized and contextualized views of
reality.

The feasibility of the proposed design has been proved through the creation
of a prototypical implementation that follows both specifications. It involved the

117

118 CHAPTER 7. CONCLUSIONS

usage of two different technologies for the development of Digital Twins, Azure
Digital Twins, and the White Label Digital Twins framework, experimenting with
the heterogeneity, openness, and interoperability of the envisioned ecosystems.
Furthermore, by comparing and aligning with the Web of Things paradigm, it was
possible to apply a compatibility layer using the WoT Thing Description.

The prototype demonstrated the successful use of the Web, hypermedia, and
the REST architectural style to create a uniform interface that makes interactions
independent of specific technologies. Moreover, the compatibility with the Linked
Data principles has provided the ecosystem with strong navigability and semantics
which allow the construction of the Platform Knowledge Graph for the execution
of ecosystem queries. This enables any Consumer of the application layer to be
able to navigate, observe, and reason within the Digital Twin layer as if they were
directly interacting with the real world, obtaining the information of interest.
However, the Knowledge Graph of the ecosystem, in particular the portion of the
ecosystem covered by each singular Platform, is built in a centralized way. This
represents a trade-off that simplifies query execution by maintaining a consistent
ecosystem state with the cost of introducing data redundancy, which may result
in querying stale data and creating a single point of failure for ecosystem-level
services. Regarding the latter point, the Platform represents a single point of
failure, but it is not the single entry point for the WoDT ecosystem. By leveraging
the properties of the REST architectural style, the use of hypermedia, and the
compliance with the Web Linking specification, Consumers do not need to be
aware of the several Platforms of the ecosystem, but they can use any WoDT
Digital Twin as an entry point.

The proposed idea does not constitute an alternative method of developing Dig-
ital Twins. The WoDT Specifications do not replace existing Digital Twins tech-
nologies, which must independently implement all necessary functionalities such as
the shadowing process or the augmentation engine. Instead, the specifications act
as an additional layer, either internal or external to the Digital Twin builders, to
ensure compliance with WoDT ecosystems. Depending on the supporting Digital
Twin framework or platform, if it requires the creation of an additional software
layer – as for the Azure Digital Twins based WoDT Digital Twin – an additional
layer will be added, which in some cases could cause latency issues. Furthermore,
when the metamodel is not directly compatible with the Web of Digital Twins
one, a significant effort is required to develop the Abstract Architecture compo-
nents. This can be a challenging task for Digital Twin Developers. Therefore, for
large-scale usage, a greater support for Digital Twin builders and frameworks is
certainly crucial.

Additional analyses and evaluations in various scenarios are required to confirm
the effectiveness of the Web protocols involved. For instance, the strategy that

7.1. FUTURE WORK 119

enables the Memorization requirement, so the Memento protocol, is the result of
the first experiments, and it represents a first proposal that derives from one of
the most used protocols on the Web. Then, the concept of queries on history,
a well-known idea in literature, is missing from the text and warrants further
exploration. Additionally, all the other types of Digital Twins that have emerged
in recent years, such as Cognitive Digital Twins, are not considered. However, the
proposed design is general and allows additional services to act on WoDT Digital
Twins using all the information they expose. Other examples of services that in
the literature are commonly seen as Digital Twins features are Simulation and
Prediction.

Regarding the general definition and functionalities of the system, the provided
interaction patterns and all the other details stated in the specifications, further
experiments and analysis considering different use case scenarios, domains, Digital
Twin technologies, and protocols are needed to evaluate and, in case, validate the
proposed design. At the moment, it is not possible to provide a general and formal
validity of the work because only a limited amount of tests have been carried out.

7.1 Future Work

Offering multi-domain and multi-organization support, the Digital Twins paradigm
is a very broad research field that needs further exploration in indefinite paths.

For what concerns the thesis work, the specifications are in the initial stages
and require additional research and formalization. Furthermore, it is essential to
offer alternative implementations of the Digital Twin Descriptor by utilizing other
established ontologies or paradigms. This will enhance compatibility with other
standards and increase the openness and interoperability of the solution.

