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Nature uses only the longest threads to

weave her patterns, so that each small

piece of her fabric reveals the
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Abstract

Gravitational lensing, a remarkable consequence of Einstein’s theory of general relativity,
provides a unique opportunity to explore the fundamental properties of the universe by
studying the distortions caused by massive objects on the path of light rays. However,
analyzing and modeling gravitational lenses poses many challenges, due to the complex
nature of the lensing effects and the vast amount of observational data and computational
resources required.

The primary objective of this thesis is to address these challenges by developing
advanced Python algorithms based on differentiable programming paradigm, leveraging
the capabilities of PyTorch and TensorFlow frameworks to enable precise modeling and
analysis of gravitational lenses. By employing parametric models, these algorithms
exploit automatic differentiation to backpropagate errors and compute gradients of a loss
function, facilitating the optimization of high-dimensional parameter spaces. Through
the training of these parametric models, relevant features can be extracted and key
parameters of the lensing system can be estimated. The resulting models can then be
applied to real observational data, improving the characterization and classification of
strong lenses with enhanced accuracy and efficiency.

The use of PyTorch and TensorFlow in the implementation of these algorithms
allows efficient utilization of modern computational resources, such as GPUs, to handle
the inherent computational complexity involved in strong lens analysis. Furthermore,
the flexibility and extensibility of these frameworks enable seamless integration with
other astrophysical and computational tools, facilitating a comprehensive and robust
analysis of strong lenses.

The structure of this thesis is the following: an introduction to the main concepts of
cosmology and gravitational lensing theory is presented in Chapters 1 and 2, followed
by an extensive description of the most important lens models in Chapter 3. Chap-
ter 4 describes the differentiable programming paradigm, its characteristics, and some
examples of algorithms to model and analyze gravitational lenses and light sources.
Finally, Chapter 5 specifically focus on the application of differentiable programming
and automatic differentiation methods to microlensing and strong lensing optimization
problems. Finally, an example of surface brightness fitting is presented as a means to
derive the shape and ellipticity of a galaxy, fundamental information for performing
weak lensing measurements.
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Sommario

Il lensing gravitazionale, una straordinaria conseguenza della teoria della relatività
generale di Einstein, offre un’opportunità unica di esplorare le proprietà fondamentali
dell’universo, studiando le distorsioni causate da oggetti massicci sul percorso dei
raggi luminosi. Il lensing gravitazionale forte, in particolare, che si manifesta come
immagini multiple altamente amplificate e distorte di sorgenti di background, offre
preziose indicazioni sulla distribuzione della materia oscura e sulla formazione delle
strutture cosmiche. Tuttavia, analizzare e modellare con precisione le lenti gravitazionali
forti presenta varie difficoltà, a causa della natura complessa degli effetti di lensing e
della vasta quantità di dati osservativi richiesti, oltre alle grandi risorse computazionali
necessarie. L’obiettivo principale di questo lavoro di tesi è quello di affrontare tali
questioni sviluppando algoritmi Python avanzati per la precisa modellizzazione e analisi
di lenti gravitazionali forti, fondati su tecniche di programmazione differenziabile,
implementate utilizzando i framework PyTorch e TensorFlow. Utilizzando modelli
parametrici, questi algoritmi sfruttano la differenziazione automatica per retropropagare
gli errori e calcolare i gradienti di una funzione di costo, facilitando l’ottimizzazione
nello spazio dei parametri. Attraverso l’implementazione in tali modelli parametrici, è
possibile estrapolare le caratteristiche rilevanti e stimare i parametri chiave del sistema in
esame. I modelli risultanti possono essere applicati a dati osservativi reali, migliorando
la caratterizzazione e la classificazione delle lenti con maggiore precisione ed efficienza.
L’uso di PyTorch e TensorFlow nell’implementazione di questi algoritmi consente di
utilizzare in modo efficiente le moderne risorse di calcolo, come le GPU, per gestire la
complessità computazionale intrinseca all’analisi delle lenti forti. Inoltre, la flessibilità
e l’estensibilità di questi framework consentono una perfetta integrazione con altri
strumenti astrofisici e di calcolo, facilitando un’analisi completa e robusta.

La struttura di questa tesi è la seguente: nei Capitoli 1 e 2 viene presentata un’in-
troduzione ai concetti principali della cosmologia e della teoria delle lenti gravitazionali,
seguita da un’ampia descrizione dei più importanti modelli di lente nel Capitolo 3. Il
Capitolo 4 descrive il paradigma della programmazione differenziabile, le sue caratteri-
stiche e alcuni esempi di algoritmi per modellare e analizzare le lenti gravitazionali. Il
Capitolo 5 si concentra specificamente sull’applicazione dei metodi di differenziazione
automatica a problemi di ottimizzazione di microlensing e di lensing forte. Infine, viene
presentato un esempio di analisi della brillanza superficiale per derivare la forma e
l’ellitticità di una galassia, informazioni fondamentali per effettuare misurazioni di weak
lensing.
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1
Cosmological background

1.1 History

Throughout history, questions surrounding the origin, age, and size of the universe have
fascinated humans. Plato believed in a Universe that remains constant, envisioning
it as an entity that was created perfect, unaging, and free from decay (Plato, 2010).
This view of a static universe prevailed for more than two millennia, and it was so
entrenched in cosmological thinking that even Albert Einstein initially subscribed to it.
To reconcile his field equations of general relativity with the notion of a static universe,
Einstein introduced the cosmological constant, a term that provided a mathematical
means to allow for static solutions to his equations (Einstein, 1917).

However, the early 20th century brought discoveries that challenged the long-standing
paradigm of a static universe. Vesto Slipher made pivotal observations, noting that
most galaxies recede from the Milky Way at high velocities. Building on this foundation,
Edwin Hubble, in the 1920s, conducted an analysis of the escape velocities of distant
galaxies, leading to a groundbreaking discovery. Hubble observed that the farther away
galaxies are, the faster they appear to be moving away. He plotted the radial velocities
of these galaxies against their distances and found that the data could be best described
by a straight line, indicating a linear relationship (Fig. 1.1).

Hubble’s choice of a linear fit was influenced by his belief in the predictions of Fried-
mann’s equations, which are solutions to Einstein’s field equations of general relativity
and suggest an expanding universe. Hubble’s analysis and the linear relationship he
identified, the basis for what is now known as Hubble’s Law, marked a fundamental
shift in the understanding of the universe. It provided strong evidence for an expanding
Universe, a concept that fundamentally contradicted the long-held belief in a static
cosmos. This discovery not only revolutionized cosmology, but also led Einstein to
reconsider the cosmological constant he had introduced.

The receding velocity v of a galaxy leads to a Doppler shift in the galaxy’s spectrum,
observable as a redshift z:

v(r) = c
∆λ

λ
= cz = H0r , (1.1)

where H0 is the proportionality constant, subsequently named after Hubble, for which,

1



1.2. FRIEDMANN EQUATIONS CHAPTER 1. COSMOLOGICAL BACKGROUND

Figure 1.1. Radial velocities, corrected for solar motion, plotted against distances
estimated from involved stars and mean luminosities of nebulae in a cluster.
Credits: Hubble (1929).

in 1929 he published (Hubble, 1929) a value of

H0 = 530 km s−1 Mpc−1 , (1.2)

much different from the current value (Tully, 2023) of

H0 = (74.6 ± 0.8) km s−1 Mpc−1 . (1.3)

The unit of the Hubble constant is chosen according to the relation between escape
velocity and distance, but actually it has the unit of an inverse time, representing the
age of the universe in a uniformly expanding model:

τ0 = H−1
0 ≈ 13.9 · 109yr . (1.4)

1.2 Friedmann Equations

1.2.1 Expansion rate

According to the Cosmological Principle, on sufficiently large scales, the universe is
homogeneous and isotropic. Considering a sphere with homogeneous density and
a test particle at location x⃗, and introducing a spherical coordinate system that is
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1.2. FRIEDMANN EQUATIONS CHAPTER 1. COSMOLOGICAL BACKGROUND

allowed to expand with time, due to the cosmological principle, the expansion and the
time-dependent position r⃗(t) can be expressed by

r⃗(t) = a(t)x⃗ , (1.5)

where a(t) is the cosmic scale factor, which does not depend only on time. For t0 = today,
the scale factor is conventionally set to a(t0) = 1. Scalar quantities r, x can be used
instead of r⃗, x⃗ due to isotropy.

The velocity of a test particle caused by cosmic expansion is

v(r, t) = dr(t)
dt

= da(t)
dt

x = ȧ(t)
a(t)r = H(t)r , (1.6)

which leads to the definition of the Hubble parameter, used to quantify the relative
expansion rate of the universe

H(t) ≡ ȧ(t)
a(t) , (1.7)

whose value in the present epoch, H(t0) = H0, is the Hubble constant, expressed in
Eq. (1.3).

1.2.2 Dynamics of the expansion

To derive the Friedmann Equations and to study the evolution of the scale factor a(t),
to better understand the development of the universe, one has to start from Einstein
field’s equation, that describes the geometry of space-time:

Rµν − 1
2Rgµν + gµνΛ = 8πG

c4 Tµν , (1.8)

where Rµν and R are the Ricci tensor and Ricci scalar, respectively, Λ is the cosmological
constant and Tµν is the energy-momentum tensor, which includes all contributions of
energy and acts as the source of gravity.

The energy-momentum tensor of the universe is that of a homogeneous perfect
fluid, characterized by its density ρ(t) and pressure p(t). Using the Robertson-Walker
metric to describe homogeneity and isotropy, the Einstein’s equations simplify to the

3



1.2. FRIEDMANN EQUATIONS CHAPTER 1. COSMOLOGICAL BACKGROUND

Friedmann equations (Friedman, 1922; Friedmann, 1924):

H(t)2 =
(

ȧ

a

)2
= 8πG

3 ρ + Λc2

3 − Kc2

a2 , (1.9a)

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ Λc2

3 , (1.9b)

where K is a constant parameter that defines the curvature of spatial surfaces:

• K = −1 means open, hyperbolic space (i.e. infinite) with negative curvature;

• K = 0 means flat, Euclidean space;

• K = 1 means closed, spherical space with positive curvature.

It is then possible to split up the density ρ into

ρm(t) = ρm,0a(t)−3 ⇒ non-relativistic matter , (1.10a)

ρr(t) = ρr,0a(t)−4 ⇒ relativistic matter . (1.10b)

Furthermore, by defining the constant vacuum energy density ρΛ = Λ
8πG and the

critical density ρcr = 3H2
0

8πG , it is convenient to introduce dimensionless density parameters
for matter, radiation and vacuum energy:

Ωm = ρm

ρcr
, Ωr = ρr

ρcr
, ΩΛ = ρΛ

ρcr
= Λ

3H2
0

. (1.11)

Finally, introducing the curvature parameter

ΩK = −Kc2

H2
0

= 1 − (Ωm + Ωr + ΩΛ) , (1.12)

and subtracting Eq. (1.9a) from Eq. (1.9b):

H(t)2 =
[

ȧ(t)
a(t)

]2
= H2

0

[
Ωra(t)−4 + Ωma(t)−3 + ΩKa(t)−2 + ΩΛ

]
. (1.13)

Equation (1.13) is a fundamental equation that completely describes the expansion
of the universe and contains all the information about geometry, matter, and energy
content.
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1.2. FRIEDMANN EQUATIONS CHAPTER 1. COSMOLOGICAL BACKGROUND

Figure 1.2. Numerical solutions for Eq. (1.13) for different cosmological models.
Credits: Hamilton (2019).

1.2.3 Cosmological distances

In a curved space-time, there are various ways to define the distance between two
points. Setting P0 as the origin of a set of polar coordinates (r, θ, ϕ) and assuming
dt = dϕ = dθ = 0, integrating the Friedmann-Robertson-Walker metric

ds2 = c2 dt2 − a(t)2
[

dr2

1 − Kr2 + r2(dθ2 + sin2 θ dϕ2)
]

, (1.14)

in this coordinate system, it is possible to determine the distance measured by a “chain”
of observers in every point between P0 and a generic point P at time t. This is the
so-called proper distance:

dP =
∫ r

0

a(t) dr′√
1 − Kr′2

= a(t)F (r) , (1.15)

with

F (r) =


arcsinh(r) if K = −1 ;

r if K = 0 ;

arcsin(r) if K = 1 .

(1.16)
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1.2. FRIEDMANN EQUATIONS CHAPTER 1. COSMOLOGICAL BACKGROUND

By computing the proper distance at present time, t = t0, it is possible to obtain
the comoving distance:

dC ≡ dP (t0) = a(t0)F (r) , (1.17)

and since the proper distance of a source can change in time as a consequence of the
time dependence of the scale factor, the source at P has a radial velocity with respect
to P0:

vr = ȧ(t)F (r) = ȧ(t)
a(t)dP = H(t)dP , (1.18)

which is the Hubble Law mentioned in Section 1.1.
There is no unique way to define the distance of an astronomical object in cosmology,

and, in addition to the proper and comoving distances, which are not directly measurable,
other kinds of distance can be defined that are, in principle, measurable.

Firstly, one can define the luminosity distance of a source at a distance r, at time t

with emitted power L and flux f :

dL ≡
√

L

4πf
. (1.19)

Due to the expansion of the Universe it is necessary to take into account time-dilation
effect, a stretch of the spherical surface centered on the source, and a cosmological
redshift on the photons:

dL = a(t0)r(1 + z) . (1.20)

Finally, the angular diameter distance, very useful for gravitational lensing purposes,
is defined as the ratio of the physical diameter dP of a source and the angle ∆θ that it
subtends:

dA = dP

∆θ
= a(t)r , (1.21)

and consequently

dA = dL
a(t)2

a(t0)2 = dL

(1 + z)2 , (1.22)

given that 1 + z = a(t0)
a(t) .
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2
Gravitational Lensing

In the realm of astrophysics and gravitational theory, the concept that gravity affects not
only matter but also light has a long history, dating back to Newton’s Opticks (Newton,
1704). The initial calculation of the Newtonian deflection of light rays passing near
massive bodies was undertaken by Cavendish in 1784, and von Soldner subsequently
published these findings in 1804 (Will, 1988, 2014). It was Albert Einstein himself who,
in 1915, as he completed his General Theory of Relativity (Einstein, 1915), recognized
that the Newtonian prediction of light-ray deflection near the Sun was only half the
value foreseen by his revolutionary theory. The confirmation of this twice as large
deflection during the solar eclipse of May 29, 1919, observed by Eddington (Dyson
& Eddington, 1920; Will, 2015), marked a momentous confirmation of this nascent
theory and captivated global attention. Not only did this observation represent the
first in a series of triumphs for general relativity, but it also inaugurated the practical
application of gravitational lensing, a method that would later become a cornerstone of
observational astrophysics.

More than a century has passed since that pivotal moment, and gravitational lensing
has evolved into a well-established and respected tool within the fields of astronomy
and astrophysics. Presently, the study of lensing theory and its applications can be
broadly categorized into three distinct components (Kochanek, 2004): strong lensing,
characterized by non-linear deflection at the scale of galaxies and galaxy clusters,
produces distinct phenomena such as multiple images, arcs, and rings, weak lensing,
observed on both cluster and cosmological scales, is a subtle linear effect that gently
aligns background galaxies with intervening matter. Statistical analysis of the observed
distribution of light allows for the extraction of information regarding the distribution
of intervening matter. Finally, microlensing involves the dynamic fluctuation of light
when compact objects pass in front of background sources at scales too minute to be
resolved.

2.1 Light deflection

According to Einstein’s theory of relativity, objects with gravitational pull have the
ability to alter the fabric of space-time, resulting in the bending of light rays (Narayan &
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2.1. LIGHT DEFLECTION CHAPTER 2. GRAVITATIONAL LENSING

Bartelmann, 1997) . Gravitational lensing occurs when a substantial mass distribution
can effectively curve and amplify the light emitted from a source positioned behind it.

The calculation of light deflection involves the examination of geodesic curves
originating from the field equations of general relativity. Light deflection can also be
understood through Fermat’s principle1, similar to how it is described in geometrical
optics. The main approach is to consider light deflection within the framework of general
relativity as a refraction problem, for which a refractive index n can be introduced.

To investigate the bending of light and to determine the refractive index, an initial
approximation is made by assuming that the lens is “weak” and significantly smaller than
the source-lens-observer optical system, an assumption true for nearly all astrophysical
scenarios. This “weak field” approximation refers to a lens with a relatively small
Newtonian gravitational potential, which means ϕ ≪ c2, where c is the speed of light.
Additionally, it is plausible to assume that light deflection occurs within a region small
enough that the expansion of the universe can be disregarded. Leveraging the principle
of equivalence, one can select a locally inertial frame in which space-time is flat and
described by Minkowski’s metric. In this context, the line element of the local metric
tensor can be written as a small perturbation of the metric, such as

ds2 = gµν dxµ dxν =
(

1 + 2ϕ

c2

)
c2 dt2 −

(
1 − 2ϕ

c2

)
dx⃗2 . (2.1)

Since light travels on null geodesics, for which ds2 = 0, the light speed in the
gravitational perturbation is thus

c′ = dx⃗

dt
≈ c

(
1 + 2ϕ

c2

)
, (2.2)

and given that ϕ ≤ 0, c′ is smaller than in the absence of a gravitational potential.

