ALMA MATER STUDIORUM — UNIVERSITA DI BOLOGNA
CAMPUS DI CESENA

DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA
Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

TOWARDS AGENTS’ EMBODIMENT IN
WEB-BASED MULTI-AGENT SYSTEMS

Tesi in

PERVASIVE COMPUTING

Relatore Presentata da

Prof. ALESSANDRO RICCI MATTEO CASTELLUCCI

Corelatore

Prof. ANDREI CIORTEA
Dott. SAMUELE BURATTINI

Anno Accademico 2022 — 2023

To all those who endured this with me

Table of contents

Introduction

1.1 Problem statement
1.2 Proposed solution
1.3 Usecase s

Background and Related Work

2.1 Multi-agent systems
2.1.1 Agents
2.1.2 Environment0 oL
2.1.3 Artifacts
214 Bodies

2.2 Web-based multi-agent systems
2.2.1 The REST architectural style and the Web
2.2.2 Multi-agent systems without the Web
2.2.3 Multi-agent systems with the Web
2.2.4 Embodiment on the Web

Embodying agents in a Web-based MAS

3.1 Motivating factors for embodiment
3.1.1 Agent discoverability 0.
3.1.2 Agent communication through behavior
3.1.3 Agent accountability
3.1.4 Agent situation-dependent interaction.

3.2 Alternative and integrative approaches

3.3 Definingabody
3.3.1 Abodyisconcrete
3.3.2 A body is identifiableo
3.33 Abodyisclear,
3.3.4 A body is timely perceiving
3.3.5 Abodyisfocusable L.

3.4 Presentingabody. 0oL

vi

TABLE OF CONTENTS

4 Implementation and Evaluation
4.1 Bringing agents’ bodies to Yggdrasil
4.1.1 Creating and manipulating agents’ bodies
4.1.2 Querying and observing agents’ bodies
4.2 Bringing Yggdrasil in a testing framework
4.2.1 Configuring hypermedia environments
4.2.2 Improving Yggdrasil architecture
4.2.3 Improving Yggdrasil quality
4.3 Use caserealization oL,
4.3.1 Requirement analysis

4.3.2 Design

4.3.3 Showcase

5 Conclusions
5.1 Future works

Acknowledgements

Bibliography

49
20
20
20
o1
52
o4
26
o8
o8
61
68

71
72

73

75

Abstract

The situatedness of agents in Web-based MASs is a well-studied problem:
it calls for applying hypermedia and REST architectural principles to the engi-
neering of the environment, leading to inheriting the non-functional properties
of being open, long-lived, and Internet-scale. At the same time, a more spe-
cific property than situatedness, embodiment, is not well understood in this
context regarding its motivations and implications.

During this thesis, we analyzed the notion of embodiment of agents in
Web-based MASs, following the hypermedia principles of the Web and drawing
inspiration from robotics. We rooted our work in the one previously done on
embodiment in virtual environments by A&A, one of the most prominent meta-
models proposing the environment as a first-class abstraction, and its reference
implementation, the CArtAgO platform. We found that the motivating factors
for embodiment are agent discoverability, communication through behavior,
agent accountability, and context-dependent interaction. We also found that
a body is an abstraction that must concretize and identify its owner in the
environment, mediate the owner’s action and perception, and allow its own
observability.

We created a test framework for Web-based MASs supporting the embodi-
ment of their agents, enabling us to test a prototype system built on a specific
use case to demonstrate the technical utility of our work. The realized frame-
work will also promote further research on the Web-based MASs topic for the
WebAgents community group. We believe that embodiment, granting more
flexibility to agents, could bring us closer to solving the “arrive and operate”
problem, the problem for which an agent should be capable of arriving in a
new environment and starting to operate with minimal a priori information.
Moreover, our concept of an agent’s body could be integrated into the A&A
meta-model, leading to an extension of the latter.

vil

Chapter 1

Introduction

This chapter as a whole presents the question we addressed during this
thesis: explore the notion of embodiment in Web-based multi-agent systems,
also known as Web-based MASs. We explain in detail what adopting such a
context implies, including undesirable alternative approaches to embodiment,
and give the motivations leading us to prefer the solution we provided. Then,
we present how we envision the embodiment of an agent given the discussed
context and motivations, bridging it to the two objectives we pursued to con-
cretize this vision. The first objective was to define the notion of embodiment
in Web-based MASs, while the second was to realize a tool that can aid the
testing of Web-based MASs, functional in future test beds. The validation
happened then by realizing a prototype system based on our testing tool im-
plementing a “yogurt manufacturing” use case, described at the end of this
chapter.

The rest of this thesis is structured as follows. The second chapter discusses
the context in which we place the thesis work, discussing in detail what a MAS
is, what it means to have a system interweaved in the Web, and the roots of
the notion of embodiment. The third chapter presents the work done in this
thesis, explaining our meaning for an agent’s body in the context of a Web-
based MAS through the characteristics it must have and the advantages that
lead to its use. The fourth chapter explains the work done for implementing
such an abstraction in a reference software platform and creating a testing tool
for testing Web-based MASs, which we used to test also our prototype system.
The fifth and last chapter concludes the thesis, explaining what we envision
as part of a future effort to expand our work on embodiment.

2 CHAPTER 1. INTRODUCTION

1.1 Problem statement

MASSs are systems composed of multiple autonomous agents, entities en-
capsulating their control flow along with the criterion for governing it [46],
situated in a shared environment they perceive and act upon [64]. Web-based
MASSs are a subcategory of MASs where the Web is the infrastructure used
for building the environment, and there has been extensive research to exploit
the architectural style of the Web, REST, when designing MAS environments,
leading to the birth of hypermedia MASs [18]. In hypermedia MASs, where we
embed agents in the fabric of the Web, the environment inherits all properties
of REST, such as Internet-scale scalability, loose-coupling, reliability, extensi-
bility, and visibility of interactions, supporting the development of long-lived,
open, and Web-scale systems [25].

The question we posed in this thesis is to explore the notion of embodiment
in the context of Web-based MASs. Embodiment means, first and foremost,
to provide each agent with a representation of itself in the environment, with a
body, making the agent’s actions part of the environment dynamic and to make
the agent receive direct feedback from their environment [12]. But embodiment
is not only a sensible property in robotics but also for virtual environments like
the ones we are concerned with, as the Agents & Artifacts (A&A) meta-model
demonstrates through the adoption of the concept of body in its reference
implementation, the CArtAgO platform [53].

From our research, we understood that four motivating factors exist to pro-
mote the embodiment of agents in Web-based MASs: discoverability of agents,
Behavioral Implicit Communication (BIC) [59], accountability, and situational
interaction. The first factor means that embodiment allows the discovery of
agents: the possibility to acknowledge their presence in the environment. The
second factor refers to enabling a form of implicit communication where the
addressee agents capture some meaning from the behavior the source agent is
enacting, while the source agent enacts the behavior to reach its goal and to
let the other agents observe and understand it [59]. The third factor refers to
the possibility for an agent to monitor the behavior of another agent and make
it accountable for its misbehavior when it happens, which is a feature of rele-
vance in open systems like Web-based ones. The fourth and last factor refers
to enabling interaction between agents that is context, meaning environment,
dependent, stemming from the possibility for agents to advertise their abilities
and preferred way of communicating through their bodies.

We could attempt other approaches for implementing the same presented
functional properties, but we argue they are not as apt as solutions as the
embodiment is for enabling our motivating factors. We could use coordination
artifacts, entities to be used by agents for helping them coordinate [65], we

CHAPTER 1. INTRODUCTION 3

could implement known patterns like the Agent Management System or the
Directory Facilitator defined in the Foundation for Intelligent Physical Agents
specification [1] or simpler publish-subscribe message brokers. All of them
have, to some degree, some disadvantages that make them unfit for reaching
our goals.

1.2 Proposed solution

Given what we previously said, the solution proposed in this thesis is to
push Web-based MASs towards the embodiment of their agents, rooting the
solution in the A&A meta-model. This meta-model designs the MAS environ-
ment as composed of multiple non-autonomous reactive entities called artifacts,
first-class programming abstractions representing tools to be used by agents,
collected in workspaces [46]. This decision follows from acknowledging that
A&A is one of the leading proponents of the vision of the environment as a
first-class abstraction, an abstraction not subjected to any else [65]. This no-
tion is fundamental to support if we want to develop MASs that conceptually
integrate the Web [19].

To properly reach this solution, we devised two objectives that we wanted
to achieve. The first is to propose a definition for the agent’s body concept,
which should support the implementation of the four motivating factors de-
scribed in Chapter 1.1. This definition should be fit for Web-based MASs and
especially for hypermedia environments, so we should root it in the princi-
ples of hypermedia MASs since they derive from the REST architectural style.
This design rationale allows for inheriting the REST non-functional properties,
but we also go beyond these principles to formulate a proper solution to our
problem. The second objective is to develop a flexible testing framework for
Web-based MASs to test their capabilities and functionalities, allowing for easy
modeling of scenarios to check the correctness of the system involved in the
testing procedure. The testing tool will aid the proceedings of the WebAgents
community group [61] devoted to the Web-based MASs research topic.

As a last step, we implement a prototype system both for validating the
technical utility of the definition of embodiment we present and for demon-
strating our tool capabilities to realize test scenarios for Web-based MASs. The
prototype system implementation satisfies a yogurt manufacturing use case we
designed, derived from an original one first proposed during the third summer
school on Al technologies for trust, interoperability, autonomy, and resilience
in Industry 4.0 [58] and further developed in the HyperAgents project [38].
The original and our use case model some part of an assembly line for pro-
ducing cups of yogurt, and we describe our own fully in the following chapter,

4 CHAPTER 1. INTRODUCTION

showing how the motivating factors for embodiment reflect in the use case,
making it a valid use case for testing our definition.

1.3 Use case

A yogurt manufacturing company is deploying a new automation system
containing an agent named Carl on top of an already installed MAS, made
of two agents named Alice and Bob. These two sub-systems, part of the
complete final system, fully embody their agents since the final system shows
the motivating factors for embodiment discussed in Chapter 1.1.

Alice and Bob can maneuver the robotic arm the system assigns them but
do not expose this ability by default. Instead, they acquire it when they join
a workspace where a robotic arm is present, knowing from their programming
that they can maneuver it, allowing for situational interaction between them
and the Carl agent. The two agents also expose some faulty behavior, meaning
that sometimes the agents misbehave and do not perform the action associated
with the task they receive. This faultiness means that the newly deployed Carl
agent must monitor their behavior to ensure the correct execution of tasks in
the system, requiring both BIC between agents and accountability of agents.
A final requirement is that, by design, no hard-coding of properties can happen
on the Carl agent side. It should dynamically discover its environment and the
environment’s properties after its deployment, requiring the system to enable
the discoverability of the agents’ bodies.

After the Carl agent is booted up, it is tasked by its human operator with
moving two fully molded cups from the shop floor to the warehouse, waiting
for further processing. Carl then starts searching in its environment for two
agents capable of using robotic arms for moving cups, finding Alice and Bob.
It understands from their representation in the environment which abilities
they have and, to task them with the cups moving, decides to start looking at
the agents to check on their work. Finally, he tasks the two agents to move
their robotic arms to store away the cups, but Alice does not fail to achieve
the objective given, while Bob fails in its job. Then, Carl punishes Bob by
sending a special command to it and re-tasks Alice to move the cup from the
shop floor to the warehouse.

The Carl agent has access to the representation of its environment, allowing
the agent to query it and discover information about it. It will allow him to
discover that two agents are part of the cup production plant workspace and
to identify them by finding their agents’ bodies. It will also understand from
reading the content of their bodies that the two agents show the capability,
i.e., offer the affordance, to send them a message for moving the robotic arm

CHAPTER 1. INTRODUCTION 5

from place to place. This requirement displays situational interaction since the
ability to move their robotic arm is contextual to the workspace where Alice
and Bob find themselves, in which the robotic arms are also present.

Carl can focus on Alice’s and Bob’s bodies to observe their actions, monitor
the correctness of their behaviors, and later punish or reward them, making
the agents accountable for their actions. An agent’s body always generates
events related to the start and completion of the agent’s actions without them
having to program it themselves, which results in the Carl agent not needing to
check for the tasks’ completion itself since it gets automatically notified. This
requirement displays BIC since the monitored agents communicate through
their actions, not explicitly meant for communication, some meaning that the
supervisor agent can catch beyond performing the task itself. Carl can change
its behavior after evaluating the agents’ actions and judging them as worthy
of praise or punishment.

Since the new system gets deployed on top of the older one, we can not
expect these systems to be coherent in their specification while resulting in a
concentrated solution. Then, the complete system needs to be distributed and
composed of three sub-systems: one representing the environment platform
and the others representing the MASs. In this way, we can show the previous
four features of the system working seamlessly in a distributed context like the
Web.

Chapter 2

Background and Related Work

This thesis positions itself in the context of engineering multi-agent systems
in the larger field of Artificial Intelligence. This chapter, as a whole, discusses
the fundamental properties of MASs, and in particular, we examine the notions
of situatedness and embodiment of autonomous agents, the one we are most
concerned with. We consider where these properties came from, how they
intersect with our research, and where they lead us. The discussion then
addresses the Agents & Artifacts (A&A) meta-model for MASs [46], one of the
most prominent examples, and how it envisions engineering of the environment
dimension.

After explaining the fundamentals behind the context, we present the sub-
category of MASs we are most concerned with in this thesis, Web-based MASs.
We discuss how the original vision for the Web wanted to enable them from
the beginning and which are the properties of MASs that stem from being
interwoven in the fabric of the Web. Finally, we present one of the earliest ex-
amples of hypermedia environments for autonomous agents and demonstrate,
thanks to it, how essential embodiment is on the Web.

2.1 Multi-agent systems

A MAS is a system where multiple autonomous agents are situated in
an environment they share for interacting and coordinating with one another
[46]. We can extrapolate from this definition some fundamental concepts,
which we will analyze in more detail later: autonomous agents, environment,
situatedness, interaction, and coordination. For now, we will assume simply
that a MAS is a set of multiple loci of control interacting with each other
by exchanging information [46]. Even from this simple description, we can
notice how such a system is inherently concurrent and distributed. We cannot
derive from the definition any assumptions concerning the timing of the relative

8 CHAPTER 2. BACKGROUND AND RELATED WORK

executions of its control flows nor the computational context in which they
happen.

Given the previous definition, a MAS is also a decentralized model for
building a system: agents are free to collaborate if they share the same goals,
cooperate if the agent goals are compatible but not shared, or directly compete
if their goals are incompatible. Being part of a society is advantageous for
agents: it means not being forced to do everything by themselves but sharing
knowledge, interacting with others, and possibly learning to adapt to evolving
conditions [42].

Given these properties, we argue that such systems are a versatile archi-
tecture any software engineer needs to have in their tool-belt. They can be
a means for modeling many real-world situations where we have distributed
and concurrent agents performing their tasks to meet their goals. MASs can
also be an alternative for developing complex engineering systems where the
complexity stems from the presence of multiple autonomous entities but also
the complexity of their interaction. In these systems, agents typically need
social structures and norms to regulate their overall social behavior, and their
shared environment is an essential and efficient source of coordination means
for the agents [9]. It could also imply an overall quality improvement of the
provided solution, reducing the complexity of translating a problem into a so-
lution using improper abstractions that do not capture all the properties the
designer is interested in. Wrong abstractions would lead to more boilerplate,
ad-hoc implementations that ultimately degrade the system maintenance and
evolution, providing a sub-optimal solution, as already mentioned [48].

2.1.1 Agents

Since we said that the notion of agent is central to MASs, as it stands
out from the name, we now give it a more detailed definition. A definition
of an agent is the one from Russell and Norvig’s well-cited book “Artificial
Intelligence: A Modern Approach”:

“Anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators” [54].

A depiction of this definition, realized by the authors, is shown in Figure
2.1. This property of perceiving and acting on an environment is called situat-
edness and is quoted in other definitions in agreement with the one presented,
such as the one from Maes [42] and the one from Franklin and Graesser [26].
These last two definitions introduce another fundamental concept for an agent
definition: autonomy. An agent is autonomous if it pursues an agenda of its
own, deciding by itself what actions to perform and attend to its goals at its

CHAPTER 2. BACKGROUND AND RELATED WORK 9

best. We conclude by stating that the kind of agents we are interested in are,
most importantly, autonomous.

Sensors

percepts

actions

effectors

Figure 2.1: Graphical representation of an agent following the Russell and
Norvig definition, taken from [54].

Going back to situatedness, it is central to the notion of agency in many
ways, from implementation to design. For example, the agent can modify
its environment, making it behave as an “external memory” reminding the
agent what he has previously done, and in general, the agent can exploit the
environmental characteristics to achieve its plans. Situatedness leads to a
simplified agent architecture but not to a less complex agent. The interactions
between the agent and its environment can lead to emergent functionality of
the agent, may it be dubbed intelligence, reflecting the ability of a simple agent
to tackle a complex environment more than reflecting an intrinsic complexity.
Emergent complexity in an agent is more robust, flexible, and fault-tolerant
since no specific component is more complex than others or more intelligent
than others, showing graceful degradation upon failing modules [42].

Furthermore, being situated also means it in time, which implies responding
in a timely fashion to the stimuli coming from the external world, which is
certainly a desirable feature, even if difficult to achieve. It is explicitly stated
in the Wooldridge and Jennings definition of agent [66], indicating this property
as reactivity and directly deriving from the notion of situatedness. As a side
note, the Wooldridge and Jennings definition also underlines the importance
for an agent to communicate with other agents, making interaction and MASs
consequentially of uttermost importance in the study of agents in general.

2.1.2 Environment

Given all the definitions we gave earlier, we saw how situatedness is a
pivotal concept for defining an agent, which relates to reacting promptly to

10 CHAPTER 2. BACKGROUND AND RELATED WORK

environmental stimuli, which is reactiveness. An agent without an environment
is not an agent, or, at least, an autonomous agent, the kind of agent we are
interested in. But we should not be misled: the environment is not simply
a means for defining agents. The environment is a concept with a dignity of
its own, a dimension in modeling a MAS capable of assisting the engineer in
creating more powerful abstractions, like the notion of artifact we will discuss
in the following. It’s no accident that a paradigm part of multi-agent-oriented
programming concerned with only the modeling of the environment exists: the
Environment Oriented Programming field.

