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Abstract

Amodern solution to investigate the modified gravity (MG) theories is to search for deviations
from GR in matter underdensities, i.e., cosmic voids. Voids are extended and underdense
regions that constitute the predominant volume of the Universe large-scale structure (Cautun
et al. 2014). Due to their low-density interiors and large sizes spanning tens of megaparsecs,
voids serve as natural laboratories for testing alternative MG models, but also to explore the
nature of dark energy, and to study the effects of elusive components like massive neutrinos
(Sánchez et al. 2017; Cautun et al. 2018; Contarini et al. 2021, 2022b). In this study, we
focus on the class of MG models known as f(R) (Hu & Sawicki 2007), that mimic the ΛCDM
scenario in the high-redshift regime (well-tested by the cosmic microwave background analyses
of e.g., Planck Collaboration et al. 2020a), producing the Universe accelerated expansion
similarly to ΛCDM, but without a cosmological constant at low redshift.

One of the most promising studies that can be used to investigate MG models in voids
is related to the phenomenon of gravitational lensing. Lensing refers to the deflection of
photons emitted by distant galaxies as they travel towards the observer, caused by matter
fluctuations along the line of sight (Sereno & Umetsu 2011). The analysis of the weak lensing
(WL) from voids concerns, therefore, the small distortions of background light sources caused
by underdense regions. Besides its promising application to study MG models, this kind of
statistic has already been demonstrated to be very sensitive to the growth rate of the large-
scale structure and to the expansion history of the Universe (Bartelmann 2010; Troxel &
Ishak 2015).

The main goal of this work is to measure the mean tangential shear profile, γt(r), of
voids identified in cosmological simulations implementing the f(R) models. Then, we aim
at estimating the differences between the shear profiles in f(R) cosmologies with respect
to the standard ΛCDM profile. In order to maximize the lensing signal from the mock
data, it is fundamental to identify cosmic voids in the 2D distribution of matter (Davies
et al. 2021b). Therefore, we build an efficient pipeline for the extraction and analysis of 2D
voids. In particular, we develop a novel finding algorithm for 2D voids based on density and
geometrical criteria, aimed at maximizing the void tangential shear signal. To do this, we
take into account the findings of Cautun et al. (2018) and Davies et al. (2021b) and implement
an accurate and stable procedure of void center finding and radius assignment.

We apply this pipeline to the data extracted from the DUSTGRAIN-pathfinder, a set
of N -body simulations including several models with f(R) gravity and massive neutrinos
(Giocoli et al. 2018a; Hagstotz et al. 2019a). We build independent mock light cones by
randomizing the snapshots of the simulation and we construct, for each cosmological model,
256 realizations of the convergence and signal to noise ratio (SNR) maps. This is done using
the technique of ray-tracing for multiple lens planes (Giocoli et al. 2014, 2016, 2017). These
maps assume a background source of galaxies located at z = 1 and take into account a
realistic galaxy shape noise. From each SNR convergence maps, we extract a sample of 2D
voids. These are the regions of negative SNR resulting from the alignment of several 3D
voids intercepting the line of sight and are commonly named tunnel of voids (Nadathur &
Hotchkiss 2015a; Davies et al. 2021b). They are therefore the ideal objects to study the shear
signal produced by underdensities (Sánchez et al. 2017).

To compute the shear profiles of 2D voids we measure the value of the convergence in
different shells around their centers, up to ten times the void radii. Then, for each value
of the tangential shear around the void, we associate an uncertainty that is a combination
of statistical and observational errors, the latter derived by imposing a setting targeted for
realistic surveys like those planned by ESA mission Euclid. The resulting tangential shear
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profiles exhibit values statistically lower values than zero, as expected for underdense regions.
Dividing the void sample according to the void size, we demonstrate how smaller voids are
characterized by deeper and more rapidly rising signals compared to larger voids, consistently
to what expected from the already-known behavior of density profiles (Hamaus et al. 2014;
Voivodic et al. 2020).

We then move on to the analysis of the differences between the tangential shear profiles
measured in alternative models and those in the standard ΛCDM. We show how, in models
where MG is present, voids exhibit more negative shear profiles, precisely because the fifth
force accentuates their evolution, leading to a more efficient emptying of their interior. Con-
versely, we verify how the presence of massive neutrinos gives rise to less deep shear profiles,
as in this case the growth of structures is dampened because of the neutrino free-streaming
effect, and therefore the void density profiles appear shallower.

The last objective of our analysis concerns the modeling of the shear profile. We first
tested the use of popular functional forms to represent the density profiles of voids, namely
those introduced by Hamaus et al. (2014) and Boschetti et al. (2023). We integrated these two
parametric formulas along the line of sight and used the resulting model to fit our tangential
shear profiles. However, even by leaving free all the coefficients of these parametric formulas,
both model fail to reproduce our data. This happens because the density profiles considered
are suitable only for representing isolated 3D voids and not tunnel voids, which result from
the complex projection of different underdensities.

To overcome this issue, we propose and validate a new parametric formula for void tangen-
tial shear profiles. We take care of minimizing free parameters of this model while requiring
an accurate representation of the data for different void sizes and cosmological models. Fi-
nally, we use this functional form as a model to perform a Bayesian analysis. We constrain
the five free parameters of the formula and we analyze their correlation, the effects of their
variation and their sensitivity to the cosmological model. Then we focus on the possibility
to statistically distinguish the results for the ΛCDM case from those obtained for alternative
models, i.e. featuring MG or massive neutrinos. We show that, even for the most extreme sce-
narios, the uncertainty associated to our measurements prevent us from disentangling these
models. We conclude that the mitigation of the observational errors is key in the perspective
of effectively exploiting this probe for future studies.

As a future development of this work, we aim at applying our pipeline to larger simu-
lations, eventually featuring different cosmological scenarios, in order to improve the void
statistics and study the behavior also of larger underdensites. We will explore also the feasi-
bility of this kind of study on real data catalogs. For instance, we aim at utilizing the data of
the Kilo-Degree Survey (KiDS de Jong et al. 2013a,b) and, in the near future, of the Euclid
survey (Laureijs et al. 2011; Amendola et al. 2018; Euclid Collaboration: Blanchard et al.
2020).
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Sommario

Una soluzione moderna per investigare le teorie di gravità modificata (MG) consiste nel cer-
care deviazioni dalla Relatività Generale (GR) nella materia sottodensa, ovvero nei vuoti
cosmici. I vuoti sono regioni estese e sottodense che costituiscono il volume predominante
della struttura su larga scala dell’Universo (Cautun et al. 2014). Grazie ai loro interni sotto-
densi e alle loro dimensioni estese che si estendono per decine di megaparsec, i vuoti fungono
da laboratori naturali per testare modelli alternativi di MG, ma anche per esplorare la natura
dell’energia oscura e studiare gli effetti di componenti elusive come i neutrini (Sánchez et al.
2017; Cautun et al. 2018; Contarini et al. 2021, 2022b). In questo studio, ci concentriamo
sulla classe di modelli di MG conosciuti come f(R) (Hu & Sawicki 2007), che imitano lo
scenario ΛCDM nel regime ad alto redshift (ben testato dalle analisi del fondo cosmico a mi-
croonde, ad esempio Planck Collaboration et al. 2020a), producendo un’espansione accelerata
dell’Universo in modo simile a ΛCDM, ma senza una costante cosmologica a basso redshift.

Uno degli studi più promettenti che può essere utilizzato per investigare i modelli di
MG nei vuoti è legato al fenomeno del lensing gravitazionale. Il lensing si riferisce alla
deviazione dei fotoni emessi da galassie lontane mentre viaggiano verso l’osservatore, causata
dalle fluttuazioni di materia lungo la linea di vista (Sereno & Umetsu 2011). L’analisi del
lensing debole (WL) dai vuoti riguarda, quindi, le piccole distorsioni delle sorgenti di fondo
causate dalle regioni sottodense. Oltre alla sua promettente applicazione nello studio dei
modelli di MG, questo tipo di statistica è già dimostrato essere molto sensibile al tasso di
crescita della struttura su larga scala e alla storia dell’espansione dell’Universo (Bartelmann
2010; Troxel & Ishak 2015).

L’obiettivo principale di questo lavoro è misurare il profilo medio di shear tangenziale,
γt(r), dei vuoti identificati nelle simulazioni cosmologiche che implementano modelli f(R).
Successivamente, miriamo a stimare le differenze tra i profili di shear nei modelli cosmologici
f(R) rispetto al profilo del modello standard ΛCDM. Per massimizzare il segnale di lensing
dai dati simulati, è fondamentale identificare i vuoti cosmici nella distribuzione 2D di materia
(Davies et al. 2021b). Pertanto, sviluppiamo una pipeline efficiente per l’estrazione e l’analisi
dei vuoti 2D. In particolare, sviluppiamo un algoritmo di ricerca per i vuoti 2D basato su
criteri di densità e geometria, mirato a massimizzare il segnale di shear tangenziale dei vuoti.
Per fare ciò, teniamo conto dei risultati di Cautun et al. (2018) e Davies et al. (2021b)
e implementiamo una procedura accurata e stabile per la ricerca del centro del vuoto e
l’assegnazione del raggio.

Applichiamo questa pipeline ai dati estratti dalle DUSTGRAIN-pathfinder, un insieme
di simulazioni N -body che includono diversi modelli con gravità f(R) e neutrini massivi
(Giocoli et al. 2018a; Hagstotz et al. 2019a). Costruiamo coni di luce mock indipendenti
randomizzando gli snapshot della simulazione e costruiamo, per ogni modello cosmologico,
256 realizzazioni delle mappe di convergenza e del rapporto segnale-rumore (SNR). Questo
viene fatto utilizzando la tecnica del tracciamento dei raggi per multipli piani di lenti (Giocoli
et al. 2014, 2016, 2017). Queste mappe assumono delle galassie come sorgenti di fondo situate
a z = 1 e tengono conto di uno shape noise realistico sulla distribuzione di ellitticità delle
galassie. Da ciascuna mappa SNR di convergenza, estraiamo un campione di vuoti 2D.
Queste sono le regioni di SNR negativo risultanti dall’allineamento di diversi vuoti 3D che
intercettano la linea di vista e sono comunemente chiamate tunnel di vuoti (Nadathur &
Hotchkiss 2015a; Davies et al. 2021b). Sono quindi gli oggetti ideali per studiare il segnale
di shear prodotto dalle sottodensità (Sánchez et al. 2017).

Per calcolare i profili di shear dei vuoti 2D, misuriamo il valore della convergenza in diverse
shell attorno al loro centro, fino a dieci volte il raggio del vuoto. Poi, per ogni valore dello
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shear tangenziale intorno al vuoto, associamo un’incertezza che è una combinazione di errori
statistici e osservativi, questi ultimi derivati imponendo un’impostazione mirata a survey
realistiche come quelli previsti dalla missione Euclid dell’ESA. I profili di shear tangenziale
risultanti presentano valori statisticamente inferiori a zero, come previsto per le regioni poco
dense. Dividendo il campione di vuoti in base alla loro dimensione, dimostriamo come i vuoti
più piccoli siano caratterizzati da segnali più profondi e più rapidamente crescenti rispetto
ai vuoti più grandi, coerentemente con quanto ci si aspetta dal comportamento già noto dei
profili di densità (Hamaus et al. 2014; Voivodic et al. 2020).

Passiamo poi all’analisi delle differenze tra i profili di shear tangenziale misurati nei mo-
delli alternativi e quelli in ΛCDM. Mostriamo come, nei modelli in cui è presente la MG, i
vuoti presentino profili di shear più negativi, proprio perché la quinta forza ne accentua l’evo-
luzione, portando ad uno svuotamento più efficiente del loro interno. Viceversa, verifichiamo
come la presenza di neutrini massivi dia luogo a profili di shear meno profondi, poiché in que-
sto caso l’accrescimento delle strutture viene smorzato a causa dell’effetto di free-streaming
dei neutrini, e quindi i profili di densità dei vuoti appaiono meno profondi.

L’ultimo obiettivo della nostra analisi riguarda la modellazione del profilo di shear. Ab-
biamo innanzitutto testato l’uso di forme funzionali popolari per rappresentare i profili di
densità dei vuoti, ovvero quelle introdotte da Hamaus et al. (2014) e Boschetti et al. (2023).
Abbiamo integrato queste due formule parametriche lungo la linea di vista e abbiamo utiliz-
zato il modello risultante per adattare i nostri profili di shear tangenziale. Tuttavia, anche
lasciando liberi tutti i coefficienti di queste formule parametriche, entrambi i modelli non
riescono a riprodurre i nostri dati. Questo accade perché i profili di densità considerati so-
no adatti solo a rappresentare vuoti 3D isolati e non tunnerl di vuoti, che risultano dalla
complessa proiezione di diverse sottodensità.

Per superare questo problema, proponiamo e convalidiamo una nuova formula parametrica
per i profili di shear tangenziale dei vuoti. Ci preoccupiamo di minimizzare i parametri
liberi di questo modello, pur richiedendo una rappresentazione accurata dei dati per diverse
dimensioni dei vuoti e modelli cosmologici. Infine, utilizziamo questa forma funzionale come
modello per eseguire un’analisi bayesiana. Vincoliamo i cinque parametri liberi della formula
e analizziamo la loro correlazione, gli effetti della loro variazione e la loro sensibilità al modello
cosmologico. Ci concentriamo poi sulla possibilità di distinguere statisticamente i risultati
per il caso ΛCDM da quelli ottenuti per modelli alternativi, cioè caratterizzati da MG o da
neutrini massicci. Mostriamo che, anche per gli scenari più estremi, l’incertezza associata alle
nostre misure ci impedisce di distinguere questi modelli. Concludiamo che la mitigazione degli
errori osservativi è fondamentale nella prospettiva di sfruttare efficacemente questa sonda per
studi futuri.

Come futuro sviluppo di questo lavoro, ci proponiamo di applicare la nostra pipeline a
simulazioni più ampie, eventualmente caratterizzate da diversi scenari cosmologici, al fine
di migliorare le statistiche dei vuoti e studiare il comportamento anche di sottodensità più
grandi. Esploreremo anche la fattibilità di questo tipo di studio su cataloghi di dati reali. Ad
esempio, intendiamo utilizzare i dati della Kilo-Degree Survey (KiDS de Jong et al. 2013a,b)
e, nel prossimo futuro, della survey Euclid (Laureijs et al. 2011; Amendola et al. 2018; Euclid
Collaboration: Blanchard et al. 2020).
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Introduction

Nowadays, the standard cosmological framework is the Λ-cold dark matter (ΛCDM) concor-
dance model (Heavens et al. 2017). It relies on the theory of General Relativity (GR) and
Cosmological Principle, and describes the accelerated expansion of the Universe by means
of an extra component called cosmological constant, Λ. According to this model, the struc-
ture formation follows a bottom-up hierarchical scenario, resulting in the filamentary pattern
known as cosmic web (van de Weygaert & Schaap 2009; Cautun et al. 2014). In this scenario,
collapsed structures originate from positive primordial fluctuations in the initial density field,
whereas voids arise from their negative counterparts.

Despite the prevalence of the ΛCDM model in the scientific community, numerous alter-
native cosmological scenarios have emerged over the years in an effort to provide the best
agreement between theoretical predictions and survey observations (Clifton et al. 2012). One
possible explanation for the observed tensions in the ΛCDM (see Carroll 2001; Martin 2012;
Moresco & Marulli 2017a), is the inadequacy of GR on cosmological scales (see Dolgov &
Kawasaki 2003; Clifton et al. 2012; Joyce et al. 2015; Ishak 2019). In response, a number
of models based modified gravity (MG) theories has been proposed. Among them, one of
the most studied is the class of f(R) models, which incorporate an additional force, often
referred to as the fifth force, to replicate the effects of the cosmological constant on the
expansion history of the Universe (Joyce et al. 2015). Additionally, these models typically
employ a screening mechanism to restore the predictions of GR on small scales and weaken
the influence of the fifth force within high-density regions (Bertotti et al. 2003; Will 2005;
Hinterbichler & Khoury 2010; Brax & Valageas 2013).

Due to their similarities with the standard model across various scales, MG theories are
challenging to constrain to a level where they can be statistically distinguished from the
ΛCDM model. A quite innovative strategy is to search for deviations from GR in matter
underdensities, i.e., cosmic voids. Voids are extended and underdense regions that cover the
majority of the Universe volume (Cautun et al. 2014). Unlike galaxy clusters, voids are weakly
affected by screening mechanisms because of their low-density interiors and very large sizes.
This makes them perfect laboratories to detect the gravitational effects produced by the fifth
force (Barreira et al. 2015; Baker et al. 2018). Thanks to these unique features, cosmic voids
have started to be exploited as cosmological probes, not only to test MG models, but also to
explore the nature of dark energy, and study the effects of elusive components like neutrinos
(Sánchez et al. 2017; Cautun et al. 2018; Contarini et al. 2021, 2022b).

One of the most promising approaches for exploring MG models in cosmic voids involves
the analysis of the weak lensing (WL) signal. This involves studying the subtle deflection in
the trajectory of photons emitted by background sources as they pass through matter fluctu-
ations (Sereno & Umetsu 2011). Underdense regions along the line of sight cause therefore a
peculiar distortion of the light sources in background, that can be quantified by the complex
quantity called cosmic shear, γ, that defines the direction of this distortions, and conver-
gence, κ, which represents the magnification of the sources (see Bartelmann & Schneider
2001; Kilbinger 2015a; Ishak 2019; Umetsu 2020). Besides its promising application to study
MG models, this kind of statistic has already been demonstrated to be very sensitive to the
growth rate of large-scale structure and the expansion history of the Universe (Bartelmann
2010; Troxel & Ishak 2015).

The goal of this Thesis work is to analyze the potentiality of the WL from cosmic voids
as a cosmological probe. We aim at developing an effective pipeline that can be applied
to simulations or real data, enabling the identification of cosmic voids in convergence maps
and the subsequent extraction of the shear signal generated by underdensities. The building
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of this pipeline is significant for the scientific community, as it offers an innovative method
to investigate the fundamental properties of the Universe, including the presence of massive
neutrinos and modifications to the theory of gravity.

This Thesis is designed to accompany the reader through the foundational knowledge
necessary to understand its core topics, delving into the relatively novel research area of WL
by cosmic voids. The structure of the work is organized as follows:

• In Chapter 1, we provide a comprehensive description of the theoretical framework of
modern cosmology. We covered its pillars such as General Relativity and the Cosmolog-
ical Principle, and delved into understanding the Friedmann Equations. We introduce
the main features of the currently adopted standard cosmological model, the ΛCDM,
including its strengths and weaknesses. Finally, we provide a brief overview on the
formation and growth of large-scale structures in the Universe.

• In Chapter 2, we offer a brief analysis of the issues related to the ΛCDM model, as
the current tensions afflicting the cosmological constraints derived with low and high-
redshift observables. Then, we present the main alternatives to ΛCDM model, focusing
in particular on the description of scenarios featuring MG and massive neutrinos.

• In Chapter 3, we entered the core of our research by introducing the object of our
study: cosmic voids. We describe the main statistics used to analyze these objects
and we provide the theoretical framework needed to describe the phenomenon of weak
gravitational lensing. We focus in particular on the modeling of the WL signal from
cosmic voids and on the expected effects in MG scenarios.

• In Chapter 4, we present one of the main outcomes of this work: the development of
a new 2D void finder. We provide a detailed description of our pipeline, analyzing
the algorithm step by step, from pre-processing to the final 2D void catalog. We
demonstrate the effectiveness of our algorithm and we highlight its main qualities.

• In Chapter 5, we illustrate the preparation of the data catalogs used in our analysis.
We describe the DUSTGRAIN-pathfinder, a set of simulations featuring different cos-
mological models, including those characterized by MG. Then we present the procedure
followed to build the halo catalog and light-cones, up to the processes of generating the
convergence WL maps used as input for our finder.

• In Chapter 6, we showcase all the results achieved. We make use of our void finding
algorithm to analyze 2D voids and extract their main proprieties. We first discuss
the abundance of voids in different cosmologies, then we measure and analyze their
shear profiles. Finally, we propose a new parametric formula to model the mean void
shear profile, effective also to encapsulate the variations caused by MG and massive
neutrinos. We constrain the free parameters of this model through a Bayesian analysis
and we focus on the cosmological dependency of void shear profiles.

• In Chapter 7, we provide a final overview of this Thesis work and outline the future
perspective of the project.

vi





Chapter 1

Theoretical cosmological framework

In this first Chapter, we present the basis of the Standard cosmological model. We discuss
the theoretical framework, its observational counterpart, and the resulting interpretations
moving from the general theory of gravity and the principles on which it is based to the
evolution of density perturbations and the specific physical properties of the Universe. In
particular, we define the spacetime metric, we introduce cosmological distances such as the
definition of redshift, and we discuss the Friedmann Equations as solutions to the Einstein’s
Field Equation. In addition, we detail the formation of the large-scale structure (LSS) and
its primary components, such as galaxy clusters and cosmic voids, in order to set the stage
for the subsequent analysis in the next Chapters.

1.1 Fundamentals of Modern Cosmology

Cosmology investigates the formation and evolution of the Universe on the largest observable
scales, describing its physical and statistical properties with suitable models. To construct
such models, assumptions must be made from which it is possible to derive the explanation
of the observables. The two fundamental pillars of every model are the observer’s position
inside the Universe and the choice of the theory of gravity. The current cosmological model is
mainly based on the cosmological principle (CP) and the theory of General Relativity (GR),
respectively.

1.1.1 The Cosmological Principle

The CP (Einstein 1917) asserts that the Universe exhibits homogeneity and isotropy on suffi-
ciently large scales. Homogeneity is the property of being identical everywhere in space and it
denotes the absence of preferred locations in the Universe, while isotropy is the characteristic
of appearing the same in every direction and entails the absence of preferred directions for
an observer (Lemâıtre 1927). From these two fundamental properties derives the spacetime
metric, as described in Sect. 1.2. While at small scales, the present-day observable Universe
appears to be quite inhomogeneous, showing galaxies, clusters, and large voids, in its LSS
we can recover an isotropic and homogeneous field on scales larger than ∼ 100 Mpc. The
most important empirical support to CP is the isotropy of the cosmic microwave background
(CMB) radiation (Bennett et al. 1996).

The cosmological principle includes the fair sample principle, described in Sec. 1.5, which
states that examining adequately large and independent volumes of the Universe is akin to
analyze numerous instances of the Universe. This concerns the non-reproducibility of the
Universe, enabling the statistical depiction of the Universe’s matter-energy content.
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1.1.2 Theory of General Relativity

The other fundamental pillar when constructing a model that describes the entire Universe is
the theory of gravity. This is because, on the large scales where the CP holds, the total action1

of a free particle can be approximated by that of gravitational interaction, making gravity
dominant over other forces. The total action is determined by integrating the Lagrangian of
the system over time, and each term represents a specific contribution:

Stotal[x
µ(λ)] =

∫ tf

ti

Lsystem(fields, t) dt = Sinteractions + Smatter + . . . ≈ Sgravity, (1.1)

where xµ(λ) is the particle world line, L is the Lagrangian density, and ti and tf are the
initial and final times of the system.

The best current theory of gravity on which the standard cosmological model is based
is General Relativity (GR) introduced by Einstein in 1915 (Einstein 1915). In GR, gravity
is defined as an intrinsic property of spacetime geometry that can deform this geometry in
the presence of mass and energy. Space-time is a four-dimensional differentiable manifold
that has three space-like and one time-like coordinates, and its features are described by the
metric tensor gµν that is interpreted as the potential of gravitational forces. The spacetime
points are called events and the interval between two infinitesimally close events is expressed
as2

ds2 = gµν dx
µdxν = g00 dt

2 + 2g0i dt dx
i − gij dx

i dxj , (1.2)

where xµ = (ct, x, y, z), with c is the speed of light, t is the proper time3, and xν = xµ+dxµ.
ds2 is an invariant length for generalized Lorentz transformations called the mean square
distance, g00 dt

2 is the temporal term, gij dx
i dxj is the spatial term, and 2g0i dt dx

i is the
mixed term. In a curved spacetime, free particles move along paths called geodesics. Following
the principle of minimal action, these are the shortest paths between two events, and we can
derive it by minimizing ds2:

δ

∫
path

ds = 0 . (1.3)

By describing the content of the Universe as a perfect fluid with pressure p and energy
density ρc2, we can introduce the energy-momentum tensor as

Tµν = (p+ ρc2)uµuν − pgµν , (1.4)

where uµ = gµνu
ν = gµν

dxν

dλ (λ) is the 4-velocity of the fluid volume element. The metric
tensor is influenced by the distribution and by the motion of the matter, so it is related to
the energy-momentum tensor Tµν , through the Einstein’s field equations, fundamental pillar
of modern Cosmology, expressed as the Einstein’s tensor:

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.5)

where Rµν = Rα
µαν and R ≡ gµνRµν are the Ricci tensor the Ricci scalar, respectively, while

G is the Newtonian gravitational constant. The constant factor 8πG/c4 ensures to obtain
the Poisson’s equation ∇2ϕ = 4πGρ in the weak gravitational field limit.

1Defined as the functional acting on the phase space, it is a scalar quantity that has dimensions [E · t] and
parameterizes the evolution and state of a system.

2Here we use the Einstein’s notation, a notational convention that implies summation over a set of indexed
terms in a formula, it is a notational subset of Ricci’s calculus. In general relativity, a common convention is
that the Greek alphabet is used for space and time components (µ, ν = 0, 1, 2, 3), while the Latin alphabet
is used for spatial components only (i, j = 1, 2, 3).

3Defined as the time measured by a clock at rest with respect to the expansion of the Universe.
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1.2 Friedmann-Lemâıtre-Robertson-Walker metric

A direct implication of assuming CP and GR is the determination of a metric describing
spacetime known as the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. In fact, in
comoving coordinates4, isotropy is achieved by imposing null the mixed term, i.e., g0i = 0.
Therefore, Eq. (1.2) is reduced to the following:

ds2 = g00dt
2 − gijdx

idxj = c2dt2 − dl2 , (1.6)

where there are only time and space terms. In the time term t coincides with the proper time,
or cosmic time, and c is maintained, which means that the right-hand side (RHS) represents
the distance covered at the speed of light, i.e., ds2 = 0 → g00 = c2. In the spatial term xi

and xj are two sets of comoving coordinates and, at any instant t, dl2 is identical in all the
places and directions.

To find the explicit formula of gij , we need to look for a metric in the three-dimensional
space which satisfies our assumption of the CP. The only 3D geometries that satisfy the
homogeneity and the isotropy are the flat Euclidean space, hyper-spherical space, and the
hyperbolic space. Hence, to obtain a generalized formula for the spatial element dl2, we

• Use polar comoving coordinates (ρ, θ, ϕ) with 0 ≤ ρ <∞, 0 ≤ θ < π, 0 ≤ ϕ < 2π;

• Define the solid angle as dΩ2 = dθ2 + sin2 θdϕ2;

• Consider ρ ≡ ar, where a(t) is a factor called cosmic scale factor that is expressed
as a function of the proper time of comoving observers. It describes the evolution
of the space and has the dimensions of a length, while r is a dimensionless variable
(0 ≤ r <∞);

• Introduce the so-called curvature parameter K that is a dimensionless parameter related
to the amount of matter-energy density and it can be used to determine the value of
the Gaussian curvature CG = K/a2. K has only three possible values corresponding to
the different shapes of the geometry of the Universe:

– K = 1: Hyper-spherical geometry, implying a closed space with no boundaries;

– K = 0: Cartesian flat geometry, implying a pseudo-Euclidean and infinite space;

– K = −1: Hyperbolic geometry, implying an open and infinite space.

The general expression for dl2 in three dimensions is then

dl2 = a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
. (1.7)

Therefore, substituting Eq. (1.7) into the RHS of Eq. (1.6), we finally stick together the
terms of time and space in the limit of the CP, and we get the FLRW metric for the 4D
spacetime:

ds2 = c2dt2 − a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
, (1.8)

4Coordinates at rest with respect to the frame of the expanding Universe.
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1.2.1 Hubble-Lemâıtre’s law and redshift

Based on the FLRW metric, we can derive two kinds of fundamental distances:

• the proper distance dpr of a point from the origin of a set of polar coordinates (r, θ, ϕ) is
defined as the geodesic passing through such point. It is the distance measured in the
comoving reference frame at fixed time (dt=0) and assuming for simplicity dθ = dϕ = 0
in Eq. (1.8).

dpr(r, t) = a(t)

∫ r

0

dr′√
1−Kr′2

= a(t)F (r,K) , (1.9)

where the spatial and temporal parts of the equation have been explicitly separated.
The function F (r,K) does not depend on time and takes different values depending on
the value of K, so it depends on the geometry of the Universe, and we can rewrite it as

F (r) =


sin−1(r) for K=1

r for K=0

sinh−1(r) for K=−1

; (1.10)

• the comoving distance dC , is the proper distance computed at the present time t=t0
5:

dC = dpr(t0) = a(t0)F (r) =
a0
a(t)

dpr(r, t) . (1.11)

As we can see, here the expansion of the Universe is factored out, so this distance does
not change in time even if the space is expanding.

It is not possible to measure proper and comoving distances directly through observations
because of the finite speed of light, which in any reference system is the maximum speed
at which information from distant objects can be transported. It, therefore, reaches our
telescopes after a certain time, limiting our measurements to the set of light paths arriving
from our past light cone (Coles & Lucchin 2002).

As we defined in Eq. (1.9), the proper distance has a time dependence in a(t). This,
together with the observation of an expanding Universe, implies a radial receding velocity
between any two points in space. It is obtained by deriving dpr with respect to time t, and
its expression is the well-known Hubble-Lemâıtre’s law (Lemâıtre 1927; Hubble 1929):

vr =
d

dt
dpr =

d

dt
[a(t)F (r)] = ȧ(t)F (r) =

ȧ(t)

dpr
= H(t)dpr , (1.12)

where we defined the parameter H(t) ≡ ȧ/a, known as the Hubble parameter. It is a
function of time that describes the isotropic expansion rate of the Universe, so it has the
same value everywhere at a given cosmic time. Its value today H(t0) = H0 is known as the
Hubble Constant, and conventionally it is expressed through a dimensionless parameter h to
overcome uncertainties in the value of H0:

H0 ≡ 100h [km s−1 Mpc−1] . (1.13)

In fact, even in the most recent measurements, H0 remains uncertain, with values around
70 km s−1Mpc−1. Notable measurements includeH0 = 69.13±2.34 km s−1Mpc−1 from BAO
measurements (Riess et al. 2019a), H0 = 74.03 ± 1.42 km s−1Mpc−1 from SNIa standard
candels (Riess et al. 2019a), H0 = 67.4 ± 0.5 km s−1Mpc−1 from CMB angular spectrum

5The subscript 0 corresponds to today’s value, from here on.
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(Planck Collaboration et al. 2020a), H0 = 67.7+4.3
−0.42 km s−1Mpc−1 from gravitational waves

(Mukherjee et al. 2020).

In this context, we call the relative collective motion of objects in the Universe, the Hubble
Flow. An outcome of this phenomenon is the reddening of the observed spectrum of distant
objects, indicating a shift towards longer wavelengths in the electromagnetic spectrum. The
further away an object the more it is affected by this effect termed redshift. It is properly
defined as the relative difference between the wavelength λem of radiation emitted at time
tem from a source, in its reference system, moving along the line of sight (los) of the observer,
and the wavelength λobs of the radiation which arrives at the observer at time tobs.

z ≡ λobs − λem
λem

=
∆λ

λ
, (1.14)

where z < 0 (blueshift) when the source is approaching the observer, or z > 0 (redshift)
when the object is moving away from the observer. We can derive an important relation
for Cosmology by integrating, assuming comoving coordinates, the FLRW metric along the
difference between two photon paths6. Therefore, for an observer located at the present time
t0 and an emitting source at a generic t, it is:

1 + z =
a0
a(t)

. (1.15)

In this relation we can see how cosmological redshift depends on the scale factor a(t) that is
a monotonic function of cosmic time, this is why redshift can be considered as a measure of
both distance and time. We can use spectroscopy (but also photometry) to measure z and
through this relation infer the distance of extragalactic sources7.

1.2.2 Observable cosmological distances

As we mentioned, the previous definition represent distances between events happening at
the same proper time dpr, so they are physically impossible to measure. At this point, it
is useful to define other distances that are directly measurable from observables, leveraging
their characteristics, as the case of redshift.

• The luminosity distance dL, which is derived by assuming to have an object with
the same intrinsic emitted luminosity (L ≡ dE

dt = Lobs[
a0
a(t) ]

2) throughout the space-

time, like in the standard candle8 method, and by measuring its flux (f = Lobs

4πd2C
=

L
4πa20r

2 [
a(t)
a0

]2) with the assumption of the flux conservation (see Figure 1.1a). Using the

flux-luminosity relationship, we can obtain the following definition:

dL =

√
L

4πf
=

a20
a(t)

r = a0r(1 + z) . (1.16)

• The angular diameter distance dA is defined in order to preserve the geometric charac-
teristics of an Euclidean space with the distance, in particular the variation of angular

6A massless particle like photon move along null geodesics (ds2 = 0).
7It is crucial to emphasize that the frequency of light is influenced also by gravitational fields and other

relativistic effects (Weinberg 1972).
8The term standard candles refers to objects with a well-established luminosity, such as SNIa, leading to

consistent peaks in their light curves; while standard rulers are objects with a known size, i.e., Baryon Acoustic
Oscillations (BAO), fluctuations visible in the distribution of baryonic matter on large scales.
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size (see Figure 1.1b). Given an object with known physical (transverse) size D, sub-
tended by a certain angle δθ in the small-angle approximation (δθ ≪ 1), its distance
is:

dA =
D

δθ
= a(t)r . (1.17)

(a) Geometry associated with luminosity distance. (b) Geometry associated with the angular diameter
distance.

Figure 1.1: Left panel (a): A standard candle emits photons at time t = tem = t1 at a distance z. At the
time of observation tobs = t0, the observer can measure a flux through the surface area of a sphere centered in
its position and inflated by the Universe expansion. Right panel (b): A standard ruler emits photons at time
t = tem = t1 at a distance z. At the time of observation tobs = t0, the object appears to subtend an angle θ,
though the space in-between the observer and the standard ruler has expanded during the photons’ travel by a
factor of (1+z). Credits to: https://homes.psd.uchicago.edu/~liantaow/my-teaching/dark-matter-472/
lectures.pdf

Assuming a spacetime metric allows us to calculate luminosity and angular diameter distances
for any extragalactic source with a known redshift. Utilizing standard candles facilitates
testing the FLRW metric using Eq. (1.16) when the source redshift is available. Similarly,
standard rulers offer a means to assess the assumed spacetime metric through Eq. (1.17).