This leads to the definition of the effective refraction index as

n = c

c′ ≈ 1 − 2ϕ

c2 ≥ 1 . (2.3)

Applying Fermat’s principle, the total deflection angle of a photon is the integral
over the gradient of the potential perpendicular to the light path along the proper light
path. Thanks to the Born approximation2, it can be shown (Schneider et al., 1992) that

1Light travels between two points along the path that requires the least time.
2Simplification valid when the gravitational potential is small: deflection of light is treated like a

linear process, neglecting higher-order corrections.
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2.1. LIGHT DEFLECTION CHAPTER 2. GRAVITATIONAL LENSING

Figure 2.1. Schematics for the Born approximation.
Credits: Meneghetti (2021).

the deflection angle can be obtained integrating over the unperturbed light path:

ˆ⃗α(⃗ξ) = 2
c2

∫ +∞

−∞
∇⃗⊥ϕ(⃗ξ, z) dz , (2.4)

where ξ is the impact parameter of the photon traveling along the e⃗z direction that
passes through the lens at z = 0 (Fig. 2.1).

If the lens can be approximated by a point mass, the potential is ϕ = − GM√
ξ2+z2

,
where G is the gravitational constant, and thus Eq. (2.4) simplifies to the following:

ˆ⃗α(⃗ξ) = 4GM

c2ξ
e⃗ξ = 4GM

c2ξ2 ξ⃗ . (2.5)

Under the assumption of weak field, the superposition principle can be applied to
extend the previous definition to calculate the deflection angle of an ensemble of point-
like lenses. Having a sparse distribution of N point masses on a plane, the deflection
angle of a light ray crossing the plane at ξ⃗ will be

ˆ⃗α(⃗ξ) =
N∑
i

ˆ⃗αi(⃗ξ − ξ⃗i) = 4G

c2

N∑
i

Mi
ξ⃗ − ξ⃗i

|⃗ξ − ξ⃗i|
2 , (2.6)

where ξ⃗i and Mi are the positions and masses of each lens.
When discussing more realistic situations of lensing, such as those involving three-

dimensional distributions of matter, it is important to note that the physical extent of
the lens is typically much smaller than the distances between the observer, the lens, and
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the source. Consequently, the bending of light occurs primarily over a brief segment of
its path. This observation allows for the application of the thin screen approximation,
where the lens is represented as a planar distribution of matter, termed the lens plane.
In this simplified model, the distribution of matter responsible for lensing is completely
characterized by its surface density

Σ(⃗ξ) =
∫

ρ(⃗ξ, z) dz , (2.7)

where ξ⃗ is a two-dimensional vector on the lens plane and ρ is the three-dimensional
density.

In this context, the total deflection angle can be obtained by summing the contribu-
tions of all the mass elements Σ(⃗ξ)d2ξ:

ˆ⃗α(⃗ξ) = 4G

c2

∫ (⃗ξ − ξ⃗′)Σ(⃗ξ′)
|⃗ξ − ξ⃗′|

2 d2ξ′ . (2.8)

2.2 Lens equation

In order to define the observable light path, the connection between the observed
and true positions of a source during a gravitational lensing event must be explored.
Without the presence of the lens, light from a distant source would travel directly to an
observer who would perceive the source at a specific location in the sky, denoted by
β⃗ (measured in angular units), representing the source’s intrinsic position. However,
when the gravitational lens causes a deflection of the photons, the observer detects them
coming from an altered direction θ⃗, which is known as the apparent (or observed) image
position of the source.

Following the typical gravitational lensing geometry, depicted in Fig. 2.2, a mass is
placed at redshift zL, which equates to an angular diameter distance DL. This mass acts
as a lens, deflecting light rays coming from a source located at redshift zS (corresponding
to an angular distance DS). An observer at zO = 0 gathers the photons originating
from this distant source. The angular diameter distance from the lens to the source is
denoted as DLS .

A source located at the intrinsic angular position β⃗, which lies on the source plane
at a distance η⃗ = β⃗DS from the optical axis, emits photons that pass through the lens
plane at a point ξ⃗ = θ⃗DL. These photons are then deflected by an angle ˆ⃗α, ultimately
reaching the observer. The magnitude of this deflection is specified by Eq. (2.4). As a
result of this deflection, the observer perceives the light as originating from the apparent
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Figure 2.2. Typical lensing system geometry.
Credits: Meneghetti (2021).

angular position θ⃗.

When the angles θ⃗, β⃗, ˆ⃗α are small, the actual position of the source and where it
appears to be located in the sky are connected by a straightforward relationship, the
so-called lens equation:

θ⃗DS = β⃗DS + ˆ⃗αDLS . (2.9)

Defining then the reduced deflection angle as

α⃗(⃗θ) ≡ DLS

DS

ˆ⃗α(⃗θ) , (2.10)

Eq. (2.9) can be rewritten as
β⃗ = θ⃗ − α⃗(⃗θ) , (2.11)

which allows to determine the intrinsic source position if the image position and the
deflection angle are known. In contrast, by solving the lens equation for the unknown θ⃗,
it is possible to compute the image position(s) of a source placed at β⃗, lensed by a lens
with a deflection field α⃗(⃗θ).

A common choice is to write the lens equation in its dimensionless form by defining
a length scale ξ0 on the lens plane and a corresponding length scale η0 = ξ0DS/DL on
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the source plane and using them to define the dimensionless (scaled) vectors

x⃗ ≡ ξ⃗

ξ0
, y⃗ ≡ η⃗

η0
, (2.12)

as well as the dimensionless deflection angle

α⃗ (x⃗) = DLDLS

ξ0DS

ˆ⃗α (ξ0x⃗) . (2.13)

By substituting these dimensionless quantities into Eq. (2.11), the dimensionless
lens equation can be obtained

y⃗ = x⃗ − α⃗(x⃗) . (2.14)

2.2.1 Lensing potential and convergence

The deflection properties of an extended distribution of matter are defined by its
effective lensing potential, namely the properly re-scaled projection on the lens plane of
the three-dimensional Newtonian potential Φ:

Ψ̂(⃗θ) = 2
c2

DLS

DLDS

∫
Φ(DLθ⃗, z) dz . (2.15)

It can be shown that the effective lensing potential satisfies two important properties:

1. the gradient of Ψ̂ is the reduced deflection angle:

∇⃗θΨ̂(⃗θ) = α⃗(⃗θ) ; (2.16)

2. the Laplacian of Ψ̂ is twice the convergence κ:

∇2
θΨ̂(⃗θ) = 2κ(⃗θ) . (2.17)

The convergence is defined as a dimensionless surface density

κ(⃗θ) ≡ Σ(⃗θ)
Σcr

with Σcr = c2

4πG

DS

DLDLS
, (2.18)

where Σcr is the so-called critical surface density, a pivotal characteristic of the lens
system, a function of the angular diameter distances of the lens and source, which allows
to discriminate between strong and weak gravitational lensing regimes.

In particular, strong lensing is usually observed in regions of high mass concentration,
such as the cores of galaxy clusters or around massive galaxies, when the surface mass
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density of the lens is comparable to or exceeds the critical surface density (Σ ≥ Σcr)
and the gravitational field of the lens is strong enough to produce multiple images of
the source, form Einstein rings, or create arc-like structures. On the contrary, weak
lensing occurs when the surface mass density of the lens is below the critical surface
density (Σ < Σcr). The gravitational effect is subtler, leading to slight distortions in
the shapes of background galaxies, which can only be detected statistically over large
populations of galaxies. Weak lensing does not produce multiple images or highly visible
arcs but instead slightly stretches the images of background galaxies, causing shear and
magnification effects.

From the previous definitions in Eqs. (2.15) and (2.18), lensing quantities such as
lensing potential (and therefore deflection angle) and critical surface density strongly
depend on distances between observer, lens and source, which in turn depend on the
source and lens redshifts. The distance ratio

DLDLS

DS
(2.19)

is called lensing distance and Fig. 2.3 shows how it varies with the redshifts of source
and lens. As can be seen, the lensing distance increases with the source redshift and
peaks when the lens is at an intermediate distance between the source and the observer.
Clearly, the larger the lensing distance (and so the convergence), the stronger the effects
generated by the lensing event.

2.2.2 First-order lens mapping

A significant effect of gravitational lensing is image distortion. This alteration becomes
markedly noticeable with sources of extended size. For instance, galaxies in the back-
ground can be observed as elongated arcs when they are lensed by clusters of galaxies
or individual galaxies. The cause of this distortion is the varying deflection of light
rays. Ideally, by solving the lens equation for every point of the extended source, the
configuration of the images can be determined. Specifically, when the size of the source
is significantly less than the angular scale over which the lens deflection angle field
varies, the correspondence between the position of the source and the images can be
approximated as linear on a local scale, allowing for a first-order approximation.

By computing the distance between two points β⃗ and β⃗′ = β⃗ + dβ⃗ on the source
plane, it is possible to define a linear mapping between the source and the lens plane,
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(a) (b)

Figure 2.3. (a) Lensing distance variation as a function of the source redshift and (b)
as a function of the lens redshift.

described by the Jacobian matrix

A ≡ ∂β⃗

∂θ⃗
=
(

δij − ∂αi(⃗θ)
∂θi

)
=
(

δij − ∂2Ψ̂(⃗θ)
∂θi∂θj

)
. (2.20)

This metric is a second-rank symmetric tensor called the lensing Jacobian and can
be divided into an isotropic and an anisotropic part:

Aiso,ij = 1
2 Tr Aδij =

(
1 − 1

2∇2Ψ̂
)

δij = (1 − κ) δij , (2.21a)

Aaniso,ij = Aij − 1
2 Tr Aδij =

−1
2

(
Ψ̂11 − Ψ̂22

)
−Ψ̂12

−Ψ̂12
1
2

(
Ψ̂11 − Ψ̂22

) . (2.21b)

It is possible to describe the anisotropic component of the lensing Jacobian by
defining the shear tensor Γ, a 2x2 symmetric, traceless tensor, usually written in the
form of a pseudo-vector γ⃗ = (γ1, γ2), whose components are:

γ1 = 1
2
(
Ψ̂11 − Ψ̂22

)
, (2.22a)

γ2 = Ψ̂12 = Ψ̂21 . (2.22b)

The shear tensor has eigenvalues ±
√

γ2
1 + γ2

2 = ±γ and, representing the direction
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Figure 2.4. Distortion effects due to convergence and shear on a circular source.
Credits: Suyu (2016).

of the eigenvector corresponding to the positive eigenvalue with ϕ, Γ can be written as:

Γ =
(

γ1 γ2

γ2 −γ1

)
= γ

(
cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

)
. (2.23)

Summarizing, from Eqs. (2.21a) and (2.21b) and considering this last definition of
Γ, the lensing Jacobian becomes

A = (1 − κ)
(

1 0
0 1

)
− γ

(
cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

)
=
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
. (2.24)

From the last expression of the lensing Jacobian, it can be seen that the first-order
mapping is characterized by two parts. The first term, depending on the convergence,
describes an isotropic transformation of the source image, which is therefore expanded
or contracted by the same factor in all directions. Instead, the second term describes
an anisotropic transformation dependent on the shear, and thus causes distortions of
the source image along a specific direction, given by the angle ϕ. More precisely, the
image size is increased compared to the source in the direction of the eigenvectors of
A with eigenvalue γ, and decreased in the perpendicular direction. The amounts of
these magnifications and de-magnifications are given by the inverse of the tangential
and radial eigenvalues, namely λt = 1 − κ − γ and λr = 1 − κ + γ.

As an example, Fig. 2.4 shows how a circular source of radius r would be distorted
by convergence and shear effects. Due to the convergence term, the source is mapped
to a larger (or smaller) circle, whose radius is r/(1 − κ).
Due to the shear term, the circle is further elongated in the direction given by the angle
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Figure 2.5. Images orientations according to different combinations of γ1 and γ2.
Credits: Meneghetti (2021).

ϕ and contracted in the perpendicular direction to form an ellipse.

This effect can be understood considering the circular source isophotes, described by

β2
1 + β2

2 = r2 . (2.25)

It is always possible to choose a reference frame where the Jacobian matrix is
diagonal, so that the lens equation for a circular source is

β1 = (1 − κ − γ)θ1 , (2.26a)

β2 = (1 − κ + γ)θ2 . (2.26b)

By substituting these values into Eq. (2.25) the equation of the isophotes becomes

(1 − κ − γ)2θ2
1 + β2 = (1 − κ + γ)2θ2

2 = r2 , (2.27)

which represents the equation for an ellipse, with major and minor axes a = r/λt and
b = r/λr, respectively.
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Moreover, the fact that the shear tensor has spin 2 translates in different distortions
according to its components:

• γ1 > 0, γ2 = 0: major axis of the ellipse is along θ1;

• γ1 = 0, γ2 > 0: major axis of the ellipse forms an angle of π/4 with θ1;

• γ1 < 0, γ2 = 0: major axis of the ellipse is perpendicular to θ1;

• γ1 = 0, γ2 < 0: major axis of the ellipse forms and angle of 3π/4 with θ1.

Figure 2.5 shows how images orientations are affected by these combinations of γ1

and γ2 and many more.

2.2.3 Magnification

One of the most important features introduced by gravitational lensing is the magni-
fication effect: through the lens equation, the solid angle δβ2 is mapped to the solid
angle δθ2. In the absence of photon emission or absorption, the Liouville theorem states
that the surface brightness of a source remains constant as it passes through the lensing
field. Thus, the change in the solid angle under which the source is observed implies
that the flux received is magnified (or demagnified). From Eq. (2.20), the magnification
introduced by the lensing is given by the inverse of the determinant of the Jacobian
matrix. For this reason, the matrix M = A−1 is called the magnification tensor and
therefore:

µ ≡ det M = 1
det A

= 1
(1 − κ)2 − γ2 , (2.28)

while the relation between intrinsic and observed flux can be written

Fν =
∫

I
Iν (⃗θ)d2θ =

∫
S

IS
ν (β⃗(⃗θ))µ(⃗θ)d2β , (2.29)

where the first integral is over the image plane and the second over the source plane.
From Eq. (2.28), it is possible to define µt = λ−1

t and µr = λ−1
r , the so-called tangential

and radial magnification factors, so that µ = µtµr.
Since both convergence and shear (and therefore magnification) are functions of the

position on the lens plane θ⃗, there exists a set of critical points where det A = 0, which
means either λt = 0 or λr = 0. The ensemble of these points defines the critical lines,
along which the magnification diverges. By mapping the critical lines to the source plane
through the lens equation, new sets of points are obtained, which are called caustics.
The shape of these critical lines and caustics varies with the mass distribution of the
lens. Some examples for different mass distributions are shown in Fig. 2.6.

17



2.2. LENS EQUATION CHAPTER 2. GRAVITATIONAL LENSING

Figure 2.6. Caustics (solid) and critical lines (dashed) for different mass models: (a)
a singular isothermal circular mass distribution generates only the critical lines, in
particular the radial critical line is the central point and the tangential critical line is the
circle; (b) a singular isothermal elliptical lens produces a tangential caustic (astroid) and
the corresponding elliptical tangential critical line; (c) a circular and (d) elliptical mass
distribution with shallower inner slope than the isothermal mass distribution generates
both the critical lines and caustics; a bimodal mass distribution with two clumps of
equal (e) or unequal (d) mass produces more complex critical lines and caustics.
Credits: Kneib & Natarajan (2011).

2.2.4 Time-delay and multiple images

The deflection of light by a gravitational potential causes a delay in the travel time
of light between the source and the observer, resulting in the appearance of multiple
images of the source on the lens plane at different times. This time delay has two
components: one is geometrical, due to the different path length of the deflected light
rays compared to the unperturbed ones, and one is gravitational, due to the effective
speed of light in the presence of a gravitational potential.