The environment has been called a first-class abstraction [65], a design
abstraction that does not derive from any other and exists as an independent
concept. Weyns et al. propose a fourfold argument for which we should take
this stance.

First, the environment provides agents access to their deployment context,
composed of the tools they can exploit to achieve their goals. We can argue that
without this, an agent could accomplish hardly anything meaningful, confined
inside its mental computations.

The second reason relates to having the ability to abstract from unnecessary
details since the environment can act as an interface between the previously
identified deployment context and the agents accessing it. As already stated,
having the tools to capture the right abstraction in the system allows us to
build more complex but less complicated systems, meaning systems that can
do more with less maintenance and evolution-related problems.

The third reason relates to the environment having the ability to enable
the government of interaction and coordination, providing an interface over
the resources and also an interface over how the agents communicate with
one another. To allow the environment to mediate interaction is to make the
environment an active entity per se since it needs to regulate the actions of
the agents on itself, on par with them.

The fourth and last argument leading to a first-class environment is that
such an idea enables reflectiveness, allowing agents to modify their environment
and, therefore, their system as a whole as they please [65]. In the following
chapter, we introduce A&A properly, but we can already note how the power-
fulness of this meta-model also descends from the fact that it was the one that
introduced this reflective level and did it by enabling the dynamic change of
the entities that compose the environment [46].

We previously stated that interaction between agents is fundamental in a
MAS, as is coordination, the ability for agents to interact in an ordered fashion
to achieve some common goal. There exists a model demonstrating this, which
shows all dimensions that a MAS engineer should tackle while modeling their
system, known as the vowels coordination model [22]. The dimensions are,

CHAPTER 2. BACKGROUND AND RELATED WORK 11

not surprisingly: Agent, Environment, Interaction, and Organization. The
organization dimension relates to the possibility of governing and regulating
social relations between agents, defining norms, groups, roles, et cetera. It
goes back to the importance of agents being part of a society and constituting
a MAS, which should not happen randomly but in a carefully planned way
by the system designer. Given all that was said previously, the environment
can be used to reify the “Interaction” and “Organization” dimensions, making
it again worthy of its first-class abstraction [65]. The A&A meta-model for
MASSs presented in the following is another proof of the undeniability of the
usefulness of having an explicitly modeled environment.

2.1.3 Artifacts

The A&A meta-model exists to tackle the problem of modeling suitably
MAS environments [46]. As the name suggests, it wishes to put at the same
level agents and the environment, but more specifically, to model the latter
with high-level abstractions that can capture its complexity but at a suitable
level of generality.

The core idea is to see the environment as made of different tools, named
artifacts, which are first-class abstractions agents can use while achieving their
goals. These artifacts are passive and reactive entities, meaning they are “acti-
vated” by the agents using them, reacting to their requests, similar to objects
in the object-oriented paradigm. In contrast with agents, artifacts are not au-
tonomous and proactive: they do not show any “will” to achieve some assigned
task or goal. They encapsulate the services and functionalities the environment
shows to the agents: they have a distinct function put there by the artifact de-
signer. It helps modularize and decompose the functionalities the environment
designer wants to offer to the agents in the system.

The designer defines the function of an artifact in terms of the changes
that the agent using it causes to the artifact, changes which translate to the
environment as a whole. So, in a change of perspective, an artifact model is
defined in terms of which actions, or to give them a better name, operations,
it makes available to the agent. Artifacts are not only for use by agents but
can also be linked to other artifacts to enable behavior stemming from their
composition, allowing for a better modularization and separation of concerns,
distinguishing between a usage interface and a linking interface. The usage
interface contains the operations agents will use, and the linking interface
contains the ones other artifacts will use.

Another fundamental concept in this meta-model is the workspace, which is
an abstraction allowing for structuring the space of interactions in a topological
way, being it a place where activities involving agents and artifacts can happen.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

This meta-model received an implementation thanks to the realization of
the CArtAgO platform [52]. In this platform, the programmer can design
different artifact types by defining their observable properties, signals, usage
interface, and linking interface, as shown in Figure 2.2. Since we already
discussed the usage and the linking interfaces, we will concentrate only on
observable properties and signals. Observable properties define the state vari-
ables an artifact exposes, which can change with time since they are variables.
These changes, along with the properties creation and deletion, are part of
the percepts received by an agent that focuses on that artifact. Signals are
similar to observable properties, meaning that agents can perceive them, but
they exist for modeling non-persistent atomic events triggered by operations,
meaning that no operations exist to alter their value. Given the definition of
observable properties and signals, this meta-model implies an event-based per-
ception model, where the agent receives only the changes in its environment,
not a snapshot of its entire state. So, the agent needs to define how to react
to each event accordingly, but it will never risk losing any possible update of
the environment.

SIGNALS <<(Z
.\
ObsPropName(Args) L
>~ OBSERVABLE
[-] PROPERTIES
USAGE
TTTTro-re
INTERFACE (O OperationX(Params) e
O . .
B OPERATIONS
<> OperationY(Params) & g
LINK o -1e -
INTERFACE

Figure 2.2: An artifact model as defined in the CArtAgO platform, taken from
[52].

Another pivotal point of CArtAgO is that it allows the artifacts to be
created and destroyed dynamically by agents, making their action repertoire,
which contains the operations artifacts offered to the agents, also dynamic. The
operations defined in usage and linking interfaces are process-like, so possibly
they can be long-term computations that could interleave each other if, for
example, they are composed of multiple atomic steps. This decision leads to
richer semantics, allowing easier modeling of synchronization actions between
agents: for example, with this action execution model, synchronization can
happen in the event of an action starting or completing by design. An action
succeeds when it completes with success, including the production of related
signals and observable properties updates, not merely when it gets accepted

CHAPTER 2. BACKGROUND AND RELATED WORK 13

by the artifact that offers it. It allows for simplified programming of agents,
not needing to check their percepts to inspect the action’s success.

Considering the concurrency model adopted in CArtAgQO, signals and ob-
servable properties updated by an operation are handled concurrently com-
pared to the control flow executing the operation that updated them. It im-
plies that an agent, having multiple flows of control available, could execute
multiple plans concurrently, making its execution more performant although
prone to race conditions if not handled correctly.

Each artifact belongs to only one workspace, and an agent needs to join
it before it can act on the artifact and, in particular, focus on it, but there
is no limitation in terms of workspaces an agent can be in. Workspaces can
also be left and created, and, as for joining, these actions can be done at run-
time, adding more possibilities for updating the action repertoire of an agent.
Workspaces can also be dispersed across different platform nodes to build a
distributed MAS.

The whole model of the CArtAgO platform is summarized in Figure 2.3.

create
7-> Workspace #—— Arifact |f<------------—---————-_- dispose ---------------4
i link E
i :
i :
! :
E Operation |<-------------- Use -=============--4 Agent
' Environment
' 1 1 "
E ; generate i
: ! ¥ _ |
: update Observable | perceive . !
! . Event '
i v H
I 1
: Observable percelve E
]
I Pl’ --
! operty < observe ':
i i
e jomn :
quit
create

Figure 2.3: The CArtAgO model in UML-like notation taken from [52] with
minor edits.

The CArtAgO platform received an extension becoming part of the Ja-
CaMo platform [9], which integrated it with the Jason language and platform
for agent programming and the MOISE framework for programming organiza-
tions. CArtAgO was born with the capability to support multiple agent pro-
gramming languages. Even if JaCaMo constrains it to be used only with the
Jason language, this CArtAgO extension is still powerful since it can tackle

14 CHAPTER 2. BACKGROUND AND RELATED WORK

the agent, environment, interaction, and organization needs of a MAS in a
single platform. Agent programming is in Jason’s “domain”, CArtAgO han-
dles environment programming, MOISE preoccupies itself with organization
structuring, and all components jointly coordinate interaction, depending on
if communication should be direct, mediated through the environment, or reg-
ulated by norms. Nonetheless, as the implementation following the ORA4MAS
proposal demonstrates [36], the MOISE language and platform can be imple-
mented on top of CArtAgO, reifying its model and its concepts as artifacts.
It demonstrates how the environment indeed can be seen as the dual part in
MASSs to agents, capable of covering all aspects of MASs that are not agents
themselves.
The whole model of the JaCaMo platform is summarized in Figure 2.4.

scheme
' [

ORGANISATION
DIMENSION

AGENT
DIMEMNSION

ENVIRONMENT
DIMENSION

" workspace W

. EXTERNAL
ENMVIRONMENT

Figure 2.4: A graphical representation of the JaCaMo model, taken from [9].

network node

2.1.4 Bodies

Even with its importance, situatedness has shortcomings, too. The proof
is the work done in the Mobot Lab at the Massachusetts Institute of Tech-

CHAPTER 2. BACKGROUND AND RELATED WORK 15

nology in the 90s. The lab was interested in developing an architecture for
agents being physical systems situated in the world, meaning robotic agents,
that could respond timely and exhibit robust behavior despite dynamic and
unpredictable environments [12]. To demonstrate that the subsumption archi-
tecture they devised was up to the prefixed standard, they decided to build
Herbert, the can collecting robot [20], visible in Figure 2.5. The main defining
feature of Herbert was being an embodied agent, meaning having a body as
part of the environment in which the agent was situated. The architecture
proved successful, standing the test of time, since Herbert is considered one
of the forefathers of the Roomba vacuum cleaning robot, one of the biggest
commercial successes of the iRobot company.

Figure 2.5: A picture of Herbert, the can collecting robot, now on display at
the MIT Museum in the Robot Exhibit, photo courtesy of Chris Atkeson.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

As further literature has shown, this property, called embodiment, is more
specific than the one of situatedness since it encompasses it while extending
it further. For an embodied agent, its body is the “vessel” for perception and
action in the environment, and it is through the body that they both need
to pass, demonstrating that an embodied agent is also situated. Without a
body, an agent could not perceive its environment since it would not have the
sensors to do it, and it would not act on its environment since it would not
have the actuators to do it. At the same time, having a body does not simply
imply that an agent is concerned with its environment, but it also enables the
agent’s actions to become part of the environment dynamics and the agent to
receive immediate feedback from its environment [12]. It is because now the
agent is an element of the environment, it is part of it, that it can be perceived
and acted on as any other environmental element. It unlocks the possibility
for agents to perceive each other and act on one another, allowing for even
more expressiveness in the interaction between the agents.

Embodiment is not only for agents situated in physical environments, like
the ones with which robotics is concerned but also for agents situated in virtual
environments, as put forward by the A&A meta-model through its reference
implementation [53], the CArtAgO platform. This platform implements the
notion of an agent’s body as an artifact that gets assigned to an agent whenever
it joins a new workspace, and it is part of the workspace joined. In this way,
the platform is sure that the actions and the percepts flow through the body
of the agent, as per the definition of the body, while restricting the actions
an agent can do and the percepts it receives to only the ones related to the
workspaces it joined, being the body intrinsically connected to the workspace
itself. Moreover, the body serves as a proxy for the platform to the agent,
keeping them separated through an interface. It helps satisfy the requirement
for which CArtAgO should be agent programming language independent since,
for interacting with the CArtAgO platform, an agent interacts with the inter-
face and not with some other platform internals. At last, having a body for
agents allows for a simpler distribution of the CArtAgO nodes since the imple-
mentation of the operations given by the body interface can involve network
calls or not depending on the location of the workspace hosting the body, re-
maining transparent to distribution. So, a body can behave like a client stub
in a Remote Procedure Call middleware, which replaces a local call with a
remote one to the correct server without the caller noticing the difference [60].

As a final remark, to underline how much embodiment is indeed a powerful
concept, we want to show that it also has its explorations in other areas than
Artificial Intelligence and Software Engineering, for example, in the field of
Philosophy. Arguably, it could have been that the philosophical formulation
came first, and that definition led scientists to apply this concept in their

CHAPTER 2. BACKGROUND AND RELATED WORK 17

research field. In particular, we want to quote the definition of embodied
cognition by Merleau-Ponty, which states:

“The body is the vehicle of being in the world, and having a body
is, for a living creature, to be intervolved in a definite environment,
to identify oneself with certain projects, and to be continually com-
mitted to them” [43].

Having a body, for a living creature, means being part of the world they
inhabit while guaranteeing their existence in the environment and identifying
it from all the other existing beings as a separate entity. So, living creatures’
existence depends on their way of experiencing the world since existence and
experience are inevitably tied, and the latter happens through their bodies.
Therefore, the body is not subjugated to the mind but completes it, acting as
its complementary.

2.2 Web-based multi-agent systems

A definition for the Web is the space populated with all global network-
accessible information in which people interact by retrieving, generating, and
removing such information [7]. But the Web is not only somewhere to share in-
formation: it is also an Internet-scale, flexible distributed system of knowledge
that can be independent of its specific hardware implementation, overcoming
incompatibilities between systems accessing it, making it truly open [7].

Since its original vision, supported by its creator, Tim Berners-Lee, the
Web was to be used by humans and machines, and later on, after the Web’s
first developments, Berners-Lee dubbed this notion as the Semantic Web [8].
In the Semantic Web, the Web of documents existing at the time was not to be
replaced but extended with additional capabilities, the most important being
the possibility to encode semantic information into documents in machine-
readable format to create a Web of data. Since the core Web features were to
be left unchanged, the Semantic Web inherited the properties of distribution,
decentralization, and universality of information representation and navigation
control. At the same time, the Semantic Web would enable the possibility for
machines, such as Web clients, not only to parse the syntax of a page, for
example, by recognizing links and headers but also to parse the semantics,
recognizing what the content of a page was really about [8].

So, we would see the real power of the Semantic Web only when agents
would come into play, pulling information from different sources and exchang-
ing it with other agents. The agents’ presence would allow the creation of
systems that exhibit intelligent behavior by automatically processing meaning

18 CHAPTER 2. BACKGROUND AND RELATED WORK

and then delegating to other services discovered at run-time the task to find
the missing information for completing a request, something impossible to do
without accessing the request semantics. Then, the last step would be to ex-
tend the semantic Web to the concrete world, making physical objects part of
the Web [8], enabling agents to “browse through reality” [6]. This vision wants
to achieve something also present in other literature and known as a mirror
world, a digital duplicate of the physical world [29].

Tim Berners-Lee was right: nowadays, not only humans browse the Web,
which has become semantic, but even software agents like crawlers, Web scrap-
ers, and recommendation systems. However, only human agents exhibit au-
tonomous, cooperative, and long-lived behavior, not software agents. So, the
era of widespread Web-based autonomous agents and Web-based MASs is yet
to come, even if the need for such systems has become more and more press-
ing. More and more service APIs get published on the Web, and services that
integrate these APIs with them, but this integration happens manually, so it
is prone to errors, leads to increased costs, and is a time bottleneck on new
systems development. It is even more true now that initiatives like the Web of
Things [34], bringing the Internet-of-Things devices on the Web, are getting
more widespread acceptance, but no Industry 4.0 will happen if we do not have
more autonomous clients accessing the Web [19].

Dynamic, open, and long-lived systems require the Web architecture as
their foundation, as they need the REST architectural style, which sits at the
core of that architecture. In turn, a concept central to the REST architectural
style is the notion of hypermedia, now increasingly used for designing highly
scalable, dynamic, open, and interoperable systems. So, it is clear that this is
the most promising way to design MAS environments, to interweave them in
the fabric of the Web, to grant them the same properties the Web has [19].
Then, in the following, we demonstrate the properties the environment inherits
by being RESTful, but first, we discuss what REST means.

2.2.1 The REST architectural style and the Web

REST is an acronym for “REpresentational State Transfer,” a name encom-
passing the fundamental behavioral property of the Web. In this architectural
style, hypermedia documents, the core elements of the Web, can be seen as
finite state machines, where states are single pages, and the transitions happen
by dereferencing the links or submitting forms found on those pages. Then,
when the user reaches a new state, its representation is transferred from where
the whole finite state machine is hosted, the server, to the client, where the
user can use it to progress to the next state, and so on. This principle is also
known as HATEOAS, acronym for “Hypermedia As The Engine Of Application

CHAPTER 2. BACKGROUND AND RELATED WORK 19

State,” which requires that hypermedia control is embedded into, or layered
upon, the state representation, fusing information and control together.

replicated uniform interface

on-demand simple

visible

SERCS

extensible reusable

Yy

It
LCSSS)", ~(LCODCSSS REST

Figure 2.6: A graph representing the relations between the different style con-
straints applied on REST and which non-functional properties they grant when
applied, taken from [25]

To support such behavior, REST inherited some architectural styles visible
in Figure 2.6, which grant some non-functional properties that satisfy the use
cases for which this architecture was born. The first style is client-server (CS),
which allows for separating concerns between the User Interface of a Web ap-
plication, residing on the client, and the data layer, residing on the server.
Moreover, this constraint allows for the independent evolution of the two com-
ponents, which better supports creating Internet-scale Web applications. But
being client-server is not enough: the communication between the two should
be stateless, bringing to the client-stateless-server style (CSS), which implies
that each request from client to server and response in the other direction
should contain all information about itself. No additional application state
stored on the server is needed between the two to communicate since all of it
should reside on the client. Not needing to rely on additional external infor-
mation when analyzing requests makes them more visible, meaning easier to
process as a single entity. At the same time, the CSS style leads to increased
reliability, since if a single request fails, there is no need to replay all that had
come before to recover all information about the request. It also leads to in-
creased scalability, since without keeping the connection state, the server needs
to allocate fewer resources. The downsides of this style are decreased network
performance, since all data needs to be re-sent each time with each request, in-

20 CHAPTER 2. BACKGROUND AND RELATED WORK

cluding repeated data, and less server control over application behavior, which
is wholly in the hands of the client. Network performances can improve if we
add the cache ($) architectural constraint, deriving from the replicated repos-
itory (RR) constraint since a cache is a repository replicating data, leading
to the client-cache-stateless-server (C$SS) style. This style allows the exis-
tence of intermediaries between client and server, such as proxies, to eliminate
some requests to the server by reusing cached data. Introducing a cache and
marking resources as cacheable or not will improve efficiency, scalability, and
user-perceived performances because the average latency for requests and the
number of requests directly handled by the server will decrease. But this hap-
pens at the expense of reducing reliability when data becomes stale, since the
user will not be able to know when it is retrieving data from a cache or directly
from the server, being transparent to them.