As for the complete WoDT ecosystem Knowledge Graph, it is currently only
achievable by leveraging the layered system constraint of REST and developing
custom services that merge data. Additional research is required to enable queries
on Knowledge Graphs that involve multiple organizations and platforms.

During the thesis, there was the chance to analyze and study only a subset
of the possible Web standards and protocols. Therefore, a valuable contribution
would be to research new protocols or standards that could enhance the current
design. An alternative approach has been analyzed and designed at a high level
following the Solid specification1. Based on initial results, each WoDT Digital
Twin could have a Solid Pod to store data. This approach was considered for
several reasons, including control over decentralized data, the ability to store multi-
variate data (which is an important trend in modern Digital Twins), compatibility
with the Solid ecosystem, and more.

1https://solidproject.org/

https://solidproject.org/

120 CHAPTER 7. CONCLUSIONS

These are the main paths to follow. Further research is necessary to address
the various challenges and fully explore the opportunities presented by the Digital
Twin paradigm.

Bibliography

[1] ISO/IEC 30173:2023. Digital twin: concepts and terminology, 2023. Available
at https://www.iso.org/standard/81442.html. [Last access: 2023-12-31].

[2] ETSI TR 103 827. Saref: Digital twins opportunities for the ontology con-
text, 2023. Available at https://www.etsi.org/deliver/etsi_tr/103800_
103899/103827/01.01.01_60/tr_103827v010101p.pdf. [Last access: 2023-
12-31].

[3] Dean Allemang, Jim Hendler, and Fabien Gandon. Semantic Web for the
Working Ontologist: Effective Modeling for Linked Data, RDFS, and OWL,
volume 33. Association for Computing Machinery, New York, NY, USA, 3
edition, 2020.

[4] Tim Berners-Lee. Information management: A proposal. CERN, 1989.

[5] Tim Berners-Lee. World-wide web: The information universe. Internet Re-
search, 1992.

[6] Tim Berners-Lee. Www: Past, present, and future. Computer, 29(10):69–77,
oct 1996.

[7] Tim Berners-Lee. Linked data. https://www.w3.org/DesignIssues/

LinkedData.html, 2006. [Online; Last access: 2023-12-31].

[8] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web: A new
form of web content that is meaningful to computers will unleash a revolution
of new possibilities. ScientificAmerican.com, 05 2001.

[9] Tim Berners-Lee, Larry M Masinter, and Roy T. Fielding. Uniform Resource
Identifiers (URI): Generic Syntax. RFC 2396, August 1998.

[10] Brickley and Guha. RDF Schema 1.1. W3C Recommendation, February 25
2014.

121

https://www.iso.org/standard/81442.html
https://www.etsi.org/deliver/etsi_tr/103800_103899/103827/01.01.01_60/tr_103827v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103800_103899/103827/01.01.01_60/tr_103827v010101p.pdf
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

122 BIBLIOGRAPHY

[11] Andrei Ciortea, Olivier Boissier, and Alessandro Ricci. Engineering world-
wide multi-agent systems with hypermedia. In Danny Weyns, Viviana Mas-
cardi, and Alessandro Ricci, editors, Engineering Multi-Agent Systems, pages
285–301, Cham, 2019. Springer International Publishing.

[12] Andrei Ciortea, Simon Mayer, Fabien Gandon, Olivier Boissier, Alessandro
Ricci, and Antoine Zimmermann. A decade in hindsight: The missing bridge
between multi-agent systems and the world wide web. In Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS ’19, page 1659–1663, Richland, SC, 2019. International Foun-
dation for Autonomous Agents and Multiagent Systems.

[13] Herbert Van de Sompel, Michael Nelson, and Robert Sanderson. HTTP
Framework for Time-Based Access to Resource States – Memento. RFC 7089,
December 2013.

[14] Feigenbaum, Williams, Clark, and Torres. SPARQL 1.1 Protocol, W3C Rec-
ommendation 21 March 2013. W3C Recommendation, 2013.

[15] Roy T. Fielding. httprange-14. https://lists.w3.org/Archives/Public/
www-tag/2005Jun/0039.html, 2005. [Online; Last access: 2023-12-31].