The total time delay as a function of the position of the image, for a given source
and lens, can be described by a surface known as time delay surface:

t(⃗θ) = tgeom + tgrav = (1 + zL)
c

DLDS

DLS

[1
2 (⃗θ − β⃗)2 − Ψ̂(⃗θ)

]
= D∆t

c
τ (⃗θ) , (2.30)

where zL is the lens redshift and the quantities

D∆t = (1 + zL)DLDS

DLS
, (2.31a)

τ (⃗θ) = 1
2 (⃗θ − β⃗)2 − Ψ̂(⃗θ) (2.31b)
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are called time delay distance and Fermat potential, respectively.
The lens equation can be obtained taking the gradient of Eq. (2.30):

∇⃗
[1

2 (⃗θ − β⃗)2 − Ψ̂(⃗θ)
]

= 0 . (2.32)

Therefore, the images are formed at the stationary points of the time delay surface,
whose curvature is given by its Hessian matrix:

Tij = ∂2t(⃗θ)
∂θi∂θj

∝ (δij − Ψ̂ij) = Aij . (2.33)

The multiplicity of images in gravitational lensing is closely related to the character-
istics of the time delay surface, and the configuration of this surface near stationary
points offers insights into the shapes of the images and their parity. Image parity is
determined by the magnification sign: magnifications > 1, whether positive or negative,
both amplify the image. However, a positive magnification retains the original orienta-
tion of the unlensed source in the image, whereas a negative magnification results in an
image with reversed parity. Crossing a critical line results in a sign change in one of the

Figure 2.7. The lensed pair S1–S2 in AC114. This galaxy at z = 1.867 displays the
surprising morphology of a hook, with an obvious change in parity.
Credits: Kneib & Natarajan (2011).
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Jacobian matrix’s eigenvalues, leading to a shift in the image’s parity. As a consequence,
the parity of images located on opposite sides of a critical line is opposite to each other
(Fig. 2.7). Furthermore, it can be shown that the number of images changes by two
when the source crosses a caustic (Schneider et al., 1992) and that the total number of
images of a generic lens is odd (Burke, 1981).

Different stationary points result in different types of image:

• type I images arise at the minima of surface where both Eq. (2.33) eigenvalues
are positive, so det A > 0 , Tr A > 0 → positive magnification;

• type II images appears at the saddle points of the surface where Eq. (2.33)
eigenvalues have opposite signs, so det A < 0 → negative magnification (i.e.
reversed image parity, not de-magnified);

• type III images arise at the maxima of the surface where both Eq. (2.33)
eigenvalues are negative, so det A > 0 , Tr A < 0 → positive magnification.

Figure 2.8a shows the geometrical and gravitational components of the time delay
and their combination for a few positions of the source relative to the lens, considered
axially symmetric. The geometric time delay is described by a parabola, and the
gravitational function will vary depending on the potential considered. In particular,
for a source perfectly aligned with the center of the lens (top left of Fig. 2.8b) there
exist three stationary points, two of which (the minima) merge onto a single ring. This
configuration is the so-called Einstein ring.

Thus, it is possible to introduce the so-called Einstein radius (Fig. 2.9), which is
properly an angle, useful to define the radius of the Einstein ring:

θE =
√

4GM(θ)
c2

DLS

DLDS
. (2.34)
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(a) (b)

Figure 2.8. (a) One-dimensional time delay functions for a non-singular isothermal
potential. The stars indicate the position of the images. Each panel corresponds to a
different position of the source relative to the lens (dashed line). (b) Time delay surfaces
for the same lens. Each panel corresponds to a different position of the source relative
to the lens. Clearly visible Einstein ring in the top-left plot.
Credits: Meneghetti (2021).

Figure 2.9. A source S exactly behind the center of an axially symmetric lens is
mapped into the Einstein ring, with angular radius given by θE .
Credits: Narayan & Bartelmann (1997).
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3
Lens models

This chapter delves into the intricate process of lens modeling, a pivotal technique
for interpreting gravitational lensing observations. Gravitational lens models can be
separated into two main categories: point-mass lenses (i.e. microlenses) and extended
lenses, each possessing distinctive characteristics. Microlensing refers to the lensing effect
caused by objects with relatively small masses, such as stars or planets, acting as lenses.
Unlike their more massive counterparts, microlenses do not produce multiple discernible
images of the background source. Instead, they induce magnification variations over time
as the lens moves relative to the observer and the source. Transitioning to a grander scale,
extended lenses involve massive structures like galaxies and galaxy clusters, capable of
producing multiple, resolvable images of background sources.

3.1 Microlenses

This section is devoted to exploring the phenomenon of microlensing, which refers to the
lensing effects caused by objects of relatively small mass in the universe, such as planets,
stars, star clusters, and other compact objects located within the Milky Way or distant
galaxies. Typically, these microlenses are considered, in a first-order approximation, to
be point-masses or collections of point-masses.

3.1.1 Deflection angle and lensing potential

As already derived with Eq. (2.5), by setting the lens position as the center of the
reference frame and using the relation ξ = DLθ, the deflection angle for a point mass
lens can be written as

α⃗(⃗θ) = DLS

DS

ˆ⃗α(⃗θ) = DLS

DS

4GM

c2DL

θ⃗

|⃗θ|2
. (3.1)

Given that α⃗(⃗θ) = ∇⃗Ψ̂(⃗θ), the lensing potential of the point mass lens is

Ψ̂(⃗θ) = 4GM

c2
DLS

DLDS
ln |⃗θ| . (3.2)

23



3.1. MICROLENSES CHAPTER 3. LENS MODELS

Figure 3.1. Solutions of the lens equation for a point-mass, with the lens represented
by the star at the center. The Einstein ring is highlighted in black. In the right diagram,
the locations of various sources are marked with colored circles. The images produced,
as calculated using Eq. (3.5), are displayed in the left diagram.
Credits: Meneghetti (2021).

3.1.2 Lens equation and multiple images

Given the deflection angle of Eq. (3.1), the lens equation becomes

β = θ − 4GM

c2θ

DLS

DLDS
, (3.3)

where the vector signs can be omitted due to the fact that the vector ˆ⃗α always points
away from the lens.

As already anticipated in Section 2.2, the lens equation can be written in a more
concise way by introducing a scale radius θE , i.e. the Einstein radius defined in Eq. (2.34),
and setting y = β/θE and x = θ/θE , results:

β = θ − θ2
E

θ
⇒ y = x − 1

x
. (3.4)

This equation is quadratic in θ (or x) and has two solutions:

x± = y ±
√

y2 + 4
2 , (3.5)

which means that there always exist two images for a given source position.
In the right section of Fig. 3.1, some sources are arranged at varying angular distances
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from the lens, which is marked by a red star. Each source is represented by a unique
color to facilitate the identification of its corresponding images in the left section. Each
source generates two images: one positioned at x+ > 0 and the other in the range of
−1 < x− < 0. These images appear on either side of the lens, with the x− image always
lying within a circle of radius x = 1. This circle is equivalent to the image produced by
a source directly behind the point lens at y = 0, resulting in a ring-shaped image with
radius θE , the Einstein ring. The size of the Einstein radius is typically

θE ≈ 1′′
(

M

1012M⊙

)1/2 ( D

Gpc

)−1/2
, (3.6)

where
D ≡ DLDS

DLS
(3.7)

is the effective lensing distance.
As the angular separation y → 0, it is observed that x− → 0, whereas x+ → y. This

indicates that when the angular distance between the lens and the source increases
significantly, the source is unlensed. In theory, an image still exists at x− = 0, but this
central image has zero magnification.

3.1.3 Critical lines, caustics and magnification

The Jacobian determinant for a point-mass lens can be written as

det A(x) = y

x

dy

dx
, (3.8)

which means that the eigenvalues of the Jacobian matrix are

λt(x) = y

x
=
(

1 − 1
x2

)
, (3.9a)

λr(x) = dy

dx
=
(

1 + 1
x2

)
. (3.9b)

The second eigenvalue is never zero, and therefore the point-mass lens only has a
tangential critical line, a circle with equation x2 = 1, which represents the Einstein ring.
This line can be mapped onto the source plane to find the relative tangential caustic,
resulting in a single point at y = 0.

Given that the magnification is the inverse of the Jacobian determinant

µ(x) =
(

1 − 1
x4

)−1
, (3.10)
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which can also be written as a function of the source position

µ±(y) = x

y

dx

dy
= 1

2

(
1 ± y2 + 2

y
√

y2 + 4

)
, (3.11)

the magnifications of the two images always have the same signs of x± and therefore
different parity.

The total source magnification will then be:

µ(y) = µ+(y) + |µ−(y)| = y2 + 2
y
√

y2 + 4
, (3.12)

while the sum of the signed magnifications is always µ = 1.
Furthermore, it can be shown through series expansion that, for large y,

lim
y→∞

∣∣∣∣µ+
µ−

∣∣∣∣ ∝ y4 . (3.13)

This means that the magnification rapidly becomes negligible outside the Einstein ring
and has a very simple form well inside it. Hence, deviations from simple point-lens
microlensing can usually be easily spotted.

3.1.4 Microlensing light-curve

The Einstein radius of a typical lens indicates the scale of image separation observed in
microlensing events. For a star with the mass of the Sun located within the Milky Way,
the separation is approximately of the order of milliarcseconds, a measurement that is
beyond the detection capabilities of current instruments. However, stars move around
the Galactic center (and have an additional random velocity component with respect to
one another). The relative velocities are such that the time scale of the relative change
of lens and source positions is of order of weeks or shorter. Therefore, this motion
introduces a temporal component in the lensing geometry, causing the distance between
the lens and the source, and thus the magnification, to vary measurably as a function
of time, accordingly to Eq. (3.12). In general, a source with intrinsic flux Fs will appear
to have flux F (t) = µ(t)Fs.
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Figure 3.2. Illustration of the lens position and source trajectory. The dimensionless
impact parameter is y0, y1(t) indicates the dimensionless distance of the source from its
closest point to the lens, and y(t) is the dimensionless distance between the lens and
source.
Credits: Meneghetti (2021).

The microlensing light-curve describes the temporal behavior of the magnification,
dictated by the relative motion of the lens across the observer-source line of sight.

As shown in Fig. 3.2, assuming a straight line can approximate the path of the
source relative to the lens, the former moving with transverse velocity v and reaching
the minimum dimensionless distance y0 (i.e. the impact parameter of the source), from
the lens at time t0, the dimensionless distance of the source from y0 can be written

y1(t) = v(t − t0)
DLθE

. (3.14)

Since magnification significantly deviates from unity only for sources with |y| ≲ 1,
the characteristic timescale of the microlensing event is given by

tE = DLθE

v
, (3.15)

which is known as the Einstein crossing time. Stellar lenses in the Milky Way are
associated with typical tE on the order of a month, and thus the changes in the observed
brightness of the source they induce are referred to as microlensing “events”.
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Figure 3.3. Left panel: some examples of source trajectory across the Einstein ring
with different impact parameters y0. Right panel: corresponding light-curves.
Credits: Meneghetti (2021).

Inserting Eq. (3.15) into Eq. (3.14), the trajectory of the source can be represented
by

y(t) =
√

y2
0 + y2

1(t) =
√

y2
0 + (t − t0)2

t2
E

. (3.16)

The corresponding light-curve of the source, examples of which are shown in Fig. 3.3,
is then obtained by combining Eqs. (3.12) and (3.16) and multiplying by the unlensed
source flux

F (t) = µ(t)Fs = y(t)2 + 2
y(t)

√
y(t)2 + 4

Fs . (3.17)

The standard microlensing light-curve of a simple point-source, point-lens system is
thus described by four parameters: unlensed flux Fs, t0, y0 and tE . Of these, Fs can be
measured in the absence of microlensing, t0 and y0 from the position and height of the
light-curve peak, respectively. Only tE = DLθE/v contains physical information about
the lens system and determines the peak width, i.e. the duration of the event. Assuming
that the source distance can be determined from its properties (membership in a stellar
system, spectral type and apparent magnitude), there are three physical parameters,
lens mass M , lens distance DL, and lens relative transverse velocity v, to determine from
one observable: this is the so-called microlensing degeneracy. Although the standard
light-curve model is successful in numerous instances, there exist circumstances where
some foundational assumptions of this model no longer hold. In such situations, it
might be feasible to derive additional constraints that can partially lift the degeneracy.

28



3.2. EXTENDED LENSES CHAPTER 3. LENS MODELS

Non-standard light-curves, for instance, may occur when either the source or the lens
are not point-like, or when the path of the source moving relative to the lens is not
linear. Such instances often occur when either the lens or the source, or both, are part
of binary systems.

3.2 Extended lenses

This section aims to introduce the main models used to represent extended gravitational
lenses, such as massive galaxies and galaxy clusters. These cosmic structures, char-
acterized by their complex, gravitationally bound mass distributions, are formidable
gravitational lenses capable of producing striking lensing phenomena, including multiple
images and gravitational arcs.

The analysis starts with circular, axially symmetric models and describes how
different mass profiles affect lensing properties. Subsequently, deviations from circular
symmetry are introduced through properties such as ellipticity and substructures.
Finally, the impact of the environment surrounding the lenses is taken into account.
The thin screen approximation is used throughout this description of analytical lens
models.

3.2.1 Axially symmetric profiles

The most simple description of an extended lens is an axially symmetric profile. For such
lenses, the potential is constant on circles centered on the lens center. This symmetry
allows most equations to be simplified to a one-dimensional form.

The deflection angle is radially directed and its amplitude depends only on the
distance from the lens center. Its expression is the same as that of the point-mass lens,
with the only difference that now M = M(θ) is the mass enclosed in a circle of radius
θ. For this reason, introducing an arbitrary reference scale ξ0, the dimensionless mass
profile can be written as

m(x) = 2
∫ x

0
x′κ(x′) dx′ = M(ξ0x)

πξ2
0Σcr

, (3.18)

which leads to a deflection angle

α(x) = 2
x

∫ x

0
x′κ(x′) dx′ = m(x)

x
. (3.19)
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Therefore, the lens equation is

y = x − m(x)
x

. (3.20)

Given that Ψ′(x) = α(x), from Eq. (2.17) the convergence profile can be obtained:

κ(x) = 1
2

[
α′(x) + α(x)

x

]
= m′(x)

2x
. (3.21)

Finally, introducing κ(x) = m(x)/x2 as the mean convergence within a circle of
radius x, the shear vector results

γ(x) = 1
2

∣∣∣∣α′(x) − α(x)
x

∣∣∣∣ = |κ(x) − κ(x)| . (3.22)

Using the precedent results and Eq. (2.28), it is possible to compute the determinant
of the lensing Jacobian

det A(x) = y

x

dy

dx
= [1 − κ(x) − γ(x)][1 − κ(x) + γ(x)] , (3.23)

and the correspondent magnification profile µ(x) = [det A(x)]−1.
As described in Section 2.2, the set of points that satisfies det A(x) = 0 represents

the critical lines of the lens. For an axially symmetric lens these are circles, whose radii
can be found by solving the equations

λt(x) = 0 ⇒ κ(x) + γ(x) = 1 , (3.24a)

λr(x) = 0 ⇒ κ(x) − γ(x) = 1 , (3.24b)

which define the tangential critical line and the radial critical line, respectively.
Through the lens equation, it can be seen that all the points along the tangential

critical line are mapped to the point y = 0 on the source plane: this type of lenses
have point-like tangential caustics. Instead, the radial critical points are mapped onto a
circular radial caustic on the source plane.

3.2.2 Power-law profiles

This class of lenses is characterized by a mass profile with a power-law form of the kind

m(x) = x3−n , (3.25)
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where n is a parameter that can assume any real value > 1.
From the previous mass profile definition, all the other lensing properties can be

derived:
κ(x) = m′(x)

2x
= 3 − n

2 x1−n ,

α(x) = m(x)
x

= x2−n ,

γ(x) =
∣∣∣∣m′

2x
− m(x)

x2

∣∣∣∣ = n − 1
2 x1−n ,

y = x − x2−n .

(3.26)

In particular, given the value of the parameter n, it is possible to distinguish different
scenarios.

• n = 1: perfectly convergent lens with constant convergence and y(x) = 0, ∀x;

• 1 < n < 2: mass and deflection angle profiles increase with x, while the con-
vergence and shear profiles show a decrease. The tangential critical line forms a
circle of radius xt = 1, ∀n, and its corresponding caustic line is a single point at
yt = 0. On the other hand, the size of the radial critical line varies according to
the value of n. As it increases, the radial critical line becomes smaller, whereas
the size of the caustic line follows an increasing trend. In particular, for n = 2,
the radial critical line is absent. For lenses that are axially symmetric, there are
multiple methods to solve the lens equation, but the most effective approach is
often referred to as the image diagram, by which multiple image positions can be
identified where the profile of the deflection angle intersects the lines f(x) = x − y.

Figure 3.4 demonstrates that the separation between images is influenced by the
value of n: a higher value results in a more curved profile of the deflection angle,
leading to a greater number of images that are closer together, and conversely, a
lower n leads to fewer images with larger separations. More precisely, these lenses
produce three images if the source is inside the radial critical line (i.e. y < yr),
otherwise they form a single image.