Another pillar of REST is the emphasis on the constraint of uniform in-
terface (U) between components, applying the same general interface between
them and not resorting to different, ad-hoc ones each time. It simplifies the
architecture, interactions become more visible since they follow the same pat-
terns over and over, and it allows for the independent evolution of components
being their implementation hidden by the interface. At the same time, it
degrades performance because we cannot exploit the particular properties of
each component, which again lie hidden behind the interface. One of the key
elements enabling a uniform interface is the notion of resource, representing
any information that can be named, a time-varying mapping between a con-
cept and a set made of its representations or identifiers. This notion is apt
for building a uniform interface since it provides generality over any repre-
sentable domain, abstraction from the single concept implementations, and
late-binding from a concept to its implementation, allowing for choosing the
best alternative or none if none exists.

Then, REST applies the layered system (LS) style, arranging components
in layers where each can only communicate with the one above and the one
below it and nothing else. It simplifies the architecture, promotes separation
of concerns by not agglomerating everything in the same layer, and improves
scalability through load balancing. At the same time, it adds overhead and
latency to requests by making clients jump through more hoops, downsides
already addressed by caching. At last, the final but optional architecture con-
straint is code on-demand (COD), deriving from the virtual machine constraint
(VM), which allows for extending the client capabilities by making it download
and execute code locally, giving it the abilities of a virtual machine. With this
constraint, the system is more extensible because clients can gain new abilities
dynamically, and the whole architecture gets simplified, but the visibility of
interactions is then reduced, thus making it an optional constraint.

CHAPTER 2. BACKGROUND AND RELATED WORK 21

In conclusion, each system that adopts the REST architecture inherits
its upsides of simplicity, visibility, reliability, scalability, loose coupling, and
efficiency [25].

2.2.2 Multi-agent systems without the Web

In designing a Web-based MAS, we could decide not to follow the REST
architecture, as non-RESTful Web services were the standard in the past. It
means that interaction between the system components would happen in a
Remote Procedure Call (RPC) style, where an HTTP request would repre-
sent a procedure call, remaining blocked without a response until the result
is available. The HTTP request would contain the serialization of the call
and its arguments, while the response would enclose the serialization of the
response, using the Web only as a transport layer. Not only was this the stan-
dard, meaning it was commonplace, but a family of protocol standards also
has been developed to build Web services communicating via RPC, which was
the WS-* standards family, covering from message formatting to interface def-
inition. Moreover, the SOAP standard for message formatting in RPC-based
Web services, in particular, is independent of the underlying protocol used for
transport, meaning that it can exchange messages not only through HTTP
but also with SMTP, the server-side mail exchange protocol. If agents in our
system decided to email procedure calls between themselves, surely we would
be outside the Web domain, which means that, when following the RPC ap-
proach, the Web is a replaceable means of communication not affecting the
system architecture [19].

Nowadays, we widely recognize how the RPC approach does not cover all
possible use cases in distributed systems, as its object-oriented counterpart
does not, the Remote Method Invocation (RMI) or Distributed Object style
[60]. The main difference between RPC and RMI is that the latter approach
generates a stub for a whole object, and its method calls, not generic proce-
dure calls, are the ones that perform network communication with a remote
server [60]. The problem was that RPC and RMI wanted to hide distribution
from the developer, using a uniform approach to represent local, fine-grained,
and remote, coarse-grained objects or procedures. However, the inherent dif-
ference between local and remote objects is not reconcilable, making unifying
the local and remote computing models impossible without accepting incon-
ceivable compromises. For one, the difference in latency between an invocation
involving a network system call and one not involving it is many orders of mag-
nitude different, a problem that we cannot sweep under the rug as a simple
“Implementation detail” [63].

But even if we could have the fastest network available, making the latency

22 CHAPTER 2. BACKGROUND AND RELATED WORK

difference negligible, three other conceptual problems would arise from mem-
ory access, partial failure, and concurrency. Accessing an object placed in an
address space different from the one of the caller requires that the infrastruc-
ture supporting remote method invocation handles fully all memory accesses,
simply because pointers will not be valid in the caller address space. It is
an unacceptable compromise in languages that allow pointers declaration like
C++, but also in languages where pointers are not available as a construct like
Java, passing an argument by reference must be handled differently if the call
is a local one or a remote one [39]. Partial failure relates to the fact that in dis-
tributed systems, their components can fail independently without leading to
the entire system failing, making them more resilient than an equivalent con-
centrated solution, which can only undergo total failures. These failures can
be due not to components failing on their own but because network partition-
ing happens, a problem not present when dealing with only local procedures
and objects. This problem is not as straightforward as an exception and needs
more complex handling involving architectural decisions. It is especially true
if we consider that distributed systems are concurrent by nature, while con-
centrated systems can choose not to be. So, unifying those two computational
models would imply either ignoring concurrency and forfeiting consistency in
the application state when a network partition happens or adding unnecessary
complexity when programming concentrated applications, both undesirable
solutions [63].

The CAP Theorem [11] in distributed computing well illustrates the choices
and trade-offs a software engineer must endure while building such systems,
needing to choose between different degrees of consistency and availability
when a network partitioning occurs. The theorem again confirms that dis-
tributed systems have inherent problems that are unique to them, and need
particular care in their design.

Even if we decide not to rely on RPC-based communications, this would
not imply automatically choosing a REST architecture style. Choosing REST
relies on the non-functional properties left behind when we decide not to adopt
this architecture and the requirements that become more difficult to fulfill in
this way. A non-RESTful application could have a higher entry barrier, leading
to a slowdown in adoption since it could decide not to use uniform interfaces
based on hypermedia, which we know are simple and general. The adopted
interfaces could limit their structuring, could not support queries properly,
or could not allow the creation and fruition of content when linked sources
are either not yet available or not available anymore. Moreover, the strong
emphasis on text protocols on the Web enables visibility of interaction, another
non-functional property that could get lost in non-RESTful architectures.

REST allows for extensible, long-lived applications prepared for change

CHAPTER 2. BACKGROUND AND RELATED WORK 23

thanks to scalability and loose coupling. Also, it is an architecture for dis-
tributed applications by design, encompassing solutions to problems arising
in this context, such as user-perceived latency. Finally, REST allows for the
seamless realization of Internet-scale applications, for which their components
reside in geographically dispersed intranets separated by different organiza-
tional boundaries. Such applications are by definition open, meaning that
their components could be at cross-purposes, i.e., components could receive
unanticipated load or malformed requests from other system elements due to
genuine or malicious intents. In open systems, security becomes a more promi-
nent concern, but change and evolution of the overall architecture must also be
expected, as gradual and fragmented. Founding an architecture on principles
like separation of concerns and integrating coherent mechanisms for authen-
tication and authorization will help model such systems, an objective more
difficult to achieve without REST [25].

2.2.3 Multi-agent systems with the Web

Considering all the upsides of REST and the downsides of RPC for our
context of interest, which are Web-based MASs, when introducing an explicit,
first-class notion of environment situating the agents, it seems natural to ap-
ply the REST architectural style to its design, inheriting all of its previously
said properties. So, a sensible path towards the engineering of Web-based
MASSs is to use hypermedia as a uniform interaction engine, situating agents
in a distributed hypermedia environment that they can navigate and use in
pursuit of their goals, leading to “transforming” Web-based MASs in hyper-
media MASs [18]. This decision is why we thought about motivating factors
and characteristics of embodiment in the context of Web-based MASs, but
keeping hypermedia MASs principles in mind, which does not exclude that we
cannot, extend our work to more general Web-based MASs in the future. To
properly interweave the environment in the “hypermedia fabric” of the Web,
we now illustrate three design principles environment engineers should follow,
which will lead to the exploitation of the full potentiality of the Web in their
solutions.

The first principle states that all entities in a hypermedia MAS and all
their relationships should have a uniform and resource-oriented representation
in the “hypermedia” environment. It implies that the system elements, such as
agents, artifacts, and workspaces after what we said in Chapter 2.1.3, must be
modeled as interrelated resources, following the uniform interface described in
Chapter 2.2.1. Since interactions between agents and resources should be cod-
ified adhering to the REST architectural constraints, the relations between all
resources must be modeled by forms and hyperlinks, observing the HATEOAS

24 CHAPTER 2. BACKGROUND AND RELATED WORK

principle also described in Chapter 2.2.1.

To support this first principle, one must enforce uniform identification
through Internationalized Resource Identifiers of all entities, which allows for
global identifiers, valid despite the physical locations of resources and their
actual implementation. If this were not true, agents could rely on the uniform
identification scheme defined by the Foundation for Intelligent Physical Agents
consortium, valid only for agents and not for resources in general, meaning it
could not be a working approach on the Web. Otherwise, environment engi-
neers should rely on platforms’ decisions about handling identifiers valid locally
to nodes and their low-level network information, harming the interoperability
and openness of the Web in general.

Also, supporting this first principle means having uniform representations
for resources hiding implementation-specific details, which could turn into hav-
ing semantic descriptions of resources in RDF format following some standard
ontology. For example, the Web of Things initiative defines a model for de-
scribing an Internet-of-Things thing, called Thing Description [40], along with
an ontology for encoding this description [15]. Deciding not to have a uniform
representation through semantic Web technologies could mean, for example,
defaulting to FIPA’s Agent Communication Language message format and
its standard description for agents and services, which cannot be applied to
resources and cannot be considered a viable alternative.

Finally, encoding relations between resources in the environment leads
agents to be able to crawl, interpret, reason upon, and interact with their
system, so with both other agents and the environment, by the hypermedia
itself, since everything is a resource. Failing to do so would potentially lead to
agents necessitating to resort to Directory Facilitators, and Agent Management
Systems patterns defined by FIPA to discover agents and services previously
registered on them. These approaches are biased towards the locality of agents,
which can access only their local Directory Facilitator and Agent Management
System that can propagate a decentralized query only up to a certain distance
to other analogous components, a limitation to decentralization not present
otherwise.

In conclusion, we argue that the uniform resource-based representations
principle allows for a better decentralization of the hypermedia environment
we are building, with more support for openness, interoperability, and system
evolution.

The second principle states that, given a single entry point into the envi-
ronment, an agent should be able to discover the knowledge required to par-
ticipate in the system by simply navigating the hypermedia. The idea behind
the principle translates to agents that can use the hypermedia, and only the
hypermedia, to access the system, meaning without resorting to out-of-band

CHAPTER 2. BACKGROUND AND RELATED WORK 25

systems and information, promoting the decoupling of components by not rely-
ing on hard-coded settings. Another focal point of this principle is that to have
minimal a priori knowledge of the system, not only does the knowledge need
to be available in the hypermedia, but it must also be findable by navigation,
for example, by crawling as previously mentioned. In particular, navigation
of the environment by the agents allows for discovery at run-time of interac-
tion modalities with artifacts without hard-coding them, partially solving the
arrive and operate problem mentioned in Chapter 1.1 [19].

The last of the three principles is observability, stating that any resource
compelling to agents should be observable. This principle is complementary
to the others promoting discoverability since crawling is functional until an
agent wants to keep track of the evolution of a resource, for which continuous
polling for its current representation is utterly inefficient. Having mechanisms
for receiving notifications of updates will lead to an overall reduction in system
load, promoting better system scalability [18].

A three-layer architecture based on the A&A meta-model reifies the previ-
ously presented principles, visible in Figure 2.7. The first layer comprises the
agents that access the system, which happens through an abstraction layer
implemented by the application environment, the one we have called until now
simply environment. The first sub-section of the application environment en-
compasses an RDF graph modeling the system itself, on which all entities in
the system get projected, representing a uniform resource-based interface per
the first principle. This first Hypermedia Abstraction Layer lies upon a second
sub-layer containing the artifacts that model the environment, which means
that for accessing them, the agents can only do that through the hypermedia,
per the second principle. According to the A&A meta-model, the artifacts
are then part of their workspaces, which can reside in different distributed
nodes, one per host, on which the system bases its deployment. Finally, since
the application environment is an abstraction layer, it abstracts from what
we previously called the deployment context in Chapter 2.1.2, so the exter-
nal environment made by services and devices the agents can access through
the artifacts. The third principle is not explicitly part of the architecture,
but supporting the observability of resources in the Hypermedia Abstraction
Layer makes it possible to achieve it, which could correspond to observing the
changes in the observable properties of the underlying artifacts.

An example of implementation of this architecture in practice is the Yg-
gdrasil platform, implemented as a Web server offering a standard REST
HTTP API over a CArtAgO node. This interface allows for executing some of
the operations CArtAgO offers to agents, mediating the access to the second
sub-layer of the application environment in the architecture, but also allows to
access and update the knowledge graph constituting the HAL, the first sub-

26 CHAPTER 2. BACKGROUND AND RELATED WORK

layer of the environment. Observation of the knowledge graph is supported
thanks to a partial implementation of the WebSub recommendation [30], which
allows agents to get notifications when changes happen to a given resource by
subscribing with an IRI acting as a webhook, a user-defined HTTP callback.
Because of its properties and architecture, this platform has been the object
of our work and received extensive refinement and extension, as Chapter 4 will
show.

AGENTS O O O

-———-——-——-—| Legend
APPLICATION ENVIRONMENT

gm'f 0 son
) RDF Graph

Hypermedla Abstraction Layer

ff Artifact

1| 7777 Workspace

f \
'._‘ ______ | 3 CJ Node
- 2 "____ _ ______ = Host
EXTERNAL t @

ENVIRONMENT ‘ Q ‘

Figure 2.7: The proposed architecture for a hypermedia MAS following the
three principles highlighted, taken from [18] with slight changes

Following the previously underlined principles allows a hypermedia envi-
ronment to be Internet-scale distributed, open, long-lived, and resource-based
as any other Web application, interconnecting all system elements it contains.
We have shown how having situated agents on the Web would allow them to
navigate the hypermedia to discover and interact with these environmental re-
sources regardless of their physical location, as human agents already do with
search engines [19]. But again, situatedness on the Web is only half of the
story since it enables desirable capabilities while at the same time solving only
part of the arrive and operate problem, as already stated. Another property
that could lead to a more comprehensive solution is the previously mentioned
notion of embodiment, and in the following, we will explain why this is the case
and to what additional advantages it leads us to. If situatedness on the Web
had its previous explorations and is now quite well-known what it brings us,
the embodiment in a hypermedia environment is a relatively new, uncharted
concept.

CHAPTER 2. BACKGROUND AND RELATED WORK 27

2.2.4 Embodiment on the Web

To demonstrate the usefulness of embodiment in Web-based MASs, we will
first present a system containing one of the earliest examples of hypermedia
environments designed for autonomous agents. As we will see, this is an agent-
based system in which agents have the property of being situated on the Web
but not the one of being embodied. We will show what functional and non-
functional properties this system has and what ones it lacks, hopefully showing
that embodiment has its substantial use cases. The system we present is
the one commonly known as Mike’s Maze, which owns its nickname to Mike
Amundsen, its developer, who started working on its prototype in 2010 [2] and
showcased it during the 21072 Dagstuhl seminar in 2021 [10]. Its nickname
also is due to its scope, which is an agent trying to solve a maze by navigating
it, and the agent’s name reflects this requirement: it is AMEE, an acronym
standing for “Autonomous Maze Environment Explorer” [3].

The system is not multi-agent, but we argue that it demonstrates our
point nonetheless since the environment the agent navigates is Web-based. A
hypermedia document encodes the whole maze, and the single rooms are the
“pages” of this document, having a link between them if a door the agent
can pass through exists connecting them. To be more precise, the hypermedia
document is a knowledge graph serialized in XML based on a custom media
type, and all of its elements, from the maze to the single rooms, are nodes of
this graph. Later, Tobias Kafer realized an extension to the maze to represent
it in Turtle format! as part of the All The Agents Challenge at the International
Semantic Web Conference of 2021, and the serialization of a room in this format
can be seen in listing 2.1. This choice allows for encoding all information about
the maze in a form suitable to be crawled by software agents because, in this
way, agents can also understand semantic relationships between data, as we
mentioned in Chapter 2.2.1.

Crawling leads the agent to move from one room to another by resolving, or
dereferencing, the link that leads to the next room’s node, which results in the
agent receiving the representation of the new room it finds itself in. The agent
is then situated in its environment since it can act on it by moving through
the maze until it exits, and it can perceive it by receiving back the changes
in the environment it witnesses by changing room. The algorithm the agent
uses in navigation does not matter since it can be improved and changed
as the developer likes it, but what matters is that this agent is undeniably
autonomous, trying its best to find an exit to the maze all by itself. Moreover,
the agent could also be a human navigating the maze with the aid of the User

!The implementation resides in the GitHub repository at the following link:
https://github.com/kaefer3000/2021-02-dagstuhl.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Interface shown in Figure 2.8a, since on the Web, both humans and software
agents coexist, as we stated in Chapter 2.2.

The system shows a deep conceptual flaw that we want to address with
the work in this thesis. If we transformed Mike’s maze into a MAS, making
the agent not alone anymore, we would have multiple AMEE or human agents
navigating the maze as they were alone, ignoring each other and unaware of
the presence of one another, unless some changes occur in the environment
outside the single agent control. But then again, the agents would not have
any means to prove that what they see is the clear manifestation of other
agents being in the same environment: it could be the more straightforward
result of a stochastic environment, so they could not even attempt to prove it.

If the agents have the embodiment property, they most certainly can com-
municate with one another, which means acting on one another after perceiving
and identifying themselves, as already stated in Chapter 2.1.4. An agent then
would not doubt if what it is seeing is the body of another agent and if the
marks in the environment it perceives are left from something that is not a
particular agent’s body. So, we argue that some particular features are missing
when agents do not have the embodiment property, and consequently, some
considerable use cases must be left unimplemented in this way. In particular,
we identified four functional properties that could motivate the embodiment
of agents in their environment, which we will discuss in the next chapter as
part of our contribution to the presented problem. In conclusion, having ex-
tensively demonstrated the conceptual and practical utility of the embodiment
of agents on the Web, we continue by giving our solution to the embodiment
problem following the A&A meta-model.

CHAPTER 2. BACKGROUND AND RELATED WORK 29

@prefix : <http://localhost:1337/01-a-beginner-maze/5#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

Oprefix vocab:
<https://kaefer3000.github.com/2021-02-dagstuhl/vocab#> .

1it
a vocab:Cell ;
rdfs:label "Kitchen" ;
vocab:collection <http://localhost:1337/#it> ;
vocab:east <http://localhost:1337/01-a-beginner-maze/10#it> ;
vocab:green <http://localhost:1337/01-a-beginner-maze/10#it> ;
vocab:maze <http://localhost:1337/01-a-beginner-maze#it> ;
vocab:west <http://localhost:1337/01-a-beginner-maze/O#it> .

