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Abstract

Galaxy clusters stand out as the most massive gravitationally-bound structures within
the Universe. Their characteristics have always been a focal point of cosmological re-
search, serving as significant evidence to deepen our comprehension of the universe’s
evolution. Therefore, missions like Euclid, which recent estimates suggest it will be
able to survey approximately 13.245 deg2 of sky over the next six years, are focused on
observing them and to determine their characteristics. Given the large volume of data
that future missions like this will produce, the development of automated and reliable
techniques for the examination of huge datasets is of crucial importance. Convolutional
Neural Networks (CNNs) are a Deep Learning technique that has proven particularly
effective in the past years as a powerful tool for in this context, because of their speed
of execution and capacity of generalization. In particular, we readapted the archi-
tectures of three different state of the art CNNs, namely VGG-Net, Inception-v4 and
Inception-ResNet-v2, and we implemented them in Pytorch. For each architecture we
created various models that differ in size, regularization and optimization techniques.
Our models are trained on labeled reduced shear input maps for clusters at z = 0.25
created with the MOKA software, which generates semi-analytical mass distributions
of galaxy clusters and computes the relevant lensing quantities. The models are then
further tested on labeless maps in order to predict the cluster virial mass, the concen-
tration, the number of substructures and the mass fraction in substructures.
The overall performances of the different networks in measuring the cluster parameters
is good, and we find the best model to be the one characterized by the simplest archi-
tecture, VGG-Net. By adding noise to the maps, we find that the networks ability to
predict the correct values gets worse, but still produces a good estimate of the cluster
parameters.
Determining these parameters holds significant importance due to their potential ap-
plications in various cosmological tests. For instance, they serve as valuable tools for
deducing cosmological parameters values from the amplitude and redshift evolution of
the cluster mass function or the mass-concentration relation.



Abstract

Gli ammassi di galassie costituiscono le strutture gravitazionalmente legate più massive
dell’Universo. Le loro proprietà hanno sempre costituito un punto chiave della ricerca
cosmologica, in quanto rappresentano prove significative per l’approfondimento della
nostra conoscenza sull’evoluzione dell’Universo. Dunque missioni come Euclid, che
potrà osservare fino a 13.245 deg2 di cielo nei prossimi sei anni, hanno tra i loro obiet-
tivi l’osservazione degli ammssi di galassie e la determinazione delle loro caratteristiche
principali. Per via del grande volume di dati che missioni di questo tipo produrranno,
lo sviluppo di tecniche automatizzate ed affidabili per l’analisi di grandi dataset è
di cruciale importanza. Le Reti Neurali Convoluzionali (CNNs) sono una tecnica di
Deep Learning che si è dimostrata particolarmente efficace negli ultimi anni come un
potente strumento di indagine in questo contesto, per via della loro velocità di ese-
cuzione e capacità di generalizzazione. In particolare, in questo lavoro di Tesi abbiamo
riadattato le architetture di tre differenti reti neurali all’avanguardia, nello specifico
VGG-Net, Inception-v4 e Inception-ResNet-v2, implementandole in Pytorch. Per ogni
architettura abbiamo creato vari modelli che differiscono per dimensioni, tecniche di
regolarizzazione e ottimizzazione. I nostri modelli vengono allenati ricevendo come
input mappe di shear ridotto di ammassi localizzati a redshift z = 0.25, create con il
software MOKA, capace di generare semi-analiticamente distribuzioni di massa di am-
massi di galassie realistiche e di ricavarne le principali quantità legate al lensing. Questi
modelli vengono poi testati su mappe che non contengono le informazioni riguardo i
parametri reali dell’ammasso, con lo scopo di predirne i parametri di grande scala, quali
la massa viriale, la concentrazione dell’alone, il numero di sottostrutture e la frazione
di massa contenuta nelle sottostrutture. In generale, le prestazioni delle differenti reti
nel misurare i parametri sono ottime, e il nostro miglior modello è quello caratterizzato
dall’architettura più semplice, ovvero VGG-Net. Aggiungendo un rumore che simula
quello delle future osservazioni di Euclid alle mappe di shear, troviamo che la capacità
della rete nel predire i valori corretti peggiora, ottenendo comunque una buona stima
dei parametri dei cluster.
Determinare i parametri di grande scala degli ammassi è di fondamentale importanza
per via delle potenziali implicazioni che questi hanno in vari test cosmologici. Per
esempio, costituiscono strumenti molto utili per caratterizzare la relazione massa-
concentrazione degli ammassi, o per caratterizzare l’evoluzione con il redshift della
funzione di massa degli ammassi.
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Introduction

Gravitational lensing effects are a powerful tool to investigate the distribution of mat-
ter in galaxy clusters, since the observations of this phenomenon can be used either to
study the mass distribution of cosmic objects dominated by dark matter, and to test
models of cosmic structure formation (Blandford & Narayan, 1992).
In evidence, the weak gravitational lensing effect is responsible for a shape distor-
tion (commonly referred to as shear) and a magnification of the images of background
sources, due to the gravitational field of some interposed massive objects or large scale
structures (Bartelmann & Schneider, 2001). Weak shear lensing by galaxy clusters gives
rise to levels of up to a few 10 percent of elliptical distortions in images of background
sources. Thus, the weak shear lensing signal, as measured from small but coherent
image distortions in galaxy shapes, can provide a direct measure of the projected mass
distribution of galaxy clusters (Kaiser & Squires, 1993). Moreover, lensing magnifi-
cation can influence the observed surface number density of background galaxies seen
behind clusters and enhance their apparent fluxes, expanding the area of the observed
corresponding sky (Broadhurst et al., 1995).
The resulting mass models from weak and strong lensing can be used in many different
applications (Kneib & Natarajan, 2011; Meneghetti et al., 2013; Treu & Marshall, 2016;
Umetsu, 2020), aiming at understanding the processes that shape the growth and the
evolution of the cosmic structures.
Upcoming wide-field imaging surveys from space, such as the one actually carried out
by the Euclid mission (Laureijs et al., 2011), will potentially increase the number of
observed clusters by many thousands. In this scenario, Deep Learning (DL) tech-
niques emerge as an efficient alternative to more classical time consuming approaches,
automating the process of feature extraction and ensuring a rapid analysis of vast vol-
umes of images. Indeed, they are expected to assume a pivotal role in the evolution of
astronomical data analysis methodologies. Specifically, Convolutional Neural Networks
(CNNs) are able to autonomously learn the most effective features for the classification
of images directly from the training dataset.
In this work, we test the ability of different CNNs to address the problem of measuring
the clusters large scale parameters, training our models on reduced shear maps pro-
duced with the MOKA software (Giocoli et al., 2012a), which generates semi-analytical
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mass distributions of galaxy clusters and computes the relevant lensing quantities. In
particular, we implement different models starting from the VGG-Net architecture (Si-
monyan & Zisserman, 2015), the Inception-v4 architecture (Szegedy et al., 2014, 2015,
2016) and Inception-ResNet-v2 (He et al., 2015; Szegedy et al., 2016). In recent years,
these models have been effectively utilized in image classification tasks, and have be-
come a benchmark for the scientific community.
For each architecture, we build several models differing in size and regularization or
optimization techniques, then we train each model on 75.000 labeled reduced shear
maps in order to teach to our algorithms how to correctly predict the true cluster
large scale parameters values. The parameters here considered are the virial mass, the
concentration of the halo (accounting also for its smooth component), the number of
substructures within the halo and the fraction of mass contained in the substructures
with respect to the total mass. To simulate more realistic observations, we also train
our best model using reduced shear maps which include shape noise for a given number
density of lensed galaxies.Then, we compare the performances achieved by our models,
and describe their different properties.
Our work is organized as it follows:

1. In Chapt. 1, we introduce the fundamentals of Cosmology, focusing on the phys-
ical laws that describe the evolution of the Universe.

2. In Chapt. 2, we introduce the Gravitational Lensing theory. In detail, in Sect.
2.1 we present the fundamental equations and notions used to characterize the
Gravitational Lensing effects. In Sect. 2.2 we describe the specific phenomenology
of Gravitational Lensing in galaxy clusters.

3. In Chapt.3 we introduce the basics of Machine Learning theory. We start by
describing the fundamental principles of Deep Learning in Sect. 3.1 and then
we focus on the description of the structure (Sect. 3.2) and the training process
(Sect. 3.3) of Neural Networks. Then, we provide a detailed description of the
applications and functioning of Convolutional Neural Networks (Sect. 3.4), de-
scribing in depth the architectures behind the models we implemented, presenting
them in Sect. 3.4.1 and Sect. 3.4.2.

4. In Chapt. 4, we describe the dataset employed for our networks and the detailed
structure of all the models we implemented. In particular, in Sect. 4.1 we present
the assumptions and the properties of the software from which we obtain the
lensing maps, MOKA, along with the general properties of our training, validation
and test sets. In Sect. 4.2 we provide all the details regarding our models
structures and purposes. Finally, in Sect. 4.3 we describe the hyperparameters
used for the training of our networks, along with the optimizers employed and
our definition of accuracy.
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5. In Chapt. 5 we describe the all the results obtained with our models. In partic-
ular, we first characterize the metrics employed for the evaluation of the perfor-
mances of our models in Sect. 5.1, then we present our VGG-Net architecture
test results in Sect. 5.2. Finally, we describe the remaining tests on the Inception
models in Sect. 5.3.

6. In Chapt. 6, we summarize the most important results and discuss the future
perspectives and extensions of our work.



Chapter 1

Cosmology

1.1 Fundamentals of cosmology

Cosmology is the branch of Astrophysics that studies the formation and evolution of
the Universe on large scales. Its purpose is developing a model capable of describing
the features we observe today. Our actual model is the Standard Model of Cosmology,
which is based on two fundamental assumptions:

• the cosmological principle, which asserts that on sufficiently large scales (today of
the order of hundreds ofMpc), the Universe can be considered both homogeneous
and isotropic. Homogeneity is the property of being identical everywhere in space,
while isotropy is the property of looking the same in every direction. The main
observational evidences of this principle, which cannot be proven, come from the
Cosmic Microvawe Background (CMB) anisotropies measurements by the Planck
collaboration (Planck Collaboration et al., 2016), and the distribution of galaxies
on scales of hundreds of Mpc.

• gravity, which is the most relevant interaction involving large scale structures
is described by the General Relativity Theory. We assume then the ubiquitous
validity of Einstein’s General Relativity Theory, which states that the Universe’s
geometrical properties are determined by its content of matter-energy.

In order to develop a cosmological model it is first necessary to introduce a metric.
The metric represents the interval between two events in the space-time, and has to
incorporate the cosmological principle. The general expression for this quantity writes
as:

ds2 = gijdx
idxj, (1.1)

where i, j vary from 0 to 3 (where index 0 refers to the time coordinate, while the re-
maining indexes indicate the spatial coordinates) and gij is the metric tensor describing
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1.1 Fundamentals of cosmology 7

space-time geometry. By assuming the Cosmological Principle, Eq. 1.1 rewrites as the
Robertson-Walker metric:

ds2 = (cdt)2 − a(t)2
[

dr2

1−Kr2
+ r2(dθ2 + sin θ2dϕ2)

]
, (1.2)

where we adopted the comoving (time dependent) spherical polar coordinates r, θ, ϕ.
Here c is the speed of light; t is the proper time; a(t) is the scale factor, a function to
be determined which has the dimensions of a length and has time dependence; K is the
curvature parameter, a constant parameter whose values can only be 1, 0,−1, related
to the Universe’s assumed geometry. Specifically:

• if K = 0, the Universe is flat, and described by Euclidean geometry

• if K = +1, the Universe is closed, and described by hyperspherical geometry

• if K = −1, the Universe is open, and described by hyperbolic geometry

1.1.1 Cosmological distances and Universe expansion

Starting from the Robertson-Walker metric, the proper distance between a point P and
another point P0, which we can assume to be the origin of a polar coordinate system
r, θ, ϕ, can be defined. For simplicity, we can assume that the observer is on the origin
of the coordinate system P0, oriented in a way that dθ = dϕ = 0. The proper distance
between P and P0 measured by an observer at the cosmic time t is then

dp =

∫ r

0

adr′

(1−Kr′2)1/2
= a(t)f(r), (1.3)

where f(r) depends on the curvature parameter and is given by:

f(r) =


sin r−1 for K = +1

r for K = 0

sinh r−1 for K = −1

. (1.4)

The proper distance calculated at the present time t0 is called comoving distance, and
is defined as

dC = dP (t0) = a(t0)f(r) =
a(t0)

a(t)
dP (t). (1.5)
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Hubble-Lemaitre law The proper distance of a source in P changes with time
because of the time-dependence of the scale factor a. Then, P is described by a radial
velocity with respect to the origin P0, given by the Hubble-Lemaitre law (Hubble, 1929):

vr = ȧf(r) =
ȧ

a
dP . (1.6)

The Hubble-Lemaitre law implies that two points depart from each other with a relative
velocity proportional to their proper distance. Then, distant objects recede from us
more rapidly than closer objects. In cosmology, we define

H(t) =
ȧ(t)

a(t)
, (1.7)

as the Hubble parameter, a fundamental quantity having the dimension of inverse time.
The Hubble parameter characterizes the Universe expansion and its inverse value gives
an estimate of the age of the Universe.

Redshift Eq. 1.3 implies that the spectra of distant and luminous objects are sub-
jected to a shift in the radiation wavelength which we refer to as redshift. In particular,
photons emitted at wavelength λe at time t will be observed with wavelength λ0 at
time t0. This difference is described by

z =
λ0 − λe

λe

. (1.8)

It can be demonstrated that
1 + z =

a0
a
, (1.9)

where a0 = a(t0). Since the observed values of z are positive, we can assume an ex-
panding Universe, with ȧ > 0.

The definitions of proper and comoving distances given in Eq. 1.3 and Eq. 1.5 are not
directly measurable. Nonetheless, we can define other directly measurable (at least in
principle) distances.
The luminosity distance is defined as

dL =

(
L

4πF

)1/2

, (1.10)

where L is the luminosity of the source at distance r, emitting light at time t, while F
is the flux measured by the observer at time t0. However, to estimate the actual value
of this quantity we need to take into consideration several factors: the expansion of the
Universe redshifts the original radiation by a factor a/a0, then the time-dilation effect
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(from General Relativity) introduces a shift of the same factor. Finally, the area of a
spherical surface centred on the source and passing through the observer at time t0 is
4πa20r

2. Hence, we calculate the resulting flux F as

F =
L

4πa20r
2

(
a

a0

)2

=
L

4πa20r
2
(1 + z)−2, (1.11)

from which
dL = a0r(1 + z). (1.12)

Another measurable distance, particularly important for weak lensing measurements,
is the angular diameter distance. This quantity is defined as

dA =
Dp

∆θ
= a(t)r =

dL
(1 + z)2

, (1.13)

where Dp is the the proper diameter of a source placed at distance r at time t, and ∆θ
is the angle subtended by Dp. This distance aims to preserve a geometrical property
of the Euclidean space, namely the variation of the angular size of an object with its
distance from the observer.

1.1.2 Friedmann equations

The foundation of every modern cosmology model begins with the analysis of two
fundamental equations, derived from the General Relativity Theory (Einstein, 1916).
As Einstein demonstrated, the geometry of space-time is related to its energy-matter
content by the Einstein equation

Rij −
1

2
gijR =

8πG

c4
Tij, (1.14)

where Rij is the Ricci tensor and R is the Ricci scalar, gij is related to the metric and
Tij is the energy-momentum tensor. By assuming the Robertson-Walker metric (which
incarnates the Cosmological Principle) and the energy-momentum tensor of a perfect
fluid with pressure p, density ρ and Uk four-velocity

Tij = −pgij + (p+ ρc2)UiUj, (1.15)

we obtain the Friedmann equations (Friedman, 1922):

ä = −4πG

3

(
ρ+

3p

c2

)
a, (1.16)

(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
. (1.17)
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These two equations are not independent: the second one can be recovered from the
first one, taking into account the adiabatic expansion of the Universe, expressed by the
condition of adiabaticity:

d(ρc2a3) = −pda3. (1.18)

Einstein, convinced of the static nature and eternity of the Universe, reformulated Eq.
1.14 introducing the cosmological constant Λ, allowing a static solution for his equation:

Rij −
1

2
gijR− Λgij =

8πG

c4
Tij. (1.19)

With the discovery of the expansion of the Universe, Λ was removed from the equa-
tions, but was later reintroduced following the observation of the present Universe’s
accelerated expansion.
If we define an effective energy-momentum tensor T̃ij as

T̃ij = Tij +
Λc4

8πG
gij = −p̃gij + (p̃+ ρ̃c2)UiUj, (1.20)

where

p̃ = p+ pΛ = p− Λc4

8πG
, ρ̃ = ρ+ ρΛ = ρ+

Λc2

8πG
, (1.21)

we can now rewrite Eq. 1.16 and Eq. 1.17 as

ä = −4πG

3

(
ρ̃+

3p̃

c2

)
a, (1.22)

(
ȧ

a

)2

=
8πG

3
ρ̃− Kc2

a2
. (1.23)

Eq. 1.23 can be rewritten in terms of the Hubble parameter. At t = t0 we obtain:

H2
0

(
1− Λc2

3H2
0

− 8πGρ0
3H2

0

)
= −Kc2

a20
, (1.24)

where H0 = H(t0). Eq. 1.24 can be expressed in terms of a critical density calculated
today ρc,0 and ρΛ,0 as

H2
0

(
1− ρΛ,0

ρc,0
− ρ0

ρc,0

)
= −Kc2

a20
, (1.25)

where ρc,0 writes

ρc,0 =
3H2

0

8πG
. (1.26)

Introducing now the density parameter Ωi,0 =
ρi,0
ρc,0

for the i-th component of the Uni-

verse, Eq. 1.25 becomes

H2
0 (1− ΩΛ,0 − Ω0) = −Kc2

a20
. (1.27)
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We have then three different possibilities when relating the curvature of the Universe
to its energy content, based on the value assigned to K:

• if K = 0 → Ωtot = ΩΛ,0 + Ω0 = 1 (flat Universe)

• if K = +1 → Ωtot = ΩΛ,0 + Ω0 > 1 (closed Universe)

• if K = −1 → Ωtot = ΩΛ,0 + Ω0 < 1 (open Universe)

The main components of the Universe can be divided into three groups: ultrarelativis-
tic matter and radiation; non-relativistic matter (baryonic and Dark Matter); dark
energy, of which the cosmological constant is one of the possible forms. Without the
introduction of Λ, by observing Eq. 1.16 we can conclude that ä < 0, since p and ρ
are positive quantities. Then, the Universe should be characterized by a decelerating
expansion. This deceleration is defined by a deceleration parameter expressed as q:

q = − äa

ȧ2
. (1.28)

However, the measurements of the deceleration parameter clearly indicate that today
ä > 0 (Riess et al., 1998).

