
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

Master Degree in Computer Science and Engineering

Event-driven Simulation and
Verification of FRASP Systems

Against Spatio-Temporal Properties

Master thesis in:
Pervasive Computing

Supervisor
Prof. Mirko Viroli

Cosupervisors
Dr. Roberto Casadei
Dr. Gianluca Aguzzi

Candidate
Jahrim Gabriele

Cesario

IV Graduation Session

Academic year 2022-2023

ii

Abstract

The growing relevance of large-scale distributed systems, including collective adap-
tive systems, has inspired the research for novel aggregate computing paradigms,
addressing the complexity of programming macro-level behaviors over sizeable
networks of devices. One of the most recent advancements in this direction is
the development of a reactive execution model for such systems, embodied in a
domain-specific language (DSL) called FRASP (Functional Reactive Approach to
Self-organization Programming), which overcomes several limitations of the previ-
ous round-based execution models, such as redundant re-computations.

The objective of this thesis is to consolidate FRASP by developing an ex-
tensive test suite, demonstrating the correctness of the current implementation,
supporting future extensions of the language, and providing valuable insights into
the implications of the reactive execution model and the challenges to overcome.
With this goal in mind, the event-driven simulator provided by FRASP has been
re-designed to enable the evaluation of spatio-temporal properties on the evolution
of aggregate systems, focusing on the convergence of self-stabilizing specifications
towards an expected stable state.

In conclusion, the test suite verifies the overall correctness of FRASP, except
for a couple of issues concerning the implementation, which have been identified
and analyzed, so that they may be addressed in future works.

iii

iv

To my family, my friends, and my partner,
thanks for your support and patience

v

vi

Acknowledgements

I would like to start by expressing my gratitude towards the people who supported
me during this project.

Many thanks to,

my supervisor, Prof. Mirko Viroli, and co-supervisors, Dr. Roberto Casadei and
Dr. Gianluca Aguzzi, for giving me the opportunity to work on this thesis, sup-
porting me during its development. I am especially thankful for their generosity in
sharing their knowledge with me.

my family and my partner, for their compassion and comfort during these chal-
lenging past months. A special thanks to my partner for dedicating her time to
review my work and providing valuable feedback.

my friends, for their understanding and their patience, during a time when I have
not been as present. Hopefully, this will change in the future.

vii

viii

Contents

Abstract iii

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Structure . 2

1.3 Prerequisites . 2

1.4 Artifacts . 2

2 Background 3

2.1 Concepts . 3

2.1.1 Collective Adaptive Systems 3

2.1.2 Aggregate Computing . 4

2.1.3 Reactive Programming . 9

2.1.4 Functional Reactive Programming 11

2.2 Technologies . 12

2.2.1 Sodium . 12

2.2.2 ScaFi . 17

2.2.3 FRASP . 20

3 Analysis 25

3.1 Objectives . 25

3.2 Aggregate Testing . 26

3.3 Aggregate Convergence Testing . 27

3.4 Simulation . 28

4 Design 31

4.1 Simulation . 31

4.2 Step Simulation . 33

4.3 Convergence Simulation . 35

4.4 Concurrent Simulation . 35

CONTENTS ix

CONTENTS

5 Implementation 37
5.1 Simulator . 37
5.2 Step Simulator . 38
5.3 Concurrent Simulator . 41
5.4 Convergence Simulator . 43
5.5 Stream Extension . 45

5.5.1 Persistence Operators . 45
5.5.2 Temporal Operators . 46
5.5.3 Derivation Operators . 46
5.5.4 Monitoring Operators . 47
5.5.5 Throttling Operators . 48

5.6 Finite Stream Extension . 49
5.7 Dynamic Environments . 50

6 Verification 53
6.1 Unit and Integration Testing . 53
6.2 Observations . 55

6.2.1 Referential Transparence . 55
6.2.2 Inconsistency of Loop . 56

7 Conclusions 59

Bibliography 61

x CONTENTS

List of Figures

2.1 Propagation of information in field calculus 5
2.2 An abstract syntax for field calculus 6
2.3 Propagation of information in aggregate computing 8
2.4 A computational graph in reactive programming 9
2.5 An example of computational field 18
2.6 The round-based execution model of ScaFi 20
2.7 The reactive execution model of FRASP 23
2.8 Propagation of change in the reactive execution model of FRASP . 23
2.9 The architecture of FRASP . 24

4.1 The interface of a simulation . 32
4.2 The interface of a step simulation 34

5.1 A UML class diagram of the simulator 38
5.2 A UML class diagram of the step simulator 39
5.3 A UML class diagram of the concurrent simulator 42
5.4 A UML class diagram of the convergence simulator 43
5.5 A UML class diagram of the environments types in FRASP 51
5.6 A UML class diagram of the updated simulation incarnation 51
5.7 A UML class diagram of the sensor types in FRASP 52

6.1 A UML class diagram of the convergent tests 54

LIST OF FIGURES xi

LIST OF FIGURES

xii LIST OF FIGURES

List of Listings

2.1 The higher-order primitives of aggregate computing 8
2.2 An example of referential transparence 12
2.3 Sodium’s primitives for static acyclic graphs 14
2.4 Sodium’s primitives for dynamic graphs 14
2.5 Sodium’s primitives for cyclic graphs 15
2.6 Sodium’s operational primitives . 15
2.7 The core constructs of field calculus in ScaFi 17
2.8 The core constructs of aggregate computing in ScaFi 18
2.9 The core constructs of ScaFi . 18
2.10 The core constructs of FRASP . 21
5.1 An application of the step simulator 41
5.2 An application of the concurrent simulator 42
5.3 An application of the convergence simulator 44
6.1 An application of convergence tests 54

LIST OF LISTINGS xiii

LIST OF LISTINGS

xiv LIST OF LISTINGS

Chapter 1

Introduction

1.1 Motivation and Goals

The ever-increasing availability of devices is creating an emerging class of dis-
tributed systems, called collective adaptive systems, with application domains
such as smart cities, complex sensor networks and the Internet Of Things (IoT)
[VAB+18]. The complexity of these systems calls for new programming paradigms
better suited for large-scale distributed systems, such as aggregate computing
[VBD+19], whose specifications directly describe robust collective behaviors for
networks of devices.

Most state-of-the-art aggregate computing frameworks rely on a round-based
computation model, which is simple, but limited in terms of flexibility and effi-
ciency. To provide for the shortcomings of the round-based computation model,
new reactive approaches are currently in research, such as the FRASP (Functional
Reactive Approach to Self-organization Programming) language [CDA+23], which
is the subject of this work.

FRASP introduces a novel Domain Specific Language (DSL) that combines the
functional reactive programming paradigm with the aggregate computing para-
digm. This extension allows the application of the former in distributed systems,
specifically in collective adaptive systems. Additionally, it improves the latter with
an optimized reactive computation model, replacing the typical round-based one.

At the time of writing, FRASP is a research project and there are many ideas,
challenges, and features still to be explored. However, the language requires a con-
solidated test suite before further evolution, to assess the correctness of its current
implementation, prevent possible software regressions, that may be due to un-
suspected interactions between present and future features, and possibly discover
unforeseen implications of the reactive model.

The main goal of this thesis is to implement a verified version of FRASP, provid-

CHAPTER 1. INTRODUCTION 1

1.2. STRUCTURE

ing a clearer definition of its functionalities through adequate testing. Properties
concerning FRASP programs will be mainly evaluated via simulation, requiring a
thorough analysis and verification of the current simulator as well.

1.2 Structure

The content of this thesis will be presented in detail in the following chapters. First,
Chapter 2 provides an overview of the main concepts and technologies used in this
project, so that this document may be self-contained. Then, Chapter 3 analyzes
the objectives and requirements of this thesis, defining an outline for the strategy
to adopt. Afterwards, Chapter 4 describes the solution designed for the project
and Chapter 5 delves into the details of its concrete implementation. Towards
the end, Chapter 6 explains the verification methods applied to the implemented
solution, analyzing their results. Finally, Chapter 7 provides a summary of the
achievements and future explorations of this project.

1.3 Prerequisites

The following chapters may contain references to concepts related to object-orient-
ed and functional programming, assuming that the reader is familiar with such
paradigms (specifically the Java [Ora] and Scala [Cen] documentations). Indeed,
Scala has been adopted as the language of choice in this document for abstracting
over software interfaces and writing pseudocode, due to its clean and minimalistic
functional syntax.

1.4 Artifacts

The documented source code for this project is available in a public GitHub repos-
itory1, which can be downloaded to supplement the content of this document,
providing detailed insights into the implementation.

1https://github.com/jahrim/distributed-frp/tree/test/functional-test-suite

2 CHAPTER 1. INTRODUCTION

https://github.com/jahrim/distributed-frp/tree/test/functional-test-suite

Chapter 2

Background

2.1 Concepts

This section provides a general technology-agnostic description of the main con-
cepts referenced by this project, namely collective adaptive systems, aggregate
computing, reactive programming, and functional reactive programming.

2.1.1 Collective Adaptive Systems

Collective systems are situated systems composed of a potentially large set of
computing components, that are competing or cooperating to achieve a specific
goal, interacting with each other and adapting to the changes of their environment
[Fer15].

The behavior of a collective system as a whole is an expression of collective
intelligence, in fact it emerges from the behaviors of its individual components,
the local interactions between them and with their environment [Cas23a]. These
concepts come from the study of self-organizing groups of entities in nature (e.g.,
ant colonies, bird flocks) applied to computer science, in pursuit of adaptiveness
and in particular self-organization [LP00].

Adaptiveness is the ability of a system to change its behavior depending on
the circumstances to better achieve its goals. This property is essential in the
applications of distributed collective systems, to the extent that they are often
called directly Collective Adaptive Systems (CASs). In fact, adaptiveness
grants CASs with the robustness needed to address unforeseen changes in operating
conditions, which are typical in real-world environments (e.g., network failures,
open networks, mobile components).

General adaptiveness can be obtained using different strategies, including cen-
tralized approaches, in which a designated control system changes the behaviors
of the system components depending on their perception of the local environment.

CHAPTER 2. BACKGROUND 3

2.1. CONCEPTS

However, CASs achieve adaptiveness specifically through a decentralized approach
called self-organization, in which complex global ordered structures (e.g., collec-
tive behaviors) form as a consequence of simple local seemingly-chaotic interactions
(e.g., local communication, stigmergy) [Hey99]. This kind of adaptiveness is also
called self-adaptiveness, as it arises from the system itself without any external
contributor.

Collective systems are inherently complex, in fact in collective intelligence the
connection between the individual behaviors of the system components and the
collective behavior of the system is rarely straightforward. As a consequence, it
may be difficult to design the individual components starting from the goal that
the collective system should achieve. To tackle such complexity, one should adopt
stricter and more formal approaches to software engineering, such as anticipating
the verification of the system already during its design, using formal verification
techniques such as model checking and simulation.

The applications of collective systems concern domains such as smart cities,
complex sensor networks and the IoT [VAB+18], including pedestrian navigation
(e.g., crowd evacuation), collective motion (e.g., drone fleet control [Vá14]) and
pervasive IoT.

2.1.2 Aggregate Computing

Aggregate computing is an emerging paradigm for programming large-scale
distributed situated systems, known as aggregates of devices, born to tackle
the complexity of engineering such systems [BPV15], including CAS.

The idea behind aggregate computing is macroprogramming [Cas23b], that
is programming the behavior of the aggregate directly at the macro-level, with-
out explicitly defining the behavior of each of its individual components at the
micro-level. In particular, a specification in aggregate computing defines how the
components of an aggregate should behave and interact with each other, in terms
of how information propagates through the aggregate as a whole, moving the de-
sign focus from the individual to the collective. The propagation of information
within an aggregate can be formally described using field calculus, which is the
mathematical core of aggregate computing.

In field calculus, an aggregate is a network of devices capable of exchanging
information between each other. The topology of the network (i.e., application-
dependent physical or logical proximity of the devices) is described using a dynamic
neighboring relation, which indicates the neighbors of each device (including
the device itself), so that direct communication can only happen between a device
and its neighbors. Information in the network is modelled at the macro-level as a
computational field, that is a function mapping each device to its corresponding
state (or event) at a specific point in space and time. Finally, the propagation of

4 CHAPTER 2. BACKGROUND

2.1. CONCEPTS

information is a result of functional composition, evolution, or restriction of
computational fields (Figure 2.1).

Figure 2.1: The three methods of propagation of information in field calculus. The
figure shows three aggregates, each containing nine devices (circles), connected by
neighboring relations (solid lines). Each aggregate shows the propagation of infor-
mation (dashed arrows) using one of the methods of field calculus. Composition
of these methods is also possible.

The evolution of a computational field refers to its gradual transformation
along the spatial or temporal dimensions. Evolution over space can be achieved
with inter-device communication, including accumulation and elaboration of neigh-
boring events for producing the next event of each device. Evolution over time
can be obtained by specifying dependencies between the next and previous events
of each device (potentially an expression of intra-device communication or self-
communication).

The restriction of a computational field refers to the application of a constraint
on its evolution over space. Restriction can be achieved through conditional par-
titioning of the network, that is assigning each device to a different partition de-
pending on a given condition, such that neighbors belonging to different partitions
are isolated and cannot communicate despite their neighboring relation. However,
only the restricted computational field is affected by the network partitions, so the
information of other computational fields may still propagate between partitions.

More formally, a program specification in field calculus can be written using the
abstract syntax in Figure 2.2. One such specification can be interpreted both at
the macro-level (as a composition of collective operations on computational fields)
and at the micro-level (as a composition of individual operations executed by every
device to compute and propagate its next event). Such equivalent interpretations
bridge the gap between the collective behavior of the aggregate and the individual
behaviors of its components.