<http://localhost:1337/01-a-beginner-maze#it> rdfs:label "Beginner’s
Maze (5x5)"

Listing (2.1) Turtle format representation

The Game

You are in the: Kitchen.
You have the following options: west, east, green, maze, clear

What would you like to do?
Go

(a) Graphical representation

Figure 2.8: An example of a room in Mike’s maze

Chapter 3

Embodying agents in a
Web-based MAS

This chapter delineates the envisioned solution for embodying agents in
Web-based MASs. As a premise, we describe the features that motivate the
embodiment of agents in their hypermedia environment. We also present some
alternative approaches to enable the motivating factors for embodiment, show-
ing how they do not meet our expected criteria and why embodiment should
be preferable in this context. Then, we display the notion of the agent’s body
we devised, encompassing the main characteristics it should have. For each
characteristic, we present its contribution in enabling the motivating factor
displayed earlier or the constraints from which it descends. We conclude with
a concrete example of a body representation in a hypermedia environment to
ground our discussion in a practical example.

3.1 Motivating factors for embodiment

Discussing the context illustrated in the previous chapter, we identified
four factors that could motivate the embodiment of agents in a hypermedia
environment. We will illustrate them along with some use cases related to
collaborative editing on the Web in which the absence of such properties will
make the use cases more challenging to realize.

3.1.1 Agent discoverability

The first factor is enabling the discovery of other agents, which is per-
mitted thanks to their bodies being perceivable since they are a part of the
environment. Discovery of agents allows another agent to understand some
aggregated information, such as if no one is in a given workspace or how many

31

32 CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS

agents are there, but it could also lead to more detailed information, mak-
ing the agent realize who is in a workspace. In developing an application for
the collaborative editing of documents, the discovery of other agents permits
showing their icons while they work on a document on top of it, letting other
users know who is currently editing the document. If an agent could not have
the faculty of discovering other agents, then no icon could be shown, limiting
the usefulness of editing a document by not knowing if a teammate is on a
given document or not.

3.1.2 Agent communication through behavior

Enabling agent discoverability, and especially the perception of other agents
in the environment, enables communication between agents through their be-
havior, so what in literature is known as Behavioral Implicit Communication
[59], or BIC. It is a form of communication between agents where they use
no explicitly codified communicative action, so the information passed cannot
be considered a “message” in the traditional sense. It is still communication,
however, since the intention of communicating from the source agent to the
addressee agent is still present. Since no explicit communicative action is in-
volved, the other agent actions take their place, having both the intended
effect of performing a behavior and letting the addressee agent capture some
meaning from such behavior if it observes the source agent [59].

Enabling BIC also means enabling stigmergic interaction, another form of
implicit communication that could be considered a specific case of the former
[59], as we now demonstrate after defining the notion of stigmergy. Entomolo-
gist Pierre-Paul Grassé was the first to introduce the notion of stigmergy while
analyzing the behavior of termites building their nests. He wanted to explain
during his ethological studies the complex behavior emerging in simple insects
when taken as groups and not as single elements when performing their daily
tasks. So he presented this definition for stigmergy:

“La stimulation des ouvriers par les travaur mémes qu’ils accom-
plissent” [33].

A translation of the previous quote could be:
“The stimulation of workers by the very tasks they perform”!.

The work done by a worker influencing other workers refers to the fact
that, while walking through their environment, so while working, insects release

!Translation by the author.

CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS 33

their pheromones after them, leaving traces that other insects can follow. Since
pheromones are volatile chemical substances, if the path followed by an insect is
less efficient than another, meaning longer than an alternative one, pheromones
will be less intense on that path since they have more time to evaporate. Then,
fewer insects will detect them and follow the inefficient path, leading to an
intelligent collective behavior built on top of naive singular behaviors.

Asserted this, we can now understand how this kind of communication is
a specific form of BIC. Stigmergy does not refer to direct observation of the
source agent behavior but to indirect observation based on post-hoc traces,
the ones left in the environment by the behavior enactment. Thus, an agent
capable of observing a behavior as a whole, from start to finish, can also limit
itself to looking only at the result of the actions of another agent, enabling
more complex forms of communication.

The stigmergy exploitable in MASs is known as cognitive stigmergy [51],
and this connection exists because stigmergy quintessentially involves the fun-
damental dimension of the environment, which can model all of the concepts
shown, from pheromones to evaporation. But, since we have previously shown
how BIC is more general than stigmergy, we will devote our efforts to support-
ing the former through embodiment, which will also encompass supporting
cognitive stigmergy. Also, this is why we will refer to BIC and do not explic-
itly mention stigmergy in the following.

In an application for collaborative editing of documents, communication
through behavior is what motivates the implementation of the movement of
the different agents’ cursors along the document. If a user sees another one
working on a paragraph, they could decide not to join them and start working
on a different section without overlapping. Not having shared cursors between
agents because of the missing BIC it stems from would make editing the same
document at the same time more difficult without risking changing what some-
one else was working on, making them lose the accumulated work.

3.1.3 Agent accountability

Embodiment unlocks another motivating factor: holding agents of the sys-
tem accountable for their behavior, which descends from BIC. Since an agent
can look at actions performed by other agents, which we said in the previ-
ous chapter is the main characteristic of BIC, it can also decide if those were
lawful or not. By doing this, the system holds accountable the agents that per-
formed such actions independently if the monitoring agent decides only to log
the actions it has seen or even punish or reward the agents performing them.
Simple monitoring and logging enable future auditing from system administra-
tion and post hoc analysis of possible security breaches, while direct action on

34 CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS

the offending actor is to sanction the wrongful behavior. With the notion of
embodiment, there also would not be any possibility for the monitored agents
to escape accountability since the observability of their actions would be a
mechanism baked into the system, and then accountability if permitted.

This property is particularly noteworthy in open systems like Web-based
ones since their components could be at cross-purposes, as we already said in
Chapter 2.2.1, making this feature stand out on its own. In an open system,
to grant accountability, additional mechanisms need to be in place to ensure
that no agent misbehaves since we cannot rely on the correctness of the single
agents because we cannot have control over each system component. In a
collaboratively written encyclopedia like Wikipedia, not having the possibility
to monitor other agents would make it impossible to kick or ban users who
actively try to compromise what other users have previously written, leading
to a degradation of the content quality.

3.1.4 Agent situation-dependent interaction

The last factor we identified as a motivation for embodying agents is to let
agents interact “situationally,” to enable interaction depending on the current
situation. It derives from the idea that after discovering a body, accessing it
could communicate information about the body itself, like metadata regarding
the abilities and the capabilities of the owner agent. For example, an agent
employed in a system managing a shop floor in a factory could advertise the
ability to know how to operate a robotic arm. This metadata can also contain
agent preferences regarding communications from other agents, so addresses
and formats for the messages the owner agent wants to receive [67]. The
information found could depend on the body implementation or the specific
workspace in which the body finds itself, i.e., it enables interaction between
agents depending on the current context or situation, hence the name. In
developing a collaborative document editor, situational interaction could be
the basis for implementing a mechanism for contacting users in different ways
depending on whether they are online. If they are online, observing their body
would allow others to discover that a chat can be initiated with them, while if
they are offline, their body would communicate to rely on email communica-
tion instead. These are preferences regarding communication exposed through
bodies like the ones we were referring to before, making this an example of
interaction depending on environmental conditions.

CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS 35

3.2 Alternative and integrative approaches

We could attempt other approaches for implementing the same presented
motivating factors, but we argue they are not as apt as solutions as the em-
bodiment is in this particular context. For example, we could introduce a
coordination artifact [65] in the system, an artifact to be used by agents for
helping them coordinate, and in particular, register to and leave their infor-
mation in, to support the discovery of agents and their capabilities. It would
violate our principle of minimal a prior: knowledge since all agents joining the
system would need to be programmed at least knowing about the existence of
this artifact and its interface, leading to less open systems.

Moreover, introducing a single artifact in the environment represents a
centralized solution, which, in distributed systems, could represent an unac-
ceptable single point of failure if high availability is a desired non-functional
property. Replicating an artifact multiple times containing the same infor-
mation would lead to difficulties related to the consistency of replicated data,
primarily when network partitioning occurs [11]. Embodiment is, by nature, a
decentralized approach, and each body contains only the data referring to it-
self, so if a network partitioning occurs, making some information about bodies
inaccessible, it would be that information related to those bodies unavailable
in any case.

The functionality and the interface of the coordination artifact could be
standardized, for example, using some known patterns like the Agent Manage-
ment System (AMS) or the Directory Facilitator (DF) defined in the Founda-
tion for Intelligent Physical Agents (FIPA) specification [1]. However, using
the AMS pattern would place more responsibility on the artifact than neces-
sary since it would also have a supervisory role in the system, adding more
complexity than is strictly required. Even more, MASs typically implement
their AMSs as agents, thing demonstrated by the fact that the FIPA spec-
ification reserves a special agent identifier for it, while what we are trying
to model is a service to be used by agents, hence an artifact, a completely
different kind of abstraction following the A&A meta-model. Using the DF
pattern would require the creation of a network of federated artifacts for sup-
porting decentralized queries, and the query propagation would happen only
up to a maximum depth level, undermining scalability and evolution of the
system [18]. A less complex solution could use both the message broker and
publish-subscribe patterns. In this case, the coordination artifact would be the
message broker that the agents publish on and subscribe for information, but
then all knowledge about the functionalities of such an artifact would need to
be hard-coded into the agents.

Moreover, embodiment grants a native integration with the MOISE+ or-

36 CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS

ganizational model [36], an integration otherwise absent with coordination
artifacts without additional effort. If we recall the “communicability through
behavior” feature quoted in Chapter 3.1.2, we know that bodies notify their
observers of the actions the owner agent is enacting. As we will show, this
happens through the generation of action completion events, enabling the im-
plementation of special rules in the system, called “count as” rules, which
automatically translate the completion of an action into the completion of a
goal. It implies that embodiment supports these rules without additional pro-
gramming on the body side while using coordination artifacts instead would
force their designer to program them explicitly to produce these events. Lastly,
using MOISE+ would require the designer to define groups, roles, goals, mis-
sions, and norms binding roles to missions for the system. What we said
demonstrates the unwieldy overhead in the specification and implementation
of MOISE+-based organizations for simple, flexible, and automatic monitor-
ing use cases, situations for which we argue embodiment is fitter, making these
two approaches natural complementaries.

3.3 Defining a body

Now, we want to define an agent’s body in a way that encompasses all the
relevant characteristics for describing it.

Definition 3.3.1 (Agent body). An agent’s body is an artifact reifying its
owner in the environment, related to its owner’s identity, even if the iden-
tity relationship is hidden from others. It mediates action for the agent in
a transparent-by-default manner and perception in a timely fashion. It al-
lows others to observe the owner and perceive affordances to interact with the
owner, affordances depending on the environment.

In the rest of this chapter, we elaborate further on this definition to justify it
by exploring each of the characteristics that compose it, characteristics which
we identified during our research. Without pretense of completeness, these
characteristics should represent an agent’s body abstraction, but they should
not be supported by thinking of an agent’s body as a software analogous to a
human body. This idea is openly misleading, even if it accords with a concept
our common sense suggests. Instead, the body characteristics must be only
those either aiding the implementation of the previously shown motivating
features or those representing some hypermedia constraint we adhere to. So,
after explaining each property in detail, along with from what ideas it stems,
we will show which motivations induced them. We are not advocating that our
body definition is always valid, au contraire its applicability strictly depends
on the motivations and the context that induced it.

CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS 37

3.3.1 A body is concrete

Definition 3.3.2 (Concreteness). Concreteness is the property of an agent’s
body to always be reified in the environment it inhabits, either explicitly or
implicitly.

The first property we find essential for an agent’s body is concreteness:
for a body to be concrete means to have a representation in the environment.
Following from the A&A meta-model, we get that concreteness implies that
the body must be an artifact and, being so, it must pertain to a specific
workspace, which in CArtAgQO is the workspace the agent has joined thanks
to that distinct body. The body is not only a bridge between the agent’s mind
and its environment in general, but it is a bridge between the mind and a
particular workspace, meaning that an agent could be reified multiple times
into its environment depending on which workspaces it joins.

In a hypermedia MAS, to create a hypermedia environment, the architec-
ture must represent all system elements as interlinked resources, accessible
through a uniform interface, as the relationships between them. In our refer-
ence architecture, this led to superimposing a knowledge graph representing
the environment upon a lower layer purely made of artifacts and workspaces
[18]. We then argue that a hypermedia environment should represent bodies
in its knowledge graph as resources as it does for the other artifacts. This
resource-based representation enables discoverability as a functionality deriv-
ing from embodiment. If an agent’s body is perceived in a workspace, then it
can be concluded that the agent joined that workspace, or, at least, that an
agent joined that workspace, if identification information is not provided.

It could happen that agents do not need a representation in the environment
since it could increment the complexity of the system implementation without
a valid reason. In those cases, the environment knowledge graph should not
explicitly represent bodies, which means that environment implementations
can also decide to represent bodies implicitly. For example, this could be the
case when agents limit themselves to interacting by employing coordination
artifacts, such as blackboards and tuple spaces: in those cases, all that is
needed is the artifact chosen for interaction since it fully encapsulates its usage.
As we will see, even if we introduce the notion of a body through which an
agent can act on its environment, artifacts retain their property of completely
hiding inside them the service or functionality they represent. The environment
knowledge graph can still acknowledge the existence of bodies in some implicit
way, for example, by giving them an identifier and relating it with the identifier
of the agent owner of the body. Another way could be to state the body’s
existence in the semantics of the ontology used for modeling the environment,
so, for example, every time an agent is “part of” a workspace in the model,

38 CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS

it is implied by the ontology that the agent has a body in that workspace,
without explicitly representing it.

This minimalism of representation is in accord with the principle for which
we strive to keep systems as simple as possible by making their environment
not contain more than necessary. But we are not renouncing making the body
a part of the environment it inhabits because otherwise, it could not be a link
between the agent’s mind and the environment, which is its nature by our
definition.

3.3.2 A body is identifiable

Definition 3.3.3 (Identifiability). Identifiability is the property of an agent’s
body to be always related to the owner agent and, being so, to the owner
identity independently from system constraints preventing other agents from
discovering this relationship.

Before delving into the next property we established for agent bodies,
identifiability, we first need to introduce the notion of affordance. Following
Chemero’s definition, an affordance is a relation between the agent’s abilities
and the environment’s features, perceivable by the agent itself [17]. It means
an affordance is what an agent perceives about its environment offering, or
affording, to it to carry on an action, provided that the agent has the ability
required to perform that action. For example, the affordance to climb is that
hint the agent feels whenever it has the strength to do it, which is the ability
to perform that action, and finds itself in front of a surface with stable grips,
which is the environment with the appropriate features.

Now, knowing what an affordance is, the question that naturally follows is
what kind of affordances an agent would perceive thanks to the body of another
agent. We argue that having other agents’ bodies available makes an agent
capable of identifying their owner but also allows interacting with it. Similarly
to humans, for example, entering a room where there are other people enables
someone to know who’s in the room, call them for attention, or speak to these
people simply because it can interact with their body and then their perception
system. So, an agent entering a workspace will be able to understand which
are the bodies part of it, then which are the agents who currently joined the
workspace, and decide to interact with said agents. This feature works for
every workspace, provided that it allows for discovering artifacts in them, as
for humans in our example, which are always capable of visually identifying
and interacting with other people in a room unless it is entirely dark.

We then argue that the first affordance an agent perceives about another
agent’s body is related to retrieving the identity of the owner of that body,
which is the sole proprietor, distinguishing it from the other agents. We could

CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS 39

model this affordance as an action to retrieve the agent’s identity offered by its
body or as a piece of information part of the body itself. In a social network,
for example, account profiles can be regarded as the embodiment of users on
the platform. In this case, the only way to identify and distinguish a user
in the platform is by their profile and the information stemming from it: two
comments under a post were left by the same user if the author’s name in both
refers to the same profile, which is part of the profile itself.

Since a body is always associated with the identity of its owner, if agents
other than the proprietor control its body, other agents would not be able to
distinguish between them and the owner, regarding all ultimately as a unique
entity with the same identity. But this would not stop, for example, from
holding the body accountable for the behavior it enacts. Coming back to
the social media example, if some breach in a profile happens, then multiple
agents would be controlling the same body, and other users of the platform
would not be able to distinguish only from the profile information if the owner
of the profile or an attacker did a specific action. At the same time, the
unusual behavior could alert the other users and make them distrust that
specific profile, “punishing” it for the behavior it enacted independently from
the actual user controlling it.

There could be cases where forbidding to make explicit the agent identifi-
cation from its body could be beneficial, i.e., it allows to keep the body anony-
mous. Body identification allows an agent to discover who is in a workspace,
observe the actions of a specific agent, and hold it accountable for its behavior.
However, hiding the identification relationship does not impede the implemen-
tation of these functionalities. It merely reduces their scope: an agent would
still be capable of discovering that there are bodies in a given workspace,
simply that it would not know whose body they are. Similarly, the agent
could observe actions and monitor the behavior of other agents through their
bodies, simply without knowing which agent in particular is performing them
and which agent is rewarding or punishing for such behaviors. Ultimately,
anonymity is not binary but ranges on a spectrum from complete identifica-
tion to total blindness, passing through distinguishing an agent as part of a
more or less ample subgroup without knowing which member of that specific
group is. We argue that limiting bodies to be always explicitly identifiable
would be too much of a limitation in their utility, preventing exploring other
attractive use cases. Moreover, this idea does not forfeit the identity property:
the association between the body and the owner’s identity would still exist in
this case, but the system requirements prevent other agents from discovering
it, making it implicit.

40 CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS

3.3.3 A body is clear

Definition 3.3.4 (Clearness). Clearness is the property of an agent’s body
that obligates the owner always to use its body during its actions but in an
implicit way in default conditions.

Another fundamental property we found for agents’ bodies is clearness. In
humans, some mind processes are not tied to deliberate action and happen
without the subject thinking about them: this is the underpinning of the
dual process theory in psychology and its accounts of reasoning in particular.
This theory states that in every brain exist two systems labeled system 1
and system 2 [57]. The first is related to intuition or automatic process, so
to the reasoning part preoccupied with unaware or unintentional actions: the
reasoning the brain decides to carry on on its own, without the conscious mind
involved. The second system relates to proper reason, the active, conscious
human activity that follows logical standards. Even if dual process theory
nowadays seems limited in explaining the body of knowledge we have about
the human mind [47], we keep it as part of this explanation, being nothing
more than a practical example.