[16] Roy T. Fielding. Rest apis must be hypertext-driven. https://roy.gbiv.

com/untangled/2008/rest-apis-must-be-hypertext-driven, 2008. [On-
line; Last access: 2023-12-30].

[17] Roy T. Fielding, Mark Nottingham, and Julian Reschke. HTTP Semantics.
RFC 9110, June 2022.

[18] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web
architecture. ACM Trans. Internet Technol., 2(2):115–150, may 2002.

[19] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[20] Department for Business and Trade. National Digital Twin Pro-
gramme (NDTP). https://www.gov.uk/government/collections/

the-national-digital-twin-programme-ndtp, 2023. [Online; Last access:
2023-12-28].

[21] Gandon, Schreiber, and Beckett. RDF/XML Syntax, W3C Recommendation
25 February 2014. W3C Recommendation, 2014.

https://lists.w3.org/Archives/Public/www-tag/2005Jun/0039.html
https://lists.w3.org/Archives/Public/www-tag/2005Jun/0039.html
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.gov.uk/government/collections/the-national-digital-twin-programme-ndtp
https://www.gov.uk/government/collections/the-national-digital-twin-programme-ndtp

BIBLIOGRAPHY 123

[22] David Gelernter. Mirror Worlds or the Day Software Puts the Universe in
a Shoebox: How Will It Happen and What It Will Mean. Oxford University
Press, Inc., USA, 1991.

[23] Edward Glaessgen and David Stargel. The Digital Twin Paradigm for Future
NASA and U.S. Air Force Vehicles. 2012.

[24] Michael Grieves. Product lifecycle management: Driving the next generation
of lean thinking. 01 2005.

[25] Michael Grieves. Digital twin: manufacturing excellence through virtual fac-
tory replication. White paper, 1(2014):1–7, 2014.

[26] Michael Grieves and John Vickers. Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems, pages 85–113. Springer
International Publishing, Cham, 2017.

[27] Digital Framework Task Group. White paper: The Gemini Principles. Tech-
nical report, Centre for Digital Built Britain, 2018. Available at https:

//www.cdbb.cam.ac.uk/DFTG/GeminiPrinciples.

[28] W3C OWL Working Group. OWL Web Ontology Language, W3C Recom-
mendation 11 December 2012. W3C Recommendation, 2012.

[29] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource oriented archi-
tecture for the web of things. pages 1–8, 2010.

[30] Harris, Seaborne, and Prudhommeaux. SPARQL 1.1 Query Language, W3C
Recommendation 21 March 2013. W3C Recommendation, 2013.

[31] Hetherington James and West Matthew. The Pathway Towards an Infor-
mation Management Framework: A Commons for a Digital Built Britain.
Technical report, Centre for Digital Built Britain, 2020. Available at https:
//doi.org/10.17863/CAM.52659.

[32] Kaebisch, McCool, Kamiya, Charpenay, and Kovatsch. Web of Things (WoT)
Thing Description. W3C Recommendation, 2020.

[33] Mike Kelly. JSON Hypertext Application Language. Internet-Draft draft-
kelly-json-hal-11, Internet Engineering Task Force, October 2023. Work in
Progress.

[34] Koster and Korkan. Web of Things (WoT) Binding Templates. W3C Group
Note, 2023.

https://www.cdbb.cam.ac.uk/DFTG/GeminiPrinciples
https://www.cdbb.cam.ac.uk/DFTG/GeminiPrinciples
https://doi.org/10.17863/CAM.52659
https://doi.org/10.17863/CAM.52659

124 BIBLIOGRAPHY

[35] Kovatsch, Matsukura, Lagally, Kawaguchi, Toumura, and Kajimoto. Web of
Things (WoT) Architecture. W3C Recommendation, 2020.

[36] Markus Lanthaler. Hydra core vocabulary. Unofficial draft, 2021.

[37] Robert C. Martin. The Clean Architecture, 2012. Avail-
able at: https://blog.cleancoder.com/uncle-bob/2012/08/13/

the-clean-architecture.html. [Last access: 2024-02-14].