1.1.3 Equation of state

We now introduce an important equation that defines the relation between pressure
and density of the cosmic fluid. This is necessary to find solutions for P (t), ρ(t) and
a(t). This equation can be written as

P = wρc2, (1.29)

where w is called equation of state parameter and can take different values depending
on the cosmic component under consideration:

• For non-relativistic matter or ”dust”, w ≈ 0.

• For radiation and ultra relativistic matter, w = 1
3
.

• For the cosmological constant Λ , w = −1.

Inserting Eq. 1.18 in Eq. 1.29, we can calculate an expression for ρ in terms of a or z

ρw ∝ a−3(1+w) ∝ (1 + z)3(1+w). (1.30)

This means we have three possible trends characterizing the evolution of the density
Universe, based on the dominating component:
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• For matter dominated Universe: w = 0 → ρM = ρM,0

(
a0
a

)−3
= ρM,0(1 + z)3.

• For radiation dominated Universe: w = 1
3
→ ρR = ρR,0

(
a0
a

)−4
= ρR,0(1 + z)4.

• For Λ dominated Universe: w = −1 → ρΛ = ρΛ,0
(
a0
a

)0
= ρΛ,0(1 + z)0 = ρΛ,0.

As the evolution of energy density changes with cosmic time, it is possible to divide the
history of the Universe into three main epochs, according to the dominant component:
the radiation-dominated era, the matter-dominated era and the dark energy-dominated
era. Fig. 1.1 shows the evolution of densities with cosmic time. If we compare the

Figure 1.1: Density evolution of cosmic components with cosmic time.
The blue, red and green solid lines represent the evolution of radiation,
matter and dark energy densities respectively. Before the radiation-
matter equivalence, radiation dominated the Universe. After that
threshold, matter becomes the dominant component. Nowadays, the
matter density has decreased enough to be dominated by the dark
energy component. Copyright: Pearson Education, Inc. (2011).

blue, red and green solid lines we can identify two dominant component transition,
described as

• radiation-matter equivalence; where ρR = ρM , at z ∼ 3 · 104

• matter-dark energy equivalence; where ρM = ρΛ, at z = 0.67



1.1 Fundamentals of cosmology 13

As described in Sec. 1.1.2, during the radiation-dominated and the matter-dominated
epochs the expansion of the Universe was decelerated, having ä < 0. Assembling this
information with the observational evidence that today ȧ > 0, we can easily conclude
that before the dark energy-dominated era, the scale factor a(t) is identified by a
negative concavity, leading to a value of a(t) = 0 in the past. The time corresponding
to a null scale parameter is called Big Bang, and at this instant the density and the
Hubble parameter diverge. Moreover, since a(t) is a concave function, the time between
the singularity and the epoch t must always be less than the characteristic expansion
time of the Universe τH = 1

H
= a

ȧ
. Then, the current age of the Universe t0 has to be

less than Hubble time, defined as 1
H0

. This concept is shown in Fig. 1.2.

Figure 1.2: Evolution with time of the scale factor a(t). The curve has
negative concavity, leading to the Big Bang at t = 0. The evidence
of ȧ > 0 also implies that the age of the Universe t0 is less than the
Hubble time 1

H0
(Coles & Lucchin, 2003).

1.1.4 Single component models

The Friedmann equations can be solved by assuming a single component Universe,
both for flat or curved (open and closed) models. In particular, it is possible to modify
Eq. 1.16 to obtain (

ȧ2

a20

)
= H2

0

[
1− Ω0 + Ω0

(a0
a

)3(1+w)
]
. (1.31)

For the flat model, usually referred to as Einstein-De Sitter model, Ω0 = 1 (K = 0).
Thus, by substituting this value in Eq. 1.31, we can obtain explicit solutions for
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a(t), H(t), q(t), ρ(t):

a(t) = a0

(
t

t0

) 2
3(1+w)

, (1.32)

H(t) =
ȧ

a
=

2

3(1 + w)t
, (1.33)

q(t) = − äa

ä
=

1 + 3w

2
, (1.34)

ρ(t) =
1

6πGt2
, (1.35)

t0 =
2

3H0(1 + w)
. (1.36)

As Eq. 1.32 points out, a flat Universe undergoes an indefinite expansion indepen-
dently from the value assumed by w (i.e., its main component).
For curved models, solutions of Eq. 1.31 are not as straightforward as in the flat
scenario. However, it can be demonstrated that in its early phase a curved Universe
behaviours like a flat one, regardless of the value assumed byK. As the scale factor a(t)
increases, the difference between these models becomes not negligible and we identify
two possible scenarios.

• If Ω0 < 1 (open models), we find from Eq. 1.31 that ȧ > 0 at any time, therefore
leading to a monotonically growing a(t). In this model, the Universe undergoes
an infinite expansion with a ∝ t, a constant Hubble parameter (H ∝ 1

t
) and

q = 0.

• If Ω0 > 1 (closed models), the solution of Eq. 1.31 depends on the competition
between the two terms in the squared parenthesis. Since the last term is inversely
proportional to the scale parameter, we can identify an instant of the Universe
history in which (1 − Ω0) < 0. This implies that at some point ȧ = 0, and the
curve of growth of a(t) will stop at a maximum value called amax. After reaching
this point, the Universe will undergo a process of re-collapse, leading to another
singularity, this time called Big Crunch.

Fig. 1.3 shows the evolution of a(t) for all the different one-component models.

1.1.5 Measurements of the cosmological parameters

We now give a brief review of the most accurate estimates of the main cosmological pa-
rameters, which will be adopted in this work. The most important and reliable research
in this field is the one carried out by the Planck collaboration (Planck Collaboration
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Figure 1.3: Evolution with time of the scale factor a(t) for an open
model (Ω0 < 1), a flat or Einstein-de Sitter model (Ω0 = 1) and a
closed model (Ω0 > 1), (Coles & Lucchin, 2003).

H0[km/sMpc] ΩM,0 Ωb,0 ΩΛ,0

67.4± 0.5 0.315± 0.007 0.0224± 0.0001 0.6847± 0.0073

Table 1.1: Results for the main cosmological parameters published in Planck Collabo-
ration et al. (2020b).

et al., 2020a,b), based on the analysis of the anisotropies in the CMB spectrum. Tab.
1.1 summarize the estimated values found by Planck mission for the Hubble constant
H0, the matter density parameter ΩM,0, the barion density Ωb,0 and the dark energy
density parameter ΩΛ,0. The Hubble constant is though subjected to a so-called ”ten-
sion”, as another local guess of H0 obtained by measuring the distances to relatively
nearby galaxies and using their recession velocities to determine the Hubble constant
yields a different value (Riess et al., 2018). In particular, the Hubble constant value
measured by Riess et al. (2018) is 74± 0.5 km/sMpc.
It is then conventional to indicate H0 = 100h ·km/sMpc, where h is the dimensionless
Hubble constant that takes into consideration uncertainties related to the value of H0.
Then we can estimate the present-day value for the critical density as

ρc,0 =
3H2

0

8πG
∼ 1.9 · 10−29 h2g cm−3. (1.37)

Our currently believed cosmological model is the one with the lowest number of free
parameters in agreement with the theory of General Relativity: this is the Λ-CDM
model, according to which the Universe is flat and is composed of Dark Matter and Λ.



Chapter 2

Gravitational Lensing

Gravitational lensing is a consequence of Einstein’s theory of General Relativity and
has revolutionized our understanding of the universe’s structure and dynamics. This
phenomenon occurs when the gravitational field of a massive object, such as a galaxy
or a galaxy cluster, bends and distorts the paths of photons passing nearby. As a result,
distant objects appear magnified, distorted, or even multiply imaged, offering a unique
window into the distribution of matter and the geometry of spacetime on cosmic scales.
The massive entity responsible for this deflection is termed the ”lens,” which can take
the form of a point-like object like a star, or an extended one such as a galaxy or galaxy
cluster. Conversely, the luminous entity whose light undergoes deflection is referred to
as the ”source,” which may include background galaxies or distant quasars.

2.1 Introduction to gravitational lensing theory

2.1.1 Deflection angle

As outlined in Sect. 1, the Einstein equation (Eq. 1.14) implies that the geometric
characteristics of spacetime depends on its energy-matter content: gravitational forces
caused by masses positioned between the light source and the observer bend the paths
of light. Moreover, the Universe is assumed to be homogeneous and isotropic on large
scales, and well described by the Robertson-Walker metric (Eq. 1.2). Conversely, on
smaller scales, the presence of structures like galaxies or clusters introduces inhomo-
geneities that can perturb the space-time metric and alter the trajectories of light rays,
thereby giving rise to the lensing phenomena. In order to study the light deflection in
proximity of the lens, we first adopt the ”weak field approximation”, assuming that the
light deflection occurs in a region small enough that the expansion of the Universe is
negligible. Then, we define the local Newtonian gravitational potential of the lens as

Φ = −Gm

r
.

16
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To compute the deflection angle of the light path, we operate under the assumption
that the lens is weak, a condition that holds true in nearly all astrophysical scenarios,
corresponding to the request that Φ

c2
≪ 1.

Under this approximation the flat Minkowski metric, that describes unperturbed space-
time, is modified only by a small perturbation, and the line element writes:

ds2 =

(
1 +

2Φ

dt2

)
c2dt2 −

(
1− 2Φ

dt2

)
(dx⃗)2. (2.1)

Since photons travel on null geodetics, corresponding to ds = 0, Eq. 2.1 gives us the
light speed in the gravitational field as

c′ =
dx⃗

dt
∼ c

(
1 +

2Φ

c2

)
. (2.2)

As Φ ≤ 0, we have c′ ≤ c. Hence, we can describe the space-time as a medium with
an effective refraction index n given from Eq. 2.2 as

n =
c

c′
∼ 1− 2Φ

c2
≥ 1. (2.3)

Assuming the Fermat’s principle, if the spatial scales considered are smaller than the
distances between source, lens and observer, it can be shown (Schneider et al., 1992)
that the deflection angle is equivalent to

ˆ⃗α(b) =
2

c2

∫ +∞

−∞
∇⊥Φdz, (2.4)

where the light ray follows the initial direction given by e⃗z and passes close to the lens
when z = 0 with an impact parameter b. In case the lens is a point mass with mass
M , Eq. 2.4 becomes

| ˆ⃗α|(b) = 4GM

c2b
. (2.5)

Since the deflection angle exhibits a linear dependence on the mass M , the deflection
angle of a group of lenses can be derived by summing the contributions from each
individual lens, following the superposition principle. Supposing we have a group of N
point masses of mass Mi randomly distributed on a plane, the superposed deflection
angle is described by

ˆ⃗α(ξ⃗) =
∑
i

ˆ⃗αi

(
ξ⃗ − ξ⃗i

)
=

4G

c2

∑
i

Mi
ξ⃗ − ξ⃗i

|ξ⃗ − ξ⃗i|2
, (2.6)

where ξ⃗i are the positions of the lenses, while ξ⃗ corresponds to the position in which
the light ray crosses the lens plane.
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In all general astrophysics scenarios, we are justified to apply the thin screen approx-
imation, since the typical distances of observer, lens and source are much larger than
the physical size of the lens. By applying this approximation we assume that the lens
matter distribution is described by its surface mass density

Σ(ξ⃗) =
4G

c2

∫ +∞

−∞
ρ(ξ⃗, z)dz, (2.7)

where ρ is the three-dimensional density of the lens, ξ⃗ defines the position on the lens
plane and z is the direction of the line of sight. In this approximation, following the
superposition principle, the deflection angle for an extended lens can be calculated as

ˆ⃗α(ξ⃗) =
4G

c2

∫
(ξ⃗ − ξ⃗′)Σ(ξ⃗′)

|ξ⃗ − ξ⃗′|2
d2ξ′. (2.8)

Fig. 2.1 illustrates the geometrical configuration of a typical gravitational lensing
system. The thin screen approximation makes the extension of the lens along the line
of sight neglectable, hence we can consider the light deflection to occur on the lens
plane, at distance DL. At the same time, we can assume that photons coming from
the source originate from the same distance DS, meaning that the source lies on the
source plane.

Figure 2.1: Example of a typical gravitational lensing system (Bartel-
mann & Schneider, 2001).
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2.1.2 Lens equation

Gravitational lensing effects depend on the relative positions and distances between the
observer, the lens and the source. As shown in Fig. 2.1, an object positioned in β⃗ on
the source plane will be observed by the observer in θ⃗, with a corresponding deflection
angle ˆ⃗α. Assuming β⃗, θ⃗ and ˆ⃗α are small, the true and apparent positions of the source
are related by the lens equation

θ⃗DS = β⃗DS + ˆ⃗αDLS, (2.9)

where DLS refers to the distance between the lens and the source.
By introducing the reduced deflection angle as

α⃗(θ⃗) =
DLS

DS

ˆ⃗α, (2.10)

we can rewrite Eq. 2.9 as
β⃗ = θ⃗ − α⃗(θ⃗). (2.11)

Eq. 2.11 is usually defined in a dimensionless form, considering a length scale ξ0 on
the lens plane and the corresponding length scale η0 = ξ0

DS

DL
on the source plane. We

can then define two vectors

x⃗ ≡ ξ⃗

ξ⃗0
, y⃗ ≡ η⃗

η⃗0
,

as well as a scaled deflection angle

α⃗(x⃗) =
DLDLS

ξ0DS

ˆ⃗α(ξ0x⃗), (2.12)

and Eq. 2.11 can be rewritten as

y⃗ = x⃗− α⃗(x⃗). (2.13)

2.1.3 Lensing potential

If we project the three-dimensional Newtonian potential Φ on the lens plane we ob-
tain the effective lensing potential, which characterizes extended matter distributions
through a scaling factor:

Ψ̂ =
2

c2
DLS

DSDL

∫
Φ(DLθ⃗, z)dz. (2.14)

The effective lensing potential can be written in a dimensionless form as well:

Ψ =
D2

L

ξ20
Ψ̂.

It can be demonstrated that this quantity satisfies two fundamental properties:
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• The gradient of the lensing potential is equal to the reduced deflection angle:

∇xΨ(x⃗) = α⃗(x⃗);

• The Laplacian of the lensing potential is twice the convergence:

∆xΨ(x⃗) = 2κ(x⃗).

.

The convergence is defined as a dimensionless surface mass density:

κ(x⃗) =
Σ(x⃗)

Σcrit

, (2.15)

where

Σcrit =
c2

4πG

DS

DLDLS

. (2.16)

is the critical surface density, that characterizes each lensing system and depends on
the distances of lens and source (i.e., the redshift).

2.1.4 Magnification and distorsion

Among the distinctive phenomena attributed to gravitational lensing, the most impor-
tant is the distortion of background source shapes. For example, galaxies frequently
manifest as elongated arcs within galaxy clusters. Determining the real shape of these
sources traduces into solving the lens equation for all source points. Notably, when
the source is smaller than the angular dimension at which the lens physical attributes
change, these positions can be locally linearized, and the image distortion is delineated
by a lensing Jacobian matrix

A ≡ ∂y⃗

∂x⃗
=

(
δij −

∂αi(x⃗)

∂xj

)
=

(
δij −

∂2Ψ(x⃗)

∂xi∂xj

)
= δij −Ψij, (2.17)

where xi is the i-component of x and δij corresponds to the Kronecker delta.
The lensing Jacobian can be considered as consisting of two parts:

A ≡
(
A− 1

2
TrA · I

)
+

(
1

2
TrA · I

)
. (2.18)

The first part is responsible for an anisotropic distorsion, and is represented by a matrix
called shear matrix :(

A− 1

2
TrA · I

)
=

(
−1

2
(Ψ11 −Ψ22) −Ψ12

−Ψ12
1
2
(Ψ11 −Ψ22)

)
(2.19)
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This shear matrix is often indicated as

Γ =

(
γ1 γ2
γ2 −γ1

)
, (2.20)

where γ1 and γ2 are called shear components and correspond to

γ1(x⃗) =
1

2
(Ψ11 −Ψ22),

γ2(x⃗) = Ψ12.
(2.21)

These two components are usually written in the form of a pseudo-vector on the
lens plane called shear, defined as γ⃗ = (γ1, γ2). The shear matrix eigenvalues are
±
√
γ2
1 + γ2

2 = ±γ. Hence, it is possible to define a coordinate rotation by an angle ϕ
such that (

γ1 γ2
γ2 −γ1

)
= γ

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)
. (2.22)

The second part is instead responsible for an isotropic distorsion and can be simplified
as (

1

2
TrA · I

)
= (1− κ)δij. (2.23)

By using both Eq. 2.22 and Eq. 2.23, we can rewrite the Jacobian matrix as

A ≡ (1− κ)

(
1 0
0 1

)
− γ

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)
. (2.24)

Eq. 2.24 clarifies the role of convergence and shear in distorting images: convergence
introduces an isotropic distortion that causes the images to be rescaled by a factor 1

1−κ
,

uniformly rescaling images in all directions; whereas shear elongates the intrinsic shape
of the source along specific directions given by the eigenvectors of A. An example of
the distorsion effects caused by shear and convergence on a circular source is shown in
Fig. 2.2.
In this example a circular source of radius r is mapped onto an ellipse with semi-axes

a =
r

λt

, b =
r

λr

. (2.25)

Here, λt and λr are respectively the tangential and radial eigenvalues of the Jacobian
matrix, defined as

λt = 1− κ− γ,

λr = 1− κ+ γ.
(2.26)

Another important quantity linked to this type of distorsions, particularly useful in
weak lensing studies, is a parameter called ellipticity, defined as

ϵ =
a− b

a+ b
=

γ

1− κ
= g. (2.27)



2.1 Introduction to gravitational lensing theory 22

Figure 2.2: Example of the distortion caused by convergence and
shear on a circular source (Meneghetti, 2021).