In our model, we want bodily actions to result automatically from the sys-
tem 1 in motion, as it is for humans. Actions happen without the agent being
conscious of using its body in doing them, even if the action still occurs and
the body nonetheless exists. This choice stems from two different needs, one
coming from the A&A meta-model and one from the principle of economy of
representation we already outlined. If all actions were required to involve a
body explicitly, we would misalign our notion of embodiment with A&A. In
CArtAgO, for example, agents always explicitly using their body to act on an
artifact translates to agents that can only act by using a “do action” opera-
tion in the usage interface of their body artifact. This constraint would tie all
artifact operations to bodies, and without an explicit body, there would be no
possibility to interact with artifacts, robbing the notion of an artifact of its
independence and capability to encapsulate its usage fully. Moreover, if we re-
call operations like the one for joining a workspace in CArtAgO, the operation
necessarily creates a body artifact in the joined workspace. But, if the body
should always be involved explicitly, it would be a burden on the agent to in-
stantiate such an artifact, which is unacceptable. Secondly, involving the body
explicitly every time the agent acts would add an unnecessary indirection level
since the agent could achieve the same by directly using an artifact, following
A&A. Then, this constraint would add more complexity without a reasonable
justification, which could also lead to the degradation of performances without
justification.

The clearness property does not entail that the agent could not use its

CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS 41

system 2 to act, so being aware of its own body while doing something is not
prohibited, but it should not be the norm. It should be an exception performed
by a self-aware agent wanting to reason about itself and the actions that it is
performing. The same goes for humans, who generally perform their tasks
using their bodies without thinking about it unless they want to deal with
more cognitive workload for some reason. So, a motivation to consider the
body as visible is to be fully aware of when it gets used and when it is not, so
to not be transparent about the body usage but reason on it.

The name of this property stems from the two different aspects it wants
to model: the agent uses its body without putting in doubt its use, and it is
evident to the agent that it is using it, meaning that the body is “clear” to the
agent. But at the same time, the body is transparent to its owner since the
agent typically uses it without actively thinking about it, which implies again
that the body is “clear” to the agent.

Giving the clearness property as valid implies that all the information in
the body representation should not explicitly reference the body itself. The
fact that the body mediates access to this information and the information
depends on abilities induced by the body are not valid motivations for explicitly
referencing it. As it happens in English, we do not say that a body can
walk fast, but rather that a person can walk fast, even if it is a property of
their body and is a piece of information discoverable only through their body.
The absence of explicit references in the body to itself means that an artifact
operation should not contain the agent’s body as a parameter in its signature
unless it has a valid reason, for example, because that operation will mutate
the given body.

3.3.4 A body is timely perceiving

Definition 3.3.5 (Timely perception). Timely perception is the property of
an agent’s body to always communicate, in a timely fashion, the percepts it
receives from the environment to its owner agent.

Since we argued that bodies are vessels for the perception of stimuli coming
from the environment for the owners of such bodies, we claim that bodies
should be responsible for notifying the agent about these stimuli. We call this
property timely perception since its objective is to codify the possibility for
an agent to perceive its environment, to make it perceptible, by its body. The
timely part refers to how the body should provide the feedback, which we argue
should respect the deadlines the agent sets for this feedback to be received.

Dealing with time and, most specifically, simultaneous events is a com-
plicated task in distributed systems, the category of systems in which MASs
fall. So, when we envisioned this property, we assumed the possibility of having

42 CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS

simultaneity between the percept generation by the environment and its trans-
mission by the body, a transmission that could take time to reach the agent
and not be simultaneous from its point of view. This property opens multiple
discussions since nothing guarantees this simultaneity, and we will not discuss
here under which conditions could happen and the conceptual consequences of
it for a system.

The advantage of having this property is clear: the agent does not have
to proactively query its body to get new percepts since they are provided by
the latter, simplifying the internal architecture of an agent. This property
also helps distinguish a body from other abstractions similar in features but
different in conceptual level, like mailboxes or social media profiles. A mailbox
or a social profile, assuming no notification mechanisms are in place, will not
alert the agent owning them when something gets updated. For example,
mailboxes do not alert their owner when a new letter arrives, and profiles do
not notify when changes happen in the displayed information.

The timely perception property does not entail a specific implementation
for the mechanism for receiving environmental stimuli since this is a concern
proper of a different abstraction level. The platform implementing the agent
architecture could still poll their body for percept notifications instead of rely-
ing on reactive mechanisms implemented in the body, provided that the agents
do not need to call explicitly a “perceive” operation to access their percepts.

This idea stems once again from how the human body works: the mind
is not continually checking if the body does perceive something new, but it is
the body that has its sensors connected to the system a person uses to process
stimuli, which is the nervous system.

3.3.5 A body is focusable

Definition 3.3.6 (Focusability). Focusability is the property of an agent’s
body always to allow other agents to observe the body itself and perceive
affordances to interact with the owner, affordances dependent on the environ-
ment.

We argue that to unlock three motivating factors deriving from embodi-
ment, communication through behavior, accountability, and situational inter-
action, another affordance needs to be perceived thanks to an agent’s body,
which is the affordance to focus the body. In other words, a body artifact
needs to be focused on by other agents, to be looked upon, to let the agents
receive its properties, the changes it goes through, and the events it generates.
In this way, we allow other agents to inspect the capabilities an agent has,
to get notified when these change, and to coordinate with the body’s owner

CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS 43

by initiating their behavior in correspondence to the start or the end of some
other behavior enacted by the owner agent.

We found no better entity to generate signals about what an agent is do-
ing than the agent’s body since the parallelism with humans is once again
remarkable. If we consider people performing a stadium wave, only the body
movements signal the beginning or the end of a person’s stretch, so focusing
on the body of the previous person is the only way for the next one to keep the
choreography coordinated. Focusing on a body would support BIC because
getting notified of the signals corresponding to an action starting and ending
would allow an agent to understand which actions are successfully performed
by another and then which is the behavior that the latter is enacting, leading
to the focusing agent reasoning on the meaning behind those actions. The
support for accountability is the natural consequence of this: we can imagine
creating a supervisor agent who monitors all the others by “looking” at their
subordinates’ behavior after focusing on their body, checking if what they are
doing is expected and correct. Then, for the supervisor agent, it would be
simply a matter of logging the agents’ actions to allow a following auditing
session or taking direct action against the offending agents.

Given what we previously said in Chapter 3.3.2, we also advocate for a
body representation to contain information about its owner agent, as it hap-
pens with human bodies. Looking at other people allows for deducing some
contextual information, such as the age, origin, and abilities of such people: a
face with wrinkles signifies that a person is old, and a tall person can reach
higher shelves not accessible to others. So then, focusing on the body arti-
fact should also be used for retrieving information about the body itself or
the capabilities an agent has, pieces of information dependent on the context,
which is the environment the body finds itself in. Using the focus mechanism
to retrieve such information also allows for modeling it through observable
properties, which can change dynamically, and the focusing agents can get
notified about their updates without any additional action. This feature sup-
ports the situational interaction functional property since focusing agents can
understand what the owner of the focused body can do and then engage in in-
teractions, such as exchange messages, which can depend on such abilities, for
example, asking to complete a task the owner agent can do, but the focusing
agent cannot.

It is important to note that agents can also look at their bodies, focusing
on their bodies to understand what information about themselves is publicly
exposed and, possibly, change it. The usefulness of such an operation lies
in those cases where the body creation is not managed by the agent, or at
least not entirely, as it happens on social media platforms, where these last
ones manage the account creation while the users only “fill in the blanks”

44 CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS

with their information. So, the users need to check their profiles to gather
information about themselves and fine-tune what others can see about them
on the platform. We see agents capable of doing this as exploiting the reflective
level of the environment since they are reasoning about their environment and
changing it to fit their needs.

Secondarily, we could argue that an agent looking at the properties in its
body representation seems like a baby looking at their body for the first time
and discovering what it can do. We could then regard that as a form of self-
reflection, such as looking in a mirror and perceiving the self, a self-conscious
act, complementing how an agent self-reflects internally, even if it translates
technically into manipulating another artifact in the environment.

An agent’s body could contain multiple properties, but the only ones that
should be present should be the ones directly related to the body or the
workspace the body is in. The other properties are ones the agent has re-
gardless of its body: they could be part of a representation of the agent’s mind
or, equivalently, a general representation of the agent, not tied to a specific
workspace.

3.4 Presenting a body

As a final remark about this thesis contribution, we present a possible
representation of an agent’s body in Turtle format, visible in Listing 3.1, as it
would appear in a knowledge graph part of a hypermedia environment. The
representation uses the Thing Description (TD) ontology briefly presented in
Chapter 2.2.3, along with other ontologies it requires to format a TD correctly.
Moreover, the presented listing uses the hMAS ontology [37] for describing
hypermedia MAS concepts like Agent or Artifact, which descend from the
A&A meta-model.

This TD displays the body of an agent named “Alice,” as shown by lines
9 and 10 in the listing, a body created by the environment in the workspace
identified by the URI http://localhost:8080/wksp/wO0, as visible in line 12.
The simple presence of this representation in its knowledge graph covers the
notion of concreteness since the characteristic requires that the environment
represents the bodies of the agents that are part of itself. Line 13 in the list-
ing, associating this body with the URI of its owner, covers the characteristic
of identifiability instead. Since this environment does not hide the identity
relationship between this body and its owner, it is possible to discover it ex-
plicitly, so it represents it as a triple relating the URIs of the body and the
owner agent. Being the body both concrete and identifiable allows for discov-
ering it as part of a specific workspace and enabling all the other subsequent

CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS 45

motivating features of embodiment.

The body contains two action affordances: one for a sender to tell the
agent some message and one for focusing on the body itself. The first affor-
dance advertises to other agents how to communicate with the owner, enabling
the latter to specify preferences in communication and so enabling situational
interaction. Furthermore, a specific affordance could be published or retracted
dynamically by changing the body TD, so we could decide to remove this first
“tell” affordance whenever the agent finds itself in a workspace in which it can-
not receive messages. This possibility makes the interaction between agents
reach a higher level of context dependency.

The second affordance allows focusing on the body by making an HTTP
request to a specific endpoint and passing a callback URI as part of the re-
quest body. The system will notify the client through the URI of changes in
the body representation or actions the agent performs through that body. This
affordance enables the property of focusability of bodies while supporting the
motivating factors of communication through behavior and accountability of
agents for their actions. At last, this affordance allows for a more straightfor-
ward implementation of situational interaction, not forcing the client to poll
the body for changes in its TD.

No affordance receives the body as a parameter in its request, so no explicit
reference to the body is present in the representation unless it is the target of
an affordance, as the “focus” affordance shows. This decision illustrates how
we could implement the principle of clearness of bodies in the environment
knowledge graph. At the same time, we do not display the principle of timely
perception in action since it relates to a behavior the body needs to enact
without the intervention of other agents, so we do not want to advertise it on
an interface thought for agents.

Finally, in Listing 3.2, we show a workspace of a hypermedia environment
containing an agent. This listing is an example of what we were referring to as
an “implicit” representation of a body. If the ontology specification indicates
that having an agent in a workspace implies the existence of its body in the
workspace, then the body is still represented, but simply in an “invisible”
manner.

In the next chapter, we will display a software implementation incarnating
all previously shown characteristics and concepts, demonstrating and evaluat-
ing their actual utility.

46

CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS

Oprefix
Oprefix
Oprefix
Oprefix
Oprefix
O@prefix
Oprefix

hmas: <https://purl.org/hmas/> .

td: <https://www.w3.org/2019/wot/td#> .

htv: <http://www.w3.org/2011/http#> .

hctl: <https://www.w3.org/2019/wot/hypermedia#> .
wotsec: <https://www.w3.org/2019/wot/security#> .
js: <https://www.w3.org/2019/wot/json-schema#> .
ex: <https://example.org/>.

<http://localhost:8080/wksp/w0/agt/a0> a td:Thing, hmas:Artifact,
ex:Body;
td:title "Alice";
td:hasSecurityConfiguration [a wotsec:NoSecurityScheme];
hmas:isContainedIn <http://localhost:8080/wksp/w0>;
ex:isBody0f <http://localhost:8080/agt/a0>;
td:hasActionAffordance [a td:ActionAffordance;
td:name "tell";
td:hasForm [htv:methodName "POST";
hctl:hasTarget <http://localhost:8081/inbox>;
hctl:forContentType "application/json";
hctl:hasOperationType td:invokeAction

1;

td:hasInputSchema [a js:0ObjectSchema;
js:required "sender", "content";
js:properties [a js:StringSchema, hmas:Agent;

js:propertyName "sender"

1, [a js:StringSchema;

]

js:propertyName "content"

1, [a td:ActionAffordance;
td:name "focus";
td:hasForm [htv:methodName "POST";
hctl:hasTarget <http://localhost:8080/wksp/w0/agt/a0/focus>;
hctl:forContentType "application/json";
hctl:hasOperationType td:invokeAction

1;

td:hasInputSchema [a js:0ObjectSchema;
js:required "callbackURI";
js:properties [a js:StringSchema;

]

js:propertyName "callbackURI"

Listing 3.1: Example of an agent’s body in Turtle format.

CHAPTER 3. EMBODYING AGENTS IN A WEB-BASED MAS

47

Q@prefix hmas: <https://purl.org/hmas/> .
O@prefix td: <https://www.w3.org/2019/wot/td#> .
Q@prefix wotsec: <https://www.w3.org/2019/wot/security#> .

<http://localhost:8080/wksp/w0> a td:Thing, hmas:Workspace;
hmas:contains <http://localhost:8080/agt/a0>;
td:title "Production";
td:hasSecurityConfiguration [a wotsec:NoSecurityScheme]

<http://localhost:8080/agt/a0> a hmas:Agent .

Listing 3.2: Example of a workspace in Turtle format.

Chapter 4

Implementation and Evaluation

We brought the previously presented model for agents’ bodies to the Yg-
gdrasil framework since it is our reference system for building hypermedia
environments, incarnating all principles we want to adopt about Web-based
MASSs and the REST architectural style while following the Agents & Artifacts
(A&A) meta-model [18]. So, in what follows, we list the additive changes we
implemented in the framework to support the factors motivating the embodi-
ment of agents and the characteristics that a body should have, conforming to
the body and workspace representations shown in Chapter 3.4. Showing how
the presented concepts get reified in our implementation, so how we gave them
a technical basis for their existence, helps in grounding the thesis work.

Since another objective of this thesis was to develop a testing tool for
Web-based MASs, we decided to attain it not by starting from scratch but by
reusing the Yggdrasil framework, a reason again motivated by the functional-
ities already implemented in this framework. Because of this, we introduced
support for declarative configurations of the environment, enabling the frame-
work users to define the elements constituting the environment without resort-
ing to code or external tools. Then, we brought corrections and adaptations to
Yggdrasil to bring it up to speed with the current quality standards regarding
the code, the test coverage, and the development cycle. These adaptations also
improved the integration with the CArtAgO platform, the architecture, and,
more in general, the non-functional properties of Yggdrasil, like decoupling
between components. We then describe all of these changes here, also.

Finally, the last chapter describes the realization of the prototype system,
demonstrating the use case, from extracting the requirements from the use case
to designing the system at various levels of abstraction. The conclusion of the
chapter shows the system at work, linking its actual behavior to the use case
description. This implementation had then a two-fold goal: to demonstrate
in practice the utility of our notion of embodiment and to demonstrate the

49

50 CHAPTER 4. IMPLEMENTATION AND EVALUATION

effectiveness of Yggdrasil in building testing scenarios.

4.1 Bringing agents’ bodies to Yggdrasil

Primarily, our work on the Yggdrasil project was about applying additive
maintenance [55] to introduce the notion of an agent’s body as a new framework
feature, following the definition we decided on and outlined in the previous
chapter. At first, this feature required us to enable the framework to do CRUD
operations on body resources like the one shown in Chapter 3.4 through Web
API endpoints related to the proper CArtAgO operations, as it already did for
other types of resources like artifacts and workspaces. Secondly, we added the
possibility for clients of the Yggdrasil framework to receive notifications about
updates in the body representation and actions starting or ending performed
through a body using the WebSub protocol. Moreover, we implemented a
SPARQL-compliant endpoint to provide an alternative way to query resources
in the environment knowledge graph.

4.1.1 Creating and manipulating agents’ bodies

Since bodies are concrete as per Chapter 3.3.1, a generic body resource
was given a Web API endpoint for accessing its representation via a GET
request, allowing discovery via crawling of all resources in the environment,
a concept stemming from the single entry point principle which we took as
fundamental [18]. The same endpoint, but using PUT requests, could also
be used for updating the representation, enabling the situational interaction
functionality of bodies described in Chapter 3.1.4. The addition and removal
of such a resource in the environment is handled by the endpoints responsible
for the joining and leaving of a workspace by an agent, aptly updated in their
behavior by us to support this new feature. It implies that the knowledge
graph representation of the workspace gets updated by adding or removing
a semantic reference to the body representation each time the owner agent
joins or leaves such workspace. The body representation is in Turtle format to
allow a semantic understanding of the response by the agent receiving it and
to encode a semantic relationship with the owner agent represented by a URI,
enabling identifiability of the body described in the Chapter 3.3.2.

4.1.2 Querying and observing agents’ bodies

We based the implementation of the feature allowing agents to focus on
bodies, descending from the body property described in Chapter 3.3.5, on
the notification mechanism already present in the Yggdrasil framework, which

CHAPTER 4. IMPLEMENTATION AND EVALUATION o1

uses the WebSub protocol to communicate with the Web clients interested in
receiving notifications. The Yggdrasil framework implements the WebSub hub
role supporting the subscription and the unsubscribing of clients to specific
topics, which are the URIs of the resources existing on the framework [18].
Since also a body is a resource, subscribing for notifications coming from it
would notify a client about its changes and deletion, as for any other resource,
but also the start and the end of the actions the owner agent is performing
through that particular body in the workspace the latter is in. All notifications
are in JSON format and contain four fields:

e “eventType:” the notification type, can be either "actionRequested,” or
"actionSucceeded,” or "actionFailed”;

e “artifactName:” the name of the artifact on which the agent performs
its action;

e “actionName:” the name of the action done on the artifact;

e “cause:” present if the “eventType” field contains the ”actionFailed”
value, the cause of failure of the action.