We can note that, by their definition, all the cosmological distance definitions are coinci-
dent for r → 0 and t→ t0:

dpr ≈ dC ≈ dL ≈ dA , (1.18)

reproducing the Euclidean behavior at small distances (Hogg 1999).
By comparing the luminosity distance with the angular diameter distance, we obtain the

Etherington’s reciprocity theorem also well-known as the duality relation (Etherington 1933):

dL
dA

= (1 + z)2 . (1.19)

From this relation we can derive that having a source which is both a standard candle and a
standard ruler, its dA will be always smaller than its dL. Eq. (1.19) provides a robust test to
quantify the deviations from the FLRW metric, in particular the assumptions of CP (Li et al.
2011), and consequently it plays an important role in the validation of current cosmological
models. Up to now the strongest probes to duality relation are strong gravitational lensing
and compact radio sources (see, e.g., Qin et al. (2021); Tang et al. (2023); Li (2023)). These
observations have found no divergence from the duality connection, and this means that the
standard cosmological model holds.
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1.3 Friedmann equations

As we mentioned, in a Universe with assumptions of CP and GR, the relationship between the
geometry of spacetime and the matter content is governed by the Einstein’s field equations
(Eq. (1.5)). Assuming the validity of the FLRWmetric and considering the energy-momentum
tensor as that of a perfect fluid (Eq. (1.4)), we can reduce this set of 10 equations to only two
indipendent equations, called the first and the second Friedmann equations (Friedmann 1922):

ä = −4π

3
G

(
ρ+

3p

c2

)
a (time-time component) , (1.20)

ȧ2 +Kc2 =
8π

3
Gρa2 (space-space component) . (1.21)

These equations provide the time evolution of the scale factor a(t) and represent the dynamic
evolution of the Universe.

In addition, assuming the Universe as a closed system in adiabatic expansion9, these
equations are related by the adiabaticity condition:

dU = −p dV −→ d(ρc2a3) = −p da3, (1.22)

where, in the general form, U is the internal energy and V is the volume of the Universe.
The density, ρ, and the pressure, p, have to be considered as the sum of the densities and the
pressures of all Universe’s components, respectively. From this relation follows:

ρ̇+ 3
(
ρ+

p

c2

) ȧ
a
= 0 . (1.23)

At this point, we can manipulate the second Friedmann equation (1.21) to derive the
curvature parameter K as a function of the Universe’s density ρ. In order to do this, it is
convenient to define a density parameter called critical density :

ρcrit(t) ≡
3

8πG

(
ȧ

a

)2

=
3H2(t)

8πG
, (1.24)

so the Eq. (1.21) can be reduced to:

H2(t)

(
1− ρ(t)

ρcrit(t)

)
= − Kc2

a2(t)
. (1.25)

For each time, the ratio between the density and the critical density defines the dimensionless
density parameter :

Ω(t) ≡ ρ(t)

ρcrit(t)
=

8πG

3H2(t)
ρ(t) . (1.26)

Ω(t) is a fundamental cosmological parameter because in this notation it describes the density
contribution of each component of the Universe and from its value we can determine the value
of K and then deduce the real geometry and the kind of evolution of the Universe:

• If Ω > 1 ⇔ ρ > ρcrit ⇔ K = 1, Hyperspherical geometry, positive curvature (closed)
Universe with decelerated expansion followed by a contraction;

• If Ω = 1 ⇔ ρ = ρcrit ⇔ K = 0, Flat geometry, null curvature Universe;

9An expansion in which the system has no energy loss so does not exchange heat with the outside
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• If Ω < 1 ⇔ ρ < ρcrit ⇔ K = −1, Hyperbolical geometry, negative curvature (open)
Universe with eternal expansion.

As we can see on Eq. (1.25), the value of the critical density depends from H(t). Computed
today (t = t0) its value is ρcrit,0 ≃ 1.9 × 10−26h2 kgm−3 ≃ 2.775 × 1011h2M⊙Mpc−3. The
most recent estimate of the total density parameter is Ω0 = 0.9993± 0.0019 (Lahav & Liddle
2019), obtained assuming the measurements from Planck Collaboration et al. (2020a).

1.3.1 Cosmological constant Λ

From Eq. (1.20) we can deduce that the Universe can not be static otherwise it would have
negative pressure or energy density, and this is physically impossible. In order to recover
static-Universe solutions from his field equation, Einstein introduced a constant Λ, called the
cosmological constant that balances the gravity’s attractive action on matter. This implies a
modification in the field equations:

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν . (1.27)

In fact, by imposing on Λ a sufficiently small value, we can achieve a static model for our
Universe and at the same time maintain consistency with the weak field approximation of
Newtonian theory. Such a requirement was highly fine-tuned, and, following the discovery of
the Universe’s expansion through Hubble-Lemâıtre’s law, the concept of a static Universe was
abandoned, along with the introduction of the cosmological constant. Nevertheless, from the
subsequent discovery of the accelerated expansion of the Universe thanks to the observation
of the flux of distant SNIa (Riess et al. 1998; Perlmutter et al. 1999), Λ has been reintroduced
into Einstein’s field equation.

The current theoretical justification of the cosmological constant is physically well moti-
vated in GR, as its presence naturally descends from the general expression of the gravitational
field’s second-order action (Bianchi & Rovelli 2010). Its repulsive action on large scales plays
a role in the current cosmological model and changes our understanding of gravity’s nature
itself. Depending on its position in Einstein’s field equation, it takes different interpretations:

• LHS: interpretation of Λ as a geometrical modification of gravity, i.e. a failure of the
standard relativistic theory of gravity, and hence, the GR would need to be revised on
cosmological scales;

• RHS: interpretation of Λ as an additional energy component in the energy-momentum
tensor. It is called dark energy (DE), a cosmological fluid with negative pressure,
which contrasts the small-scale attractive interactions. Its nature is unknown and it is
currently interpreted as the vacuum energy.

The first work that integrates the cosmological constant into the field equations and studies
its dynamic solutions and their evolution over time under the assumption of perfect fluid,
dates back to A. Friedmann (Friedmann 1922). By defining an effective pressure (p̃ = p− Λc4

8πG)

and an effective density (ρ̃ = ρ+ Λc2

8πG), he modified the energy-momentum tensor as

T̃µν = Tµν +
Λc4

8πG
gµν = −p̃gµν + (p̃+ ρ̃c2)uµuν , (1.28)

obtaining the so-called modified Friedmann equations:

ä = −4π

3
G

(
ρ̃+ 3

p̃

c2

)
a , (1.29)

ȧ2 +Kc2 =
8

3
πGρ̃a2 . (1.30)
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1.3.2 The components of the Universe and their evolution

In order to describe the expansion history of the Universe, it is necessary to know its content
and thus the equation of state that characterizes each component.

In the perfect-fluid approximation10 a general equation of state (EoS) p = p(ρ) with isotropic
pressure (from the adoption of the CP) assumes the form:

p = wρc2 with 0 ≤ w ≤ 1 . (1.31)

where w is the EoS parameter defined from the sound speed like cs ≡
(
∂p
∂ρ

)1/2
S=const

= c
√
w.

This parameter is assumed to be constant with time and, to have a physical meaningful11, it
must belong to the so-called Zel’dovich interval given in Eq. (1.31). Depending on the specific
component under consideration, differentiating between relativistic and non-relativistic, the
constant w may assume various values:

• w ≃ 0 represents a non-relativistic fluid, like matter (dust): pm = kBT
mpc2

ρmc
2 where

kBT
mpc2

∼ 0, so its contribution to total pressure can be neglected12: pm ≈ 0;

• w = 1/3 represents an ultra-relativistic fluid, like radiation or relativistic matter,
composed of non-degenerate particles at equilibrium like photons and neutrinos: pr =
1
3ρc

2;

• w = −1 represents the cosmological constant: pΛ = −ρΛc2. It is the only value of w
that makes the contribution of Λ constant over time, obtaining ρΛ = ρ0,Λ = const.

At this point, by combining the adiabaticity condition, Eq. (1.22), and the general EoS,
Eq. (1.31), it is possible to derive the density trend with the cosmic time of an individual
component:

ρw = ρw,0

(
a

a0

)−3(1+w)

∝ a−3(1+w) ∝ (1 + z)3(1+w), (1.32)

It is a function of the scale factor for any value of w. By computing it for each component,
it is clear that they evolve differently. Thus, we can deduce that different components have
dominated through the cosmic epochs, with one prevailing over the others.

10To make this assumption reasonable, it is sufficient for the particles mean free path of the fluid to be much
smaller than the scales of interest. This can be realistic when considering the Universe on a large scales.

11We must have a positive (or null) real value for the sound speed, also smaller than the speed of light.
12This is because kBT (the typical particle thermal energy), with kB the Boltzmann constant and T the

fluid temperature, is much lower than mpc
2 (the particle rest mass).
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Figure 1.2: ρ− t plot with trends in time of the three main Universe’s components: radiation, matter, dark
energy, here in the form of a cosmological constant.

From this, by inserting this relation into Eq. (1.26), we obtain

Ωtot(t) ≡
∑
i

Ωwi(t) . (1.33)

Generalizing Eq. (1.25) for a multi-component Universe, we obtain the evolution of the Hubble
parameter:

H2(z) = H2
0 (1 + z)2

[
1− Ω0,tot +Ω0,tot(1 + z)(1+3wi)

]
≡ H2

0E
2(z) , (1.34)

where H0 is the Hubble constant, Ω0,K = 1 −
∑

iΩ0,wi is the so-called curvature density
parameter, and E(z) is the dimensionless Hubble parameter. For the mono-component Uni-
verse, combining all the equations above, we can explicitly describe the evolution of the
density parameter over time, or redshift, as:

(Ωtot(z))
−1 − 1 =

(Ω0,tot)
−1 − 1

(1 + z)1+3wi
. (1.35)

For “ordinary” fluid components, given w = const and in the Zel’dovich interval, the exponent
of (1+z) will be always positive. Therefore, the sign of the RHS of Eq. (1.35) remains constant
throughout the expansion of the Universe; consequently, the LHS also remains invariant and
the total curvature density parameter can not change its sign over time. This fundamental
relation implies that a Universe governed by the Friedmann equations undergoes no changes
in its geometry during its evolution.

1.3.3 Big Bang and cosmological horizon

From the second Friedmann Eq. (1.25) and from the Hubble’s law observations of the ex-
pansion of the Universe, we have ȧ(t) > 0. From the first Friedmann Eq. (1.20) with the
perfect-fluid approximation in the Zel’dovich interval, we have ä(t) < 0 for any t.
This information makes us infer the behavior of a(t) going back in time:
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• ȧ(t) > 0 =⇒ a(t) is a monotonically increasing function;

• ä(t) < 0 =⇒ a(t) is a downward concave function without an inflection point.

All possible cosmological models, based on the GR and CP and described by perfect fluids
with −1/3 < w ≤ 1, necessarily have some finite time in the past at which it is infinitely
smalla(t) = 0, while density, Hubble parameter and temperature diverge:

lim
t→0

ρ(t) = lim
t→0

(
a0
a(t)

)−3(1+w)

→ +∞ . (1.36)

This is a singularity because its real physical conditions at the time are unknown and is
called the Big Bang (BB). It gives the name to the model that currently appears to better
describe these conditions and the subsequent evolution: the Hot Big Bang (HBB) model. In
this context, the evolution of the Universe is illustrated as a thermal history, thus the term
“Hot”. As we rewind closer t ≃ 0, the Universe consistently becomes hotter, but for times
t < tp, where tp ∼ 10−43 s is the Planck time, it is no longer possible to neglect the quantum
effects of gravity which, still to date, has not a universally accepted treatment. Note that the
expansion of the universe emerging from the HBB model is a result of the initial conditions.

Understanding the evolution of the scale factor a(t) enables the derivation of the cosmolog-
ical horizon RH(t). This parameter delineates a sphere centered on a particle, encompassing
the volume of the Universe in causal connection with that particle. Specifically, RH(t) is
defined as follows:

RH(t) = a(t)

∫ t

0

c dt′

a(t′)
. (1.37)

It is a proper distance, derived from Eq. (1.9), that takes into account the expansion of
the Universe for a photon. If the integral remains finite, RH(t) defines the so-called particle
horizon, which encloses the set of events in the space-time that are causally connected to
a particle P. From Eq. (1.21), it can be shown that a(t) ∝ tβ, with β > 0, for a generic
Friedmann model. Therefore, manipulating the Friedmann equations as a function of β, we
can derive

β(β − 1) ∝ −4π

3
Gt2

(
ρ+

3p

c2

)
. (1.38)

We can note that the condition ä < 0 for a Big Bang singularity implies 0 < β < 1.
Consequently, the presence of a Big Bang ensures the finiteness of RH(t).

Since RH(t) is finite, signals originating from sources with comoving proper distances
exceeding the particle horizon scale dp(t) > RH(t) cannot have been observed by the observer.
It is essential to differentiate between the behaviors before and after aeq, representing the
scale factor that defines the age of equivalence between radiation and matter:

RH =

{
a2 for a < aeq

a2/3 for a > aeq
. (1.39)

For a flat Universe, this leads to the exact relation:

RH = 3
1 + w

(1 + 3w)
ct =

{
2ct for t < teq

3ct for t > teq
, (1.40)

where w = 1/3 for a radiation-dominated Universe and w = 0 for a matter-dominated
Universe.
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1.4 The standard cosmological model ΛCDM

Today, the widely accepted model describing the origin of our Universe is the HBB model.
It portrays an almost flat Universe characterized by the CP and GR, governed by the Fried-
mann equations. As we mentioned above, the Universe described in this context underwent a
thermal history, so we can trace its evolution studying the changes in temperature. In princi-
ple, the Universe’s temperature was significantly higher than it is today, while presently the
temperature of the photons permeating the Universe is measured at T = 2.7255 ± 0.0006K
(Fixsen et al. 1996; Planck Collaboration et al. 2020a). This value corresponds to the CMB
temperature, a black-body radiation originating from the last scattering surface approxi-
mately at redshift z ≈ 1089 (about 3.79×105 yr after the Big Bang). The early Universe was
composed of a hot fully ionized high-dense plasma, containing baryons and free electrons. In
this fluid, electromagnetic radiation was continuously scattered by high density of baryonic
matter, so that the Universe was completely opaque13 and in thermal equilibrium. This can
happen because the continuous expansion led to a cooling effect until, when the temperature
falls below ≃ 3000K, electrons start recombining with protons at z ≈ 1500, allowing photons
to propagate freely reaching us, the observers. Subsequently, with the dominance of the mat-
ter component, gravitationally bound structures formed, rising to the large-scale structures
observed today.

In addition, CMB temperature exhibits very small fluctuations, approximately 10−5 K,
in any direction across the sky, and this lends empirical support to the isotropy assumption
embedded in the CP14. Despite the observed causal connection at z ≃ 1100 implied by the
isotropy of the CMB temperature, the size of the cosmological horizon predicted by the models
at that time suggests that causal connection should not extend beyond approximately 2◦ on
the sky. Cosmic inflation, proposed by Guth (1981), addresses this discrepancy by positing an
accelerated expansion characterized by exponential growth of the cosmic scale factor a(t), in
the early Universe at t ≃ tGUT , but after the BB. Modern inflationary models, notably based
on the Chaotic Inflation proposed by Linde (1983), often involve a scalar field with substantial
initial potential energy, referred to as the inflaton. In these models, the inflaton eventually
decays into particles through quantum fluctuations, establishing the initial conditions for
growth of perturbation and the formation of cosmic structures. Additionally, cosmic inflation
explains the observed flatness of the Universe’s spacetime geometry, as revealed by CMB
experiments (de Bernardis et al. 2000).

At now, based on HBB and inflationary models, we describe the total theoretical frame-
work of our Universe with the standard cosmological model, called concordance Λ-cold dark
matter (ΛCDM) model. Supported by extensive observational data, this model is the basis
of our understanding of structure formation. By making explicit the components of Ωtot in
(1.35) and expressing with their present-day values:

Ω0,tot = Ω0,m +Ω0,r +Ω0,Λ , (1.41)

where Λ represents the cosmological constant with Ω0,Λ ≈ 0.67, cold dark matter (CDM), a
dust-like type of dark matter with Ω0,cdm ≈ 0.28, ordinary observable matter (baryons) with
Ω0,b ≈ 0.05, and a radiation component with Ω0,r ≈ 10−5. These energy density values align
with the flatness condition Ω0,tot ≈ Ω0,Λ +Ω0,cdm +Ω0,b +Ω0,r ≈ 1.

As we can see, the dominant component of the standard cosmological model is DE, repre-
sented by Λ, and it is vital for explaining the observed accelerated expansion of the Universe.

13Photons, within this Universe were essentially confined, incapable of traveling significant distances before
interacting with the plasma through Thomson scattering.

14Note that these measurements, while confirming the isotropy, do not validate the homogeneity of space-
time, a requirement demanding observations from diverse locations in the Universe.
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Combining the Friedmann equation and the perfect fluid EoS, it can be demonstrated that
a multi-component universe consisting of a cosmological constant and matter leads to an
accelerated expansion (ä > 0). This acceleration is expressed as ä = −4π

3 Gaρ(1+3w), where
a positive Λ is required to account for the accelerated expansion. This implies a positive den-
sity and a negative pressure (wΛ = −1), and requires imposing the condition Ω0,Λ > Ω0,m/2,
which is indeed satisfied by the present-day density values. Although wΛ = −1 could avoid
a Big Bang singularity introducing a flex in the function a(t), the measured energy density
associated with Λ is too low, so it occurs. It can be shown that, given the present-day density
values, this inversion in the expansion rate occurs at zf ≈ 0.67. Further mathematical deriva-
tions allow us to determine the moment of equivalence between the density corresponding
to matter and the cosmological constant, i.e., Ωm(zeq,Λ) = ΩΛ(zeq,Λ). This event occurs at
zeq,Λ ≈ 0.33, indicating that DE and matter are presently comparable, with the contribution
of Λ becoming significant only at recent times. DE density is approximately ρ0,Λ ≈ 7×10−27

kg m−3 and it is the highest compared to the other components, but, even now, it is not
associated with any known form of energy.

Similarly, due to the inability of direct observations, a physical description of the DM is
still lacking. It was introduced in Zwicky (1937) to account for observed gravitational effects
that could not be explained by existing gravitational theories without an excess of non-visible
mass. DM can be interpreted as particles or small objects interacting solely with matter,
including self-interaction, through gravity and possibly the weak force. The existence of DM
would now seem to be confirmed by various pieces of evidence, with gravitational lensing by
galaxy clusters, redshift-space distortions in large-scale mass distribution, and fluctuations
in the density spectrum due to BAO being among the most reliable probes to quantify its
effects. From a cosmological point of view DM can be classified into two primary types:

• Hot dark matter (HDM), composed of low-mass relativistic particles, with massive
neutrinos being the leading candidates;

• Cold dark matter (CDM), consisting of massive non-relativistic particles, with Weakly
Interacting Massive Particles (WIMPs) currently being the most plausible candidates.

Over the past decades, several particle candidates have been proposed and tested. As dis-
cussed in the next section, structure formation and evolution models suggest that the majority
of the DM component must be cold. CDM is integrated into the standard cosmological model
due to its non-relativistic state preceding that of HDM. The intrinsic link between cosmic
time and temperature allows us to estimate when a fluid ceases to be relativistic. This is
accomplished using the relationship kBT ≃ mxc

2, where kB is the Boltzmann constant, and
mx is the characteristic mass of the fluid particles. CDM particles, being more massive than
their hot counterparts, experience the transition to a non-relativistic state earlier. Moreover,
CDM, being non-relativistic at the moment of decoupling from the radiation component, fa-
cilitates the prompt emergence of gravitational perturbations. This characteristic aligns with
the hierarchical model for the development of cosmic structure, involving the initial forma-
tion of small structures that undergo mergers, leading to the creation of larger gravitationally
bound objects.

A comprehensive characterization of the ΛCDM scenario involves defining six fundamental
parameters:

• Ωm: total matter density parameter,

• Ωb: baryonic matter density parameter,

• H0: Hubble constant,
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• As: primordial power spectrum amplitude,

• ns: spectral index of the primordial power spectrum,

• τ : reionization optical depth.

Here, Ωm and Ωb are typically expressed with their present-day values, while, in a flat Uni-
verse, the DE density parameter is expressed as ΩΛ = 1− Ωm. The matter power spectrum
depends on As and ns.

The strongest constraints on these parameters are derived from the analysis of the CMB
angular power spectrum observations. From the combination of CMB temperature fluctu-
ations and lensing, Planck Collaboration et al. (2020a) derived the following constraints:
Ωmh

2 = 0.1430 ± 0.0011, Ωbh
2 = 0.02237 ± 0.00015, H0 = 67.36 ± 0.54 km s−1 Mpc−1,

109As = 2.100±0.030, ns = 0.9649±0.0042, τ = 0.0544±0.0073. The CDM density parame-
ter is defined as Ωc = Ωm−Ωb, and from these results we can note that it is the contribution
that dominates Ωm.

1.5 Formation of Cosmic Structures

According to the Standard Cosmological Model, after the BB, the Universe evolved from
a homogeneous state into a complex network of structures called cosmic web that we can
now observe. This term refers to the LSS of the Universe, characterized by a hierarchical-
organized system consisting of voids, filaments, walls, and nodes. This intricate network has
evolved from primordial fluctuations that originated in the final phase of inflation at very high
redshifts (Bacon et al. 2021). The ΛCDMmodel posits a bottom-up scenario for the formation
of cosmic structures. In this model, DM particles collapse into DM haloes, forming potential
wells where baryons can subsequently accumulate through a process known as baryon catch-
up. The initial appearance of small DM haloes and baryonic structures precedes the formation
of larger structures through aggregation.

As these structures emerged, the Universe displayed inhomogeneity on smaller scales,
approximately tens of megaparsecs. So, to comprehend the Universe’s homogeneity today,
observations must extend to scales larger than ∼ 100 Mpc. In fact, when the cosmic field
is smoothed across sufficiently large regions, the Friedmann equations can still effectively
describe the dynamics of the Universe. The formation and evolution of cosmic structures
are intricately tied to cosmological parameters that encapsulate both the geometry and con-
stituents of the Universe. Consequently, the statistics of LSS offers powerful insights, guiding
us toward a deeper understanding of the Universe we inhabit. In this section, we will delve
into both the linear (1.5.2) and nonlinear (1.5.3) evolution of cosmic structures.

1.5.1 Primordial fluctuations

Currently, the widely accepted theory of cosmic structure formation is grounded in a ho-
mogeneous background of the primordial Universe, perturbed by mechanisms such as initial
scalar metric-fluctuations (quantum vacuum fluctuations) that might have expanded into
“macroscopic” cosmological perturbations during cosmic inflation (Langlois 2005). They are
produced by the oscillation of the inflaton field and in Newtonian approximation correspond
to fluctuations δΦ of gravitational potential Φ. Assuming that just after inflation there are no
privileged scales on which such perturbations occur, the initial model of δΦ is called scale-free.
Due to that, at any scale R fixed, this phenomenon generated primordial density perturba-
tions δρ through the relationship δΦ ∝ GδM

R ∝ δρGR
2, consisting in small fluctuations in the

density field of the primordial fluid (see Mukhanov 2005, for a detailed description).
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The effects of these perturbations can be observed in the temperature fluctuations of the
CMB maps and the discovery of these anisotropies (Smoot et al. 1992) provided a crucial
observational confirmation of the HBB model. Under the adiabatic condition (1.22), we can
express δT/T ≈ δρ/ρ ≈ 10−5, where T = T0,CMB. As of today (z = 0), the measured density
contrast within virialized cosmic structures ranges from 100 to 1000, while at z ≈ 1100 it
was less than approximately seven orders of magnitude. The goal of Cosmology is to provide
an explanation for this significant growth. In this section we provide the theoretical basis for
the study of the density fluctuations.

The point density contrast field, δ(x), is a dimensionless quantity defined as:15

δ(x) ≡ δρ

ρ
=
ρ(x)− ρ̄

ρ̄
, (1.42)

where ρ(x) is the point density field, and ρ̄ is the mean density of the background Universe.
Since density is always positive, −1 ≤ δ < +∞, encompassing both overdense and underdense
regions.

As we mentioned, the seeds of density perturbations are believed to be produced in the
final phases of the inflationary era, through a spiraling motion of the inflaton in phase space,
which is a stochastic process. This implies that the generated metric fluctuations are random,
meaning they exhibit a lack of phase correlation in Fourier space16. Therefore, because they
are generated by stochastic processes, is not possible to describe the density contrast field
deterministically. Alternatively, it is possible to describe the condensed statistical charac-
teristics of the field17. To have a precise measure of a statistic, it is necessary to probe a
large enough sample that is reproducible. This is not the case in our Universe, for which
the sample consists of only one element, itself, that is the only possible realization. Here the
space-like Ergodic hypothesis (EH) plays a fondamental role, stating that the average between
multiple Universes equals the spatial average between sufficiently large and non-overlapping
sub-volumes of a single Universe. The EH is based on the idea that sufficiently large and
separated regions of the Universe are statistically independent of each other and are therefore
equivalent to different statistical realizations of the same stochastic process, and in case of
Gaussian distribution the it becomes a provable theorem. In this sense, the EH combined
with CP is called the Fair Simple Principle (Coles & Lucchin 2002).

In Fourier space, when random phases are present, we can assume that the distribution
of probability P (δ) of having a given δ, approximatly grows as a Gaussian18 due to the
homogeneity and isotropy of the Universe. So, given the non-negative definition of density,
the real initial distribution of P (δ) is considered a truncated Gaussian centered around the
mean value of δ. This implies that all odd moments are null, and all even moments are powers
of the variance of the distribution (second momentum). Therefore, P (δ) is a 3D Gaussian
field and its variance is defined as σ2 ≡ ⟨|δ|2⟩ − ⟨δ⟩2 = ⟨|δ|2⟩, where the last equality follows
from the null mean (momentum 0).

At this point, we expect that density fluctuations will be present across a range of mass
and spatial scales, implying that the eventual collapsed structures will be influenced by
the evolution of various perturbations spanning different scales. To perform a statistical
analysis of the fluctuations and accurately depict the growth of structures, deriving from the

15In the notation used here, elements in bold represent vectors
16It is an abstract space into which the Fourier transform maps a function, consisting of the amplitude and

phase of the sine function at various frequencies (or wavelengths) that sum to produce the same shape.
17It should be noted that the probabilistic approach does not predict the formation of a structure but

provides the probability of similar structures occurring.
18This assumption is consistent with the CP. It means that if it could be measured the value of δ at different

positions, the probability P (δ) at a given point would follow a Gaussian distribution.
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result of linear theory (Sect. 1.5.2), it is convenient to express the density perturbations as a
combination of plane waves, each evolving independently of the others. In order to describe
properly σ2, working in either real space and Fourier space, we can deconstruct δ(x) into
infinite plane waves, each with an amplitude δ̂(k) and a wave-vector k, and reconstruct the
field by summing up to infinity. Given the real-space density contrast field δ(x), its spatial
Fourier transform19 (FT) is given by:

δ̂(k) =
1

(2π)3

∫
δ(x)e−ik·xd3x , (1.43)

where k = 2π/x is the wave-vector. It is a complex field with dimensions of a volume.
Following the Fourier inversion theorem20 its inverse Fourier transform (FT−1) is:

δ(x) =
1

(2π)3

∫
δ̂(k)eik·xd3k. (1.44)

Let us now study the field δ̂(k) in the Fourier space defining the power density spectrum,
which quantifies the contribution of the square amplitude for different Fourier modes (Coles
& Lucchin 2002):

⟨δ̂(k)δ̂(k′)⟩ ≡ (2π)3P (k)δ
(3)
D (k+ k′) −−−−→

k′=−k
⟨|δ̂(k)|2⟩ ∝ P (k), (1.45)

where δ
(3)
D (k) = 1

(2π)3

∫
eik·xd3x is the 3D Dirac Delta, the properties of reality (δ̂(−k) =

δ̂∗(k)) and complex conjugate (δ̂(k)δ̂∗(k) = |δ̂(k)|2) have been applied, and the infinite
volume of the Universe V∞ =

∫
d3x has been used to normalize. P (k) is a measure of the

power of k-scale fluctuations, where k is the wave-number of plane waves having wavelength
λ = 2π/k, and tell us with what density a given wave at a given scale contributes to the field
reconstruction of the total density contrast δ̂(k). Actually, P (k) is a power density, since
the real power of fluctuations is given by P (k)d3k that tells us with what power that wave
contributes to the reconstruction of δ̂(k). By computing the FT−1 of P (k), we obtain its
counterpart in real space, the two-point correlation function (2PCF):

ξ(r) = ξ(r) =
1

(2π)3

∫
P (k)eik·rd3k . (1.46)

It is a double average, over all directions and all positions, and measure how δ(x) correlates
with itself considering all points at distance r. Due to the CP we have also that ξ(r) =
ξ(r) = ⟨δ(x)δ(x′)⟩ = ξ(|x − x′|) where r is the comoving distance between x and x′. The
power spectrum (in Fourier space) or the correlation function (in real space) are formally
equivalent, as both describe the same property in two different spaces.

In the present scenario, since the only quantity that defines the field is the variance σ2,
assuming the EH, through the Parseval theorem we can show that the variance σ2(k) of the
point density contrast field δ̂(k) in 3D Fourier space can be written in cartesian coordinates
as:

σ2(k) =
1

(2π)3

∫
P (k)d3k . (1.47)

It is the sum of all contributions over all k, it is an integrated information over the whole
Fourier space of P (k). From the physical point of view it is the total power of the density

19It is an operator that transforms a function into another function through integration.
20States that, for various types of functions, it is possible to reconstruct a function from its Fourier transform.

This theorem suggests that if we have complete information about the frequency and phase of a wave, we can
accurately reconstruct the original wave.
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contrast field.
To compute σ2, it would be necessary to evaluate the density in each point of the space,

which is practically unfeasible to reconstruct the entire density field. A practical and con-
venient method involves representing the fluctuation field by ”filtering” on some resolution
scale R, rather than using a punctual variance. Using this approach, we can recover the
density fluctuation from a discrete distribution of observable tracers. The density fluctuation
from a discrete distribution of tracers can be expressed as:

δM =
M − ⟨M⟩

⟨M⟩
, (1.48)

where ⟨M⟩ is the mean mass present inside a spherical volume of radius R.
The mass variance, denoted by σ2M , is a measure of the convolution of the point density

with a window function W (x, R) of radius R:

δM (x) =
δM

M
= δ(x)⊗W (x, R) , (1.49)

Utilizing the convolution theorem and considering the limit as Vu → ∞, the mass variance
can be expressed as:

σ2M =
1

(2π)3

∫
P (k)Ŵ 2(k, R)d3k . (1.50)

where Ŵ (k, R) is the FT of the window function and is a function of R (and thus ofM). This
quantity is related to the typical amplitude of a density fluctuation on a scale R. Furthermore,
the mass variance varies with the radius over which it is filtered:

• σ2M → σ2 for R→ 0, because the window function is not filtering;

• σ2M ≡ δ2 → 0 for R → ∞, because the window function is filtering the entire Universe
recovering the mean density.

Since the normalization of the power spectrum As is not determined by inflation theory, an
alternative approach to parameterize it is setting the value of the mass variance computed
with a filtering scale of R = 8h−1Mpc at the present time z = 0. It can be shown that it is:

σ28 =
1

(2π)2

∫ ∞

0
k2P (k)|Ŵ 2(k, R = 8h−1Mpc)|dk . (1.51)

The square root of σ28 in spherical coordinates represents the mass fluctuation spheres with
a radius of 8h−1Mpc and serves as a free parameter crucial for predicting the characteristics
of the low-redshift Universe.

Now that we have the theoretical tools, we can discuss the behaviors of the primordial
power spectra P (k, t = ti) for δΦ and δρ. As mentioned earlier, upon exiting inflation, they
are scale-free. To reproduce this property in the shape of the power spectrum for δρ, which is
our observable in the CMB (Hinshaw et al. 2013), a widely used parameterization following
various versions of inflationary theory is expressed as a power-law Pi,ρ(k) = Ask

ns , where
As is the amplitude of fluctuations, and ns is the spectral index. This assumption is made
because the power-law is the simplest functional form that allows scale-free behavior, and
if As is not constrained by inflationary models and must be constrained with observations,
on the contrary ns is (Longair 2008; Ryden 2016). Indeed, knowing that during inflation
metric fluctuations are produced by a stochastic process, Pi,Φ(k) must be flat21, and this,

21It is also called white noise because the signal amplitude is the same at all scales k
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given the relationship between metric and density fluctuations, implies that ns ≃ 1 and
Pi,Φ(k) = AΦk

ns−1. Pi,ρ(k) = Ask
ns with ns ≃ 1 is called the Harrison-Zel’dovich power

spectrum, and this result is consistent with current CMB observations (Planck Collaboration
et al. 2020a).

It is important to note that, although the Zel’dovich power spectrum is scale-free and
thus exhibits self-similar scales with a fixed slope of 1, this positive slope favors higher power
for perturbations on small scales (high k) compared to those on large scales (low k)22 (Coles
& Lucchin 2002). Since the cosmological horizon RH(t) is an increasing function of time,
the first scales to enter it are the small ones, so they are those scales that experience the
stagnation effect first (see Sect. 1.5.2) . At equivalence this effect ends, which makes this
cosmic moment extremely important because it is the moment after which perturbations can
grow freely.

The primordial density fluctuations in the density field are present at the time ti = tf,infl
with an amplitude δi = δ(x, ti). To understand how they evolve for t > ti, we need to
examine on which scales, from a physical perspective, the total action is approximable by
gravitational interaction alone; otherwise, we will not have perturbation growth. Thus, we
introduce a function called the growth factor that depends only on time and not on scales,
aiming at reproducing the scale-free property of the Zel’dovich power spectrum. At time
t > ti, we will have:

P (k, t) = δ2i δ
2
+(t) ∝ Piδ

2
+(t) , (1.52)

where the dependence on cosmology (∝ z, ∝ a) is encapsulated in the growth factor. We
will provide an overview on the analytical description of the growth of perturbations in linear
regime, which is a reliable approximation for describing a remarkable part of the evolution of
cosmic structures. Subsequently, we will explore the nonlinear regime and the methodologies
employed to describe it.