CHAPTER 2. BACKGROUND 5

2.1. CONCEPTS

P ⇒ F ∗e Program

F ⇒ def d(x∗){e} Function Declaration

e ⇒ x Expression : Variable

| v : Value

| f(e∗) : Function Call

| nbr{e} : Evolution over space

| rep(e){(x) → e} : Evolution over time

| if(e){e}{e} : Restriction

f ⇒ d Function Name : User-declared

| b : Built-in

v ⇒ l Value : Local Value

| ϕ : Neighbouring Value

l ⇒ c(l∗) Local Value : Constructor Call

ϕ ⇒ δ∗ → l∗ Neighbouring Value : Devices → Local Values

Figure 2.2: An abstract syntax for field calculus [VBD+19]. The symbol a∗

indicates a possibly empty sequence of a (e.g., a1, ..., an with n ≥ 0), while the
symbol a∗→b∗ a possibly empty sequence of relations a1→b1, ..., an→bn. On the
left, the production rules of the language. On the right, the meaning of the left
and right side of each production rule.

A program is a sequence of function declarations followed by an expres-
sion, which determines the behavior of the system. An expression can be:

• A variable, referencing information (e.g., a function parameter).

• A value, expressing information. A value can be either a local value (e.g., a
boolean, a number, any object) or a neighboring value, which is a function
mapping, for each device, the neighbors to a local value.

• A function call, describing the composition of computational fields. The
called function can be either user defined (i.e., referencing a function dec-
laration) or built-in (e.g., arithmetic or logical operators).

• A communication expression nbr{e}, describing the evolution over space
of a computational field. In detail, the expression yields a neighboring value
computed in two steps: first, each device computes the expression e, sharing

6 CHAPTER 2. BACKGROUND

2.1. CONCEPTS

the result with its neighbors; then, each device collects the results of its
neighbors, producing a neighboring value of the latest evaluation of e.

• An iteration expression rep(e1){(x) → e2}, describing the evolution over
time of a computational field. In detail, the expression is computed itera-
tively, each iteration yielding a result vi, with i being the number of itera-
tions computed so far. The result v0 computed in the first iteration is the
value yielded by e1, while successive results vk (k > 0) are computed in the
following iterations as the value yielded by e2 when applying the function
s : (x) → e2 to the result vk−1 of the previous iteration (vk = s(vk−1)).

• A branching expression if(e1){e2}{e3}, describing the restriction of a
computational field. In detail, the computation in the system is split de-
pending on the condition e1 (i.e., an expression evaluating to either true or
false), resulting in the computation of e2 where and when e1 is satisfied or
in the computation of e3 otherwise.

In the branching expression, restriction happens as a consequence of align-
ment. Alignment is the process of keeping track of the structure of a specifi-
cation (e.g., using an abstract syntax tree), in order to ensure correct message
matching during communication when the specification contains different in-
stances of nbr or rep constructs. Due to alignment, communication between
a device and a neighbor can only happen if they are computing two expres-
sions that share a nbr construct in the same position within the structure
of the program. In particular, within the branching expression, alignment
forbids communication between devices computing e2 and e3, as these ex-
pressions belong to two different branches of the program specification.

While field calculus provides solutions for the composition and evolution of
global or regional behaviors in aggregates, its syntax is also too general for it to
be resilient and too succinct for programming to be simple. Aggregate computing
addresses the problems by implementing three resilient higher-order primitives on
top of field calculus (Listing 2.1 and Figure 2.3).

The Block G primitive [VAB+18] handles the diffusion of information by com-
puting the gradient (i.e., the computational field of distances) with respect to a
source, while accumulating values towards the direction of increasing gradient.
Accumulation starts from an initial value at the source and proceeds hop-by-
hop using an accumulator moving away from the source. The distance between a
device and its neighbors (used for computing the gradient) is defined by a metric.

The Block C primitive handles the convergence of information, using a potent-
ial (e.g., a gradient) to accumulate values towards the direction of decreasing
potential. In this sense, the Block C primitive is complementary to the Block

CHAPTER 2. BACKGROUND 7

2.1. CONCEPTS

� �
1 def G(source , initial , metric , accumulator)

2 def C(potential , local , null , accumulator)

3 def T(initial , final , decay)� �
Listing 2.1: The three higher-order primitives introduced by aggregate computing
on top of field calculus.

Figure 2.3: The three resilient methods of propagation of information in aggregate
computing: Block G propagates information towards the direction of increasing
gradient (value inside each device), diffusing information; Block C propagates
information towards the direction of decreasing gradient, collecting information;
Block T evolves information in time, applying a decay until convergence to a
minimum value. Note that the diagrams only shows relevant propagation of infor-
mation, hiding the underlying communication required to attain such behavior.

G primitive. Accumulation proceeds with each device applying an accumulator to
a null value (idempotent for the accumulator), its local value and the values of
any neighbor with a higher potential.

Finally, the Block T primitive handles the evolution of information in time,
starting from an initial maximum value for each device and reducing it at
each computation round using a decay function, until a final minimum value
is reached.

These aggregate computing primitives cover the most common applications
when programming aggregates, while offering additional resilience compared to
field calculus due to their self-stabilization property, which guarantees conver-
gence towards a final stable state for the aggregate after some time without changes
in its environment or its network topology. As such, they can be used as build-
ing blocks in general or domain-specific libraries for aggregate computing (e.g.,
swarm coordination framework [ACV23]), increasingly reducing the complexity of
programming aggregates of devices.

8 CHAPTER 2. BACKGROUND

2.1. CONCEPTS

2.1.3 Reactive Programming

Reactive programming is a paradigm built around the notions of continuous
time-varying values and propagation of change, ideal for the development of event-
driven applications [BCC+13]. In particular, computation is expressed in terms
of dependencies between flows of information, so that when some information
changes, all the dependent information is updated automatically by the underlying
execution model.

Consider the following program for computing the sum of two variables.� �
1 var1 = 1

2 var2 = 2

3 var3 = var1 + var2 # var3: 3

4 var1 = 3 # var3: 5

5 var2 = 1 # var3: 4� �
In reactive programming, the program is translated into a computational

graph (shown in Figure 2.4), expressing the dependencies of the variable var3 on
the variables var1 and var2, so that any future reassignment of var1 or var2 will
be automatically reflected on the value of var3, unlike standard imperative pro-
gramming. Due to their non-standard behavior, variables in reactive programming
are also called reactive variables.

Figure 2.4: A computational graph in reactive programming: nodes (circles) rep-
resent reactive variables and their current values; yellow nodes represent a propa-
gation of change; underlined yellow nodes represent the start of a propagation of
change; operations (squares) represent a type of dependency between nodes (when
the types of dependency are not relevant, they may be omitted). For example, at
time T=1, var1 was reassigned to value 3, triggering an update of var3 to value 5.

A value assigned to a reactive variable can be either a behavior, that is a time-
varying value in continuous time (e.g., time itself), or an event stream, that is
a potentially infinite sequence of events, occurring at discrete points in time (e.g.,

CHAPTER 2. BACKGROUND 9

2.1. CONCEPTS

mouse clicks). Typically, behaviors are used to model time-varying states, which
can always be sampled, while event streams are used to model state updates, which
exist only in the discrete point in time when they are triggered. However, some
implementations of reactive programming avoid such distinctions.

In order to be applied to reactive variables, standard operators should be trans-
formed into reactive operators. Such transformation is called lifting and requires
changing the type signature of the operators and properly updating the computa-
tional graph. The semantics of reactive programming languages changes depending
on how lifting is implemented: implicit lifting allows applying standard operators
to reactive variables as-is (transforming them under the hood); explicit lifting pro-
vides a lift primitive to apply the transformation to a standard operator; manual
lifting does not implement lifting, requiring the developer to manually sample and
compose the values of behaviors.

Reactive operators are used to build the computational graph of a reactive
program, creating dependencies between reactive variables. Some reactive pro-
gramming implementations possess the property of multi-directionality, allow-
ing the definition of bidirectional dependencies or cyclic graphs. Some may sup-
port switching, allowing the definition of dynamic computational graphs, whose
dependencies change over time.

The evaluation model of a reactive programming language deals with the
propagation of changes within a computational graph. Propagation of change
always involves a producer to trigger a change (i.e., a dependency) and a con-
sumer to react to the change (i.e., a dependent). The evaluation model can be
categorized based on the roles of the two entities:

• Pull-Based: consumers poll producers for their events, resulting in lazy
reaction (or demand-driven propagation), as polling may happen after the
time when the events were fired at the discretion of the consumer. This
approach works best with time-varying values in continuous time.

• Push-Based: producers push events to the consumers, resulting in eager
reaction (or data-driven propagation), as state changes are propagated as
they are produced. This approach works best when instantaneous reactions
are a requirement.

While the push-based evaluation model is adopted in most recent implementa-
tions of reactive programming, it requires additional mechanisms to avoid glitches,
which are inconsistent events, generated when a dependent is updated before all
of its dependencies are up-to-date, resulting in a combination of new and stale
events. Consider the following example.� �

1 var1 = 1

2 var2 = var1 * 1 # var2: 1

10 CHAPTER 2. BACKGROUND

2.1. CONCEPTS

3 var3 = var1 + var2 # var3: 2

4 var1 = 2 # var3: 3 (glitch); var2: 2; var3: 4 (correct)� �
In the example, when var1 is reassigned (line 4), the propagation of change may

reach var3 before var2, leading to an inconsistent value for var3, since var2 is not
up-to-date. Eventually, var2 will also be updated and so var3 will reach a consis-
tent value. However, any dependency on var3 would have already suffered from its
inconsistencies (e.g., incorrect program state, wasteful re-computations. . .), hence
the requirement of mechanisms for glitch freedom. Note that glitches are a con-
sequence of inconsistent sequential handling of simultaneous events or reactions.

Most implementations of push-based reactive programming guarantee glitch
freedom in non-distributed environments. However, an important extension of
reactive programming is distributed reactive programming, which allows ex-
pressing and managing the dependencies between the components of a distributed
system by distributing the nodes of a computational graph across multiple ma-
chines (e.g., in the previous listing, var1, var2 and var3may be located in different
machines). Recent progress shows that is possible to guarantee glitch freedom also
in push-based distributed reactive programming for acyclic graphs [MSM19], or at
different levels of consistency [MS18], while retaining scalability and parallelism.

Reactive programming is most suitable for designing event-driven applications,
achieving better declarativity and looser coupling between components with re-
spect to standard event-driven programming paradigms, such as the observer
pattern1. In particular, the former hides how the propagation of change is imple-
mented in the system, letting the developer focus solely on the behavior of the
program, while the latter requires the developer to manually implement depen-
dencies as events that may trigger dependent events, resulting in a flow of control
that is harder to understand and nested transitive dependencies that are harder
to detect.

2.1.4 Functional Reactive Programming

Functional Reactive Programming (FRP) is a subset of both reactive pro-
gramming and functional programming, retaining the advantages of the former,
while promoting compositionality, which is a property of semantics, holding if
the meaning of an expression is solely determined by the meaning of its parts and
the rules used to combine them [BJ16].

In functional programming, compositionality is achieved by expressing software
behaviors as pure functions, that is functions in the mathematical sense of the

1A pattern for event-driven programming, in which consumers react to events by registering
some callbacks (listeners) to the event producers, so that they may be executed each time a new
event is triggered. Callbacks may also trigger other events, creating a dependency graph between
callbacks. In fact, most reactive implementations are an abstraction of this pattern.

CHAPTER 2. BACKGROUND 11

2.2. TECHNOLOGIES

term. Pure functions produce no observable side effects when applied and are ref-
erentially transparent, meaning that different applications of a function to the
same inputs always produce the same outputs. To attain referential transparence,
functions should avoid referencing shared mutable data, so that their behavior is
kept constant since their definition and cannot have side effects (Listing 2.2).�

1 def rt() = 10

2

3

4

5

6 // Application

7 val x = rt() // 10

8 val y1 = x + x // 10 + 10 = 20

9 val y2 = rt() + rt() // 10 + 10 = 20�

�
var g = 0 // mutable shared data

def ro() =

g = g + 1 // observable side -effect

10 * g

// Application

val x = ro() // 10

val y1 = x + x // 10 + 10 = 20

val y2 = ro() + ro() // 20 + 30 = 50 �
Listing 2.2: An example of referentially transparent (left) and referentially opaque
(right) functions. Note how referential transparence allows replacing any value
with a call to the function that produced it.

In reactive programming, compositionality also requires glitch freedom, as ob-
servable glitches may invalidate the behavior expressed by a function. Indeed,
functions may express different behaviors due to inconsistent handling of simulta-
neous events by the underlying evaluation model.

Compositionality is essential for dealing with complex software, addressing
its complexity by combining simpler components that are easier to reason about.
Moreover, it deals with scalable software, tackling its growing complexity over time
by facilitating the addition of new features to existing composable applications.

2.2 Technologies

This section provides an overview of the specific technologies referenced by this
project, namely Sodium, ScaFi, and FRASP, in relation to the general concepts
described in the previous section.

2.2.1 Sodium

Sodium2 is a BSD-licensed library implementing FRP in several languages (in-
cluding Java), inspired by many previous implementations of FRP. Sodium is
meant to be a true FRP implementation, in the sense that it provides full compo-
sitionality compared to other implementations (e.g., Reactive Extensions (Rx)3,

2Repository at: https://github.com/SodiumFRP
3Repository at: https://github.com/ReactiveX

12 CHAPTER 2. BACKGROUND

https://github.com/SodiumFRP
https://github.com/ReactiveX

2.2. TECHNOLOGIES

which is not glitch-free) [BJ16].
In Sodium, behaviors are modeled as cells, denoted by Cell[V], which indi-

cates a time-varying value of type V, while event streams are modeled as simply
streams, denoted by Stream[E], which indicates a sequence of emissions of events
of type E. In particular, a Stream is defined as a list of events bound to the time
when they were fired, while a Cell is defined as a pair of its initial value together
with a Stream of its updates over time.