Here, g is named reduced shear.
After the distorsion effects, another important consequence of gravitational lensing is
the magnification of the source’s images. As gravitational lensing does not alter neither
the quantity and energy (frequency) of photons emitted by the source, the Liouville
theorem guarantees the conservation of surface brightness. However, the presence of
the lens alters the solid angle under which the source is observed, leading to a potential
magnification or demagnification of the source. By using the definition of the Jacobian
matrix presented in Eq. 2.17, one can compute the magnification µ by taking the
inverse of the determinant of matrix A, corresponding to the magnification matrix M :

µ ≡ detM =
1

detA
=

1

(1− κ)2 − γ2
. (2.28)

From the magnification matrix we can obtain the eigenvalues that measure the mag-
nification along the tangential and radial direction with respect to the lens iso-surface
density, respectively:

µt =
1

λt

=
1

1− κ− γ
,

µr =
1

λr

=
1

1− κ+ γ
.

(2.29)

The lens plane is now characterized by two curves corresponding to λt = 0 and λr = 0,
called respectively tangential and radial critical lines. For instance, this means that if
an image forms near the tangential critical line, it will be distorted in that direction, and
vice-versa. These curves can be mapped by Eq. 2.11 onto the source plane, becoming
the tangential and radial caustic lines. When sources transit across the caustics, their
flux is magnified and the images are tangentially or radially stretched. Furthermore,
sources falling inside of a caustic line will be multiply imaged on the lens plane.
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2.1.5 Time delay surfaces

In addition to light deflection and image distortion or magnification, another notable
aspect of gravitational lensing is the phenomenon of time delay. This delay can be
separated into two distinct contributions:

• Geometrical time delay : this effect is associated to the different path followed by
the deflected light rays with respect to the unperturbed ones, and can be defined
as:

tgeom =
1

2c

DLDS

DLS

(x⃗− y⃗)2. (2.30)

• Gravitational time delay : this delay arises from the different time it takes for
light to travel across two regions with distinct refractive indices. Specifically,
photons moving through the gravitational field of the lens decelerate compared
to unperturbed photons, resulting in an increase of the time delay corresponding
to

tgrav = −DLDS

DLS

1

c2
Ψ(x⃗). (2.31)

Therefore, taking into consideration also the expansion of the universe, the total time
delay can be obtained by summing the two contributions, with a final expression given
by

t(x⃗) =
(1 + zL)

c

DSξ
2
0

DLDLS

[
1

2
(x⃗− y⃗)2 −Ψ(x⃗)

]
. (2.32)

As the gradient of the effective lensing potential and the deflection angle are related,
the previous expression can be rewritten as

(x⃗− y⃗)−∇Ψ(x⃗) = ∇
[
1

2
(x⃗− y⃗)2 −Ψ(x⃗)

]
= 0. (2.33)

Eq. 2.33 implies that solving the lens equation is equivalent to searching the stationary
points of the time delay surface described in Eq. 2.32. In particular, images should
satisfy the condition ∇t(x⃗) = 0.
The time delay surface is characterized by the Hessian matrix, which corresponds to
the Jacobian matrix:

T =
∂2t(x⃗)

∂xi∂xj

∝ (δij −Ψij) = A. (2.34)

The Hessian matrix characterizes the curvature of the time delay surface and is inversely
proportional to the magnification. As a result, magnification increases in the direction
where curvature is smaller. By studying the shape of the time delay surface near the
stationary points one can obtain information on the shape of the images. Specifically,
it is possible to distinguish between three types of images:
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• Type I images ; when detA > 0, TrA > 0; the eigenvalues of T are both positive:
images form at the minima of t(x⃗) and have a positive magnification

• Type II images ; when detA < 0; the eigenvalues of T have opposite signs: images
form at the saddle point of t(x⃗) and have a negative magnification

• Type III images ; when detA > 0, TrA < 0; the eigenvalues of T are both negative:
images form at the maxima of t(x⃗) and have a positive magnification

However, it should be noted that having a negative magnification does not traduce into
a demagnification (a condition instead related to |µ| < 1), but into a parity change
of the image. In particular, the image on the lens plane is flipped compared to the
original source image.

2.2 Lensing regimes and galaxy clusters

Indeed, lensing events in galaxy clusters are crucial for studying both the characteristics
of the clusters and the distribution of dark matter within them: by observing how light
from background galaxies is distorted and bent by the gravitational fields of galaxy
clusters, along with the positioning of multiple images of a single background source,
researchers can infer valuable information about the mass distribution and gravitational
properties of the clusters.
Lensing events fall into two categories, according to the importance of the alignment
between the source, the lens and the observer:

• Strong lensing events can be observed when the source and the lens are well
aligned with the observer (along the line of sight). As we are considering extended
sources, strong lensing traduces into having a small angular distance separation
between the center of mass of the lens and the source;

• Weak lensing events instead are characterized by a larger angular separation
between the source and the lens.

The different properties of these two regimes will be briefly described in the following
subsections.

2.2.1 Strong lensing

Strong lensing events are characterized by a high magnification, giving us the possi-
bility to observe very faint objects otherwise impossible to detect. Their importance
is crucial in describing cluster potential and mass distribution, as the observation of
gravitational lensing events with resolved sources allows the reconstruction of the grav-
itational lenses responsible for the observed distorsions. Since these events are more
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frequent in dense environments as the central regions of galaxy clusters, they represent
an important tool to study the characteristics of these regions.
Strong lensing effects manifest in close proximity to the lens critical lines, which sep-
arate the images of strongly lensed sources. As a result, gravitational arcs form when
multiple images come toghether across the critical lines, originated by the overlapping
of the caustics of an extended source. Utilizing the size of the critical lines is a logical
approach to characterize the scale of a strong lensing event. A first simple approach
can be given, for an axially symmetric lens, if we assess the magnitude of the tangential
critical line using the Einstein radius, defined as

θE =

√
4GM(θE)

c2
DLS

DSDL

, (2.35)

where M(θE) is the mass enclosed within the critical line, corresponding to a circular
ring, called Einstein ring. However, both galaxies and galaxy clusters are not axially
symmetric, but well described by elliptical mass distribution. Thus, their critical lines
show irregularities and distorsions from the circular shape. An equivalent to the Ein-
stein radius can still be used to quantify the size of a strong lens in irregular scenarios,
named equivalent Einstein radius and defined as the radius of the circle with the same
area enclosed by the lens critical line Ac:

θE,eq. =

√
Ac

π
. (2.36)

This quantity represents a very approximate estimate of the cluster mass within the
critical line, obtained by assuming spherical simmetry and that the mean surface den-
sity within the critical line is the critical surface density. For galaxies having ∼ 1011-
1012M⊙ , the Einstein radius is of the order of ∼ 1”, while for clusters of bigger mass
(∼ 1014-1015M⊙), the Einstein radius is of the order of ∼ 5-50”.
To reconstruct the lens mass distribution we can follow two approaches: the forward
and the inverse methods.
The former involves constructing a lens system model that closely mimics the observed
images. The initial stage of this process consists in establishing a model for the lens
system, followed by comparing the images generated by this model with the observed
ones. Consequently, adjustments are made to the model to minimize the difference
between the simulated and actual images. An example of forward method application
is presented in Newton et al. (2011).
The second method is based on using three different constraints to reconstruct the the
lens mass distribution:

• the positions of the multiple images of lensed source, probing the lens’s deflection
field which is related to the first derivatives of the lensing potential;
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• the fluxes (magnification) and the shapes of the multiple images and gravitational
arcs, probing the second derivatives of the lensing potential;

• the relative time delays between multiple images, probing the lensing potential.

These observed constraints are used to obtain the lens matter distribution by the ap-
plication of a lens inversion algorithm. In particular, there are two classes of inversion
algorithms, namely the parametric and free-form (non-parametric) algorithms.
Assuming light traces the mass, parametric algorithms consists in combining one or
more clumps of matter, each characterized by its density profile and shape, in order
to explore the model parameter space until the best combination reproducing the ob-
served positions, shapes, magnitudes, and relative time delays of the multiple images
and arcs is found.
Alternatively, in the free-form modeling approach, the lens is subdivided into a struc-
tured or an unstructured mesh onto which the lensing observables are mapped. The
mesh is then transformed into a pixelized mass distribution using the relations between
the observables and the lens surface density. Different interesting examples employing
this approach are Birrer et al. (2015); Suyu et al. (2006); Blandford et al. (2000).
A more detailed description of the these parametric and free-form algorithms can be
found in the work of Meneghetti (2021).
An example of strong lensing effects in a galaxy cluster is shown in Fig. 2.3, where
different lensing distorsions are highlighted. Each of them can be characterized with a
different approach: the reconstruction study of the mass model of this galaxy cluster is
described in Caminha et al. (2017); Bonamigo et al. (2018); Bergamini, P. et al. (2019).

2.2.2 Weak lensing

Weak lensing phenomena manifest when there is a significant angular separation be-
tween the source and the lens. However, unlike multiple or heavily distorted images,
this effect is observable through subtle distortions in the background sources, primarily
faint and distant galaxies.
Assuming that the orientation of distant, faint and irregularly-shaped sources is ran-
dom, the average shape of a large number of them should be circular. However, as it
was explained in Sec. 2.1.4, because of weak lensing, the circular source appears to be
elliptical, with axes described by Eq. 2.25 and ellipticity described as in Eq.2.27. In
the weak lensing regime, since κ, γ ≪ 1, ϵ ∼ γ.
The ellipticity may also be defined by means of a second-order tensor that describes
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Figure 2.3: Color-enhanced image of the galaxy cluster MACS
J1206.2-0847, observed with the Hubble Space Telescope. A variety of
strong lensing features can be found in this cluster, namely giant tan-
gential and radial arcs, several families of multiple images of distant
sources (marked with circles), and even galaxy–galaxy strong lensing
events (as shown in the bottom-left panel). Image from Meneghetti
(2021).
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the brightness moments on the source and on the lens planes:

Qij =

∫
d2θI(θ)qI [I(θ)](θi − θ̄i)(θj − θ̄j)∫

d2θI(θ)qI [I(θ)]
,

Q
(s)
ij =

∫
d2βI(s)(β)qI [I

(s)(β)](β − β̄)(β − β̄)∫
d2βI(s)(β)qI [I(s)(β)]

,

(2.37)

where qI is a weight function that selects the scale covered by the galaxy and limits
the integral, i, j ∈ (1, 2), I(θ) and I(s)(β) are the brightness functions on the lens and
on the source planes respectively, and θ̄, β̄ are the image centroids:

θ̄ =

∫
d2θI(θ)qI [I(θ)]θ∫
d2θI(θ)qI [I(θ)]

, β̄ =

∫
d2βI(s)(β)qI [I

(s)(β)]β∫
d2βI(s)(β)qI [I(s)(β)]

. (2.38)

The trace ofQij describes the angular size of the image while the traceless part describes
its shape and orientation. From Qij we can define the complex ellipticity as

ϵ =
Q11 −Q22 + 2iQ12

Q11 +Q22

. (2.39)

In the same way, the intrinsic ellipticity for the unlensed source is described by Q
(s)
ij .

The observed ellipticity on the lens plane and the intrinsic ellipticity on the source plane
are related through the lens equation, i.e. in the first-order approximation β = Aθ,
then it can be demonstrated that

Qs = AQAT = AQA. (2.40)

Using the definition of the complex ellipticity, one finds the transformation (Schramm
& Kayser, 1994; Seitz & Schneider, 1996):

ϵ(s) =


ϵ− g

1− g∗ϵ
if |g| ≤ 1

1− gϵ∗

ϵ∗ − g∗
if |g| > 1

, (2.41)

where ∗ denotes the complex conjugate and g is the reduced shear defined in Eq. 2.27.
By averaging over a large sample of galaxies, assuming that the orientations of galaxies
is random, it is expected that the intrinsic ellipticities should mediate to zero. Then,
Eq. 2.41 becomes

ϵ =


g if |g| ≤ 1

1

g∗
if |g| > 1

. (2.42)
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Therefore, the observed image ellipticity provides an unbiased estimate of the reduced
shear.
Unfortunately, weak lensing distorsion is contaminated by other effects, increasing the
difficulty in the measure of ellipticity. Firstly, the atmosphere and the Point Spread
Function (PSF) of the observing instrument introduce anisotropies that could be easily
mistaken for weak lensing distorsions. In addition, the shear depends on the redshift,
meaning we need a correct characterization of galaxies’s distance distribution.
The most common method to isolate the signal generated by the weak lensing effect
from the other contributions is the Kaiser Squires Broadhurst (KSB) method (Kaiser
& Squires, 1993).



Chapter 3

Machine Learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that focuses on de-
veloping iterative algorithms that allow computers to learn and identify patterns from
data. The aim of the algorithms is to make predictions based on their experience. In
this context, although the architecture of the majority of ML algorithms resembles the
structure of neurons and synapses, our concept of ”learning” should not be confused
with the meaning related to human experience, but we should instead exploit the defi-
nition used in Mitchell (1997): ”a computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.” It is therefore immediate
to observe that the purpose of ML programs is to complete tasks correctly. Moreover,
it is important to note from the previous formal definition of ”task” that the process
of learning itself is not the task, but our means of attaining the ability to perform the
task.
ML tasks could be described as a set of operations and processes performed over a
particular dataset instance, called example. The example is a collection of features,
typically represented as an entry xi to the example vector x ∈ Rn (where bold indi-
cates vectors and n indicates the total size of the dataset), measured from the dataset
that we want the ML system to process. For example, the features of an image are the
pixel values of the image itself. Along with these features, we associate each example
with a corresponding label, i.e., the output our model has to predict. Although ML
can address a large variety of tasks, in this work, we will deal with only one specific
type, namely, a regression task.
A regression problem can be described as: given some input, i.e., our examples and
labels, the ML algorithm is asked to predict a set of numerical values. To solve this
task, the program has to output a function f : Rq×q → Rm.
In this work, q × q is the dimension of the dataset images.
To evaluate the performance of our ML algorithms, we need to design a specific quan-
titative measure that gives the proportion of examples for which the model’s output is

30
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correct. This can be quantified using several metrics, for example the so-called accuracy
(see Sec.4.3). To obtain a significant measure of this quantity, the ML algorithm has to
process and analyze all the labeled data during an initial stage called training phase, in
which the program updates itself at each step to improve its capability to predict the
output. This updating process is described in Sec.3.3.1. Once the training has been
done, our model goes through an additional stage called test phase. In this phase, the
model performance is then evaluated on unlabeled data, different from the data used
for training, respectively, a training set and a test set, and the output predictions are
compared to the known corresponding labels to calculate the accuracy. Anyway, all the
details regarding the implementation of the models and their training and test phases
will be discussed in the following sections.

3.1 Deep Learning

Deep Learning (DL) is a subset of machine learning that focuses on the development
and training of deep neural networks. These networks are composed of multiple layers
of interconnected nodes, known as neurons, that mimic the structure of the human
brain. The name deep comes from the stratification of the layers, as the input has to
be processed by many layers built on top of each other.
The main advantage offered by neural networks is their ability to discover not only
the mapping from the representation of the data to the output but the representation
itself (Goodfellow et al., 2016), since automatically learning representation of the data
is part of the learning process. This means that instead of relying solely on human
intuition or dataset knowledge to handcraft the right features, neural networks can
learn to extract relevant features directly from the raw data. This ability is known as
representation learning, and it allows AI programs to adapt to new tasks with few mod-
ifications on the network, and to generalize problems without human intervention. In
particular, within the framework of representation learning algorithms, DL techniques
are characterized by the introduction of representations that are expressed in terms
of other, less complicated, representations: the function f that maps the input to the
output is decomposed into simpler functions, each providing a new representation of
the data.