1.5.2 Linear evolution

Through the study of the growth factor, parameter that quantifies the growth rate of these
perturbations, we can infer the expansion rate of the entire Universe. As the expansion inten-
sifies, gravitational collapse becomes increasingly inhibited. The purpose of the Perturbative
Theory is to elucidate the rate at which initial density perturbations must grow to replicate
the observed inhomogeneities today. This model is applicable to non-relativistic matter and
on scales that do not surpass the cosmological horizon. RH separates the Universe in two
different regions (Weinberg 2008):

• Scales r > RH : Gravity is the sole force at play, and the growth of perturbations
needs to be addressed with relativistic theory. On these scales, we can neglect radiative
processes so density fluctuations can grow indefinitely. To derive the rate of their
growth, density fluctuations can be treated as small closed universes evolving in a
background mono-component flat Universe. From the second Friedmann equation we
obtain the following relations:

H2
B =

8π

3
GρB, H2

P =
8π

3
GρP − c2

a2
, (1.53)

where the subscripts B and P refer to the background and the perturbed Universe,
respectively. Since the perturbed universe is entirely contained within the background

22This means that density perturbations are more inhomogeneous on small scales than they are on large
scales
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universe, their respective scale factors are initially the same. We can enforce the equiv-
alence of their Hubble parameters, leading to:

δ =
ρP − ρB
ρB

=
3c2

8πG

1

ρBa2
∝ ρ−1

B a−2 . (1.54)

From Sect. 1.3.2 we know the evolution of the background perturbation follows that of
the dominant component at a particular epoch. Thus, we can categorize the behavior
of the density perturbation into two regimes based on the matter-radiation equivalence
time. We denote zeq as the redshift of equivalence, representing the epoch when the
density of matter and radiation fluids achieved equality. Consequently, for z > zeq,
radiation dominates, and ρb ∝ a−4. Conversely, for z < zeq, matter dominates, leading
to ρb ∝ a−3. The other components follow the behavior of the dominant component.

ρB ∝ a−4 → δ = δr ∝ a2 ∝ t for z > zeq ,

ρB ∝ a−3 → δ = δm ∝ a ∝ t2/3 for z < zeq .
(1.55)

So, as mentioned, density perturbations on scales larger than the cosmological horizon
are bound to undergo continuous growth.

• Scales r < RH : Microphysics, such hydrodynamical and dynamical processes, be-
comes significant, and different components exhibit distinct behaviors. On these scales,
the Jeans theory offers a dependable description of these phenomena in the linear
regime. It summarizes that the density fluctuations are the original responsible for
the formation and evolution of virialized large-scale structures, that arise as conse-
quences of gravitational instabilities. The investigation will be thoroughly covered in
the next subsection. Specifically, we will explore the dynamics and evolution of these
perturbations by applying the Jeans theory to a collisional and self-gravitating fluid
within an expanding background.

Jeans theory

Assuming a background with homogeneity and isotropy, composed of a fluid with matter
density ρ(x, t) in an expanding universe, the fundamental fluid equations in the Newtonian
approximation are given by:

∂ρ

∂t
+∇ · (ρv) = 0 , [Continuity Equation] (1.56)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p−∇Φ , [Euler Equation] (1.57)

∇2Φ = 4πGρ , [Poisson Equation] (1.58)

p = p(S, ρ) = p(ρ) , [Equation of State] (1.59)

dS

dt
= 0 . [Adiabatic Condition] (1.60)

Here, v is the velocity vector, Φ is the gravitational potential, S is entropy, and p is pressure.
The latter, Eq. (1.60), excludes dissipative terms like viscosity or thermal conduction and
is supported by observational evidence, as CMB experiments have indicated that primordial
fluctuations are in line with being adiabatic. In particular, adiabatic perturbations influence
all particle species in a way that preserves the relative ratios in their number densities.
Consequently, p can be expressed in terms of ρ only, thus we can consider only three variables,
namely ρ, v, and Φ (Jeans 1902; Weinberg 1972).
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Now we introduce small perturbations, namely δρ≪ 1, δv ≪ 1, and δϕ≪ 1, so that the
linear regime is valid. Consequently, we have the following perturbed quantities:

ρ = ρB + δρ , (1.61)

ϕ = ΦB + δΦ , (1.62)

v = vB + δv = Hx+ vpec , (1.63)

where “B” refers to background quantities, x is the position and H is the Hubble parameter.
Notably, the velocity perturbation in Eq. (1.63), δv, corresponds to the peculiar velocity,
vpec. We remark that Eq. (1.63) reduces to the Hubble-Lemâıtre Law for an unperturbed
fluid, for which vpec = 0.

From Eq. (1.42), considering small perturbations (δ ≪ 1), we linearize the set of funda-
mental imperturbated equations to obtain a hydrodynamic system for the linearized density
fluctuations. Neglecting squared terms and other mixed terms and looking for general solu-
tions in the form of plane-parallel waves, solutions are found in terms of Fourier modes, with
the generic form expressed as:

f(r, t) = fk(t) e
ikr , (1.64)

where the general expression f(r, t) represents δρ, δϕ, or δv, r is the comoving spatial coor-
dinate, k = |k| is the absolute value of the wavevector k, and fk(t) is the amplitude of the
Fourier mode also accounting for the expansion of the universe.

Solutions for the density contrast in Fourier space is given by the differential equation
named dispersion relation:

δ̈k + 2H(t)δ̇k +
(
k2c2s − 4πGρB

)
δk = 0 , (1.65)

where δk ≡ δk defined in Eq. (1.43), and cs =
√
∂p/∂ρ is the sound speed. In addition,

2(ȧ/a)δ̇k is the term that accounts for the expansion of the Universe and depends on the cos-
mological model via the Hubble parameter H(t) = ȧ/a and its z-dependence in Eq. (1.34),
while the term k2c2sδk accounts for the characteristic velocity field of the fluid under investiga-
tion. This equation describes how the field of fluctuations evolves over time in an expanding
Universe and we can recognise the equation governing the motion of a damped harmonic
oscillator (Jeans 1902).

The solutions of Eq. (1.65) can be discriminated depending on the wavelength λ = 2π/k
relative to the fundamental scale defined as Jeans length:

λJ ∝ cs

(
π

GρB

)1/2

, (1.66)

expressed in physical units. Now we can study the behavior of plane waves in relation to λJ:

• For λ < λJ, the perturbation propagates through the fluid as a sound wave with con-
stant amplitude and phase velocity cph = ω/k, where ω(k) =

√
k2c2s − 4πGρB. All

fluid components oscillate, signifying that perturbations are carried as waves without
exhibiting growth or dissipate. This implies that when the wavelength associated with
a perturbation is in this range, the perturbation can not lead to gravitational instability
and to the consequent collapse of the structure.

• For λJ < λ < λH, the dispersion relation has growing and decaying mode solutions
δ(x, t) = A(x)δ+(t)+B(x)δ−(t), where A and B are functions of comoving coordinates.
The terms δ+ and δ− correspond to time-dependent growing and decaying modes, re-
spectively. The growing solution is of interest since the decaying solution does not lead
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to gravitational instability. For a generic universe, the growing solution has an integral
form:

δ+(z) = H(z)

∫ ∞

z

dz′ (1 + z′)

H3 (z′)
. (1.67)

Although it lacks an analytical solution, a parametric solution to approximate its trend
is given by:

f ≡ d log δ+
d log a

≃ Ωγ
m +

ΩΛ

70

(
1 +

1

2
Ωm

)
, (1.68)

known as the linear growth rate. The logarithmic derivative of the growth factor de-
termines the perturbation’s evolution over time, providing information about the Uni-
verse’s expansion history. Therefore, this factor determines the amplitude of peculiar
velocity flows and redshift distortions (Peebles 1980). The exponent γ is predicted to be
approximately 0.545 according to GR (Coles & Lucchin 2002). This linear growth rate
serves as a powerful method to search for deviations from GR on cosmological scales
(see Moresco & Marulli 2017b, for further details).

In the subsequent discussion, we will provide a brief overview of the behaviors of fluctuations
both before and after the epoch of matter-radiation equivalence. We consider a cosmological
background dominated by two distinct components: the radiation component before equiva-
lence and the matter component in the post-equivalence epoch. From Eq. (1.68), it can be
demonstrated that the growth outside and within the horizon is slower for Ω < 1 compared
to a flat Universe, while for Ω > 1, it is faster. The following solutions are applicable when
Ω = 1 and λJ < λ < λH.

• Before Equivalence (t < teq):

– Radiation Density Fluctuations: they do not undergo growth and propagate as
waves. Quickly canceled due to a Jeans scale larger than the cosmic horizon.
They have a very high speed of sound cs = 0.58c and this implies a very high
radiative pressure.

– Baryonic Fluctuations: they are still coupled to radiation by Compton scattering.
They propagate as waves and are eventually dissipated.

– DM Fluctuations: DM decoupled from the cosmological fluid. Due to the dom-
inance of the radiation component, λDM fluctuations remain frozen (stagnation
effect) because they can grow at most by a factor of 5/2.

• After Equivalence (t > teq):

– Radiation Density Fluctuations: Continue to oscillate without substantial growth.
Primarily due to their high sound speed.

– Baryonic Matter Fluctuations: Baryon-photon fluid oscillates in potential wells
created by already collapsed DM halos. After its decoupling at zdec ≈ 1000,
baryonic matter is free to collapse into DM halos. This effect is called baryon
catch-up and the perturbations grow as: δb = δDM (1− adec/a).

– Dark Matter Fluctuations: their scales are still larger than the Jeans scale and
grow as δDM ∝ a. Density perturbations entering the horizon after teq continue to
undergo growth. Only for t > tdec, as the energy contribution of Λ increases, δDM

can have trends that deviate from ∝ a(t) due to the geometry of the Universe.
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Linear effects on the Power Spectrum

Density perturbations entering the cosmological horizon before the radiation-matter equiva-
lence, th < t < teq , experience damping due to an effect known as stagnation or the Mészáros
effect (see Meszaros 1974). This effect arises from the fact that the Hubble drag term during
the radiation-dominated era is larger than during the matter-dominated era. By comparing
the free-fall time

(
τff ∝ 1/

√
Gρm

)
, which represents the characteristic time for a perturbation

to collapse under its gravitational force, and the Hubble time, we find:

τH
τff


∝
(

ρm
ρrad

)1/2
≫ 1 for t < teq

∼ 1 for t > teq

. (1.69)

Since for t < teq the free-fall time is larger than the expansion time, density perturbations
once entered the horizon cannot grow, affecting the primordial shape of the perturbation
power spectrum.

As the cosmological horizon expands over time (see definition in Eq. (1.37)), larger per-
turbations will enter the cosmological horizon at later times, experiencing less stagnation
(or zero stagnation if they do not enter the horizon before teq). However, perturbations on
scales larger than the horizon, with λ > λH (where λH ≡ RH), continue to grow at the same
rate seen in Eq. (1.55), independently of the scale or wavenumber. Consequently, the power
spectrum at the equivalence moment has a peak at kH,eq , the wavenumber associated with
the cosmological horizon at the equivalence time. This value depends mainly on Ωmh

2 and
Ωrh

2, corresponding to the matter and radiation densities and the Hubble parameter.

Technically, the shape of the power spectrum P (k) at the equivalence time can be re-
produced by defining a transfer function, T (k). This function represents the fraction of the
primordial power spectrum P (k, ti) unaffected by microphysical effects inside the horizon.
For an initial cosmological time ti, the transfer function is defined as follows:

P (k, teq) = P (k, ti)T
2(k) . (1.70)

The shape of the observed power spectrum P (k) provides powerful constraints for cos-
mology, depending on the amount and nature of the matter in the Universe. Additionally,
the nature of DM plays a significant role. In the early Universe, a diverse set of parti-
cles constantly interacted, depending on temperature, so particles are considered ”coupled,”
maintaining thermodynamic equilibrium. Photons, following a blackbody distribution, share
their temperature and distribution with any species X directly or indirectly coupled to them,
resulting in X being in ”equilibrium” with the rest of the Universe. As the Universe expands,
temperature drops as T ≈ 1/a and particle interactions become rare, taking more time than
the age of the Universe to occur. From this point, corresponding to the scale factor adec,
the species X is considered ”decoupled” (Padmanabhan 1993). The rest mass of particles in
relation to the Universe’s temperature is crucial in this framework. The distinction between
the relativistic regime (kBT ≳ mXc

2) and the non-relativistic one (kBT < mXc
2) is essential,

and the transition between them is denoted by aNR (Coles & Lucchin 2002).

The concept of free-streaming refers to the diffusion process where non-collisional DM par-
ticles flow from overdense to underdense regions, canceling perturbations. The effectiveness
depends on the free-streaming distance covered in a given time interval, denoted by:

λFS =

∫ t

0

a(t)

v(t)
dt , (1.71)
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where v(t) is the velocity as function of time. Similarly, a free-streaming mass is defined as
MFS = 4π

3 ρDMλFS. If a DM perturbation has a size smaller than λFS or a mass lower than
MFS, it cannot survive, as particles, on average, travel distances greater than its size.

As we mentioned in Sec. 1.4, two types of DM particles are defined based on their na-
ture at their decoupling from radiation: HDM particles, still relativistic at decoupling, and
CDM particles, non-relativistic before decoupling. From their definition, CDM particles are
expected to be more massive than HDM particles. For a matter component consisting en-
tirely of HDM particles, the matter power spectrum falls sharply to zero to the right of the
peak, as shown in Figure 1.3. In CDM models, all perturbations, including the smallest ones,
survive the dissipative process and eventually collapse, leading to a bottom-up scenario of
structure formation (Bullock & Boylan-Kolchin 2017). On the other hand, HDM particles
decouple while still relativistic, resulting in a matter power spectrum that sharply falls off
to zero beyond the peak. Since relativistic particles have a free-streaming distance compa-
rable to the cosmological horizon, the HDM model predicts the formation of structures with
M ≥ 1015−16M⊙. This leads to a top-down scenario where galaxy clusters form first, followed
by fragmentation into galaxies (Longair 2008). This difference in the observational forecast
of the two models is an excellent way to ”falsify”23 the theory of structure formation through
comparison with current observations. Modern observations support a scenario where the
Universe’s main matter component is primarily cold, that implies a hierarchical structure
formation model (Tegmark et al. 2004). For the CDM scenario, the transfer function is given
by:

T (k) =

{
1 for k < kH,eq

∝ k−2 for k > kH,eq

. (1.72)

This function acts as a filter that smoothens larger wavenumbers and predicts a scale of
RH,eq ≃ 16

(
Ω0,mh

2
)−1

Mpc. From the mapping of perturbations on small scales (large k),
it is possible to discriminate on which scales there is a suppression of the observed power
spectrum Pobs(k)k

3 compared to that predicted by the CDM component alone PCDM(k)k3.
This allows us to understand what fraction of all dark matter is warm. Currently, this is the
most effective method for constraining the mass of neutrinos.

Figure 1.3: The power spectrum at the equivalence t = teq for a matter component entirely formed
by CDM (solid line) or HDM (dotted line). It is also represented the primordial Zel’dovich power
spectrum (dashed line), having a spectral index ns = 1. Credits to Ryden (2016).

23Here falsify is meant in the sense of confirming or rejecting a model, both results being a scientific progress.
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Figure 1.4: Evolution of the power spectrum. Evolution of the power spectrum. It shows that in
the primordial universe the curve P (k) is a straight line extended to a high value of k (shorter λ)
and then evolves by shifting the maximum to a lower value of k (longer λ). Credits to: https:

//universe-review.ca/R05-04-powerspectrum.htm

Therefore, after studying the trends, we can state that at t = teq the fluctuations must
be smaller than those observed in the CMB (≃ 10−5) and, therefore, even more so in the
linear regime. This implies that after equivalence, P (k) will shift upward parallel to itself in
a self-similar growth, continuing to grow with a factor ∝ a ∝ t2/3 as calculated in Eq. (1.55)
and shown in Figure 1.4. This happens until the fluctuations reach a value δ → 1. From this
point onwards, they enter the non-linear regime, and the linear approximation discussed in
this subsection is no longer valid. Also, in Figure 1.4, it can be observed that small scales
reach the non-linear regime first. In other words, the first structures to initiate collapse will
be those of small mass (R→M) (Coles & Lucchin 2002).

1.5.3 Nonlinear evolution

When δ ∼ 1 the linear regime breaks down and the weakly-nonlinear regime takes effect.
Describing with the small-perturbations approximation the formation of structures formed
due to gravitational instabilities over cosmological history, is no longer applicable. This
because, in this first nonlinear stage, the distribution function of fluctuations P (δ) starts to
deviate from its Gaussian shape.

The transition from the linear to nonlinear regime in density perturbations is explained by
the Zel’dovich approximation (Zel’dovich 1970). Specifically, in an expanding Universe, this
approximation connects the comoving coordinates r = x/a(t), where a(t) is the expansion
factor at time t, to the Lagrangian coordinates q as t→ 0 through the relation:

r(q, t) = q+ δ+(t)s(q) . (1.73)

The term δ+(t)s(q) describes the perturbation evolution, with s(q) called initial displace-
ment field that is determined by the initial density perturbations. Here δ+(t) is the linear
density fluctuation growth rate24 in the expanding universe. The ansatz is that initial density
perturbations are described by the gradient of a potential vector field (i.e., an initial force),
s(q) is a potential vector field Ψ, and so can be expressed as:

s(q) ≡ Ψ(q) = −∇qΦ(q) . (1.74)

24Often indicated with the notation D(z).
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In this way particles do not experience additional interactions at later times, implying they
can cross each other without deviating from their motion. The linear Poisson equation relates
the density contrast value to the gravitational potential through the equation:

δ = −δ+∇2Φ . (1.75)

Consequently, the divergence of the linear Zel’dovich displacement field can be linked to the
density contrast (Falck et al. 2012):

∇ ·Ψ = −δ . (1.76)

This relation forms the basis for the reconstruction of the density field.
Then, when δ ∼ 1 and the strongly-nonlinear regime occurs, it is essential to consider

that the evolution of the baryonic component differs from that of DM. Baryons are influenced
by hydrodynamical effects, such as star formation, SNe explosions, and feedback from active
galactic nuclei (AGN). All these phenomena complicate the description of the entire scenario
with a comprehensive theoretical framework.

While some approximate analytical models have been proposed like the Spherical evolution
to describe this phase, N-body simulations are generally relied upon to accurately reproduce
the growth of nonlinear perturbations.

Spherical approximation

While numerical simulations are crucial for a detailed study of the nonlinear growth of cosmic
structures, we can explore the evolution of perturbations in the nonlinear regime by making
certain simplifying. Specifically, the analytical model presented here, known as the spherical
evolution model (Gunn & Gott 1972), is sufficiently accurate to depict the isolated formation
of spherical collapsed overdensities (i.e., dark matter halos) and underdensities (i.e., cosmic
voids). Assuming an initially spherical perturbation, whether positive or negative, we can
represent it as a closed or open universe, respectively, evolving in a mono-component back-
ground Universe, represented by the subscript B in the following equations. The initial time
considered is ti > teq, where teq is the matter-radiation equivalence time. Consequently, we
study the evolution of perturbations in the matter-dominated cosmic epoch. Assuming the
validity of the CP, each perturbation can be treated as an independent Friedmann Universe
until it evolves adiabatically and the only interaction to consider is gravity. In this model,
a spherical top-hat perturbation is considered and modeled as a set of concentric shells. As
stated in Sheth & van de Weygaert (2004), the evolution of the perturbation depends solely
on the total energy embedded in the shell and its peculiar velocity, independently of the
radial distribution of the density field inside it.

• Overdensities: Let us consider the evolution of an initially overdense shell. For a
matter perturbation in an expanding universe, the growing and decaying modes of
perturbation scale as δ+ ∝ t2/3 and δ− ∝ t−1, respectively. Hence, the density contrast
can be expressed as a combination of these two modes:

δi = δ+ (ti)

(
t

ti

)2/3

+ δ− (ti)

(
t

ti

)−1

. (1.77)

Assuming a null initial velocity for the perturbations and considering t = ti, we can
find:

δi =
5

3
δ+ (ti) . (1.78)
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Hence 3/5 of the initial perturbation is represented by the growing mode, while the
remaining 2/5 decays with time. Considering the density parameter of the perturbation
universe, ΩP, described in terms of a closed universe, we find that for a closed Universe
it is necessary that (1 + δi) > Ω (ti)

−1. For mono-component Universes with w = 0, we
find the threshold for δ (ti) leading to collapse:

δ (ti) =
3

5
δi >

1− Ω0,B

(1 + z)Ω0,B
. (1.79)

From this equation we can see that for closed or flat background universes the collapse
is achieved for any positive value of the initial density contrast, while for open universes
the expansion can inhibit the collapse. The expected behavior for an overdense per-
turbation growing in our Universe involves initial expansion, slower than the Hubble
flow, gradual halting until reaching a maximum radius rmax. After the turn around,
the perturbation reverses its motion and decouples from the Hubble flow towards its
final collapse. At the turn around (t = tmax), the density contrast is:

δ (tmax) ≃
ρP (tmax)

ρB (tmax)
− 1 =

(
3π

4

)2

− 1 ≃ 4.6 . (1.80)

The relation suggests that at the turn around, the collapsing region is already in the
nonlinear regime and is nearly 5 times denser than the background universe. The same
quantity obtained using linear theory would be:

δ (tmax) = δ (ti)

(
tmax

ti

)2/3

≃ 1.06 . (1.81)

After the turn around, the physical scale of the perturbation decreases until t = 2tmax,
time at which the full collapse would be reached, forming a singularity. However, in
reality, the matter in the collapsing region eventually virializes. The virialization is
reached at tvir = 3tmax, at which the size of the perturbation becomes stable, within a
virialization radius Rvir.
Assuming the absence of any mass or energy loss since the turn around, the total
energy of the system satisfies the virial theorem25. From this, considering the potential
energy of a self-gravitating sphere of mass M , the total energy E (tvir) = E (tmax),
and assuming no mass or energy loss since the turn around, it follows that ρP (tvir) =
8ρP (tmax). Therefore, the density contrast at tcoll = 2tmax and tvir = 3tmax is given by:

δ (tcoll) =
8ρP (tmax)

ρb (tmax)

(
tcoll
tmax

)2

≃ 180

δ (tvir) =
8ρP (tmax)

ρb (tmax)

(
tvir
tmax

)2

≃ 400

, (1.82)

while the same quantities extrapolated from linear theory are:

δ (tcoll) = 1.06

(
tcoll
tmax

)2/3

≃ 1.69

δ (tvir) = 1.06

(
tvir
tmax

)2/3

≃ 2.2

. (1.83)

252T + V = 0, where T is the kinetic energy (or internal thermal energy) associated with the motions of
particles and V is the gravitational potential energy.
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Eqs. (1.82), computed for a mono-component model, strongly depend on the cosmo-
logical model for the background universe, particularly its matter density parameter,
whereas their linearly extrapolated counterparts have weaker dependence (Jenkins et al.
2001; Kitayama & Suto 1996).

• Underdensities: The evolution of an underdense spherical region, commonly referred
to as a void, differs from its overdense counterpart. In this scenario, the net radial
acceleration is outward with respect to the sphere’s center, directly proportional to the
mean density contrast ∆(r, t) of the void. The inner shells, being more underdense,
experience a stronger outward acceleration than the outer shells.
Consider an inverse top-hat spherically symmetric underdense perturbation as concen-
tric shells with radii ri. The mass M within the perturbation radius r determines the
acceleration for each shell in the Newtonian regime:

d2r

dt2
= −4πG

3
ρB(1 + ∆)r , (1.84)

where ρB represents the density of the background universe. At the initial time the
mass is given by M = 4π

3 ρBr
3
i (1 + ∆i) and the average value of δi within ri is given

by ∆i =
3
r3i

∫ ri
0 δi(r)r

2 dr. Eq. (1.84) can be analytically solved for a mono-component

Universe, and it is possible to derive the linear initial density deficit:

∆L
i (θ) = −

(
3

4

)2/3 3

5
(sinh θ − θ)2/3 , (1.85)

where dθ is the dimensionless conformal time dθ = ri
r

√∣∣5
3∆i(t)

∣∣Hi(t)dt.

As matter moves out of the voids, the density asymptotically decreases to δ = −1.
The phenomenon of shell-crossing26 leads to the accumulation of matter around voids,
forming sheets and filaments. The evolution of an underdensity profile results in the for-
mation of a high-density ridge. Starting from the shell-crossing event, the development
of the void can be characterized by an outward-moving shell that follows a self-similar
pattern (Suto et al. 1984). At the shell-crossing event, the void has a precisely deter-
mined excess Hubble expansion rate:

Hsc =
4

3
H (tsc) , (1.86)

where H (tsc) is the Hubble parameter of the background Universe. From this we can
see that the low-density environment expands faster than the Hubble flow (Sheth & van
de Weygaert 2004). Substituting θsc in Eq. (1.85) we can find that at the shell-crossing
event the void has expanded by a factor of (1+ δNL

v )−1/3 = 1.697 in comoving radius27,
with 1 + δNL

v ≃ 0.205. From this we can observe that voids are only nearly nonlinear
objects since |∆sc| ≈ 0.795 < 1.
In conclusion, during the evolution of spherical voids, expansion occurs, in contrast to
the collapse observed for overdensities. Void borders become denser, and the central
regions reach lower density contrasts. Icke (1984) demonstrated that voids tend to
assume a spherical form, unlike collapsing objects, which tend to evolve into filamentary
or sheet-like structures. Moreover, since the expansion of a void can be considered as

26As the density diminishes towards the center of a void, the material near the center exhibits a more
rapid outward motion compared to the matter near the external boundaries. Shells that were initially in close
proximity to the center will eventually overtake the shells located further outward, ultimately surpassing them.

27Note that these values are independent of the size of the void.
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the time reversal of the collapse of an overdensity, any eventual initial asphericity tends
to be mitigated. The latter deduction is fundamental in this Thesis, because of the
assumption of sphericity of 2D voids.

N-body simulations

As we mentioned above, Cosmology is marked by the non-replicability of the study object
due to the unique nature of the Universe. We have shown that it is still possible to do science
through the formulation of analytical models based on reasonable assumptions and verifying
them through the statistical study of certain properties. In the case of the formation of cos-
mic structures, the evolution of density perturbations can be approximated as the dynamical
evolution of a system of particles, which act as tracers for the total mass distribution. How-
ever, especially in the nonlinear regime, the number of particles required to reproduce the
complex physics of interactions leading to virialized structures becomes enormous and, there-
fore, the analytical study becomes impractical. A crucial approach to address this challenge
and testing cosmological models involves the use of N -body simulations. By definition, an
N -body simulation is a simulation which can solve the problem of predicting the individual
motions of a group of N objects interacting with each other.

The primary factor crucial for simulating the development of density perturbations is the
gravitational interaction, exerting its dominance on large scales and impacting DM, the dom-
inant matter component of the Universe. Simulations exclusively incorporating gravitational
forces are termed N -body simulations, while simulations that additionally evolve the bary-
onic component including other microphysical interactions are referred to as hydrodynamic
simulations. After the initial conditions for the matter density field are established based on
prediction of inflation theories, we choose the theoretical physical evolution model by setting
the cosmological parameters. Finally, the simulation is executed to guide the evolution of
the initial system and, subsequently, the resulting outcome can be assessed in comparison to
observations.

Thanks to advancements in both technology and computational techniques, we can now
make reliable predictions across a vast array of phenomena using simulations that incorporate
billions of particles. Despite the remarkable successes in this field of research, significant
limitations persist in creating cosmological simulations. Once the number of particles is
determined by computational capacity, the spatial resolution of the simulation is entirely
dictated by the covered volume. Small volumes enable the study of galaxy formation models
that capture physical processes with high resolution in the analyzed portion of the universe.
On the other hand, large volumes facilitate a more detailed examination of the LSS, allowing
for statistical treatment of the universe’s properties. Simulations characterized by both high
resolution and large volume remain challenging to achieve at present.

The framework all the numerical simulations are based on is the Newtonian approximation
in which gravity is driven by the mass continuity equations, Euler equation conservation of
momentum and the Poisson equation. N -body codes numerically solve the following system
of differential equations by discretizing the problem into N particles:

F i = GMi

∑
i ̸=j

Mj

r2ij
r̂ij

ẍi =
d2xi

dt2
=

dvi

dt
=

F i

Mi

ẋi =
dxi

dt
= vi

, (1.87)
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where, for each i-th particle, Fi is the gravitational force, Mi is the mass, xi is the comoving
coordinates of the position, and vi the velocity components. Then rij is the comoving distance
between the i-th and j-th particles, and r̂ij is the related versor. Given this system of
equations, the Euler equation of motion can be re-written as:

dxi

dt
+ 2

ȧ

a
vi = − 1

a2
∇Φ = −G

a3

∑
i,j ̸=i

mj
xi − xj

|xi − xj |3
=

Fi

a3
. (1.88)

Applying the Second Friedman Equation reported in Eq. (1.21), the Poisson Equation of the
system becomes:

∇2Φ = 4πGρ̄(t)a2δ =
3

2
H2

0Ω0
δ

a
, (1.89)

where δ is the local density contrast, ρ̄(t) the average non-relativistic matter density, and Ω0

the non-relativistic matter density parameter.
An N -body simulation involves integrating the dynamical equations over discretized time

steps, δt. The choice of δt depends on various criteria, tailored to different approaches, and
falls into three main categories: total energy conservation, convergence of final positions and
velocities, and reproducibility of the initial conditions (Bagla & Padmanabhan 1997). During
each time interval, the total gravitational force of the system, Fi, is computed. Subsequently,
the motion equation undergoes numerical integration, yielding new velocities, vi(t± δt) and,
at least, new positions, xi(t± δt). The time is then updated to t = t+ δt, and the process is
iteratively repeated in this order.

In N -body codes there are various approaches and their differences are based on the way
to compute the force Fi acting on the i-th particle:

• Particle-Particle (PP): The force acting on the i-th particle is calculated by summing
up the contributions of all other particles in the simulation. This method is highly
accurate, providing the exact solution for the forces. However, it is computationally
expensive, scaling as the number of particles squared N2. Additionally, if two particles
approach too closely, the force diverges to infinity, necessitating the introduction of an
arbitrary force softening parameter.

• Particle Mesh (PM): Quantities that can be considered as field quantities are treated as
such. Potential, gravitational force, and density are calculated by interpolating these
quantities on a grid. Values at each point are computed as a weighted sum using a
kernel function, which can vary. While this method may be the fastest, its resolution
is limited by the smoothing scale of the grid (see Hockney & Eastwood 1981, for more
details).

• Hierarchical Tree (HT): These methods utilize barycentric codes and graph theory.
A hierarchical tree is constructed, decomposing each region into sub-regions until it
contains at most one particle. At each level, a region is characterized by the total
mass of the hosted particles and the position of their center of mass. Distant regions
from the particle under investigation are treated as a single particle with the mentioned
characteristics. This approach reduces the number of operations needed to calculate
the force acting on each particle. It is widely used due to its efficient scaling (N logN)
and ease of linearization, but it requires a substantial amount of memory to store all
levels of the hierarchical tree (see Barnes & Hut 1986, for more details).
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Chapter 2

ΛCDM tensions and modified
gravity

Over the past decades, the ΛCDM model has garnered significant acclaim for its success
in explaining various cosmological observations, including the accelerated expansion of the
Universe (Perlmutter et al. 1999; Riess et al. 1998), abundances of light nuclei (see e.g. Cyburt
et al. 2016), the CMB anisotropies (Planck Collaboration et al. 2020b), and LSS statistics
(Bernardeau et al. 2002). Despite its achievements, this model is currently under intense
scrutiny due to both theoretical and observational challenges.

Addressing theoretical concerns, as described in Sect. 1.4, the ΛCDM model lacks a
physical description for the nature of CDM. Additionally, cosmological models based on
GR theory face challenges in reconciling with theory of the Standard Model1 and imply the
cosmological singularity of BB at the “beginning” of the Universe. Moreover, as mentioned
in Sect. 1.3.1 and Sect. 1.4, even the cosmological constant Λ presents some criticisms. There
are, in fact, two historical problems against its validity:

• coincidence: it revolves around the statistical improbability of living in the precise era
transitioning from matter domination to late-time acceleration, where ΩΛ ≈ Ωm. The
vastly different evolution histories of these components makes this coincidence unlikely.

• fine-tuning : this problem pertains to the significant mismatch, about 120 orders of
magnitude, between theoretical expectations |Λth| ≲ 10−26 kg m−3 ≃ 10−47 GeV4

(Weinberg 1989) and observational values Λobs ≃ 1095 kg m−3 ≃ 1074 GeV4 of the
cosmological constant (Planck Collaboration et al. 2016b).

Regarding observational concerns, the increasing precision of modern cosmological and
astrophysical measurements has led to statistically significant tensions in the values of cosmo-
logical parameter values obtained from different probes. These discrepancies become partic-
ularly pronounced when considering probes covering different redshift ranges: those related
to local measurements (late or low-redshift probes) and those related to the measurement of
CMB anisotropies (early or high-redshift probes). Among the most puzzling tensions today
we can mention (see Di Valentino et al. 2021a,b,c, for a detailed review):

1The Standard Model of Particle Physics is a specific physical theory developed within the framework
of Quantum Field Theory, which, in turn, is the extension of quantum mechanics to Special Relativity. It
describes the elementary components of matter and their interactions, although it considers only three out of
the four fundamental forces observed in nature: electromagnetic interaction, weak interaction (unified in the
so-called electroweak interaction), and strong interaction. Any model in particle physics that merges, at high
energies, these three forces into a single one is called Grand Unified Theory (GUT).
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• Hubble parameter tension: local direct measurements of H0 using the distance ladder
approach (Freedman et al. 2019) are in about 4.4σ tension with CMB indirect measure-
ments assuming the ΛCDM model (Planck Collaboration et al. 2020a).

• Curvature tension: Planck data show a preference at 3.4σ for a closed Universe (Planck
Collaboration et al. 2020a; Di Valentino et al. 2020), in disagreement with the concor-
dance flat ΛCDM scenario. This tension is related to the contribution to the strangely
higher gravitational lensing effect in the CMB power spectra, which are strongly de-
generate with Ωκ.