Time is represented as a sequence of transactions, which can be interpreted as
atomic time units. Only one transaction at a time can be executed by the engine
of Sodium, even when considering multiple independent computational graphs.
During a transaction, first all events are processed simultaneously keeping all values
constant (i.e., immutable transactional context), then all time-varying values
are updated accordingly. A transaction is started automatically each time an
event is pushed in the computational graph and closed only after its corresponding
propagation of change has been completed. Alternatively, it is possible to create
a new transaction explicitly using the Transaction.run method (e.g., useful for
sending simultaneous events, graph initialization or handling forward references).

Sodium provides a set of built-in core primitives for building static acyclic
computational graphs (Listing 2.3), creating and combining Cells and Streams.
These include:

• never: create a new Stream that will never emit events.

• map: given a Stream s in input, create an output Stream s′, whose events are
the events of s, transformed with a given mapping function. An analogous
operation is provided for Cells.

• filter: given a Stream s in input, create an output Stream s′, whose events
are the events of s, discarding those which do not satisfy a given predicate.

• merge: given two Streams s1 and s2 in input, create an output Stream

s′, whose events are the events fired by either s1 or s2, combining their
simultaneous events with a given merging function.

• snapshot: given a Stream s and a Cell c in input, create an output Stream
s′, whose events are the events of s combined with the most recent value of
c using a given combine function.

• constant: create an output Cell c, holding a given value forever.

• hold: given a Stream s in input, create an output Cell c, holding a given
initial value, which is updated each time s fires a new event. In particular,
s is the Stream of updates of c.

CHAPTER 2. BACKGROUND 13

2.2. TECHNOLOGIES

• sample: given a Cell c in input, obtain its most recent value. This primitive
should not be used when mapping or lifting Cells as it would break referen-
tial transparence, which is preserved for other primitives by exploiting the
immutability of transactional contexts.

• lift: given two Cells c1 and c2 in input, create an output Cell c, whose
value is obtained by combining the values of c1 and c2 using a given operator.
In particular, the value of c is updated each time the values of c1 or c2 are
updated. Note that lifting is explicit in Sodium.

� �
1 type Stream[E]

2 type Cell[V]

3

4 def never[E]: Stream[E]

5 def map[A, B](s: Stream[A], mapping: A => B): Stream[B]

6 def filter[E](s: Stream[E], predicate: E => Boolean): Stream[E]

7 def merge[E](s1: Stream[E], s2: Stream[E], merging: (E, E) => E): Stream[E]

8 def snapshot[A, B, C](s: Stream[A], c: Cell[B], combine: (A, B) => C): Stream[C]

9

10 def constant[V](value: V): Cell[V]

11 def hold[V](s: Stream[V], initial: V): Cell[V]

12 def sample[V](c: Cell[V]): V

13 def map[A, B](c: Cell[A], mapping: A => B): Cell[B]

14 def lift[A, B, C](c1: Cell[A], c2: Cell[B], operator: (A, B) => C): Cell[C]� �
Listing 2.3: An abstract view on the Sodium primitives for constructing static
acyclic computational graphs. Some primitives can be derived as a combination
of the others (e.g., constant and snapshot).

Sodium also provides support for dynamic computational graphs, including
graph expansion, reduction and more general sub-graph substitution. A dynamic
computational graph can be represented as a time-varying computational graph,
that is a Cell holding a reactive variable as value (either Streams or other Cells).
In particular, two switching operators are implemented in Sodium (Listing 2.4):
switchS builds a dynamic computational graph from a Cell of Streams cs, creating
an output Stream s′, whose events are the events of the most recent Stream held
by cs; switchC works similarly for Cell of Cells.� �

1 def switchS[E](cs: Cell[Stream[E]]): Stream[E]

2 def switchC[V](cc: Cell[Cell[V]]): Cell[V]� �
Listing 2.4: An abstract view on the Sodium primitives for constructing dynamic
computational graphs.

Support is also provided for cyclic computational graphs. However, since a
node declares its dependencies on other defined nodes during its creation, cyclic
dependencies are not possible without a mechanism for forward referencing, al-
lowing a node to declare a dependency on another node that is yet to be defined

14 CHAPTER 2. BACKGROUND

2.2. TECHNOLOGIES

(e.g., itself). Sodium allows forward referencing in Java by decoupling the decla-
ration and definition of a node using the type CellLoop[V] (or StreamLoop[E]),
which is used for declaring a node that will be assigned later to a defined Cell

(or Stream) through its method loop. In other words, CellLoop acts as a place-
holder, referencing a Cell that is not yet available. Still, declaration and definition
should happen conceptually at the same time to avoid the propagation of change
to empty references, hence a CellLoop must be declared and assigned within the
same transaction.� �

1 type StreamLoop[E] <: Stream[E]

2 type CellLoop[E] <: Cell[E]

3

4 def streamLoop[E]: StreamLoop[E]

5 def loop[E](reference: StreamLoop[E], value: Stream[E]): Stream[E]

6 def cellLoop[E]: CellLoop[E]

7 def loop[V](reference: CellLoop[V], value: Cell[V]): Cell[V]� �
Listing 2.5: An abstract view on the Sodium primitives for constructing cyclic
computational graphs.

Interoperability with non-FRP software interfaces is provided via a set of op-
erational primitives (Listing 2.6), which are excluded from the core primitives,
since their incorrect usage may break some properties of Sodium. A broker be-
tween a FRP interface and a non-FRP interface can be implemented using the
type CellSink[V] (or StreamSink[E]), which is a Cell (or Stream) that sup-
ports event pushing. In particular, the send primitive implements non-FRP to
FRP interactions, allowing pushing an update to a CellSink and managing the
propagation of change through a push-based evaluation model (i.e., the caller of
send will update all the dependent nodes in the computational graph). Conversely,
the listen primitive implements FRP to non-FRP interactions, allowing the reg-
istration of a callback to execute any time the state of a Cell is updated (such
subscription can be cancelled using the returned Listener). Note that using send

within a callback is not allowed, as it could be used to implement custom prim-
itives that violate compositionality. For the same reasons, Sodium discourages
and forbids inheritance of its base types. Instead, custom primitives should be
implemented as a combination of the core primitives to preserve compositionality.� �

1 type StreamSink[E] <: Stream[E]

2 type CellSink[V] <: Cell[V]

3

4 def streamSink[E]: StreamSink[E]

5 def send[E](s: StreamSink[E], event: E): Unit

6 def listen[E](s: Stream[E], callback: E => Unit): Listener

7 def cellSink[V](initial: V): CellSink[E]

8 def send[V](c: CellSink[V], update: V): Unit

9 def listen[V](c: Cell[V], callback: V => Unit): Listener� �
Listing 2.6: An abstract view on the Sodium operational primitives.

CHAPTER 2. BACKGROUND 15

2.2. TECHNOLOGIES

Additionally, Sodium offers other operational operators to tackle some spe-
cific practical problems (e.g., value, updates, split, defer. . .) and many more
higher-order primitives to facilitate the construction of computational graphs (e.g.,
accum, collect, sequence, gate. . .). While these operators will not be discussed
here, since they are not as relevant for this project, more information about them
and Sodium can be found in the book [BJ16]. The book also describes some help-
ful FRP patterns, such as the calming pattern, useful to create calm reactive
variables, which avoid firing consecutive repetitions of the same event, reducing
redundant re-computations.

The authors compare other standard event-programming paradigms (specifi-
cally the observer pattern) to Sodium, highlighting several bugs that are common
in the former, which are banished in the latter if used as intended. In particular,
Sodium promises to solve the following problems:

• Unpredictable order : in complex networks of callbacks, it is difficult to track
the order in which they are executed. Sodium abstracts over event ordering
making it completely undetectable.

• Missed first event : it is difficult to guarantee that callbacks are registered
before the first event. Sodium can solve the problem by initializing the
program within a transaction.

• Messy state: callbacks tend to describe behaviors as state machines, which
are difficult to maintain. Sodium solves the problem using the declarativity
of the FRP paradigm.

• Threading issues : executing callbacks concurrently may lead to deadlock
due to synchronization. Sodium solves the problem by executing only one
transaction at a time.

• Leaking callbacks : forgetting to deregister a callback from a producer causes
memory leaks and unnecessary CPU time consumption. Sodium automati-
cally deregisters callbacks that are not used any longer.

• Accidental recursion: it is easy to introduce accidental cyclic dependencies
between nested callbacks. Sodium solves the problem using the declarativity
of the FRP paradigm.

In addition, Sodium grants the compositionality required to tackle the growing
complexity of scalable systems.

16 CHAPTER 2. BACKGROUND

2.2. TECHNOLOGIES

2.2.2 ScaFi

Scala Fields (ScaFi)4 is an open-source aggregate computing framework for
the Scala programming language, providing a usable internal DSL for aggregate
specifications and a platform for the simulation and execution of such specifications
[CAV].

In ScaFi, the core concepts of field calculus are modeled by a trait like the one
reported in Listing 2.7 [VBD+19], whose methods represent the constructs of field
calculus.� �

1 trait FieldCalculus:

2 // neighbors calculus

3 def nbr[E](exp: => E): E

4 def rep[E](exp: => E)(evolve: E => E): E

5 def foldhood[E](exp: => E)(accumulate: (E, E) => E)(nbrExp: => E): E

6 def aggregate[E](exp: => E): E

7

8 // platform interactions

9 def mid: Id

10 def sense[V](name: String): V

11 def nbrvar[V](name: String): V� �
Listing 2.7: The core constructs of field calculus, represented as a trait, abstracting
over the actual organization within ScaFi.

ScaFi provides no explicit reification for computational fields. Indeed, any
Scala expression is treated implicitly as a field calculus expression, yielding a com-
putational field. For instance, the expression “1 + 2” yields a constant uniform
computational field holding the value 3 at any point in space and time, obtained
as the point-wise summation of a field of “1”s and a field of “2”s (Figure 2.5).

Despite being equivalent, the semantics of ScaFi differs from the semantics
of field calculus for some operators: evolution over space is implemented with a
combination of the nbr and foldhood operators, the latter leveraging the former
to accumulate the values of neighbors in each device (i.e., nbr does not yield a
neighboring value directly as in field calculus); restriction is implemented using
the aggregate operator, which handles selective partitioning; evolution over time
with rep follows the same semantics as in field calculus. This variant of field
calculus assumes the name of neighbors calculus [ACDV23].

Additionally, ScaFi provides contextual operators that handle interactions with
the underlying platform, namely mid, which computes the field of the device iden-
tifiers; sense, which computes a field of the values perceived by a specific sensor
from the environment (e.g., a field of temperatures); and nbrvar, which computes
a field mapping each neighbor to a value perceived by a specific sensor from the
environment (e.g., a field of distances with each neighbor).

4Repository at: https://github.com/scafi

CHAPTER 2. BACKGROUND 17

https://github.com/scafi

2.2. TECHNOLOGIES

Figure 2.5: A graph representing an aggregate of devices (nodes) and their neigh-
boring relations (edges). In particular, it represents the computational field yielded
by the expression “1 + 2” (image from the site [CAV]).

The core DSL can be extended with mixins to provide higher-level primitives
and operators. ScaFi already includes some built-in extensions, such as the resilient
aggregate computing blocks (Listing 2.8) and some derived operators (Listing 2.9).� �

1 trait AggregateComputing:

2 self: FieldCalculus =>

3 def G[V](source: Boolean , initial: V, accum: V => V, metric: () => Double): V

4 def C[P: Bounded , V](potential: P, accum: (V, V) => V, local: V, nullV: V): V

5 def T[V: Numeric](initial: V, floor: V, decay: V => V): V

6 def S(grain: Double , metric: () => Double): Boolean� �
Listing 2.8: The core constructs of aggregate computing, represented as a mixin
for field calculus, abstracting the actual organization within ScaFi.� �

1 trait ScafiLanguage:

2 self: FieldCalculus with AggregateComputing:

3 def branch[E](cond: => Boolean)(th: => E)(el: => E): E

18 CHAPTER 2. BACKGROUND

2.2. TECHNOLOGIES

4 def mux[E](cond: => Boolean)(th: => E)(el: => E): E

5 def share[E](exp: => E)(evolve: (E, () => E) => E): E� �
Listing 2.9: The core constructs of the ScaFi language, represented as a trait,
abstracting over the actual organization within ScaFi.

The higher-level primitives in ScaFi include but are not limited to the already
presented G, C and T blocks of aggregate computing; an additional S block, which
handles sparse leader election based on proximity; a branch operator, implement-
ing the branching expression of field calculus (relying on aggregate)5; and a new
share operator, which handles the evolution over time of a neighboring value (in-
deed a combination of the behaviors of rep and nbr in field calculus, albeit much
more efficient [ABD+19]).

The execution of a ScaFi specification is performed by the underlying platform,
which adopts a round-based execution model (Figure 2.6), in which a round is
the computation required for an individual device to produce its next output based
on the aggregate specification. Rounds are executed asynchronously, with timing
determined by the scheduler of the platform. A round consists of the following
three steps in order:

1. Sense: the device updates its current context (i.e., all known information
from its perspective), by retrieving its state (i.e., its previous output), the
information perceived through its sensors from the local environment and
the messages transmitted by neighboring devices.

2. Compute: the device computes its current output by executing the aggre-
gate specification against its current context. The output of a device is an
abstract syntax tree, tracking the structure of the executed aggregate spec-
ification for alignment. In particular, the root of the tree contains the final
result of the computation, while the roots of its subtrees contain the results
of sub-computations.