3.2 Neural Networks

Neural networks (NNs, Bishop, 2006) are computational models inspired by the struc-
ture and function of biological neural networks, mimicking the complex interconnec-
tions of the human brain to process and learn from data. They are constituted by
simple processing units, also called neurons, linked through connections and organized
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in layers. Each neuron receives one or more input signals, either directly from the raw
data or or from the neurons in the previous layer, and every connection between neu-
rons has an associated weight that determines the strength of the connection. These
weights are adjusted during training to minimize the difference between the predicted
output and the actual output. Each neuron then applies an activation function to
the weighted sum of its inputs, which calculates the output value for each node: this
function introduces non-linearity and enables the network to learn complex patterns
and relationships within the data.
The most commonly used activation function in NNs is the Rectified Linear Unit
(ReLU), shown in the left panel of Fig.3.1. It sets all negative values in the input to
zero and leaves positive values unchanged. Mathematically, it can be defined as follows:
f(y) = max(0, y).
An alternative to the ReLU function is given by the Leaky ReLU, a variant of the

Figure 3.1: ReLU and Leaky ReLU functions (left and right panels,
respectively).

ReLU activation function that addresses the ”dying ReLU” problem (Pedamonti, 2018),
which arises when neurons become inactive and stop learning during the training pro-
cess. Leaky ReLU introduces a small slope a for negative values, allowing a small,
non-zero gradient for negative inputs. It can be defined as:

f(y) =

{
ay, if y < 0

y, if y ≥ 0
(3.1)

and it is plotted in the right panel of Fig.3.1.
In general, NNs have at least three layers: the input layer, the output layer, and
one hidden layer. However, networks generally have several hidden layers capable of
extracting high-level features from the data. In particular:



3.2 Neural Networks 33

Figure 3.2: Architecture of a generic network with three hidden layers.
Here, x is the input layer, while hi with i = 1, 2, 3 are the hidden lay-
ers. The last layer, h4, is the output layer. The picure also illustrates
the interconnections between the units of each layer, connecting both
lower-levels and higher-level layers. Image from (Bengio et al., 2009).

• The input layer, often referred to as the visible layer, is where data is transmitted
to the network;

• The hidden layers are designed to capture abstract features from the data. The
predetermined number of hidden layers and nodes within each layer is estab-
lished a priori, but their values are adjusted during the training phase following
a random initialization;

• The last layer of the network is the output layer, which provides a further modi-
fication to the features, ultimately accomplishing the designated task. The labels
linked to the training data will determine how the weights in the output layer
are adjusted. The learning algorithm then fixes the hidden layers to approximate
the desired output most effectively.

Each layer is composed of several nodes connected to the ones of the previous layer
through weighted connections that describe how the input is propagated through the
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network. The output of the k -th layer hk can be calculated using the output of the
previous layer hk−1:

hk = f(bk + wkhk−1), (3.2)

where f is the activation function, b and wk are the vector of offsets (biases) and the
weight matrix associated with the layer respectively: their dimension is defined by the
number of units in the layer. The first layer is given by the input: x = h0, while the
last layer hL is used to make a prediction.

3.3 Training Process

After establishing and implementing the model’s architecture, the next crucial step
is training the network before applying it to any data. The purpose of the training
procedure is to pinpoint the most effective values for the weights and offsets: while the
network’s structure defines only the number of parameters per layer during implemen-
tation, their actual values are fine-tuned in the training phase based on how well the
model predicts accurate outputs.
The training is an iterative process, and each iteration, known as epoch, involves that
the network processes the entire training set. Achieving convergence to the best param-
eter configuration often requires many epochs. After each epoch, the weights and biases
are updated based on the network’s performance: the effectiveness of the network is
evaluated using a loss function, which measures the disparity between the network’s
predictions and the correct outputs.
The most relevant loss function in the context of this work is the Mean Squared Error
(MSE), defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 , (3.3)

where n is the total number of training examples, yi and ŷi are the predicted output
value and the real output value respectively.
The purpose of the training process is then to search for the best combination of weights
and biases that minimize this loss function. Usually, every epoch has its associated
value of loss function, and its trend with time (the epochs) has to be checked to evalu-
ate the effectiveness of the learning process, because the loss function value is expected
to decrease as the number of epochs increases. For some examples of loss function
trends, see Sect. ??.
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3.3.1 Backpropagation Algorithm

The task of adjusting weights and biases during the training process is assigned to
a training algorithm. The most common training algorithm is the backpropagation
algorithm (Rojas, 2009).
At the heart of the learning process is the idea of iteratively refining the parameters of
a neural network by updating the network’s weights in tandem with an optimization
method. In particular, the backpropagation algorithm operates as a supervised learning
technique, where the network is provided with labeled training data and the algorithm
has to compute the gradient of a chosen loss function concerning the weights and biases
of the neural network. The gradient serves as a compass, since it gives an indication
of how these parameters should be modified to minimize the difference between the
predictions of the network and the known output. The optimization method then
utilizes the gradient information to update the weights, allowing the neural network to
improve its performance iteratively.
We can break down this complex process into two distinct yet interdependent steps:

• Forward propagation, as explained by Nielsen (2015), constitutes the initial step
in the backpropagation. During this phase, the input data is propagated through
the network’s layers, with each hidden layer contributing to the computation of
the final output as described in Eq. (3.2). The weights and biases in each layer
play a crucial role in determining the output, as they are adjusted iteratively
to align the network’s predictions with the ground truth. At the end of this
process, the prediction of the network, i.e. the output of the final layer, is used
in combination with the ground truth to evaluate the loss function, to assess the
network’s performance, and to initiate the subsequent backpropagation step.

• Backpropagation: following the computation of the forward pass, the backprop-
agation phase takes center stage. This step involves the systematic calculation of
the gradient of the loss function with respect to the current weights and biases of
the network. Then, the network is run backwards until the input layer is reached.
Nielsen (2015) outlines how the algorithm attributes the error to each parameter
by recursively applying the chain rule of differentiation of composite functions
backward through the layers, allowing for the precise adjustment of weights and
biases. The backpropagation algorithm’s reliance on the chain rule highlights
its foundation in calculus and mathematical optimization, and its systematic ap-
proach to gradient computation enables the algorithm to discern the contribution
of each parameter to the overall error, facilitating targeted adjustments. As a
result, the network refines its predictions with each iteration, progressively con-
verging toward a state where the loss function is minimized.
In particular, understanding how changing the weights and biases in a network
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changes the loss function means computing the partial derivatives

∂L

∂wl
jk

and
∂L

∂blj
, (3.4)

where wl
jk denotes the weight for the connection between the kth neuron in the

(l − 1)th layer and the jth neuron in the lth layer, as shown in Fig.3.3. Similarly,
blj denotes the bias of the j

th neuron in the lth layer. Those derivatives represent
a quantitative measure indicating the extent to which a weight or a bias deviates
from its optimal value, i.e. the one required to minimize the loss function.

Figure 3.3: Simple scheme illustrating the weights notation. Here,
w3

24 [wl
jk] is the weight from the 4th [kth] neuron of the 2nd [(l − 1)th]

layer, connected to the 2nd [jth] neuron of the 3rd [lth] layer.

To compute the derivatives, we first introduce an intermediate quantity δlj as the
”error” (thought as the discrepancy of the current weight and bias value from
the value that minimizes the loss) of the jth neuron in the lth layer, as:

δlj =
∂L

∂zlj
, (3.5)

where we have adopted the notation zl = bl+wlhl−1 from the Eq. 3.2. The main
task of the backpropagation algorithm is then to obtain δl for every layer (where
δl denotes the vector of errors associated with layer l) and to relate those errors
to the quantities described in Eq. 3.4. This task is achieved with the following
steps.
Denoting the activation function as f , the backpropagation algorithm starts by
calculating the error δO on the output layer O with components

δOj =
∂L

∂hO
j

f ′(zOj ), (3.6)
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where the first term on the right measures how fast the loss changes as a function
of the jth output activation, and the second one measures how fast the activation
function f changes at zOj . Normally, if the loss function does not depend heavily
on a particular output neuron j, then δOj will be small. Eq. 3.6 should be
rewritten in a matrix-based form since the algorithm exploits this formalism. We
can then define:

δO = ∇hL⊙ f ′(zO), (3.7)

where the vector ∇hL has the partial derivatives ∂L/∂hO
j as components, and

the operator ⊙ stands for the element-wise product of the two vectors.
The algorithm is now capable of computing the error δl at each layer in terms
of the error in the next layer δl+1, since the gradient in Eq.3.7 is then converted
into a gradient with respect to the weights at each node and is passed to the next
lower level hidden layer as:

δl = ((wl+1)T δl+1)⊙ f ′(zl), (3.8)

where (wl+1)T is the trasposed of the weight matrix wl+1 for the (l + 1)th layer.
If we suppose to know the value of δl+1 in the layer l + 1, the application of the
trasposed weight matrix (wl+1)T can be thought intuitively as moving the error
backward through the network, giving us a measure of the error at the output of
the lth layer. Then, by computing the elementwise product ⊙f ′(zl), we move the
error backward through the activation function in layer l, obtaining the value of
δl in the weighted input to layer l. By combining Eq. 3.7 with Eq. 3.8 we can
compute the error δl for any layer in the network, until the input layer is reached.
The backpropagation algorithm then calculates the derivative of the loss function
for any bias in the network as

∂L

∂blj
= δlj (3.9)

since this quantity has already been calculated by Eq. 3.8, meaning that the
error δlj is exactly the derivative of the loss with respect to the jth bias in layer l.
In the last step, the backpropagation algorithm computes the derivative of the
loss function with respect to any weight w as

∂L

∂wl
jk

= hl−1
k δlj, (3.10)

since the algorithm already computed the quantities hl−1
k and δlj.

Eq. 3.10 can be rewritten in a less index-heavy notation as

∂L

∂w
= hinδout, (3.11)
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where hin is the activation of the neuron input to the weight w calculated in the
forward step, and δout is the error of the neuron output from the weight w.
It is important to note that the training dataset is not processed as a whole but
it is split into several small batches, namely, a given number of examples. The
gradients of the loss function passed to the optimizer for the next step are an
average estimation of the gradients calculated for the training examples at the
end of each epoch.

3.3.2 Optimization

While the backpropagation algorithm computes the gradients essential for parameter
adjustment, the optimization method defines how the weights and biases are updated.
It uses the previously computed gradients to adjust the parameters iteratively. To do
so, we have to define an important hyper-parameter, namely, a parameter that is chosen
manually and is not further adjusted during the training procedure, the learning rate.
This rate defines the step length of each update in the negative gradient direction. If
it is too high, the model rapidly converges towards the minimum of the loss function,
but it might not reach it exactly, while if it is too small, the model might get stuck
into a local minimum or require too many epochs to converge.
Optimization is usually left to a set of pre-built optimizers since differences in the
weight-adjustment methods could affect the network’s accuracy. The most relevant
optimizer in the context of this work is the ADAptive Moment estimation (Kingma &
Ba, 2017; Reddi et al., 2019). Anyways, in some cases involving comparisons between
the performances of our networks with different optimizers, also Root Mean Square
propagation (RMSprop, Hinton et al. 2012) was implemented and tested.

3.3.3 Validation

To assess the model’s generalization capability, it is crucial to evaluate its predictions
within the training phase on the training set and an independent dataset, known as the
validation set. Typically, the validation set comprises a small fraction (approximately
10-15%) of the training set and must accurately represent the dataset’s characteristics.
While the network’s performance on the training set guides the updates of the weights
and biases, following the procedure outlined in the previous section, the results on
the validation set play a key role in determining adjustments such as decreasing the
learning rate or stopping the training process. However, these results do not factor
into calculating the loss function and thus do not impact the parameter updates.
When training an ML algorithm, the objective is to minimize the loss function on the
training set and to narrow the gap between training and validation errors. A highly
complex and deep model will likely perform well on the training set, with a steady
decrease in training error. However, there is a risk of memorizing non-representative
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Figure 3.4: Comparison between a linear (left), quadratic (center)
and a polynomial of degree-9 (right) predictor attempting to fit a
problem where the true underlying function is quadratic. The linear
function is unable to capture the curvature in the true underlying
problem, so it underfits. The degree-9 predictor is capable of rep-
resenting the correct function, but it is also capable of representing
infinitely many other functions that pass exactly through the training
points because we have more parameters than training examples, so
it overfits. In this example, the quadratic model is perfectly matched
to the true structure of the task, so it generalizes well to new data.
Image from (Goodfellow et al., 2016).

properties specific to certain examples, hindering the improvement in predicting the
validation set output. This phenomenon is known as overfitting and is denoted by a
low loss value on the training set and a high one on the validation set. Conversely, if
the model is overly simplistic, it may struggle to capture complex properties from the
training set and will perform poorly on both training and validation sets, indicating
underfitting.
So, underfitting occurs when the model cannot obtain a sufficiently low error value on
the training set. Overfitting occurs when the gap between the training and test errors
is too large. We can control whether a model is more likely to overfit or underfit by
altering its capacity, namely, its ability to fit a wide variety of functions (Goodfellow
et al., 2016). Capacity is strictly linked to the number of weights/layers of the network:
models with low capacity may struggle to fit the training set, while models with high
capacity can overfit by memorizing properties of the training set that do not serve them
well on the test set. ML algorithms will generally perform best when their capacity
is appropriate, given the true complexity of the task they need to perform and the
amount of training data they are provided with. Models with insufficient capacity are
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unable to solve complex tasks. Models with high capacity can solve complex tasks, but
they may overfit when their capacity is higher than needed to solve the present task.
Fig.3.4 shows this principle in action.

3.4 Convolutional Neural Networks

Convolutional networks (LeCun et al., 1995), also known as convolutional neural net-
works or CNNs, are a specialized kind of neural networks for processing data that
have a known, grid-like topology (Goodfellow et al., 2016). In the context of this work
CNNs are particularly appropriate since we have to deal with image data, which can
be thought of as 2D grids of pixels. The name “convolutional neural network” indi-
cates that the network employs a mathematical operation called convolution, which is
a specialized kind of linear operation that involves an input image and a kernel: the
output of this operation is often referred to as feature map.
In machine learning applications, the input is usually a multidimensional array of data
(for example, a RGB-2D image), and the kernel is usually a multidimensional array of
parameters that are adapted by the learning algorithm. We will refer to these multi-
dimensional arrays as tensors.
In detail, the one-dimensional convolution between two functions is defined by the
following integral

s(t) =

∫
x(a) · w(t− a) da, (3.12)

where s(t) is the feature map depending on the variable t, x is the input and w is the
kernel.
However, the convolution between multi-dimensional arrays is better described as a
discrete multiplication between matrices. Typically, the kernel is smaller than the
image, and the resulting output is a very sparse matrix with many null elements. The
output S of the convolution between an image I and a kernel K of dimension (M ×N)
can be computed as:

S(i, j) = (K ∗ I)(i, j)
M∑

m=1

N∑
n=1

I(i−m, j −m)K(m,n), (3.13)

where (m,n) represents a generic point on the kernel grid, while (i, j) defines a point
on the image grid. More in detail, the units of a layer that are directly connected to
the units of the following layer are also known as its receptive field. In a convolutional
layer, several convolutions are performed in parallel and then passed to an activation
function like the ReLU, which adds non-linearity and produces an output tensor. In
this context, stride and padding are crucial parameters in implementing convolutional
operations.
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Figure 3.5: Schematic of 2D CNN for stride-1 and stride-2 with zero
padding (adding additional layers of zero values) to prevent shrinking.
For stride-1, the output channel dimension is the same as the input
and for stride-2, the output channel dimensions are reduced to half
of the input dimension. Image from ResearchGate website.

The stride refers to the step size, or the number of pixels that the convolutional
filter moves across the input data during the convolution operation. A larger stride
value reduces the spatial dimensions of the output volume, effectively downsampling
the data. This can help to reduce computational complexity and, in some cases, control
overfitting. A smaller stride preserves more spatial information but it may increase the
computational requirements. The choice of the stride depends on the specific task and
the desired balance between spatial resolution and computational efficiency.
Padding involves adding extra pixels (usually zeros, referred to as zero-padding) around
the input data before applying the convolution operation. This technique ensures that
the spatial dimensions of the input and output volumes are compatible. It also helps
to retain information at the input’s borders, preventing a size reduction as the convo-
lutional operation is applied. An example of convolutions with different stride values
and zero-padding is given in Fig.3.5.
CNNs consist of multiple convolutional layers, usually interspersed with pooling lay-
ers. Pooling is used to reduce the spatial dimensions of a grid, executing a form of
downsampling that effectively lowers computational expenses while retaining the key
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features of the input map. Similar to convolution, pooling operations employ kernels,
typically (2× 2) or (3× 3), with stride (2× 2) that halves the size of the input. Two
variations of pooling exist. Max pooling yields the highest value within the kernel-
covered portion of the grid, whereas average pooling produces the average value.
A typical CNN then is made of several convolutional layers alternating with pooling
layers and generally ends with fully connected layers (FC) as an output, as shown in
Fig.3.6. FC layers are employed for the final classification and are characterized by the
full connection between each layer’s neurons and the next one’s neurons. Being fully
connected, these kinds of layers are usually more parameters-heavy than the convolu-
tional ones; thus, their use is limited to the final stages of the network.

Figure 3.6: The classical structure of convolutional neural networks
(CNNs). Image from ResearchGate website.

In the following sections, we describe the architecture and properties of three more
complex CNNs: VGGNet (Simonyan & Zisserman, 2015), Inception-v4 and Inception-
ResNet (Szegedy et al., 2016) that are the models implemented in this Thesis work.