• Growth of structures tension: direct measurements of the growth rate from weak lensing
and clustering (Hildebrandt et al. 2020) suggest a lower growth rate compared to what
is inferred from Planck data, with a significance level of approximately 2 − 3σ. This
tension is commonly assessed using the parameter S8, defined σ8 =

√
Ωm/0.3, and can

also be determined from galaxies’ redshift-space distortions through its relationship
with fσ8(z = 0), where f is defined in Eq. (1.68).

• Universe age tension: the age of the Universe obtained from local measurements using
very old-dated objects appears marginally larger than the corresponding age obtained
using CMB Planck data in the context of the ΛCDM cosmology (Planck Collaboration
et al. 2020a).

The presence of these tensions within the ΛCDM model could imply a deviation from
the assumed standard scenario and may hint at the existence of undiscovered physics. For
this reason, in recent years, many alternatives to the standard cosmological model have been
formulated to simultaneously seek theoretical justifications and accommodation of observa-
tional data. Although not all models in the literature can be categorized sharply into one or
the other, they can be broadly divided into two main categories of models commonly used to
describe accelerating cosmologies: dark energy models and modified gravity models (see Yoo
& Watanabe 2012; Joyce et al. 2016, for reviews).

As introduced in Sect. 1.3.1, dark energy (DE) models typically alter the stress-energy
content of the Universe on the RHS of Einstein’s field equation (Eq. (1.27)) by incorporating
a component characterized by an equation of state parameter w ≃ −1, which could exhibit
temporal variations. Different DE models have been proposed, from scenarios that interpret
the DE as a dynamical field instead of a constant component, to models including interaction
between DM and DE. Conversely, modified gravity (MG) models are based on variations of
the LHS of the equation to alter the Einstein-Hilbert action, thus modifying GR itself.

Here, in Sect. 2.1, we will focus on the family of MG models, specifically on one popular
subclass of them in Sect. 2.1.3. Additionally, in Sect. 2.1.4 we will discuss the degenera-
cies between the effects of some of these models and those incorporating massive neutrinos.
Neutrinos constitute another elusive component of the ΛCDM cosmology. Despite the as-
sumption in the standard model that neutrinos are massless, evidence from solar neutrino
oscillations indicates that they possess mass (Fukuda et al. 1998; Ahmed et al. 2004). Nu-
merous studies have highlighted that the presence of massive neutrinos leaves imprints on the
LSS of the observable Universe that are strongly degenerate with DE and MG models (i.e.
Baldi et al. 2014; Lorenz et al. 2017; Giocoli et al. 2018a), and may also help alleviate ten-
sions associated with the ΛCDM cosmology (Lambiase et al. 2019; Sakstein & Trodden 2020).
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2.1 Modified gravity theories

The main objective of these models is to explain the recent acceleration of the Universe
by exploiting potential modifications of gravity. With respect to the ΛCDM scenario, the
viability of a MG model depends on two main factors:

• It must exhibit a nearly identical expansion history to that of the ΛCDM model on
large scales because it agrees with observational data, while, it must incorporate what
is known as a screening mechanism in small and overdense regions (Brax & Valageas
2013) to restore the well-tested2 predictions of GR on small scales.

• It must diverges from ΛCDM model in terms of how gravitational instability dynami-
cally evolves density perturbations.

There are many different ways to modify the effects of gravity and reproduce a variety of
effects on observables. To understand how to classify the different approaches, it is essential
to introduce the Lovelock’s theorem (Lovelock 1971, 1972). This theorem asserts that the
only possible second-order Euler-Lagrange expression obtainable in a four-dimensional space
from a scalar density of the form L = L (gµν) is:

Eµν = α
√
−g
[
Rµν − 1

2
gµvR

]
+ λ

√
−ggµν , (2.1)

where α and λ are constants. This implies that if we attempt to formulate any gravitational
theory within a four-dimensional space using an action principle based solely on the metric
tensor and its derivatives, then the only possible field equations that are second-order or
lower are either Einstein’s equations or equations involving a cosmological constant.

From the Lovelock’s theorem descends that to construct metric theories of gravity with
field equations differing from those of GR, we must undertake one (or more) of the following
actions (Clifton et al. 2012):

• consider other fields (scalar, vector, tensor) beyond the metric tensor. This implies
increasing the degrees of freedom (dof);

• accept higher than second derivatives of the metric in the field equations;

• work in a space with dimensionality different from four;

• give up locality (more common) or give up tensor field equations of rank (2, 0), symmetry
of field equations under index exchange, or field equations without divergence (less
common).

These different approaches determine the four major families into which the currently existing
MG models can be divided, as shown in Figure 2.1.

2.1.1 Higher derivative theories of gravity

One approach to extend GR involves allowing the field equations to exceed second order.
This generalization may be deemed advantageous as it results in the graviton3 propagator

2GR has been validated within the Solar System by numerous experiments (Bertotti et al. 2003; Will 2005;
Hinterbichler & Khoury 2010)

3In theories of quantum gravity, the graviton is a hypothetical elementary particle that mediates the force
of gravitational interaction and represents the quantum of gravity. Given that the gravitational force appears
to travel at the speed of light and has a very great range, if it exists, it is predicted to be massless.
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Figure 2.1: A summary of the four major families in MG, with related main theories. They are
classified according to the way in which they avoid the Lovelock’s restrictions: Extra fields theories
with relative subclasses that distinguish between scalar, tensor and vector fields (green bubbles);
Higher derivative theories with relative subclasses including the f(R) gravity (blue bubbles); Extra
dimensional theories that ramificate in extended, compact and generalization of Einstein’s action
(red bubbles); Non-locality theories (orange bubbles). Gray lines indicate a connection between the
theories, for example f(R) gravity is a higher derivatives theory but also considers a scalar field.
Credits to Guarnizo Trilleras (2016).

decaying more rapidly in the ultraviolet. However, modifying gravity in this manner also
comes with several drawbacks. In particular, it can introduce instabilities into the theory,
such as ghost-like dof (see Woodard 2007, for a comprehensive review).

Such theories can exhibit intriguing phenomenology and, in many cases, can be demon-
strated to be less prone to instabilities than others. For instance, if the higher derivatives
only affect what would otherwise be non-dynamical modes, they may simply render them
dynamical instead of automatically generating a ghost. This is exemplified in f(R) gravity
(that we will see in Sect. 2.1.3), where the higher-order derivatives act on conformal mode
that does not propagate in GR.

2.1.2 Scalar-tensor theories of gravity

The so-called scalar-tensor theories represent a well-established and extensively studied set
of alternative theories of gravity found in the literature. They serve as the primary method
for modeling deviations from GR and are especially intriguing due to their relatively simple
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field equations, which enable exact analytic solutions to be derived in various physically
relevant scenarios. These theories naturally emerge from the dimensional reduction of higher-
dimensional theories.

The bases of the scalar-tensor theories lie in expressing the Einstein-Hilbert action, de-
noted as S, in the following form:

S =

∫
d4x

√
−g
(
M2

PR

2
− 1

2
ϕ̇2 − V (ϕ)

)
+ Sm

[
A2(ϕ)gµν , ψ

]
, (2.2)

where M2
P = 1/(8πG) is the reduced Planck mass and Sm is the action of the matter field ψ.

In this formulation, both the tensor field and the scalar field of GR mediate the gravitational
interaction. One of the most representative of these theories is the Brans-Dicke theory (Brans
& Dicke 1961).

It is feasible to select V (ϕ) and A(ϕ) in general scalar-tensor theories in a way that both
avoid Solar System limitations and have an intriguing phenomenology for the scalar field. The
key lies in leveraging the scalar field’s reaction to the effective potential, which is influenced
by external matter sources. This enables us to construct scenarios in which the field exhibits
varying behavior based on the density of the surrounding matter. The so-called Chameleon
field (Khoury & Weltman 2004a,b) is a well-known illustration of this situation, where the
effective mass of the scalar field:

m2
eff (ϕ) =

d2Veff
dϕ2

=
d2V

dϕ2
+

d2A

dϕ2
ρ̄ (2.3)

is designed to get larger in high-density areas and smaller in low-density areas, as Figure 2.2
illustrates.

Figure 2.2: Chameleon effective potential in regions of low and high density. Left : In broad regions
at low density, the potential’s curvature is shallow, which causes the scalar field to become light and
mediate a long-range fifth force. Right : the extra fifth force around matter overdensities is suppressed
as a result of the scalar field gaining a significant mass on small scales with high density. Credits to
Elder et al. (2016).

2.1.3 f(R) gravity

Fourth-order theories of gravity have a long history, dating back to as early as 1918 (Weyl
1918). These theories go beyond the simple linear form that gives Einstein’s equations and
expand the Einstein–Hilbert action by adding more scalar curvature invariants or by gen-
eralizing the action to be a function of the Ricci scalar. In this context, we focus on the
latter option, which, according to Lovelock’s theorem, results in fourth-order field equations
unless a constant term is added to the gravitational Lagrangian. Such theories, commonly
known as f(R) theories of gravity, have been extensively investigated, and several reviews
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dedicated to them are available (e.g., see Nojiri & Odintsov 2007; Nojiri et al. 2009; Nojiri
& Odintsov 2011). The interest in f(R) theories was sparked from the 1960s, by findings
suggesting that the quantization of matter fields in an unquantized space–time can give rise
to such theories (Utiyama & DeWitt 1962), and that they could lead to a period of early
accelerating expansion in the Universe’s history (Starobinsky 1980, 2007; Nojiri & Odintsov
2008b). More recently, they have garnered considerable attention as a potential explanation
for the observed late-time accelerating expansion of the Universe (Hu & Sawicki 2007; Nojiri
& Odintsov 2008a). We will now examine some details about this class of higher-derivative
models that also theorizes a scalar field, which consists of higher-curvature corrections to the
Einstein-Hilbert action:

S =
M2

P

2

∫
d4x

√
−g(R+ f(R)) + Sm [gµν , ψ] , (2.4)

where f(R) is a function of the Ricci scalar, selected to assume importance in the regime of
low curvature, where R → 0. In this class of MG models, GR can be recovered by forcing
f to be proportional to the cosmological constant f = −2ΛGR and more general cosmic
acceleration can be obtained by following Carroll et al. (2004).

A well-studied f(R) model is that proposed by Hu & Sawicki (2007) that is consistent
with both the observed large-scale expansion of the Universe and local tests of gravity. It is
defined as:

f(R) = −m2 c1
(

R
m2

)n
c2
(

R
m2

)n
+ 1

, (2.5)

where m2 ≡ H2
0Ωm defines the mass scale m, while c1, c2 and n are non-negative free param-

eters. Considering the present vacuum density parameter ΩΛ and matter density parameter
Ωm, the background expansion history is consistent with the one predicted by the ΛCDM
model under the condition c1/c2 = 6ΩΛ/Ωm. Additionally, forcing c2

(
R/m2

)n ≫ 1 the scalar
field fR ≡ df(R)/dR can be approximated by:

fR ≈ −nc1
c22

(
m2

R

)n+1

, (2.6)

and restricting our analysis to the case n = 1, only the parameter c2 can be used to indicate
the scalar field, and the model at the present-day can be represented by the parameter fR0:

fR0 ≡ − 1

c2

6ΩΛ

Ωm

(
m2

R0

)2

, (2.7)

where R0 denotes the current background value of the Ricci scalar. At this point, by modify-
ing the action defined in Eq. (2.2) with regard to the metric gµν , we may obtain the modified
Einstein equations for this f(R) model and, from its trace, we obtain the motion equation
for this scalar field:

∇2δfR =
a2

3
[δR (fR)− 8πGδρ] , (2.8)

where a is the scale factor of the metric. By extracting the time-time component from this
equation, assuming small perturbations δfR, δR, δρ on a homogeneous background and the
quasi-static field approximation (slow variation for fR), we obtain:

∇2ψ =
16πG

3
a2ρ− a2

6
δR (fR) . (2.9)

3δfR ≡ fR − f̄R, δR ≡ R− R̄ and δρ ≡ ρ− ρ̄, where the barred values represent the background quantities.
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This is the equivalent of the Poisson equation for scalar metric perturbations 2ψ = δg00/g00.
From the combination of Eqs. (2.8) and (2.9) it is possible to derive the exact solution

for the extreme cases and to study on what scales and how the gravity of the f(R) model
diverges from GR:

• For |fR0| ≫ |ψ| the interaction range of an additional fifth force is determined by the

Compton wavelength of the scalar field µ−1 = (3 dfR/dR)
1/2:

– for k ≫ µ fifth force enhances the gravity field up to a factor of 4/3

– for k ≪ µ standard GR gravity is restored

• For |fR0| ≪ |ψ| Eq. (2.9) can be roughly represented by the conventional Poisson
equation, resulting in the GR recovery in high spacetime curvature regions due to the
effects of the Chameleon-screening mechanism. The screening condition for an ideal
spherical source of mass M causing the small fluctuation of the scalar field in the
homogeneous background is |fR| ≤ 2/3ΨN (r), where ΨN = GM/r is the Newtonian
potential of the overdensity. According to this approximation, the radius r = rN for
which ΨN (r) = 3/2 |fR| represents the boundary between the screened and unscreened
regimes:

– for r ≪ rN ⇒ fR0 ≪ ΨN on small scales the fifth force is always screened

– for r ≫ rN ⇒ fR0 ≫ ΨN on large scales there is no screening mechanism active

Now we can evaluate appropriate estimates for the free parameter fR0. When fR0 ≪ ΨN , the
scenario that arises is not of significant cosmological interest, as it becomes indistinguishable
from General Relativity even on large scales. Conversely, if fR0 ≫ ΨN , we would encounter
the improbable scenario where gravity is consistently amplified. Hence, we should set the
parameter fR0 to be approximately within the same order of magnitude as the Newtonian
potential ΨN , which typically falls within the range 10−5 ≤ ΨN ≤ 10−6. This interval is
then the one in which we expect to find fR0 and that, although a bit extreme, a value of
10−4 can be considered acceptable, especially in the presence of massive neutrinos, as we
will see in Sect. 2.1.4. As depicted in Figure 2.3, the higher the absolute value of fR0, the
further the f(R) models deviate from the ΛCDM model. This deviation is reflected in a
higher normalization of the power spectrum of the f(R) model at small physical scales, i.e.,
for large values of k in Fourier space.

Figure 2.3: Deviations of power spectra of the f(R) models with n = 1 as a function of the absolute
value of the fR0 parameter, with respect to that of ΛCDM (reference dotted line). Credits to Hu &
Sawicki (2007).
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2.1.4 Massive neutrinos

As introduced in Sect. 1.5.1 and 1.5.2, neutrinos are massive particles participating in the
overall matter composition of the cosmos, influencing the formation and development of
cosmic structures. Neutrinos decouple from the cosmological fluid in the early Universe,
due to their small masses, when their thermal energy decreases to a level below their mass.
Nowadays precision cosmology allows to put strong constraints on the total sum of masses
of the different types of neutrinos in the Standard Model of Particle Physics, Mν ≡

∑
mν .

In fact, a number of astronomical observations limit the total neutrino mass to be Mν ≲
0.1−0.3eV (see e.g. Seljak et al. 2006; Yèche et al. 2017; Poulin et al. 2018), and the neutrino
contribution to the total amount of energy in the Universe at late cosmological epochs can
be computed as (Mangano et al. 2005):

Ων ≈ Mν

93.14h2eV
. (2.10)

As we have seen in Sect.1.4, neutrinos can be considered as a HDM component and this is
due to their weak interaction cross-section. Indeed, unlike CDM particles, neutrinos have the
ability to freely move through high-density matter perturbations due to their high thermal
velocity. According to Eq. (1.71) we can derive their typical free-streaming length as:

λFS (z,Mν) = a(z)
2π

kFS
= 7.7(1 + z)

H0

H(z)

(
1eV

Mν

)
h−1Mpc , (2.11)

where kFS refers to the free-streaming wavenumber associated with it, which, during the
non-relativistic transition of neutrinos at znr, attains its minimum value (Lesgourgues et al.
2013):

kFS (znr) ≃ 0.0178

(
Ωm

Mν

1eV

)1/2

h−1Mpc . (2.12)

This is the scale that discriminates neutrino modes behavior between large and small scales:

• for k < kFS on large scales they evolve as CDM perturbations since neutrino velocities
can be neglected,

• for k ≫ kFS the free-streaming causes the slowdown of neutrino perturbation expansion
and this has the effect of suppressing clustering below their free-streaming thermal scale.

The physical features of neutrinos also influence the matter power spectrum shape (Saito
et al. 2008; Wagner et al. 2012), the halo mass function (Marulli et al. 2011; Villaescusa-
Navarro et al. 2013), the clustering properties of CDM halos and redshift-space distortions
(Marulli et al. 2011; Zennaro et al. 2018; ?).

Furthermore, it has been shown that the observable effects predicted by MG theories
exhibit significant degeneracy with the signatures caused by the existence of massive neutri-
nos. In fact, as we said in Sect. 2.1.3, the typical extent of the fifth force in f(R) models is
determined by the Compton wavelength µ−1, and it can span several tens of Mpc (Cataneo
et al. 2015), contingent upon the value of the parameter fR0. This range is comparable to
the scale of neutrino free-streaming, which can be approximated using Eq. (2.11). Neutrino
free-streaming can therefore counteract the accelerated growth of cosmic structures, result-
ing in a balancing effect on the cosmological fluctuations predicted by MG models. This
presents a significant challenge for cosmology, as it necessitates robust methodologies and
diverse cosmological techniques to tightly constrain at the same time massive neutrinos and
MG, particularly in untangling their joint impacts.
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In Chapter 3 we will formally introduce cosmic voids and evaluate their contribution in
this context. Due to their unique characteristics of being underdense and having exceptional
spatial extension, which are comparable to the ranges covered by the fifth force in f(R) models
and by neutrino free-streaming, voids are highly responsive to both of these components.
Their statistics, in fact, plays the role of key probes in unraveling the presented degenerate
scenarios (Contarini et al. 2021).
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Chapter 3

Cosmic voids and gravitational
lensing

In this chapter, we will now address the central subject of this Thesis: cosmic voids. Voids
are extended and underdense regions that emerge between the filaments and the walls of the
cosmic web and constitute the predominant volume of the LSS of the Universe(Cautun et al.
2014). In Sect. 1.5.1 we highlighted how voids originate from the evolution of underdensities
in the primordial matter density field, expanding at a rate that is inversely proportional to
the density they contain (see Sect. 1.5.3). These expanding volumes result in a fall in density,
which is caused by the redistribution of the mass over the expanding volume and by mass
loss to surrounding overdensities. A ridge forms around the void as a consequence of the
accumulation on the edge of matter from the inner part (Suto et al. 1984). Therefore we
can assert that cosmic voids represent the negative counterpart in the density field of the
extensively studied galaxy clusters.

Recent years have seen an increase in interest in this topic due to the scientific break-
throughs made possible by recent and ongoing redshift surveys1, which have achieved deeper
redshifts and covered wider sky areas than in the past. The development of these observa-
tional surveys, together with the improvement of both numerical simulations and theoretical
models have increased the use of voids as a cosmological probe (see Pisani et al. 2019, and
references therein).

This field of studies has great potential because void features and statistics provide us
with the opportunity to disentangle model degeneracies by combining orthogonal probes. In
fact, unlike galaxy clusters, cosmic voids have some important benefits in physical analysis:

a) they only experience a mildly nonlinear evolution, alleviating every issue brought up
by the completely nonlinear regime of structure evolution (Sheth & van de Weygaert
2004);

b) there is a tendency towards sphericity as their evolution proceeds (Icke 1984);

c) baryonic physics has almost no influence on their life history (Schuster et al. 2023);

d) they are extremely sensitive to diffuse components like DE and massive neutrinos thanks
to their very large sizes (Massara et al. 2015; Sánchez et al. 2017; Massara & Sheth
2018; Kreisch et al. 2019; Cautun et al. 2018; Contarini et al. 2021);

1For example Sloan Digital Sky Survey (SDSS-III Eisenstein et al. 2011) with Baryon Oscillation Spectro-
scopic Survey (BOSS Dawson et al. (2013), eBOSS Dawson et al. (2016)) and Euclid mission (Laureijs et al.
2011; Amendola et al. 2018; Euclid Collaboration: Blanchard et al. 2020; Euclid Collaboration et al. 2022).
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e) they are weakly affected by screening mechanisms in MG because of their low-density
interiors and shallow gravitational potentials (Martino & Sheth 2009; Baker et al. 2018;
Cautun et al. 2018; Contarini et al. 2021).

All of these features enable us to model quite easy a cosmic void. For example, the first
two characteristics allow us, using a spherical expansion model, to forecast the statistical
distribution of voids based on their size (Sheth & van de Weygaert 2004) and this is crucial
for constraining cosmological parameters. Additionally, in this Thesis work, we are primarily
interested in the last two characteristics because they make voids perfect laboratories to
detect the gravitational effects produced by the fifth force, helping therefore to discriminate
between the competing MG models (Barreira et al. 2015; Baker et al. 2018).

On the other hand, voids’ biggest drawback has to do with how they are defined and
identified. Indeed, not only do we lack a universally definition for the void radius and center,
but we are also unable to trivially identify these objects. This due to the fact that cosmic
voids are structures that do not emit light, but are instead defined by the distribution of
luminous tracers. Consequently, we have to use some ad-hoc techniques to recover the void
shape and position from the matter tracers.

In this context, one of the most effective tools for detecting and analyzing the properties of
voids is gravitational lensing, which involves studying the deflection of light from background
sources. This deflection is influenced by gravitational effects, allowing its intensity to be
correlated with fluctuations in the density field encountered along the path of light from
the source to the observer (Sereno & Umetsu 2011). This connection of lensing with the
gravitational potential makes it an excellent method for investigating MG models within
voids (Umetsu 2020). Besides its promising application to study MG models, this type of
statistic has already been shown to be highly sensitive to the growth rate of large-scale
structure and the expansion history of the Universe (Bartelmann 2010; Troxel & Ishak 2015).

In this chapter, we will discuss the definition of cosmic voids in Sect. 3.1 and their main
statistical properties in Sect. 3.2. Here, we will briefly introduce the theoretical framework of
the void size function and the current understanding of the primary characteristics associated
with the density profiles of cosmic voids. Then, we will provide an overview of the theoretical
foundations of gravitational lensing in Sect. 3.3, with particular attention to the weak regime
and its applications to voids and MG models.

3.1 Definition and void finding

One of the primary problems with the cosmological use of cosmic void statistics is that,
despite their increasing use in recent literature, for several statistics there is not yet a model
developed from first principles, so neither is there a universal definition of the associated
void. In fact, the definition one gives is closely related to the type of analysis one wants to
perform, that is, from the type of study one wants to apply to the voids. For example, there
is no standard range of values to categorize voids based on their size, shape, and internal
density. This lack of paradigm in their definition makes the identification of voids non-
trivial. Indeed, it is essential to reconstruct the shape of voids and determine the position
of their centers based on the distribution of luminous tracers, which predominantly reside
along their boundaries. Over the years, many different definitions have been given and the
scientific community has put forward various algorithms for identifying cosmic voids using
the position of 3D tracers, but the use of one rather than another method obviously depends
on the type of study and its intended purpose. We can categorize these methods into three
main classes based on the detection criteria, as outlined by Lavaux & Wandelt (2010):
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• Geometrical criterion. Geometry-based algorithms aim at identify cosmic voids by
searching for local density minima within a reconstructed continuous density field by
partitioning the volume into cells, which can have different geometric shapes. Density
is evaluated in each of these cells. According to this class of criteria, cosmic voids are
characterized as underdense regions that take on the shape of either spherical cells or
polyhedra (Platen et al. 2007; Neyrinck 2008; Sutter et al. 2015). Nowadays, the most
popular algorithm exploiting this method is the Void IDentification and Examination
toolkit (VIDE, Sutter et al. 2015). VIDE is based on an enhanced version of the ZOnes
Bordering On Voidness (ZOBOV, Neyrinck 2008) algorithm, a parameter-free method
that does not rely on any assumption regarding the shape of the void. Specifically
tailored to detect regions of low density, it is built upon the original VOronoi BOund
Zones (VOBOZ, Neyrinck et al. 2005) method, designed for the detection of overden-
sities. The VIDE void finding procedure is based on the so-called Voronoi tessellation
performed on the tracer catalog. This procedure permits the volume to be divided into
so-called Voronoi cells, which are always containing a single particle. Moreover, every
point inside every single cell is closer to the particle inside it than it is to any other
particle. The algorithm determines the density mean value of each cell by calculating
the inverse of the Voronoi cell volume, assuming that each particle has the same mass.

• Density criterion. Voids are identified as areas devoid of tracers or, similarly, regions
where the local density is below a specified mean density threshold (Elyiv et al. 2013).
Depending on the density of the surrounding environment, the tracers are categorized
as either wall tracers or field tracers; the former group includes tracers in high density
areas, such as the walls, while the latter group includes tracers in low density areas,
such as the cosmic voids. Thus, the so-called wall tracers cannot exist inside of voids.
One notable application of this approach is evident within the context of the VIMOS
Public Extragalactic Redshift Survey2 (VIPERS) where, based on the identification of
empty spheres, Micheletti et al. (2014) created an algorithm for void detection. Thus,
voids discovered in this manner are identified as areas free of galaxies with absolute
magnitudes brighter than a given threshold (B-band brighter than MB = −19.8 in that
case).

• Dynamical criterion. These void finders detect cosmic voids as regions that are be-
ing emptied of matter, characterized by a radial velocity field pointing outward from
the void centers. Instead of using tracers to rebuild the density distribution, meth-
ods based on dynamic criteria use them as test particles to sample the velocity field
(Forero–Romero et al. 2009; Elyiv et al. 2015). Rather than being underdense zones,
voids are recognized in these algorithms as areas where tracers are evacuating from.
One benefit of dynamic void identification is that it is possible to partially mitigate
the issues caused by shot noise like the sparsity of tracers. It also makes it possible to
recreate continuous velocity and density fields as a function of time. The two instances
of this kind of method are proposed by Elyiv et al. (2015). By randomizing the Eule-
rian positions, the two algorithms, the Uncorrelating Void Finder and the Lagrangian
Zel’dovich Void Finder, can recreate the Lagrangian positions of galaxies. The two
dynamical void finders work by taking into account a volume of the universe that is
probed by “particles” such as galaxies or DM halos. Utilizing these as test particles,
the objective is to reconstruct their Lagrangian locations by following their orbits back
in time to a homogeneous and isotropic initial distribution.

2It was an ESO programme with the purpose of studying the LSS distribution of galaxies at z = 0.5− 1.2,
over total sky area of 24 squares degree (Guzzo et al. 2014).
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3.1.1 2D voids

On the described three main criteria are based not only the 3D void finders but also the 2D
void finders, with the difference that in the second case the 3D density (or tracers) distribution
is projected along the line of sight. This kind of finder is suitable especially for weak lensing
(WL) investigations around voids (see Sánchez et al. 2017; Cautun et al. 2018; Fang et al.
2019; Davies et al. 2021a,b), which we will introduce in the last section of this chapter.

Indeed, 2D WL voids have been demonstrated to correspond to deeper line-of-sight pro-
jected underdensities compared to 3D voids. Consequently, they exhibit a larger tangential
shear signal (Davies et al. 2018). This potentially makes 2D voids better than 3D voids for
WL cosmological analyses. This has been exemplified by Davies et al. (2019a) in the context
of modified gravity models, which can be considerably better constrained with 2D WL voids
than with 3D voids identified via galaxy positions, as we will see in Sect. 3.3.6. The over-
all signal-to-noise ratio (S/N) of void lensing profiles relies on the number of voids and the
magnitude of their lensing profile. The method of void identification impacts the count of
2D voids, with variations depending on the approach used. However, the key distinction lies
in the amplitude of the lensing profile: 2D void lensing profiles, because of the identification
method itself, generally exhibit an amplitude approximately ten times larger than that of the
WL signal derived from 3D voids. This substantial difference in amplitude is the primary
factor contributing to the higher S/N observed for 2D voids with respect to 3D voids (Cautun
et al. 2018; Davies et al. 2018).

Davies et al. (2018) focused on a specific category of 2D voids known as VOids from LEns-
ing (VOLEs), where voids are delineated as circular regions devoid of WL peaks. However, as
with 3D voids, the definition and subsequent identification of 2D voids lacks of universality.
There exist indeed multiple techniques for detecting 2D underdense regions, which are based
on different approaches for defining voids (Colberg et al. 2008; Cautun et al. 2018). This
variability can introduce relevant differences in void observables across the multiple void-
finding methodologies. Nevertheless, this variability can also be leveraged by selecting the
void-finding algorithm that aligns best with the intended objective. In our case, we aim at
optimizing the amplitude of void lensing profiles (or equivalently, the S/R of void lensing
profiles), while mitigating the influence of observational uncertainties on the resulting void
statistics. To achieve this goal, we have developed a new 2D void finder algorithm, imple-
menting some of the features of the 2D void finder that, according to Cautun et al. (2018) and
Davies et al. (2021b), is ideal for WL analyses. Now, we will briefly present the conclusions
reached in these two papers, which specifically investigated 2D void statistics employing a
variety of void-finding algorithms, focusing on the limitations and advantages associated with
each void finder.

The study of Cautun et al. (2018) makes use of several void finders with the goal of de-
termining which ones are best suited for probing chameleon-type modified gravity models.
Broadly, they split the void finders into two categories: the ones that identify 3D underden-
sities (i.e., “standard” voids) and the ones that identify 2D underdensities in the plane of the
sky. The underdensities identified by the latter methods are not formally called voids, since
voids are 3D objects, but nonetheless, it is possible to think of them as 2D voids that are very
elongated along the line of sight. Specifically, these definitions of 2D voids and corresponding
finders are among the most commonly used in the literature to analyze simulations:

• 2D spherical voids (SVF 2D): 2D spherical voids are obtained by finding the void centers
in a rectangular grid constructed over the projected distribution of mock galaxies along
one of the axes of the simulations, and counting the number of galaxies in each grid
cell. The centers of empty grid cells are considered as prospective void centers, and
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circles are grown from those centers until the integrated number density of galaxies at
the circle radius is equal to 40 per cent of the mean density. Following this procedure,
if the overlap between two voids exceeds 80 per cent of the sum of their radii, only
the larger void is retained in the catalog. Similar to its 3D counterpart, the SVF 2D
void finder relies on three parameters: the density threshold used to define a void, the
method for removing overlapping voids, and the extent of the projected redshift range.
For the first criteria they found that choosing the value 0.4 results in the strongest
detection of WL by 2D underdensities.

• Tunnels: The tunnels correspond to elongated line-of-sight regions that intersect one
or more voids without passing through overdense regions (Davies et al. 2018). Using
galaxies as tracers of the matter distribution, the tunnels are identified as circles in
the plane-of-the-sky that are devoid of galaxies. The typical size of tunnels depends
on the number density of tracer galaxies (or the extent of the density field) and the
depth of the line-of-sight used for their identification. Higher tracer density or a larger
line-of-sight depth results in smaller tunnels. In the distant observer approximation,
tunnels are represented as line-of-sight cylinders devoid of galaxies.
To identify tunnels, the galaxy catalogue is projected along one of the simulation axes,
yielding a 2D distribution of galaxies. The largest circles devoid of galaxies are identified
by constructing a Delaunay tessellation with galaxies as its vertices (see Zhao et al. 2016,
for a detailed review). For realistic surveys, the tunnels resemble conical frustums.
In practical terms, the angular opening of the tunnels is very small, so they can be
approximated as having planar top and bottom circular bases. Only tunnels larger
than 0.4 times the mean projected galaxy separation are considered, as the focus is
on detecting the modified gravity signature of underdense regions. Finally, the tunnel
catalog depends on two free parameters: the minimum accepted radius, and the length
of line-of-sight projection. The former is determined by analyzing the enclosed projected
matter density within tunnels, while the latter should be chosen based on the specifics
of the observational survey being matched.

• Troughs: The troughs are akin to tunnels in that they represent elongated regions of
low galaxy density along the line of sight (Gruen et al. 2015). Unlike tunnels, however,
all troughs share the same radius and are defined by randomly positioned circles on
the celestial plane containing very few galaxies. These troughs are identified utilizing
the same projected mock galaxy data sets as the tunnels, assuming a distant observer
approximation. Typically, a radius is chosen to standardize the entire trough catalog,
and in Cautun et al. (2018), a radius of 2 h−1 Mpc was selected, similar to the typical
radius of tunnels. Furthermore, troughs of this size encompass a comparable number of
galaxies to the 5 arcsec troughs examined by Gruen et al. (2015); Barreira et al. (2017).
The identification process for troughs begins by randomly placing circles with a radius
of 2 h−1 Mpc on the simulated sky plane. Troughs are defined by circles containing two
or fewer galaxies within them. This selection method is consistent with that utilized
by (Gruen et al. 2015), striking a balance between selecting highly underdense regions
and covering a substantial portion of the available simulation area.

In Figure 3.1 we show a visual comparison of the most typical 2D underdensities described
above. They generally have much smaller radii than their 3D counterparts. The analysis of
Cautun et al. (2018) demonstrates that the 2D voids, initially identified as regions of lower
density in the projected galaxy distribution, also correspond to underdense regions in the
projected matter density field. While most underdense areas in the matter field are classified
as 2D voids, there is considerable variation in both the center and size of these voids across the
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Figure 3.1: Plots of 2D voids (left), tunnels (center), and troughs (right) that are represented with
white circles. 2D voids in a smaller region of size 25 × 25 (h−1Mpc)2 in the xy plane of the whole
simulation box. In the background, an image displays the projected density of the box along the line
of sight z-direction in the distant observer approximation. On the right, the colorbar shows the scale
of surface mass density contrast values. Credits to: Cautun et al. (2018).

three types. SVF 2D voids and tunnels exhibit relatively little overlap, with tunnels typically
being smaller and covering a greater portion of the sky compared to SVF 2D voids. Troughs,
on the other hand, are highly clustered within underdense regions and exhibit significant
overlap.