3. Interact: the device broadcasts some information extracted from its output
(called an export) to neighboring devices and updates the local environ-
ment through its actuators. The exports can be derived from the output of
the device by searching in the abstract syntax tree for operations involving
communication (e.g., subtrees depending on nbr).

Support for simulation is also implemented by several ScaFi modules or through
integration with third-party simulators (e.g., Alchemist6 [PMV13]).

5Conditional computation without partitioning is implemented by the mux operator instead,
which is similar to an if-then-else expression in Scala.

6Repository at: https://github.com/AlchemistSimulator/Alchemist

CHAPTER 2. BACKGROUND 19

https://github.com/AlchemistSimulator/Alchemist

2.2. TECHNOLOGIES

Figure 2.6: The round-based execution model of ScaFi (image from the paper
[CAV21]). The diagram includes logical components (solid rectangular boxes),
activities (solid rounded boxes), devices (dashed rounded boxes), flow of control
(solid arrows), and flow of data (dashed arrows).

2.2.3 FRASP

FRASP (Functional Reactive Approach to Self-organization Program-
ming)7 is a novel open-source aggregate computing DSL for the Scala program-
ming language, currently under active research.

FRASP draws inspiration from ScaFi, sharing many similarities. The key
distinction lies in the implemented execution model: the former adopts a novel
functional reactive execution model, leveraging the Sodium library, as opposed to
the round-based execution model of the latter, common in aggregate computing
[CDA+23].

The motivation behind FRASP is to provide for some of the shortcomings of
the round-based execution model, including periodic computation, complete re-
computation and redundant message exchanges. Indeed, the benefits of adopting
the execution model of FRASP for aggregate computing are the following:

• Event-driven computation: in a device, computation is driven by relevant

7Repository at: https://github.com/cric96/distributed-frp

20 CHAPTER 2. BACKGROUND

https://github.com/cric96/distributed-frp

2.2. TECHNOLOGIES

changes in its perception of the environment (e.g., sensors and neighbor
data). As a result, computation is performed only when required.

• Independent scheduling of sub-computations : when a device detects a change
in its context, only the dependent sub-computations of its programs are
re-computed. In other words, complete re-computations of an aggregate
specification are avoided when possible.

• Minimal communication: a device only transmits its exports upon relevant
changes, avoiding further message exchanges after the aggregate has reached
a stable configuration. As a consequence, redundant computation caused by
repeated messages is avoided.

In FRASP, computational fields are reified into Sodium’s Cells, which neatly
capture their time-varying nature. Like FRP, a specification is the configuration
of a computational graph, which tracks the dependencies between computational
fields and manages the propagation of change automatically.

Computational fields are initialized by Flows, which model sub-computations
in an aggregate specification and are first-class citizens in FRASP. The purpose
of Flows is to defer the construction of the computational graph until the devices
of the aggregate network are initialized, which is required to express dependencies
related to their neighbors and sensors. In addition, Flows keep track of their
position inside the FRASP specification, building the abstract syntax tree used
for alignment.

The syntax of FRASP faithfully resembles the syntax of field calculus, while
also sharing common constructs with ScaFi (Listing 2.10). However, since compu-
tational fields have been reified, additional operators are required to adapt values
yielded by plain Scala expressions to the language constructs, namely constant

for values, map for unary operators and lift for binary operators (explicit lifting).
The main difference with the field calculus semantics is the loop construct,

replacing the rep construct. The loop construct implements the evolution of
a computational field over time as a (cyclic) self-dependency within the compu-
tational graph of a FRASP specification, rather than relying on the concept of
computation round. Indeed, the previous state of a device is computed through
self-alignment, leveraging the fact that every device is a neighbor of itself.� �

1 trait FraspLanguage:

2 // field calculus

3 type Flow[V]

4 def loop[V](init: V)(evolve: Flow[V] => Flow[V]): Flow[V]

5 def nbr[V](cond: Flow[Boolean])(th: Flow[V])(el: Flow[V])

6 : Flow[NeighboringValue[V]]

7 def branch[V](cond: Flow[Boolean])(th: Flow[V])(el: Flow[V]): Flow[V]

8 def constant[V](value: V): Flow[V]

9 def map[A, B](a: Flow[A])(operator: A => B): Flow[B]

10 def lift[A, B, C](a: Flow[A], b: Flow[B])(operator: (A, B) => C): Flow[C]

CHAPTER 2. BACKGROUND 21

2.2. TECHNOLOGIES

11

12 // platform interactions

13 def mid: Flow[DeviceId]

14 def sensor[V](name: LocalSensorId): Flow[V]

15 def nbrSensor[V](name: NeighborSensorId): Flow[NeighboringValue[V]]

16

17 // derived operations

18 def mux[V](cond: Flow[Boolean])(th: Flow[V])(el: Flow[V]): Flow[V]

19 def share[V](init: Flow[V])(evolve: Flow[NeighboringValue[V]] => Flow[V])

20 : Flow[V]� �
Listing 2.10: The core constructs of the FRASP language, represented as a trait,
abstracting over the actual organization within FRASP.

FRASP also provides a basic simulator implementing its reactive execution
model (Figures 2.7 and 2.8). On an abstract level, the simulator operates in two
phases:

• Configuration: accept a FRASP specification, which describes the struc-
ture of a computational graph, and an environment, which describes the
devices of the aggregate and their neighboring relations (e.g., based on prox-
imity).

• Execution: create the devices, based on the environment, and build the
computational graph of the aggregate, based on the FRASP specification. In
doing so, the simulator establishes the dependency chains from the percepts
of each device (i.e., neighbor and environmental data) to its exports and from
its exports to the neighbor data perceived by its neighbors. As soon as the
graph is built, the input nodes8 of the computational graph will propagate
their initial value to all their dependents, then the computation is carried on
automatically by the underlying FRP engine indefinitely.

Since non-trivial specifications for aggregate computing include cyclic de-
pendencies in the computational graph, additional measures must be taken
to avoid the indefinite propagation of non-relevant changes (e.g., redundant
messages). In particular, FRASP applies the FRP calming pattern to all
nodes when building a computational graph, allowing self-stabilizing spec-
ifications to eventually reach a stable state, in which events are no longer
propagated in the aggregate until the next change in the environment. Note
that the execution may continue indefinitely even after reaching a stable
state, since it is always possible for an event to happen in the future, how-
ever, no propagation of change implies no consumption of computational
resources (i.e., the aggregate keeps waiting for an event to occur).

8An input node is node initialized by a leaf Flow in the abstract syntax tree of a FRASP
specification: either constant, mid, sensor, nbrSensor or loop, as they do not require other
Flows in input.

22 CHAPTER 2. BACKGROUND

2.2. TECHNOLOGIES

Figure 2.7: The reactive execution model of FRASP. In the diagram, three
devices (gray circles) with neighboring relations (solid lines) are configured with
an aggregate specification (blue circles, also denoted P). For each device, the input
of the specification is neighboring (N) and local environmental data from sensors
(S); the output is the export transmitted to neighbors (E). In the computational
graph, there are internal (solid arrows) and external (dashed arrows) dependencies.

Figure 2.8: An example of propagation of change in the execution model of
FRASP. The local environment of device 1 changed, causing changes to all its
dependents. The three dots indicate that the change continues to propagate fol-
lowing the graph dependencies. Note how the propagation of change would carry
on indefinitely in any cyclic graph without proper measures (e.g., calming pat-
tern).

CHAPTER 2. BACKGROUND 23

2.2. TECHNOLOGIES

Since this project contributes to the implementation of FRASP, the following
provides a brief overview of its architecture (Figure 2.9). Internally, FRASP is
organized in the following three layered modules:

• frp: provide extensions and abstractions over the concrete FRP engine on
which the framework depends.

• core: provide the model and implementation of the FRASP specification,
as illustrated previously in Listing 2.10.

• simulation: provide a basic simulator for running aggregate specifications
over a network of devices.

core frp

simulation

Core

Language

RichLanguage Semantics

Incarnation

FrpEngineFrpExtensions

AggregateProgramSimulator

Environment

Figure 2.9: The architecture of FRASP (image from the paper [CDA+23]).

The contributions of this project concern mostly the frp and simulation mod-
ules. More details will be provided in the following chapters as needed.

24 CHAPTER 2. BACKGROUND

Chapter 3

Analysis

This chapter performs an analysis of the objectives and requirements of this
project, outlining the strategy to achieve them. First, Section 3.1 introduces
the objective of the project, which is the implementation of functional tests for
FRASP. Then, Section 3.2 explains the process of testing aggregate specifications,
while Section 3.3 describes the specific strategy adopted for testing aggregate spec-
ifications, mostly based on convergence properties. Finally, Section 3.4 concerns
the verification of properties through simulations and analyzes the attributes of
an ideal simulator.

3.1 Objectives

As anticipated in Section 1.1 of the introduction, FRASP is currently in research
and requires a consolidated test suite supporting the research process, setting
expectations on the behavior of the framework and assessing the correctness of its
current state, so that software regressions may be avoided during its development.
Additionally, the test suite could discover unexpected implications of the reactive
model adopted by FRASP, as there are no guarantees on the equivalence between
a reactive or round-based execution of the same specification.

At the current state, the test suite of the FRASP language contains only a few
tests and samples verifying the reactivity and the generation of the device exports
for each language construct individually (semantic tests), while functional tests
concerning the execution of aggregate specifications (aggregate tests) are miss-
ing. In other words, there are no tests verifying that an aggregate evolves following
the user’s specification.

The goal of this project is to implement the missing aggregate tests, assessing
the correctness of several specifications, executed against different network config-
urations and environments. ScaFi will be used as a reference for establishing the

CHAPTER 3. ANALYSIS 25

3.2. AGGREGATE TESTING

expectations on FRASP specifications, so that FRASP may be empirically proved
functionally equivalent to ScaFi, while retaining its reactive benefits.

3.2 Aggregate Testing

An aggregate test should verify that an aggregate behaves as expected with respect
to a given specification. However, while its purpose may be clear at an abstract
level, a more detailed analysis is required to determine its concrete implications
(e.g., what does it mean for an aggregate to behave as expected?).

Leveraging the network operational semantics of field calculus [VAB+18], the
evolution of an aggregate can be described by a transition system in which each

transition is Nt
act−→ Nt+1 with the following notation:

Nt ::= (Ψt, Et) : the state of the aggregate at time t

Et ::= (τt,Σt) : the state of the environment at time t

Ψt : the output of all the devices at time t

τt : the topology of the network at time t

Σt : the percepts of the sensors at time t

act ::= δk or env : a change in the aggregate

δk : a change due to the kth device transmitting its export

env : a change in the environment

In a static environment E0, transitions can be reduced to the form Ψt
δk−→ Ψt+1,

i.e., the transition system is uniquely described by an initial aggregate state and
the sequence of all the device exports.

Once the evolution of an aggregate is expressed as a transition system, formal
verification techniques for transition systems may be applied to aggregates as well.
In particular, one can express properties on aggregates using propositional logic,
for static attributes, or even temporal logics, for dynamic or branching attributes.
Then, properties may be verified through formal techniques such as model checking
or simulation.

Properties are used to formally define the expectations for the evolution of
an aggregate, including the output of the devices in the network, their percepts,
the topology of the network, environmental changes and device communication.
Expectations may involve one, some or all of the devices in the network, therefore
properties can be:

26 CHAPTER 3. ANALYSIS

3.3. AGGREGATE CONVERGENCE TESTING

• Global : a property of the whole aggregate (e.g., mid should evaluate to the
identifiers of all the devices in the network).

• Regional : a property of a selected group of devices in an aggregate (e.g.,
branch(isRed){obstacle}{somethingElse} should evaluate to obstacle

for all red devices in the network).

• Individual : a property of a single device in an aggregate (e.g., the 0th device
should always be a source of potential).

3.3 Aggregate Convergence Testing

The first step in consolidating the test suite is to implement several aggregate
unit tests, considering a FRASP construct as the software unit, and integration
tests, involving FRASP specifications (i.e., combinations of FRASP constructs).
Best practices [Osh13] want unit tests to be:

• Simple: easy to implement. Indeed, inserting complex logic in a test requires
such logic also to be tested, in order to ensure that the errors found by the
test are not caused by faults in its logic. Moreover, simple tests can be easily
understood, facilitating the detection of the cause of failure.

• Isolated : independent of other unit tests (i.e., concerning a single software
unit). Dependencies between unit tests make it more difficult to detect the
cause of failure.

• Reproducible: always yielding the same results under the same initial con-
ditions (i.e., determinism). Non-determinism may cause a test to succeed
under breaking changes or to fail even with no changes at all.

• Finite: yielding a result in a limited amount of time, ideally short for sup-
porting frequent repeatability.

• Automated : executed each time a relevant (preferably small) increment of
software is completed.

By definition, integration tests cannot be isolated, however the other properties
should be preserved to the best of one’s possibilities.

One of the challenges with aggregate tests is that the evolution of an aggre-
gate is naturally non-deterministic, due to the unpredictability of communication
in distributed systems. As a consequence, tests should be carefully designed to

CHAPTER 3. ANALYSIS 27

3.4. SIMULATION

reason about some deterministic higher-level behavior exhibited by the underly-
ing non-deterministic evolution of the aggregate (in literature, don’t care non-
determinism), so that they can be reproducible without forcing a deterministic
evolution of the aggregate, which would be unrealistic and reduce the importance
of the tests.

In this sense, the primary strategy employed in this project is aggregate con-
vergence tests, which are based on the convergence of an aggregate towards
an expected stable state. Convergence is a property that can be expressed in
linear temporal logic as ♢□P (“sometimes P will hold forever”). In particular,
it may be interesting to evaluate the property ♢□Ψexpected, understanding if the
outputs of an aggregate will eventually reach and hold the expectation Ψexpected.
However, convergence can only be verified for self-stabilizing specifications (e.g.,
non-oscillating), assuming a finite number of changes in the environment.