A client receives an “actionRequested” notification each time the owner
agent uses the Web API endpoint to act on an artifact in the same workspace
of the focused body. The “actionSucceeded” and “actionFailed” notifications
get sent after the underlying CArtAgO platform declares the action completed,
either successfully or not.

We added a SPARQL endpoint to enable resource discovery via querying
as inspired by the previous work on bringing the A&A meta-model at the
knowledge level [13]. SPARQL is a graph query language for RDF graphs
offered by some popular semantic Web frameworks like Apache Jena [4], which
allows a form of discovery that complements crawling, a mechanism already
present in the Yggdrasil framework and supported by the GET Web API
endpoints. The SPARQL endpoint implementation complies fully with the
SPARQL 1.1 specification [62], including optional features but excluding the
possibility of updating the knowledge graph from a query. This feature also
improves body discovery, another enabling feature for embodiment, as argued
in Chapter 3.1.1.

4.2 Bringing Yggdrasil in a testing framework

Building a testing tool for Web-based MASs based on the Yggdrasil frame-
work meant, at first, to improve the life of Yggdrasil users. We added support

52 CHAPTER 4. IMPLEMENTATION AND EVALUATION

for declarative configurations of the environment to enable users to describe
their environment and then have the framework build it following the specifi-
cation without additional tools. Then, we applied some adaptive maintenance
[55] to the code to update it to match the evolved software conditions after its
inception. Adapting Yggdrasil to evolved conditions meant that we needed to
integrate the framework with the latest version of the CArtAgO platform and
that we wanted to superimpose an actor-based architecture on the existing
one. Finally, we applied some corrective maintenance [55] to introduce a code
quality standard, improving Yggdrasil’s overall quality. This maintenance in-
cluded applying refactoring to the codebase, adding tests, coverage checks,
and Continuous Integration (CI) workflows for automating checks upon new
releases and adopting good development practices when releasing new features.

4.2.1 Configuring hypermedia environments

The first change implemented in Yggdrasil to create a testing tool was to
add support for declarative configurations of the environment in JSON format,
aiding future users of the Yggdrasil framework. Specifying statically defined
resources populating the environment before run-time and not having to rely
on a script executing a sequence of HT'TP requests to the framework simplifies
its usage while regimenting how to create resources. The environment speci-
fication is based on the one for JCM files, the configuration files for JaCaMo
projects, meaning that it necessarily conforms to the A&A meta-model since
also the JaCaMo platform does. So, it is possible to specify a new workspace
to create, referencing its optional parent by name, as a JSON object containing
a JSON array listing the artifacts that are part of it and another one for the
URIs of the agents that joined it. Each artifact configuration is a JSON object
specifying its name, its class as a URI of an RDFS class, its initial parame-
ters as a JSON array, and a final array containing the list of agents currently
focusing on the artifact. Each focusing agent configuration is a JSON object
made of the URI of the agent and a callback URI used by the Yggdrasil notifi-
cation mechanism for sending the observable property updates of the artifact
the agent is focusing on.

An example of a possible configuration can be seen in listing 4.1. The en-
vironment configuration shows two workspaces, named “w0” and “wl,” where
the first is the child of the second. Workspace w0 also contains an artifact of
semantic class http://example.org/Counter named “c0,” which takes “5” as
its unique initialization parameter. The c0 artifact is focused on by the same
agent that automatically joins the container workspace. This agent, identi-
fied by the URI http://localhost:8080/agents/test, wants to receive no-
tifications about changes in observable properties of the artifact at the URI

CHAPTER 4. IMPLEMENTATION AND EVALUATION 53

http://localhost:8081/.

The environment can be static, meaning the CArtAgO platform is not ac-
tivated upon Yggdrasil’s startup, making the framework a simple repository
for resource representations. A static environment can be helpful when dealing
with only physical artifacts, meaning artifacts not handled by CArtAgO since
they represent physical devices. In this case, Yggdrasil users supply the rep-
resentations for artifacts, and the framework does not need to generate them.
For a static environment, we can configure a workspace by specifying its name,
the name of its parent, and its Turtle representation as the file path pointing
to it. Similarly, we can configure an artifact in the workspace by specifying its
name and representation as a file path referring to it.

An example of a possible configuration for a static environment can be seen
in listing 4.2. The environment configuration shows two workspaces, named
“test” and “sub,” where the first is the parent of the second, and the second
also contains an artifact named “c0.” For all these entities, the configuration

specifies a file path containing their representation that the framework should
load.

{ "environment-config" : {
"workspaces" : [
"name" : "wi" },
{
"name" : "wO",
"parent-name" : "wl",
"artifacts" : [{
"name" : "cO",
"class" : "http://example.org/Counter",
"init-params" : [5],
"focused-by" : [{
"agent-uri" : "http://localhost:8080/agents/test",
"callback-uri" : "http://localhost:8081/"
}]
1,
"agents" : ["http://localhost:8080/agents/test"]
}
]
T}

Listing 4.1: Example of an Yggdrasil dynamic environment configuration
showing two workspaces and an artifact.

54 CHAPTER 4. IMPLEMENTATION AND EVALUATION
{ "environment-config" : {
"workspaces" : [
{ "name" : "test",
"representation" : "test_workspace_td.ttl" I},
{
"name" : "sub",
"parent-name" : "test",
"artifacts" : [{
"name" : "cO",
"representation" : "cO_counter_artifact.ttl"
X1,
"representation" : "sub_workspace_td.ttl"
b
]
T}

Listing 4.2: Example of an Yggdrasil static environment configuration showing
two workspaces and an artifact.

4.2.2 Improving Yggdrasil architecture

Integrating our framework with the latest version of the CArtAgO platform,
the 3.1 one, meant updating Yggdrasil’s underlying artifact management plat-
form. The integration was already present in the repository beforehand but
not brought to the main branch. So, during this thesis, we took the time to
make it conform to the new quality standards we present in the next chapter
and then pushed a new release containing it.

Thanks to CArtAgO, Yggdrasil supports creating artifacts and workspaces,
joining and leaving workspaces, and focusing on artifacts to receive notifi-
cations about observable properties that get added, removed, and updated.
Moreover, the integration with the platform allows the framework to act on
artifacts, but it works properly with only those operations that have at most
one feedback parameter [52], which are arguments to be set inside the oper-
ation to return a result. CArtAgO 3.0 introduced the notion of hierarchical
workspaces [50], so the integration with the latest platform version also added
them in Yggdrasil, which now can create sub-workspaces of any workspace.
Currently, it is not possible to dispose of artifacts from Yggdrasil since the
operation is not exposed, and similarly, it is not possible to stop focusing an
artifact, while it is not possible to dispose of a workspace because it is not
an operation provided by CArtAgO. This limitation implies that removing ar-
tifact and workspace resources on our framework deletes their representation

CHAPTER 4. IMPLEMENTATION AND EVALUATION 35

but does not delete the underlying platform entity. In the focus mechanism
enabled by Yggdrasil, the notification of signals generated by artifacts is not
supported due to limitations in their handling by the CArtAgO platform.

Finally, we want to comment on the alignment between the current imple-
mentation of an agent’s body in CArtAgO and the one we provided during this
thesis work. The functionalities we provided as part of our body implementa-
tion have no connection with the underlying body artifact that the platform
generates when an agent joins a workspace, but we built them on top of other
features that Yggdrasil already offered. This decision stemmed from hard time
constraints for deploying the new features and from the simplicity and higher
maintenance of the offered solution, not entangled with the implementation
choices and limitations of CArtAgO. Furthermore, our notion of body and the
one present in the CArtAgO platform absolve different needs, so making one
rely on the other meant enabling more functionality than necessary, including
functionality that was not to be exposed.

Then, we wanted to improve the decoupling and usability of the framework
since the new features that were about to be brought in could have significantly
reduced the modularization of Yggdrasil. So, as an improvement to the frame-
work, instead of implementing each component as a simple event loop waiting
for messages coming from a shared event bus, architecture inherited from the
Vert.x [24] framework used and visible in Figure 4.1, we moved the event loops
more closed to the actor abstraction. An actor is an entity that operates con-
currently and asynchronously, receiving and sending messages to other actors,
creating new actors, and updating its local state [41]. The event loop pattern
is then a good candidate as a starting point for building an actor abstraction
on top, and the Vert.x platform already offered support for message exchange,
as previously said, but also for creating other event loop instances.

What was left to do was to achieve a better encapsulation of the message
exchange between the event loops, to make them available a “send” operation
with which communicating asynchronously with the other components, limit-
ing the space of addresses to only the ones assigned to the event loops and the
space of messages to only the valid message types. That is why we assigned
a message box abstraction to each component with an implementation of all
messages the component can receive.

Following the concept of more decoupling, we split the project into sub-
projects, one for each software component that we could have shipped sepa-
rately from the core elements. Moreover, we removed the singleton patterns
used whenever possible since they encourage coupling [45] and could harm a
future total decoupling of the framework.

26 CHAPTER 4. IMPLEMENTATION AND EVALUATION

«executionEnvironments
Vert.X platform

wexecutionEnvironments
Event loop

: : CArtAgO Platform

+event bus

+event bus

wexecutionEnvironments
+event bus Event loop THTTP

«wexecutionEnvironments
: : HTTP Server Web Client

+event bus

«executionEnvironments
Event loop

RDF Store

i

+event bus

wexecutionEnvironments
Event loop +WebSub

g HTTP Notification Component

Figure 4.1: UML deployment diagram of the Yggdrasil framework architecture,
showing its event loops running on the underlying Vert.x platform.

4.2.3 Improving Yggdrasil quality

Improving Yggdrasil quality, at first, meant dictating a code quality stan-
dard that would have eased the current and future development of the frame-
work. This effort removed the git submodule [14] dependencies, not managed
by Gradle [32], allowing for the update of the build tool and Java language ver-
sions to the latest available, which were the 8.4 and the 21 ones. This update
led to a complete refactoring of the code base and the build system configu-
ration and the latter’s migration to the Kotlin language to exploit the newer
features the two introduced. We added some plugins and properly configured
them to run during the Gradle check task to keep the code quality at the estab-
lished standard by providing feedback on the current status of the code base.
We added the Checkstyle [16] plugin for performing code linting following the

CHAPTER 4. IMPLEMENTATION AND EVALUATION o7

Google code style and the Spotbugs [56] and PMD [49] plugins for static code
analysis, checking for common Java programming mistakes. We strictly fol-
lowed a policy to have zero warnings and zero errors from these plugins, which
sometimes required choosing where to silence said warnings conscientiously.

Secondly, we decided to improve the development cycle of the framework
since it follows an evolutionary prototyping [23] process, which developed the
software with only confirmed requirements in a structured manner, but only for
exploring such requirements and their feasibility. This development strategy
led to reduced testing and corresponding low test coverage, a metric typically
used for monitoring the effectiveness of said testing, which made it impossible
to verify if newly added features were properly functioning or if they caused
regressions in other functionalities. To fix this, we implemented a CI workflow
to automatically run tests verifying the adherence of the implementation to
its requirements while keeping the JaCoCo [44] test coverage plugin active.
Moreover, the workflow had steps for checking if each new push to the Yggdrasil
repository followed the code quality rules we previously devised, which means
that one of the steps of the workflow was to run the previously mentioned
Gradle check task. Since GitHub is hosting the project, the natural choice for
implementing a CI workflow was to use GitHub Workflows [31], which support
the diverse tasks we mentioned execution as GitHub Actions.

The requirement for testing and coverage assessment led us to add the Ja-
CoCo plugin to the project but also load the generated analysis to the Codecov
[27] website to visually analyze the results and the areas in which we could im-
prove. Then, we added substantial testing until coverage on the overall repos-
itory reached 75%, a value deemed sufficient given the nature of the project.
The rule of thumb for coverage is to reach a value greater or equal to 80%,
but it is a challenging threshold for projects that are not libraries, meaning
software equipped with classes that are executable only in production and not
during the test phase.

As a closing remark, we want to specify that we used the Trunk-based de-
velopment [35] branching model for organizing the Yggdrasil repository, which
is apt for supporting the integration of new code with a CI style, which accords
with the idea of adding CI workflows aiding present and future development.
Moreover, we adopted the Test Driven Development [5] process while adding
the new Yggdrasil features to ensure that we adequately tested everything we
pushed to the main branch, not to introduce any regression and to maintain
the code quality and the test coverage both high. To further ensure this, after
the introduction of a new feature into the code base via its branch, but before
its merge on the main branch happened, we opened a pull request starting the
code review process, to assess quality and adherence to non-functional prop-
erties of the project of the new implementation. We imposed the conventional

58 CHAPTER 4. IMPLEMENTATION AND EVALUATION

commits [21] style for each commit message, following the extended “Angu-
lar” convention, to support a future Continuous Deployment workflow that we
could add to the repository in the future.

4.3 Use case realization

This last Chapter describes the use case implementation, use case presented
in Chapter 1.3. First, we list the functional requirements the complete system
must have to realize the use case presented using a Requirement Breakdown
Structure. We do not list any non-functional requirements since the system is a
demonstrative one, realized as a prototype: no concerns regarding the quality
of the provided solution are of interest in this thesis. Then, the implementation
requirements are listed, motivated by the satisfaction of the previously shown
functional requirements.

Secondly, we illustrate the design of the solution we devised, starting from
its architecture, composed of the structural and behavioral constraints that
allow satisfying the requirements. Then, we outline some detailed design deci-
sions to describe relevant choices for the subsequent implementation phase of
the solution.

Finally, we will showcase the system at work, showing how its behavior is
the implementation of the use case we discussed in the introduction.

4.3.1 Requirement analysis
Functional requirements

1. The complete system must be a distributed one, hence composed of mul-
tiple subsystems;

2. The first subsystem models the shared environment used by the other
two subsystems;

1. The shared environment must contain a production workspace con-
taining the two robotic arms;

2. Both robotic arms must be of the same class, offering the same action
affordances;

1. The first affordance represents the arm movement from the shop
floor to the warehouse and fulfills the task assigned by the super-
visor to the agents;

CHAPTER 4. IMPLEMENTATION AND EVALUATION 99

2. The second affordance represents the arm movement from the ware-
house to the shop floor and does not fulfill the task assigned by the
supervisor to the agents.

. The subsystem must support the search in the environment via query-

ing to enable the discovery of resources, also implying bodies;

. The subsystem must support the updating of body descriptions, en-

abling situational interaction;

. The subsystem must support sending notifications about the agents’

actions, enabling Behavioral Implicit Communication and monitoring
between agents.

1. The system must notify an observer of an agent action starting;
2. The system must notify an observer of an agent action ending;

3. The notifications must always show the action performed.

The relationship between the owner and the robotic arm must be en-
coded in the environment in such a way that the agent can automatically
discover it;

3. The second subsystem models the original automation system containing
the Alice and Bob agents;

1.
2.

The Alice and Bob agents must join the production workspace;

After that, they must search via querying for the robotic arm the
system assigned to them;

1. The relationship between the owner and the robotic arm must be
encoded in the environment in such a way that the agent can au-
tomatically discover it;

2. The relationship must not be hard-coded, i.e., the system could
assign both robotic arms to both agents, provided that exactly one
arm gets assigned to exactly one agent.

Upon finding their robotic arm, they must update their body seman-
tic description in the environment, showing their new capability of
operating it;

1. The agent must show this capability thanks to an action affordance
related to sending messages to the agent for achieving the “move
cup” goal;

2. The message must contain the starting and ending location of the
robotic arm to allow the agents to disambiguate between the two
affordances their arm offers them.

60

CHAPTER 4. IMPLEMENTATION AND EVALUATION

4. They must also update their body semantic description showing a
capability to receive generic messages;

1.

The agent must show this capability thanks to an action affordance
related to sending messages to the agent to tell something.

5. Upon receiving a request for moving a cup, each agent must decide
what to do next, depending on whether they are well-behaved or not;

1.

The property of an agent to be “well-behaved” must be an in-
put parameter, so it must not be hard-coded. Both agents could
be well-behaved or not, provided that at least one agent is well-
behaved and one is not;

. The well-behaved agent must perform the action that corresponds

to its task, so using the robotic arm for moving a cup from the
shop floor to the warehouse;

. The ill-behaved agent must perform the arm action unrelated to

its task, which is using the robotic arm to move a cup from the
warehouse to the shop floor.

4. The third subsystem models the new automation system containing the
Carl agent.

1. The Carl agent must search in the shared environment for agents
fulfilling its need for moving two cups;

1.

The Carl agent must not be aware of the workspace the agents are
in, their name, and their affordances;

. It must perform its search solely based on its need for agents that

show an affordance for sending them a message to achieve a “move
cup” goal;

Finding an agent must allow for the retrieval of its preferred way
to be contacted for performing the task for reaching said goal.

2. After finding the two agents, the Carl supervisor must start focusing
their body for receiving the notifications about their task completion;

3. Then, it must assign both the task to move one cup from the shop
floor to the warehouse;

4. After an agent completes the action related to the move cup task, the
system must notify the supervisor.

1.

If the agent performed its task incorrectly, the supervisor must

notify the misbehaving agent of the punishment inflicted on it;

1. The notification will happen through the affordance for sending
messages to the agent which it has exposed through its body;

CHAPTER 4. IMPLEMENTATION AND EVALUATION 61

2. Carl must discover this affordance along with the one for achiev-
ing the “move cup” goal, so it must not know anything regarding
the affordance in advance.

2. Next, the supervisor must reassign the task to the other agent, who
must complete it correctly.

Implementation requirements

The platform implementing the shared environment should be the Yg-
gdrasil framework. This decision is due to its capability to satisfy requirements
2.3, 2.4, 2.5, and their sub-requirements thanks to the additive maintenance
we performed and which we described in Chapter 4.1. Moreover, the Yggdrasil
framework can easily allow modeling an environment satisfying requirements
2.1 and 2.2 thanks to the support of hypermedia environments and environ-
ment configurations.

Finally, the platform for building the two multi-agent subsystems must be
JaCaMo since it allows for satisfying requirements 3 and 4, along with all their
sub-requirements.

4.3.2 Design

Architecture design

The system structure is visible in Figure 4.2 and shows two leaf classes in
the artifact hierarchy: AgentBody and RobotArm. The AgentBody class is
instantiated and managed by the Yggdrasil framework and offers all functional-
ities that an agent’s body must expose to support the functional requirements
already discussed. The RobotArm class represents the robotic arm that the
Alice and Bob agents can use for performing their task and, as such, it ex-
poses two operations: one for moving it from the shop floor to the warehouse,
satisfying requirement 2.2.1, and one for performing the opposite action, sat-
isfying requirement 2.2.2. Also, the class must expose a property indicating
the owner of the robotic arm to let each agent distinguish between its own and
the other’s, satisfying requirement 3.2.1.