• n = 2: flat deflection angle profile, Singular Isothermal Sphere model (see
Section 3.2.3);

• n > 2: deflection angle profile decreases with x and has a singularity in x = 0.
These lenses produce two images, one inside and one outside the Einstein radius
(see Fig. 3.5). The radial eigenvalue is always non-zero, causing the absence of
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a radial critical line and ensuring that the radial magnification factor, µr < 1,
always. This means that the images are consistently demagnified in the radial
direction.

It should be noted that for n = 3 the scenario corresponds to that of a point-mass
lens.

Figure 3.4. Image diagrams for different values of 1 < n < 2. The solid curves show
the function α(x), while the dashed lines represent the function f(x) = x − y, with
varying y value.

Figure 3.5. Image diagrams for different values of n > 2. The solid curves show the
function α(x), while the dashed lines represent the function f(x) = x − y, with varying
y value.

3.2.3 Singular Isothermal Sphere

One of the simplest and most widely used models for axially symmetric lenses is the
Singular Isothermal Sphere (SIS). The density profile is obtained by assuming that
the matter constituting the lens acts like an ideal gas, contained within a spherically
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symmetric gravitational potential. This gas is presumed to be in states of thermal and
hydrostatic equilibrium.

By projecting the three-dimensional density onto the lens plane, the surface mass
density can be calculated

Σ(ξ) =
∫ ∞

0
ρ(ξ, z) dz = σ2

v

2Gξ
, (3.27)

where ξ is the distance from the center of the lens and σv represents the gas particle
velocity dispersion (i.e. the stars in a galaxy or the galaxies in a cluster). Although
this profile is not physical, having a singularity for ξ = 0 and an infinite total mass, it
reproduces very well the observed flat rotation curves of spiral galaxies for 0 ≪ ξ < ∞.

Setting the length scale at ξ0 = 4π
(σv

c

)2 DLDLS
DS

, it is possible to rewrite Eq. (3.27)
in a dimensionless form and derive the convergence profile

Σ(x) = Σcr

2x
⇒ κ(x) = γ(x) = 1

2x
, (3.28)

which shows that the SIS lens corresponds to a power-law lens with n = 2.
From the convergence definition, the deflection angle and the lens equation can be

obtained:

α(x) = x

|x|
, (3.29a)

y = x − x

|x|
. (3.29b)

The solutions of the lens equation are dependent on the source position y, as it can
be seen in the left panel of Fig. 3.5:

• when 0 < y < 1 there exist two solutions on opposite sides of the lens center;
one is at x− = y − 1 and one at x+ = y + 1. Their angular separation is always
∆(θE) = 2θE ;

• when y > 1 there is only one solution at x+ = y + 1.

Therefore, the circle of radius y = 1 serves a similar function to that of the radial
caustic for power-law lenses with 1 < n < 2, delineating areas on the source plane that
are associated with different image multiplicities. However, this circle does not qualify
as caustic because α′(x) = 0, ∀x, indicating that λr = 1. Instead, the circle of radius
ycut = 1 is referred to as pseudo-caustic, known as the cut. In addition, unlike ”normal"
caustics, the number of images changes only by one when crossing the cut, instead of
changing by two.
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Figure 3.6. Imaging of an extended source by a SIS lens. Each panel shows the images
produced for different values of y. The black circle represents the tangential critical line
of the lens, the Einstein ring.

Given that λr = 1, the images are only magnified in the tangential direction, while
the radial size of all the images remains unchanged. In particular, when the source is
placed inside the cut, the magnifications can be expressed as:

µ−(y) = 1 − 1
y

, (3.30a)

µ+(y) = 1 + 1
y

, (3.30b)

for the image inside and outside the Einstein ring respectively.
From Eqs. (3.30a) and (3.30b) can be seen that for y → 1 the image x− becomes

weaker and weaker until it disappears for y = 1. On the other hand, when y → ∞ the
source magnification tends to unity: sources at a large distance from the lens experience
little to no magnification.

Figure 3.6 shows some examples of images produced by a SIS lens of an extended
circular source, placed at different distances from the lens.

3.2.4 Non-singular Isothermal Sphere

One way to solve the central singularity issue of the SIS lens is to introduce an additional
parameter ξc, describing a flat central core of the surface density profile (Kormann et al.,
1994):

Σ(ξ) = Σ0√
1 + (ξ/ξc)2 with Σ0 = σ2

v

2Gξc
, (3.31)

where Σ0 represents the constant surface density for ξ ≪ ξc.
By introducing the same scale length ξ0 defined in Section 3.2.3 and re-scaling both

ξ and ξc, the dimensionless relevant quantities for the Non-singular Isothermal Sphere
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(NIS) can be derived:
κ(x) = 1

2
√

x2 + x2
c

,

µ(x) =
√

x2 + x2
c − xc ,

α(x) =
√

1 +
(

xc

x

)2
− xc

x
,

y = x −

√
1 +

(
xc

x

)2
− xc

x
.

(3.32)

The lens equation above can be reduced to a third-order polynomial: the NIS lens
can produce up to three images of a given source, with multiplicity depending on the
value of xc. It can be shown (Meneghetti, 2021) that tangential and critical lines exist
only for values of xc < 1/2, i.e. for xc > 1/2 the lens is “weak” and cannot produce
multiple images. In particular, the tangential caustic is a point at yt = 0, while the
radii of the tangential critical line, the radial caustic and the radial critical line vary
with xc as shown in Fig. 3.7.

Figure 3.7. NIS caustic critical lines radii as a function of xc. For xc = 0, yr = 1, i.e.
the SIS cut.
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3.2.5 Singular Isothermal Ellipsoid

After investigating the impact of altering the slope of the density profile and the
incorporation of a central core, it is possible to assess the influence of ellipticity on lens
characteristics. Introducing ellipticity surely improves the representation of galaxies
and their mass distributions. Kormann et al. (1994) developed the Singular Isothermal
Ellipsoid (SIE) model, which can be derived from the SIS model by substituting

ξ ⇒
√

ξ2
1 + f2ξ2

2 , (3.33)

where 0 < f ≤ 1 is the axis ratio of the ellipses that, in this scenario, define the
iso-density contours of the mass profile.

Through this substitution, the surface density profile becomes

Σ(⃗ξ) = σ2
v

2G

√
f√

ξ2
1 + f2ξ2

2

, (3.34)

which, as already said, is constant on ellipses with minor axis ξ and major axis ξ/f .

By choosing, once again, the same scale length ξ0 as for the SIS model, the conver-
gence can be written as

κ(x⃗) =
√

f

2
√

x2
1 + f2x2

2

, (3.35)

or, using polar coordinates,

κ(x, φ) =
√

f

2x∆(φ) , (3.36)

where
∆(φ) =

√
cos (φ)2 + f2 sin (φ)2 . (3.37)

By solving the Poisson equation, the lensing potential in polar coordinates can be
obtained, and then, taking its gradient, it is possible to derive the deflection angle,
which has two components, none of which depends on x:

α1(x⃗) =
√

f

1 − f2 arcsinh
(√

1 − f2

f
cos (φ)

)
,

α2(x⃗) =
√

f

1 − f2 arcsin
(√

1 − f2 sin (φ)
)

.

(3.38)
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The shear components can be obtained from the derivatives of the deflection angle

γ1(x⃗) = −κ(x⃗) cos (2φ) ,

γ2(x⃗) = −κ(x⃗) sin (2φ) ,
(3.39)

and, as for the SIS model, γ =
√

γ2
1 + γ2

2 = κ.
Finally, from the lensing Jacobian determinant, the two eigenvalue are

λt(x⃗) = 1 − 2κ(x⃗) , (3.40a)

λr(x⃗) = 1 . (3.40b)

Similarly to the SIS lens, the SIE does not have a radial critical line. Instead, the
tangential critical line is the ellipse defined by

κ(x⃗) = 1
2 ⇒ x⃗t(φ) =

√
f

∆(φ) [cos (φ), sin (φ)] . (3.41)

As always, the points on the critical line can be mapped onto the source plane
using the lens equation: introducing ellipticity to the lens disrupts its axial symmetry,
leading to the transformation of the tangential caustic from a central point into an
astroid-shaped caustic, featuring four cusps and four folds. As for the SIS, due to the
singularity at the center of the lens, also for the SIE profile does not exist a radial
critical line and, as a result, the multiple images region is not enclosed by the radial
caustic, but by the cut, which is an ellipse.

The number of multiple images formed by this lens is influenced by the positioning
of the cut and caustic lines. In particular, for large ellipticities (small values of f , in
particular f < f0 = 0.3942), the tangential caustic extends outside the cut, as shown in
Fig. 3.8. The cusps that are not contained within the cut are called naked.

Given that crossing the cut alters the number of images by one and traversing the
caustic alters it by two, the scenarios with f > f0 are capable of generating one, two,
or four images. In contrast, a smaller value of f can lead to the existence of another
possible scenario with the formation of three multiple images (see Fig. 3.9).

Figure 3.10 illustrate the lensing of circular sources by a SIE lens. The upper
panels illustrate the change in image geometry as the source approaches the lens center,
traversing the cut and the caustic fold. Sources positioned outside the cut generate a
single image, which is located in the same quadrant of the image plane as the source’s
projected position. Upon crossing the cut, an additional image emerges near the lens
center, a consequence directly related to the cut definition. As the source moves nearer
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Figure 3.8. Tangential critical line (dashed red), tangential caustic (solid red) and cut
(solid blue) for two SIE lenses with f = 0.7 and f = 0.2.

to the caustic, the central image shifts away from the lens center, appearing in the
quadrant of the lens plane that is opposite to the source’s projected quadrant. When
the source crosses the caustic, a pair of images appear on either side of the critical line.
Specifically, if the source is close to the fold in the source plane’s first quadrant, the
resultant images are found in the lens plane’s second quadrant, adhering to the left-right
mapping rule relevant to tangential critical points. As the source approaches the lens
center, the resulting images form a symmetrical arrangement known as the Einstein
cross.

In the middle and bottom panels of Fig. 3.9, which focus on the same lens, the source
moves from beyond the cut towards the lens’s center, crossing through the tangential
caustic cusps. At the point of caustic crossing, three images converge at the critical
line, with the left-right rule once again coming into effect.

Images near the critical line are distorted tangentially, leading to the creation of
gravitational arcs. These images become elongated and tend to converge at the critical
line, with the most significant gravitational arcs forming from the convergence of three
images of sources located near the caustic cusps. The extent of observed distortions is
influenced by the source’s size in relation to the caustic. When the source is significantly
larger than the caustic, the impact of the ellipticity is barely noticeable.
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(a) (b)

(c) (d)

Figure 3.9. Illustration of the different image multiplicity scenarios: (a) one image if
the source is outside the cut, (b) two images if the source is inside the cut, (c) three
images if the source is inside the caustic and (d) four images if the source is inside both
caustic and cut.
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Figure 3.10. Lensing of circular sources by a SIE lens with f = 0.6. In the left panels,
sources at different angular separations from the lens center. In the right panels, the
correspondent multiple images.
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3.2.6 Non-singular Isothermal Ellipsoid

As previously done with the SIS model, to remove the central singularity of the surface
mass density, it is also possible to introduce a core for the SIE model. The resulting
model, the Non-singular Isothermal Ellipsoid (NIE), has been thoroughly described
by Kormann et al. (1994); Tessore & Benton Metcalf (2015). By introducing a core
radius ξc and with the usual choice of ξ0 = ξ0,SIS , the surface mass density and the
convergence can be written

Σ(⃗ξ) = σ2

2G

√
f√

ξ2
1 + f2ξ2

2 + ξ2
c

, (3.42a)

κ(x⃗) =
√

f

2
√

x2
1 + f2x2

2 + x2
c

. (3.42b)

Figure 3.11 shows the different multiplicities that a NIE lens can produce of a source,
depending on the value of f and xc. It can have two separate critical lines and caustics,
only one tangential critical line and caustic, or no critical lines and caustics at all.
Depending on the caustics structure, this lens can produce one, three, or five images of
a source.

Figure 3.11. NIE caustics topologies for varying f and xc.
Credits: Kormann et al. (1994).
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3.2.7 External shear

When analyzing a gravitational lens located in a densely populated environment, it
becomes crucial to consider the gravitational influence of the surrounding mass distribu-
tions. A usual approach to encapsulate the effects of this environment is to employ the
concept of an external shear field. This field is characterized through a potential that
allows the quantification of the environmental impact on the lensing effects observed.
The external shear field effectively models the tidal forces exerted by nearby mass
distributions that are not directly part of the lens, but nevertheless influence the path
of light rays passing near the lens.

The presence of the external shear field can be modeled by means of a potential Ψγ ,
such that

γ1 = 1
2(Ψ11 − Ψ22) = const.

γ2 = Ψ12 = const.

κ = 1
2(Ψ11 + Ψ22) = const.

(3.43)

This means that Ψ11 and Ψ22 must be both constants and the potential is quadratic:

Ψγ(x⃗) = Cx2
1 + C ′x2

2 + Dx1x2 + E . (3.44)

Differentiating Eq. (3.44) and substituting into Eq. (3.43):

γ1 = 1
2(Ψ11 − Ψ22) = C − C ′ ,

γ2 = Ψ12 = D ,

κ = 1
2(Ψ11 + Ψ22) = C + C ′ .

(3.45)

At this point, it is possible to distinguish two cases:

• κ = 0 if the external perturbation does not contribute to the convergence, which
means C = C ′ = γ1/2 and

Ψγ = γ1
2 (x2

1 − x2
2) + γ2x1x2 . (3.46)

• γ1, γ2 = 0 if the lens is embedded in a sheet of constant surface mass density
producing no shear (no privileged directions); in this case the external convergence
potential is

Ψκ = κ

2 x2 , (3.47)
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and can be inserted into the lens equation

α⃗(x⃗) = ∇⃗Ψκ(x⃗) = κx⃗ , (3.48)

to obtain
y⃗ = x⃗ − α⃗(x⃗) = x⃗(1 − κ) . (3.49)

If κ = 1, this sheet acts as a perfectly convergent lens, mapping every position x⃗

on the lens plane to the same point y = 0.

43





4
Algorithms

Building on the foundational understanding of gravitational lensing and its computational
challenges, a critical aspect of modern astrophysical research involves the optimization
of parametric functions to model the complex phenomena of the Universe accurately.
This optimization is essential in gravitational lensing studies, where precise models of
the mass distribution within lensing objects are paramount for interpreting the observed
lensing effects. The optimization process often requires navigating a high-dimensional
parameter space to find the best-fit parameters that reconcile theoretical models with
observational data, a task that can be computationally intensive and algorithmically
complex.

In this context, the advent of frameworks such as PyTorch1 (Paszke et al., 2019) and
TensorFlow2 (Abadi et al., 2016) represents a significant leap forward for astrophysical
research. These open-source libraries, primarily developed for deep learning applications,
offer powerful tools for automatic differentiation, a technique that facilitates the calcu-
lation of gradients automatically, a cornerstone for any optimization algorithm. The
ability of PyTorch and TensorFlow to efficiently compute derivatives of highly complex,
nested functions makes them exceptionally well suited for optimizing parametric models
in gravitational lensing studies.

Moreover, PyTorch and TensorFlow are designed to exploit the capabilities of modern
computing hardware, including GPUs and TPUs, enabling the parallel processing of
large datasets and the acceleration of computational tasks. This feature is particularly
beneficial for gravitational lensing research, where handling large amounts of observa-
tional data and running complex simulations is commonplace. Using the computational
power offered by these frameworks, one can significantly reduce the time required for
model optimization and data analysis, thus enhancing the efficiency of the investigations.

4.1 Differentiable programming

Differentiable programming is an advanced computational paradigm that unites tra-
ditional programming concepts with the principles of differentiation, a fundamental

1https://pytorch.org
2https://www.tensorflow.org
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concept in calculus. This approach extends the idea of computing derivatives to entire
programs, enabling the automatic calculation of gradients of program outputs with
respect to inputs. Differentiable programming is particularly powerful in the context
of optimization, machine learning, and artificial intelligence, where it facilitates effi-
cient parameter tuning to minimize or maximize some objective function. Methods for
computing derivatives in computer programs can be classified into four categories (see
Fig. 4.1):

1. manually working out derivatives and coding them;

2. numerical differentiation, involves approximating the derivative of a function
using values of the original function evaluated at some sample points (Burden
et al., 2016). In its simplest form, it is based on the limit definition of a derivative.
It is quite simple to implement and apply to a wide range of problems, especially
when dealing with data-driven models or functions that lack a clear analytical
representation. Its effectiveness diminishes in high-dimensional settings, where
the complexity and computational demands increase exponentially, highlighting
the method’s limitations in handling complex, multi-variable functions efficiently;

3. symbolic differentiation, which refers to the automatic process of finding
derivatives using the rules of differentiation to obtain an exact symbolic expression
for the derivative of a given function (Grabmeier et al., 2003). This method works
similarly to how humans perform differentiation “by hand”, manipulating symbols
according to mathematical laws;

4. automatic differentiation (AD), also called algorithmic differentiation,is a
method that computes the derivative of a function efficiently and accurately by
systematically applying the chain rule of calculus to the sequence of elementary op-
erations (additions, multiplications, trigonometric functions, etc.) that constitute
a computer program. All numerical computations are ultimately compositions of
a finite set of elementary operations for which derivatives are known (Verma, 2000;
Griewank & Walther, 2008), and combining the derivatives of the constituent
operations through the chain rule of calculus3 gives the derivative of the overall
composition. AD is not an approximation like numerical differentiation, but rather
computes derivatives to machine precision.