A very important conclusion that will be used as the basis of this work is that the authors,
when studying the void matter density profiles, found that voids in f(R) gravity scenarios
exhibit deeper density profiles. This is indeed expected because of the influence of a fifth force,
which effectively evacuates underdense regions more rapidly. Moreover, they compared the
stacked tangential shear of lensing signal (see Sect. 3.3.4 and Sect. 3.3.6) by voids identified
in f(R) and GR scenarios, revealing that the former generally predicts a stronger void lensing
effect. The tangential shear profiles of voids are found to depend on the method used for void
identification. In Figure 3.2 we report the void WL S/N predictions computed by Cautun
et al. (2018) for surveys featuring the characteristics of Euclid (Laureijs et al. 2011; Amendola
et al. 2018) and the LSST (LSST Dark Energy Science Collaboration 2012). Here is it shown
that 2D voids, particularly tunnels and 2D SVF, exhibit both stronger lensing signals and
more pronounced model differences compared to 3D voids, which in contrast do not have a
WL signal with sufficient power to differentiate between f(R) models.

These aspects are very important in constructing an optimal 2D void finder for the in-
tended purpose. In this work, given the available maps and the specific purpose, we chose
several of the listed features mediated among various 2D WL finders, looking for the best
and most stable configuration that we will present in the chapter 4.

3.2 Statistical properties of voids

As we mentioned above, with the advent of the era of large galaxy surveys, we have become
able to acquire vast numbers of galaxies distributed over huge volumes. On one hand, sam-
pling larger Universe volumes allows us to gather a statistically relevant sample of cosmic
voids and to identify the largest (and so rarest) underdensities; on the other hand, the higher
galaxy number density enables us to resolve also the smallest voids, increasing dramatically
the total number of voids to analyze. Both of these achievements are crucial for the effective
statistical analysis of the properties of cosmic voids.

We underline how the extensive spatial distribution of cosmic voids, combined with their
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Figure 3.2: Differences between f(R) and GR models in the cumulative tangential shear S/N as a
function of the rescaled void radius. These discrepancies are computed for the scenario F5 (i.e with
fR0 = −10−5, top panel) and F6 (i.e with fR0 = −10−5, bottom panel). Each color represents one
of the six void types examined in this study. Predictions for lensing on Euclid -like and LSST-like
surveys are illustrated with solid and dashed lined respectively. In both f(R) gravity models and for
both surveys, tunnels (purple curve) show S/N greater than all other void definitions, both 2D and
3D. Credits to: Cautun et al. (2018).

distinct underdense characteristics, renders these objects the perfect setting for testing various
cosmological models. The most studied cosmological contribution of void statistics comes
from number counts and density profiles. In particular, concerning the first statistics, we
show that the application of the so-called excursion set formalism enables the prediction of
void counts as a function of their radius.

3.2.1 Size function

For cosmic voids, just like with what happens to clusters, a zero-order statistics can be defined
through object counts, and it can be used to constrain the cosmological parameters. Though,
while number counts for overdensities are determined as a function of mass, yielding the halo
mass function, void counts are determined as a function of radius since they are poor of
matter. In this context, it is defined void size function (VSF) the comoving number density
of voids as a function of their effective radius.

The VSF has been modeled for the first time in Sheth & van de Weygaert (2004) where
the authors introduced the Sheth-van de Weygaert model (SvdW), with the same excursion-
set approach used to model the mass function of DM halos (Press & Schechter 1974; Bond
et al. 1991). In the following, we will briefly describe the excursion-set formalism, to serve as
a basis for the theoretical model of the void size function.
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Excursion-set formalism

The excursion-set formalism is an analytical framework for examining the LSS of the Universe.
Using this method, we may forecast the numerical density of cosmic objects by connecting the
linear perturbation theory of cosmology to its nonlinear equivalent at late times (Bond et al.
1991). The excursion set formalism relies on understanding the statistical characteristics
of the linear density field. In combination with the spherical collapse approximation, this
approach offers insights into many aspects of halo formation and can be used to predict DM
halos abundances and clustering (see Zentner 2007; Jennings et al. 2013).

Recalling the formalism introduced in Sect. 1.5.1, smoothing Eq. (3.1) on a scaleR through
a filter function in Fourier spaceW (k, R), we obtain the smoothed linear density perturbation
field in real space as:

δ(x, R) =
1

(2π)3

∫
δ̂(k, R)W (k, R)eik·xd3k , (3.1)

where x is the punctual comoving position and δ̂(k) is the Fourier transform of the point
density contrast field in that position. The smoothing scale R is related to the corresponding
variance of the linear density field, calculated based on the size of the region under consider-
ation:

σ2(R) ≡ S(R) =
1

(2π)2

∫
k2P (k)|W (k, R)|2dk , (3.2)

where P (k) is the matter power spectrum in linear theory. We can describe a trajectory
δ(x, S) as a sequence of overdensities resulting from successive increases in the smoothing
scale by increments of ∆S. The random walk is carried out by δ(x, S) when a top-hat filter
in k-space is applied. With an assumed Gaussian distribution for the linear density field, the
excursion-set formalism enables us to assign probabilities to random walks that meet specific
criteria for the smoothing scale at which they cross different density thresholds.

The spherical evolution model combined with the excursion-set gives a fair explanation
of the statistics of DM halos for the collapse of perturbations. A collapse takes place when
the linear density fluctuation hits a barrier or critical value δLc , which is calculated in linear
theory3, as it was covered in Sect. 1.5.3. Using the excursion-set formalism we can determine
the fraction of trajectories that cross for the first time this barrier, taking into consideration
the cloud-in-cloud process as well. This process happens when the trajectories repeatedly
cross the δLc threshold during the creation of a structure, and physically speaking, this happens
when one collapsing halo envelops another halo. In this context, it is required to take into
account as halo only those items that do not include larger objects; that is, to take into
account just the minimum feasible value of σ(M) measured at each of the threshold crossings.

We can expand the model to forecast the development of underdense regions within the
initial density field, which are inherently linked to voids in the evolved density field observed
today. A crucial assumption underlying the connection between the excursion set and the
abundance of nonlinear objects is that each collapse happens independently. This concept is
applicable to collapsing objects because the comoving volume they occupy decreases. Unlike
overdense regions, which contract, voids expand. We will observe that this poses a challenge
when aligning the predictions of the excursion set with void statistics. Nevertheless, we will
begin with the basic spherical evolution model outlined in Sheth & van de Weygaert (2004)
where the critical density threshold is established as the shell-crossing density, δLv = −2.71.
We can utilize the excursion-set formalism to calculate the fraction of random walks that cross

3This value lies in the range δLc = [1.06, 1.686], between the density contrast of turn-around point and the
complete halo collapse, respectively.
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the barrier δLc . Similar to the cloud-in-cloud process, the concept of the void-in-void process
acknowledges that a void of a certain size could exist within another underdense region on
a larger scale. Therefore, we establish the first crossing distribution by linking the random
walks with the smoothing scale at which they initially pierce the barrier δLv . Another scenario,
known as the void-in-cloud process, arises when a void of a particular size is encompassed
within an overdense region on a larger scale. Eventually, this larger region will collapse into
a halo, eliminating the void. The scenario where a large underdense region encompasses a
small overdense one, termed cloud-in-void, is inconsequential for the formation of collapsed
structures. This is because the clouds condensing in a large-scale void are not torn apart as
their parent void expands around them (van de Weygaert 2014). The disparity between the
void-in-cloud and cloud-in-void processes results in an asymmetry between the populations
of halos and voids: both evolve from the same symmetric Gaussian initial conditions, but
overdensities and underdensities are anticipated to evolve toward distributions with distinct
characteristics. In order to account for this asymmetry, Sheth & van de Weygaert (2004) pro-
posed that the excursion-set method applied to voids requires a second barrier, the threshold
for collapse of overdense regions, δLc . Hence, in computing the first crossing distribution, we
must ascertain the maximum scale at which a trajectory breaches the threshold δLv , provided
it has not surpassed δc at any larger scale. In Figure 3.3 we present an overview of the
four processes involved in the formation of halos and voids as described by the excursion-set
formalism.

Theoretical model formulation

As mentioned above, in a double barrier problem, the distribution of fluctuations that evolve
into voids is derived as the conditional first crossing distribution of the matter density contrast
filtered at decreasing Lagrangian radius. A fluctuation can be considered a void with a radius
Rv only if the density contrast, filtered at this scale, surpasses the negative linear threshold
for void formation, δLv , without exceeding the critical collapse threshold for an overdensity
δLc at any larger scale. This model is based on the assumption of sphericity for voids, in
analogy with the derivation for spherical fluctuations in Lagrangian space of the multiplicity
function in Sheth & van de Weygaert (2004). The density field initially evolved linearly at
the relevant epoch, whereas the observed voids exist in Eulerian space, meaning they are part
of the completely nonlinearly evolved density field.

The excursion-set theory, when applied to underdense regions, forecasts the fraction of
the Universe occupied by cosmic voids, which is determined by the multiplicity function flnσ:

flnσ = 2
∞∑
j=1

jπx2 sin(jπD) exp

[
−jπx

2

2

]
(3.3)

with

x ≡ D
|δLv |

σ ; D ≡
∣∣δLv ∣∣

δLc + |δLv |
, (3.4)

where σ is the square root of the mass variance filtered on a radius R. At this point, from
Eq. (3.3), it is feasible to derive the distribution of void number density as a function of their
size within linear theory as:

dnL

d ln rL
=
flnσ(σ)

V (rL)

d lnσ−1

d ln rL
, (3.5)

where V
(
rL
)
= 4

3π
(
rL
)3

is the volume of the spherical perturbation of radius rL.
Now, in order to move from the linear to the nonlinear theory, it is possible to assume the

conservation of the total number of voids. In addition, as we anticipated in Sect. 1.5.3, when
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Figure 3.3: Four modes of the excursion-set formalism for a two-barrier problem. Each row corre-
sponds to one of the four fundamental modes of hierarchical clustering: the cloud-in-cloud process, the
cloud-in-void process, the void-in-void process, and the void-in-cloud process (from top to bottom).
Each mode is illustrated using three frames. The panels on the left display random walks representing
the local density perturbation δ0(x) plotted against the (mass) resolution scale Sm. In each graph,
the dashed horizontal lines indicate the collapse barrier δc and the shell-crossing void barrier δv (the
superscript L is not specified here). The two frames on the right illustrate the evolution of the asso-
ciated particle distribution, first at an earlier time (second column) and then at a later time (third
column). Credits to: Sheth & van de Weygaert (2004).

underdensities approach shell-crossing, they will have expanded according to a ∝
(
δLv
)−3

.
This necessitates to correct the linear radius, and so the void abundance becomes:

dn

d ln r

∣∣∣∣
SvdW

=
dn

d ln (arL)
, (3.6)

with the relation linking the linear and nonlinear radii is:

r

rL
=

(
ρ̄

ρv

)1/3

(3.7)

where ρ̄ represents the mean density of the Universe, while ρv denotes the average density
within the void under consideration.

As highlighted in Jennings et al. (2013), considering the inherent tendency of voids to
expand and intersect, the assumption of conservation of the number of voids may not be
valid, especially for large voids. Given that only void-in-cloud process is accounted in the
parameter D of the SvdW model but not the void-in-void side effect, this renders the model
unphysical. In this regard, to falsify the model, it is useful to calculate the fraction of the
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entire volume of the Universe occupied by voids as:

F(R) =

∫ ∞

R
V (r)

dn

d ln r

dr

r
> 1. (3.8)

From this, we can observe that the prediction of the SvdW model is incorrect since it predicts
a volume occupied by voids greater than the total volume of the Universe.

To address the challenges related to the total void volume in the SvdW model, Jennings
et al. (2013) introduced the volume conserving (Vdn) model. Unlike the SvdW model, the
Vdn model no longer relies on conserving the total number of voids, instead, it assumes
that the total volume of voids remains constant during the transition from the linear to the
nonlinear regime. Particularly, they define the volume fraction in linear theory, FL, as:

FL(R) =

∫ ∞

RL

V
(
rL
) dn

d ln rL
drL

rL
. (3.9)

They demonstrate that this fraction is conserved by defining the nonlinear abundance as

V (r)dn = V
(
rL
)
dnL

∣∣
rL(r)

, (3.10)

obtaining the abundance of voids expressed in the form:

dn

d ln r

∣∣∣∣
Vdn

=
V
(
rL
)

V (r)

dn

d ln rL
d ln rL

d ln r

∣∣∣∣∣
rL(r)

. (3.11)

A comparison of the volume fractions of the Universe occupied by the voids expected to
form in the two different investigated models is presented in Figure 3.4. The Vdn model
conserves the entire fraction from the linear theory, whereas for the SvdW model the fraction
unphysically exceeds unity. Conversely, Figure 3.5 displays the calculated VSF along with
the corresponding void abundance as determined by simulations. The Vdn model and void
counts correspond very well, whereas the SvdW model, which consistently overestimates
abundances, does not.

Figure 3.4: The cumulative volume fraction occupied by voids with radii larger than R is compared
across different theoretical models: linear theory (blue striped region, R = rL), SvdW model (orange
striped region, R = r), and Vdn model (grey shaded region, R = r). These regions correspond to an
expected range of 1.06 ≤ δLc ≤ 1.686, with δLv = −2.7 maintained throughout. In the case of the SvdW
model, the fraction unphysically exceeds unity at R ∼ 2 h−1Mpc, while the Vdn model conserves the
total fraction from linear theory, F(0) ∼ 0.3. Credits to: Jennings et al. (2013).
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Figure 3.5: The void abundance in simulations is compared to model predictions. Voids are character-
ized by a radius equivalent to the radius of a sphere with a density ρv = 0.2ρ̄m in the DM distribution
of ΛCDM cosmology simulations. Simulations are conducted with box sizes of 64 h−1Mpc (green),
128 h−1Mpc (purple), 256 h−1Mpc (red), and 500 h−1Mpc (cyan). The error bars represent the
dispersion around the mean from eight different realizations of this cosmology in each box size. The
range in predictions covers the parameter interval δc = [1.06, 1.686], with δv = −2.7. It is evident
how the data are consistent with simulations for the Vdn model (grey shaded), but not for the SvdW
model (orange hatched). Credits to: Jennings et al. (2013).

3.2.2 Density profile

The void density profile represents another significant statistical measure extensively exam-
ined in recent literature (Sutter et al. 2014; Hamaus et al. 2014; Voivodic et al. 2020). It is
defined as the average relative deviation of mass density ρv(r) or number density uv(r) from
the mean density of the Universe, ρ̄, around the center of a void:

uv(r) ≡
nvg(r)

⟨ng⟩
− 1 =

ρv(r)

ρ̄
− 1 , (3.12)

where nvg(r) is the galaxy (or, more generally, the matter tracer) number density in a sphere
of radius r centered on a void and ⟨ng⟩ the average density of galaxies and ρv and ρ̄ are their
corresponding mass density, respectively. With the use of tracer particles, one can estimate
the density within a radial shell, which has a thickness of 2δr and is located at a distance r
from the center of a void, as

ρv(r) =
3

4π

∑
i

mi (ri)Θ (ri)

(r + δr)3 − (r − δr)3
, (3.13)

where mi is the mass of particle i, ri its coordinate vector of length ri, and Θ define the radial
bin combining two Heaviside step functions θ, like Θ (ri) ≡ θ [ri − (r − δr)] θ [−ri + (r + δr)].

Various functional shapes have been suggested for void density profile in literature. These
can be categorized into two primary groups: empirical models, which seek an appropriate
form to match the void density profile (Paz et al. 2013; Nadathur et al. 2015; Hamaus et al.
2014; Voivodic et al. 2020), and theoretically driven models (Finelli et al. 2015). In particular,
the most widely used belongs to the first category and is the so-called Hamaus-Sutter-Wandelt
(HSW) profile presented in Hamaus et al. (2014). It follows a simple parametric form:

ρv(r)

ρ̄
− 1 = δc

1− (r/rs)
α

1 + (r/rv)
β
, (3.14)
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Figure 3.6: Stacked density profiles of voids at z = 0 are presented in eight consecutive bins based
on void radius, with mean values and counts of voids reported in the inset. Shaded regions represent
the standard deviation σ within each stack (scaled down by 20 for clarity), while error bars depict
standard errors on the mean profile σ/

√
Nv. Solid lines show the best-fit solutions of the Eq. (6.13).

Credits: Hamaus et al. (2014).

where δc is the central density contrast, rs a scale radius at which ρv = ρ̄, called effective
radius, and α and β determine the inner and outer slope, respectively, of the density maximum
resulting from the overdense shell surrounding the void, called compensation wall.

In Figure 3.6 we show the best fits of this model to the stacked density profiles of cosmic
voids identified with VIDE (see Sect. 3.1) in a N -body simulation. Hamaus et al. (2014)
voids are significantly underdense in their interiors, particularly the smaller ones. All profiles
exhibit compensation walls of increased density, with a peak slightly beyond their effective
radius, which shifts outward for larger voids. The height of these compensation walls dimin-
ishes with void size, resulting in a less steep inner profile slope and a broader wall. This
pattern distinguishes voids as either overcompensated or undercompensated, depending on
whether the total mass inside their compensation wall exceeds or falls short of the mass ab-
sent in the center. Ultimately, at sufficiently large distances from the void center, all profiles
converge toward the mean background density.

Another approach to compute density profiles involves calculating the cross-correlation
between the centers of voids and tracer particles, utilizing the two-point correlation function,
ξv,g(r). This estimator quantifies the probability of encountering a tracer at a comoving
distance r from a void center (refer to Sect. 1.5.1 for details). This can be represented as the
integrated profile of void density contrast, calculated within a sphere of radius r and volume
V centered on voids:

ξv,g(r) =
1

3r2
d

dr

[
r3∆(r)

]
, (3.15)

where

∆(r) =
3

r3

∫ r

0
uv
(
r′
)
r′2dr′ , (3.16)

with uv being the quantity defined in Eq. (6.13). The two methodologies presented for
estimating void density profiles are equivalent and lead to the same result.
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3.3 Weak gravitational lensing

One of the most promising studies that can be used to investigate MG models in voids is
related to the phenomenon of gravitational lensing. We understand from GR that the trajec-
tory of light rays traveling from a source to an observer is affected by both the gravitational
field of local structures and the geometry of the Universe (Schneider et al. 1992). Lensing
refers to the deflection of photons emitted by distant galaxies as they travel towards the
observer, caused by matter fluctuations along the line of sight (Sereno & Umetsu 2011). As
a result, images of background sources exhibit gravitational lensing signatures due to the
presence of cosmic structures, enabling the investigation of the mass and density distribu-
tion of cosmic objects present along the line of sight (Blandford & Narayan 1992; Umetsu
2020). Additionally, tomographic studies of the observed lensing signal, conducted across
large survey areas and in redshift bins, offer insights into the redshift evolution of the LSS
of the Universe and provide robust constraints on cosmological parameters. Indeed, such
tomographic studies, also known as cosmic shear analyses, represent primary cosmological
probes in both current (see, e.g., Giblin et al. 2021; Amon et al. 2022) and future (LSST
Dark Energy Science Collaboration 2012; Laureijs et al. 2011) surveys.

In this section, we introduce the fundamental concepts of gravitational lensing, with a
focus on WL regime. The analysis of the WL from voids concerns, therefore, the small
distortions of background light sources caused by underdense regions. Unlike its strong
counterpart, which is observable when a lens and a lensed source are precisely aligned along
the line of sight, WL is more prevalent and thus better suited for statistical investigations.

3.3.1 Lens equation

Figure 3.7: Scheme representing the lens system described in Sect. 3.3.1. Credits to Umetsu (2020).

Let us consider the system depicted in Fig. 3.7 to introduce the lens equation, which describes
the bending of light ray trajectories due to intervening matter along the line of sight. We
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use the thin lens approximation, in which the surface density of the lens matter perfectly
describes its distribution. Given that the physical size of the lens is typically much smaller
than the distances between the observer, lens, and source, this estimate is accurate.

The line that passes across the sites of the lens and the observer is what we refer to
as the optical axis. The observer, lens, and source planes—referred to as O, L, and S,
respectively—are all perpendicular to the optical axis. We consider in particular a distant
source behind the lens at a position η = βDs on S, where Ds is the angular diameter distance
between the observer and the source and β is the angle subtended by η. The observer
measures an angle θ between the optical axis and the source position on L, namely ξ = θDl,
where Dl is the observer-lens angular diameter distance. This is because the lens deflects the
trajectory of a light ray generated by the source by a bending angle α̂.

If β, θ, and α̂ are small, we derive the formula that connects the true position of the
source S, to its observed position I:

θDs = βDs + α̂Dls , (3.17)

where Dls is the angular diameter distance between lens and source. Defining the reduced
deflection angle, α = α̂Dls/Ds, we obtain the lens equation, expressed as:

β = θ −α(θ) . (3.18)

The lens equation is valid only in the local Universe and we can note that it may have more
than one solution θ for a source position β (Hattori et al. 1999; Kneib & Natarajan 2011).

3.3.2 Convergence and shear

Consider a lens in terms of an extended distribution of matter to understand how the lens
equation, Eq. (3.18), describes the deflection of the light ray path in relation to gravity.
Under the Born approximation4 and neglecting lens-lens coupling, the deflection angle can
be expressed as the gradient of a 2D lensing potential. This potential is obtained by projecting
the 3D Newtonian potential5, Φ, onto the lens plane and simply rescaling it. We can describe
the lens effective 2D gravitational potential, Ψ̂:

Ψ̂(θ) ≡ Dls

DlDs

2

c2

∫ zs

0
Φ(θDl, z) dz , (3.19)

where θ is the observed angular position of the lensed image, the angular diameter distances
are in comoving units, c is the speed of light, z is the redshift and zs is the source redshift.
Eq. (3.19), therefore, behaves as the Poisson equation projected and weighted by a geometric
factor based on the distances to the lens, source, and observer. It suggests that the reduced
deflection angle is equal to the gradient of Ψ̂, that is to say

∇Ψ̂(θ) = α(θ) . (3.20)

Now, expressing the convergence, κ, as

κ(θ) =
Σ(θ)

Σcr
, (3.21)

4It is the perturbation method used for scattering by an extended body or field. It involves using the
incident field as the driving field at each point in the scatterer rather than the total field. This method is
accurate if the dispersed field is modest in comparison to the incident field on the scatterer (see Bartelmann
& Schneider 2001, for a detailed review).

5It denotes the 3D gravitational potential given by the Poisson equation ∇2Φ = 4πGa2δρm, where δρm =
ρm − ρ̄m with ρm and ρ̄m the local and the background matter density respectively; a is the scale factor; and
G is the gravitational constant.
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where Σ is the surface mass density, while Σcr is the critical surface mass density, which is
defined as

Σcr ≡
c2

4πG

Ds

DlDls
, (3.22)

we can obtain that the Laplacian of Ψ̂ is

∇2Ψ̂(θ) = 2κ(θ) . (3.23)

Σcr, in Eq. (3.22), barely depends on the source redshift (Umetsu 2020) if the source redshift
is significantly larger than the lens redshift, which lessens the importance of precisely defining
the source redshift distribution (Okabe et al. 2010).

From Eq. (3.18), mapping the β points on the source plane onto the θ points on the lens
plane, we obtain the following Jacobian matrix, A:

A =
∂β

∂θ
=

(
δij −

∂αi(θ)

∂θj

)
= (δij −Ψij) , (3.24)

where δij is the Kronecker delta, while θi and θj are the i-th and j-th components of θ,
respectively. Ψ is defined as:

Ψij ≡
∂2Ψ̂(θ)

∂θi∂θj
, (3.25)

and from this we can write

A = Aij =

(
1−Ψ11 −Ψ12

−Ψ12 1−Ψ22

)
. (3.26)

This is called deformation matrix, it is a 2× 2 matrix and a tensor of rank 2 which describes
the first-order mapping between the plane of the lens (LP) and the plane of the source (SP).
It can be written as the sum of its isotropic Aiso and anisotropic Aaniso components:

A = Aiso +Aaniso , (3.27)

with

Aiso =

(
1

2
trA · I

)
ij

= (1− κ) δij , (3.28)

where trA is the trace of A and I is the identity matrix. The Aiso transformation preserves
the directions of the vectors to which it is applied, and it tells us that convergence is a
quantity that describes a transformation that at first order is isotropic. Images are rescaled
by a constant factor in all directions as a result of the convergence, which causes isotropic
modifications of the original shape.

We now focus on the anisotropic component of A, which can be obtained as follows:

Aaniso = (A−Aiso)ij =

(
−1

2(Ψ11 −Ψ22) −Ψ12

−Ψ12
1
2(Ψ11 −Ψ22) .

)
(3.29)

Aaniso is therefore an antisymmetric matrix that has null trace, and is the opposite matrix
of what is called the shear matrix. It describes an anisotropic transformation that has a
privileged direction, defined by the largest eigenvalue. The gradient of the gravitational
force, or the gravitational tidal field projection, can be measured and this allows to model
the distortions seen in background sources. In particular, the differential deflection of light
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bundles causes the shape distortion of extended sources. We can define the shear pseudovector
γ = (γ1, γ2) on the LP, where the γ1 and γ2 components are expressed as follows:

γ1 =
1

2
(Ψ11 −Ψ22) , (3.30)

γ2 = Ψ12 = Ψ21 . (3.31)

Given that the eigenvalues of the shear matrix are ±
√
γ21 + γ22 = ±γ, it is feasible to rotate

the coordinates by an angle ϕ in a way that maintains the following expression:(
γ1 γ2
γ2 −γ1

)
= γ

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)
. (3.32)

From Eqs. (3.29) and (3.28), the A matrix can be parametrized in terms of convergence, κ,
and shear, γ = γ1 +iγ2, so we express the deformation matrix as follows:

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
= (1− κ)

(
1 0
0 1

)
− γ

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)
. (3.33)

The eigenvalues of A are λ± = 1−κ±γ, with λ+ ≥ λ−. We observe from Eq. (3.33) that the
image distortions are minimal in the regime where |κ| ≪ 1 and |γ| ≪ 1. The weak lensing
(WL) regime is the name we give to this limiting case.

In addition, as a consequence of Liouville’s theorem6, lensing conserves the surface bright-
ness of background sources. Consequently, lensed images are magnified; this process is mea-
sured by the magnification factor, µ, which can be written as:

µ =
δΩI

δΩS
=

1

detA
=

1

(1− κ)2 − γ2
, (3.34)

where detA is the determinant of A and δΩI and δΩS are the lensed and unlensed image
solid angles, respectively.

3.3.3 Weak-lensing signal from observed ellipticity

As it was previously mentioned, WL occurs more frequently than strong lensing. This is
simply due to statistical reasons, as the occurrence of strong lensing necessitates the (un-
likely) alignment of the source and lens along the line of sight (Hattori et al. 1999). On the
other hand, the WL phenomenon results in less pronounced effects and can only be detected
statistically over a large number of galaxies. It is extensively used in cosmology to map the
LSS of the Universe (Kilbinger 2015b) and plays a critical role in the estimation of galaxy
cluster masses and density of vast regions (Umetsu 2020), which is an important requirement
for carrying out cosmological analyses based on these statistical features (Allen et al. 2011).

Nevertheless, detecting the subtle image distortions caused by weak lensing (WL) is chal-
lenging due to shape measurement noise, the isotropic smearing component of the point
spread function (PSF), and the impact of instrumental PSF anisotropy. A method to accu-
rately extract the lensing signal from noisy images of source galaxies was first proposed by
Kaiser et al. (1995). Over the following few decades, this method has been improved and
extended (see, e.g., Kuijken 1999; Bridle et al. 2002; Heymans et al. 2006; Refregier et al.
2012; Mandelbaum et al. 2018). This method is based on the quadrupole moments, Qij with

6This theorem states that in an ensemble of many identical states with distinct initial circumstances, the
density of states remains constant along all trajectories in phase space.
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i, j = 1, 2, of the source brightness distribution, I(θ), which are expressed as (Kaiser et al.
1995):

Qij =

∫
d2θ qI [I(θ)]∆θi∆θj∫

d2θ qI [I(θ)]
, (3.35)

where qI [I(θ)] is a weight depending on the brightness (Bartelmann & Schneider 2001), and
∆θi = θi − θi is the offset from the centroid of the image. We can express the complex
ellipticity, e = e1 + ie2, as

e =
Q11 −Q22 + 2iQ12

Q11 +Q22
. (3.36)

It allows us to calculate es, the intrinsic source ellipticity, as

es =
e− 2g + e∗g2

1 + |g|2 − 2ℜ(e∗g)
, (3.37)

where the complex conjugate of e is e∗, and the reduced shear is g = γ/(1 − κ). E(es), the
es expectation value, is null since e is invariant under π rotations. Eq. (3.37) in this scenario
becomes (Schneider & Seitz 1995)∑

n

wn
en − δg

1−ℜ(e∗nδg)
= 0 , (3.38)

where en and wn are the image ellipticity and the statistical weight of the n-th object,
respectively. δg is the complex distortion and it is expressed as:

δg =
2g

1 + |g|2
. (3.39)

In the weak lensing regime, that is |κ|, |γ| ≪ 1, Eq. (3.37) reduces to es ≃ e−2g. Consequently,
the observed decreased shear in the WL regime can be represented as follows, assuming
randomly oriented sources:

⟨g⟩ ≃ ⟨e⟩
2
, (3.40)

where the average of the source ensemble’s observed ellipticities is denoted by ⟨e⟩. With N
being the number of sources and σ being the source ellipticity dispersion, which is dominated
by the intrinsic shape noise, the statistical uncertainty on ⟨g⟩ reduces as ∝ σ/

√
N . The

observed decreased shear, gob, is typically stated as a function of the real reduced shear, gtr

(Heymans et al. 2006; Massey et al. 2007; Mandelbaum et al. 2014), in order to account for
biases produced by observational and instrumental effects

gobi = (1 +mi) g
tr
i + ci (i = 1, 2) , (3.41)

where estimates for mi and ci are derived from simulation and observational samples of
galaxies.

3.3.4 Tangential and cross shear

From Eq. (3.40), we deduce that observed ellipticities can be used to infer shear in the WL
regime. We also note that the shear components γ1 and γ2, introduced in Sect. 3.3.2, rely on
the chosen coordinate frame. In order to identify coordinate-independent shear components
with respect to a specified reference point, we define the polar coordinate frame (ϑ, φ) centered
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on θc, such that θ = (ϑ cosφ, ϑ sinφ) + θc. We can express the convergence averaged within
and along a circle of radius ϑ and center θc, κ(ϑ) and κ(ϑ), as:

κ(ϑ) =
2

ϑ2

∫ ϑ

0
dϑ′ ϑ′κ(ϑ′) =

Σ(ϑ)

Σcr
, (3.42)

κ(ϑ) =

∮
dφ

2π
κ(ϑ, φ) =

Σ(ϑ)

Σcr
, (3.43)

where Σ(ϑ) is the surface mass density averaged within a circle with radius ϑ, Σ(ϑ) is the
surface mass density averaged along a circle with radius ϑ, and Σcr the surface critical density,
as defined in Eq. (3.22).

Next, we present the cross shear component, denoted as γ×, which is a 45◦ rotation, and
the tangential shear, γ+ or γt. Their expressions are the following:

γ+(θ) = −γ1(θ) cos(2φ)− γ2(θ) sin(2φ) , (3.44)

γ×(θ) = +γ1(θ) sin(2φ)− γ2(θ) cos(2φ) . (3.45)

From these equations, we find (Kaiser 1995):

γ+(ϑ) =

∮
dφ

2π
γ+(ϑ, φ) = κ(ϑ)− κ(ϑ) =

∆Σ(ϑ)

Σcr
, (3.46)

γ×(ϑ) =

∮
dφ

2π
γ×(ϑ, φ) = 0 , (3.47)

where ∆Σ(ϑ), the excess surface mass density (ESMD), is written as follows (Miralda-Escude
& Babul 1995):

∆Σ(ϑ) = Σ(ϑ)− Σ(ϑ) . (3.48)

We see that γ×, which is predicted to be consistent with zero, offers a helpful null test for
WL measurements based on Eq. (3.47). Using a circle with radius ϑ and center θc, g+(ϑ),
we can calculate the average reduced tangential shear as follows:

g+(ϑ) =

∮
dφ

2π
g+(ϑ, φ) =

∮
dφ

2π

γ+(ϑ, φ)

1− κ(ϑ, φ)
. (3.49)

Given an almost circular symmetry in the projected mass distribution, the reduced tangential
shear can be stated as follows:

g+(ϑ) ≃
γ+(ϑ)

1− κ(ϑ)
. (3.50)

This formalism is essential to represent the WL signal generated by galaxy clusters and voids,
where the object center is considered to be θc.

3.3.5 Weak lensing from multiple lenses

As we have seen, being the projection of a 3D potential, Eq. (3.23) can be interpreted as a
2D Poisson equation. By substituting the 3D Poisson equation and Eq. (3.19) into it, the
convergence can be expressed in terms of the matter overdensity (Davies et al. 2021b):

κ(θ, z) =
3H2

0Ωm

2c2

∫ zs

0

DlsDl

Ds

δ (Dlθ, z)

a (z)
dz. (3.51)

This shows that the observed WL convergence is equivalent to the projected density along
the line of sight, weighted by DlsDl/Ds, which is the lensing efficiency factor.
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Eq. (3.51) describes the WL effect of a single lens. However, light encounters gravita-
tional lensing from the full mass distribution along its path as it moves from the source to
the observer. On cosmological scales, light rays traverse numerous overdense or underdense
extended regions at various locations. As a result, the thin lens approximation is not ap-
plicable. The transverse deflection caused by an infinitely thin lens plane still follows the
equations mentioned earlier. However, the path of the rays must be fully integrated along
their trajectory. For a given source plane at comoving distance χs, the source plane posi-
tion of a ray, initially observed at position θ, is thus represented by the continuous Volterra
integral equation in implicit form (Jain & Seljak 1997):

β (θ, χs) = θ − 2

c2

∫ χs

0
dχ
χs − χ

χsχ
∇βϕ(β(θ, χ), χ) . (3.52)

To first order, we can assess the gravitational potential along an unaffected trajectory, al-
lowing us to use the so-called Born approximation (Bartelmann & Schneider 2001; Seitz &
Schneider 1995) that is common in many diffusion problems of physics:

β (θ, χs) = θ − 2

c2

∫ χs

0
dχ
χs − χ

χsχ
∇θϕ(θ, χ) . (3.53)

A noteworthy feature of the Born approximation is its ability to simplify the relationship
between β and α to an effective thin lens, mirroring Eq. (3.18). This allows for the definition of
an effective convergence, which represents the divergence of the effective (curl-free) deflection
field: 2κeff = ∇ ·αeff ·. When the approximation is invalid, the relationship between β and α
cannot be simplified to an effective potential alone, potentially leading to the generation of a
curl component. This implies that the magnification tensor loses its symmetry, necessitating
the inclusion of a rotation term ω and the emergence of so-called B-modes in the shear field.
In this broader context, the magnification tensor needs to be reformulated (Gouin et al. 2019).