AgentBody and RobotArm are subclasses of HypermediaArtifact and are
part of an incomplete and disjoint hierarchy. It is incomplete because nothing
in the problem domain explicitly says that these are the only two classes that
will ever exist, and it is disjoint because an agent’s body is not a robotic arm
and vice versa. HypermediaArtifact is a subclass of the Artifact class, and
it is another one entirely managed by the Yggdrasil framework, allowing the
exposure of the artifact it represents in the environment knowledge graph,

62 CHAPTER 4. IMPLEMENTATION AND EVALUATION

which implies that the framework reifies both robotic arms and agent’s body
artifacts in the environment upon creation.

RobotArm
rowner | AgentBody
+moveToWarehouse()
+moveToShopFloor()

{incomplete, disjoint}

| HypermediaArtifact |

{incomplete, disjoint}

| CupProductionWorkspace | | WorkersWorkspace | | ManagersWorkspace ‘

Figure 4.2: UML class diagram showing the system structure implementing
the use case.

The three workspaces in the environment are CupProductionWorkspace,
WorkersWorkspace, and ManagersWorkspace. The first one represents the
shop floor and should contain the two robotic arms the two worker agents can
operate and their bodies after joining. The second one is the workspace local to
the Alice and Bob agents system, the default workspace they find themselves
in upon their bootstrap, so it also contains another instance of their bodies.
The third one is the workspace local to the Carl agent system, which the agent
joins by default upon system bootstrap and contains an instance of its body.
The structure showing the containment relationships between artifacts and
workspaces is visible in Figure 4.3.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 63

53 WorkersWorkspace Ea CupProductionWorkspace 53 ManagersWorkspace

AliceBody AliceBody BobBody
I i AN CarlBody

BobBody AliceRoboticArm BobRoboticArm

Figure 4.3: UML components diagram showing the containment relations be-
tween workspaces and artifacts in the system

Initially, only the subsystem running the Alice and Bob agents is active,
and their behavior is the same. The two agents start by joining the production
workspace, the one we previously called CupProductionWorkspace, hosted on
the Yggdrasil platform, fulfilling requirement 3.1. They should update their
body representation by adding an action affordance to allow other agents to
tell them some message, as per requirement 3.4, which is visible in Listing 4.3.
Then, they should search in the workspace for their robotic arm via querying,
fulfilling requirement 3.2, and, if they find it, update their body description
with the action affordance to send them a message for moving the arm they
found, fulfilling requirement 3.3, affordance visible in Listing 4.4. The agents
push back these updates to the body description to the Yggdrasil platform to
publish them in the shared environment.

At this point, the Carl agent system starts, simulating its deployment on
top of the older one. The first behavior the agent enacts is searching via
querying the bodies of those agents who can move cups to make them achieve
this goal, satisfying requirement 4.1. For each of those bodies, which we know
are two, the supervisor agent understands which is their owner and asks the
Yggdrasil platform to focus on it, fulfilling requirement 4.2. Then, having also
discovered their preferred way to contact them for reaching the “move cup”
goal, it sends them a message in this way, as per requirement 4.3, which allows
the agents to receive the message and use their robotic arm to move the cup. If
the agent is well-behaved, it will use the affordance of the robotic arm to move
the cup to the warehouse, while if it misbehaves, it will use the affordance to
move a cup to the shop floor, as specified by requirement 3.5 and all of its sub-
requirements. Since Carl focused on the two workers, the completion of their
actions will be automatically notified to the supervisor, which will recognize
that one of the two agents misbehaved, so it will send the agent a punishment
thanks to the affordance for telling messages and reassign the task to the other

64 CHAPTER 4. IMPLEMENTATION AND EVALUATION

agent, as per requirements 4.1 and 4.2. The whole behavior of all the agents
that compose the system is shown in Figure 4.4.

Q@prefix hmas: <https://purl.org/hmas/> .

O@prefix td: <https://www.w3.org/2019/wot/td#> .

@prefix htv: <http://www.w3.org/2011/http#> .

O@prefix hctl: <https://www.w3.org/2019/wot/hypermedia#> .
@prefix js: <https://www.w3.org/2019/wot/json-schema#> .
@prefix kqml: <https://example.org/kqml#> .

<http://localhost:8080/workspaces/production/agents/alice>
td:hasActionAffordance [
a td:ActionAffordance, kgml:RequestTell;
td:title "tell";
td:hasForm [htv:methodName "POST";
hctl:hasTarget <http://localhost:8082/inbox>;
hctl:forContentType "application/json";
hctl:hasOperationType td:invokeAction
1;
td:hasInputSchema [a js:0ObjectSchema;
js:properties [a js:StringSchema, kqml:Performative;
js:propertyName "performative";
js:enum "tell"
1, [a js:StringSchema, hmas:Agent;
js:propertyName "sender"
1, [a js:StringSchema, hmas:Agent;
js:propertyName '"receiver";
js:enum "http://localhost:8080/agents/alice"
1, [a js:StringSchema, kqml:PropositionalContent;
js:propertyName "content"
13
js:required "performative", "sender", "receiver", "content"
]
]

Listing 4.3: The “tell” affordance the Alice and Bob agents add to their body
representation upon joining the production workspace.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 65

Q@prefix hmas: <https://purl.org/hmas/> .

O@prefix td: <https://www.w3.org/2019/wot/td#> .

@prefix htv: <http://www.w3.org/2011/http#> .

@prefix hctl: <https://www.w3.org/2019/wot/hypermedia#> .
@prefix js: <https://www.w3.org/2019/wot/json-schema#> .
@prefix kqml: <https://example.org/kqml#> .

<http://localhost:8080/workspaces/production/agents/alice>
td:hasActionAffordance [
a td:ActionAffordance, kqml:RequestAchieve;
td:title "achieveMoveCup";
td:hasForm [

htv:methodName "POST";

hctl:hasTarget <http://localhost:8082/inbox>;

hctl:forContentType "application/json";

hctl:hasOperationType td:invokeAction
13
td:hasInputSchema [a js:0ObjectSchema;
js:required "performative", "sender", "receiver", '"content";
js:properties [a js:StringSchema, kqml:Performative;
js:propertyName "performative";
js:enum "achieve"
], [a js:StringSchema, hmas:Agent;
js:propertyName "sender"
1, [a js:StringSchema, hmas:Agent;
js:propertyName '"receiver";
js:enum "http://localhost:8080/agents/alice"
1, [a js:0bjectSchema, kqml:PropositionalContent;
js:required "goal", "from", "to";
js:propertyName '"content";
js:properties [a js:StringSchema;
js:propertyName "goal";
js:enum "move_cup"

1, [a js:StringSchema;
js:propertyName "from"

1, [a js:StringSchema;
js:propertyName "to"

]

]

Listing 4.4: The “move arm” affordance the Alice and Bob agents add to
their body representation after finding their robotic arm in the production
workspace.

66

CHAPTER 4. IMPLEMENTATION AND EVALUATION

Alice

Carl

4

Join cup production
workspace on
Yggdrasil platform

v

Search for robotic
arm in workspace via

querying

[else]

[found] .l,

Update body
representation with
"achieve move_cup

goal” action

affordance

8

v

Update body
representation with
"tell" action
affordance

v

Push changes to
Yggdrasil platform

y

Join cup production
workspace on
Yggdrasil platform

¥

Search for robotic
arm in workspace via
querying

[else]

\If [found]

Update body
representation with
"achieve move_cup

goal” action

affordance

5

v

Update body
representation with
"tell" action
affordance

v

Push changes to
Yggdrasil platform

Search for "able"”
workers' bodies via

querying

%

v

Get agent's body
representation

v

[Focus agent's body]

v

Send message to
achieve "move_cup”
goal

[another agent found] J[[else]

CHAPTER 4. IMPLEMENTATION AND EVALUATION 67

Receive message to Receive message to
achieve "move_cup" achieve "move_cup”
goal goal
Take a cup with own P P Take a cup with own

: Receive Receive :
mgﬁ:)'; ﬁ:]'g:{gm | "moveArmToWarehouse" | | "moveArmToShopFloor” | [| v::rté?_'tt')fl :;TJ"S%“JP
warehouse l action succeeded action succeeded floor

v

Send punishment to
agent who
mishehaved

v

Send message to
other agent to
achieve "move_cup”
goal

Receive message to
achieve "move_cup"
goal

Take a cup with own
robotic arm from
shop floor to

warehouse

®

Figure 4.4: UML activity diagram showing the behavior of the agents in the
system

Detailed design

Since each agent needs to communicate with the Yggdrasil platform, it
means that the agent both sends messages to and receives messages from the
platform. The worker agents have their client artifact, named WorkerClient,
that allows them to make requests to Yggdrasil. They can join the production
workspace and obtain their body representation as an RDF graph, search
for their robotic arm while updating their body representation, and use the
robotic arm while deciding which affordance to use depending on its movement
destination. At the same time, the supervisor agent also has its client artifact,
named SupervisorClient. This client allows instead to search for worker agents
while getting back their names associated with their body representations,
focus on their body, assign them the task of moving a cup from one place to
another, and punish a specific agent that misbehaved.

Both the WorkerClient and SupervisorClient artifacts are sub-classes of the
AbstractClient artifact, which exposes protected operations for performing a
generic request and for serializing and deserializing an RDF graph representa-
tion, factorizing out the behavior that is common to both classes following the

68 CHAPTER 4. IMPLEMENTATION AND EVALUATION

subclass sandbox pattern [45].

Analogously, workers have a message-box artifact named WorkerMessage-
Box, and the supervisor has one named SupervisorMessageBox. A message box
is needed to let the Yggdrasil platform notify them of messages from topics
they subscribed to. Both artifacts extend the same artifact class known as Ab-
stractMessageBox, which exposes a public operation named resolveNextSignal
to be called by agents to receive the subsequent message from the environ-
ment platform as a signal. For configuring which endpoints are exposed by the
agent to Yggdrasil and specifying how to convert from a message arriving at
that specific endpoint into a signal, a template method [28] is provided by the
artifact super-class named addRoutes. The callbacks registered for each mes-
sage reception use the addSignal operation provided by AbstractMessageBox,
which allows for enqueueing a new signal to be notified to an agent, making
also this super-class follow the subclass sandbox pattern. The class hierarchy
we discussed until here is visible in Figure 4.5.

x {disjoint, incomplete}

AbstractMessageBox AbstractClient

+resolveNextSignal(): void #doReguest(request: HitpRequest): void
#addRoutes(router: Router): void #parseFromTurtle(str: String): Graph
#addSignal(signal: Signal): void #parseToTurtle(graph: Graph): String

{disjoint, incomplete} ZP

| WorkerMessageBox | | SupervisorMessageBox

{disjoint, incomplete}

WorkerClient SupervisorClient
+joinProductionWorkspace(out body: Graph): void +searchCupMoverWorkers(out bodies: Map<String, Graph=): void
+searchForRoboticArm(body: Graph, out robotArm: Graph): void | | +focusWorkerBody(name: String, body: Graph): void
+useRoboticArm(arm: Graph, to: String): void +assignMoveCupTask(body: Graph, from: String, to: String): void

+punish(body: Graph): void

Figure 4.5: UML class diagram showing the hierarchy of artifacts used by the
agents for communicating with the Yggdrasil platform

4.3.3 Showcase

As visible in Figure 4.6, each worker agent starts by joining its default
workspace and then focusing on its message-box artifact to be notified of the
signals coming from it, representing the messages from the Yggdrasil platform.
Then, both agents join the production workspace representing the shop floor,
search for their robotic arm, and, once found, update their body representation
to show their ability to use it.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 69

From Figure 4.7, we see how also the supervisor agent starts by joining its
local workspace and focusing on its message-box artifact. Next, Carl searches
in the environment for agents capable of accomplishing the two tasks of moving
a cup, and it finds Alice first and Bob later, to which it asks to move one cup
each. It understands that Alice completes its task correctly while Bob does
not, so it reprimands the latter and reassigns the task to the former, and after
both cups are in the warehouse, it terminates.

At last, in Figure 4.8, we see the behavior of the two agents after being
commanded to move a cup. They use their robotic arm to do the action to
fulfill the task, but since Bob does not complete the activity, it gets scolded.
Carl reassigns to Alice the task Bob should have done, a task for which Alice
uses its robotic arm another time.

common Runtime Services (RTS) is running at 127.0.0.1:35131
Cartago ||Agent mind inspector is running at http://127.0.0.1:3272
bob ICArtAgO Http Server running on http:ff127.0.0.1:3273
[Cartago] Workspace workers created.
[Cartago] artifact message_box_bob: org hyperagents. demo. WorkerMessageBox(B083) at workers created
[Cartago] artifact message_box_alice: org.hyperagents.demo. WorkerMessageBox (8082) at workers created
[Cartago] artifact client_alice: org.hyperagents.demo. WorkerClient (alice, "http://localhost:8082" localhost, 8080) at workers created
[Cartago] artifact client_bob: org.hyperagents.demo.WorkerClient (bob, "http://localhost:8083" localhost, B0B0) at workers created
[bob] joinworkspace /main/workers: done
[bab] focusing onartifact message_box_baob (at workspace /main/workers) using namespace default
[alice] joinworkspace /main/workers: done
[alice] focusing on artifact message_box_alice (at workspace /mainfworkers) using namespace default
[bob] focus onmessage_box_bob: done
[bob] I'm starting my day
[alice] focus onmessage_box_alice: done
[alice] I'm starting my day
[alice] | entered the shop floor
[bob] | entered the shop floor
[bob] | found my robatic arm
[alice] | found my robotic arm

alice

| /7 Clean || ! Stop || [F* Pause H % Debug H 4] Newagent H ¥ Killagent || 4% REPL agent || = Sources |

Figure 4.6: A screenshot of the JaCaMo-based system containing the Alice and
Bob agents showing their behavior before the supervisor agent bootstraps.

70

CHAPTER 4. IMPLEMENTATION AND EVALUATION

common
Cartago
carl

Runtime Services (RTS) is running at 127.0.0.1:43437

IAgent mind inspector is running at http:/f127.0.0.1:3274

ICArtAgO Hitp Server running on http:/f127.0.0.1:3275

[Cartago] Workspace managers created.

[Cartago] artifact client_carl: org. hyperagents.demo.SupervisorClient{carl,"http://localhost:B081" localhost, 8080) at managers created
[Cartago] artifact message_bex_carl: org.hyperagents demo.SupervisorhessageBox (8081) at managers created
[carl] join workspace /main/managers: done

[carl] focusing on artifact message_box_carl (at workspace /main/managers) using namespace default

[carl] focus cnmessage_box_carl: done

[carl] I'm starting my day

[carl] I've seen bob at work

[carl] I've told bob to move ane cup

[carl] I've seenalice at work

[carl] I've told alice to move one cup

[carl] bob did a bad job, | need totel him!

[carl] alice did a good job!

[carl] alice did a good job!

[carl] My job here is done!

| /7 Clean || ! sStop || (k> Pause H 5 Debug H 4] Newagent H ¥ Killagent || 4% REPL agent || = Sources |

Figure 4.7: A screenshot of the JaCaMo-based system containing the Carl
agent showing its behavior.

common

Cartago
bob
alice

Runtime Services (RTS) is running at 127.0.0.1:35131

IAgent mind inspector is running at http:/f127.0.0.1:3272

ICArtAgO Hitp Server running on http.//127.0.0.1:3273

[Cartago] Workspace workers created.

[Cartago] artifact message_box_bob: org.hyperagents. demo.WorkerMessageBox(B083) at workers created.
[Cartago] artifact message_box_alice: org.hyperagents.demo.WorkerMessageBox (8082) at workers created
[Cartago] artifact client_alice: org.hyperagents.demo.WorkerClient {alice, "http://localhost:B082" localhost, 8080) at workers created
[Cartago] artifact client_bob: org.hyperagents.demo.WarkerClient (bob, "http://localhost:8083" localhost, B080) at workers created
[bob] join workspace fmain/workers: done

[bob] focusing onartifact message_box_bob (at workspace fmain/workers) using namespace default

[alice] joinworkspace /main/workers: done

[alice] focusing on artifact message_box_alice (at workspace /main/workers) using namespace default

[bob] focus cnmessage_bax_bob: done

[bob] I'm starting my day

[alice] focus on message_box_alice: done

[alice] I'm starting my day

[alice] | entered the shop floor

[bob] | entered the shop floor

[bab] 1 found my robotic arm

[alice] | found my robotic arm

[bob] Starting to use my robotic arm.

[alice] Starting to use my robotic arm

[bob] Ended using my robotic arm.

[alice] Ended using my robatic arm.

[bob] Ohmo!

[alice] Starting to use my robatic arm

[alice] Ended using my robotic arm.

| /7 Clean || ! Stop || (k> Pause H %5 Debug H 4] Newagent H ¥ Killagent || 4% REPL agent || = Sources |

Figure 4.8: A screenshot of the JaCaMo-based system containing the Alice
and Bob agents showing their behavior after the supervisor agent completed
its task.

Chapter 5

Conclusions

In this thesis, we saw what embodiment means in Web-based MASs. Em-
bodiment leads to a simplified implementation of some interesting features of
MASS, especially for Web-based MASs, which are discovering other agents in
the environment, BIC and situational interaction between agents, and moni-
toring. We saw which characteristics are fundamental for an agent’s body to
support these functionalities, reasoning by analogy with day-to-day situations,
but always led by the four functionalities implementation as the objective of
uttermost importance. We discussed in detail the implications of adopting
these properties and the scenarios in which these properties are an encum-
brance. For our abstraction, we drew primarily from the A&A meta-model in
its creation since it is one of the leading proponents of the concept of “environ-
ment as a first-class abstraction,” which has many advantages in Web-based
MASSs, as discussed before.

To give concreteness to our discussion, we implemented a notion of body
having said properties on the Yggdrasil platform, an apt platform for devel-
oping hypermedia environments for the category of MASs we are interested
in. To demonstrate that the body characteristics support the implementation
of said functionalities, we devised a use case that included all the functional
properties and implemented it using Yggdrasil. The use case modeled part of
an assembly line for yogurt cup production, where a supervisor agent needed
to task two worker agents to move a cup each from the shop floor to the
warehouse for further processing.