3The derivative of the composition of two (or more) differentiable functions f and g can be expressed
in terms of the derivatives of the single functions f and g. If h(x) = f(g(x)), then h′(x) = f ′(g(x))g′(x).
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Figure 4.1. Summary of techniques to calculate derivatives.
Credits: Margossian (2019).

In particular, differentiable programming refers to using automatic differentiation in
some way that allows a program to optimize its parameters to improve on some task. It
only has three requirements:

1. a parameterized function/model to be optimized;

2. (automatic) differentiability of the object to be optimized;

3. a function suitable to measure the performance of the model.

The process of optimizing a model in the field of differentiable programming is often
called training. In the subsequent portion of this section, a comprehensive overview of
automatic differentiation and its role in the training process will be provided. This will
be followed by an in-depth exposition of the process itself.

4.1.1 Automatic differentiation

Computational graph

As already stated, automatic differentiation operates on the fundamental principle that
complex functions can be decomposed into a series of elementary arithmetic operations.
Given a target composite function f(x) = h ◦ g(x) = h(g(x)), with x ∈ Rn, g : Rn → Rk,
and h : Rk → Rm, applying the chain rule and elementary matrix multiplication, the
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corresponding Jacobian matrix4 J is thus:

J = Jh◦g = Jh(g(x)) · Jg(x) , (4.1)

with (i, j)th element:

Jij = ∂fi

∂xj
= ∂hi

∂g1

∂g1
∂xj

+ ∂hi

∂g2

∂g2
∂xj

+ . . . + ∂hi

∂gk

∂gk

∂xj
. (4.2)

More generally, if f is the composite expression of L functions

f = fL ◦ fL−1 ◦ . . . ◦ f1 , (4.3)

the corresponding Jacobian matrix will be

J = JL · JL−1 · . . . · J1 . (4.4)

Hence, given a complex function f , it is possible to break down the action of the Jacobian
matrix on a vector into simple components. So, following Griewank & Walther (2008)
notation, a function f : Rn → Rm can be constructed using intermediate variables vi

such that

• variables vi−n = xi, i = 1, . . . , n are the input variables,

• variables vi, i = 1, . . . , l are the intermediate variables,

• variables ym−i = vl−i, i = m − 1, . . . , 0 are the output variables.

The representation of all the elementary operations that take place to construct a certain
function f is called the evaluation trace, which can also be pictured as a computational
graph (Bauer, 1974), useful for visualizing the dependency relations between intermediate
variables. Figure 4.2 shows the computation graph for an example function f : R2 → R:

f(x1, x2) = ln (x1) + x1x2 − sin (x2) . (4.5)

Given the computational graph of all elementary operations, AD can be implemented
in two main modes: forward accumulation mode and reverse accumulation mode
(backward mode).

4The Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order
partial derivatives.
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Figure 4.2. Computational graph of the example f(x1, x2) = ln (x1) + x1x2 − sin (x2).
Credits: Baydin et al. (2018).

Forward mode

Automatic differentiation in forward accumulation mode (or tangent linear mode) is
the conceptually most simple type. The differentiation process is aligned with the
function evaluation itself. Starting from the inputs, the program computes both the
function’s value and its derivative step by step through the computation graph. For
each elementary operation, the forward mode calculates the derivative of the output
with respect to the inputs, carrying these derivatives (or “tangents”) forward through
the computation graph.

Considering as an example the evaluation trace of the function defined in Eq. (4.5)
(left-hand side of Fig. 4.3), for computing the derivative of f with respect to x1, the
first step is to associate with each intermediate variable vi a derivative

v̇i = ∂vi

∂x1
. (4.6)

Applying then the chain rule to each elementary operation in the forward primal
trace, the corresponding tangent (derivative) trace is generated (right-hand side of
Fig. 4.3), until the required derivative in the final variable v̇5 = ∂y

∂x1
is obtained.

Generalizing this procedure to a function f : Rn → Rm, each forward pass of AD
provides one column of the Jacobian matrix (i.e. the partial derivatives of all output
variables with respect to one input variable). Thus, the complete Jacobian can be
computed in n evaluations. For this reason, forward AD is efficient and straightforward
especially for functions f : R → Rm, for which all derivatives can be computed with
just one forward pass.

In general, for functions with many inputs f : Rn → Rm where n ≫ m, the reverse
accumulation mode of AD is preferred.
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Figure 4.3. Forward mode AD example for f(x1, x2) = ln (x1) + x1x2 − sin (x2),
evaluated at (x1, x2) = (2, 5) by setting ẋ1 = 1. The original forward evaluation of the
primals on the left is augmented by the tangent operations on the right, where each
line complements the original directly to its left.
Credits: Baydin et al. (2018).

Reverse mode

AD in reverse accumulation mode (or adjoint or cotangent linear mode) (Griewank et al.,
2012) corresponds to a generalized backpropagation algorithm, in that it propagates
derivatives backward from a given output. This is done by complementing each variable
vi with an adjoint

vi = ∂yj

∂vi
, (4.7)

which represents the sensitivity of a considered output yj with respect to changes in vi.

In reverse mode AD, derivatives are computed in the second of a two-phase process.
In the first phase, the original function code is run forward, creating intermediate
variables vi and recording the dependencies in the computational graph. In the second
phase, derivatives are calculated by propagating adjoints vi in reverse, from outputs to
inputs. The reverse mode AD for the example function of Eq. (4.5) is shown in Fig. 4.4.

An important advantage of the reverse mode is that it is significantly less costly
to evaluate (in terms of operation count) than the forward mode for functions with
a large number of inputs. In the extreme case of f : Rn → R, only one application
of the reverse mode is sufficient to compute the full gradient, compared with the n

passes of the forward mode needed to populate the same. Because the optimization
of astrophysical and gravitational lensing parametric functions usually involves the
gradient of a scalar-valued objective with respect to a (large) number of parameters,
this establishes the reverse mode, as opposed to the forward mode, as the mainstay
technique in the form of the backpropagation algorithm (Schmidhuber, 2015).
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Figure 4.4. Reverse mode AD example for f(x1, x2) = ln (x1) + x1x2 − sin (x2),
evaluated at (x1, x2) = (2, 5). After forward evaluation of the primals on the left, adjoint
operations on the right are evaluated in reverse.
Credits: Baydin et al. (2018).

4.1.2 Backpropagation algorithm

The backpropagation algorithm is the cornerstone of neural network training (Rumelhart
et al., 1986; LeCun et al., 2012), mainly used to minimize the error by adjusting
the weights of the connections in the network. However, when it comes to a model
optimization problem outside the realm of neural networks, such as training parametric
models, the concept of backpropagation refers to the method of computing gradients
efficiently using reverse mode AD.

The training process (or better, the training loop) is characterized by a sequence of
operations performed recursively. The optimization itself is performed by an optimizer
which operates by tweaking the model parameters in a certain way, with the purpose
of minimizing a loss function, which quantifies the difference between the predicted
outputs of the model and the actual target/observed values. The main algorithm that
allows for this optimization is the so-called gradient descent.

Loss function

As mentioned above, the loss function provides a measure of the performance of the
model. The goal of optimization is to adjust the model parameters in a way that
minimizes the loss function. The choice of loss function depends on the specific problem
and the model. Common examples include the Mean Squared Error (MSE) for regression
problems

MSE = 1
n

n∑
i=1

(yi − ŷi)2 , (4.8)
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where yi and ŷi are the observed and predicted values, respectively, and the Cross-
Entropy Loss for classification problems.

A common loss function used in the optimization of the gravitational lensing models
is the chi-squared (χ2) statistic, which is the sum of squared differences between observed
(y) and model-predicted (ŷ) values, normalized by uncertainties (σ) in observations:

χ2 =
n∑

i=1

(
yi − ŷi

σi

)2
. (4.9)

The loss function is a crucial component because it guides the training process by
indicating the direction in which the model parameters should be adjusted.

Gradient descent

Gradient-based optimization is one of the pillars of machine learning (Bottou et al.,
2018) and is one of the most common optimization algorithms for parametric functions.
It is used to find the values of the parameters of a function that decrease the loss
function as much as possible (Chandra et al., 2022; Ruder, 2016). Given a loss function
f : Rn → R, and starting from random initial values of the parameters θ⃗, classical
gradient descent has the objective of finding (local) minima

ˆ⃗
θ = arg min

θ⃗

f(θ⃗) , (4.10)

which means finding the set of parameters ˆ⃗
θ ∈ Rn that minimizes the loss function, as

shown in Fig. 4.5. In complex models, f might have multiple local minima, and the
algorithm seeks to find at least one of these, via updates of the form

∆θ⃗ = −η∇⃗
θ⃗
f (4.11)

where η > 0 is the so-called step size, also known as learning rate, which determines how
big a step is taken in the direction opposite to the gradient. Choosing the appropriate η

is crucial; too small, and the algorithm converges slowly, too large, and it can overshoot
the minimum or diverge (see Fig. 4.6). Gradient-based methods make use of the fact
that f decreases the steepest moving in the direction of the negative gradient. The
convergence rate of gradient-based methods is generally improved by adaptive step size
techniques that adjust step size η on each iteration (Duchi et al., 2011; Schaul et al.,
2013; Kingma & Ba, 2017).
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(a) (b)

Figure 4.5. Examples of gradient descents for a (a) one-dimensional loss function and
for a (b) two-dimensional one.
Credits: Géron (2019); Amini et al. (2018).

(a) (b)

Figure 4.6. Examples of gradient descent for a one-dimensional loss (cost) function
with (a) learning rate too small and (b) learning rate too high.
Credits: Géron (2019).
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All gradient-based optimization logic is encapsulated in the optimizer object: it
determines the direction in which the model parameters should be adjusted and the
magnitude of the parameter update (learning rate).

Advanced optimizers, such as Adam (Kingma & Ba, 2017) and AdaDelta (Zeiler,
2012), go beyond the basic gradient descent by adapting the learning rate during the
training process based on the properties of the loss surface (e.g. , its curvature). These
optimizers can accelerate convergence by dynamically adjusting the step size for each
parameter individually, based on the history of gradients. This can be particularly
beneficial for navigating complex loss surfaces with varying curvatures.

Training loop

Having outlined all the essential components within the optimization framework, it is
now possible to describe the training process in all its phases, as shown in Fig. 4.7.

1. Initialization: set up the model to be optimized and initialize its parameters to
some (random) values.

2. Forward pass: obtain the model predictions based on the initial parameters and
compute the loss to quantify how far the model’s outputs are from the actual
target/observed values.

3. Backward pass (backpropagation): calculate the gradient of the loss function
with respect to each parameter in the model. This involves propagating the error
backwards from the outputs to the inputs, as described in Section 4.1.1. This
process systematically computes the partial derivatives using the chain rule to
effectively determine how each parameter should be adjusted to minimize loss.

4. Parameter update (gradient descent): for each parameter, update its value
by moving it in the direction that minimally decreases the loss

θ⃗final = θ⃗initial − η∇⃗
θ⃗initial

f (⃗θinitial) . (4.12)

5. Iteration or convergence: repeat steps 2 through 4 for a predefined number of
iterations (or epochs) or until the change in the loss function between iterations
falls below a small threshold, indicating convergence.

The following sections will detail the methods used for the simulation and analysis
of the objects presented in Chapter 5. Beginning with the modeling of light sources and
the adopted surface brightness profiles, the discussion will advance to the techniques
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Figure 4.7. Optimization algorithm diagram.

used for simulating and reconstructing strong gravitational lenses. Finally, methods will
be described to assess the accuracy of the model fit to the observed/simulated data.

4.2 Light sources modeling

The prevalent approach to modeling light sources such as galaxies involves using a
parametric profile (R), where R represents a measure of distance from the center of the
object. These models often presuppose an excessively idealized level of symmetry, yet
offer the advantage of being straightforward to define and apply. When building galaxy
components, it is generally assumed that the profiles exhibit elliptical symmetry (Peng
et al., 2002, 2010), and therefore R represents the elliptical radius

R(x⃗′) =
√

x′
1

2 + x′
2/q2 (4.13)

of a source with an axis ratio q. The coordinate system (x′
1, x′

2) of the source can be
rotated by the position angle φ with respect to the coordinate system (x1, x2) of the
observation. The resulting isophotes5 of the surface brightness distribution of such an
elliptical source are ellipses with semi-major axis R/q, semi-minor axis R and orientation
φ with respect to the x1 axis of observation.

5Curves of constant surface brightness.
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4.2.1 Sérsic profile

The most common model to describe elliptical surface brightness distributions is the
Sérsic law (Sérsic, 1963, 1968), which is given by the exponential

I(R) = Ie exp
{

−bn

[(
R

Re

) 1
n

− 1
]}

, (4.14)

where Ie is the surface brightness at the effective radius6 Re and n > 0 is called the
Sérsic index, which characterizes the slope of the profile. The function bn depends only
on the Sérsic index and is defined by

γ(2n, bn) = 1
2Γ(2n) , (4.15)

where Γ, γ are, respectively, the Gamma function and the incomplete Gamma function.
It can be shown (Ciotti, 1991; Ciotti & Bertin, 1999) that, for a Sérsic index in the
range 0.5 ≤ n ≲ 8, bn can be approximated by

bn ≈ 2n − 1
3 + 4

405n
≈ 1.9992n − 0.3271 . (4.16)

With this, the profile is now fully determined by the seven parameters for position x1,
x2, effective radius Re, Sérsic index n, intensity at the effective radius Ie, axis ratio q

and position angle φ.
The Sérsic profile is a versatile model; by varying n it is possible to obtain many

of the classical galaxy profiles as special cases, such as Gaussian profiles (n = 0.5),
exponential profiles (n = 1) and de Vaucouleurs (de Vaucouleurs, 1948) profiles (n = 4).

4.2.2 Core-Sérsic profile

An extension of the Sérsic profile has been developed by Graham et al. (2003, 2004);
Trujillo et al. (2004) to better reproduce the observed radial profiles of surface brightness.
This model consists of a power law to model the inner radii and a Sérsic function to
describe the outer stellar distribution. It is given by

I(R) = I ′
[
1 +

(
Rb

R

)α]γ/α

exp
{

−bn

[
Rα + Rα

b

Rα
e

]1/(αn)
}

, (4.17)

where Rb is the break-radius separating the inner power law with logarithmic slope γ

from the outer Sérsic profile with slope n. The intensity Ib at the break-radius Rb can
6Also called the half-light radius, the radius within which half of the galaxy’s luminosity is contained.
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Figure 4.8. Sérsic profiles for different values of n. On average, n ≈ 2 − 10 for bulges
and elliptical galaxies, n ≈ 1 for disk galaxies and n ≤ 0.5 for bars and stellar clumps.
Credits: Burke (2013).

be evaluated from the expression

I ′ = Ib2−γ/α exp

bn

[
21/αRb

Re

]1/n
 . (4.18)

The parameter α controls the sharpness of the transition between the inner (power law)
and outer (Sérsic) regimes, with higher values indicating sharper transitions (Fig. 4.9).

In this case, the number of parameters becomes larger to include the inner-outer
change of regime: the profile is fully determined by ten parameters: for position x1,
x2, effective radius Re, Sérsic index n, intensity Ib at the break-radius Rb, slope of the
inner power law γ, sharpness of the transition α, axis ratio q and position angle φ.

4.2.3 Sky component

Observations usually include a diffuse distribution of light known as the sky background,
which must be considered in the reconstruction process. The most basic model for this
sky component is a flat surface brightness distribution, characterized by a constant
value or a fixed gradient along the x1 and x2 axes of the lens plane. Even if the
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Figure 4.9. Different core-Sérsic profiles illustrated by the dotted curves for a range
of structural parameters. Profiles with values of α equal to 2, 3, and 4 are shown, the
latter giving the sharpest transition. In all models Re = 10 arcsec, Rb = 0.5 arcsec,
and γ = 0.2. For comparison, an inner power law with slope equal to −0.2 is shown
(diagonal solid lines), as are Sérsic profiles (solid curves) having the same Sérsic shape
index n.
Credits: Graham et al. (2003).
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diffuse background has been removed during a pre-processing step, incorporating a sky
component as a free element in the model is advisable. Distinguishing between sky and
actual signal is challenging, and any over- or underestimation of the subtracted light
can have a considerable impact on the reconstruction outcomes.