3.4 Simulation

Since a simulator is already provided within FRASP, simulation will be used as a
formal verification method for properties in aggregate tests. However, the current
simulator is basic and lacks some properties required for adequate testing (referring
to the previous Section 3.3). In particular, an adequate simulator for aggregate
tests should provide the following properties:

• Observability : during a simulation, it should be possible for external entities
to reconstruct the state of the simulation from its outputs. For aggregate
tests, a simulation should expose at least the state of the aggregate and the
progress of the simulation. Additionally, it would be useful to have access
to individual, regional and global views of the aggregate. At the moment,
the simulator does not expose any outputs to other entities, instead, it only
shows the outputs of individual devices to the user through a console.

This property is required for automated aggregate tests.

• Controllability : it should be possible to control a simulation, leading it to a
stable state when its execution does not converge in a finite amount of time.
For aggregate tests, a simulation should at least have the capability to be
halted. At the moment, a simulation starts as the simulator is created and
continues indefinitely, forever reacting to the next event.

This property is required for finite aggregate tests.

• Fairness : in aggregate tests, it should always be possible for every device to
compute an export in the future. At the moment, the simulator relies on the
scheduling of the underlying runtime to achieve fairness.

28 CHAPTER 3. ANALYSIS

3.4. SIMULATION

This property is required to support self-stabilization.

• Efficiency : it should be optimized to minimize execution time, possibly lever-
aging parallelism. At the moment, the simulator supports concurrent execu-
tion, but it suffers from critical races (and other deeper problems discussed
later in Section 4.4).

This property is required to reduce the computational costs of testing and
support frequent repeatability.

• Reproducibility : multiple simulations should yield similar results under sim-
ilar initial configurations, implying the ability to execute a simulation under
similar conditions multiple times (repeatability) or under different conditions
(replicability).

Obviously, this property is required for reproducible tests.

Since the current simulator does not provide all the aforementioned properties,
an extension of the simulator is necessary. Most importantly, observability and
controllability should be provided for testing. However, in doing so, one should
be mindful of preserving the reactive execution model of FRASP as is. Indeed,
a problem with testing through simulation is that the results of the tests may be
influenced by the implementation of the simulator.

CHAPTER 3. ANALYSIS 29

3.4. SIMULATION

30 CHAPTER 3. ANALYSIS

Chapter 4

Design

This chapter presents the abstract solution designed for achieving the objectives
of this project. First, Section 4.1 introduces an extension of the base reactive
execution model of FRASP with increased observability and controllability. Then,
Section 4.2 provides a solution to the halting problem of FRASP simulations.
Afterwards, Section 4.3 explains the process of performing aggregate convergence
tests leveraging the new simulation models. Finally, Section 4.4 describes the
parallelism constraints on concurrent simulations.

4.1 Simulation

The proposed approach for improving the observability and controllability of the
current simulator is to provide an interface on top of the base reactive execution
model of FRASP (Figure 4.1). The design of this interface abstracts from the
underlying FRP framework, specifically Sodium, and from the approach adopted
for managing the propagation of change in the computational graph (e.g., concrete
implementations may support concurrency).

Regarding observability, in static environments, the evolution of an aggregate
is uniquely described by its initial state and the sequence of device exports (as
discussed in Section 3.2). As a consequence, complete observability of the evolution
of an aggregate can be achieved by simply collecting all the exports in the order
they were produced, whereas the initial state of the aggregate can be inferred
from the specification and environment provided during the configuration of the
reactive execution model (recall the configuration phase from Section 2.2.3). In
practice, the simulation interface exposes a new reactive variable, called exports,
derived by merging individual exports from each device. The firings of exports
can also be filtered, mapped and accumulated to provide individual, regional or
global views on the evolution of the aggregate.

CHAPTER 4. DESIGN 31

4.1. SIMULATION

Figure 4.1: The interface of a simulation for observing and controlling the under-
lying reactive execution model of FRASP. The user can now observe the state of
a simulation (exports), start it (start) or stop it (stop). To support these new
functionalities, new dependencies have been added for observability (blue dashed
arrows) and controllability (green dashed arrows).

Observability extends to dynamic environments by leveraging device sensors
(using the sensor and nbrSensor constructs) to reactively produce exports con-
taining changes in the environment.

Concerning controllability, the simulation interface offers a start functionality,
delaying the creation of the computational graph of the base reactive execution
model until requested by the user (instead of building the graph when the simu-
lation is created). This delay allows the user to declare their own dependencies
on the exports of the simulation before its execution. As a consequence, forward
referencing is required for exports to declare its dependencies on the individual
exports of the devices.

To stop a simulation, it is possible to filter any future export when requested
by the user, freezing all views on the simulation (i.e., exports) and blocking any
communication within the aggregate. However, non-observable computation could
still be triggered following a change in the environment, even after the simulation
is stopped. Therefore, to optimize the simulation, any future percept of the device
sensors should also be filtered upon termination. Alternatively, the computational

32 CHAPTER 4. DESIGN

4.2. STEP SIMULATION

graph should be disposed of, if possible.
An important aspect to consider for the observability of a simulation is sim-

ulation time, which measures the progress of a simulation. In event-driven sim-
ulations, time is quantified as the number of events fired since the beginning of
the simulation (i.e., the number of firings of the variable exports). Still, this
representation has some implications, such as time not advancing if no events are
fired, affecting controllability. Indeed, one cannot rely on the simulation time to
stop the simulation without prior knowledge about the evolution of the aggregate.
For example, halting a simulation after a specific number of events is unreliable,
because it cannot be assumed that the simulation will ever fire that many events,
so the condition may never be satisfied. However, a similar policy may be required
to ensure termination in aggregate tests, when the simulations never reach a sta-
ble state, perhaps due to the nature of the specification or an unknown flaw in its
implementation.

Abstracting from the specific use case of halting the simulation, the problem is
that neither the user nor the simulation have an understanding of the progress of
the aggregate’s evolution. On the one hand, the user lacks information about the
number of events that will be produced in the simulation, which depends on the
concrete implementations of the simulation and specifications. On the other hand,
the simulation lacks information about possible changes of the environment, that
may be triggered not only by the device actuators, but also by external entities,
such as the user. As a consequence, none of the parties can evaluate when the
evolution of the aggregate should be considered concluded. This issue is referred
to as the halting problem in the following sections.

4.2 Step Simulation

In order to address the halting problem, the previous simulation interface should
be refined to attain increased observability and controllability, providing the user
with more information about the state of the simulation. One possibility is to
model the concept of step simulation, which would allow the user to execute a
simulation step-by-step, receiving feedback after every step (Figure 4.2).

The concept behind a step simulation involves keeping track of the exports of
the devices, deferring their propagation until requested by the user. This strategy
achieves greater observability since the simulation knows precisely the number of
pending exports, allowing the user to be notified when there is none. Controlla-
bility is also increased, as the user can decide exactly when the simulation should
continue. Ultimately, the halting problem is solved if the user has complete control
over the environment. Indeed, in this scenario, the user can reasonably assume
that the evolution of the aggregate has concluded (and the simulation should be

CHAPTER 4. DESIGN 33

4.2. STEP SIMULATION

Figure 4.2: The interface of a step simulation. Each device owns a queue of
exports that need to be transmitted. In fact, when an export is produced, it is in-
serted in the queue of the corresponding device, instead of being broadcast directly
to its neighbors. The interface exposes new functionalities for selecting, transmit-
ting (next) and observing (steps) the next export from the queues, increasing
observability (the user can be notified if there are no more exports to be transmit-
ted) and controllability (the user can decide exactly when the simulation should
continue). The other functionalities of simulations are supported, but hidden for
clarity.

stopped) when there are no more exports to propagate and no further intention
to change the environment.

In detail, the simulation maintains a queue of exports for each device, so that
the device exports are pushed into the queue of the corresponding device when
produced. The user can request the execution of the next step (i.e., the propaga-
tion of the next export), then an export is extracted from one of the device queues
and transmitted to the neighbors. For each request, the user is notified of the ex-
tracted export or the lack of pending exports through the reactive variable steps.
Note how the system behaves exactly like the base reactive model of FRASP if a
request is sent as soon as a new export is produced.

34 CHAPTER 4. DESIGN

4.3. CONVERGENCE SIMULATION

An added benefit of this approach is the ability to manage the scheduling of
device exports. When a user request is received, the simulation takes charge of
selecting the next export to transmit. To this end, various scheduling policies can
be implemented. For instance, the next export can be extracted from one of the
non-empty queues chosen randomly, ensuring non-determinism in the aggregate’s
evolution. Alternatively, a round-robin policy can be employed to select the next
export, ensuring fairness in the simulation.

Concurrency is also supported as events from different export queues may be
propagated at the same time. However, synchronization is required to guarantee
a consistent view of the simulation from the perspective of the user.

4.3 Convergence Simulation

The simulation interface can be extended once more to provide direct support
for aggregate convergence tests, exposing an operation for evaluating the limit
of an aggregate evolution with respect to time, that is a stable state for self-
stabilizing specifications. To support such operation, during the configuration
phase, a simulation should accept a halt policy, which is a condition that stops
the simulation when satisfied. Moreover, such halt policy should be designed so
that the simulation is stopped when the aggregate reaches a stable state.

For example, for a step simulation, a suitable halt policy would be to stop the
simulation when there are no more exports that can be extracted from the device
queues. Instead, for a general reactive simulation, a suitable halt policy would be
to stop the simulation after a certain period of inactivity (i.e., time elapsed since
the last emitted event). However, real-world time introduces non-determinism in
the results of the simulations, rendering the policy not suitable for testing.

4.4 Concurrent Simulation

Concurrency in reactive simulations can be achieved by delegating the propaga-
tion of change to some workers (e.g., a thread pool). In particular, in Sodium,
concurrency can be achieved by removing a dependency between a consumer and
a producer in a computational graph, then listening to the events of the producer
and delegating to a worker the propagation of each event towards the consumer.
However, this approach is limited to concurrency and cannot achieve parallelism,
due to Sodium’s transactional system.

As discussed in Section 2.2.1, Sodium’s transactions are executed one at a
time to guarantee glitch freedom, trading off parallelism to ensure consistency.
Later, it was discovered that transactions are executed sequentially even among

CHAPTER 4. DESIGN 35

4.4. CONCURRENT SIMULATION

independent computational graphs. Therefore, unless the computation of a device
is detached from the computational graph (i.e., executed outside the FRP engine),
concurrent simulations cannot be executed in parallel, in fact concurrent events
are still processed sequentially.

Moreover, the deployment of the reactive execution model in real distributed
systems is still unclear, possibly hinting towards the exploration of distributed
reactive programming solutions. Further research could discover the effects of
Sodium’s consistency in the evolution of aggregate of devices and evaluating the
possibility of achieving the same level of consistency in large-scale distributed
systems, such as CASs.

36 CHAPTER 4. DESIGN

Chapter 5

Implementation

This chapter describes the concrete solution implemented for this project, build-
ing upon the design presented in the previous chapter. First, it introduces the
implementations of several simulators, including a general simulator (Section 5.1),
a step-by-step simulator (Section 5.2), a concurrent simulator (Section 5.3), and
a convergence simulator (Section 5.4). Then, Sections 5.5 and 5.6 detail two ex-
tensions of the Sodium library, integral to the implementation of the simulators
and the test suite. Finally, Section 5.7 discusses a solution for supporting dynamic
environments in FRASP.

5.1 Simulator

The implementation of a simulator is depicted by the class diagram in Figure 5.1,
which is based on the design described in Section 4.1.

A Simulator can be used to create several Simulations, each one requiring
a Flow, that is a FRASP specification, and a Configuration, which includes the
Environment where the aggregate is situated. To define the concepts of Flow and
Environment, a Simulator relies on a specific SimulationIncarnation, which is
an instance of the aggregate computing DSL in FRASP, tailored for simulation.

The implementation of the Simulator follows the cake pattern, in which depen-
dencies are defined inside external mixin components and can be imported by ex-
tending the desired components. In particular, Simulator depends on the Simula-
tionConfigurationComponent, which defines the concept of SimulationConfi-
guration, and the SimulationComponent, which defines the concept of Simula-
tion. In the following sections, specializations of Simulator defines additional
concepts using other components, adhering to the same naming convention.

As per design, a Simulation provides observability by means of the methods
exported, which supplies a Stream of all the device exports transmitted within

CHAPTER 5. IMPLEMENTATION 37

5.2. STEP SIMULATOR

Figure 5.1: A UML class diagram of the simulator and its components.

the aggregate, exportedBy, which supplies a Stream of all the exports of a single
device (an individual view), and exportedByAll, which supplies a Stream of all
the device exports accumulated during the simulation (a global view, in which
each event is a CollectiveExportMap, that is a map from the devices to their
latest export). Similar methods are provided to observe only the result of the
computations, that is the root of the device exports.

Concerning controllability, a Simulation exposes one method start to be-
gin its execution, running the underlying startBehavior of the concrete type
of Simulation, and another method stop to halt it, running the underlying
stopBehavior likewise. Moreover, a method isRunning can be used to know if
the simulation has already started but has not stopped yet, while another method
termination allows reacting to the end of the simulation.

5.2 Step Simulator

The implementation of a step simulator is represented by the class diagram in
Figure 5.2, which is based on the design described in Section 4.2.

38 CHAPTER 5. IMPLEMENTATION

5.2. STEP SIMULATOR

Figure 5.2: A UML class diagram of the step simulator and its components.

A StepSimulator is a Simulator that creates StepSimulations. As per de-
sign, a StepSimulation provides enhanced observability and controllability by
means of the methods next, which executes a step of the simulation by transmit-
ting the next device export to the neighbors and the user, and exportedSteps,
which supplies a Stream of the device exports transmitted at each step.