3.4.1 VGG-Net

VGGNet, or the Visual Geometry Group Network, is a deep convolutional neural net-
work architecture designed for image classification. It was introduced by the Visual
Geometry Group (Simonyan & Zisserman, 2015) at the University of Oxford, and was
presented at the International Conference on Learning Representations (ICLR) in 2015.
The main innovation of VGGNet was its emphasis on using a simple and uniform ar-
chitecture with very small 3× 3 filters (which is the smallest size to capture the notion
of left/right, up/down, center), stacking multiple convolutional layers with small re-
ceptive fields to deepen the network without overburdening it with many parameters.
In fact, previous works typically employed filters with a receptive field of 11 × 11,
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(Krizhevsky et al., 2012) with stride 4, or 7 × 7, (Zeiler & Fergus, 2013; Sermanet
et al., 2014) with stride 2.
The Visual Geometry Group demonstrated that big-size filters could be replaced with
a succession of 3× 3 ones, as shown in Fig3.7 for a 5× 5 convolution. Using small fil-

Figure 3.7: Equivalence of receptive fields using two successive 3× 3
convolutions and one 5× 5 filter (Szegedy et al., 2016).

ters instead of larger ones has the advantage of allowing the implementation of deeper
architectures by limiting the number of parameters that the network requires. For
example, a 5 × 5 filter involves 25 parameters (5 · 5 = 25), while stacking two 3 × 3
filters uses only 18 parameters (3 · 3 + 3 · 3 = 18).
This is crucial since the authors not only developed an architecture that is easy to un-
derstand and implement but also demonstrated that increasing the depth of a neural
network can lead to a better performance.
In fact, the authors built different VGG configurations, starting from 11 weight layers
up to 19, and compared them. Despite having a different number of weight layers, the
general structure of the VGGNet is the same for every configuration.
The input is a fixed-size 224×224 RGB image, passed through a stack of convolutional
layers involving 3 × 3 filters. The convolution stride, as is the padding, is fixed to 1
pixel, meaning that the spatial resolution is preserved after convolution. Then, pooling
is carried out by five max-pooling layers over a 2× 2 pixel window with stride 2, which
follows only some of the convolutional layers. Finally, the last stack of convolutional
layers is followed by three FC layers. The final layer is the soft-max layer typically
used for classification, which contains the softmax function. This function transforms
the real output values of the last FC layer into values between 0 and 1 so that they
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can be associated to a probability for each one of the classes. The configuration of
the fully connected layers is the same in all networks. A visual example of VGGNet
architecture is shown in Fig. 3.8. Tab. 3.2 summarizes all the configurations proposed

Figure 3.8: Structure of the VGG-16 (Configuration D), (Simonyan
& Zisserman, 2015).

for the VGGNet. In particular, configuration C shows, in addition to the standard 3×3
convolutional layers, three 1× 1 convolutions that can be seen as a linear transforma-
tion of the input channels (followed by non-linearity). This is a way to increase the
decision function’s non-linearity without affecting the convolutional layer’s receptive
fields.
Tab. 3.1 reports the number of parameters for each VGGNet configuration. Despite
a large depth, the number of parameters of this architecture is not greater than that
of a more shallow net with larger convolutional layer widths and receptive fields (for
example, 144M parameters in Sermanet et al. 2014). The authors observe that the

Table 3.1: Number of parameters for each configuration of the VG-
GNet (Simonyan & Zisserman, 2015).

Network A B C D E
Number of parameters (106) 133 133 134 138 144

classification error decreases with the increasing VGGNet depth from A to E. More-
over, configuration C (which contains three 1 × 1 conv. layers) performs worse than
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configuration D, which uses 3× 3 convolutional layers. This states that the additional
non-linearity improves the network performance (since C is better than B), but it is
more important to use filters that capture the spatial context.

Table 3.2: VGGNet original configurations (shown in columns). The
depth of the configurations increases from the left (A) to the right
(E) as more layers are added (the added layers are shown in bold).
The convolutional layer parameters are denoted as “conv⟨receptive
field size⟩-⟨number of channels⟩”. The ReLU activation function is
not shown for brevity (Simonyan & Zisserman, 2015).

A B C D E
11 weight layers 13 weight layers 16 weight layers 16 weight layers 19 weight layers

input (224× 224 RGB image)

conv3-64
conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

maxpool

conv3-128
conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

maxpool

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256
conv1-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

maxpool

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max
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3.4.2 Inception Networks

We previously emphasized how the architectural simplicity of VGGNet can be consid-
ered an advantage about the ease of use of this model. This benefit, though, comes at
a high cost: evaluating the network requires a lot of computation since the VGGNet
performance relies on its depth, and by enlarging the depth of a network, we are also
increasing the model’s size and then the computational requirements. To tackle this
problem, the first version of Inception Networks (also called GoogLeNet) was presented
in 2014 by a group of researchers from Google (Szegedy et al., 2014), as ”Inception-v1”.
The main innovation in the Inception networks lies in their inception modules, which
are a set of parallel convolutional filters with different receptive field sizes. In detail,
the inception module employs (1 × 1), (3 × 3), and (5 × 5) convolutions, as well as a
max-pooling layer, all performed in parallel: basically, the author’s idea is to apply fil-
ters with different size on the same input in a multi-scale approach, making the model
learn both local and global features efficiently. An example of the simplest Inception
module from Inception-v1 is shown in Fig. 3.9. Since even using a modest number
of big filters (like the (5× 5) convolution) can be prohibitively expensive, the authors
decided to add a convolution with a 1 × 1 filter before applying the 3 × 3 and 5 × 5
operations: this trick reduces the dimension of the input and the overall computational
cost since the output map has the same height and width of the input but the number
of channels will be the same as the number of 1 × 1 filters applied. Then, the output
of the different filters and pooling layers are stacked together and passed as an input
for the following module or layer.
In general, an Inception network consists of modules of the above type stacked upon

Figure 3.9: Inception module with dimension reductions. (Szegedy
et al., 2014).

each other, with occasional max-pooling layers with stride 2 to halve the resolution of
the grid. The overall structure of an Inception network consists of three parts: the
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stem, the body, and a final classifier. The stem part includes all the basic operations
to be done before the introduction of the Inception modules. This was introduced
since the authors found using Inception modules only at higher layers while keeping
the lower layers in a ”traditional convolutional fashion” beneficial. The body is the
part that contains the Inception modules and changes between the various Inception
network versions. This part also contains in the original work two auxiliary classifiers
connected to two of the Inception modules, with the purpose to help to compute the
final loss function by computing two intermediate losses. This is because the back-
propagation algorithm in such a complex architecture could struggle to compute this
function. The total loss then will be the weighted sum of the intermediate losses (each
with a weight of 0.3) and the final loss. The authors then found that the auxiliary
classifiers were not as effective as expected, giving no improvements in the network
training performance. These classifiers were changed in Inception-v2 (Ioffe & Szegedy,
2015) and used as regularizers to reduce overfitting. At last, the final classifier passes
the module’s final output to the fully connected layers to perform the classification.

Inception-v4

In this work, we used the latest version of these networks, called Inception-v4 (Szegedy
et al., 2016). The Inception-v4 contains key innovations that improved the network
performance significantly compared to the previous network versions.
The main one comes from the second version of Inception networks (Ioffe & Szegedy,
2015), and consists in the substitution of the 5× 5 convolutions with two 3× 3 filters,
as we have previously described for VGGNet in 3.4.1. Moreover, the authors found
that 3× 3 convolutions could be substituted by a 1× 3 filter followed by a 3× 1 kernel,
and that also works for any n× n filter (as a succession of a n× 1 filter with a 1× n
filter). A general example is shown in Fig. 3.10, but can be seen in detail for 7 × 7
convolutions in the Inception-B block (Fig.3.13). These substitutions help reduce the
number of parameters and then the computational requirements of the network.
Another adjustment involves the addition of reduction modules to execute a more effi-
cient grid-size reduction. Traditionally, convolutional networks use pooling operations
to decrease the grid size of the feature maps. Usually, starting from a d× d grid with
n filters, pooling is preceded by a stride-1 convolution to obtain 2n filters, and then
pooling is applied, obtaining a d

2
× d

2
final grid. This, though, has a high computational

cost on bigger grid sizes since the number of operations grows as 2n2d2. Then we could

possibly switch to pooling followed by convolution having 2n2(d
2
)
2
and reducing by a

quarter the number of operations, but this would be a ”representational bottleneck”,
meaning that the dimensionality of the feature maps is significantly reduced and then
the network’s ability to represent information is constrained or bottlenecked at that
particular layer. The authors then suggested performing pooling and convolution in
parallel, as shown in Fig. 3.11.
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Figure 3.10: Inception modules after the factorization of the n × n
convolutions. (Ioffe & Szegedy, 2015).

Lastly, Inception-v4 inherited from its second (Ioffe & Szegedy, 2015) and third versions
(Szegedy et al., 2015) two auxiliary techniques: batch normalization and label smooth-
ing. Batch normalization is a regularization technique applied to the activations of
neurons before each non-linearity function (both for convolutions and fully connected
layers) that consists of normalizing the output of the activation layer by subtracting
the mean of the batch (seen in 3.3.1) and dividing by its standard deviation, to have
zero mean and unit variance. This technique mitigates the change in the distribution of
layer inputs during training, which can slow down the training process and then make
the learning faster, more stable, and less sensitive to the choice of the initial weights.
Label smoothing is another regularization technique that encourages the model to be
less confident, preventing it from overfitting. It consists of replacing the label distribu-
tion of a training example with a mixture of the original ground-truth distribution and
a fixed distribution that is independent of the training examples. This mixture depends
on a smoothing parameter ϵ that has to be calibrated to reproduce the accuracy of the
network. This technique improves the network generalization capacity and makes the
model less sensitive to noise in the training data.
In Fig. 3.12 and Fig. 3.9, we present the detailed structure of the blocks and the
reduction modules of Inception-v4 utilized in this work. In Fig. 3.14, we present the
stem of the network and the overall schema of Inception-v4. Convolutions marked with
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Figure 3.11: Inception module that is both cheap and avoids the rep-
resentational bottleneck, seen from the perspective of grid sizes rather
than the operations. Six hundred forty feature maps are obtained as
a sum of two parallel operations containing 320 feature maps each.
(Szegedy et al., 2015).

“V” are valid padded, meaning that the input patch of each unit is fully contained in
the previous layer, and the grid size of the output is reduced accordingly. Convolutions
without the V mark are instead zero-padded (see Section 3.4), meaning that the output
and input dimensions are kept the same.
The authors used 4 Inception-A blocks, 7 Inception-B blocks, and 3 Inception-C blocks
in the original work. A reduction module follows the A-type and B-type blocks to
reduce the dimension of the output. After the C-type blocks, the authors perform an
average pooling before applying the dropout technique in the fully connected layers.
The softmax layer then performs classification.

Inception-Resnet-v2

In the same paper, the authors present a second type of network based on the Incep-
tion architecture called Inception-Resnet-v2. This network differs from the previously
presented Inception architecture in the type of blocks involved for the convolutions and
is based on residual learning.
Residual learning was introduced by He et al. (2015) as a way to make the training pro-
cess of deep networks easier and more efficient. This need arises when it comes to very
deep architectures since the authors proved theoretically and empirically that having a
deeper architecture does not simply translate into a better performance, but could lead
instead to a higher degradation in the accuracy, meaning that both training and test
error are higher compared to a shallower network. Residual Networks (ResNets) are
built using special blocks, shown in Fig.3.15 to train deeper networks without falling
into degradation. The idea is to simultaneously propagate the input of the block x
both through the layers within the block and store the input without being changed.
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(a) Inception-A block (b) Inception-B block

(c) Inception-C block

Figure 3.12: Inception-v4 blocks (Szegedy et al., 2016).

(a) 35 × 35 to 17 × 17 reduction mod-
ule, (Reduction-A). The k, l,m, n num-
bers represent filter bank sizes.

(b) 17 × 17 to 8 × 8 reduction module,
(Reduction-B)

Figure 3.13: Inception-v4 reduction modules (Szegedy et al., 2016).
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(a) (b)

Figure 3.14: (a) The schema for the stem of the pure Inception-v4 and Inception-
ResNet-v2 networks. This is the input part of those networks. (b) The overall schema
of the Inception-v4 network. (Szegedy et al., 2016).
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Figure 3.15: A simple residual block. (He et al., 2015).

By doing so, the function that the block has to learn can be described as:

F (x) := H(x)− x,

where H(x) is the original function, and F (x) is the residual function. Then, after
passing the input of the first layer of the block to the output of its last layer, the
network should be able to predict:

F (x) + x = H(x),

This kind of architecture can speed up the learning process in some cases, for example,
if the convolution layer has to perform an identity mapping (as shown in Fig.3.15): in
this particular instance, the corresponding residual block would have to learn all zeros,
without adding extra parameters to the network (because the dimension of input and
output are the same).
Conversely, if F (x) and x have different dimensions, the shortcut can still perform iden-
tity mapping but using the zero padding technique to increase dimensions. Otherwise,
it can be used as a projection shortcut to match dimensions using

y = F (x) +Wsx,

where y and x are the output and the input of the layer, and Ws is the matrix respon-
sible of the dimension reduction.
In Szegedy et al. (2016) residual learning is implemented within the Inception blocks,
resulting in an evenly deeper network with respect to Inception-v4 that combines either
parallel convolutional operations and residual connections. The authors proved that
the performance of this hybrid type of architecture is really similar (i.e. just slightly
better) to Inception-v4, but with a significant decrease in computational cost, as is
shown in Fig.3.16.
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Figure 3.16: Top-1 error evolution during training of Inception-v4 vs
an Inception-Resnet-v2 of similar computational cost. The residual
version was training much faster and reached slightly better final ac-
curacy than the traditional Inception-v4 (Szegedy et al., 2016).

In Fig.3.17 are shown the building blocks of Inception-Resnet-v2. The reduction-A
module and the stem of the Resnet version of Inception are the same illustrated re-
spectively in Fig.3.13(a) and Fig3.14(a). The overall schema of the original Inception-
Resnet-v2 network is shown in Fig3.18 and includes 5 A-type blocks, 10 B-type blocks,
and 5 C-type blocks. Finally, the remaining part of the network architecture follows
the same implementation seen for Inception-v4.
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(a) Inception-Resnet-v2 A block (b) Inception-Resnet-v2 B block

(c) Inception-Resnet-v2 C block (d) 17×17 to 8×8 Resnet wider reduction module,
(Reduction-B)

Figure 3.17: Inception-Resnet-v2 blocks (Szegedy et al., 2016).
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Figure 3.18: The overall schema of the Inception-Resnet-v2 network.
(Szegedy et al., 2016).



Chapter 4

Dataset and network
implementation

4.1 The dataset

4.1.1 The MOKA software

In this work, we analyze a dataset consisting of weak lensing maps created using
the MOKA software (Giocoli et al., 2012a). This algorithm, starting from analytical
prescriptions, creates surface mass density distributions of triaxial and substructured
haloes. This approach is a valid alternative to full numerical hydrodynamical simula-
tions for several applications, including gravitational lensing studies. Indeed, with a
limited computational cost, it achieves very high spatial resolution, which is necessary
to resolve the inner structure of galaxies and clusters. This advantage comes at the
expense of the degree of realism of the simulated mass distributions, which do not
contain features such as asymmetries that are difficult to describe analytically.
The idea of this tool is to construct realistic lenses starting from a set of ingredients
taken from state-of-the-art numerical hydrodynamical simulations. Moreover, MOKA
takes into account not only the smooth dark halo and stellar components as earlier
studies have done (Mandelbaum et al., 2009; van de Ven et al., 2009), but also the
presence of substructures that perturb the regular matter distribution.
Each halo has a virial mass defined as

Mvir =
4π

3
r3vir

∆vir

ΩM(z)
ΩM,0ρc, (4.1)

where ρc and ΩM are the critical density of the Universe and the matter density param-
eter respectively (see Sect. 1.1.2). The term ∆vir (which is ∼ 178 from Cole & Lacey
(1996) for the Einstein-de Sitter model) is defined as the virial overdensity enclosed in
the virial radius of the halo rvir, which is the radius that separates the region of the

56
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halo in dynamical equilibrium from the surrounding region.
Each halo is also characterized by a dark matter density distribution that follows the
NFW profile (Navarro et al., 1996), described by

ρ(r) =
ρs(

r
rs

)(
1 + r

rs

2
) , (4.2)

where rs is a scale radius and ρs is defined as the dark matter halo density at the scale
radius. Another important parameter describing halos and related to the NFW profile
definition is the concentration cvir. This parameter is defined as the ratio between the
virial radius and the scale radius:

cvir =
rvir
rs

.