Aij(θ) =

(
1− κ− γ1 −γ2 − ω
−γ2 + ω 1− κ+ γ1

)
. (3.54)

Now, we introduce the lensing kernel W (z), a weight function of the multiple lenses that
has the form:

W (z) =
3H2

0Ωm0

2c

1 + z

H(z)
Dl(z)

∫ zs

z

dn

dzs
dzs

Dls (zs, z)

Ds (zs)
, (3.55)

where Ωm is the fractional total matter density at present, D is the angular diameter distance
in comoving units, H(z) is the Hubble parameter, and H0 is its present-day value, while the
redshift distribution of sources is represented by dn/dzs (Kilbinger 2015b). From this the
calculation for a single lens can be extended to several lenses as:

κ(θ) =

∫ zs

0
W (z)δρ (Dl(z)θ, z) dz =

∫ zs

0

dn(z)

dzs
κ(θ, z) dz . (3.56)

As can be seen from this equation the WL convergence represents the projected mass density
contrast weighted by a geometric factor, therefore positive and negative κ values correspond
to overdense and underdense regions along the line of sight (Davies et al. 2019b).

Lastly, computed the projected field convergence, if lenses are axially symmetric, we can
connect the radial tangential shear profile of an object, γt(rp), to its radial convergence profile,
κ(rp), using (see Umetsu 2020; Seitz & Schneider 1995, for a detailed description):

γt(rp) = κ̄(< rp)− κ(rp), (3.57)
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where rp is the 2D projected radius of the considered object on the sky plane and

κ̄(< rp) =
1

πr2p

∫ rp

0
2πr′pκ

(
r′p
)
dr′p (3.58)

is the average enclosed convergence within radius rp
7. Since the tangential shear is the

quantity directly measured by observations, it is fundamental in the studies of WL voids
and Eq. (3.57) is of key importance in this work. Like the convergence, the tangential shear
γt is positive when primarily overdense regions are encountered along the line of sight, and
negative instead when underdense regions are predominant (Boschetti et al. 2023).

Multiple-lenses approximation

The discrete version of the ray propagation Eq. (3.52) for a fiducial source plane corresponding
to the distance of the plane j + 1 reads (Gouin et al. 2019)

βj+1 = θ −
j∑

i=1

Di;j+1

Dj+1
αi
(
βi
)
, (3.59)

where αi is the deflection field in the lens plane i,Dj+1 is the angular diameter distance
between the observer and the plane j+1, and Di,j+1 is the angular diameter distance between
planes i and j + 1. In Figure 3.8 we show the trajectories of light rays, which originate from
undisturbed positions in a regular grid θ ≡ β, and undergo successive deflections as they
traverse from one plane to the next.

The actual execution of the summation described in Eq. (3.59) is computationally inten-
sive and memory-intensive because computing the source plane positions βj+1 necessitates
storing all previously computed positions up to j. For this reason, Hilbert et al. (2009) pro-
posed a different method where Eq. (3.59) can be reformulated as a recursion over just three
consecutive planes8:

βj+1 =

(
1− Dj

Dj+1

Dj−1;j+1

Dj−1;j

)
βj−1 +

Dj

Dj+1

Dj−1;j+1

Dj−1;j
βj − Dj;j+1

Dj
αj
(
βj
)
. (3.60)

Furthermore, apart from the comprehensive propagation of light rays, the source plane posi-
tions and related parameters (convergence κ, shear γ, and rotation ω) will be also determined
utilizing the Born approximation. This involves employing the discrete version of Eq. (3.53):

βj+1 = θ −
j∑

i=1

Di,j+1

Dj+1
αi(θ) . (3.61)

3.3.6 Weak-lensing in 2D voids

It is interesting to note that in an underdense line of sight or in a void, the deflection angle
with respect to the geodesic of the photon is in the opposite direction (outward) compared
to that of overdense regions of matter (inward). This is because lensing is a gravitational
effect, and as we have seen, it is the matter overdensity that curves the spacetime around
it, thereby determining the trajectory that light and other matter must follow. Voids are

7Notice that here and throughout this Thesis we use rp rather than θ to represent the 2D distance from
the void center.

8This recursion requires the introduction of an artificial β0 ≡ β1 = θ slice in the initial setup.
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Figure 3.8: A diagram illustrating the path of a light ray passing through a light cone segmented
into multiple discrete lens planes. The trajectory of the ray (depicted by the red line) is altered upon
encountering each thin lens plane, resulting in a deflection. The deflection field is established for each
plane and varies based on the angular position within that plane αj

(
βj
)
. Credits to: Gouin et al.

(2019)

large, underdense regions of the Universe defined by networks of clusters surrounding them,
so the deflection effect will be oriented towards these clusters. Additionally, the measured
magnitudes of astronomical objects also depend on the environment and the type of inho-
mogeneity along the line of sight, as well as the internal characteristics of the source. This
results in a (de-)magnification in underdense areas (see also Clarkson et al. 2012; Bolejko
& Ferreira 2012). The reversed behavior of various features in voids, such as the reversal
of signs regarding shear radial profiles and convergence values, is referred to as anti-lensing
(Bolejko et al. 2013).

The application of WL analyses to cosmic voids helps to alleviate the issue related to
the scarcity of luminous tracers necessary to identify 3D voids, as WL is sensitive to total
matter and thus allows us to detect voids within this domain. In the scientific literature, the
detection of WL around 2D voids is typically approached in two distinct manners:

• Tunnels WL: by measuring the tangential shear γt or the convergence κ, which char-
acterize the distortion of the shapes of background galaxies caused by the underdense
structures extending from the observer to the source. In this way one measures the pro-
jected profile of ultra-large structures, with sizes typically hundreds of Mpc (Higuchi
et al. 2013; Gruen et al. 2015; Davies et al. 2021b; Shimasue et al. 2024);

• Void lensing (VL): by measuring the ESMD, ∆Σ, which represents the projection of
the total matter contained within a thin lens situated somewhere between the observer
and the source. In this way one measures the projected profiles of voids with radii
≤ 50h−1 Mpc, where the thin lens approximation remains valid, as demonstrated in
Boschetti et al. (2023).

The differences between the two approaches are fundamental. In tunnel WL we have less 3D
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information and we focus on measuring the weak lensing signature of ultra-large underdense
structures that intersect the line-of-sight, resulting in regions of underdensity. As mentioned
in Sect. 3.1, these structures are known as troughs or tunnel voids, and their relation to
a generic definition of voids with predictable void abundance is current object of research.
We have also already presented, in Sect. 3.1.1, the importance of tangential shear analysis
in choosing the definition of our 2D voids and in particular for what purpose this choice is
made. In fact, as demonstrated in Cautun et al. (2018), the tangential shear by tunnels has
the largest constraining power for f(R) gravity.

On the contrary in the second approach, 3D information is partially recovered and the
objective is to extract dynamic and morphological information about the conventional def-
inition of voids. As pointed out again in Cautun et al. (2018), VL does not maximize the
tangential shear signal and it is therefore more difficult to discriminate between different
gravity models. Therefore, in this work we followed the former approach.

3.3.7 Weak lensing in f(R) gravity

As already specified, the main way to connect the WL signal measured from voids to gravity
theory is through the lensing potential in Eq.(3.19). Here, in fact, Φ is the gravitational
potential that determines photon geodesics by coupling to photons (not matter). To analyze
correcly a MG scenario, it is essential to differentiate between various types of potentials,
since in some models the fifth force exclusively impacts massive matter particles, while in
others it directly influences photon geodesics. Moreover, WL is valuable for testing gravity
as it detects the sum of newtonian potentials, which are typically unequal in MG scenarios.
Essentially, by observing the distortion in the shapes of distant galaxies as their light traverses
voids, we directly probe the cleanest (less affected by baryonic complications), simplest (with
fewer nonlinearities), and most sensitive environment for testing MG (Boschetti et al. 2023).
However, this implies that secondary effects and corrections must be considered in the MG
models, which greatly complicate the description of this potential making degenerate the
constraints derivable from simulated observables (Baker et al. 2018). In this work, we consider
the f(R) models, where the difference between them and GR is not attributable to effects on
the lensing potential but only to the distribution of matter on LSS.

In the newtonian gauge9, the perturbed metric can be written as:

ds2 = (1 + 2Ψ)dt2 − a2(t)(1− 2Φ)dxi dxj , (3.62)

where Φ and Ψ are the Einstein-frame metric gravitational potentials. In standard GR model
we can read the two potentials as:

Φ = Ψ = ΨN , (3.63)

where the Newton potential ΨN can be written in terms of the Poisson equation. In the f(R)
modified gravity models the two modified Poisson equations for the metric potentials result
from the variation of the Einstein equations:

∇2Φ

a2
= −c

2∇2

2a2
δfR + 4πGδρ ,

∇2Ψ

a2
=
c2∇2

2a2
δfR + 4πGδρ ,

which, in terms of the Newton potential, are:

Φ = ΨN − c2

2
δfR, Ψ = ΨN +

c2

2
δfR . (3.64)

9Newtonian gauge is a perturbed form of the FLRW line element.
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At this point we can introduce the lensing potential Φl as:

Φl =
Φ+Ψ

2
. (3.65)

This indicates that the two additional terms in MG models cancel out, leaving the lensing
potential in f(R) gravity unchanged from its ordinary GR form (Hu & Sawicki 2007; Giocoli
et al. 2018a). From this, we can redefine the convergence κ in Eq. (3.56) in the conventional
way as:

κ(θ) =

∫ ∞

0
dw

w

c2
g(w)∇2Φl(w,wθ) , (3.66)

where w represents the comoving radial distance and g(w) the survey weight function.
Considering the successful measurements of the WL signal from cosmic voids identified

in real galaxy surveys (e.g., Gruen et al. 2015; Sánchez et al. 2017), we can conclude that
the WL phenomenon represents a promising method for assessing the matter distribution
within and surrounding voids, and constitutes a tool potentially important for investigating
modifications of gravity (Barreira et al. 2015; Cai et al. 2015). In the next chapter we will
focus on the development of an efficient pipeline to carry on this kind of studies.
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Chapter 4

2D void finder

As we outlined in Sect. 3.1, the first and fundamental step necessary for voids cosmological
studies is their identification. In particular, in Sect. 3.1.1, we introduced the importance of
2D voids for WL analyses and the main identification methods, emphasizing their merits and
shortcomings related to galaxy shape noise and optimization of S/N . In this Thesis work
we develop a finding algorithm for 2D voids in WL maps, which is based on density and
geometrical criteria and is targeted for measuring voids’ tangential shear profiles. To do this,
we take into consideration the conclusions of Cautun et al. (2018) and Davies et al. (2021b),
overcoming the problems of identifying centers discussed in the second work. We started
from the algorithm of a pre-existing peak finder called pyTwinPeaks – already successfully
applied for WL studies of galaxy clusters (Giocoli et al. 2018b) – extending it to include a
new code for the identification of tunnel voids.

Our 2D void finder is written in Python language and implemented with Python libraries
for cosmological calculations. It allows us to reconstruct the most underdense regions in the
projected convergence field of a chosen redshift range, providing information about center,
size and shape of projected voids, without exploiting the 3D positions of galaxies (or, more
generally, mass tracers). The 2D void finder can be divided in four main steps: detection of
underdense regions (Sect. 4.1), identification of void centeres (Sect. 4.2), assignment of void
radii (Sect. 4.3) and cleaning of the sample (Sect. 4.4). These steps are schematized in Figure
4.1 and will be presented in detail in the following sections. The code will be make public
and released to the scientific community in the near future.

Before delving into the technical description of the algorithm steps, we briefly overview
the preparation of the input data. In fact, the finder requires in input a FITS1 file containing
the WL convergence field projected on a plane and weighted for the lensing kernel. Such a
file must be prepared so that it has a header including the field of view (FOV) data of the
map in degrees, the number of pixels on one side of the map2 and the redshift of the sources.
Before moving to the void identification pipeline, the finder executes a preliminary routine
adding Gaussian shape noise – which depends on the intrinsic ellipticity distribution of the
background galaxies – to the convergence map in order to reproduce the galaxy shape noise.
Then we apply an additional Gaussian filter to smooth and mitigate the impact of galaxy
shape noise on the measured void statistics, discerning between voids produced by physical
signals in the WL maps and spurious voids resulting from noise. This procedure is the same
used in Davies et al. (2021b) and it has been shown to maximize the S/N obtained from the
tangential shear of the 2D voids. At the end of this procedure the algorithm derives the S/N

1It is the acronym of Flexible Image Transport System, a format defined in Hanisch et al. (2001).
2Here we make use square maps, but for future applications to real data the maps may have more complex

geometries.
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value of the smoothed κ map (SNR map hereafter) by dividing the smoothed convergence
map by the noise associated with the filter used. This preliminary pipeline is included in the
algorithm and can be tuned by the user. For example, it is possible not to add the galaxy
shape noise and not to smooth the maps. Moreover, by changing the input parameters like
the filter size or the ellipticity distribution of background galaxies, it is possible to study
various characteristics of the LSS in WL maps, also switching between the identification of
overdense and underdense regions. The algorithm presented in this Thesis work represents
therefore a versatile 2D void finder, which is designed to be adaptable for specific case studies.

Figure 4.1: Diagram showing the four main steps of the 2D void finder algorithm that allows the
identification of voids from a WL convergence map.

4.1 Connected regions detection

Once the preliminary routine has been completed according to the chosen guidelines, the
finder algorithm proceeds with the detection of connected regions of pixels, which is the
pillar on which we based the search for WL voids. The pipeline provides a preliminary
assignment of pixel regions of interest. This step is crucial to evaluate all the threshold of
S/N desired in signal-to-noise (SNR) map and to determine the compromise between the
calculation time and the accuracy of the detection process. The idea behind this part of the
method is to exemplify the subsequent identification of the real 2D voids by analyzing the
information stratification of the underdense (or overdense in the case of peaks) regions in the
SNR map at different thresholds and simultaneously extract their topological features. The
main goal is to identify the 2D underdensities with the deepest and cleanest tangential shear
signal. Therefore, it is of key importance the selection of the S/N values to test: restricting
the analysis to physically significant thresholds in our maps implies a robust assignment of
void centers and radii.

4.1.1 Peaks/Valleys reconstruction

The algorithm is designed to work indiscriminately on the search for overdensity or under-
density zones, performing the same procedures within the same conditional code structure.
The object of the search, in fact, depends exclusively on an input variable chosen by the user
that discriminates between the two possibilities. In the general setting of our 2D void finder,
our choice falls on valleys. The valleys reconstruction phase operates in the following way:
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Figure 4.2: Two types of connectivity between adjacent pixels through which the connected region
is determined. The one on the right is chosen for the finding algorithm. Credits to: https://blog.
csdn.net/pursuit_zhangyu/article/details/94209489

1. It creates a mask to be applied on the SNR map to obtain all pixels in the map that
have S/N below the selected threshold.

2. It reconstructs the valleys by performing connected component analysis, that is, the
pixels that survived the application of the mask. Starting with a pixel, the type of
expansion (i.e. connectivity) used to define the pixels belonging to the connected region
can follow two different patterns, as shown in Figure 4.2. In the first case, only the
pixels with side adjacent to the central one are considered connected; in the second
case, pixels that are adjacent by their corners to the reference pixel are also regarded
as connected. To expedite this process, the latter form of connectivity was selected
because it estimates the SNR value of a larger number of pixels simultaneously.

3. It constructs a total map as a sum of layers in which each layer contains a separate
connected region of pixels with S/N < (S/N)th. We present in Figure 4.3 two examples
of reconstructed map, showing in gray scale the masked pixels and with different colors
separate connected regions. If the chosen threshold is very high (S/N ≲ 0) many of the
pixels will satisfy the condition and will not be masked, resulting in a few very large
connected regions, i.e., an almost homogeneous field. The maximum counts of connected
regions occur for intermediate values of threshold (S/N ≲ −2) but, as can be seen in
the left image of Figure 4.3, the regions have very jagged and elongated shapes. When
the threshold is very low (S/N ≲ −4), like in the right image of Figure 4.3, very few
pixels will satisfy the condition while most of them will be masked, resulting in a few
very small but fairly circular connected regions, i.e., the areas that are the projection
of the most underdense lines of sight in the whole FOV.

4. From each connected region the code extracts 16 topological features, among which the
most relevant are: perimeter of the region, area, eccentricity, the coordinates (x, y)
of the centroid weighted by the value of the SNR3, coordinates of the pixel with the
minimum S/N value, etc. Since the extracted coordinates are in units of pixels4, they
are converted to arcminutes through the relation:

xarcmin =
(
xpix −

npix
2

)
· larcmin, (4.1)

3A centroid is a type centering based on the weighted average that relates to a geometric property, such
as area, rather than a physical property like weight or mass. As such, centroids pertain to the inherent
characteristics of abstract shapes rather than tangible objects. They serve as coordinates that define the
“center” of a shape. In this case it is obtained through the weighted average of the coordinates of the pixels
belonging to the area of the connected region, where the weight of each pixel depends on its S/N value.

4The algorithm by default centers the map in (0, 0) so each axis will range from −npix/2 to npix/2.
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Figure 4.3: Explanatory comparison of two maps (R.A.-Dec. coordinates) of connected regions
obtained using different thresholds. The normalized gray scale distinguishes overdense and underdense
regions, in darker and lighter colors respectively. On the left we show the connected regions with
S/N ≤ −2 and on the left those with S/N ≤ −4. Distinct connected regions are represented with
different colors.

where xpix is the coordinate in the SNR map in units of pixels, npix is the number of
pixels per side of the map, and larcmin = FOVarcminnpix is the measure in arcminutes of
the side of a pixel.

At this point, once the connected regions that are underdense with respect to a certain
threshold in the SNR map have been reconstructed, we take care of the overlapping cases. In
fact, we want to include the possibility of merging two or more local underdensities when these
result very close to each other. For this purpose, a preliminary radius is temporarily assumed
for each connected region, deduced from the extracted area A through the approximation of
that region as circular, i.e.:

Rpr =
√
A/π . (4.2)

We note that, despite the connected regions are mutually exclusive by construction, when
converting these regions into circles, their areas may indeed overlap. Therefore we impose
that regions whose distance is less than half the sum of the preliminary radii,

Dpr <
(Rpr,1 +Rpr,2)

2
, (4.3)

will undergo merging and become a single region of greater area. The way distance is calcu-
lated represents a substantial difference between peaks and valleys:

• for peaks, the distance is calculated between the pixel coordinates of the weighted
centroids of the respective regions,

• for valleys, the distance is calculated between the coordinates of the pixels with the
minimum S/N value of the respective regions.

This choice is the result of the requirement to maintain internal consistency with the second
step of the algorithm that we will see in Sect. 4.2.1 and is aimed at stabilizing the final
outcome.
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Figure 4.4: Graphical representation of the watershed technique in three frames. In the left-hand
frame, the surface to be segmented is shown. Basins surrounding the local minima of the surface
begin to flood as the water level rises (indicated by the dotted plane initially positioned below the
surface). When two basins converge near a ridge of the density surface, a dam is constructed (as
shown in the central frame). Eventually, the entire surface becomes flooded, resulting in a network
of dams that defines a segmented volume and outlines the corresponding cosmic web (shown in the
right-hand frame). Credits to: Platen et al. (2007).

For a given range of thresholds selected by the user, the algorithm repeats the steps just
described and produces a catalog of underdense regions. This is done to create a mapping of
the S/N field. The number of values to test inside the threshold range can also be changed,
determining the number of layers used to trace regions with the same limit in S/N . A large
number of test thresholds would improve the accuracy of the finding procedure, but at the
same time it would increase the computation time.

The key result, which serves as input for the next step, is the catalog of the properties
of each region connected to each threshold. In particular, in the case of void analysis, we
need to consider the area and the coordinates in arcminutes of the pixel with the minimum
S/N . Among the catalogs of various thresholds, it becomes particularly important to select
the one that has a good compromise between a very low threshold and a relevant number of
minima, thus connected regions. This is because we aim at having a statistically significant
number of underdensities, but at the same time a deep (and so uncontaminated) tangential
shear signal. Such a catalog contains the positions of local minima identified in the map and
will be used to discriminate the absolute minima.

4.2 Center identification

Once the catalog of the positions of the minima and the areas of each region, for each
threshold, is obtained, the algorithm uses this information to identify the absolute minima
over the entire WL convergence map. In this process, absolute minima are distinguished from
local minima, which are merely spurious fluctuations caused by noise. This step is the heart
of the algorithm as well as the most delicate, as it defines the final catalog of the centers of
our 2D voids, thereby significantly affecting the resulting statistics.

The process of 2D void center identification is based on a revisited version of a procedure
often used in 3D void finders such as VIDE (see Sect.3.1), called watershed (Platen et al.
2007). This term was chosen to recall the analogy to a landscape being inundated by rising
water levels. Imagine a surface resembling a landscape (shown in the first panel of Figure 4.4).
Initially, the surface is submerged at each minimum point. As the water level increases, more
and more of the landscape becomes submerged by the expanding basins. Eventually, these
basins converge at the ridges, corresponding to saddle points in the density (or SNR) field.
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The second panel in Figure 4.4 illustrates this intermediate stage, where the ridges delineate
the basin boundaries, enforced by high dams. The final outcome, as shown in the third
image in Figure 4.4, is a partitioning of the landscape into individual cells, separated by the
ridge dams. This procedure establishes a hierarchy of voids by identifying various basins and
ridges. Through this substructure partitioning, a parent void encompasses multiple subvoids.
Each void originates from a parent and may contain several child subvoids, organized into
different levels.

Our application of this technique consists of a similar procedure, adapted for the 2D
configuration. To identify the absolute minima, the code checks the persistence of the relative
minima on the results obtained with different thresholds. Starting from the lowest threshold,
the code checks if a minimum is also contained in the 2D void5 at the next higher threshold.
The procedure is also repeated for the subsequent thresholds, up to the limit set by the user.
If a minimum identified at the lowest threshold is also present at the subsequent thresholds,
then it is considered an absolute minimum. The result of this procedure can be visually
represented through a plot like the one in Figure 4.5, in order to help the users choose the
most suitable threshold range for their case. The final void catalog will be composed of
underdensities having as center a persistent minimum identified at the initial threshold (i.e.
lowest in the cycle), and as size the preliminary radius computed from the area of the region
identified with the final threshold (i.e. highest in the cycle).

The selection of the initial threshold of this cycle determines the limit for the identification
of void centers and so the “depth”6 of the center of the final 2D voids, which consequently
falls back on the amplitude of the tangential shear signal we will extract from these voids.
This choice must be balanced to achieve a statistically significant number of underdensities
and relevant amplitude of the final WL signal. The selection of the final threshold in the
cycle is important as well. In fact, if this threshold is too low (close to the initial threshold)
the absolute minima will coincide with the local one, and the final voids will result very small
and fragmented. If instead the final threshold is too high (close to the average value of the
map S/N = 0) the radius of the underdensities will be expanded to the point that many voids
will merge and the final catalog will be composed of few objects. It is therefore necessary
to choose wisely a stop threshold that has a good trade-off between the preservation of good
void statistics and not excessive merging.

4.2.1 Weighted centroids vs absolute minima

Let us now focus on the method selected for the identification of the void centers in the
procedure just described. We will explain now how the choice of using SNR map minima
rather than weighted centroids (see Sect. 4.1) as the center of the 2D voids solves an important
topological problem.

Albeit the centroid methodology relies on the weighting of the S/N values, in some
cases the center assigned with this technique may fall outside the connected region. In
fact, especially at high S/N values, the connected regions may show very elongated shapes.
Imagine, for example, the extreme case of an underdense region shaped as a half moon: the
centroid of this region would lie near the geometrical center, i.e. in a overdense zone. This
would negatively affect the final tangential shear profile, leading to a contamination of the
average signal extracted from the map.

Using the centroid in our center identification procedure would therefore cause a con-
tinuous shifting with respect to the SNR map minima. This would also impact the final

5These voids are considered to be circular and centered on the S/N minima, with a preliminary radius
assigned with Eq. 4.2.

6By this term we mean the degree of underdensity of a void.
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Figure 4.5: Graphical representation of all local minima and corresponding preliminary radii of each
threshold produced by the same map shown in Figure 4.3. Each void of a given threshold is represented
with the colored area of the same color, this color varies depending on the threshold as shown in legend.
We note that, near the map boundaries, the circular expansion of the void radii at very high threshold
is fictitious, as these underdensities are not really extending outside the map.
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number of 2D voids, since on the position of the void centers depends the overlap criterion
used to merge the underdensities. We note that the choice of using the centroids is useful in
the case the underdense regions are regular and isotropic. As pointed out by Davies et al.
(2021b), this technique has the advantage of minimizing the impact of the noise fluctuations
characterizing the connected regions at very low S/N values. On the other hand, they also
show that finders using as void centers the minima in the convergence map maximize the am-
plitude of the tangential shear extracted from these voids. The authors, however, underline
that in their analysis the underdensities centered on the absolute minima are also those that
are more prone to be generated by spurious fluctuations.

With our procedure, we address the latter problem and create a catalog of 2D voids
characterized by the positive aspects of both the centering methodologies. In fact, we use
as void centers the absolute minima in the S/N field, which leads to the optimal signal in
the shear profiles, but we face the problem of the noise contamination by analyzing the same
underdensities at different thresholds, to check for the persistence of a given center in higher
S/N regions. We validated the goodness of our technique by verifying that it leads to the
void tangential shear profiles that show, at the same time, the deepest signal and the smallest
associated uncertainties (computed from the scatter between the different profiles of voids in
the catalog).

4.3 Final radius assignment

The next step of the 2D void finder algorithm developed in this Thesis work is the assignment
of the final value of the radius to the voids identified through the previous steps. We want
our 2D voids to correspond to circles enclosing the exact S/N value selected by the user, also
adapting the procedure to the characteristics of the convergence map (e.g. spatial resolution,
edge limits).

The procedure we apply to accomplish this task can be summarized in the following four
points:

1. Conversion to Pixels: The algorithm starts by converting from arcminutes to pixels
the coordinates of the centers of the previously identified 2D voids, through the inverse
formula of Eq.(4.4). This is done in order to make our pipeline work with the informa-
tion stored in the minimum unity of the SNR map, i.e. to make it suited to any spatial
resolution of the map.

2. Grid initialization: For all voids in the catalog, the code initializes a grid of size 3× 3
pixels, with the central pixel corresponding to the void center, i.e. the point with
minimum S/N value. These pixels are selected by applying a circular mask7 around
the void center. Since we assume that the individual S/N values are associated with
the center of the pixels, we make the circular mask have a radius equal to

rmask =
lgrid
2

− lpix
2
, (4.4)

where lgrid is the side of the grid and lpix is the side of a pixel, both in units of pixels.
The usage of the mask is performed to speed up the computational time and works by
selecting all those pixels within it: any pixel contained in or even crossed by the circle
defining the mask is considered part of the selected region.

7The choice of a circular mask is motivated by the initial assumption to model 3D voids as spheres, or
equivalently circles in 2D.
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Figure 4.6: Representation of two steps of the pixel grid expansion on the underlying SNR map of
convergence. The left image shows the first step of the procedure (with a 3× 3 grid) while the right
panel shows the fourth step (three rows of pixels added to the initial grid). The blue circle represents
the mask and the red hatched squares are the pixels included by the mask and considered to compute
the average S/N value.

3. Grid Expansion: At this point the average S/N of all pixels belonging to the circular
mask is calculated. This value must be lower than the stop threshold set by the user
(i.e. the one chosen to determine the final void radius), so we proceed by expanding the
grid. We add to the previous grid a new row of pixel to each side, so the corresponding
circular mask will have a radius increased by one pixel. Then, we compute the new
averaged S/N value and we repeat the procedure until this value surpasses the stop
threshold. We illustrate this process in Figure 4.6.

4. Radius interpolation: The algorithm considers the radii of the circles computed before
and after surpassing the stop threshold, and performs the interpolation between these
values to find the radius corresponding exactly to the selected threshold. This is done
because the expansion of the grid in pixels (and consequently the radius of the circular
mask) is discrete and determined by the pixel size. Finally, the radii of each void is
converted back in arcminutes via Eq.(4.4).

Regarding the treatment of those voids whose centers are near the edges of the SNR map,
one possible strategy is to remove these objects from the final catalog. However, to avoid
lowering the statistics of voids, we treat them by masking those cells of the grid that fall
beyond the boundaries. In particular, a value Not a Number (NaN) is assigned to each pixel
outside the map but belonging to the grid. In this way, we formally extend the original map
adding pixels with values that do not impact the procedure of S/N value averaging.

4.4 Void cleaning

The very last step of the finder algorithm concerns the cleaning of the final sample of voids.
We note that the first steps of this algorithm were already oriented to maximize the signal and
reduce the impact of the noise. Now that we have assigned a final radius to each underdensity
the only remaining prescription to follow is the removal of the overlapping voids. Indeed, we
cannot consider independent the WL signals extracted from two or more underdensities that
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Figure 4.7: Representation of 2D voids extracted from a SNR map, before and after the cleaning
procedure. The red circles represent the extent of our voids centered on the absolute minima (black
dots). After the cleaning (right panel), the voids that have greater degree of overlapping are removed.
We highlight that, in a complex configuration as the one displayed in the upper left corner, only one
is removed.

are overlapping. Since a first overleap check was already performed during the previous steps
this procedure is expected to have a small impact on the final catalog of voids.

This final cleaning relies solely on the positions and the sizes of the voids, and can be
divided in three main steps:

1. We sort the identified 2D voids in descending order according to the size. Then, for
each void, we compute the distance from its center to that of all other voids.

2. Starting from the first void in the list (the largest), we check if the distances from the
other centers meet one of these two conditions:

• The distance between the centers is less than or equal to 75% of the sum of the
two radii: Dcentres ≤ 75% ·(r1+r2). Here r1 represents the radius of the considered
void and r2 the radius of one of the other voids in the list.

• A void is be completely contained in another void, i.e. void-in-void scenario.

3. In case that at least one of these conditions is met the void smaller in size is removed,
updating accordingly the list of voids.

The procedure is then repeated from the first step, moving to the following void in the
list. This kind of approach imposes the preservation of the largest underdensities that, in
principle, are those with the stronger signal. Moreover, the choice of using an updated list of
voids ordered according to their size allows us to avoid unnecessary removal of underdensities.
In fact, as also represented in Figure 4.7, in case of three overlapping voids in a row, with
sizes progressively smaller, only the central one is removed, keeping the largest and smallest
of the three, which finally result non overlapping.

The final output of this finding algorithm is an ASCII8 file composed of three columns.
Each row contains the information relative to one void: the X and Y positions of the void
center, and the void radius, all of them in units of arcminutes. Additional information,

8ASCII means “American Standard Code for Information Interchange” and represents the most common
character encoding format for text data in computers.
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e.g. perimeter, area, eccentricity of the connected regions and other characteristics of the
underdensities found at different thresholds, is stored in separate files.
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Chapter 5

Simulated Weak-lensing maps

As we have seen in Sect. 1.5.3, employing N -body simulations is a key strategy for predicting
the gravitational interactions among cosmic objects. These simulations allow us to reproduce
the evolution of density perturbations and to model the formation of cosmic structures, even
in the non-linear regime, thereby testing different cosmological scenarios. In this chapter,
we first present the simulations used in this Thesis work (Sect. 5.1) and then the technique
used to extract DM halo catalogs (Sect. 5.2). Eventually, we briefly describe the ray-tracing
process used to create light-cones, which are then employed to build WL convergence maps
(Sect. 5.3). These maps will be the inputs for the 2D void finder we developed (see Chapter
4) and will be used to predict the amplitude of the WL signal from cosmic voids in different
cosmological models.

5.1 DUSTGRAIN-pathfinder simulations

In our analysis, we utilize projected matter distributions and halo catalogs extracted from
a suite of cosmological DM-only N -body simulations known as DUSTGRAIN. The DUST-

GRAIN (Dark Universe Simulations to Test GRAvity In the presence of Neutrinos) is an
ongoing project aimed at generating extensive and detailed mocks useful for analyses of
galaxy clustering, weak lensing, and redshift-space distortions within cosmological models
characterized by deviations from standard GR and featuring a significant fraction of cosmic
matter density in the form of massive neutrinos. Specifically, we focus on MG theories of
the f(R) class, as outlined in Sect. 2.1.3, with our analysis constrained to Eq. (2.8), thereby
leaving the model with only one free parameter: fR0. These simulations are tailored to in-
vestigate the degeneracies between f(R) gravity models and massive neutrinos. They have
been recently employed in various studies aimed at devising methods to disentangle these
cosmic degeneracies, exploiting for example the WL phenomenon (Giocoli et al. 2018a; Peel
et al. 2018), clustering statistics (Garćıa-Farieta et al. 2020), the abundance of massive halos
(Hagstotz et al. 2019a) and cosmic voids (Contarini et al. 2021), analysis of the large-scale
velocity field (Hagstotz et al. 2019b), and exploration of machine learning techniques (Merten
et al. 2019).

As currently widely acknowledged (Baldi et al. 2014; He 2013; Motohashi et al. 2013;
Wright et al. 2017), MG theories like f(R) gravity – in the form proposed by Hu & Sawicki
(2007) – are highly degenerate with the influences of massive neutrinos on structure forma-
tion.This presents significant challenges for ongoing and future large-scale galaxy surveys in
developing robust methodologies to distinguish between these two phenomena. Specifically,
conventional statistical analyses such as the matter auto-power spectrum, lensing convergence
power spectrum, and halo mass function may exhibit minimal distinctions from their standard
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ΛCDM predictions for certain combinations of the f(R) gravity parameter fR0 and the total
neutrino mass Mν ≡ Σmν,i (see Baldi et al. 2014; Peel et al. 2018), establishing a “maximum
degeneracy” relationship between the two models. To properly explore the parameter space
in which this kind of “maximum degeneracy” relation is expected, a suite of smaller-scale and
lower-resolution N -body simulations, called the DUSTGRAIN-pathfinder was run, to (at least
coarsely) sample the {f(R),Mν} parameter space. At now, the pathfinder runs already offer
a substantial amount of valuable simulated data and novel informational content, warranting
a thorough analysis.