A thread-safe variant of StepSimulation is the AsyncStepSimulation, which
provides a new method asyncNext, executing the next step of the simulation in a
given ExecutionContext, and a new property ready, allowing registering callbacks

CHAPTER 5. IMPLEMENTATION 39

5.2. STEP SIMULATOR

to execute each time a new export is available for transmission. Actually, only
an implementation of AsyncStepSimulation has been developed at the moment,
meaning that every StepSimulation is an AsyncStepSimulation under the hood.
In the future, a specific implementation of StepSimulation may be developed to
be optimized for single-threaded execution.

Specifically, the implemented AsyncStepSimulation involves keeping track
of the device exports through per-device queues, deferring their transmission to
the neighbors until requested by the user, that is when the methods next or
asyncNext are called, which delegate the propagation of change to the user or
to an ExecutionContext respectively. The device queues are managed by an
ExportScheduler: each time an export is produced, the method schedule of the
scheduler is called, queuing the device export for later consumption; each time the
next step of the simulation is requested by the user, the method next of the sched-
uler is called, dequeuing and transmitting the next export both to the neighbors
and the user. The transmission to the user happens by pushing the exports into
the exportedSteps stream. If all the device queues are empty, an empty event is
pushed instead.

The ExportScheduler decides the order of transmission of the device exports,
preserving the order of computation for each device (i.e., the export of a device
cannot be transmitted before its previous export). In particular, the scheduling
policy adopted by the current implementation is a best-effort round-robin, in which
each device is given the same chance to transmit its exports as long as they have
some to transmit, guaranteeing fairness during the simulation.

The SimulationConfiguration of a StepSimulation is modeled by the class
StepSimulationConfiguration. In addition to the Environment, the configura-
tion includes an HaltPolicy, which contains the logic for determining the end of
the simulation. Some built-in HaltPolicys are already defined in the correspond-
ing simulator component, namely: never, which never halts the simulation (the
user may still stop it at any time); haltWhen, which halts the simulation when a
given predicate holds for the state of the aggregate; haltAfter, which halts the
simulation after a given number of steps; finally, haltOnVainStep, which halts the
simulation when a step is executed, but all the export queues are empty. Addition-
ally, HaltPolicys may be merged by means of the combine operator to consider
multiple conditions of termination, halting the simulation when any of them is
satisfied.

The StepSimulationConfiguration is interpreted by the StepSimulation

when the start method is called, creating the devices of the aggregate, building its
computational graph, scheduling the first exports and setting up the HaltPolicy.

40 CHAPTER 5. IMPLEMENTATION

5.3. CONCURRENT SIMULATOR

Example. A practical application of the StepSimulator is demonstrated in the
following program (Listing 5.1).� �

1 // Creation

2 object Incarnation extends SimulationIncarnation:

3 override type Environment = environment.Environment

4 object Simulator extends StepSimulator , WithIncarnation(Incarnation):

5 override type Configuration[A] = StepSimulationConfiguration[A]

6 import Simulator.incarnation .{*, given}

7

8 // Configuration

9 val configuration = Simulator.StepSimulationConfiguration[DeviceId](

10 environment = environment.Environment.euclideanGrid(cols = 3, rows = 3),

11 haltPolicy = Simulator.HaltPolicy.haltOnVainStep ,

12 logger = Logger.NoOperation ,

13)

14 val simulation = Simulator.simulation[DeviceId](mid)(using configuration)

15

16 // Preparation

17 simulation.exportedSteps.listen(step => println(step))

18 simulation.termination.onComplete(_ => println("END"))

19

20 // Execution

21 simulation.start ()

22 while(simulation.isRunning){ simulation.next() }� �
Listing 5.1: An application of StepSimulator. The simulator is used to display
the device exports on the standard output.

5.3 Concurrent Simulator

The implementation of a concurrent simulator is described by the class diagram
in Figure 5.3.

A ConcurrentSimulator is simply a Simulator whose Simulations are ex-
ecuted concurrently. A basic implementation of a concurrent Simulation can
be developed by leveraging an underlying AsyncStepSimulation. In detail, the
transmission of the device exports to the neighbors and the user is delegated to
an ExecutionContext, which schedules the computation on a thread pool. Trans-
mission is scheduled as soon as an export is generated, that is whenever the un-
derlying simulation is ready. As a consequence, from the perspective of the user,
the concurrent simulation behaves exactly the same as the base reactive model of
FRASP, without the increased observability of the step simulation, which would
have required further research to be developed due to the inherent challenges of
concurrency. Such development has been postponed since the concurrency of the
simulation did not translate to parallelism due to Sodium’s transactions, as better
discussed in Section 4.4 of the design.

The SimulationConfiguration of a concurrent Simulation is modeled by the
class ConcurrentSimulationConfiguration. In addition to the Environment and

CHAPTER 5. IMPLEMENTATION 41

5.3. CONCURRENT SIMULATOR

Figure 5.3: A UML class diagram of the concurrent simulator and its components.

HaltPolicy, the configuration includes the ExecutionContext where the simu-
lation will be executed. Some built-in HaltPolicys are already defined in the
corresponding simulator component, including never, haltWhen and two others,
namely haltAfterDurationOf, which halts the simulation after a certain period
of time has elapsed since its start, and haltAfterInactivityOf, which halts the
simulation after a certain period of time has elapsed since its latest event.

Example. A practical application of the ConcurrentSimulator is demonstrated
in the following program (Listing 5.2).� �

1 // Creation

2 object Incarnation extends SimulationIncarnation:

3 override type Environment = environment.Environment

4 object Simulator extends ConcurrentSimulator , WithIncarnation(Incarnation):

5 override type Configuration[A] = ConcurrentSimulationConfiguration[A]

6 import Simulator.incarnation .{*, given}

7

8 // Configuration

9 val executor = Executors.newFixedThreadPool(nThreads = 10)

10 val configuration = Simulator.ConcurrentSimulationConfiguration[DeviceId](

11 environment = environment.Environment.euclideanGrid(cols = 3, rows = 3),

12 haltPolicy = Simulator.HaltPolicy.haltAfterInactivityOf (5. seconds),

13 executor = ExecutionContext.fromExecutor(executor),

14 logger = Logger.NoOperation ,

15)

16 val simulation = Simulator.simulation[DeviceId](mid)(using configuration)

17

18 // Preparation

19 simulation.exported.listen(exported => println(exported))

20 simulation.termination.onComplete(_ => executor.shutdown ())

21

22 // Execution

42 CHAPTER 5. IMPLEMENTATION

5.4. CONVERGENCE SIMULATOR

23 simulation.start ()� �
Listing 5.2: An application of ConcurrentSimulator. The program is very similar
to Listing 5.1, however, note that the concurrent simulator accepts a different
configuration (line 10). Additionally, the exports are generated continually by the
provided ExecutionContext after the simulation is started (after line 23, there is
no next method to call).

5.4 Convergence Simulator

The implementation of a convergence simulator is illustrated by the class diagram
in Figure 5.4.

Figure 5.4: A UML class diagram of the convergence simulator and its concrete
types.

A ConvergenceSimulator is a Simulator with the additional ability of evalu-
ating the stable state of an aggregate in self-stabilizing specifications, namely the
method computeLimit (or its shorthand lim). The idea behind computeLimit is
as simple as executing a simulation until its termination, returning the last export
transmitted by each device in the network, in the form of a CollectiveExportMap.
Observation of the environment is possible by leveraging the device sensors within
the specification, attaching their percepts to the device exports. However, to
ensure that the result of computeLimit is a stable state of the aggregate, the
specification should be self-stabilizing and the simulation should be halted after
the aggregate has stabilized. Additionally, if the aggregate has multiple possible
non-deterministic stable states, computeLimit can only evaluate one of them. In-
deed, it may be useful to consider only the root of the device exports to reduce the
number of stable states of the aggregate, possibly to a single deterministic stable
state.

CHAPTER 5. IMPLEMENTATION 43

5.4. CONVERGENCE SIMULATOR

Given a self-stabilizing specification, the result of computeLimit is determined
by the HaltPolicy in the configuration specified by the user. Below follows an
analysis of the suitable HaltPolicys and their effects, assuming the user has com-
plete control over the environment:

• haltWhen(== Ns): calling Ns the known stable state of the aggregate,
the simulation can be halted when the aggregate is in state Ns. This policy
works for all simulations, however, it can only be used for evaluating the
reachability of the state Ns (“sometimes Ns holds”), which is a looser
property compared to convergence (“sometimes Ns holds forever”).

• haltAfterDurationOf(T): if a stable state exists, after an infinite amount
of time the aggregate will have certainly stabilized. In general, the longer
a simulation is executed (i.e., T), the higher the chances of the aggregate
having stabilized. This policy works for all simulations, however, relying on
real-world time introduces non-deterministic results.

• haltAfterInactivityOf(T): inactivity in the simulation can be interpreted
as a symptom of stability in the aggregate. In general, the longer the sim-
ulation is inactive (i.e., T), the higher the chances of the aggregate having
stabilized. This policy works the same as haltAfterDurationOf, albeit pos-
sibly being more flexible (e.g., the same value of T may apply to a larger
variety of simulations).

• haltAfter(N): similar to haltAfterDurationOf, but it relies on the steps
of a simulation in order to track the simulation time. This policy offers
deterministic results for deterministic simulations, however, it can only be
used for StepSimulations.

• haltOnVainStep: this policy guarantees to halt the simulation when the
aggregate has stabilized, however, it can only be used for StepSimulations.

At the moment, two concrete implementations of ConvergenceSimulator are
available, based on the StepSimulator and ConcurrentSimulator.

Example. A practical application of the ConvergenceSimulator is demonstrat-
ed in the following program (Listing 5.3).� �

1 // Creation

2 object Incarnation extends SimulationIncarnation:

3 override type Environment = environment.Environment

4 object Simulator

5 extends ConvergenceSimulator.StepSimulator , WithIncarnation(Incarnation):

6 override type Configuration[A] = StepSimulationConfiguration[A]

7 import Simulator.incarnation .{*, given}

8 import Simulator.lim

44 CHAPTER 5. IMPLEMENTATION

5.5. STREAM EXTENSION

9

10 // Configuration

11 given Simulator.StepSimulationConfiguration[DeviceId] =

12 Simulator.StepSimulationConfiguration(

13 environment = environment.Environment.euclideanGrid(cols = 2, rows = 2),

14 haltPolicy = Simulator.HaltPolicy.haltOnVainStep ,

15 logger = Logger.NoOperation ,

16)

17

18 // Execution

19 def count(from: Int , to: Int): Flow[Int] =

20 loop(from)(_.map(c => math.min(c + 1, to)))

21 lim(count(from = 0, to = 10)) // Map(0 -> 10, 1 -> 10, 2 -> 10, 3 -> 10)

22 lim(count(from = 5, to = 10)) // Map(0 -> 10, 1 -> 10, 2 -> 10, 3 -> 10)

23 lim(count(from = 5, to = 15)) // Map(0 -> 15, 1 -> 15, 2 -> 15, 3 -> 15)� �
Listing 5.3: An application of ConvergenceSimulator. The program evaluates
the stable states for three similar specifications (lines 21-23), in which each device
counts all the integer numbers in a given range. For simplicity, the stable states
only show the root of the devices exports.

5.5 Stream Extension

In support of the simulators and the test suite, the set of operations on Streams
provided by Sodium has been extended with new operators for the manipulation,
analysis, and monitoring of Streams. In designing these operators, care was taken
to preserve compositionality, implementing them as pure functions, and fluency,
integrating them into the existing Stream class by means of Scala’s extension
methods, also because inheritance of the base types of Sodium is not allowed.

The collection of implemented extension methods is provided by the StreamEx-
tension object, which defines the operators discussed in the following sections.

5.5.1 Persistence Operators

The following operators can be used to deal with state persistence in Streams:

• collect: evolve an initial state init as the input Stream s generates new
events and return an output Stream s′, whose events are a combination of
the events fired by s with the current state at the moment of firing. The
given accumulator function defines both the evolution of the state and the
events of s′ depending on the firings of s.

The collect operator is an adaptation for Scala of the homonymous operator
provided by Sodium in Java.

• fold: a simplification of the collect operator, in which the events of the
output Stream s′ are a snapshot of the current state, taken at each firing of

CHAPTER 5. IMPLEMENTATION 45

5.5. STREAM EXTENSION

the input Stream s. The given accumulator function defines the evolution of
the state depending on the firings of s, and the events of s′ as a consequence.

The fold operator is an implementation of the folding operation provided
by Scala for all Iterables. However, the events of the input Stream are
folded lazily as they are fired.

An example of their application is the evolution of the global view of an aggre-
gate, such as the method exportedByAll, obtained by accumulating the individual
device exports generated during a simulation.

5.5.2 Temporal Operators

The following operators can be used to perform time-sensitive analysis on Streams:

• zipWithIndex: when applied to an input Stream s, return an output Stream
s′, whose events are the same events of s paired with the discrete time when
they were fired. Discrete time is modeled as the number of firings preceding
an event in s′.

• zipWithTime: when applied to a Stream s, return an output Stream s′,
whose events are the same events of s paired with the continuous time when
they were fired. Continuous time is defined by a given Clock, which defaults
to the number of nanoseconds elapsed since the creation of s′. Abstracting
over real-world time allows the user to provide their own implementation of
Clock to achieve complete control on the timeline of the Stream, which can
be useful to avoid non-determinism during tests.

• zipWithDelay: when applied to an input Stream s, return an output Stream
s′, whose events are the same events of s paired with the continuous time
elapsed since the previous event. Similarly to zipWithTime, continuous time
is defined by a given Clock.

An example of their application is the implementation of time-sensitive Halt-
Policys, such as the haltAfter policy, introduced in Section 5.2.