[38] Nandana Mihindukulasooriya and Roger Menday. Linked Data Platform 1.0
Primer. W3C Working Group Note, 2015.

[39] Roberto Minerva, Gyu Myoung Lee, and Noël Crespi. Digital twin in the iot
context: A survey on technical features, scenarios, and architectural models.
Proceedings of the IEEE, 108(10):1785–1824, 2020.

[40] T. H. Nelson. Complex information processing: A file structure for the com-
plex, the changing and the indeterminate. In Proceedings of the 1965 20th
National Conference, ACM ’65, page 84–100, New York, NY, USA, 1965.
Association for Computing Machinery.

[41] Mark Nottingham. Web Linking. RFC 8288, October 2017.

[42] Marco Picone, Marco Mamei, and Franco Zambonelli. Wldt: A general pur-
pose library to build iot digital twins. SoftwareX, 13:100661, 2021.

[43] Prudhommeaux and Carothers. RDF 1.1 Turtle - Terse RDF Triple Lan-
guage, W3C Recommendation 25 February 2014. W3C Recommendation,
February 25 2014.

[44] Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and
Marco Picone. Web of digital twins. ACM Trans. Internet Technol., 12 2021.

[45] Alessandro Ricci, Angelo Croatti, and Sara Montagna. Pervasive and con-
nected digital twins—a vision for digital health. IEEE Internet Computing,
26(5):26–32, 2022.

[46] L. Sauermann and R. Cyganiak. Cool uris for the semantic web. W3c interest
group note, W3C, 2008.

[47] Speicher, Arwe, and Malhotra. Linked Data Platform 1.0, W3C Recommen-
dation 26 February 2015. W3C Recommendation, February 26 2015.

[48] Sporny, Longley, Kellogg, Lanthaler, Champin, and Lindstrom. JSON-LD
1.1 - A JSON-based Serialization for Linked Data, W3C Recommendation 16
July 2020. W3C Recommendation, 2020.

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

BIBLIOGRAPHY 125

[49] Kevin Swiber, Tom Howard, Matthew Dobson, Nils Dagsson Moskopp (grand-
centrix), Vladimir Tsukur, Adam, Sam Ward, ramirahikkala, Mike Raynham,
javascript journal, Dylan Beattie, and Dominic Barnes. kevinswiber/siren:
Siren v0.6.2, April 2017.

[50] Herbert Van De Sompel. Memento at the w3c. https://www.w3.org/blog/
2016/memento-at-the-w3c/, 2016.

[51] Erik Wilde. Putting things to rest. 2007.

https://www.w3.org/blog/2016/memento-at-the-w3c/
https://www.w3.org/blog/2016/memento-at-the-w3c/

	Abstract
	Introduction
	Background
	State of the art on Digital Twins
	Definitions and characteristics
	Survey on popular technologies
	Limitations of the current approaches

	Web of Digital Twins

	Contribution: Web-based WoDT
	Objective
	Idea
	Contributions overview
	Requirements
	Functional requirements
	Non-functional requirements
	Implementation requirements

	Analysis of the Web for a Web-based WoDT
	Web and REST
	REST Architectural Style
	Web resources: identification and versioning
	Semantic Web
	Linked Data

	Web of Things: vision and comparison
	Overview of the WoT paradigm
	Digital Twins in Web of Things
	Comparison between Digital Twins and WoT Things

	WWoDT: the Web-based WoDT
	High-level description
	Specifications
	WoDT Digital Twin Specification
	WoDT Digital Twins Platform Specification

	Abstract Architecture
	WoDT Digital Twin
	WoDT Digital Twins Platform
	Interaction flows

	Prototype
	Prototype design
	WoDT Digital Twins Platform
	WoDT Digital Twin: Azure Digital Twins
	WoDT Digital Twin: WLDT Framework

	Prototype implementation
	WoT-based DTD and WoDT Vocabulary
	Azure Digital Twins based WoDT Digital Twin
	White Label Digital Twins based WoDT Adapter
	WoDT Digital Twins Platform
	DevOps technologies and practices

	Example use case
	Use case description
	Results

	Conclusions
	Future Work