4.2.4 Point Spread Function

The Point Spread Function (PSF) is a fundamental concept in optical physics and
astronomy that describes how a system blurs or spreads a point light source in an
image. The PSF encapsulates the response of an imaging system to a point source or
point object, representing the diffraction pattern caused by the optics of the system,
including aberrations (Bovik, 2005). Understanding the PSF is crucial for interpreting
and processing observational data, as it affects the accuracy with which one can measure
the properties of observed objects.

Mathematically, the PSF is often modeled as a convolution kernel that, when applied
to an ideal image (the image that would be observed in the absence of any blurring
effects), produces the observed image. The process of convolution mathematically
represents spreading the light from point sources over a larger area of the detector,
affecting the observed shapes, sizes, and brightness of these objects.

The effect of PSF on an observed image on a plane (x, y) can be described by
the convolution of the true image f(x, y) with the Point Spread Function PSF(x, y),
resulting in the observed image g(x, y) (Howell, 2006):

g(x, y) = (f ∗ p)(x, y) =
∫∫

f(x′, y′)PSF(x − x′, y − y′) dx′ dy′ . (4.19)

The Point Spread Function (PSF) is usually expressed by means of the Full Width
at Half Maximum (FWHM). Their link is rooted in the definition and characterization
of the PSF itself. The PSF describes the response of an imaging system to a point
source, represented as a distribution or function of intensity across the image plane.
The FWHM is a derived characteristic of this distribution, specifically measuring the
width of the PSF at half of its maximum intensity. In the usual case of a Gaussian PSF
(Fig. 4.10):

PSF(x, y) = PSF0 exp
{

− 4 ln 2
FWHM2 (x2 + y2)

}
, (4.20)

where PSF0 is the peak intensity, the FWHM is directly related to the standard deviation
σ of the Gaussian distribution by:

FWHM = 2
√

2 ln 2σ . (4.21)
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Figure 4.10. Gaussian or normal PSF and the link with the FWHM.
Credits: Tavernier (2010).

4.3 Lens reconstruction

One of the primary applications of gravitational lensing is reconstructing the lens mass
distribution. The modeling of gravitational lenses begins with a collection of observables
(Fig. 4.11), such as the relative positions and fluxes of images, time delays between
images, and other properties of the lens. This modeling can be approached in one of two
different but related ways: as a forward problem of creating a model of the lens system
(lenses and sources) that approximates the observed image the best, or as the inverse
problem of finding a lens model that deconstructs the observation into a self-consistent
and physically viable image of the source. Many successful applications have been
published for both the forward (Bandara et al., 2013; Bolton et al., 2008; Newton et al.,
2011; Peng et al., 2006) and the inverse method (Dye & Warren, 2005; Kochanek &
Narayan, 1992; Nightingale & Dye, 2015; Suyu et al., 2006; Vegetti & Koopmans, 2009;
Wallington et al., 1996; Warren & Dye, 2003).

Three types of constraints can be used for this purpose:

1. the locations of the multiple images produced by a lensed source help to map out
the deflection field of the lens, which corresponds to the first derivatives of the
lensing potential (Cardone et al., 2001). Obtaining these constraints is relatively
straightforward assuming the availability of high-resolution imaging data. This
work will mainly focus on this type of constraint.

2. the magnifications (fluxes) and shapes of the multiple images and gravitational arcs
explore the higher-order derivatives (mainly the second) of the lensing potential
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Figure 4.11. Examples of observations of strong gravitational lensing. The large
arcs contain information to constrain the gravitational lenses producing these images.
Credits: ESA/Hubble & Nasa.

(Gilman et al., 2019). Therefore, these constraints are particularly sensitive to the
smaller-scale mass components of the lens;

3. the relative time delays between multiple images serve as probes of the lensing
potential, as shown in Section 2.2.4. However, time delays can only be measured
in a limited number of lenses (only a few tens) because they require the lensed
sources to be intrinsically variable, such as quasars or supernovae (Refsdal, 1964).
These types of source are rare. Additionally, measuring time delays is challenging;
it demands dedicated telescope time for the continuous observation of these sources
over extended periods, along with precise photometry.

The method of translating observed strong lensing constraints into distributions of
matter is referred to as lens inversion or reconstruction.

Such reconstruction is often tackled using two main categories of inversion algorithms
parametric and non-parametric algorithms, based on whether the calculation is “model-
based” (parametric) or “model-free” (non-parametric) at the start of the process (Coe
et al., 2008). This work is focused on the first type of approach, applying parametric
optimization to retrieve the mass distribution of the lens.

Each approach has its own particular set of strengths and weaknesses, which are
summarized here.

1. Parametric models employ a clear physical parameterization from the beginning,
defining the mass distribution based on a set of specific parameters. Parametric
simulation models are generally used to solve the forward problem, taking a
source and lensing mass and then predicting the resulting image. Also known as
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simply-parameterized models, they assume a physical model that fits the data
with relatively few defined parameters (Jullo et al., 2007). In parametric models,
the data is fitted to a physical object (e.g. Point-Mass, Singular Isothermal Sphere,
Singular Isothermal Ellipsoid, De Vaucouleurs model, etc.) and a model of the
lensing mass made using that physical object to predict the effect on the light from
the source, often with the assumption that mass follows light. The exploration
of these models parameter space aims to identify the optimal combination that
accurately replicates the observed positions, shapes, magnitudes, and relative time
delays of the multiple images and arcs;

2. non-parametric methods, which do not start with a predefined physical model but
instead use a “grid-based” approach, among others, to model the mass distribution.
The lens is divided into a mesh, which can be either structured or unstructured,
and the lensing observables are projected onto this mesh. Subsequently, this mesh
is converted into a pixelized mass distribution using the relationships between
the observables and the surface density of the lens. This technique has been
extensively applied on a variety of scales, from galaxies to clusters, and has been
implemented in numerous ways (Birrer et al., 2015; Blandford et al., 2000; Coles
et al., 2014; Diego et al., 2005, 2007; Koopmans, 2005; Liesenborgs et al., 2006;
Merten, 2016; Saha & Williams, 2004; Sebesta et al., 2016; Suyu & Blandford,
2006; Suyu et al., 2009).

4.3.1 Parametric reconstruction

Strong lensing parametric reconstruction, also known as inversion, involves the use of
predefined models to describe both the mass distribution of the lensing object and the
light distribution of the background source. The aim is to adjust the parameters of these
models to best fit the observed lensing phenomena, such as arcs, rings, and multiple
images of a background source. The process is detailed and involves several key steps
and algorithms:

1. model selection for both the mass distribution and the light distribution;

2. parameter initialization for the parameters of the mass and light distribution
models are made based on observational data or theoretical considerations;

3. ray-tracing simulation using the initial models: a ray-tracing algorithm com-
putes the deflection angles at each point in the lens plane, which are used to trace
the light rays back to the source plane. This step predicts the appearance of the
lensed images based on the current model parameters;
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4. optimization via an objective (loss) function that quantifies the difference between
the observed and predicted lensed images, as described in Section 4.1. This function
often includes terms for the positions, shapes, and flux ratios of the observed and
model-predicted images. Methods such as gradient descent (Ruder, 2016; Canu
et al., 2016), Markov Chain Monte Carlo (MCMC) (Geyer, 1992; Speagle, 2019),
or Nested-Sampling (Skilling, 2004; Buchner, 2023) are used to adjust model
parameters to minimize the objective function. This iterative process refines the
model to better fit the observations;

5. model comparison and selection if multiple models are being tested, and
statistical criteria such as the Akaike Information Criterion (AIC) (Cavanaugh
& Neath, 2019) or Bayesian Information Criterion (BIC) (Liddle, 2007; Chen &
Chen, 2008) are used to compare their fit to the data, helping to select the best
model;

6. uncertainty quantification for the model parameters, often through bootstrap-
ping or by analyzing the posterior probability distributions in methods like MCMC,
providing insights into the confidence levels of the mass and light distribution
parameters.

As already stated, parametric reconstruction is highly dependent on the chosen
models and their ability to accurately represent the complex mass distributions of
astronomical objects. Its strength lies in its relatively straightforward interpretation
and the physical significance of the model parameters, but it also faces limitations in
flexibility compared to non-parametric methods.

There are several ways to implement parametric lens reconstruction and, as will
be shown in Chapter 5, one of the most common approaches is to use the observed
positions of multiple images (Fig. 4.12). The optimization can then be performed in
mainly two ways: with the so-called lens or image plane optimization or with the source
plane optimization technique.

Lens plane and source plane optimization

In the context of lens inversion, the positions of multiple images θ⃗i are the main
observable feature that can be used to constrain the lens parameters. It is assumed that
the lens is described by a surface density model (e.g. SIS, SIE, etc.) depending on a set
of n parameters p⃗ = [p1, . . . , pn], starting at some initial values (random or constrained
by other observables) and that the redshifts of the source and lens are known.
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Figure 4.12. Simulated image of a strong lensing event with multiple images, indentified
by the azure circles. The image is 4′′ × 4′′, with a pixel scale of 0.03′′.

• Lens plane optimization

Given a set of lens parameters, it is possible to calculate the lens deflection angle
at the observed positions of the images α⃗(⃗θi|p⃗) and, using the lens equation, map
these positions on the source plane:

β⃗i(p⃗) = θ⃗i − α⃗(⃗θi|p⃗) . (4.22)

The resulting points β⃗i(p⃗) will be spread over a certain region in the source plane
since the model parameters are not correct. The predicted source position can be
estimated by taking the mean position of these points:

β⃗(p⃗) = 1
Nima

Nima∑
i=1

β⃗i(p⃗) , (4.23)

where Nima is the observed number of multiple images.

Subsequently, by solving the lens equation, the predicted source position can be
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mapped back to the lens plane, obtaining a set of predicted image positions

β⃗(p⃗) → {⃗θi(p⃗); i = 1, . . . , Nima,p⃗} , (4.24)

where the number of predicted images, Nima,p⃗, can clearly be different from Nima.

At this point a cost function can be defined to compare the predicted and observed
positions of the images

χ2(p⃗) =
Nima∑
i=1

[⃗θi − θ⃗i(p⃗)]2
σ2

i

, (4.25)

where θ⃗i(p⃗) is the position of the predicted image closest to the image at θ⃗i and
σi is the error on the position of the i-th image.

To identify the optimal lens model, one can adjust the parameters p⃗ to minimize
the loss function, or equivalently, to maximize the likelihood of the observed image
positions given the parameters p⃗

L (p⃗) = 1
Nima∏
i=1

σi

√
2π

exp
[
−χ2(p⃗)

2

]
. (4.26)

When dealing with multiple families of multiple images, the same approach can
be utilized. However, the likelihood function must be adjusted to become the
product of the likelihoods corresponding to each image family

L (p⃗) =
Nfam∏
j=1

1
Nima∏
i=1

σji

√
2π

exp
[
−

χ2
j (p⃗)
2

]
, (4.27)

with χ2
j as defined in Eq. (4.25), but referring to the j-th family of multiple images

and σji is the error on the position of the i-th image of the j-th family.

Maximizing the aforementioned likelihood is equivalent to minimizing the total
chi-squared value χ2

tot, which is defined by

χ2
tot(p⃗) =

Nfam∑
j=1

χ2
j (p⃗) . (4.28)
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• Source plane optimization

An alternative to optimizing in the lens plane is to perform optimization in the
source plane. In an ideal scenario, if the model parameters precisely match the
lens parameters, multiple images would map to a single position on the source
plane. Consequently, a cost function can this time be defined on the source plane
to facilitate this optimization process

χ2
s(p⃗) =

Nima∑
i=1

[β⃗i(p⃗) − β⃗(p⃗)]2
σ2

i

µi(p⃗)2 , (4.29)

where µi(p⃗) is the model estimated magnification at the i-th image position.

The primary benefit of source plane optimization is the elimination of the most
complex step in the previously described lens plane optimization procedure. This
step, which involves solving the lens equation, can be computationally intensive and
is typically addressed by numerical methods. When leveraging multiple families of
images as constraints, optimization on the lens plane becomes considerably more time
consuming compared to source plane optimization. Furthermore, this approach does not
require a one-to-one match between the observed and predicted images by the model
when calculating the chi-squared χ2. However, a potential downside is that the error
for each predicted source position βi(p⃗) must be estimated using the model-predicted
magnification µi(p⃗) = µ(⃗θi|p⃗) at the image positions. Additionally, optimization on the
source plane may produce biased solutions, often favoring models with flatter density
profiles and higher ellipticity (Kneib & Natarajan, 2011).
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Applications

In the following sections, we discuss specific lensing applications on three different
scales. Our discussion initiates with a detailed examination of microlensing events,
phenomena where the gravitational field of a relatively small object, such as a star or
planet, magnifies the light of a background star. This section will focus on the technique
of light-curve fitting, a method that analyzes the temporal change in brightness of the
lensed star to extract critical information about the lensing object. Microlensing offers
a unique method for detecting elusive objects, including exoplanets (Sumi et al., 2011;
Gaudi, 2012) and dark compact objects, providing insights into the mass, motion, and
distribution of such entities within the Milky Way (Alcock et al., 1993; Udalski et al.,
1993).

Transitioning from the stellar to the galactic scale, we next explore the realm of
galaxy-scale lensing (Treu, 2010) by optimizing a parametric strong lensing model. This
segment emphasizes the development and optimization of parametric models for strong
lensing, where entire galaxies act as lenses, distorting and magnifying the light of more
distant galaxies into arcs and rings. Through the optimization of these models, we aim
to reconstruct the mass distribution of lensing galaxies (Auger et al., 2010), including the
elusive dark matter component (Vegetti et al., 2010). This approach not only sheds light
on the structure and composition of galaxies, but also contributes to our understanding
of the evolution of the large-scale structure of the Universe.

Finally, we will address weak lensing by fitting surface brightness profiles and
measuring ellipticities.

5.1 Microlensing light-curve fit

The standard microlensing light-curve, also known as the Paczynski light-curve, (Paczyn-
ski, 1986), as introduced in Section 3.1, is defined by three parameters: the impact
parameter y0, the maximum magnification time t0, and the Einstein radius crossing
time tE , which represents the time scale of the microlensing event. The latter implicitly
depends on other relevant quantities of the lensing system, the lens mass M , the relative
velocity between lens and source vrel and the distances between lens and source from
the observer DL and DS . The combination of these parameters defines the amplification
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to which a source with intrinsic flux fS is subjected.
The first step consists of simulating a microlensing event to obtain synthetic obser-

vational data, to which noise is then added in such a way as to mimic observational
errors. We start by considering a lens with mass M = 0.3 M⊙ placed at a distance
DL = 4.0 kpc. We then define a source behind the lens, at a distance DS = 8.0 kpc,
characterized by an intrinsic flux of fS = 7.0 (in arbitrary units), which moves with
relative velocity vrel = 200.0 km s−1 with respect to the lens. Assuming that one could
monitor the source for a long period (one year in this case), a microlensing event happens
when the source moves across the Einstein radius of the lens, causing a peak in the
magnification. In this simulation, this occurs at t0 = 183.0 d. After setting up the model
parameters, shown in Table 5.1, the simulated light curve can be computed and the
result is shown in Fig. 5.1 (black dots). The errors in the photometric measurement are
assumed to be 10% of the baseline flux. Subsequently, the model was initialized with
random parameters. Predictions of the model, given the set of initial parameters, are
shown in Fig. 5.1 (red line), along with the standardized residuals, which are expressed
in units of standard deviation from the mean.
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(a)

(b)

Figure 5.1. (a) Initial predictions of the model and (b) residuals expressed in units of
standard deviation from their mean.
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Table 5.1. Summary of the parameters before and after fitting the model with the set
of degenerate parameters.

Parameter True value Initial value Best-fit value Best-fit value
(degeneracy) (MCMC)

fS 7.0 2.0 6.993 (7.017 ± 0.040)
M 0.3 M⊙ 0.8 M⊙ 0.556 M⊙ (0.620 ± 0.466) M⊙

y0 0.1 0.6 0.100 (0.101 ± 0.001)
vrel 200.0 km s−1 180.0 km s−1 182.881 km s−1 (231.722 ± 49.037) km s−1

t0 183.0 d 114.0 d 183.002 d (183.018 ± 0.023) d
DL 4.0 kpc 2.0 kpc 1.548 kpc (3.166 ± 1.698) kpc
DS 8.0 kpc 7.0 kpc 3.786 kpc (8.658 ± 3.457) kpc

After initializing the model, the cost function was defined to quantify the discrepancy
between the model and the observed data. In this case, a reduced chi-square χ2

ν was
specified as the metric of choice. It is defined as

χ2
ν = χ2

ν
= 1

ν

∑
i

[
(Oi − Ei)2

σ2
i

]
, (5.1)

where Oi and Ei are the i-th observed and expected values respectively, while σi is
the data uncertainty on the i-th observed value. The term ν represents the degrees of
freedom, calculated as the number of observations minus the number of fitted parameters.
A value of χ2

ν close to 1 suggests that the model fits the data well, with deviations
between the observed and expected values largely attributable to random noise. A value
significantly greater than 1 indicates that the model does not fit the data well, possibly
due to systematic errors, an incorrect model, or an underestimation of the variability in
the data. On the contrary, a value significantly less than 1 may suggest that the model
fits the data too well, potentially due to overfitting or overestimation of the variability
in the data.