5.5.3 Derivation Operators

The following operators can be used to perform trend and behavior analysis on
Streams:

46 CHAPTER 5. IMPLEMENTATION

5.5. STREAM EXTENSION

• ngrams: when applied to an input Stream s, return an output Stream s′,
whose events are all the possible groups of consecutive events fired by s with
cardinality n. Note that s′ does not fire any event until s has emitted at least
n events, which may never happen. In such case, any information about the
events of s is lost in s′.

• ngramsOption: as ngrams, but information loss is prevented by producing
incomplete groups in s′ until s has generated at least n events. An incomplete
group contains all the consecutive events fired by s and as many placeholder
values needed to reach cardinality n. In particular, Option.None is used as
a placeholder value.

A future application of these operators could be the verification of more so-
phisticated temporal properties against the evolution of aggregates, checking the
behavior of the aggregate during a fixed time-window (e.g., evaluating if the sum
of the outputs of all the devices is always the sum at the previous step plus one).

5.5.4 Monitoring Operators

The following operators can be used to monitor the events generated by Streams:

• cold: when applied to an input Stream s, return an output Stream s′, whose
events are sequences containing all the firings of s after the creation of s′.
Since s may fire events indefinitely, the length of the sequences can be limited
to a given amount of memory, which corresponds to the number of events of s
kept in memory by the operator. When the memory is full, the oldest events
are replaced with the newest ones as they are fired.

The name of this operator comes from the notion of cold observables, as
described in Section 6.2.1 of the book [BJ16]. In Sodium, all Streams are
inherently hot observables, meaning that any dependent will react only to
the events that are fired after its dependency has been declared, ignoring all
the events that were fired before. The cold operator creates a Stream that
acts almost as a cold observable variant of the original Stream, by letting
the dependents react also to the events that were fired before the declaration
of their dependencies. However, dependents will be notified of all the events
of the original Stream only after its next firing, which may never happen.
To solve this problem, the Stream can be transformed into a Cell by means
of the hold operator, obtaining an actual cold observable. In fact, Cells
propagate their latest state as soon as a dependent is declared.

• monitor: when applied to an input Stream s, return a StreamMonitor wrap-
ping s. A StreamMonitor relies on the cold operator to monitor the wrapped

CHAPTER 5. IMPLEMENTATION 47

5.5. STREAM EXTENSION

Stream, exposing a sequence of all its events, accessible at any time by
means of the method eventLog. In other words, a StreamMonitor converts
a Stream into an up-to-date list of its events. Similarly to the cold operator,
the length of the sequence can be limited to reduce memory costs.

The purpose of these operators is to decouple the generation of the events of
a Stream from the evaluation of their properties, which greatly simplifies testing.
However, performing the evaluation during the generation of the events would be
more efficient, as the program generating the events could be interrupted prema-
turely if the property was already proven before the program termination. Natu-
rally, this optimization cannot be implemented by leveraging these operators, since
the evaluation starts only after the program termination.

An example of their application is the implementation of most of the test suite
and the ConvergenceSimulator, in which the global view of the aggregate is
monitored to return its latest state when the simulation is halted.

5.5.5 Throttling Operators

The following operators can be used to control the throughput of Streams:

• sync: combine two input Streams s1 and s2, returning an output Stream

s′, whose events are the pairs of corresponding events in s1 and s2. More
formally, the kth event of s′ is a pair containing the kth event of s1 and the
kth event of s2. Since s1 and s2 may fire their kth event at different times,
the operator requires keeping in memory the latest unpaired events of both
Streams. Similarly to the cold and monitor operators, the number of events
stored for each Stream can be limited to a given memory.

An implication of the sync operator is that the throughput of the output
Stream is equal to the lowest throughput between the input Streams, mean-
ing that the operator can be used to control the frequency at which a Stream
emits its events. Additionally, by limiting the memory of the operator, some
events of the Stream with the highest throughput may be discarded when
the memory is full, preventing possible overloads of its dependents.

• throttleWith: a specialization of the sync operator with unitary memory,
storing only the latest unpaired event of each input Stream.

• throttle: a specialization of the throttleWith operator, in which the out-
put Stream s′ fires the events of the first input Stream s1, while the second
input Stream s2 acts only as a throttle for s1.

A future application of these operators could be regulating the event production
rate of reactive variables in general, including Streams, Cells and possibly Flows.

48 CHAPTER 5. IMPLEMENTATION

5.6. FINITE STREAM EXTENSION

5.6 Finite Stream Extension

Another extension implemented for the Sodium library is the FiniteStreamExten-
sion, which defines a new type of reactive variable derived from Streams, namely
the FiniteStream type.

In Sodium, Streams may fire new events indefinitely, making them suitable
for modelling any type of producer. However, in their generality, Streams do not
capture directly the fact that some producers only emit a finite amount of events.
For this purpose, FiniteStreams have been designed to fire a finite amount of
events before notifying all the dependents of their termination.

Since extending Streams is not allowed in Sodium, FiniteStreams have been
implemented as Streams of FiniteEvents, which can either be Events, wrap-
ping a payload, or an EOS (End Of Stream), marking the termination of the
stream. This implementation allows leveraging the Stream operators also for
FiniteStreams, however, it does not restrict producers from emitting additional
events after the first EOS. To solve this problem, every event following the first EOS
is automatically discarded.

The FiniteStreamExtension provides a set of operators for creating Finite-

Streams, implemented in the form of Scala’s extension methods, similarly to the
StreamExtension. For better compositionality, these operators have been de-
signed to transform FiniteStreams into other FiniteStreams. In fact, if the oper-
ators were transformations from Streams to FiniteStreams, they would wrap the
firings of an input Stream inside the FiniteEvents of an output FiniteStream.
However, they could also be applied to FiniteStreams, wrapping the Finite-

Events of an input FiniteStream inside the FiniteEvents of an output Finite-
Stream. As a consequence, any combination of operators would create a Stream

of nested FiniteEvents, requiring recursive unnesting to access the actual pay-
load of the events. For this reason, the only operator converting Streams into
FiniteStreams is the entry point of the extension, namely the finite operator,
which simply wraps any event of an input Stream inside an Event of an output
FiniteStream.

The sole purpose of finite is to enable the application of the other operators
of the extension, namely:

• until: when applied to an input FiniteStream s, return an output Finite-
Stream s′, obtained by halting s at the first event whose payload satisfies a
given predicate.

• take: when applied to an input FiniteStream s, return an output Finite-
Stream s′, obtained by halting s after a given number of events.

• interruptBy: when applied to an input FiniteStream s, return an out-

CHAPTER 5. IMPLEMENTATION 49

5.7. DYNAMIC ENVIRONMENTS

put FiniteStream s′, obtained by halting s at the first event of a given
interruptor stream.

• takeBefore: when applied to an input FiniteStream s, return an output
FiniteStream s′, obtained by halting s at the first event fired after a given
duration has elapsed since the creation of s′.

• interruptAfter: when applied to an input FiniteStream s, return an out-
put FiniteStream s′, obtained by halting s after a given duration has
elapsed since the creation of s′. The operator relies on a Timer to generate
a notification after a set amount of time.

• takeBeforeInactivityOf: when applied to an input FiniteStream s, re-
turn an output FiniteStream s′, obtained by halting s at the first event
fired after a given duration has elapsed since its latest event.

• interruptAfterInactivityOf: when applied to an input FiniteStream

s, return an output FiniteStream s′, obtained by halting s after a given
duration has elapsed since its latest event. The operator relies on a Timer,
similarly to interruptAfter.

An example of application of the FiniteStreamExtension is the implementa-
tion of several HaltPolicys for simulations, including haltAfterDurationOf and
haltAfterInactivityOf for concurrent simulations.

5.7 Dynamic Environments

In support of the test suite, specifically for tests concerning sensors, an explicit
model of dynamic environments has been implemented. In fact, FRASP pro-
vided only an explicit model of static environments, while changes in the environ-
ment were supported with ad-hoc mechanisms, involving direct modification of the
SimulationIncarnation used to define the specifications.

A basic implementation of a dynamic environment is the EnvironmentWith-

Tags (Figure 5.5), which is an Environment where devices can be linked to specific
bits of information, called tags. In particular, the methods tag and untag allow
attaching and detaching tags from a set of devices, while the method withTag can
be used to retrieve the time-varying set of the devices linked to a specific tag.

With the introduction of dynamic environments, the SimulationIncarnation
had to be updated to depend on an environment type, instead of an environment
instance (Figure 5.6). Otherwise, the same SimulationIncarnation could not
be used to define different specifications, as any program would be executed on

50 CHAPTER 5. IMPLEMENTATION

5.7. DYNAMIC ENVIRONMENTS

Figure 5.5: A UML class diagram of the environment types available for simula-
tion.

Figure 5.6: A UML class diagram of the new SimulationIncarnation.

the same environment, already modified by previous programs, possibly causing
unpredictable results.

Additionally, the SimulationIncarnation has been improved to support the
registration of local and neighbor sensors, retrieving localized information from the
environment, instead of relying on information injected directly into the Simu-

CHAPTER 5. IMPLEMENTATION 51

5.7. DYNAMIC ENVIRONMENTS

lationIncarnation. In detail, local sensors are modeled by the trait Simula-

tionLocalSensor, which is a function producing the readings of a given device in
the environment. Local sensors can be registered to the SimulationIncarnation
under a specific identifier, typed SimulationLocalSensorId, by which they can be
referenced using the sensor construct within an aggregate specification. Similarly,
neighbor sensors are implemented by the traits SimulationNeighborSensor and
SimulationNeighborSensorId.

To enhance modularization and isolation of concerns, the implementation of
the sensors has been extracted from the SimulationIncarnation and delegated to
specific traits (Figure 5.7). In particular, sensors are modeled by the trait Sensor,
which declares the type of environment where the sensor can be employed, namely
SuitableEnvironment. A Sensor can be either a LocalSensor, creating the
corresponding SimulationLocalSensor for suitable SimulationIncarnations, or
a NeighborSensor, creating the corresponding SimulationNeighborSensor for
suitable SimulationIncarnations. A SimulationIncarnation is suitable for a
Sensor if the Environment of the incarnation is a SuitableEnvironment.

Figure 5.7: A UML class diagram of the sensor types available for simulation.

Some built-in sensors have already been implemented, namely TagSensor,
which is a LocalSensor detecting if a specific tag is linked to a device (e.g., if
the device is marked as an obstacle or a source), and NbrRangeSensor, which is a
NeighborSensor measuring the distances from a device and all of its neighbors.

Finally, leveraging these concepts, two mixins for SimulationIncarnations
have been implemented, namely the CommonSensors mixin, extending the DSL
with a set of standard sensors, and the CommonAlgorithms mixin, extending the
DSL with a set of gradient-based algorithms.

52 CHAPTER 5. IMPLEMENTATION

Chapter 6

Verification

This chapter describes the test suite developed for the verification of the FRASP
language, delving into the implementation of aggregate convergence tests in Section
6.1 and analyzing the results of these tests in Section 6.2.

6.1 Unit and Integration Testing

The test suite developed for FRASP consists of around 250 tests, comprising unit
and integration tests, a quarter of which concerns the verification of aggregate
specifications, while the remaining tests verify the infrastructure built for the eval-
uation of properties on aggregates, including the simulators, the extensions for
Sodium, and some utilities employed within the library. The tests have been im-
plemented considering the best practices discussed in Section 3.3 of the analysis,
leveraging the ScalaTest framework [Art].

As already anticipated in the analysis, the adopted strategy for verifying the
correctness of the FRASP language is aggregate convergence tests, checking if the
evolution of an aggregate converges towards an expected stable state, given an
aggregate specification and a simulation configuration. Such tests are modeled by
the mixin ConvergenceTest (Figure 6.1), which can be extended to provide the
inheriting class with methods for creating tests based on convergence, namely:

• convergenceTest: using a provided ConvergenceSimulator, check if the
evolution of an aggregate converges towards (or diverges from) an expected
stable state, given an aggregate specification and a configuration for the sim-
ulation. The test can be repeated multiple times for statistical significance,
since the evolution of the aggregate may be non-deterministic. Additionally,
a timeout can be set to interrupt the test in case a simulation continues
indefinitely against expectations (e.g., due to a flaw in the implementation
of a specification).

CHAPTER 6. VERIFICATION 53

6.1. UNIT AND INTEGRATION TESTING

• convergentEquivalenceTest: similar to convergenceTest, but it checks if
different aggregate specifications converge to the same limit.

Figure 6.1: A UML class diagram of the convergent tests.

In detail, the test suite contains unit ConvergenceTests, concerning basic spec-
ifications with a single construct, and integration ConvergenceTests, concern-
ing more complex specifications with multiple interacting constructs, including
standard aggregate algorithms, such as gradient-based algorithms. The verified
specifications have been collected in a mixin for SimulationIncarnation, called
FraspSamples, granting access to their documentation and declarative names for
referencing them.