The concentration parameter is intricately linked to halo mass, defining an important
relation in cosmology since it is a prediction of the ΛCDM model. This correlation,
called the c − M relation, indicates that the concentration is associated to the aver-
age density of the Universe during the halo collapse: smaller halos, which form earlier,
have greater concentration compared to larger ones presently assembling, reflecting the
higher mean density of the early Universe. Consequently, this correlation is also de-
pendant on the redshift and its temporal evolution. Therefore, the halo concentration
is a decreasing function of the host halo mass. In the MOKA algorithm, the authors
adopt the mass-concentration relation proposed by Zhao et al. (2009), which links the
concentration of a given halo with the time at which its main progenitor assembles 4%
of its mass. Because of their tidal interaction with the surrounding density field during
their collapse, dark matter halos are not spherical but are characterized by triaxiality,
which is modeled using the results presented in Jing & Suto (2002) based on dark
matter-only simulations.
As previously mentioned, these halos are not smooth but are characterized by many
substructures. Their mass distribution follows the mass function from Giocoli et al.
(2010), which used data coming from the GIF2 cosmological N-body simulation in-
vestigating the substructure abundance as a function of mass and redshift. However,
the subhalo mass function is in general described by a power-law with an exponential
cut-off:

dNM

d lnmsb

≡ msb

M0

dN

dmsb

= NM0m
α
sb exp (−βξ3), (4.3)

where NM0 is the normalization factor, NM is the number of substructures within a
certain mass, msb is the subhalo mass, M0 is the host halo mass at z = 0, ξ = msb

M0
,

α = −0.9 and β ∼ 12.2715. Regarding their spatial distribution, Giocoli et al. (2012a)
confirmed that the radial distribution of the subhalos resembles that of the smooth
dark matter main halo, although with some caveats: subhalos close to the center of the
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cluster are more easily destroyed because of their tidal interaction with the main halo.
Therefore, the subhalo distribution is less centrally concentrated than the dark matter
distribution of the main smooth dark matter halo. The cumulative spatial density
distribution of substructures in the host halo follows the study of Gao et al. (2004) and
is described by

n(< x)

N
=

(1 + ac)xβ

(1 + acxα)
, (4.4)

where x is the distance to the host center in units of r200 (corresponding to the radius
at which the density is equal to 200 times the critical density of the Universe), n(< x)
is the number of subhalos within x, N is the total number of subhalos inside r200,
a = 0.244, α = 2, β = 2.75, and c is the concentration of the host halo (related to
r200). The mass fraction contained in the subhalos with respect to the total mass of
the halo is described by

fs =

∑
i msb,i

M0

. (4.5)

Subhalos may host satellite galaxies, which are described through a truncated SIS
density profile (Keeton, 2003):

ρsub(r) =

{ σv

2πGr2
for r ≤ Rsub

0 for r > Rsub

, (4.6)

where σv is the velocity dispersion and Rsub =
Gmsub

2σ2
v
.

At last, since the lensing signal is sensitive to the matter distribution in the central
region of galaxy clusters (r ∼ 100 kpc), the brightest central galaxy (BCG) is added to
the halo using the halo occupation distribution (HOD) technique, which assumes that
the stellar mass of a galaxy is tightly correlated with the depth of the potential well
of the halo within which it formed (Wang et al., 2006). For the BCG density profile a
Hernquist (Hernquist, 1990) profile is adopted:

ρBCG =
ρg

(r/rg)(1 + r/rg)3
. (4.7)

Here, ρg and rg are the scale density taken from the Hernquist model and the scale
radius related to the half-mass (or effective) radius respectively.
Finally, the virial mass of the halos is given by the sum of smooth plus clumpy compo-
nents, and if a BCG is present: Mvir = Msmooth +

∑Ntot

i=1 mi +MBCG, where mi is the
mass of the i− th subhalo and MBCG is the mass of the BCG.
Then, the lensing properties are derived from the three-dimensional matter density of
all components characterizing the halos. For each component, MOKA projects the den-
sity on a plane perpendicular to the line of sight and obtain analytically the projected
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mass density ΣNFW , Σsub, ΣBCG. These quantities are then scaled with the appropri-
ate Σcr value depending on the source and lens redshifts, assumed to be zs = 2 and
zl = 0.25 respectively, and the total convergence map is obtained as

κ(x, y) = κDM(x, y) +
Ntot∑
i=1

κsub,i(x− xc, y − yc) + κBCG(x, y), (4.8)

where xc and yc represent the center of mass of the i− th substructure. Starting from
the convergence map, the effective lensing potential and the scaled deflection angle can
be obtained, and finally by calculating the derivatives of the effective lensing potential,
the shear components are also obtained. Fig. 4.1 shows an example for the convergence
and shear maps produced using the MOKA algorithm for a galaxy cluster acting as a
lens located at z = 0.25.

Figure 4.1: Simulated convergence (upper panel) and shear (lower
panels) maps obtained through the MOKA algorithm for a cluster
located at redshift z = 0.25.
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Noise simulation Since noise can affect lensing measurements, we also conducted a
test using our best model, the VGG19-heavy (see Sect. 4.2.1), to evaluate the CNNs’
performance in more realistic conditions. To simulate realistic noise in future obser-
vations, we take into consideration the Euclid capabilities, i.e., its ability to measure
the shapes of 30-40 resolved galaxies per arcmin2 in one broad visible R+ I +Z band
(between 550nm and 920nm), covering a total of 13.245 squared degrees of the extra-
galactic sky in the following 6 years (Laureijs et al., 2011). We therefore assume a
number density of background galaxies of ngal = 30(galaxies× arcmin−2), responsible
for galaxy shape noise in the reduced shear maps.
Then, we assume an intrinsic ellipticity distribution of the sources characterized by a
dispersion of ση = 0.3. This intrinsic ellipticity is dominant for the distortion intro-
duced by the lensing effect, meaning we need to dilute the intrinsic term by mediating
on a large number of sources, hence averaging zero and making the lensing signal mea-
surement possible.
Our shape noise per pixel is then calculated as described in Giocoli et al. (2010):

σnoise,pixel =

√
σ2
η

(2 · ngal · p2size,arcmin)
, (4.9)

where psize,arcmin is the dimension of our pixel in arcminutes. We then generate noise
on the reduced shear maps, assuming a Gaussian distribution, with zero mean and
σ = σnoise,pixel. An example of the resulting noisy reduced shear maps is given in Fig.
4.2.

Figure 4.2: Noisy reduced shear maps for a cluster at redshift z =
0.25. This is the same cluster shown in Fig. 4.1.
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4.1.2 Dataset properties

The previously described maps are stored as FITS (Flexible Image Transport System)
files, a digital file format useful for storage, transmission, and processing of data orga-
nized in multidimensional arrays (2D images, in this case).
Every cluster file has three extensions: one for the convergence and two for the two
shear components. All the files also come with a header unit, namely, a text extension
that contains either the labels we want to predict with the networks or other param-
eters associated with the cluster maps (e.g., the cosmological parameters involved in
the simulation, the ones related to the halo triaxiality, image dimensions in pixels, and
more). To feed our networks with the appropriate training data, we first need to ex-
tract the labels from the headers, selecting only the parameters that our networks have
to predict and store both the images and the labels into a single tensor. The labels are
the halo virial mass Mvir, the concentration of the NFW profile of the halo cNFW , the
concentration of the NFW profile of the smooth component of the halo csmooth,NFW ,
the number of subhalos Nsub and the mass fraction in subhalos compared to the total
halo mass, fsub.
The extraction process involves the entire dataset, which includes a catalog of 100.000
simulated clusters. Then, the whole dataset is split into a training set featuring 75.000
maps, a test set with 20.000 maps, and a validation set for the accuracy (defined in
Sec. 4.3) calculation with the remaining 5.000 maps.
Fig.4.3 and Fig. 4.4 show the distributions of the training and test set parameters, re-
spectively. It is fairly straightforward to observe that these plots cover the same range
of values, with very similar mean and median values ( represented as a red and a green
dotted line respectively), meaning the test set is a reliable depiction of the dataset.
After the label extraction and storage, the last step in data preprocessing consists of
normalizing the distribution of each parameter by subtracting the mean value and di-
viding it by the standard deviation to obtain values varying in the same range, i.e.,
between 0 and 1. Normalizing the data helps bring features to a similar scale, prevent-
ing some features from dominating others during training. This uniformity aids in the
convergence of the optimization algorithm, allowing the model to learn more efficiently
and generalize better to unseen data by reducing the influence of biases in the input
data. Normalization also makes the optimization process more stable by preventing
large gradients that might lead to oscillations or convergence issues, ensuring that the
updates of the weights are consistent and predictable. Moreover, by normalizing the
data, we reduce the computational complexity by helping the model converge faster.
This efficiency is particularly important when dealing with large datasets and complex
architectures, like in this case.
Once the labels are normalized, we finally proceed by resizing the images from the
original 512× 512 pixels to the appropriate input sizes of the VGG-Net and Inception
networks, which are respectively 224×224 pixels and 299×299 pixels. Images are also
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normalized with a zero mean and a σ = 1 for the same previously described purposes.
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Figure 4.3: Training dataset parameters distribution, where Ncluster

refers to the number of clusters. All the clusters are located at z =
0.25. A vertical dotted line representing the mean (red) and median
(green) value is drawn for every parameter. The solid line represents
the KDE probability function.
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Figure 4.4: As for Fig. 4.3 but for the test dataset.
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4.2 Network’s implementations

In this section, we introduce the models used in this study. All of our models are
developed using PyTorch (Paszke et al., 2019) and have been adapted from their orig-
inal versions, as described below. Specifically, the models are meant to be fed with
the two shear component maps derived from the MOKA simulation as input, hence
having dimensions of 224×224×2 for the VGG-inspired models, and 299×299×2 for
the Inception ones. All the models then produce an output tensor of dimension 1× 5
consisting of five elements representing the predicted parameters of the cluster.

4.2.1 VGG-Net

In our VGG-Net implementation, we followed the blueprint of the original D configu-
ration (see Tab.3.1), commonly referred to as “VGG16” due to its composition of 16
convolutional layers. Its detailed structure can be seen in Tab.3.1. While the original
VGG16 model is designed for classification problems, our network has to perform a re-
gression task, as our goal is to predict numerical values for five parameters that define
cluster halos. To accommodate this requirement, we replaced the original last layer’s
soft-max activation function, which yields class membership probabilities, with a Leaky
ReLU activation function, as we want a function capable of producing continuous nu-
merical values for each parameter instead of class probabilities. Every convolution
layer is also followed first by a batch normalization layer and later by a Leaky ReLU
activation function, with a negative slope equal to 0.3 (see Eq.3.1). A detailed example
of the convolution layer employed for VGG and Inception models is shown in Tab.4.2.
Next, we adjusted the dimensions of the FC layers preceding the last Leaky ReLU
activation. This adjustment was necessary since the original VGG-Net is designed for
1000 classes, whereas we only need to predict five parameters. To do so, since our
research focuses on exploring the influence of different architectures on the prediction
accuracy of cluster’s parameters, as well as assessing how a single architecture might
yield improved performance, we developed and evaluated multiple VGG-Net models,
and FC layers underwent distinct adjustments from one model to another. The overall
structure of the models is shown in Tab.4.1. Their differences extend beyond mere
structural distinctions (i.e., the number of parameters involved) and also lie in the
selection of learning rates along with their variations during the training phase and the
inclusion of dropouts, where this last term refers to a technique applied within the last
FC layers of the network.
The dropout technique (Srivastava et al., 2014) consists of randomly dropping units in
the network during training. In particular, dropout layers temporarily remove certain
units from the network, including their incoming and outgoing connections. The units
selected for removal are chosen randomly, each with an independent fixed probability
denoted as p. In our case, we have set a dropout rate of p = 0.3, indicating that 30% of
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the following connections are randomly eliminated. Implementing dropout in a neural
network involves creating a “thinned” network comprised solely of the remaining units
after dropout. With each presentation of a training batch, a new thinned network is
sampled and trained. Consequently, training a model with dropout can be likened to
training a collection of thinned networks. At test time, a single model without dropout
is used: the weights of this network are scaled-down versions of the trained weights. In
particular, if a unit is retained with probability p during training, the outgoing weights
of that unit are multiplied by p at the test time
The following paragraphs delineate the structure and the underlying concepts of the
models.

VGG16-basic The first model was designed to closely resemble the original VGG-
16 architecture regarding layer composition. It adopts the structure outlined in the
first column of Tab.4.1, featuring only 3 FC layers at the end, thereby totaling 16
layers overall. The substantial difference with respect to the original VGG-Net lies in
the channel count per layer. Specifically, VGG-basic is distinguished by its reduction
to 2.5 million parameters, which was made to minimize computational expenses and
evaluate the performance of a very basic network compared to more complex models.
This network was tested either with or without dropouts applied after every of the
final FC layers (except for the last one, given that it gives the predictions).

VGG19 The following models were instead designed to be comparable with the In-
ception and Resnet networks regarding the number of parameters. Hence we created
two different types of “heavier” VGG networks (each of whom is characterized by 19
layers), called respectively VGG19-light and VGG19-heavy. Their detailed struc-
ture is shown in the second and third columns of Tab.4.1, and their main difference with
the original VGG-Net architecture lies in the number of final FC layers, as these are
the layers demanding the most number of parameters. The term “light” denotes fewer
channels utilized for the convolution layers in this specific model than the “heavy”
counterpart, which maintains the same convolution layer structure as the VGG-Net
D configuration. Consequently, the VGG19-light model is characterized by 30 million
parameters, while 69 million parameters describe the VGG19-heavy one. Our purpose
behind the creation of two distinct models was twofold: first, to create a lighter model
for comparison against the Inception and ResNet networks (with ∼ 20/30 millions of
parameters), and second, to construct a heavier model to assess how accuracy evolves
with increasing network complexity, considering that our dataset consists of relatively
simple maps with no particular features. Hence, it is uncertain whether augmenting
complexity will necessarily result in performance enhancements.
Since the training phase improved the heavier model’s performance, we also evaluated
its results by incorporating dropouts. Specifically, we conducted three tests by adding



4.2 Network’s implementations 67

one, two, and three dropout layers in the final FC layers (after the FC-2048 layer, the
FC-512 layer and the FC-128 layer respectively) to assess the effects of this technique
on the performances. Results can be seen in Sect. 5.

Table 4.1: Detailed structures of the different VGG-inspired models
implemented in this work. The convolution layer parameters are de-
noted as “conv⟨receptive field size⟩-⟨number of channels⟩”. The batch
normalization layer and the Leaky ReLU activation function are not
shown for brevity.

16-base 19-light 19-heavy
input (224× 224 2D image)

conv3-16
conv3-16

conv3-16
conv3-16

conv3-64
conv3-64

maxpool

conv3-32
conv3-32

conv3-32
conv3-32

conv3-128
conv3-128

maxpool

conv3-64
conv3-64
conv3-64

conv3-64
conv3-64
conv3-64

conv3-256
conv3-256
conv3-256

maxpool

conv3-128
conv3-128
conv3-128

conv3-128
conv3-128
conv3-128

conv3-512
conv3-512
conv3-512

maxpool

conv3-128
conv3-128
conv3-128

conv3-256
conv3-256
conv3-256

conv3-512
conv3-512
conv3-512

maxpool

FC-256
FC-128

FC-2048
FC-1024
FC-512
FC-256
FC-128

FC-2048
FC-1024
FC-512
FC-256
FC-128

FC-5
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4.2.2 Inception networks

In implementing the Inception networks, we began by developing the stem for both
the Inception-v4 and ResNet-v2 architectures, as they share the same initial structure.
The stem was implemented exactly as shown in the left panel of Fig.3.14. We then
created the following models based on the Inception-v4 and ResNet-v2 architectures.
It is important to note that our base convolutional block is composed of three stacked
layers imported from the Pytorch library, as shown in Tab. 4.2:

Table 4.2: Scheme of the basic convolutional block employed in the
VGG-Net, Inception-v4, and Inception-ResNet-v2 models. Conv2D,
BatchNorm2d and LeakyReLU are commands imported in Python
from the Pytorch library. In the VGG-Net models, the kernel size is
fixed at 3× 3, with the stride and padding both set to 1. Conversely,
for the Inception architectures, the Conv2D settings are adjusted ac-
cording to the authors’ recommendations outlined in the original pa-
pers.

Conv. block

Conv2D(in channels, out channels, kernel size, stride, padding, bias)

BatchNorm2d(out channels, eps = 10−5, momentum = 0.1)

LeakyReLU(negative slope = 0.3, inplace = True)

The Conv2D configurations vary from one layer to the next. As for the batch nor-
malization layer, we set the ϵ value (eps) to 10−5, which is added to ensure numerical
stability within the batch normalization expression. Additionally, this layer maintains
ongoing estimates of its calculated mean and variance, crucial for normalization dur-
ing evaluation, with a default momentum of 0.1. Regarding the LeakyReLU activation
layer, we opt for a negative slope value of 0.3, consistent with the VGG implementation.

Inception-v4 For our Inception-v4-based network, we created the three building
blocks shown in Fig.3.12, namely, Inception A-block, B-block, and C-block. After
their definition, we proceeded by also developing the two reduction modules (called
Inception reduction-A and reduction-B modules) shown in Fig.3.9, remembering that
the V-marked convolutions are valid padded. In contrast, the convolutions without this
specification are zero-padded. When developing the Reduction-A module, we employed
filter bank sizes of k = 192, l = 224, m = 256, and n = 384, mirroring the dimensions
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utilized in the original Inception-v4 research (Szegedy et al., 2016). We then stacked all
the building blocks and reduction modules in the correct order, following the scheme
shown in the right panel of Fig.3.14, along with substantial differences.
First of all, as previously described for the VGG case in Sec.4.2.1, we substituted
a Leaky ReLU activation function to the original final softmax layer of Inception-
v4 since we tackle a regression problem. Afterward, we created two distinct models,
namely Inception-v4 ”light” and Inception-v4 ”heavy”. The first is characterized
by only one Inception module of each type, as shown in the first column of Tab.4.3,
and is described by 15 million of parameters. The second one is instead described by
three Inception A-blocks, followed by five Inception B-blocks and then three Inception
C-blocks, and is characterized by 36 million parameters, thus being the “heavy” coun-
terpart. Its structure is shown in the second column of Tab.4.3. The purpose behind
creating two separate models was to explore the relationship between the complexity
of the networks and their performance.
In the original work, the authors include a dropout layer before the softmax activation
function, recommending keeping p = 0.8. We also tested our Inception network, taking
an intermediate model between our light and heavy networks called Inception-drop
and implementing two dropout layers. In particular, these dropouts were placed after
the FC-768 and FC-384 layers. This last Inception network has the same structure
as the light model but with two Inception modules of each type and is described by
23 million parameters. This choice is due to a previous work conducted on the same
weak lensing maps (Spinelli, 2021) that pointed out how this architecture was the best
compromise between accuracy and time-consumption for the Inception-based models.