At this stage, Adam (Kingma & Ba, 2017) is set as the optimizer to perform a
gradient descent optimization on the cost function of choice and minimize its value by
updating the model parameters at each iteration. Training starts with a loss value of
χ2

ν = 192.939 and, after 1000 iterations, the algorithm stops after reaching a χ2
ν = 1.028.

As can be seen Table 5.1, even though the input parameters fS , y0 and t0 are
accurately estimated, almost matching their true values precisely, the other parameters
show considerable deviation from their actual values. This discrepancy was expected
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Table 5.2. Summary of the parameters before and after fitting the model a second
time to avoid degeneracy.

Parameter True value Initial value Best-fit value Best-fit value
(training) (MCMC)

fS 7.0 2.0 7.065 (7.052 ± 0.041)
M∗ 0.3 M⊙ 0.8 M⊙

y0 0.1 0.6 0.103 (0.100 ± 0.001)
vrel

∗ 200.0 km s−1 180.0 km s−1

t0 183.0 d 114.0 d 182.989 d (183.010 ± 0.022) d
DL

∗ 4.0 kpc 2.0 kpc
DS

∗ 8.0 kpc 7.0 kpc
tE 19.1369 d 29.3461 d 19.025 d (19.054 ± 0.207) d

*: Parameters not fitted to avoid degeneracy.

and, as introduced in Section 3.1, is due to the high microlensing degeneracy, as these
parameters collectively influence the determination of the Einstein crossing time tE . In
fact, it is the Einstein crossing time alone that shapes the light curve’s profile.

This degeneracy can also be seen after performing a Bayesian sampling of the
posterior probability distribution of the parameters using the Monte Carlo Markov
Chain (MCMC) sampler implemented in the Pyro1 framework (Bingham et al., 2018),
which is a probabilistic programming language built on top of PyTorch, designed
to create and run complex probabilistic models. The resulting posterior probability
distributions of the parameters are shown in Fig. 5.2. In the literature, numerous
methods have been known to attempt to break this degeneracy (Lee, 2017). In this
case, the choice was made to redefine the model so that it directly depends on tE , a
quantity that, as mentioned, implicitly contains all the degenerate parameters within it.

The fitting procedure for the simulated observations was therefore repeated, defining
a model with the same initial parameters but fitting only the parameters fS , t0, y0

and tE . In this case, the initial reduced chi-square value is χ2
ν = 193.270, and after

training the model for the same number of epochs as before, it drops to a value of
χ2

ν = 1.009. The best-fit parameters are indicated in Table 5.2, while Figs. 5.3 and 5.5
show, respectively, the best-fit model with its standardized residuals, and the trend of
the cost function as a function of the number of iterations.

1https://pyro.ai/
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Figure 5.2. Corner plot showing the posterior probability distributions of the parame-
ters used to fit the light-curve in Fig. 5.1a. The projections of the probability density
on planes defined by each couple of parameters, as well as one-dimensional marginalized
distributions are shown. The degeneracy among the parameters M , vrel, DL and DS is
clearly visible.
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(a)

(b)

Figure 5.3. (a) Predictions of the best-fit model and (b) residuals expressed in units
of standard deviation from their mean.
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Figure 5.4. As Fig. 5.2 but for a model whose free parameters are fS , t0, y0, tE .
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Figure 5.5. Loss value as a function of epochs.

5.2 Strong lens parametric reconstruction

This section of the thesis delves into the intricacies of parametric strong lensing, focusing
on the Singular Isothermal Ellipsoid (SIE) model, a widely adopted representation for
the mass distribution of lensing galaxies. The SIE model provides a robust framework
for simulating gravitational lenses, offering a simplified, yet effective, portrayal of their
mass profiles.

Taking advantage of the positions of multiple images generated by the lensing effect,
one can derive the parameters of the lensing system that produced them. The objective
is to optimize the lens parameters, which dictate the lensing behavior and, consequently,
the appearance and positions of the lensed images.

This optimization is pursued through two distinct methodologies, as discussed in
Section 4.3. Starting in both techniques from the positions of the multiple images,
the first method focuses on optimizing the lens parameters within the source plane,
by mapping the positions of the images back in the source plane and minimizing the
distance between the theoretical and inferred position of the source.

The second method shifts the focus to the lens plane by directly minimizing the
distances between each observed and predicted image to optimize the lens parameters.
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Table 5.3. Summary of lens and source parameters.

LENS

Parameter Value
zL 0.3
sv 200.0 km s−1

q 0.3
φ 0.7854 rad
f 1 × 103

Re 5.0′′

n 3.5
x1c 0.0′′

x2c 0.0′′

SOURCE

Parameter Value
zS 1.5
q 0.8
φ 1.0472 rad
f 4.5 × 103

Re 0.3′′

n 4.0
y1c −0.1676′′

y2c 0.0838′′

5.2.1 Lens modelling

The first step, as always, is to produce a simulation of the lensing system and the main
observables of this topic, the multiple images of the background source.

The process begins by defining the observational parameters: a grid of 100×100 pix is
established, with a resolution of 0.03 ′′ pix−1. A background noise per pixel of rms = 0.5
mimics real observational noise. Additionally, the final image is also convolved with
a Gaussian PSF with FWHM of 0.1′′. Subsequently, the definition of the lens and
source hyperparameters follows. Regarding the mass distribution of the lens, an SIE
model is assumed in the center of the grid, at position (0, 0), characterized by a velocity
dispersion of 200.0 km s−1, axial ratio of 0.3 and position angle of 45 deg. Concerning
the surface brightness distribution, a Sérsic profile is assumed for both objects: for
the lens, an effective radius of 5.0′′ and a Sérsic index n = 3.5, while for the source
these parameters are set to 0.3′′ and 4.0. Moreover, the source is placed at position
(−0.2θE , 0.1θE) (with θE the lens Einstein radius2), and is characterized by an axial
ratio and a position angle of 0.8 and 60 deg, respectively. We then assume that the
source galaxy hosts at its center a point-like source, e.g. a quasar. Finally, it is assumed
that the redshifts are zL = 0.3 for the lens and zS = 1.5 for the source. A summary of
the lens and source parameters is presented in Table 5.3.

By inserting these parameters into the model, it is possible to obtain all characteristics
of the lens, but the first step required to simulate the strong lensing event is to solve the
lens equation for the assigned position of the source, treated at this stage as point-like.

2θE = 25.92 × 1011
(

σ2
vDLS

c2DS

)
′′ .
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This allows the positions of the multiple images produced to be assigned to the lens
plane.

5.2.2 Solving the lens equation

Given the complexity of the model, the best solution is to solve the lens equation
numerically. To do this, the method proposed by Kormann et al. (1994) has been
adopted to solve the lens equation in the case of SIE models. Starting with the
two coordinates of the source (and considering (x, ϕ) as the radial and angular polar
coordinates.),

y1 = x1 − α1(x⃗) , (5.2a)

y2 = x2 − α2(x⃗) , (5.2b)

and multiplying Eq. (5.2a) by cos ϕ and Eq. (5.2b) by sin ϕ we obtain

y1 cos ϕ = x1 cos ϕ − α1(x⃗) cos ϕ = x cos2 ϕ − α(x, ϕ) cos2 ϕ , (5.3a)

y2 sin ϕ = x2 sin ϕ − α2(x⃗) sin ϕ = x sin2 ϕ − α(x, ϕ) sin2 ϕ . (5.3b)

Recalling that α(x, ϕ) = Ψ̃(ϕ), the angular part of the lensing potential, Eqs. (5.3a)
and (5.3b) can be combined to calculate the distance from the lens center as a function
of ϕ:

x(ϕ) = y1 cos ϕ + y2 sin ϕ + Ψ̃(ϕ) . (5.4)

By reinserting Eq. (5.4) into the lens equation, and setting q′ =
√

1 − q2, we obtain

F (ϕ) =
[
y1 +

√
q

q′ arcsinh
(

q′

q
cos ϕ

)]
sin ϕ −

[
y2 +

√
q

q′ arcsin
(
q′ sin ϕ

)]
cos ϕ = 0 .

(5.5)
The task of determining the images of a source located at the coordinates (y1, y2)

simplifies the identification of the roots of the function F (ϕ). After determining ϕ, it
can be applied to Eq. (5.4) to calculate x. Analytical solutions are unattainable; thus, a
numerical root-finding technique is required.

The algorithm adopted to find the roots of the function F shares some similarities
with Brent’s method (Brent, 1971). In particular, it uses a numerical technique based
on the bisection method, which is a type of bracketing method. This method is
used to find the roots of a continuous function. The approach is iterative and relies
on the intermediate-value theorem. The bisection method provides a reliable and
straightforward numerical approach to find roots with a guarantee of convergence,
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Table 5.4. Summary of the parameters before and after fitting the model using both
source plane or image plane optimization.

Parameter True value Initial value Best-fit value Best-fit value
(Source plane opt.) (Image plane opt.)

σv 200.0 km s−1 220.0 km s−1 200.1128 km s−1 200.9709 km s−1

q 0.3 0.7 0.2990 0.2952
φ 0.7854 rad 1.0472 rad 0.7855 rad 0.7853 rad

assuming that the initial interval indeed contains a root and the function does not
change sign multiple times within the interval.

Thanks to this method, it is therefore possible to solve the lens equation to derive
the positions of the multiple images and produce the simulated image of the strong
lensing event.

The simulated image of the lens-source system is shown in Fig. 5.6a.

5.2.3 Lens optimization

Initially, the model of the lens galaxy is constrained solely by the positions of the quasar’s
multiple images. In practical terms, these positions, as determined from astronomical
observations, are subject to a degree of imprecision. To simulate positional uncertainty,
a minor scatter of 0.015′′ is introduced to the actual positions of the images.

To start the fitting process, we initialize the parameters of the SIE model to some
values (see Table 5.4) and start by optimizing the lens parameter in the source plane.

Source plane optimization

The first step in the optimization process involves calculating the deflection angle at the
positions of the multiple images derived by solving the lens equation. This allows them
to be mapped onto the source plane. Since the initial model is generally not accurate,
a “source” will be obtained for each of the multiple images of the quasar. It is then
assumed that the best estimate for the unlensed position of the quasar is the average
position of these sources. The multiple sources obtained and their average position are
shown in Fig. 5.7.

Subsequently, it is possible to define a cost function on the source plane that needs
to be minimized. This is defined as the sum of the squared differences of the distances
of the individual sources predicted from their average position. By minimizing this cost

78



5.2. STRONG LENS PARAMETRIC RECONSTRUCTION CHAPTER 5. APPLICATIONS

(a)

(b)

Figure 5.6. (a) Simulated image of a strong lensing event. The pixel scale is 0.03 ′′ pix−1

and the image side length is 3′′. (b) The same simulated image, but with the tangential
critical line (solid blue line), the cut (dashed red line) and the tangential caustic (solid
red line) of the lens considered shown. The yellow dashed lines identify the lens center.
The orange circles represent the positions of the multiple images obtained by solving
the lens equation with the method discussed in Section 5.2.2.
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Figure 5.7. The multiple images of the source are mapped back to the source plane to
multiple predicted sources (green triangles). Their mean position (purple triangle) is
indicated. The solid blue curves represent the caustic and the cut of the lens model,
respectively. The dashed blue curves give the true caustic and cut.
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(a) (b)

Figure 5.8. (a) Loss history for source plane optimization and (b) best-fit image
positions for the source plane optimization.

function, it is possible to optimize the model parameters so that the multiple sources
converge to a single position.

This is feasible, as always, through a training loop. After defining Adam as optimizer,
training is started to minimize the cost function, which decreases from a starting value
of 3.1 · 10-1 to a final value of 1.1 · 10-11 (see Fig. 5.8a).

In Table 5.4 the best-fit results are reported. Furthermore, as can be seen in
Figs. 5.8b and 5.9, in both the source plane and the lens plane, the positions of the
source and multiple images overlap. Additionally, from Figs. 5.9a and 5.9b a clear
coincidence of the caustic, cut, and critical line is visible.

Image plane optimization

Regarding the optimization on the lens plane, the first part of the process is similar: the
positions of the multiple images are mapped onto the source plane and their average
position is calculated. However, unlike the process discussed previously, it is now
necessary to remap the average position of the sources onto the lens plane by solving
the lens equation. This allows the model-predicted positions of the multiple images to
be obtained. These are shown in Fig. 5.10a.

The process then proceeds as follows: for each observed image of the quasar, the
closest predicted image from the model is identified. Then, the distance between each
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(a)

(b)

Figure 5.9. Best-fit model for the source plane optimization, visualized both (a) in
the source plane and (b) in the lens plane. On the source and lens planes are indicated
the caustic, cut and critical line of the best-fit model and the true ones (which overlap).
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(a)

(b)

Figure 5.10. (a) Multiple images predicted by the model and true images superimposed
on the light distribution of the image plane. (b) Illustration in the lens plane of the
multiple images predicted and observed, where each closest pair has been identified.
Each black stick shows the distances between each quasar image and the closest model-
predicted one. The tangential critical line of the model is represented by a solid blue
curve, while the true one is shown as a dashed blue curve.
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(a) (b)

Figure 5.11. (a) Loss history for image plane optimization and (b) best-fit image
positions for the image plane optimization.

closest pair of predicted and observed images is measured. Such distances are shown as
black sticks in Fig. 5.10b.

Once the closest pairs of images have been identified and their distance calculated,
all that remains is to explore the parameter space in search of the combination of σv,
q, and φ that minimizes this distance, in order to make every image predicted by the
model converge to the real image produced by the observed system. The cost function
implemented to quantify this discrepancy between images is a χ2 in the lens plane that
measures the sum of the absolute distances between each pair of images, divided by the
observational error on each image position, as described in Section 4.3.1. With these
settings, the minimization procedure starts with an initial loss value χ2 = 5.05 · 103 and
ends with a value of χ2 = 1.56 ·10-3, as reported in Fig. 5.11a. The values for the best-fit
parameters are reported in Table 5.4. With these parameters, the model-predicted image
positions match the observed image positions very well, as can be seen in Fig. 5.11b.

Once the model has been fitted to the observational data and the best-fit parameters
have been derived, these can be used to obtain information about the mass distribution
of the lens.

In our particular case, the best-fit velocity dispersion results in an Einstein radius

θE = 25.92 × 1011
(

σ2
vDLS

c2DS

)
′′ = 0.8379′′ = 4.06 × 10−6 rad , (5.6)
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which, knowing the redshift zL = 0.3 of the lens and so its angular diameter distance
DL = 9.5 × 105 kpc, can be converted into physical units:

RE = θEDL = 3.86 kpc . (5.7)

Subsequently, we can compute the critical surface density Σcr from Eq. (2.18) as

Σcr = c2

4πG

DS

DLDLS
= 2.41 × 109 M⊙ kpc−2 , (5.8)

allowing us to estimate the total mass enclosed inside the Einstein radius of the lens

M(< RE) = πR2
EΣcr = 1.13 × 1011 M⊙ . (5.9)

5.3 Surface brightness and galaxy shapes

This section focuses on the significance of fitting surface brightness models to simulat-
ed/observational data within the context of weak lensing. Accurate modeling of surface
brightness profiles is of utmost importance for the analysis of weak lensing effects.

Fitting surface brightness profiles is a crucial step in weak lensing studies for several
reasons. First, it allows astronomers to precisely measure the shapes and orientations of
galaxies, which can be subtly distorted by the gravitational lensing effect of foreground
mass distributions. These distortions, although weak and difficult to detect, carry
invaluable information about the mass distribution of the lensing objects, including
dark matter, which is otherwise invisible. By analyzing the statistical alignment and
shape changes of background galaxies, researchers can map the mass distribution of the
lensing structures, offering insights into the nature of dark matter and the large-scale
structure of the Universe.

Moreover, accurate fitting of surface brightness profiles helps in separating the
lensing signal from intrinsic alignments and other observational effects, enhancing the
reliability of weak lensing measurements. This process is fundamental in cosmology as it
contributes to the precision modeling of the Universe’s expansion and the distribution of
matter on cosmic scales. Thus, the methodological advancements in fitting these profiles
not only refine our understanding of individual galaxy structures but also bolster the
broader applications of weak lensing as a tool for probing the fundamental components
and dynamics of the cosmos.