Example. A practical application of a ConvergenceTest is demonstrated in the
following program (Listing 6.1), which encapsulates all the concepts introduced
so far. Note how the test is essentially a verbose set of initial conditions and an
expectation, with no complex logic at all. Moreover, since the majority of tests
share the same initial conditions, most of the complexity of the configuration can
be eliminated via default parameters, promoting simplicity and standardization.� �

1 class GradientTest extends AnyFlatSpec with Matchers with ConvergenceTest:

2 object Incarnation

3 extends SimulationIncarnation with CommonSensors with CommonAlgorithms:

4 override type Environment = EnvironmentWithTags

5 object Simulator

6 extends ConvergenceSimulator.StepSimulator , WithIncarnation(Incarnation):

7 override type Configuration[A] = StepSimulationConfiguration[A]

8 import Simulator.incarnation .{*, given}

9

10 given configurationSupplier[A]: () => Simulator.Configuration[A] = () =>

11 Simulator.StepSimulationConfiguration[A](

12 environment = EnvironmentWithTags(euclideanGrid(cols = 5, rows = 5)).tag(

13 tag = SourceTag ,

14 devices = Set(0)

15),

16 haltPolicy = Simulator.HaltPolicy.haltOnVainStep ,

17)

54 CHAPTER 6. VERIFICATION

6.2. OBSERVATIONS

18

19 "The gradient specification" should

20 "compute the field of distances from a source" in

21 convergenceTest(

22 simulator = Simulator ,

23 flow = gradient(sources = sensor(Source)),

24 limit = Map(

25 0 -> 0.00, 1 -> 1.00, 2 -> 2.00, 3 -> 3.00, 4 -> 4.00,

26 5 -> 1.00, 6 -> 1.41, 7 -> 2.41, 8 -> 3.41, 9 -> 4.41,

27 10 -> 2.00, 11 -> 2.41, 12 -> 2.83, 13 -> 3.83, 14 -> 4.83,

28 15 -> 3.00, 16 -> 3.41, 17 -> 3.83, 18 -> 4.24, 19 -> 5.24,

29 20 -> 4.00, 21 -> 4.41, 22 -> 4.83, 23 -> 5.24, 24 -> 5.66,

30),

31 expectation = Expectation.Convergent ,

32 repetitions = 10,

33 timeout = 60. seconds ,

34)� �
Listing 6.1: An application of ConvergenceTest. First, at lines 2-8, the
test prepares the aggregate computing DSL, extended with standard sensors
(such as the Source sensor) and algorithms (such as the gradient). Also, a
ConvergenceSimulator is created, using the StepSimulator variant. Then, at
lines 9-16, all simulations are configured to execute in an EnvironmentWithTags,
specifically a grid-like network topology of 25 devices, where the 0th device is
tagged as a source. Additionally, a proper HaltPolicy for convergence is selected.
Finally, at lines 18-33, a concrete convergence test is formulated: the test involves
a gradient originating from all the devices tagged as sources (i.e., only the 0th

device); the evolution of the aggregate is expected to be convergent towards the
given limit; and the test is iterated 10 times, failing automatically if convergence
is not proven within 60 seconds.

6.2 Observations

The test suite yielded positive results, overall proving the FRASP language to
be working as expected. However, the tests also confirmed a couple of issues,
described in the following sections.

6.2.1 Referential Transparence

The aggregate computing DSL in FRASP enjoys referential transparence, granting
compositionality for its constructs. As a consequence of referential transparence,
the same behavior can be defined by replacing the values of a program with the
constructs producing those values, like in the following example.� �

1 def collectNeighbors: Flow[Set[DeviceId]] =

2 nbr(mid).map(_.values.toSet)

3

CHAPTER 6. VERIFICATION 55

6.2. OBSERVATIONS

4 def branchAndCollectNeighbors(cond: Flow[Boolean]): Flow[Set[DeviceId]] =

5 branch(cond){ collectNeighbors }{ collectNeighbors }

6

7 def collectNeighborsAndBranch(cond: Flow[Boolean]): Flow[Set[DeviceId]] =

8 val neighbors = collectNeighbors

9 branch(cond){ neighbors }{ neighbors }� �
The above listing defines three specifications: collectNeighbors, for collect-

ing the set of neighbors of all the devices (line 1); branchAndCollectNeighbors,
for partitioning the network and then collecting the set of neighbors in each parti-
tion (line 4); finally, collectNeighborsAndBranch, for collecting the set of neigh-
bors of all devices and then partitioning the network (line 7). Unexpectedly,
branchAndCollectNeighbors and collectNeighborsAndBranch yield the same
results, due to referential transparence (line 5 is semantically equivalent to lines
8-9). In summary, collectNeighborsAndBranch does not work as intended.

While referential transparence is not at all a negative property, FRASP cur-
rently has no mechanisms for referencing the results of other specifications within
the local scopes of its constructs. In the example, the forks of a branch construct
cannot access the set of neighbors collected before partitioning. This was a known
issue1, confirmed by the test suite of FRASP.

6.2.2 Inconsistency of Loop

The test suite found some specifications based on the loop construct producing
inconsistent results. The inconsistencies manifested as an infinite execution for
non-trivial self-stabilizing specifications, expected to stabilize in a finite amount of
time. After further analysis, it was discovered that the inconsistent specifications
had in common an evolution over time dependent both on the previous value P
and at least one external source of change S (e.g., the nbr or sensor constructs).

The cause of the problem is attributed to the fact that the previous and current
simulators do not propagate exports immediately, but their transmission is sched-
uled for later in the future. However, the implementation of the loop construct
relies on self-communication for evaluating the previous value P . As a conse-
quence, there is a delay between the generation of the new value of loop and the
corresponding update of P .

During the delay, other dependencies of the loop construct, such as S, may
trigger a propagation of change, generating a new inconsistent value of loop, based
on the stale value of P and the new value of S. The problem is aggravated by
the fact that the inconsistent value is also scheduled for transmission, including
self-communication. As a result, any such inconsistent value starts an inconsistent
evolution over time, concurrently with the others. This phenomenon can quickly

1https://github.com/cric96/distributed-frp/issues/1

56 CHAPTER 6. VERIFICATION

https://github.com/cric96/distributed-frp/issues/1

6.2. OBSERVATIONS

build up, causing the simulation to never cease firing new events.
Analyzing this issue was especially difficult, since most affected specifications

in the test suite, including the gradient, achieve a robust convergence even with
the inconsistent values, probably due to the type of operations involved in the
specification (e.g., accumulating information by evaluating the minimum value).

An example of highly susceptible specification is the following.� �
1 case class Round[T](time: Int , result: Option[T])

2 object Round { def zero[T]: Round[T] = Round(time = 0, result = None) }

3

4 def zipWithRound[T](flow: Flow[T]): Flow[Round[T]] =

5 loop(Round.zero[T]) { rounds =>

6 lift(rounds , flow) {

7 case (Round(time , current), next) if !current.contains(next) =>

8 Round(time + 1, Some(next))

9 case (currentRound , _) =>

10 currentRound

11 }

12 }� �
The specification in the example, namely zipWithRound, simply creates a Flow

whose exports are the exports of the input Flow, bound to the time when they are
transmitted (round), ignoring repeated consecutive exports. However, if the input
Flow has an external dependency (e.g., a nbr construct), the output Flow will
likely emit inconsistent values. This specification nicely demonstrates the issue,
as inconsistent values are manifested as repeated or even oscillating rounds in the
exports.

A solution to this issue could be to implement self-communication as an instan-
taneous transmission, however, a concrete implementation is yet to be developed.

CHAPTER 6. VERIFICATION 57

6.2. OBSERVATIONS

58 CHAPTER 6. VERIFICATION

Chapter 7

Conclusions

This thesis started with the goal of providing proper verification for the function-
alities of FRASP. First, it explored several strategies for observing and controlling
the reactive execution of aggregate specifications, leading to a step-by-step reactive
execution model. Then, it defined a concrete solution for evaluating convergence-
based spatio-temporal properties of FRASP systems through simulation. Finally,
it developed an extensive test suite, providing valuable insights on the current
state of the DSL and future challenges to overcome.

The results proved the overall soundness of FRASP, consolidating its foun-
dations in support of upcoming improvements and extensions. Some issues were
identified and analyzed, including a limitation in referencing the computation of
aggregate specifications within other specifications, and a scheduling problem with
the previous and current simulators, causing inconsistencies during the evolution
of aggregates over time.

The contributions of this project include a modular implementation of several
simulators, a collection of operators for the analysis and monitoring of reactive
variables, and explicit support for dynamic environments and proper sensors. Un-
fortunately, while the solution was designed for concurrency, the strong consistency
of the underlying reactive engine proved to negate parallelism, limiting the benefits
of concurrency. On the one hand, there is opportunity for reducing the complexity
of the current design by giving up concurrency, possibly embracing a complete
FRP implementation without compromises; on the other hand, some questions
arise about the implications of such constraints on the deployment of aggregate
specifications in real-world distributed systems, specifically collective adaptive sys-
tems, hinting towards the necessity for further research into distributed reactive
solutions.

CHAPTER 7. CONCLUSIONS 59

60 CHAPTER 7. CONCLUSIONS

Bibliography

[ABD+19] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Danilo Pianini, and
Mirko Viroli. Field-based coordination with the share operator. Log.
Methods Comput. Sci., 16, 2019.

[ACDV23] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Vi-
roli. Computation against a neighbour: Addressing large-scale distri-
bution and adaptivity with functional programming and scala. Logical
Methods in Computer Science, Volume 19, Issue 1, jan 2023.

[ACV23] Gianluca Aguzzi, Roberto Casadei, and Mirko Viroli. Macroswarm: A
field-based compositional framework for swarm programming. In Sung-
Shik Jongmans and Antónia Lopes, editors, Coordination Models and
Languages, pages 31–51, Cham, 2023. Springer Nature Switzerland.

[Art] Artima. ScalaTest documentation. https://www.scalatest.org/.
Accessed: 02-25-2024.

[BCC+13] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. A survey on reactive pro-
gramming. ACM Comput. Surv., 45(4), aug 2013.

[BJ16] Stephen Blackheath and Anthony Jones. Functional Reactive Program-
ming. Manning, jul 2016.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate programming
for the internet of things. Computer, 48(9):22–30, 2015.

[Cas23a] Roberto Casadei. Artificial collective intelligence engineering: A survey
of concepts and perspectives. Artificial Life, 29(4):433–467, nov 2023.

[Cas23b] Roberto Casadei. Macroprogramming: Concepts, state of the art,
and opportunities of macroscopic behaviour modelling. ACM Comput.
Surv., 55(13s), jul 2023.

BIBLIOGRAPHY 61

https://www.scalatest.org/

BIBLIOGRAPHY

[CAV] Roberto Casadei, Gianluca Aguzzi, and Mirko Viroli. Scafi documen-
tation. https://scafi.github.io/. Accessed: 02-07-2024.

[CAV21] Roberto Casadei, Gianluca Aguzzi, and Mirko Viroli. A programming
approach to collective autonomy. Journal of Sensor and Actuator Net-
works, 10(2), 2021.

[CDA+23] Roberto Casadei, Francesco Dente, Gianluca Aguzzi, Danilo Pianini,
and Mirko Viroli. Self-organisation programming: A functional reactive
macro approach. In 2023 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS), pages 87–96, 2023.

[Cen] Scala Center. Scala documentation. https://docs.scala-lang.org/.
Accessed: 02-08-2024.

[Fer15] Alois Ferscha. Collective adaptive systems. In Adjunct Proceedings of
the 2015 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing and Proceedings of the 2015 ACM International Sym-
posium on Wearable Computers, UbiComp/ISWC’15 Adjunct, page
893–895, New York, NY, USA, 2015. Association for Computing Ma-
chinery.

[Hey99] Francis Heylighen. The science of self-organization and adaptivity. Cen-
ter ”Leo Apostel”, Free University of Brussels, Belgium, 1999.

[LP00] Yang Liu and Kevin M. Passino. Swarm intelligence: Literature
overview. Department of Electrical Engineering, The Ohio State Uni-
versity, Ohio, mar 2000.

[MS18] Alessandro Margara and Guido Salvaneschi. On the semantics of dis-
tributed reactive programming: The cost of consistency. IEEE Trans-
actions on Software Engineering, 44:689–711, 2018.

[MSM19] Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. Dis-
tributed reactive programming for reactive distributed systems. CoRR,
abs/1902.00524, 2019.

[Ora] Oracle. Java documentation. https://dev.java/. Accessed: 02-08-
2024.

[Osh13] Roy Osherove. The Art of Unit Testing. Manning, second edition, nov
2013.

62 BIBLIOGRAPHY

https://scafi.github.io/
https://docs.scala-lang.org/
https://dev.java/

BIBLIOGRAPHY

[PMV13] D Pianini, S Montagna, and M Viroli. Chemical-oriented simulation
of computational systems with ALCHEMIST. Journal of Simulation,
7(3):202–215, aug 2013.

[VAB+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and
Danilo Pianini. Engineering resilient collective adaptive systems by
self-stabilisation. ACM Trans. Model. Comput. Simul., 28(2), mar 2018.

[VBD+19] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto
Casadei, and Danilo Pianini. From distributed coordination to field
calculus and aggregate computing. Journal of Logical and Algebraic
Methods in Programming, 109:100486, 2019.

[Vá14] Dr. Gábor Vásárhely. The world’s first autonomous outdoor quad-
copter flock. https://hal.elte.hu/~vasarhelyi/en/projects/

ercdrones/, 2014. Accessed: 02-02-2024.

BIBLIOGRAPHY 63

https://hal.elte.hu/~vasarhelyi/en/projects/ercdrones/
https://hal.elte.hu/~vasarhelyi/en/projects/ercdrones/

	Abstract
	Introduction
	Motivation and Goals
	Structure
	Prerequisites
	Artifacts

	Background
	Concepts
	Collective Adaptive Systems
	Aggregate Computing
	Reactive Programming
	Functional Reactive Programming

	Technologies
	Sodium
	ScaFi
	FRASP

	Analysis
	Objectives
	Aggregate Testing
	Aggregate Convergence Testing
	Simulation

	Design
	Simulation
	Step Simulation
	Convergence Simulation
	Concurrent Simulation

	Implementation
	Simulator
	Step Simulator
	Concurrent Simulator
	Convergence Simulator
	Stream Extension
	Persistence Operators
	Temporal Operators
	Derivation Operators
	Monitoring Operators
	Throttling Operators

	Finite Stream Extension
	Dynamic Environments

	Verification
	Unit and Integration Testing
	Observations
	Referential Transparence
	Inconsistency of Loop

	Conclusions
	Bibliography