Technically, the DUSTGRAIN-pathfinder runs are cosmological collisionless simulations
following the evolution of an ensemble of 2 · 7683 particles of DM particles within a pe-
riodic cosmological box of 750 h−1Mpc on a side, under the effect of a gravitational in-
teraction determined by Eq. 2.4. The reference standard cosmology ΛCDM simulation is
characterized by GR and Mν = 0 eV, CDM particles with mass Mp

cdm = 8.1 × 1010h−1M⊙,
and gravitational softening εg = 25h−1kpc, approximately corresponding to 1/40 of the
mean particle separation (MPS). The cosmological parameters assumed in these simula-
tions are consistent with the Planck2015 constraints (see Planck Collaboration et al. 2016b),
i.e. Ωm = Ωcdm + Ωb + Ων = 0.31345, ΩΛ = 0.68655, H0 = 67.31 km s−1 Mpc−1,
As = 2.199 × 10−9, ns = 0.9658, which give for the ΛCDM at z = 0 a root-mean-square
of the linear density fluctuation smoothed on a scale of 8 h−1 Mpc equal to σ8 = 0.842. The
remaining simulations aim at explore the {f(R),Mν} parameter space. The parameter |fR0|
varies within the range

[
10−6, 10−4

]
, while Mν ranges from [0, 0.3] eV, giving in total 20

different combinations of these parameters.
The DUSTGRAIN simulations have been run with MG-Gadget, an updated version of

GADGET2 (Springel 2005) that incorporates f(R) gravity models and presented by Puchwein
et al. (2013). This code incorporates the MG additional force and the Chameleon screening
mechanism (see Sect. 2.1.3). This mechanism is distinctive to f(R) gravity and is responsible
for solving the nonlinear Poisson-like equation for the fR scalar degree of freedom

∇2fR =
1

3
(δR− 8πGδρ) , (5.1)

through an iterative scheme known as Newton-Gauss-Seidel, applied to the native gravita-
tional tree of GADGET, which is exploited as an adaptive mesh. TheMG-Gadget code has been
extensively tested (see e.g. the MG code comparison project described in Winther et al. 2015)
and utilized for diverse purposes, including extensive collisionless cosmological simulations
on large scales (Baldi & Villaescusa-Navarro 2018; Arnold et al. 2019) and hydrodynamical
simulations (e.g. Roncarelli et al. 2018).

In this work, we used the simulation results produced in (Giocoli et al. 2018a) where,
following the approach already adopted in Baldi et al. (2014), they have combined the MG-

Gadget solver with the particle-based implementation of massive neutrinos developed by Viel
et al. (2010). This is in order to incorporate massive neutrinos into the simulations as
an additional particle family, each with its own distinct initial transfer function and velocity
distribution. Consequently, both CDM and neutrino particles contribute to the density source
term for the evolution of scalar perturbations on the RHS of the Poisson equation (Eq. 5.1).

Initial conditions have been generated following the approach of Zennaro et al. (2018)
and Villaescusa-Navarro et al. (2018). This method involves creating two fully correlated
random realizations of the linear matter power spectrum for standard CDM particles and
massive neutrinos, based on their individual transfer functions, which are calculated by the
Boltzmann solver code CAMB (Lewis et al. 2000) at the starting redshift of the simulation
zi = 99. Additionally, the scale-dependent growth rate D+(zi, k) for the neutrino component
is computed to determine neutrino gravitational velocities accurately. Thermal neutrino
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Table 5.1: Summary of the main numerical and cosmological parameters of the subset of the DUSTGRAIN-
pathfinder simulations considered in this Thesis. Here, fR0 represents the MG parameter, Mν the neutrino
mass in eV, mp

cdm CDM particle mass, and Ωcdm and Ων the CDM and neutrino density parameters, respec-
tively.

Simulation Gravity fR0 Mν [eV] Ωcdm Ων mp
cdm [h−1 M⊙]

ΛCDM GR - 0 0.31345 0 8.1× 1010

fR4 f(R) −1× 10−4 0 0.31345 0 8.1× 1010

fR5 f(R) −1× 10−5 0 0.31345 0 8.1× 1010

fR6 f(R) −1× 10−6 0 0.31345 0 8.1× 1010

ΛCDM0.15 GR - 0.15 0.30987 0.00358 8.01× 1010

velocities are then added on top of the latter by random sampling the neutrino momentum
distribution at the starting redshift zi for the specific neutrino mass under consideration.

In this Thesis, we restrict the analysis to a subset of the DUSTGRAIN-pathfinder that
includes a standard ΛCDM simulation as a reference model, 3 pure f(R) runs (i.e. with
Mν = 0 eV) and a ΛCDM model with massive neutrinos of mass Mν = 0.15 eV, for a total
of 5 simulations. We summarize their main parameters in Table 5.1. We note that the value
of Ωm (that includes neutrinos) remains constant to facilitate the comparison of the density
power spectrum between cosmologies with and without neutrinos. This ensures that the peak
positions of the power spectra are identical and that the spectra match the long-wavelength
limit. For a more detailed overview of the DUSTGRAIN-pathfinder simulations, refer to
Giocoli et al. (2018a) and Hagstotz et al. (2019a). During the evolution of these simulations,
a sequence of comoving snapshots has been stored, each representing the specified comoving
volume of 7503h−3Mpc3 at a particular cosmological epoch. For all simulations, 34 snapshots
were stored for a range of redshifts that enable the construction of lensing light-cones up to
zs = 4, as described below.

5.2 The halo catalogs

For all simulations, we identified collapsed CDM structures in each comoving snapshot using
a Friends-of-Friends (FoF) algorithm (FoF, Davis et al. 1985) applied to the CDM particles.
We utilized a linking length λ = 0.16 × d, where d represents the MPS, and retained only
structures with more than 32 CDM particles.

Subsequently, we applied the SUBFIND algorithm (Springel et al. 2001) on top of the FoF
catalogues to identify gravitationally bound structures. This allows us to associate standard
quantities such as the virial mass, M200, and the virial radius, R200, to the main halo of each
FoF group. The computation of these quantities involved growing spheres of radius R around
the most-bound particle of each main halo, enclosing a total mass M , until the condition

M200 =
4

3
πR3

200 × 200× ρcrit (5.2)

is fulfilled for R = R200 and M =M200, where ρcrit ≡ 3H2/8πG is the critical density of the
Universe. This mass threshold corresponds to Mmin ≃ 2.59 × 1012 h−1M⊙ for the ΛCDM
case, while for the simulations containing also massive neutrinos we decided to follow the
approach of not linking them to the collapsed halos (Giocoli et al. 2018a). The selection
criteria have been carefully chosen to ensure a complete and sufficiently dense sample of DM
halos, essential for identifying a statistically significant number of cosmic voids. The impact
of this assumption has been examined by conducting the analysis with various low-mass
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Figure 5.1: Graphical representation of the DUSTGRAIN-pathfinder ΛCDM snapshot at z = 0.
The comoving box measures 750 h−1 Mpc on each side. We can note that the DM halos (yellow
circles, with their size indicative of the halo mass) result correctly placed in the densest regions of the
simulation, i.e. in the intersection points of the filaments DM particles (blue points).

selections. An example of the resulting catalog of DM particles and associated halos is shown
in Figure 5.1.

At the end, the DM halo catalogs extracted from the DUSTGRAIN-pathfinder ΛCDM
simulations are characterised by a MPS, of 8.7 h−1Mpc for z = 0 and 12.4 h−1Mpc for z = 2.
This MPS value is comparable to the expected one for the Euclid wide spectroscopic survey
(Laureijs et al. 2011; Amendola et al. 2018). This survey is indeed the reference point of
our analysis and is expected to cover approximately 15 000 deg2 of the sky, sampling over 50
million Hα galaxies.

5.3 Weak-lensing past light-cones

There are different methods available for extracting lensing light-cones from large cosmo-
logical N -body simulations. In recent literature we can find two main methodologies, also
used to investigate MG scenarios. The first involves post-processing reconstructions that rely
on slicing a series of comoving particle snapshots, as done, for instance, by Shirasaki et al.
(2017). The second entails simpler and quicker algorithms, which efficiently store only the
projected matter density within a designated FOV. This implies bypassing the need for the
flat-sky approximation, which depends on the size of the comoving box, but leads to the
creation of only one light-cone realization. Notable examples of such algorithms can be found
in the works of Barreira et al. (2017) and Arnold et al. (2019). For our current analysis of
the DUSTGRAIN-pathfinder, we opt for the former mentioned method. Specifically, we uti-
lize the post-processing approach, constructing past light-cones for each N -body simulation
through the MapSim routine (see Giocoli et al. 2014, for a detailed description).

In this method, particles from different snapshots are associated to distinct lens planes
based on their comoving distances from the observer and whether they fall within a specified
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Figure 5.2: Example of light-cone construction with MapSim from z = 0 to z = 2 for a ΛCDM
simulation with box size 250 h−1 Mpc. The dark shaded region represents the light cone, expanding
until its transverse comoving size matches that of the simulation box. Within each segment of the light
cone, the mass distribution is projected onto a lensing plane positioned at the center of the segment
(dashed line). The areas located above the light cone represent the simulation snapshots utilized to
construct each segment. Conversely, the regions below the light cone represent groups of segments
that have undergone the same randomization process. Credits to: Tessore et al. (2015)

aperture of the FOV. We use the particles stored in 21 different snapshots to construct
continuous past-light-cones from z = 0 to z = 4, with a square sky coverage of 5 deg by side,
so we have sky maps of 25 deg2. Due to the high time resolution of the stored snapshots,
we can construct 27 lens planes to represent the distribution of projected matter density. In
the MapSim algorithm, the observer is positioned at the apex of a pyramid, with its square
base located at the comoving distance corresponding to z = 4. For each cosmological model
we construct 256 different realizations of light-cone by randomising the various comoving
cosmological boxes through combinations of the following procedures:

• changing the sign of the cartesian coordinates;

• redefining the position of the observer;

• modifying the order of the axes in the coordinate system.

By construction, these variations maintain the clustering characteristics of the particle dis-
tribution in each simulation snapshot (Roncarelli et al. 2007). Furthermore, improvements
made to MapSim (Giocoli et al. 2017; Castro et al. 2018) allow us to save the respective
halo and sub-halo catalogs linked to a particular randomization of the past light-cone. Such
randomization is performed for each simulation box at different redshifts, belonging to the
range zobs < z < zs. After randomization, our light cones occupy approximately Vbox/3.

Figure 5.2 shows the schematic construction of a light-cone for a ΛCDM simulation. It
is evident that for lower redshifts a significant portion of the simulation box volume remains
unutilized. Employing randomization techniques such as rotation and translation of the
box provides a means to exploit also this volume, allowing the extraction of multiple light-
cones from a single simulation (Jain et al. 2000). In this approach, each light-cone ends up
encompassing a random portion of the simulation box.
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5.3.1 Multiplane rays-tracing

The MapSim pipeline enables the construction of lensing planes from various simulation
snapshots, saving for each plane l, on each pixel, with coordinate indices (i, j), the particle
surface mass density Σ:

Σl(i, j) =

∑
kmk

Al
, (5.3)

where
∑

kmk is the sum over all particle masses associated with the pixel and Al is the
comoving pixel area of the l-lens plane. Since gravitational lensing is sensitive to the projected
matter density distribution along the line-of-sight, we project all particles between two defined
comoving distances from the observer onto each lens plane; we consistently account for this
component in the simulations involving massive neutrinos.

Recalling the theoretical concepts expressed in Sect. 3.3.5, we create the convergence
map by weighting the lens planes by the lensing kernel (see Eq. 3.55) and assuming the Born
approximation (see Eq. 3.53 and Bartelmann & Schneider 2001 for a detailed description),
as usually done in the literature (Petri et al. 2016, 2017; Giocoli et al. 2017, 2018b; Castro
et al. 2018). In fact, according to Giocoli et al. (2016) and Castro et al. (2018), the Born
approximation provides an accurate estimate of the probability distribution function (PDF)
and the convergence power spectrum, even at small scales. Furthermore, in Schäfer et al.
(2012) it has been demonstrated through the analytical solution of a perturbative expansion
that the Born approximation is a enough accurate for WL down to extremely small scales
(l ≥ 104). For the sake of clarity, we show in Figure 5.3 the shape of the lensing kernel
function Dlens = (Dl,s ·Dl)/Ds. The simulations employed in our analysis are characterized
by a discretized form of this function, which depends on the number of planes that are actually
located between z = 0 (observer position) and z = 1 (source plane position).

Figure 5.3: Lensing kernel as a function of the redshift of the lens, considering a source positioned at
z = 1. We indicate with red dashed lines the maximum value of this function, reached in this case at
zl = 0.43.
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At the end, from the particle surface mass density Σl, we can derive the convergence map
κ at a specified source redshift zs as follows:

κ =
∑
l

Σl

Σcrit,l,s
, (5.4)

where l varies over the different lens planes with the lens redshift zl smaller than zs and
Σcrit,l,s represents the critical surface density at the lens plane zl for sources at redshift zs as
defined in Eq. (3.22). Figure 5.4 shows an example of the WL convergence map for zs = 1
within a past light-cone ranging from z = 0 to z = 1. Each convergence map is constructed
with a square aperture of 300 arcmin on each side and is resolved with 2048 × 2048 pixels,
providing an angular resolution of approximately 9 arcmin per pixel. The origin of each map
coordinate system (R.A., Dec.) is positioned at the center such that each side spans from
−150 to +150 arcmin.

Figure 5.4: Example of WL convergence map for zs = 1 within the FOV of 5 × 5 deg2 aperture.
This map represents the basis of our past light-cone pyramid. The color scale of the underlying map
corresponds to the convergence value associated with each pixel.
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Chapter 6

Results

As we discussed in chapter 2 MG models constitute a compelling alternative to the standard
ΛCDM cosmological framework, and among them f(R) models represent one of the most
studied (see Sect. 2.1.3). On large cosmological scales MG models lead to an enhancement in
the evolution of density perturbations. This effect, however, can in principle be counterbal-
anced by the presence of massive neutrinos, as they prevent the growth of cosmic structures
thanks to their free-streaming effect (see Sect. 2.1.4). In fact, the range of the fifth force in
f(R) models falls within the same order of magnitude as the free-streaming scale of neutrinos.
This distinctive feature makes MG models particularly interesting for cosmological studies,
yet their constraints from observations remain challenging. This Thesis aims to leverage the
lensing of cosmic voids as a novel method to detect deviations caused by MG from scenarios
characterized by GR. The choice of this probe is due to a twofold reason. First, WL is sensi-
tive to the total gravitational potential, making it an effective tool for probing the underlying
theories of gravity and the mass of neutrinos, which influence the total matter distribution in
the Universe. Second, cosmic voids provide a unique environment to disentangle the effects of
these scenarios: MG effects are expected to be unaffected by screening mechanisms because
of void underdense interiors, while massive neutrinos effects are expected to be mitigated
given that the void spatial scales are comparable with the free-streaming length.

In this chapter we focus therefore on the study of alternative cosmological scenarios by
using the WL signal extracted from 2D voids. We will show in particular how 2D voids
extracted with the methodology presented in Chapter 4 are ideal to maximize the tangential
shear signal from underdensities, as we have seen in Sects. 3.1.1 and 3.3.6, and so to highlight
the differences between various cosmological scenarios (see Sect. 3.3.7). We will carry on
our analysis using 2D voids identified in the SNR maps extracted from mock light-cones in
N -body simulations (see Sect. 5, in particular 5.3), with a keen eye on the future applications
of this methodology to real data. This chapter is organized as follows.

In Sect. 6.1, we showcase the void catalogs extracted from the simulations through the
application of the 2D finder algorithm we developed in this work. Subsequently, we analyze
the VSF (Sect. 6.1.1) and tangential shear profiles (Sect. 6.1.2) measured from the 2D void
catalogs. In Sect. 6.2, we compare these statistics for the different cosmological models
considered, focusing also on a possible dependency of the WL on the 2D void size. In Sect.
??, we test the usage of a popular 3D void density profile parametrization to fit our tangential
shear profiles. Here, we also present a new parametric formula designed to fit directly the
shear profiles of 2D voids. Finally, in Sect. 6.4, we carry out the Bayesian analysis of our data
modelling the tangential shear profiles in different cosmologies through the new parametric
form.
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6.1 Void catalogs from WL maps

To generate the catalog of voids for which to extract the tangential shear profiles, we applied
the 2D void finder algorithm we developed (Chapter 4) to the WL convergence maps κ(θ)
produced from the DUSTGRAIN-pathfinder simulations through the multiplane ray-tracing
(Chapter 5). The convergence maps used in our analysis are 256 for each cosmological model
(five models in total, see Table 5.1). Each map is made of 2048 × 2048 pixels, covering a
squared area of 25 deg2 (5 deg per side).

The setting of the free parameters of the 2D void finder employed for this analysis is the
result of numerous tests, which were aimed at finding the best configuration to extract a deep
and clean (i.e. showing a low level of scatter) average shear profile. The technical settings
applied to our algorithm are as follows:

• On each pixel of the map κ(θ) we added galaxy shape noise n(θ) modeled as a Gaussian
random field with a top-hat filter with a size that corresponds to the pixel area Apix in
arcminutes. According to Lin & Kilbinger (2015); van Waerbeke (2000) its variance is
given by

σ2pix =
σ2ϵ
2

1

ngalApix
, (6.1)

where σ2ϵ =
〈
ϵ21
〉
+
〈
ϵ22
〉
is the variance of the intrinsic ellipticity distribution of the

source galaxies and ngal is the source galaxy number density. We assumed a Euclid -like
setup (Amendola et al. 2018), so σ2ϵ = 0.3 and ngal = 30 arcmin−1 at zs = 1. In this
way, we obtained a noised convergence map κn(θ) = κ(θ) + n(θ).

• We suppress the noise by smoothing via a filter represented by a Gaussian window
function

W (θ) =
1

πθG
exp

(
− θ2

θ2G

)
, (6.2)

with the choice of θG = 2.5 arcmin. In this way we obtained a noised and smoothed
convergence map κ2.5(θ) ≡ (κn ∗W ) (θ) =

∫
dθ′κn

(
θ − θ′)W (

θ′).
• We assumed that intrinsic ellipticities are uncorrelated between source galaxies. In this
way, the noise after the smoothing can be described as a Gaussian random field (Bond
& Efstathiou 1987). According to van Waerbeke (2000), its variance is related to the
number of galaxies contained in the filter as:

σ2noise =
σ2ϵ
2

1

2πngalθ
2
G

. (6.3)

In this way, we can relate the two variances of the Gaussian fields σ2noise = 2 · σ2pix and

derive the lensing S/N ratio (SNR) 1 of the map as κ2.5(θ)/σnoise.

• To identify the connected pixel regions resulting from the projection of underdense lines
of sight, we analyzed 11 threshold levels from SNR = −5 to SNR = 0 with a step of
0.5. Moreover, to discriminate absolute minima from local minima, we used a start
threshold of SNR = −4 and a stop threshold of SNR = −3.

• Finally, as the stop threshold for the expansion of the pixel grid in the ray assignment,
we used the value ⟨SNR⟩ = −2.5.

1Thus, the physical meaning of this ratio is that S represents the number of photon counts on the sky area
analyzed, while N denotes the lensing background noise from sources in the background.
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Figure 6.1: Example of SNR map of the WL convergence (R.A., Dec.) extracted from the ΛCDM
DUSTGRAIN-pathfinder simulations. Colors from blue to red represent areas with increasing SNR, as
indicated by the colorbar on the right. The 2D voids identified by our algorithm are shown as lighter
areas delimited by black circles. The corresponding centers (absolute minima) are marked with black
crosses.

Our 2D voids in the final catalog are thus highly underdense voids that represent the
projection of underdense areas along the line of sight, i.e., tunnel voids. They are designed
to optimize the detectable tangential shear signal (Cautun et al. 2018; Davies et al. 2021b)
which is expected to be negative when analyzing of underdense regions. Since the lensing
signal is influenced by all the matter along the line of sight, we expect that the signal we
detect cannot be trivially interpreted as the projection of isolated 3D voids. For example,
we anticipate that the feature of the compensation wall, present in the density profiles of 3D
voids, will not be detectable in the lensing signal, as it is smoothed out by the overlay of
various underdensities and flattened due to projection effects.

In Figure 6.1 shows as example a SNR map from one of the 256 convergence maps pro-
duced for the ΛCDM scenario, where the positions of the voids is also marked. We can
note that these voids correspond very well with the negative regions of SNR. All negative
regions on the map that are not associated with 2D voids are either considered part of a
larger, spatially nearby void, or are considered to be caused by SNR fluctuations. We also
emphasize how the chosen criterion for assigning the void radius is particularly effective in
identifying voids as entirely negative regions surrounded by positive areas, i.e. the void sizes
result correctly expanded until they reach a WL positive signal.
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Figure 6.2: Total counts of 2D voids as function of their size for the ΛCDM scenario. We restricted
the analysis to the radii included in the range [2, 10] arcmin. As a reference, we indicate with a vertical
dashed line the position of the maximum value of the distribution. As explained in the text, the data
error bars are not represented in this case.

6.1.1 ΛCDM 2D void size functions

Compared to 3D voids identified in galaxy surveys, generally covering scales of tens of mega-
parsecs (see e.g. Contarini et al. 2022a), 2D voids extracted in this work from SNR maps are
characterized by relatively small sizes. Their angular extension span from 1 to 15 arcmin.
To convert this quantity in spatial scales we need to consider the effective lens plane of our
system. As we showed in Figure 5.3, the peak of the lensing kernel function (see Sect. 5.3.1)
of our mock light-cones is at the redshift zl = 0.43. At this distance, our voids would result
having radii between 0.3356 and 5.0336 h−1 Mpc. This substantial shrinking of the size is
not unexpected. In fact, these are formally tunnel voids (see Sect. 3.1.1), which emerge when
photons from distant sources encounter on their path mainly underdense regions, especially
at redshifts around the maximum of the lensing kernel function. These underdensities can be
thought as a series of 3D voids that partially intercept the observer’s line of sight. Here, there
is also an effect due to the loss of void signal in cases where there is a highly overdense region
outside of a void. The resulting projection on the plane of the sky is therefore expected not
to conserve the original size of 3D voids, but to cover only those areas where the signal is
dominated by a negative convergence.

We now focus on studying the abundance of the 2D voids extracted from WL convergence
maps as a function of their projected radius Rv in arcminutes. The whole sample of voids is
derived from the 256 maps built for the ΛCDM scenario and is composed of ≈ 22 thousands
voids. We restrict our analysis to the range [2, 10] arcmin to avoid the statistically rarest
objects, which are characterized by large uncertainties. Then we measure the number of voids
as a function of their size in 200 equi-spaced radial bins. The result represents the so-called
void size function (Section 3.2.1) and is shown in Figure 6.2. The error associated to void
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number counts is can be considered Poissonian-like. However, for the peculiar nature of 2D
voids, this approximation may turn out to be inaccurate. For this reason, we avoided for the
moment to represent the error bars in this plot, relying on an interpretation of the results
based only on the trend of our data.

The shape of the void size function is consistent with the one measured for 3D voids
(Hamaus et al. 2016b; Ronconi & Marulli 2017; Contarini et al. 2022b,a), i.e. it shows
how small voids are more abundant with respect to the larger ones. More complex is the
interpretation of the reduction in number counts at very small scales. This is mainly a spatial
resolution effect, given by the pixel size and by the smoothing applied to the SNR maps. It
imposes a lower limit to the size of voids that can be reliably identified. Moreover, the
void-in-cloud effect may have an impact (see Sect. 3.2.1). This phenomenon occurs indeed
when voids are encompassed within larger overdense structures and causes a lowering in the
abundance of very small voids. The number of voids and the distribution of their sizes will
serve as a basis for the study of void tangential shear profiles.

6.1.2 ΛCDM tangential shear profile from void

As already highlighted throughout the first part of the Thesis, the void statistics on which
we will focus is the tangential shear profile. The analysis of the WL signal from cosmic voids
represent an emerging probe that still lacks a dedicated and in-depth study. This kind of
analysis is expected to be promising especially to test MG models, also in the more complex
configuration in which massive neutrinos are taken into account. In this work, we extract the
tangential shear profile from 2D voids adopting the following procedure:

1. For each SNR map we apply a regular grid centered on each void of the sample. The grid
is designed to cover a region up to ten times the void radius, therefore is characterized
by a side length of 20Rv (±10Rv around the center). Such extension is then converted
in pixel units. This kind of approach makes use of boundary conditions, to deal with
lack of SNR values beyond the edges of the map. This grid is used to extract the values
of smoothed convergence, κ2.5(θ) = κ2.5(rp)

2, in the corresponding region of the map.

2. Around the void center, we build up 64 circular concentric shells from rmin = 0 to
rmax = 10Rv, to divide the profile in different linear bins.

3. We compute the average of the convergence values stored in the pixels included in
each shell. In this way, for each shell, a differential value of the convergence, κ(rp), is
associated to the midpoint of the bin, i.e., at the intermediate value rp between the
inner and outer radius of the shell.

4. We also compute the average of the convergence stored in the pixels included in the
area r ≤ rp. This is equivalent to compute, for each of the 64 bins, the integral quantity
κ̄(< rp) via Eq. (3.58), i.e. the convergence enclosed inside a circle of radius rp.

5. We perform the stacking of void profiles, i.e. we rescale the spatial extension of each
profile by the corresponding radius of the void, Rv. This implies having void profiles
spanning from 0 to 10 rp/Rv. Representing void profiles in unit of the void radius is
useful to compare profiles of voids with different sizes, uniforming their behavior as
seen in Sect. 3.2.2. Finally, the tangential shear γt(rp) is computed for each bin by
subtracting the value of the differential convergence to the integral convergence, i.e.
applying Eq. (3.57).

2Hereafter we will omit the subscript 2.5, as we will always refer to the convergence noised and smoothed
with ΘG.
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Figure 6.3: Stacked tangential shear profile measured using the 2D voids extracted for the ΛCDM
simulations. The error bars represent the sum of observational and statistical uncertainties.

The uncertainty to associate to the tangential shear is evaluated as the sum in quadrature of
the statistical error σstat and the observational error σobs:

σtot =
√
σ2stat + σ2obs . (6.4)

The first represents the scatter between all the γt(rp) profiles and mainly depends on the
number of voids, N :

σstat =
σmeasure√

N
, (6.5)

where σmeasure is the standard deviation of the value distribution of γt(rp) measured at a
given rp (i.e. radius bin). The second is instead inserted to mimic the error expected with
real data. The observational error is added to every radius bin and is mostly driven by the
uncertainty on the intrinsic ellipticity distribution of the source galaxies, σϵ:

σobs =

√
σϵ2

3600ngalAshell
. (6.6)

Here Ashell = (r2>,shell − r2<,shell) with r>,shell and r<,shell that are the inner and outer radii
of the shell considered for the computation of the convergence. This formula stems from the
type of pre-processing described above. All the following analysis will follow this strategy for
the computation of the tangential shear errors.

In Figure 6.3 we report the stacked tangential shear profile measured around voids iden-
tified in the ΛCDM SNR maps. Firstly, we note that the tangential shear profile obtained is
statistically negative, as expected for a signal generated by underdensities. Furthermore, this
signal is of the same order of magnitude (10−3) as found in the literature for tunnel voids,
such as in Davies et al. (2019a). With respect to the findings of these authors, however,
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Figure 6.4: Left and right panels show the integrated, κ̄(< rp), and differential, κ̄(rp), convergence
profiles extracted from the stacking of 2D voids, for the ΛCDM scenario, in the left and right plot
respectively. Both are represented with error bars including observational and statistical uncertainties.

we detect a WL signal that is negative up to larger scales, i.e. approximately ten times the
radius assigned to our voids. We also note that the minimum value of γt(rp) is not measured
in the most internal parts of voids, but on scales slightly larger than rp/Rv = 1. The largest
amplitude in the signal is reached indeed when the difference between κ(rp) and κ̄(< rp) is
maximum. To better understand this feature, let us analyze the behavior of the tangential
shear at the lower and upper extremes of the profile:

• For rp/Rv → 0: γt(rp) → 0 because both κ(rp) and κ̄(< rp) tend towards the same
value in a homogeneous density field (the center of the void) as it can be seen in Figure
6.4. This rise in the profile is due to the compensation of opposite deflections of the
path of photons coming from background sources and passing nearby the center of a
projected void. Such compensation indeed depends on the symmetry of the voids, i.e.
the large-scale distribution of matter surrounding them.

• For rp/Rv → 10: γt(rp) tends towards 0 as expected, i.e. close to the deflection due
to the average convergence of the Universe. However, the rise in the profile is very
slow, especially for κ̄(< rp) since it is an integrated quantity and thus, less sensitive to
overdensities outside the void compared to κ(rp). In fact, as it can be seen in Figure
6.4, at large radii, the integrated and differential profiles do not tend towards the same
value but κ̄(< rp) is more negative than κ(rp), leading to a lowering of the γt(rp) profile.

Void size dependency

Now we focus on studying the dependency of the tangential shear profile on the void size.
This analysis allows us to examine how the tangential shear properties vary with void radii
and provides valuable insights into the matter distribution around voids at different scales.
Moreover, we expect the stacking procedure to be more effective when analyzing void with
similar sizes, which are expected to be auto-similar (see Sect. 3.2.2).
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Figure 6.5: On the left, the tangential shear profiles measured from samples of voids with different
sizes: small (in light-blue), medium (green) and large (red). We report with a black dashed line our
reference profile, i.e. the one computed using the whole void sample. On the right, the residuals
between the profiles of each radius selection and our reference stacked void profile. The data here rep-
resented are extracted from the standard ΛCDM subset of the DUSTGRAIN-pathfinder simulations.

We divide our sample of voids according to their size, selecting the following three intervals
of radius to include the same number voids in each of them:

• small voids with radii Rv included in the range [1, 3.97] arcmin;

• medium voids with radii Rv included in the range ]3.97, 4.85] arcmin;

• large voids with radii Rv included in the range ]4.85, 15] arcmin.

Then we extract the tangential shear profiles from these equi-populated void samples. The
result is represented in Figure 6.5. From the left plot of this figure we can identify a trend
between the three bins. In particular, we note that the signal of small voids is deeper and
rises more rapidly towards the mean shear signal of the universe, while for the subsample of
large voids, we observe a less profound signal and a slower rise. This behavior is similar to
the one expected for the density profiles of 3D voids (Nadathur et al. 2015; Hamaus et al.
2014; Voivodic et al. 2020). In fact, small voids usually show deeper interiors and high
compensation walls. This usually happens because large voids are characterized by internal
substructures and are more irregular in shape, as they have been subject to merger events. In
our case, another effect plays an important role: as we saw from the analysis of the void size
function, small voids are much more numerous with respect to the large ones. Therefore, if
we divide the sample into equi-populated bins, the bin containing the large voids will cover a
broader range of radii. This means that the stacked signal for large voids is more affected by
the distinct behavior of different void shear profiles, resulting in an average smoothed trend.

To facilitate the comparison between different void subsamples, we show in right panel
of Figure 6.5 for the three cases the residuals computed with respect to the tangential shear
profile of the complete sample of voids, γtotalt (rp), which represents our reference in this case
and it is also reported in Figure 6.3. In particular, we use the formula:

∆γ =
γprofilet (rp)− γtotalt (rp)

|γtotalt (rp)|
. (6.7)

This approach is utilized to compute all the tangential shear profile residuals that will be
shown hereafter, considering different cases for γprofilet (rp) and fixing a specific reference model.
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Figure 6.6: Right : size functions of 2D voids measured in simulations featuring different cosmological
models: ΛCDM (black), fR4 (green), fR5 (blue), fR6 (red) and ΛCDM0.15eV (brown). Left : the
corresponding residuals computed with respect to the ΛCDM model. Also in this case, error bars are
not represented (see Sect. 6.1.1).

We finally observe that the subsample of voids of intermediate size is the most similar to the
average shear profile computed with the totality of the void sample.

6.2 Comparison with alternative gravity scenarios

We now present the results for alternative cosmological scenarios (fR4, fR5, fR6 and
ΛCDM0.15eV, see Table 5.1), compared to the ΛCDM. We start by analyzing the void size
function, i.e. the total number counts of 2D voids as a function of their radius, extracted
from the 256 SNR map realizations, for each cosmological model. We show the results in
Figure 6.6. On the right we present the five void size functions in the range [2, 10] arcmin
and on the left the corresponding residuals computed with respect to the ΛCDM case.

We note that all the size distributions are characterized by a similar shape and the main
difference is in their amplitude, i.e. there is a difference in the number of voids at each radius
bin. The trend observed for different cosmological scenarios is the one expected: regarding
MG models, scenarios with higher values of the parameter |fR0| are those that produce the
greater increase in the number of void counts, while in the presence of massive neutrinos, the
abundance of voids results suppressed. Higher values of |fR0| implies indeed a stronger action
of the fifth force, which in turn favors the evolution of LSS, including cosmic voids. On the
other side, larger is the neutrino mass, more suppressed is the growth of cosmic structures
and so the formation of voids. To conclude, the models fR6 and ΛCDM0.15eV are those
expected to be the most similar to the ΛCDM case, although showing opposite trends.

Now we focus on the differences of the stacked tangential shear profiles in alternative
cosmologies. We start by considering voids of different sizes all together in a unique bin of
radius. We show the stacked shear profiles in the left panel of Figure 6.7, highlighting the
differences with respect to the ΛCDM case through the residuals shown in the right panel of
the same figure (the residual computation is done as in Eq. 6.7). The observed trends are
in agreement with theoretical expectations since we detect deeper tangential shear signals
for MG models with stronger fifth-force intensities and a shallower signal in the presence of
massive neutrinos. This is explained by the fact that cosmic voids experience a depletion
of their internal density profiles when their evolution is enhanced, conversely they are less
underdense when their growth is hampered.