By fitting observed surface brightness profiles with theoretical models, the ellipticity
and orientation of galaxy images can be precisely determined, allowing for the recon-
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struction of the lensing field and the mapping of the mass distribution along the line of
sight.

5.3.1 Fit of Sérsic profile of surface brightness

The simulated galaxy is generated from a theoretical model, incorporating noise and
applying a Point Spread Function (PSF), assuming that the sky background has already
been subtracted from the image.

Incorporating noise into these simulations mimics the real observational conditions
faced in astronomy. Sources of noise include detection equipment, atmospheric interfer-
ence in ground-based observations, and intrinsic astronomical sources of variability. By
integrating noise into the simulations, the fitting algorithms are tested for robustness,
ensuring they can navigate the real-world data complexities.

Additionally, applying a Point Spread Function (PSF) is crucial. The PSF models
the imaging system’s response, capturing the effects of the telescope, detectors, and
atmosphere that may blur and distort observed images. This is particularly relevant in
the context of weak lensing because the PSF anisotropies can mimic lensing-induced
ellipticities, biasing the shear measurements. Simulating these effects allows the fitting
algorithms to consider them when analyzing objects’ surface brightness.

We assume that the sky background has been subtracted from the image. This
step isolates the light from the astronomical object from ambient environmental light,
including atmospheric light, scattered light from nearby stars, and the Milky Way’s
diffuse glow. Precise background subtraction is essential for accurate surface brightness
measurements.

The most common type of parametric surface brightness model is the Sérsic profile,
which, as described in Section 4.2.1, is characterized by an exponential form. This is the
usual profile adopted to represent the luminosity distribution of various astronomical
objects, such as galaxies, by providing a flexible mathematical framework that describes
a wide range of shapes from disk-like to elliptical structures.

The Sérsic profile is expressed mathematically as follows:

I(R) = Ie exp
{

−bn

[(
R

Re

) 1
n

− 1
]}

. (5.10)

Assuming q is the axis ratio of the elliptical distribution, the elliptical radius R is
thus

R =
√

x2
r + (yr/q)2 , (5.11)
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where xr and yr the rotated coordinates obtained by aligning the reference frame (x, y)
of the observer to the axes of the ellipse

xr = (x − x0) cos φ + (y − y0) sin φ ,

yr = (y − y0) cos φ − (x − x0) sin φ ,
(5.12)

where x0 and y0 represent the coordinates of the center of the ellipse and φ the position
angle.

Optimizing the Sérsic profile means fitting its seven parameters (Ie, Re, n, x0,
y0, q, φ) to observational data, which requires careful consideration of the effects of
instrumental and observational factors, such as the Point Spread Function (PSF).

Simulation of observational data

The first step consists of simulating the observational data. It is done by constructing a
(x, y) grid on the sky plane with dimensions 100′′ ×100′′, with a pixel scale of 0.03 ′′ pix−1.

The model for simulating the galaxy light profile and the parameters needed to
create the mock data are then defined. The intensity at the effective radius, Ie, is
expressed in arbitrary units, while the effective radius Re is expressed in arcseconds,
together with the center coordinates. Furthermore, the axis ratio q and position angle
φ of the galaxy are defined. They are linked to the ellipticity components e1 and e2 by
the following relations

e1 = 1 − q

1 + q
cos (2φ) ,

e2 = 1 − q

1 + q
sin (2φ) ,

(5.13)

and their combination gives the ellipticity of the object

e =
√

e2
1 + e2

2 = 1 − q

1 + q
. (5.14)

The ellipticity is related to the semi-major and semi-minor axes, which is reflected
in terms of shear. In particular, it can be demonstrated that the ellipticity coincides
with the reduced shear g:

e ≡ g = γ

1 − κ
. (5.15)

This is the concept at the basis of weak lensing: by measuring the ellipticity of
the lensed images of background sources, we can infer the lenses’ mass distribution.
Given that ellipticity measures shear and convergence, it is then related to the second
derivatives of the lensing potential.
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We can then proceed with inserting the parameters inside the model. Table 5.5
report a summary of the parameters to which the model is initialized.

When the parameters are added to the model, the theoretical observational data is
produced and is shown in Fig. 5.12a. Additionally, in Fig. 5.13, the theoretical Sérsic
profile is shown: the surface brightness as a function of distance from the galaxy center,
in units of Re. Subsequently, to enhance the realism of the observational model, a
Gaussian noise component with mean µ = 0.0 and standard deviation σ = 0.05 was
added to the image. Furthermore, the resulting surface brightness was convolved with a
Point Spread Function (PSF) characterized by a Full Width at Half Maximum (FWHM)
of 0.1′′. The final “noisy” surface brightness profile is illustrated in Fig. 5.12b.

Fitting the model to data

The next step involves fitting the model to the observational data. In this context,
we establish a cost function and an optimizer, and we proceed by utilizing automatic
differentiation frameworks such as PyTorch and TensorFlow. As discussed in Chapter 4,
these components are tasked with quantifying the discrepancy between the theoretical
model and the observed data and updating the model parameters by gradient descent,
respectively. For this task, one of the most commonly used cost functions in regression
problems, the Mean Squared Error3,4 (MSE), was selected. The MSE is advantageous for
its simplicity and effectiveness in quantifying the average squared discrepancy between
the predicted and actual values. This makes it particularly suitable for regression tasks
that aim to minimize the difference between predicted results and observed data (Berger,
2006).

Regarding the optimizer, Adam5,6 (Kingma & Ba, 2017) was chosen for its ability
to combine the advantages of two other popular optimizers: AdaGrad and RMSProp
(Tieleman & Hinton, 2014). Adam stands out for its adaptive learning rate, which
adjusts as training progresses, making it efficient for large-scale and complex problems.
This adaptability is particularly beneficial for navigating complex high-dimensional data
landscapes, often leading to faster convergence than other gradient descent methods.

In addition, a learning rate scheduler has been defined to improve the efficiency
of model training by automatically adjusting the step η taken by the optimizer in
parameter updates7,8. The initial learning rate for the optimizer is set to η = 0.1 and

3https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html.
4https://www.tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError.
5https://pytorch.org/docs/stable/generated/torch.optim.Adam.html.
6https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam.
7https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html.
8https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau.
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(a)

(b)

Figure 5.12. Simulation of a galaxy with Sérsic surface brightness distribution: (a)
theoretical model and (b) image with Gaussian noise+PSF.

89



5.3. SURFACE BRIGHTNESS AND GALAXY SHAPES CHAPTER 5. APPLICATIONS

Figure 5.13. Simulated Sérsic surface brightness distribution as a function of distance
from the center of the galaxy, in units of the effective radius.

gradually decreases to improve the speed of finding the minimum loss function.
At this point, the model must be initialized with some initial (random) parameters

that are appropriately constrained, shown in Table 5.5.
The initial prediction of the model, accompanied by residuals for the actual data, is

presented in Fig. 5.14. Subsequently, the model training can start. To speed up the
fitting process, it is possible to minimize the cost function computed on the logarithms
of the model and data as a way to normalize the data between a smaller range of values
(Huang et al., 2020).

Before training the cost function, i.e. the MSE between the data and the model has

Table 5.5. Summary of true and initial parameters before fitting.

Parameter True value Initial value

Ie 15.0 25.0
Re 2.0′′ 4.5′′

n 5.5 7.0
x0 0.2′′ 12.2′′

y0 −0.3′′ −18.0′′

q 0.6 0.8
φ 0.7853 rad 1.5708 rad
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(a) (b)

Figure 5.14. (a) Initial prediction of Sérsic surface brightness model, computed using
the initial values of Table 5.5 and (b) residuals, normalized by their standard deviation,
calculated as subtraction between true data and initial prediction.

(a) (b)

Figure 5.15. (a) Best-fit prediction of Sérsic surface brightness model, computed using
the best-fit values of Table 5.6 obtained from the training process and (b) residuals
normalized by their standard deviation, calculated as subtraction between true data
and best-fit prediction.

91



5.3. SURFACE BRIGHTNESS AND GALAXY SHAPES CHAPTER 5. APPLICATIONS

Figure 5.16. Loss function vs epochs for the training of the Sérsic model.

a value of lossinitial = 5.4 and, after 50000 iterations (or epochs) of the training loop, it
drops to lossfinal = 3.1 · 10-10, reaching its absolute minimum. The best-fit parameters
are reported in Table 5.6 and Fig. 5.16 shows the trend of the MSE as a function of
iterations of gradient descent.

After training the model, an estimation of parameter errors was performed through-
out MCMC sampling, using the Pyroframework. Pyro is a probabilistic programming
language built on top of PyTorch, designed to create and run complex probabilistic
models. It offers tools for defining flexible and expressive Bayesian models and algo-
rithms for variational inference, making it well-suited for tasks in machine learning and
statistics that involve uncertainty. Pyro’s integration with PyTorch allows for automatic
differentiation and GPU acceleration, enabling efficient and scalable model fitting and
evaluation.

The probabilistic model was defined with a uniform distribution for the parameters,
and then 5000 samples from the posterior distributions were extracted. Their mean
values and standard deviations are described in Table 5.6.

Figure 5.17 shows the corner plot to illustrate the multidimensional distributions of
and between the parameters. Diagonal elements consist of histograms representing the
marginal distributions of individual parameters. They allow one to discern the central
tendencies (such as mean or median), the spread (variance or standard deviation), and
the shape (indications of skewness or multiple peaks) of each parameter’s distribution.
Off-diagonal elements display the joint distributions between pairs of parameters through
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Table 5.6. Summary of true, initial and best-fit parameters.

Parameter True value Initial value Best-fit value Best-fit value (MCMC)

Ie 15.0 25.0 15.0077 (14.9777 ± 0.1499)
Re 2.0′′ 4.5′′ 1.9997′′ (2.0014 ± 0.0106)′′

n 3.5 7.0 3.5002 (3.5080 ± 0.0376)
x0 0.2′′ 12.2′′ 0.2000′′ (0.2000 ± 0.0009)′′

y0 −0.3′′ −18.0′′ −0.3000′′ (−0.2999 ± 0.0010)′′

q 0.6 0.8 0.5999 (0.5999 ± 0.0014)
φ 0.7853 rad 1.5708 rad 0.7854 rad (0.7854 ± 0.0018) rad

contour plots. They are instrumental in understanding the correlations or dependencies
between parameters, with circular patterns indicating minimal correlation and elongated
ellipsoids suggesting strong correlations. The orientation of these ellipsoids further
clarifies the nature of the relationship, be it positive or negative.

In particular, the corner plot shows the correlation between some parameters involved.
As is known from the literature (Graham & Driver, 2005; Ciotti & Bertin, 1999), the
Sérsic profile presents degeneracies between some of its parameters:

• intensity Ie and effective radius Re: larger radius with lower intensity can produce
a similar overall brightness as a smaller radius with higher intensity;

• Sérsic index n and effective radius Re: galaxies with higher Sérsic indices tend
to also have larger effective radii, as both parameters are related to how light is
distributed in a galaxy.

Additionally, Trujillo et al. (2001a,b) showed that in addition to the intrinsic degeneracies
among the Sérsic parameters, there are some further degeneracies between the latter
and the PSF. One can think of the intrinsic galaxy axis ratio as a very intuitive example.
The PSF is, by definition, rounder than a flattened galaxy; hence, its effect on the
two-dimensional light distribution produces a rounder galaxy. The higher the FWHM
in arcsecs, the rounder the observed galaxy is (Peng et al., 2002; Li et al., 2022).
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Figure 5.17. Corner plot showing the posterior probability distributions of the
parameters used to fit the Sérsic surface brightness profile. The projections of the
probability density on planes defined by each couple of parameters are shown, as well
as one-dimensional marginalized distributions. The black and the blue dashed vertical
lines in one-dimensional histograms indicate the true values and the 16th, 50th and
84th percentiles of the distributions.
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6
Summary and conclusions

In this thesis, we have systematically explored the application of automatic differentiation
(AD) and differentiable programming methods, utilizing the computational capabilities
of PyTorch and TensorFlow, to address various aspects of gravitational lensing. This
exploration was aimed at enhancing the optimization of parametric functions and
models, which are critical for accurately modeling gravitational lensing phenomena. This
concluding chapter aims to concisely summarize this work, emphasizing the integration
of AD in gravitational lensing and detailing the specific topics addressed.

Automatic differentiation has emerged as a pivotal tool in our investigation, offering
significant advantages over traditional numerical differentiation methods in terms of both
accuracy and efficiency. AD’s capability to compute derivatives of complex functions
accurately and efficiently is particularly valuable in gravitational lensing, where precise
parameter estimation is crucial. By leveraging the computational frameworks of PyTorch
and TensorFlow, we have demonstrated the potential of AD to advance the analysis
and interpretation of gravitational lensing phenomena, facilitating the development of
more detailed and nuanced models.

In the first application, we tackled the challenge of microlensing light curve fitting by
leveraging the standard Paczynski curve, focusing on the impact of key parameters such
as the impact parameter, the maximum magnification time, and the Einstein radius
crossing time on the microlensing event profile. Our approach began with simulating
a microlensing event and introducing observational noise to mimic real data. Initial
model fitting, using randomly assigned parameters, demonstrated the critical issue of
degeneracy in microlensing analysis, where multiple parameter sets produce similar light
curves, complicating parameter estimation.

By adjusting our model to explicitly include the Einstein crossing time, we improved
the fit, illustrating the effectiveness of our method in mitigating degeneracy. In addition,
Bayesian sampling provided deeper insight into the parameter space, confirming the
degeneracy.

Secondly, we focused on parametric reconstruction of strong gravitational lensing
using the Singular Isothermal Ellipsoid (SIE) model to analyze the mass distribution
of lensing galaxies. Our methodology utilized the SIE model’s parameters to simulate
lensing effects and optimize these parameters based on the positions of multiple lensed
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images observed in astronomical data. We employed two optimization approaches: one
that adjusted parameters based on their effects in the source plane and another that
did so in the image plane, each aiming to reduce discrepancies between observed and
predicted lensed images.

Through simulations that incorporate realistic observational conditions, we generated
and optimized synthetic lensing scenarios. This process involved a detailed parame-
terization of both the lens and the source, which solved the lens equation numerically
to predict the lensed image positions accurately. The optimization demonstrated the
effectiveness of our methodology in aligning model predictions with observed data, as
evidenced by significant improvements in model accuracy.

The results showcased the precision of the SIE model in replicating observed lensing
phenomena, with optimized model parameters closely matching their intended values.

The final field of application focused on surface brightness and galaxy shapes: we
have explored the critical role of accurately modeling surface brightness profiles for
weak lensing analysis. This process is vital for measuring the shapes and orientations of
galaxies, which are subtly altered by the gravitational lensing effects of foreground mass
distributions. These alterations provide essential clues about the mass distribution of
lensing objects, including elusive dark matter, and allow researchers to map the mass
distribution of lensing structures, offering insights into dark matter and the universe’s
large-scale structure.

Our analysis focused on fitting a surface brightness profile using the Sérsic model, a
versatile representation for various galaxy types. The fitting process involved simulating
observational data with realistic noise and applying a Point Spread Function (PSF) to
account for observational distortions. This step is crucial for separating the lensing
signal from intrinsic galaxy alignments and observational effects, thereby enhancing the
reliability of weak lensing measurements.

Through the simulation of a galaxy light profile, incorporating noise and PSF
effects, we aimed to mimic the challenges encountered in real astronomical observations.
The Sérsic profile was parameterized and fitted to this simulated data, optimizing its
parameters to match the observed galaxy images. This process, facilitated by frameworks
such as PyTorch and TensorFlow, involved the definition of a cost function and the
employing of an optimizer for parameter updates, demonstrating practical applications
of automatic differentiation.

This process highlights the importance of methodological advancements in fitting
surface brightness profiles, not only for understanding individual galaxy structures, but
also for leveraging weak lensing as a tool for probing the fundamental components and
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dynamics of the cosmos.
Looking ahead, AD promises to revolutionize gravitational lensing studies further

by facilitating the development of sophisticated models for complex phenomena and
enabling efficient analysis of vast astronomical datasets. Its integration into time-delay
cosmography and non-parametric mass reconstruction could yield deeper insights into
the universe’s expansion and structure. Moreover, AD’s role in processing data from
upcoming large-scale surveys will be pivotal in uncovering new discoveries and enhancing
our cosmological understanding.

In summary, AD’s contribution to gravitational lensing fields is profound, offering a
pathway to novel discoveries and a deeper understanding of the cosmos. Its continued
development and application stand to unlock even greater potentials in astrophysical
research.
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