Inception-ResNet-v2 In implementing the Inception-ResNet-v2 architecture, we
followed the procedures outlined in the previous paragraph. We then started by creat-
ing the three building blocks (IncRes A,B and C) exactly as shown in Fig. 3.15, along
with the reduction modules, shown in Fig. 3.13(a) and Fig. 3.15(d). As can be seen,
the reduction-A module employed for the ResNet architecture is the same developed
for the Inception-v4 network, the only difference being the filter bank sizes employed,
now corresponding to k = 224, l = 224, m = 384, and n = 384. We then stack the
blocks and reduction modules following the scheme in Fig.3.18 and employing the stem
shown in Fig.3.14(a). At last, as carried out in the previous paragraph, we substituted
the final softmax activation function with a LeakyReLU.
For this architecture, two models were created, along the same lines as the Inception
models, called IncResNet-v2 “light” and IncResNet-v2 “heavy”. The first one is
characterized by one IncRes module of each type and follows the scheme shown in the
third column of Tab.4.3, with 17 million parameters. Its heavier counterpart is instead
described by three IncRes A-blocks, five IncRes B-blocks, and three IncRes C-blocks,
as shown in the fourth column of Tab.4.3. This model is characterized by a total of 26
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million parameters.
As dropout techniques were found to degrade the network’s performance in our Incep-
tion model, they were not tested for this architecture.

Table 4.3: Detailed structures of the different Inception-inspired and
ResNet-inspired models implemented in this work.

Inception-v4 ”light” Inception-v4 ”heavy” IncResNet-v2 ”light” IncResNet-v2 ”heavy”

input (299× 299 2D image)

STEM

1×Inc. A-block 3×Inc. A-block 1×IncRes A-block 3×IncRes A-block

Reduction-A

1×Inc. B-block 5×Inc. B-block 1×IncRes B-block 5×IncRes B-block

Reduction-B

1×Inc. C-block 3×Inc. C-block 1×IncRes C-block 3×IncRes C-block

Average pooling

FC-1536

FC-768

FC-384

FC-192

FC-96

FC-5

4.3 Training the networks

Our model training was performed using an NVIDIA Titan Xp GPU, equipped with a
memory of 12 GB and 3840 CUDA cores. Employing a GPU substantially reduces the
computation time and speeds up the training process of the artificial neural networks.
Before training the models, it is essential to define the number of epochs, which refers to
how many times the network processes the entire dataset. Specifically, our models be-
gin with a predefined value of 100 epochs to enable the learning algorithm to effectively
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minimize the loss. However, this value serves as an upper limit due to incorporating
an early stopping mechanism in the training code. This mechanism dictates that the
training process halts if the loss function fails to improve within a specified number of
epochs. Then, the final weights and biases being saved correspond to the ones linked to
the minimum loss achieved during the training phase. This condition becomes active
starting from the 40th epoch, establishing the minimum threshold epochs to reach.
A comparable consideration applies to the learning rate management in the models.
The learning rate is perhaps the most critical hyperparameter during neural network
training, as it dictates the magnitude of adjustments made to network weights to mini-
mize loss. At the start of the training phase, we set the learning rate to 10−5. We then
implement a condition that halves the current learning rate value if the minimum of
the loss function observed over the preceding 20 epochs exceeds its absolute minimum.
Employing this technique alongside the early stopping condition helps conserve com-
putational resources and prevent the training algorithm from overfitting. The choice
of the initial learning rate value (10−5) derived from a prior study that employed either
ML algorithms and MOKA simulated maps, as outlined in (Spinelli, 2021). In our
work, we also conducted tests on the three different network archetypes with higher
starting learning rate values (10−3 and 10−4), finding that their convergence to the min-
imum was unstable and prone to oscillations. Therefore we opted for the previously
proven 10−5. This conclusion is based on the statistical estimator values employed to
analyze the network results (i.e., bias, σ, RMS, MAD, and NMAD), defined in Chapter
5.
Moreover, we selected the Adam (Adaptive Moment Estimation) optimizer (Kingma
& Ba, 2017; Reddi et al., 2019). This optimizer combines the benefits of both Momen-
tum Optimization and RMSprop. Momentum Optimization helps the gradient descent
algorithm converge faster and more reliably by adding a term incorporating the past
weights update history, leading to more stable and efficient updates towards the op-
timal solution. On the other hand, RMSprop (Root Mean Square Propagation) is an
unpublished adaptive learning rate optimizer proposed by Geoff Hinton. It adjusts the
learning rate adaptively for each parameter based on the magnitudes of recent gra-
dients by dividing the learning rate by the root mean square of past gradients. This
operation normalizes the weights update step, making it more consistent across differ-
ent dimensions and improving convergence.
Adam’s main characteristics lie in its adaptive learning rate mechanism, which adjusts
the learning rates for each parameter based on the past gradients and squared gradients.
This adaptivity allows Adam to converge quickly and efficiently, especially in scenarios
with large datasets and high-dimensional parameter spaces like in this work. Addition-
ally, Adam incorporates bias correction to counteract the effects of initial learning rate
bias and momentum correction, contributing to more stable and reliable convergence
behaviors.
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In conclusion, we chose the MSE as the loss function for our models (see Eq.3.3). Our
accuracy calculation relies on a function we implemented. It evaluates each output
prediction from the test set and determines if its value deviates by less than 20% from
the corresponding correct value stored in the labels. If the output prediction value
differs less than 20% from the real target, then it is considered as correct.



Chapter 5

Results

5.1 Statistical estimators

In this section, we present the results obtained by our networks. The traditional tech-
niques for error analysis rely on the Bayesian framework, which provides a formalism
for updating beliefs or making predictions in light of new evidence.
The standard error analysis with Bayesian methods typically involves estimating the
probability of the outcomes based on prior knowledge and updating that probability as
new evidence becomes available. Bayesian methods start with an initial belief about
the likelihood of different outcomes. This initial belief is represented by a prior proba-
bility distribution, which accounts for what is known or assumed about the parameters
or variables of interest before observing any data. As new data or evidence becomes
available, Bayesian methods incorporate this information to update the prior beliefs.
This update is performed using the Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
, (5.1)

where A and B are events (i.e., a set of outcomes of an experiment to which a proba-
bility P is assigned) and P (B) ̸= 0. In our case A is the parameter we want to update
and B is our dataset. The Bayes theorem then relates the posterior probability P (A|B),
which is the probability of event A occurring given that B is true, to the prior proba-
bility P (A), which in this example is the probability of observing A without any given
conditions, and with the likelihood of the data given the parameters P (B|A). It can be
demonstrated that P (B|A) is equivalent to L(A|B), defined as the likelihood function
(the probability of observing B assuming A is the actual parameter). The application
of Bayes’ theorem then provides the posterior distribution, representing the updated
belief about the parameters or variables of interest after considering the observed data.
The posterior distribution combines the prior knowledge with the information provided

73
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by the data.
While Bayesian approaches have been applied in machine learning and neural networks
(Srivastava et al., 2014), calculating posterior distributions can be computationally in-
tensive, especially for high-dimensional models like CNNs, since the computational cost
of performing Bayesian inference scales with the number of parameters in the model,
therefore making it challenging to apply directly to deep neural networks with mil-
lions of parameters, like VGG-Net or Inception. Furthermore, CNNs typically rely on
optimization techniques based on the gradient descent algorithm (that has a stochas-
tic nature) to learn from data, which may not directly align with the probabilistic
framework of Bayesian inference, involving methods like Markov-chain Monte Carlo
(MCMC) to approximate posterior distributions.
Therefore, we conduct a statistical error analysis for our networks employing various
metrics. Let us define y and ŷ as the predicted output value array and the real output
value array, with their difference given by ∆y = y− ŷ. Assuming N is the total number
of test examples, we define:

• the bias, as

bias(ŷ) = E[ŷ]− y =
1

N

N∑
i=1

|∆y2i |, (5.2)

which refers to the difference between the expected value of an estimator (E[ŷ])
and the true value of the parameter being estimated. In the context of CNNs, the
bias assesses how accurate the predictions of the model are on average, compared
to the true values;

• the standard deviation (σ), as

σ =

√√√√ 1

N

N∑
i=1

(∆yi − ⟨∆y⟩)2, (5.3)

which measures the dispersion of a dataset relative to its mean. In the context of
CNNs, σ quantifies the spread of errors in the predictions, similar to the MAD
(see below) but taking into account the square of the deviations;

• the Mean Absolute Deviation (MAD), as

MAD =
1

N

N∑
i=1

|∆yi − ⟨∆y⟩|, (5.4)

which is instead a measure of the average absolute deviation of predictions from
the mean, less affected by the outliers of the dataset than σ or the RMS (see
below). It provides insights into the variability of the data and helps quantify
the spread of errors in the predictions made by the CNNs;



5.2 VGG-Net results 75

• the Normalized MAD (NMAD), as

NMAD =
MAD

MADFM

, (5.5)

which is the MAD normalized by a scale factor, often assumed to be the median
absolute deviation from the median (MADFM, in this case MADFM = 1, 4826).
The NMAD is useful for comparing the spread of errors across different datasets
or models and can be used as σ;

• the Root Mean Squared error (RMS), as

RMS =

√√√√ 1

N

N∑
i=1

(∆y2i ), (5.6)

which measures the average magnitude of the errors, is useful for evaluating the
overall performance of a predictive model.

5.2 VGG-Net results

In describing the results obtained by our VGG-Net models, we initially provide a
broader presentation regarding the structural differences of the various networks, along
with their respective performances. In Subsect. 5.2.2 we present the results obtained
from the network with the best accuracy achieved in this Thesis work, considering not
only computational metrics but also insights from a physical standpoint. As described
in Sect. 4.3, our accuracy is calculated on 5000 test set maps with a function we
implemented. This function computes the percentage of the predicted parameters
that closely match their corresponding true parameter value, allowing for a maximum
deviation of 20%.

5.2.1 Computational results

VGG16-basic We start by presenting the performance of our initial model, VGG16-
basic. Its training involved a batch size of 75 elements over 44 epochs, lasting approxi-
mately 50 hours and reaching an accuracy on the test set of 92.2%. Fig. 5.1 shows the
loss function trend as a function of the number of epochs. The minimum value reached
by the loss is 0.080
We also tested this model by incorporating two dropout layers while maintaining the
same batch size. Throughout this evaluation, the training lasted nearly 80 hours,
spanning 43 epochs, representing a 60% increase in time compared to the model without
dropout layers. However, the dropout technique did not yield the desired improvement.



5.2 VGG-Net results 76

0 10 20 30 40

0.08

0.10

0.12

0.14

0.16

L
os
s

Epochs

VGG16-basic

Figure 5.1: Loss trend for the VGG16-basic model.

Specifically, the loss function only reached a minimum value of 0.116, corresponding to
an accuracy of merely 90.1%.

VGG19 models Regarding our two VGG19 models, we start by presenting the re-
sults of the lightest version. The training of VGG19-light involved a batch size of
50 elements over 73 epochs, lasting approximately 83 hours and reaching an accuracy
on the test set of 94.8%. The upper panel of Fig. 5.2 illustrates the trend of the
loss function: as shown here, the training presents a visible instability, characterized
by convergence to the minimum within just 15 epochs, followed by oscillations in the
loss function. Repeating the training with different hyperparameters gave even worse
results. The loss function reached a minimum value of 0.078 in its best test. Our ob-
servation suggests that the network’s performance reaches a plateau beyond this point,
leading to instabilities during the learning phase. This conclusion is drawn from the
initial descent trend, which exhibits a stable pattern but subsequently loses coherence.
On the other hand, the VGG19-heavy model was the best predicting model for this
work. Its training involved a batch size of 30 elements over 50 epochs, lasting ap-
proximately 47 hours and reaching an accuracy on the test set of 96.7%. For the
VGG19-heavy model, the loss function reached a minimum value of 0.067, as shown in
the lower panel of Fig. 5.2. The decrease in the loss value shows consistent progress,
converging to the minimum in approximately 30 epochs. Our following tests, starting
from the endpoint of the previous training, showed no improvements in accuracy. As
outlined in Sec. 5.3, the VGG19-heavy model exhibits a superior performance overall
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but the longest convergence time. It is worth mentioning that the constraints in this
domain arise from our limited computing resources and the difference in the heaviness
of the networks (69 million for VGG19-heavy compared to 36/26 million for the Incep-
tion architectures). With increased RAM availability, we could have trained on larger
batch sizes, significantly reducing the computation time.

The VGG19-heavy model was further tested with one, two, and three dropout layers,
respectively (see Sec. 4.2.1), to characterize this technique’s impact on the model’s
performance. The corresponding models are here named VGG19 drop-1, VGG19 drop-
2 and VGG19 drop-3, according to the number of dropout layers implemented in the
network. Tab. 5.1 summarizes the three dropout models’ performance and training
characteristics.

Table 5.1: Performances of the dropout versions of the VGG19-heavy model.

Network Time (hrs) Epochs Loss Accuracy (20%)
VGG19 drop-3 80 92 0.094 92.2%
VGG19 drop-2 91 68 0.075 94.0%
VGG19 drop-1 83 61 0.071 94.5%

As expected from the previous test on the VGG16-basic, incorporating dropouts into
our VGG-inspired models results in a decline in network performance, yielding a gener-
ally lower accuracy compared to dropout-free models. As the number of dropout layers
increases, the accuracy progressively diminishes, indicating that this technique is in-
effective for our dataset and should be avoided. Fig. 5.3 illustrates the loss trends of
the VGG19 drop models. The analysis of these plots reveals a correlation between the
duration of the initial fast descent trend in the loss and the number of dropout layers,
with the VGG19 drop-1 model achieving the minimum loss in just seven epochs (after
that epoch, the same considerations made for the VGG19-light model apply). With an
additional dropout layer, the rapid descent extends to 11 epochs. However, it should
be noted that although employing a single dropout layer at the start of the FC section
results in a lower accuracy compared to our top-performing model, it significantly ac-
celerates the training process, achieving a 94.5% accuracy within less than 10 hours.
Despite similar losses and nearly identical accuracy, the primary distinction between
using one and two dropout layers lies in the increased computational time required for
the VGG19 drop-2 model. Introducing a third dropout layer after the FC-128 layer,
as described in Sec. 4.2.1, significantly slows the convergence to the minimum of the
loss and impacts accuracy accordingly.
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Figure 5.2: Loss trend for the VGG19 models. The upper panel shows
the trend for the VGG19-light, the bottom one shows the trend for
the VGG19-heavy.
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Figure 5.3: Loss trend for the VGG19 drop models. The upper-left
panel shows the trend for the VGG19 drop-1. The upper-right panel
shows the trend for the VGG19 drop-2. On the bottom one, the trend
for the VGG19 drop-3 is plotted.

5.2.2 Practical results and application

VGG19-heavy In the VGG19-heavy model analysis, we provide a visual representa-
tion of the parameter results through Kernel Density Estimate (KDE) plots shown in
Fig. 5.4, facilitating a straightforward comparison between predicted and target values.
A KDE plot is a type of data visualization technique used to estimate the probability
density function of a continuous random variable. It provides a smooth representation
of the underlying distribution of the data and is commonly used in data analysis to
understand the shape and characteristics of datasets. As shown in Fig. 5.4, it is evident
that the dispersion of virial mass is notably greater compared to the other parameters.
This dispersion primarily stems from projection effects; specifically, the target virial
mass assigned to each dark matter halo represents the mass within a sphere of radius
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Rvir, whereas the network estimates it based on the projected mass distribution. It
is important to note that the halos exhibit a triaxial shape and are projected along
arbitrary lines of sight. A similar logic applies to the NFW concentration parameter
(shown in the upper-right panel of Fig. 5.4); however, it appears less influenced by
projection effects. This is attributed to its definition as the ratio between the virial
and scale radii. Consequently, when projecting a 3D halo onto a 2D plane, both radii
are rescaled similarly, resulting in less susceptibility to triaxiality in the ratio between
these quantities. In Fig. 5.5, we present the distribution of true versus predicted values
obtained by evaluating our VGG19-heavy model on the test set. Upon comparison,
we note the distinct effectiveness of our network in predicting cNFW , csmooth and fsub,
as they exhibit similar distributions relative to the true values. The nsub distribution
shows a little dispersion but the network seems to relatively struggle in predicting this
parameter with respect to the others. Moreover, our network underestimates on av-
erage its true value by ∼ 15%. Concerning the distribution of predicted Mvir values,
subjected to the previously described projection effects, our observations indicate a
tendency of our network to underestimate the mass of the target three-dimensional
masses by approximately 5%. This result confirms the results found by Giocoli et al.
(2012b), where the cluster virial mass is estimated with a more classical approach that
consists of fitting the convergence profile. By choosing a density profile for the lens,
typically an NFW profile, fitting the observed radial convergence profile returns the
estimated values of cluster virial mass and concentration. In their work, Giocoli et al.
(2012b) found with this approach that the 3D cluster mass is underestimated by ap-
proximately 20% due to projection effects, since there is a higher probability to observe
clusters elongated on the plane of the sky. However, our results are closer to the real
values compared to the best-fit ones, showing a predisposition of our DL algorithm in
characterizing the 3D mass of the halo. We attribute this result to the fact that the
labels associated to the maps contain a three-dimensional information of either virial
mass and concentration. By changing the model MOKA assumes for simulating the
halos triaxiality (Jing & Suto, 2002), we could obtain different results.
Tab. 5.2 summarizes the statistical estimators for all our VGG-inspired models.
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Figure 5.4: KDE plots showing predicted vs target values for
Mvir (upper-left panel), cNFW (upper-right panel), csmooth (lower-left
panel), nsub (middle panel) and fsub (lower-right panel) obtained ap-
plying our VGG19-heavy model on noiseless reduced shear maps lo-
cated at z = 0.25.
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Figure 5.5: Histograms comparing the distribution of the predicted parameters (green)
versus the distribution of the true parameters (red), obtained applying our VGG19-
heavy model on reduced shear maps. Ncluster refers to the number of clusters. All the
clusters are located at z = 0.25. A vertical dotted line representing the mean value is
drawn for every parameter. The solid line represents the KDE probability function.
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We also tested the VGG19-heavy model by implementing galaxy shape noise in the
reduced shear maps, as described in Sec. 4.1.1. The training process, conducted in
two distinct phases of 50 epochs each, utilized a batch size of 40 elements and lasted
approximately 90 hours, resulting in a final accuracy of 85.7%. The loss function
reached a minimum of 0.22, notably higher than all the VGG models without noise.
The loss trend for this test is shown in Fig. 5.6. We also repeated the training starting
from the endpoint of the preceding test, but the loss function did not decrease, rising
up to ∼ 0.4, leading to no improvements in the accuracy.
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Figure 5.6: The graph illustrates the loss progression during the train-
ing of the VGG19-heavy model on noisy reduced shear maps. The
left panel shows the training loss over the initial 50 epochs, while the
right panel displays the loss trend during the final 50 epochs, starting
from the last point of the preceding training phase.