A direction for future work related to this thesis is a possible integration
of our abstraction into the A&A meta-model. Since we grounded our body
by design in the meta-model, it is a candidate to be part of an “extended
A&A” | after careful consideration and evaluation with possible embodiment
alternatives. At the same time, we have seen how embodiment grants more
flexibility to agents, which means less reliance on hard-coded specifications.

71

72 CHAPTER 5. CONCLUSIONS

The prosecution of this work could bring us closer to solving the “arrive and
operate” problem, the problem for which an agent should be capable of arriving
in a new environment and, with minimal a prior: information about it, starting
to operate [19]. Finally, the changes we introduced in the Yggdrasil platform
could aid the endeavors of the WebAgents community group [61], devoted to
the Web-based MASs research topic. The platform is now easier to use in
building tools or even simpler testing scenarios for testing functionalities of

Web-based MASs.

5.1 Future works

Some work still distances us from reaching our overarching goals, work
which will build the path toward them. First, a more comprehensive analy-
sis of the body characteristics is needed to find all the use cases that call for
each characteristic or for a combination of them to be present. Our exam-
ples are tentative and specifically incomplete, with only the express purpose
of demonstrating the existence of situations in which the characteristics are
valuable and the existence of situations in which they are not. Exploring more
in detail the body definition could also lead to discovering if the presented
characteristics are exhaustive and cover all aspects of embodiment or if we
could add other ones to account for unforeseen use cases. Moreover, this ex-
ploration could also lead to understanding if the presented characteristics are
redundant, meaning if we could reconstruct a generally accepted notion with a
smaller number of them. A complete examination of the notion of an agent’s
body could lead to creating a taxonomy for embodiment, meaning devising
different “embodiments” with different constraints depending on which prop-
erties someone wants to adopt. It could lead to a complete categorization of
many “body-like” abstractions along the way, including some of those we used
as examples in this thesis.

As a last remark, we want to underline how modeling the act of focusing
on a body as an affordance of the body itself could open the doors also to
having artifacts in general that do not expose such an affordance. We see this
concept tied to a definition of perception that we could define as “selective,”
meaning not indiscriminate, for which the agent willfully chooses where to
focus its attention. The possibility of observing agents’ actions could also lead
to agents who can “learn by example,” which means that a “student” agent
could acquire new knowledge about a task to complete after having observed
how a “teacher” agent did it before.

Acknowledgments

This thesis concludes with my heartfelt thanks to all who made it possible
for this acknowledgment to be. So, a first thank you to my parents, Angela
and Andrea, and their partners, Giancarlo and Laura, my siblings, Filippo and
Giulia, my grandparents, and all of my family for supporting me, especially
with the move back and forth from Switzerland. Thanks to my extended family
for their support, made of Tommaso, Orso, Bonét, and still unmet relatives,
hoping to grow bigger and stronger every day. A thank you to Emma for her
constant updates from Sweden and another for my friends of a lifetime: Toys,
Mattia, Alessio, Zampa, and Seba and all their partners. Many thanks to my
friends Marco and Giulia for sharing their passion for tabletop games and many
nights of games with me. A big thank you to my colleagues, after six years of
this adventure, with whom I shared many hours of studying: Gardo, Davide,
Ceci, Giamma, Giorgia, Yu, Ismam, Elena, Marco, Mark, Anna, Giada, and
whoever I forgot to mention. Thanks to all my close friends from around
Italy, which I always promise to visit and never find the time to: Alessandro,
Michele, Ocean, Ruka, and Valerio. Even if I did not acknowledge you, dear
friend and reader, but you have contributed to this thesis, I thank you here.

Then, many thanks to my supervisor, Professor Alessandro Ricci, and my
co-supervisor, Samuele Burattini, for introducing me to the University of St.
Gallen and leading my work in the right direction. A big thank you to my
other co-supervisor, Professor Andrei Ciortea, Professor Simon Mayer, chair
of the Laboratory for Interaction and Communication-based Systems, Danai
Vachtsevanou, and Jérémy Lemée, all helping me throughout the whole thesis
by giving suggestions, reassurance, and encouragement. Thank you also to the
other kind people I met in St. Gallen: Lukas, Andrea, Jessie, Jan, Alessandro,
Nicolo, Sanjiv, Kenan, and whoever I had the chance to chat with in the office,
and now I have forgotten to mention. Finally, thanks to the HyperAgents team
I met in Paris, who welcomed me warmly despite being the new guy.

All of you, knowingly or unknowingly, helped me complete this journey.

73

Bibliography

[10]

[11]

“Agent Management Specification,” Foundation for Intelligent Physical
Agents, Standard, 2004-03-18.

M. Amundsen. “maze-client.” (2011-04-13), [Online]. Available: http:
//amundsen. com/examples/misc/maze-client.html (visited on 2024-
02-20).

M. Amundsen, “From Steve Austin to Peter Norvig: Engineering AMEE,

the Simple Autonomous Agent,” 2021-02-18. [Online]. Available: http:
//amundsen. com/talks/2021-02-dagstuhl/ (visited on 2024-02-08).

Apache Software Foundation. “Apache Jena.” (2024-02-21), [Online].
Available: https://jena.apache.org/ (visited on 2024-02-21).

K. Beck, Test Driven Development: By FExample. Addison-Wesley Pro-
fessional, 2002.

T. Berners-Lee, “The Future of the Web,” First International Conference
on the World-Wide Web, 1994. [Online]. Available: https://videos.
cern.ch/record/2671957.

T. Berners-Lee, “WWW: Past, present, and future,” Computer, vol. 29,
no. 10, pp. 69-77, 1996.

T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scien-
tific american, vol. 284, no. 5, pp. 34-43, 2001.

O. Boissier, R. H. Bordini, J. F. Hiibner, A. Ricci, and A. Santi, “Multi-
agent oriented programming with JaCaMo,” Science of Computer Pro-
gramming, vol. 78, no. 6, pp. 747-761, 2013.

O. Boissier, A. Ciortea, A. Harth, and A. Ricci, “Autonomous agents on
the web,” in Dagstuhl-Seminar 21072: Autonomous Agents on the Web,
2021, 100p.

E. Brewer, “CAP twelve years later: How the “rules” have changed,”
Computer, vol. 45, no. 2, pp. 23-29, 2012.

75

http://amundsen.com/examples/misc/maze-client.html
http://amundsen.com/examples/misc/maze-client.html
http://amundsen.com/talks/2021-02-dagstuhl/
http://amundsen.com/talks/2021-02-dagstuhl/
https://jena.apache.org/
https://videos.cern.ch/record/2671957
https://videos.cern.ch/record/2671957

76 BIBLIOGRAPHY

[12] R. A. Brooks, “Intelligence without reason,” in The artificial life route
to artificial intelligence, Routledge, 2018, pp. 25-81.

[13] S. Burattini, A. Ciortea, M. Galassi, and A. Ricci, “Towards Fram-

[19]

ing the Agents & Artifacts Conceptual Model at the Knowledge Level:
First Ideas and Experiments,” in International Workshop on Engineering
Multi-Agent Systems, Springer, 2023, pp. 208-219.

S. Chacon and B. Straub, Pro git. Springer Nature, 2014.

V. Charpenay, M. Lefrancois, M. Poveda-Villalon, and S. Kébisch, “Web
of Things (WoT) Thing Description (TD) Ontology,” W3C, Editor’s
Draft, 2023-12-05.

Checkstyle. “Checkstyle.” (2024-02-28), [Online]. Available: https://
checkstyle.org/ (visited on 2024-03-04).

A. Chemero, “An outline of a theory of affordances,” in How Shall Af-
fordances Be Refined? Routledge, 2018, pp. 181-195.

A. Ciortea, O. Boissier, and A. Ricci, “Engineering world-wide multi-
agent systems with hypermedia,” in Engineering Multi-Agent Systems:
6th International Workshop, EMAS 2018, Stockholm, Sweden, July 14-
15, 2018, Revised Selected Papers 6, Springer, 2019, pp. 285-301.

A. Ciortea, S. Mayer, F. Gandon, O. Boissier, A. Ricci, and A. Zimmer-
mann, “A decade in hindsight: The missing bridge between multi-agent
systems and the world wide web,” in AAMAS 2019-18th International
Conference on Autonomous Agents and Multiagent Systems, 2019, p. 5.

J. H. Connell, “A colony architecture for an artificial creature,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1989.

“Conventional Commits,” Conventional Commits, Specification v1.0.0.

J. L. T. Da Silva and Y. Demazeau, “Vowels co-ordination model,” in
Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 3, 2002, pp. 1129-1136.

A. M. Davis, “Operational prototyping: A new development approach,”
IEFEFE software, vol. 9, no. 5, pp. 70-78, 1992.

Eclipse Foundation. “Eclipse Vert.x.” (2024-03-04), [Online]. Available:
https://vertx.io/ (visited on 2024-03-04).

R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115-150, 2002.

https://checkstyle.org/
https://checkstyle.org/
https://vertx.io/

BIBLIOGRAPHY 77

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

S. Franklin and A. Graesser, “Is it an agent, or just a program?: A
taxonomy for autonomous agents,” in International workshop on agent
theories, architectures, and languages, Springer, 1996, pp. 21-35.

Functional Software, Inc. “Codecov by Sentry.” (2024-03-04), [Online].
Available: https://about.codecov.io/ (visited on 2024-03-04).

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1994.

D. Gelernter, Mirror worlds: Or the day software puts the universe in a
shoebox... How it will happen and what it will mean. Oxford University
Press, 1993.

J. Genestoux, A. Parecki, B. Fitzpatrick, B. Slatkin, and M. Atkins,
“WebSub,” W3C, Recommendation, 2018-01-23.

GitHub, Inc. “Github actions documentation.” (2024-03-04), [Online].
Available: https://docs.github.com/en/actions (visited on 2024-03-
04).

Gradle, Inc. “Gradle build tool.” (2024-03-04), [Online|. Available: http
s://gradle.org/ (visited on 2024-03-04).

P.-P. Grassé, “La reconstruction du nid et les coordinations interindi-
viduelles chez Bellicositermes natalensis et Cubitermes sp. La théorie
de la stigmergie: Essai d’interprétation du comportement des termites
constructeurs,” Insectes sociauz, vol. 6, pp. 41-80, 1959.

D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the web of things,” in 2010 Internet of Things (I0T), IEEE, 2010,
pp- 1-8.

P. Hammant. “Trunk based development.” (2024-02-22), [Online|. Avail-
able: https://trunkbaseddevelopment.com/ (visited on 2024-02-22).

J. F. Hiibner, O. Boissier, R. Kitio, and A. Ricci, “Instrumenting multi-
agent organisations with organisational artifacts and agents: “Giving
the organisational power back to the agents”,” Autonomous agents and
multi-agent systems, vol. 20, pp. 369-400, 2010.

HyperAgents. “Hypermedia MAS Core Ontology.” (2021-11-21), [On-
line]. Available: https://ci.mines-stetienne.fr/hmas/core (visited
on 2024-03-04).

HyperAgents. “Hypermedia Multi-Agent Systems.” (2024-03-02), [On-
line]. Available: https://project.hyperagents.org/ (visited on 2024-
03-02).

https://about.codecov.io/
https://docs.github.com/en/actions
https://gradle.org/
https://gradle.org/
https://trunkbaseddevelopment.com/
https://ci.mines-stetienne.fr/hmas/core
https://project.hyperagents.org/

78 BIBLIOGRAPHY

[39] Java. “Implementing a remote interface,” Oracle. (2024-02-02), [Online].
Available: https://docs.oracle.com/javase/tutorial/rmi/implem
enting.html (visited on 2024-02-02).

[40] S. Kabisch, M. McCool, E. Korkan, T. Kamiya, V. Charpenay, and M.
Kovatsch, “Web of Things (WoT) Thing Description 1.1,” W3C, Rec-
ommendation, 2023-12-05.

[41] R. K. Karmani and G. A. Agha, “Actors,” Encyclopedia of Parallel Com-
puting, vol. 10, pp. 978—, 2011.

[42] P. Maes, “Modeling adaptive autonomous agents,” Artificial life, vol. 1,
no. 1.2, pp. 135-162, 1993.

[43] M. Merleau-Ponty and C. Smith, Phenomenology of perception. Rout-
ledge London, 1962, vol. 26.

[44] Mountainminds GmbH & Co. KG and Contributors. “JaCoCo Java Code
Coverage Library.” (2024-03-04), [Online|. Available: https: //www .
eclemma.org/jacoco/ (visited on 2024-03-04).

[45] R. Nystrom, Game programming patterns. Genever Benning, 2014.

[46] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the A&A meta-model
for multi-agent systems,” Autonomous agents and multi-agent systems,
vol. 17, pp. 432-456, 2008.

[47) M. Osman, “An evaluation of dual-process theories of reasoning,” Psy-
chonomic bulletin € review, vol. 11, no. 6, pp. 988-1010, 2004.

[48] J. K. Ousterhout, A philosophy of software design. Yaknyam Press Palo
Alto, CA, USA, 2018, vol. 98.

[49] PMD. “Pmd source code analyzer.” (2024-03-04), [Online]. Available:
https://pmd.github.io/ (visited on 2024-03-04).

[50] A. Ricci, A. Ciortea, S. Mayer, O. Boissier, R. H. Bordini, and J. F.
Hiibner, “Engineering scalable distributed environments and organiza-
tions for MAS,” in Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), 2019, Canada.,
2019.

[51] A. Ricci, A. Omicini, M. Viroli, L. Gardelli, and E. Oliva, “Cognitive

stigmergy: Towards a framework based on agents and artifacts,” in En-
vironments for Multi-Agent Systems III: Third International Workshop,
E/MAS 2006, Hakodate, Japan, May 8, 20006, Selected Revised and In-
wited Papers 3, Springer, 2007, pp. 124-140.

https://docs.oracle.com/javase/tutorial/rmi/implementing.html
https://docs.oracle.com/javase/tutorial/rmi/implementing.html
https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/
https://pmd.github.io/

BIBLIOGRAPHY 79

[52]

[53]

A. Ricci, M. Piunti, and M. Viroli, “Environment programming in multi-
agent systems: An artifact-based perspective,” Autonomous Agents and
Multi-Agent Systems, vol. 23, pp. 158-192, 2011.

A. Ricci, M. Viroli, and A. Omicini, “CArtAgO: A framework for proto-
typing artifact-based environments in MAS,” in International Workshop
on Environments for Multi-Agent Systems, Springer, 2006, pp. 67-86.

S. J. Russell and P. Norvig, Artificial intelligence: A modern approach,
3rd. Prentice Hall, 2010.

“Software engineering — Software life cycle processes — Maintenance,” In-
ternational Organization for Standardization, Standard ISO/IEC/IEEE
14764:2022, 2022-01.

SpotBugs. “Spotbugs.” (2024-03-04), [Online]. Available: https://spo
tbugs.github.io/ (visited on 2024-03-04).

K. E. Stanovich and R. F. West, “Individual differences in reasoning:
Implications for the rationality debate?” Behavioural and Brain Science,
vol. 23, no. 5, pp. 665-726, 2000.

Summer school on Al for Industry 4.0. “Summer school on AT for Indus-
try 4.0.” (2023-05-05), [Online]. Available: https://ai4industry.wp.
imt.fr/ (visited on 2024-03-02).

L. Tummolini, C. Castelfranchi, A. Ricci, M. Viroli, and A. Omicini,
““Exhibitionists” and “Voyeurs” do it better: A shared environment for
flexible coordination with tacit messages,” in Environments for Multi-
Agent Systems: First International Workshop, E4MAS 2004, New York,
NY, July 19, 2004, Revised Selected Papers 1, Springer, 2005, pp. 215
231.

M. Van Steen and A. S. Tanenbaum, Distributed systems: principles and
paradigms. Pearson Prentice Hall, 2007.

W3C. “Autonomous Agents on the Web Community Group.” (2024-02-
19), [Online]. Available: https://www.w3.org/community/webagents/
(visited on 2024-02-19).

W3C SPARQL Working Group, “SPARQL 1.1 Overview,” W3C, Rec-
ommendation, 2013-03-21.

J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A note on dis-
tributed computing,” in International Workshop on Mobile Object Sys-
tems, Springer, 1996, pp. 49-64.

G. Weiss, Ed., Multiagent systems: a modern approach to distributed
artificial intelligence. MIT press, 1999.

https://spotbugs.github.io/
https://spotbugs.github.io/
https://ai4industry.wp.imt.fr/
https://ai4industry.wp.imt.fr/
https://www.w3.org/community/webagents/

80 BIBLIOGRAPHY

[65] D. Weyns, A. Omicini, and J. Odell, “Environment as a first class ab-
straction in multiagent systems,” Autonomous agents and multi-agent
systems, vol. 14, pp. 5-30, 2007.

[66] M. Wooldridge and N. R. Jennings, “Agent theories, architectures, and
languages: A survey,” in International Workshop on Agent Theories,
Architectures, and Languages, Springer, 1994, pp. 1-39.

[67) A. Zimmermann, A. Ciortea, C. Faron, E. O'Neill, and M. Poveda-
Villalén, “Pody: a Solid-based approach to embody agents in Web-based
Multi-Agent-Systems,” in International Workshop on Engineering Multi-
Agent Systems, Springer, 2023, pp. 220-229.

	Introduction
	Problem statement
	Proposed solution
	Use case

	Background and Related Work
	Multi-agent systems
	Agents
	Environment
	Artifacts
	Bodies

	Web-based multi-agent systems
	The REST architectural style and the Web
	Multi-agent systems without the Web
	Multi-agent systems with the Web
	Embodiment on the Web

	Embodying agents in a Web-based MAS
	Motivating factors for embodiment
	Agent discoverability
	Agent communication through behavior
	Agent accountability
	Agent situation-dependent interaction

	Alternative and integrative approaches
	Defining a body
	A body is concrete
	A body is identifiable
	A body is clear
	A body is timely perceiving
	A body is focusable

	Presenting a body

	Implementation and Evaluation
	Bringing agents' bodies to Yggdrasil
	Creating and manipulating agents' bodies
	Querying and observing agents' bodies

	Bringing Yggdrasil in a testing framework
	Configuring hypermedia environments
	Improving Yggdrasil architecture
	Improving Yggdrasil quality

	Use case realization
	Requirement analysis
	Design
	Showcase

	Conclusions
	Future works

	Acknowledgements
	Bibliography