This discrepancy is mainly due to the network’s difficulty in accurately predicting the
number of substructures within the noisy maps. The predicted value of nsub for ap-
proximately 3000 test set maps (out of a total of 5000 maps) is not correctly estimated
within a 20% range, exhibiting significant dispersion, as illustrated in Fig. 5.7. Statis-
tical estimators for this test are given in Tab. 5.2 under the ”VGGnoise” name. From
this test we can conclude that our DL approach could struggle in precisely character-
ize some of the observed features, that need to be obtained with different methods.
Nevertheless, our network is capable of giving a relatively close initial guess for other
more accurate but computationally expensive studies, which can be conducted after a
first and relatively faster DL technique application. Alternatively, the application of
the DL algorithm could follow a more traditional initial approach to supplement the
results obtained. However, the other parameters are relatively well predicted.
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Figure 5.7: Same as Fig. 5.4 but for noisy reduced shear maps located
at z = 0.25.
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Table 5.2: Statistical estimators for Mvir, cNFW , csmooth, nsub anf fsub obtained evalu-
ating our VGG-inspired models on reduced shear maps at z = 0.25.

Mvir

Network bias [1027M2
sun/h

2] σ [1013Msun/h] MAD [1013Msun/h] NMAD [1013Msun/h] RMS [1013Msun/h]
VGG19-heavy 4.786 6.821 3.223 4.779 6.829
VGG19-light 5.865 7.460 3.388 5.023 7.568
VGG16-basic 6.829 7.990 3.851 5.710 8.164
VGGnoise 8.212 8.823 3.785 5.612 8.846

VGG19 drop-1 5.669 7.138 3.544 5.254 7.394
VGG19 drop-2 5.370 7.218 3.536 5.243 7.239
VGG19 drop-3 6.538 7.700 3.795 5.627 7.933

cNFW

Network bias σ MAD NMAD RMS
VGG19-heavy 0.041 0.193 0.110 0.163 0.200
VGG19-light 0.078 0.258 0.150 0.223 0.276
VGG16-basic 0.117 0.329 0.182 0.270 0.337
VGGnoise 0.381 0.600 0.349 0.518 0.612

VGG19 drop-1 0.062 0.227 0.132 0.196 0.244
VGG19 drop-2 0.091 0.236 0.133 0.197 0.297
VGG19 drop-3 0.144 0.311 0.173 0.256 0.374

csmooth

Network bias σ MAD NMAD RMS
VGG19-heavy 0.035 0.176 0.099 0.147 0.185
VGG19-light 0.072 0.242 0.136 0.202 0.264
VGG16-basic 0.110 0.320 0.166 0.247 0.327
VGGnoise 0.402 0.617 0.361 0.535 0.628

VGG19 drop-1 0.055 0.214 0.125 0.186 0.231
VGG19 drop-2 0.094 0.226 0.124 0.184 0.301
VGG19 drop-3 0.135 0.304 0.171 0.253 0.363

nsub

Network bias σ MAD NMAD RMS
VGG19-heavy 3139.260 53.077 25.439 37.716 54.512
VGG19-light 6524.101 71.217 35.971 53.330 76.798
VGG16-basic 17941.153 98.241 53.641 79.528 129.169
VGGnoise 13794.506 107.743 61.325 90.920 112.615

VGG19 drop-1 5276.539 65.398 35.354 52.416 70.380
VGG19 drop-2 6746.691 67.613 34.097 50.553 79.439
VGG19 drop-3 16086.365 112.176 59.209 87.784 122.685

fsub
Network bias σ MAD NMAD RMS

VGG19-heavy 0.0005 0.0223 0.0115 0.0170 0.0226
VGG19-light 0.0007 0.0255 0.0133 0.0197 0.0259
VGG16-basic 0.0010 0.0260 0.0138 0.0205 0.0307
VGGnoise 0.0013 0.0348 0.0193 0.0286 0.0353

VGG19 drop-1 0.0006 0.0237 0.0125 0.0185 0.0249
VGG19 drop-2 0.0007 0.0244 0.0131 0.0194 0.0254
VGG19 drop-3 0.0009 0.0271 0.0153 0.0227 0.0293

5.3 Inception models results

Concerning our Inception models, they demonstrated inferior performances when com-
pared with our VGG networks. This section presents their results alongside a statistical
comparison of their performances.



5.3 Inception models results 86

Inception-v4 Starting from the Inception-v4 architecture, we first tested the Inception-
v4 light model. Its training involved a batch size of 75 elements over 60 epochs, lasting
approximately 83 hours and reaching an accuracy on the test set of 92.7%. The top
panel of Fig. 5.8 illustrates the loss trend observed for this model, which bottoms out
at a minimum value of 0.089. The trend highlights this model’s fast convergence to the
minimum, followed by an increase of the loss values as the number of epochs advances.
At the 35th epoch, the learning rate was adjusted to 0.5 × 10−5, resulting in a local
decrease of the loss value. However, this adjustment did not yield any additional im-
provement. Subsequently, the early stopping condition terminated the training process
at the 60th epoch.
We then tested the Inception-v4 heavy model using the same batch size of 75 elements
over 62 epochs. The training lasted about 87 hours and reached an accuracy of 92.5%,
close to the previous light model. The loss trend for this model is shown in the lower
panel of Fig. 5.8. Interestingly, with the increase in network complexity, we notice
that the convergence to the minimum takes longer without showing the same tendency
to increase with the epochs. The minimum reached by the loss value nearly matches
the lighter model’s at a value of 0.088.
The last Inception model we tested is the Inception-drop model. By implementing two
dropout layers in an intermediate model between our heavy and light networks, we
observed again a lower accuracy on the test set. In particular, Inception-drop train-
ing lasted about 77 hours over 80 epochs (with no early stopping conditions), and
reached a final loss value of 0.118, corresponding to an accuracy of only 89.3%. The
trend loss for this model is shown in the middle panel of Fig. 5.8. Despite displaying
increased oscillations and a slower decrease time than the dropout-less models, the
Inception-drop training process exhibited a more consistent convergence towards the
minimum. Fig. 5.9 shows the KDE plots of the distributions of the parameters ob-
tained with Inception-v4 heavy on the noiseless test dataset. Notably, the Inception
network demonstrates a stronger inclination towards predicting nsub compared to the
VGG19-heavy model, particularly evident in the distribution’s outer edges. Tab. 5.3
shows the statistical estimators for the Inception-v4-based models.
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Figure 5.8: Loss trend for the Inception-v4 models. The upper panel
shows the Inception-v4 light trend. The middle panel shows the
Inception-v4 heavy trend. On the bottom one, the Inception-drop
trend is plotted.
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Figure 5.9: Same as Fig. 5.4 but using our Inception-v4 heavy model
on noiseless reduced shear maps located at z = 0.25.
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Inception-ResNet-v2 At last, we present the results of our Inception-ResNet-v2-
inspired models. Both models were tested with a batch size of 75 elements. We started
by testing the Inception-ResNet-v2 light model. The training phase of this model lasted
approximately 47 hours, reaching 61 epochs and a minimum loss value of 0.095. An
accuracy of 93.3% characterizes this model.
Considering our last model, the training of the Inception-ResNet-v2 heavy network
lasted about 51 hours, reaching 60 epochs and a minimum loss value of 0.093, leading
to an accuracy of 94.3%.
Both ResNet models exhibit slightly higher accuracy compared to their corresponding
Inception-v4 counterparts. Once again, increasing the network size leads to improved
performances. The loss trend for our ResNet models is shown in Fig. 5.10. Both
trends exhibit a rapid decline followed by the evidence of an inability to achieve a
lower loss value. As observed by the authors in Szegedy et al. (2016) and reported in
Fig. 3.16, we notice a similar improvement in our ResNet performances compared to the
Inception-v4 architectures since they train faster and reach higher accuracy. Moreover,
unlike the Inception-v4 and VGG-Net models in this work, the ResNet architecture
reaches the minimum loss value very rapidly, within 7-8 epochs, in approximately
10 hours of computational time. This characteristic makes the ResNet architecture,
particularly the Inception-ResNet-v2 heavy model, the optimal compromise between
accuracy and computation cost within the scope of our project, alongside VGG19 drop-
1. The KDE plots for the Inception-ResNet-v2 heavy model are shown in Fig. 5.11.
In addition, Tab. 5.3 shows the statistical estimators for our ResNet models: although
the VGG performance on the characterization of nsub is statistically superior, ResNet-
v2 models display better results compared to both the Inception-v4 and the VGG-Net
ones. Specifically, considering the accuracy calculation on the test set, Inception-
v4 heavy and ResNet-v2 heavy show about the same probability of predicting Mvir,
cNFW , csmooth and fsub within the 20%. When it comes to nsub, the Inception-v4 heavy
model shows twice as bad performance compared to ResNet-v2 heavy, giving a wrong
prediction on ∼ 1000 test maps, while ResNet only mistakes ∼ 500 nsub values. This
makes the ResNet architecture our best network for predicting this parameter. Fig.
5.12 shows the histograms comparing the predicted parameters distribution versus the
true parameters distribution for our Inception-v4 and Inception-ResNet-v2 models.
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Figure 5.11: Same as Fig. 5.9 but using our Inception-ResNet-v2
heavy model on noiseless reduced shear maps located at z = 0.25.



5.3 Inception models results 92

Figure 5.12: As Fig. 5.5, showing the nsub predicted vs true distri-
bution obtained applying our Inception-v4 heavy model (up) and our
Inception-ResNet-v2 model (down) on noiseless reduced shear maps
located at z = 0.25.
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Table 5.3: Statistical estimators for Mvir, cNFW , csmooth, nsub and fsub obtained eval-
uating our Inception-inspired models on reduced shear maps at z = 0.25. The H and
the L indicate the ”heavy” and the ”light” model respectively.

Mvir

Network bias [1027M2
sun/h

2] σ [1013Msun/h] MAD [1013Msun/h] NMAD [1013Msun/h] RMS [1013Msun/h]
Inception-v4 H 5.848 7.371 3.515 5.211 7.539
Inception-v4 L 7.004 8.052 3.694 5.477 8.270
Inception-drop 6.939 8.063 4.033 5.980 8.182
ResNet-V2 H 6.162 7.707 3.743 5.550 7.790
ResNet-V2 L 6.746 7.946 3.622 5.370 8.062

cNFW

Network bias σ MAD NMAD RMS
Inception-v4 H 0.080 0.248 0.143 0.213 0.277
Inception-v4 L 0.100 0.286 0.166 0.246 0.312
Inception-drop 0.137 0.343 0.192 0.285 0.366
ResNet-V2 H 0.089 0.266 0.154 0.228 0.289
ResNet-V2 L 0.149 0.314 0.172 0.255 0.381

csmooth

Network bias σ MAD NMAD RMS
Inception-v4 H 0.073 0.233 0.134 0.199 0.264
Inception-v4 L 0.095 0.277 0.164 0.243 0.303
Inception-drop 0.135 0.339 0.187 0.278 0.363
ResNet-V2 H 0.086 0.257 0.148 0.220 0.283
ResNet-V2 L 0.141 0.304 0.168 0.250 0.370

nsub

Network bias σ MAD NMAD RMS
Inception-v4 H 11829.452 93.004 47.314 70.148 104.593
Inception-v4 L 8422.521 76.760 38.503 57.084 88.726
Inception-drop 17673.274 126.275 64.265 95.279 130.588
ResNet-V2 H 8329.362 81.828 39.180 58.088 88.577
ResNet-V2 L 13396.827 94.583 48.534 71.957 110.314

fsub
Network bias σ MAD NMAD RMS

Inception-v4 H 0.0007 0.0246 0.0136 0.0202 0.0260
Inception-v4 L 0.0008 0.0262 0.0135 0.0200 0.0274
Inception-drop 0.0009 0.0291 0.0165 0.0244 0.0300
ResNet-V2 H 0.0007 0.0263 0.0137 0.0203 0.0270
ResNet-V2 L 0.0008 0.0263 0.0137 0.0202 0.0279



Chapter 6

Conclusions

In this Thesis, we have evaluated the ability of different Convolutional Neural Networks
to predict galaxy clusters’ structural parameters, such as the mass, concentration (for
both the smooth and total mass distribution), subhalo number and mass fraction. We
accomplished this by implementing three different architectures, the VGG-Net from
Simonyan & Zisserman (2015), the Inception-v4, and the Inception-ResNet-v2 from
Szegedy et al. (2016). In particular, we created distinct models employing different
numbers of layers and Deep Learning techniques, such as dropout layers. Starting
from these architectures, we trained each model on simulated weak lensing maps of
galaxy clusters produced through the MOKA software (Giocoli et al., 2012a). A sum-
mary of the results we obtained with our tests is presented in Tab. 6.1.
We first trained VGG-Net-based models. We tested this architecture using only a
few million parameters. Then we increased the network size and created ”light” and
”heavy” variants of the same architecture. By observing the results obtained with our
best model dubbed VGG19-heavy, which reached a 96.7% accuracy, we found that the
virial mass estimates are only slightly affected by projection effects, showing a ten-
dency of the network to underestimate the virial mass by approximately 5%. This bias
is substantially lower than previously found in the literature, based on more traditional
analysis methods, such as parametric fitting of the weak lensing signal (Giocoli et al.,
2012b). We also tested the VGG19-heavy model using up to three dropout layers,
which revealed a decrease in the network accuracy. Finally, we aimed at reproduc-
ing more realistic measurements by adding galaxy shape noise to reduced shear maps,
resulting in a deterioration of the performances, which in turn translates to a loss of
accuracy. However, our measurements on noisy maps remain generally good, since the
deterioration in performance significantly affects only some of the parameters, partic-
ularly the number of substructures, while for the other values the estimate is relatively
accurate.
Subsequently, we trained models based on the Inception architecture, characterized
by a higher structural complexity than VGG-Net. For both the Inception-v4 and

94



5.3 Inception models results 95

Inception-ResNet-v2 architectures, we created a ”light” and a ”heavy” model differing
in size (i.e., the number of Inception or ResNet modules employed), and compared
them with the results obtained using the VGG-Net architecture. In general, we found
these models to reach a lower accuracy compared to VGG-Net but with great improve-
ments in the computational costs. In particular, our best Inception-based model, the
ResNet-v2 heavy, reached 94.3% accuracy in less than 10 hours, while VGG19-heavy
takes approximately 47 hours to reach its higher accuracy. As for the VGG-Net models,
we also tested dropouts for the Inception-v4 architecture, finding no improvements in
the performance.
In conclusion, in this work, we have shown an alternative method to the more classical
approaches for measuring cluster structural parameters, which allows the analysis of
large datasets in a relatively short time. We believe this method could constitute a
viable and valuable technique to study or to obtain initial guesses for the cluster pa-
rameters, especially given the huge amount of data that upcoming surveys will provide.
Our dataset consisted of simulated halo maps obtained by assuming a relatively simple
structure for the halos, as the main halo is modeled as a triaxial halo, and the sub-
structures added to the smooth matter distribution are spherical halos. In the future,
we plan on conducting the same kind of study on more complex and realistic cluster
mass maps, using hydrodynamical simulations, which also consider the effects of the
baryon component..

Table 6.1: Overall performances of our best models for different ar-
chitectures. The columns indicate in the following order: the name of
the model, the number of parameters of the model (in millions), the
batch size of the training, the total number of epochs reached during
the training, the final Learning Rate, the minimum value reached by
the Loss Function, and the accuracy of the model in predicting the
test set parameters within the 20% of the real value.

Network nPar Batch Size epochs LR Loss Accuracy 20%
VGG19-heavy 69M 30 50 10−5 0.067 96.7%
VGG19-light 30M 50 73 0.5 · 10−5 0.078 94.8%
ResNet-v2 H 36M 75 60 0.5 · 10−5 0.093 94.3%
ResNet-v2 L 17M 75 61 0.5 · 10−5 0.096 93.3%
Inception-v4 L 15M 75 60 0.5 · 10−5 0.088 92.7%
Inception-v4 H 36M 75 62 0.5 · 10−5 0.089 92.5%
VGG16-basic 2.5M 75 44 0.5 · 10−5 0.080 92.2%
VGGNoise 69M 40 100 10−5 0.22 85.7%
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