We note, however, that there is a pivot point at rp/Rv ≃ 4 where all models results almost
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Figure 6.7: Stacked tangential shear profiles for different cosmological models (left panel) and cor-
responding residual with respect to the profile measured in the ΛCDM scenario (right panel). Both
the plots utilize the following color scheme: ΛCDM (black), fR4 (green), fR5 (blue), fR6 (red) and
ΛCDM0.15eV (brown). The error bars represent the total uncertainty derived from statistical and ob-
servational errors (see Eqs. 6.4, 6.5, 6.6). For the sake of clarity, on the residual plot the uncertainties
associated to the profiles in alternative cosmologies are represented as shaded colored regions.

degenerate. Over this scale, there in an inversion in the trends of the profiles. This point
indicates the transition between the regions dominated by the effects of the underdensities and
overdensities. Going toward the outskirts of 2D voids the tangential shear profiles start in fact
to deviate from the ΛCDM, following the effects expected by the presence of overdensities, i.e.
an increase of signal for MG models and a decrease for the scenario with massive neutrinos.
The fact that this transition scale is at a distance equal to four times the radius of our voids
obviously depends on the chosen definition of 2D void radius. Moreover, we must consider
that the tangential shear is also based on the measure of integrated convergence, κ(< rp),
so it is subject to the influence of the internal underdensity within the profile even at large
distances from the center. For this reason, we should not be surprised that the transition
scale is found at relatively far distance from the center of our 2D voids.

Finally, it is possible to appreciate how, given the large error bars associated with the
profiles, it is statistically impossible to completely discriminate between these five cosmolog-
ical models. This is due to the fact that in our analysis we aim at building our data sample
with the characteristics of real surveys like Euclid. Therefore, although our mock light cones
cover a relatively limited Universe volume, our tangential shear profiles have been treated
to include a significant observational error, which dramatically increases the uncertainty on
the extracted data. For illustrative purposes only, we report in Figure 6.8 the same plot
represented in the right panel of Figure 6.7 but for tangential shear profiles characterized by
statistical errors only. We can therefore conclude that the observational error is the aspect
that will need to be addressed most in future surveys if the aim is to apply this kind of
approach to constrain f(R) models.

As an additional test, we show the stacked profiles of voids in different cosmologies by
dividing our sample of voids based on their radius. We then use the three equi-populated
bins already introduced in Figure 6.5 and present the results in Figures 6.9, 6.10, 6.11, for
small-size, medium-size, and large-size voids, respectively. We note that the main trend of
the profiles is the same even for voids characterized by different sizes and that, even using
these sub-samples, the statistical discrimination between the different alternative cosmological
scenarios here analyzed is not possible due to the large uncertainties.
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Figure 6.8: Same as the right panel of Figure 6.7 but for the unrealistic case in which we associate
to the tangential shear profiles characterized only the statistical errors.

Figure 6.9: Same as Figure 6.7 but for small-size voids, i.e. with radius in the range [1, 3.79] arcmin.
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Figure 6.10: Same as Figure 6.7 but for medium-size voids, i.e. with radius in the range
[3.79, 4.85] arcmin.

Figure 6.11: Same as Figure 6.7 but for large-size voids, i.e. with radius in the range [4.85, 15] arcmin.
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6.3 Modeling the tangential shear profiles

In the final part of this Thesis work, we aim at modeling the tangential shear profile using
a parametric formula. Indeed, although a theoretical model based on first principles has
never been formulated for the WL signal from voids, we can resort to fitting our data with
an empirical function and study the behavior and limits of its free parameters in different
configurations. Albeit this approach does not directly constrain the parameters of the cos-
mological model, it still represents a first step towards understanding the physics governing
the WL phenomenon in voids.

6.3.1 Integration of 3D void density profiles

The first method we follow is to start from a known parametric formula from the literature
to represent the density profile of 3D voids. Following the approach of Fang et al. (2019) and
Boschetti et al. (2023), we can integrate the functional form of the density profile along the
line of sight to obtain the surface mass density, Σ(rp), from which we can then derive the
tangential shear profile, γ(rp). Below, we report the details of this procedure, as it is very
technical and it will be necessary a non-trivial implementation. This requires a convenient
definition of the coordinate system:

rz =
√
r2 − r2p ; r =

√
r2z + r2p ;

dr

drz
=

1

2
· 2 · rz

r
=

rz√
r2z + r2p

, (6.8)

where r is the radius of the 3D void, while rz is its projection along the line of sight. From
this we can compute:

Σ(rp) = 2

∫ 1

rp

r · ρ(r)√
r2 − r2p

dr = 2

∫ 10

0
ρ
(√

r2z + r2p

)
drz . (6.9)

We integrate therefore up to a distance of ten times the void radius, adding a factor 2 to
exploit the symmetry around the void center. Then, we perform another integration, but this
time over the projected radius to obtain Σ(< rp) (see Eq. 3.58):

Σ(< rp) =
1

πr2p

∫ rp

0
2πr′p · Σ(r′p)dr′p =

2

r2p

∫ rp

0
r′p · Σ(r′p)dr′p . (6.10)

Finally, subtracting Σ(rp) from Σ(< rp) yields the excess surface mass density through Eq.
(3.48):

∆Σ(rp) =
[
Σ(< rp)− Σ(rp)

]
·Rv . (6.11)

Let us underline that here we also added the multiplication by Rv, since it is necessary to
take into account the dependency on the void radius and recover the correct physical units.
Now, the excess surface mass density is proportional to the tangential component of the shear
through the critical surface mass density, Σcrit (Eq. 3.22):

γt(rp) = κ(< rp)− κ(rp) =
∆Σ(rp)

Σcr
. (6.12)

Now we can apply this pipeline to fit our tangential shear profiles, assuming a functional
form for ρ(r). In addition to allowing the variation of the coefficients of the function defining
ρ(r), we also consider Σcrit as a free parameter. Although this quantity could, in principle, be
derived by knowing the cosmological parameters of the simulation, in our case, we are not able
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to model the lens system with a single lens plane. Dealing with tunnel voids, the contribution
of the signal is indeed defined by multiple lenses, which cannot be characterized by a unique
redshift value. In practice, we will use Σcrit as a normalization factor for fitting our data. As
data vector, we consider for the moment the stacked tangential shear profile measured in the
ΛCDM mock light cones. We postpone the description of the fitting employed technique to
Sect. 6.4.

The first functional form we consider to represent the density profile of 3D voids is the
one proposed by Hamaus et al. (2014) and already introduced in Sect. 3.2.2, i.e. the HSW
function in Eq. 6.13:

ρv(r)

ρ̄
− 1 = δc

1− (r/rs)
α

1 + (r/rv)
β
. (6.13)

As already seen, it is characterized by four free parameters (δc, α, β, rs), so it is expected to
fit properly voids of different sizes and internal densities. Nevertheless, the no combination
of free parameters lead to an optimal fit of our data. This can be seen in the left panel of
Figure 6.12, where we report the best fit of the data with the HSW model. Even considering
a confidence level at 3σ the overall shape of the model does not reproduce the one of the
tangential shear profiles. The reduced χ2 shows indeed a value very far for the unity, i.e.
χ̃2
HSW = 17.53.
The second functional form we consider is the hyperbolic tangent (HT) profile presented

in Voivodic et al. (2020). Although less popular, this parametric form has the property of
using only two free parameters, representing simpler shapes of 3D voids. It is expressed as:

ρv (r/Rv) = 1 + |δc| ρ̄m
{
1

2

[
1 + tanh

(
y − y0
s (Rv)

)]
− 1

}
. (6.14)

In this parameterization, δc is the density contrast at the void center, y = ln (r/Rv) and
y0 = ln (r0/rv). The radius r0 is determined by requiring that the integral of the profile up
to Rv is ∆v = 0.2. This allows us to express r0(s) (in units of h−1 Mpc ) as a second-order
polynomial function: r0(s) = 0.37s2 + 0.25s + 0.89, where s represents the gradient of the
profile. The parameter s works similarly to the concentration parameter in the NFW profile,
governing the rate at which density increases as we move away from the center of the void.
δc and s are therefore the only free parameters of the HT profile.

We represent in the right panel of Figure 6.12 the result of the fit of the tangential shear
profile assuming the HT function to model the density profile. Also in this case the integration
of the 3D void density profile does not lead to a good representation of our tangential shear
profiles. In fact also with this model the reduced χ2 is far for the unity, i.e. χ̃2

HT = 28.83.
The motivation of this inconsistency must be sought of the very nature of our voids. In our

case, we are trying to model the WL signal generated by tunnel voids, which is the result of
projecting numerous underdensities along the line of sight. Following the approach described
in this section, we are instead imposing the modeling of the tangential shear through the
projection of the typical density profile of isolated 3D voids. This assumption cannot be
valid for our tunnel voids, which instead derive from the projection of a complex distribution
of underdensities with different sizes and positions. Therefore, we emphasize that in the
analyses of Fang et al. (2019) and Boschetti et al. (2023) the usage of the 3D density profiles
was effective for the following reason. Both the authors make use of a tomographic approach,
considering only the WL signal generated by the matter distribution present in relatively thin
redshift slices. In this way, they exploit a lens plane that follows the simplified condition of
having only one, or in any case a few, 3D voids along the line of sight.

As explained in Sect. 3.3.6, this kind of approach has the advantage of being able to
relate to the physical properties of 3D voids. On the other hand, with respect to the usage of
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Figure 6.12: Best fits of the stacked tangential shear profiles measured in the ΛCDM mock light cones
adopting two different void density profile functions: HSW (right panel) and HT (left panel). The
data are represented with black markers, while the best fit model with a blue solid line. As indicated
in the caption, different colored areas show the intervals covered for different confidence levels: 1σ
(blue), 2σ (green) and 3σ (red).

tunnel voids, it leads to the extraction of a weaker WL signal, with an amplitude about ten
times smaller, and thus less exploitable for studying the effects of MG models. Our strategy
will therefore be to seek a new parameterization of the tangential shear profile that is suitable
for describing the signal generated by tunnel voids. Thus, instead of relying on the expected
behavior for density profiles of 3D voids, we will focus on trying to directly reproduce the
shape and the amplitude of the observed tangential shear profiles.

6.3.2 A new parametric formula

In this section we present and validate a new parametric function suitable for the modeling
of the shear profiles extracted from our void catalogs. Our goal is to accurately reproduce
the shape and amplitude of our shear profiles, employing the smallest possible number of free
parameters. Moreover, we want this new functional form to be flexible enough to represent
the shear profiles both for different void sizes and for the five cosmological models analyzed
in this Thesis work. An example demonstrating the degree of “flexibility” we expect to
reach with this function is shown in Figure 6.13. Here, we display the stacked tangential
shear profiles extracted from our sample of voids, distinguished by average void size and
cosmological model.

The functional form found that best met these requirements is the following:

γt(rp) = a

(
1− rbp
1 + rcp

− exp(d · rp)
1 + exp(e · rp − (d+ e))

)
. (6.15)

The coefficients a, b, c, d, e represent the five free parameters of our model. These parameters
are not intended to have a physical meaning but rather to regulate the shape and amplitude
of the profile across different scales. To understand their role, we illustrate in Figure 6.14 the
effect that varying singularly each parameter produces on the shear profile. Below we report
a brief description of the main effects of the each parameter.

a: Amplitude or normalization. It modifies the amplitude of the function, i.e. its normal-
ization, and it is related to the overall depth of the tunnel void. It can be reabsorbed
using the correct Σrmcrit.
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Figure 6.13: Stacked tangential shear profiles of all the analyzed cosmologies, divided in subsamples
of different sizes of voids. The split of the void sample is the one presented in Sect. 6.1.2 and is used
to distinguish voids of small (blue), medium (green) and large (red) sizes. As reported in the legend,
the results for different cosmologies are instead reported using different line styles.

b: Position of the minimum. It plays a role in determining the position of the absolute
minimum of the profile, also influencing the amplitude of the profile at large distances
from the void center.

c: Exponential growth. In regulates the exponential rise after the minimum, so the slope
of the outer part of the profile.

d : Depth of the minimum. It determines the minimum value of the profile and it is the
related to the central density contrast of the tunnel void.

e: Starting point of the exponential term. It influences the scale at which the exponential
part of the function begins to become dominant.

Finally, in Figure 6.15 we present one of the most important results of this work, namely
the application of the new function for fitting the stacked tangential shear profile extracted
from the ΛCDM simulations. It is easy to notice how there is an excellent match with the
data, across all scales. Since in this case we are restricted to the data extracted from the
ΛCDM scenario only, we fall into the regime of overfitting. This leads to a reduced χ2 much
smaller than one, χ̃2 = 0.035. However, given the enormous variation in the trend of the
profiles reported in Figure 6.13, it is crucial that our parametric formula retains the five
degrees of freedom assigned to it. In the next section, we will analyze the correlation between
the coefficients of this function and their variation based on the void sizes and the different
considered cosmological models.

6.4 Bayesian statistical analysis

In this final section, we will use the Bayesian statistics to place constraints on the free
parameters of the new functional form proposed in Sect. 6.3.2 and to study their variation
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Figure 6.14: Effects of varying individually the coefficients of the function reported in Eq. 6.15. For
each parameter, ten curves are represented, colored according to the value of the selected parameter.
The colorbar located on the right of each subplot shows the association of the color used with the
parameter value. The different panels refer to the parameter a (top left), b (top right), c (central left),
d (central right) and e (bottom left).
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Figure 6.15: As Figure 6.12 but employing the fitting formula reported in Eq. 6.15.

based on the characteristics of the void sample. First, let us recall the theorem that lies at
the heart of any modern statistical treatment, i.e., the Bayes’ theorem:

p(θ|x) = p(x|θ)p(θ)
p(x)

, (6.16)

where θ= (θ1, θ2, ..., θN ) denotes the set of model parameters and x represents the data set.
Let us break down the elements present in Eq. (6.16):

• p(θ) is the prior probability distribution, expressing what is known relative to the
parameters before considering the data;

• p(x|θ) is the likelihood function, representing the probability of obtaining the observed
data given the set of parameters θ;

• p(θ|x) is the posterior distribution, reflecting updated knowledge after incorporating
observed data;

• p(x) is the evidence function, ensuring the normalization of the posterior.

Bayesian statistics has gained importance in cosmology and astrophysics due to the advent of
large data catalogs and powerful computing resources. The utilization of Bayesian methods is
closely related to the employment of numerical sampling techniques like Markov Chain Monte
Carlo (MCMC). MCMC are powerful statistical tools that allow us to efficiently sample a
posterior distribution without needing to know its exact form. By generating a chain of
samples, MCMC explores the parameter space, with the frequency of samples in different
regions of the space being proportional to the posterior probability of those regions.

This is the technique utilized to achieve the results presented in Sect. 6.3.1 and 6.3.2. In
fact, to perform the best fit of different models with our simulated data we used Cobaya3 (Tor-
rado & Lewis 2021). This is a Bayesian analysis code that allows the efficient exploration of

3https://cobaya.readthedocs.io/en/latest/
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the posterior distribution using different MCMC samplers and offers functionalities for max-
imizing and importance-reweighting Monte Carlo samples with new priors and likelihoods.
The code is Python-based and utilizes hybrid OpenMP/MPI parallelization to optimize the
computational time. In our analysis, we impose the likelihood to be Gaussian and we set
our parameter priors to follow a uniform distribution. Cobaya also enables us to require the
reaching of a certain level of convergence for the chains. We set the value of the Gelman-
Rubin diagnostics (Lewis 2013) to R− 1 = 0.001, which is generally reached when the chains
are fully converged.

We present first the result of the posterior sampling related to Figure 6.15. We show in
Figure 6.16 the constraints obtained on the five coefficients of the function (6.15) through
the fit of the ΛCDM shear profile. The best fit of our model in this case is obtained by
extracting the median values of the individual parameter distributions, which in this case are
virtually Gaussian4. We also note how the orientation and extent of the confidence contours
determine the degree of correlation between the various parameters. For example, the strong
anti-correlation between the coefficients a and d is evident, as also expected from the trends
reported in Fig. 6.14.

Now we focus on the confidence contours associated to the fit of the tangential shear
profiles split according to the void size. We show in Figure 6.17 the constraints of the
three equi-populated sub-samples of voids: small-size (Rv ∈ [1, 3.97] arcmin), medium-size
(Rv ∈ ]3.97, 4.85] arcmin) and large-size (Rv ∈ ]4.85, 15] arcmin). In this plot we can identify,
for each parameter, a distinct behavior in the constraints, with medium-size voids always in
the middle. However, it is interesting to note that the extent of the contours does not always
show the same trend. Voids of different sizes seem to constrain these coefficients more or
less effectively. For example, the parameter a is better constrained by small voids, while b is
better constrained by the large ones. As can also be seen in Figures 6.14 a is related to the
depth of the minima and so that is why it is best determined by small voids. The degeneracy
between various pairs of parameters also varies with the void radius.

We now come to the final analysis of this work. We want to focus on the discriminating
power of the void tangential shear profiles, and to do this, we will examine the confidence
contours obtained for the parameters of the function (6.15). Let us underline that, in this
analysis, we make no distinctions based on the size of the voids and perform the stacking of
all the voids extracted for a given cosmology. We tested the effects of splitting the sample
in different size bins but did not find any significant difference with respect to the case of
considering the total sample of voids.

We report in Figure 6.18 the confidence contours obtained from fitting the shear pro-
files extracted in simulations featuring the five cosmological models considered in this work:
ΛCDM, fR4, fR5, fR6, ΛCDM0.15eV. As expected by the analysis of the results shown
in Figure 6.7, the uncertainties associated to our tangential shear profiles are too large to
discriminate the cosmological scenarios here analyzed. In fact, the parameter constraints
computed for the different cosmologies are statistically compatible with each other, i.e. their
contours at the 68% confidence level are always overlapping with the standard ΛCDM case.
Nevertheless, we note how the confidence contours follow the expected trend, i.e. are ordered
according to the level of enhancement/damping of the growth of LSS. fR4 and ΛCDM0.15eV

show indeed the most extreme behaviors. The parameters that appear to be the most sensi-
tive to the variation of the cosmological model are a, d and e. In fact, the coefficient a and
d are responsible for the normalization and the depth of the shear profile and are naturally
related to the evolution of the void density profiles. On the other hand e has an impact on the

4Thanks to the symmetry of the projected 1D distributions, the peak of the posterior coincides with the
mean and median of the distribution.
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Figure 6.16: Corner plot for the five parameters of the function (6.15), used to model the void
tangential shear profiles extracted from the ΛCDM simulations. The confidence contours correspond
to the 68% and 95% confidence levels. The horizontal and vertical lines indicate the best fit parameters.
There are also reported, with the relative uncertainty, over the panels containing the 1D projected
posterior distributions.
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Figure 6.17: 68% and 95% confidence levels for the five parameters of the function (6.15), used to
model the tangential shear profiles extracted from ΛCDM simulations. Different colors are for samples
of voids with different sizes: small (blue), medium (green), and large (red) radii.

transition scale where the exponential rise starts to become dominant. Apparently, this pe-
culiar behavior of the shear profile is also an important feature to consider when investigating
different cosmological models.

As a final consideration, we would like to emphasize that, in the set-up assumed to prepare
the data analyzed in this work, the differences between the tangential shear profiles for models
alternative to the standard ΛCDM were found not to be statistically significant. However the
usage of larger simulations or the inclusion of smaller observational errors could easily lead
us to a condition where we can effectively use this type of statistics to investigate scenarios
featuring MG and the presence of massive neutrinos.
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Figure 6.18: 68% and 95% confidence levels for the five parameters of the function (6.15), used to
model the void tangential shear profiles extracted from simulations featuring different cosmological
scenarios: ΛCDM (black), fR4 (green), fR5 (blue), fR6 (red), ΛCDM0.15eV (pink).
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Chapter 7

Conclusions

In this Thesis work, we investigated the usage of cosmic voids as cosmological probe. Voids
are the most underdense regions of the Universe and, with their tremendous size of tens of
megaparsecs, they represent perfect laboratories to test gravity models on large scale. In
particular, we studied the effects of gravitational lensing produced by cosmic voids. This
involves analyzing the deflection of photons along the line of sight caused by these underden-
sities and quantifying the small distortions of background light sources through a quantity
called tangential shear.

The primary goal of this work was to build a pipeline to identify cosmic voids in WL
maps and measure the stacked tangential shear profile generated by these voids. Then, we
aimed at exploiting this pipeline to study the void tangential shear profile extracted from
cosmological simulations that implements modified gravity (MG) models. The final step of
this project regarded the modeling of the shear profiles through a parametric formula, to
study the impact of MG models on our data. We summarize below the path we followed to
achieve the objectives just discussed.

Firstly, in Chapter 1 we presented the theoretical foundations of the currently accepted
standard ΛCDM model, highlighting both its strengths and weaknesses in predicting the
observational properties of the large-scale structure of the Universe. Subsequently, in Chapter
2, we described the main alternatives to the ΛCDM scenario. We introduced the family of
MG models, with particular emphasis on the subclass known as f(R) models (Hu & Sawicki
2007). Furthermore, we highlighted the possible degeneracies between scenarios featuring
MG models and those incorporating massive neutrinos, which are considered another elusive
component of our Universe. Then, in Chapter 3 we provided a detailed introduction to of
cosmic voids and their main statistics, i.e. number counts and density profiles. Then we
presented the theory of weak gravitational lensing (WL) and we focused on the importance
of 2D voids for WL analyses (Davies et al. 2018, 2021b).

In Chapter 4 we developed an original finding algorithm for 2D voids in WL maps, which
is based on density and geometrical criteria and is targeted for measuring and maximizing the
tangential shear signal from voids. To do this, we took into account the findings of Cautun
et al. (2018) and Davies et al. (2021b) and we implemented our own approach into an existing
peak finding algorithm called pyTwinPeaks (see Giocoli et al. 2018b). We extended this code
by introducing a new pipeline for identifying tunnel voids. At the end, our 2D void finder
enables a fast and computationally efficient reconstruction of the regions with the lowest signal
in the convergence field, providing us with details regarding the center, size, and geometry
of projected voids, all without relying on the 3D position of galaxies. Our finder is stable,
optimized for efficiency over time, and is generalized for a wide range of settings.

In Chapter 5 we presented the data used for our analysis. We employed a set of N -
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body cosmological simulations known as DUSTGRAIN-pathfinder (Giocoli et al. 2018a; Peel
et al. 2018) to explore five cosmological scenarios: standard ΛCDM, as a reference model,
three f(R) models with different strength for the fifth-force, and a ΛCDM model featuring
massive neutrinos of mass Mν = 0.15 eV. After identifying collapsed structures in the
matter distribution (i.e. DM halos), we constructed 256 different realizations of light-cones
by randomizing the various comoving cosmological boxes, for each cosmological model. Then
we computed convergence maps using a ray-tracing process, assuming the observer at z = 0
and the source plane at z = 1. Each map has size of 300×300 arcmin and includes a realistic
galaxy shape noise tailored on the expectation for the ESA mission Euclid.

Finally, in Chapter 6, we presented the results of our analysis. We showed the effectiveness
of the 2D void finder in identifying negative regions in the convergence maps: voids centers
are identified as the minima in the SNR field and their sizes correctly expand until they reach
a positive WL signal zone. We analyzed the size distribution of our samples of voids, noting
how the average void radius is consistently smaller than the typical one for 3D voids. This is
due to the fact that our 2D voids are classified as tunnel voids, i.e. derive from the projection
of a long series of 3D voids that partially intercept the observer’s line of sight. Studying this
result for different cosmologies we found that the trend is the one expected: MG models with
higher values of the parameter |fR0| are those compared to the ΛCDM model that produce
the greater increase in the number of void counts, while in the presence of massive neutrinos,
the abundance of voids results suppressed. Higher values of |fR0| imply indeed a stronger
action of the fifth force, which in turn favors the evolution of LSS, including cosmic voids. On
the other side, larger is the neutrino mass, more suppressed is the growth of cosmic structures
and so the formation of voids.

Then, we delved into the tangential shear analysis. For each void, we measured the value
of the tangential shear within shells extending from the center of the void up to ten times the
void radius. Thereafter we calculated the stacked tangential shear signal by rescaling each
profile according to the corresponding void size and averaging the values of the tangential
shear. The uncertainty we associated to the profiles aims at reproducing real survey conditions
like those of Euclid. In our approach, the uncertainty associated to the tangential shear is
evaluated as the sum in quadrature of the statistical error (Eq. 6.5) and the observational
error (Eq. 6.6).

We found that the stacked tangential shear profile we obtained is statistically negative,
as expected for the signal generated by underdensities. Furthermore, the amplitude of this
signal is of the same order of magnitude as found in the literature for tunnel voids, such as in
Davies et al. (2019a). We also analyzed the behavior of the observed tangential shear profile
according to the size of voids using three equi-populated sub-samples. We showed that smaller
voids exhibit a deeper signal, characterized by a steep rise towards zero, whereas larger voids
display a less profound signal with a less steeper rise. This behavior reflects the density profile
features of 3D voids reported in previous studies (Hamaus et al. 2014; Voivodic et al. 2020).
Specifically, smaller voids tend to have deeper interiors and higher compensation walls, while
larger voids often feature internal substructures and irregular shapes due to merger events.

Then we focused on the comparison of the tangential shear profiles measured in the five
cosmologies analyzed. As expected, we found a stronger tangential shear signal in MG models
characterized by more intense fifth-force effects and a weaker signal in the presence of massive
neutrinos. This result can be easily understood considering that the WL signal is naturally
related to the depth of void density profiles. In fact, when their growth is accelerated, cosmic
voids undergo a depletion of their internal density profiles. Conversely, when their growth is
damped, voids evolve more slowly and appear shallower. This behavior characterizes almost
equally 2D voids of all sizes. However, given the relatively large uncertainties associated to our
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data, it was found not to be possible to distinguish statistically the considered cosmological
scenarios using the void tangential shear profile. We demonstrated therefore that the best
strategy to follow to improve the constraining power of this analysis is to try to mitigate the
observational errors.

Finally, the last goal of the Thesis: modeling the void tangential shear profiles. First, we
tried to use two well-known functional forms, generally used to reproduce density profiles of
3D voids, i.e. the Hamaus-Sutter-Wandelt (HSW, Hamaus et al. 2014) and the hyperbolic
tangent profile (HT, Voivodic et al. 2020). We integrated these density profiles along the
line of sight to derive the corresponding tangential shear signal and fit our data varying the
free the coefficients of the HSW or HT profile. We demonstrated that both the parametric
functions are inappropriate to reproduce the signal measured with our 2D voids. The observed
discrepancy is due to the fact that our underdensities are the results of the projection of
numerous underdense regions along the line of sight and not a single 3D void. For this
reason, we empirically developed a new parametric formula to represent the tangential shear
profile, which is suitable by construction for describing the signal generated by tunnel voids.
We also required this new functional form to be flexible enough to accurately fit the shear
profiles for various void sizes and across the five cosmological models here examined.

The final parametric formula has been presented in Eq. (6.15). Its coefficients, a, b,
c, d, e represent the five free parameters of our model. For now, we interpreted them only
mathematically as: normalization, position of the minimum, exponential growth, depth of the
minimum, starting point of the exponential term. We verified that it accurately reproduces
both the shape and amplitude of all our stacked shear profiles. This represents one of the
most important results of this work, providing a useful tool to analyze the behavior of the
WL signal in tunnel voids.

In the end, we performed a Bayesian analysis to constrain the free coefficients of the newly
introduced parametric formula. We firstly considered the ΛCDM tangential shear profiles
and we sampled the posterior distribution of our parameters through MCMC techniques.
We analyzed the resulting confidence contours to understand the correlation between the
parameters. Then we divided our sample in three equi-populated radius bins. We found that
the extent and the orientation of the confidence contours change with the void radius, i.e.
the degeneracy between these parameters depends on the void average size.

Finally we focused on the cosmological dependency of the parameters by analyzing the
deviation of the confidence contours computed with data extracted from different cosmological
models. We showed that the trend of the contours follows the degree of enhancement or
damping of the growth of LSS. Specifically, fR4 and ΛCDM0.15eV exhibit the most extreme
behaviors in this regard. The parameters that appeared to be the most sensitive to variations
in the cosmological model are a, d, and e. Indeed, the coefficients a and d primarily control
the normalization and depth of the shear profile, reflecting the evolution of the void density
profiles. Conversely, the parameter e influences the transition scale at which the exponential
rise begins to dominate.

We also verified that the constraining power derived from the analysis of the tangential
shear profiles is not sufficient to statistically distinguish the alternative cosmological models
analyzed from the standard ΛCDM. This was already expected from the simple comparison
of the uncertainties associated with our data. This result, however, is important to design
the characteristics of the optimal survey to exploit WL from voids as a cosmological probe.
For example, a larger sky area would certainly help to reduce the statistical error, while a
larger number of background sources would lead to a smaller observational error.
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7.1 Future perspectives

The results presented in this Thesis work demonstrate the viability of analyzing the WL
signal from 2D voids as cosmological probe. Given our encouraging findings, we plan to
further expand this project in different ways. In the future, we will proceed as follows:

• We will release the 2D void finder algorithm developed in this work. We plan to
reorganize the library pyTwinPeaks to work consistently with both underdensities and
overdensities and make it publicly available.

• We will test pipeline using simulations with larger volumes to enhance void statistics
and gain a better understanding of the behavior of larger underdensities. This will
also allow us to infer the sky area required to have a statistical error small enough to
distinguish between particular cosmological models.

• We intend to broaden our analysis to the investigation of simulations with different cos-
mological parameters and possibly other alternatives to the standard ΛCDM scenario.

• We aim at applying our pipeline in the context of a tomographic analysis, i.e. extracting
the effects of the lensing signal at different redshifts. This test will be useful to to
determine the optimal redshift for conducting this kind of studies.

• Finally, we plan explore the feasibility of our analysis on real data catalogs. An ambi-
tious goal would be to constrain f(R) models, but for this we will first need to effectively
parameterize the variations of the tangential shear profiles as a function of the cosmol-
ogy. This would require the usage of a very large number of simulations featuring
different cosmologies. We will also consider the possibility of using standard cosmologi-
cal probes in addition to WL from voids, to take full advantage of the complementarity
of constraints derived from under- and overdensities.

• Our long-term efforts will go into the theoretical modeling of the tangential shear profile
for cosmic voids. Its derivation from the first principles has not been developed yet and
it would in fact allow the constraining of the parameters of the cosmological model and
their evolution in time.

As a final consideration, we want to emphasize the fact that this Thesis work is based on
the use of a cosmological probe that is still almost unexplored, and that the results obtained
constitute an important step forward in this field. We indeed plan to publish our findings in
a scientific paper and continue to develop the methodology presented to achieve an effective
exploitation of the WL from cosmic voids.
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2009, Physics Letters B, 681, 74

Okabe, N., Takada, M., Umetsu, K., Futamase,
T., & Smith, G. P. 2010, Publ. Astron. Soc.
Japan, 62, 811

Padmanabhan, T. 1993, Structure Formation in
the Universe

Paillas, E., Lagos, C. D. P., Padilla, N., et al.
2017, Mon. Not. R. Astron. Soc., 470, 4434

Paz, D., Lares, M., Ceccarelli, L., Padilla, N., &
Lambas, D. G. 2013, Monthly Notices of the
Royal Astronomical Society, 436, 436

Peebles, P. J. E. 1980, The large-scale structure
of the universe

Peel, A., Pettorino, V., Giocoli, C., Starck, J.-L.,
& Baldi, M. 2018, Astron. Astrophys., 619, A38

Perico, Eder L. D., Voivodic, Rodrigo, Lima, Mar-
cos, & Mota, David F. 2019, AA, 632, 632

Perlmutter, S., Aldering, G., Goldhaber, G., et al.
1999, Astrophys. J., 517, 565

Perlmutter, S., Turner, M. S., & White, M. 1999,
Phys. Rev. Lett., 83, 83

Petri, A., Haiman, Z., & May, M. 2016, Phys. Rev.
D, 93, 93

Petri, A., Haiman, Z., & May, M. 2017, Phys. Rev.
D, 95, 95

Piazza, F. & Vernizzi, F. 2013, Classical and
Quantum Gravity, 30, 214007

Pisani, A., Lavaux, G., Sutter, P. M., & Wandelt,
B. D. 2014, Mon. Not. R. Astron. Soc., 443,
3238

Pisani, A., Massara, E., Spergel, D. N., et al. 2019,
, 51, 40

Pisani, A., Sutter, P., Lavaux, G., & Wandelt, B.
2016, in The Zeldovich Universe: Genesis and
Growth of the Cosmic Web, ed. R. van de Wey-
gaert, S. Shandarin, E. Saar, & J. Einasto, Vol.
308, 546–550

Pisani, A., Sutter, P. M., Hamaus, N., et al. 2015,
Phys. Rev. D, 92, 92

116

http://dx.doi.org/10.1111/j.1365-2966.2006.11315.x
http://dx.doi.org/10.1111/j.1365-2966.2006.11315.x
http://dx.doi.org/10.1093/mnras/stz972
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487..104M
https://ui.adsabs.harvard.edu/abs/1974A&A....37..225M
http://dx.doi.org/10.1051/0004-6361/201424107
https://ui.adsabs.harvard.edu/abs/2014A&A...570A.106M
http://dx.doi.org/10.1086/170555
https://ui.adsabs.harvard.edu/abs/1991ApJ...380....1M
http://dx.doi.org/10.1086/176027
http://dx.doi.org/10.1086/176027
http://dx.doi.org/10.1093/mnrasl/slx112
http://dx.doi.org/10.1093/mnrasl/slx112
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471L..82M
http://dx.doi.org/10.1093/mnrasl/slx112
http://dx.doi.org/10.1093/mnrasl/slx112
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471L..82M
http://dx.doi.org/10.1103/PhysRevLett.110.121302
https://ui.adsabs.harvard.edu/abs/2013PhRvL.110l1302M
https://ui.adsabs.harvard.edu/abs/2020arXiv200914199M
http://dx.doi.org/10.48550/arXiv.2009.14199
http://dx.doi.org/10.1093/mnras/stv2131
http://dx.doi.org/10.1093/mnras/stv2131
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454.2228N
http://dx.doi.org/10.1093/mnras/stv1994
http://dx.doi.org/10.1093/mnras/stv1994
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454..889N
http://dx.doi.org/10.1093/mnras/stv513
https://ui.adsabs.harvard.edu/abs/2015MNRAS.449.3997N
http://dx.doi.org/10.1093/mnras/staa3074
http://dx.doi.org/10.1093/mnras/staa3074
http://dx.doi.org/10.1093/mnras/sty2199
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.5211N
http://dx.doi.org/10.1111/j.1365-2966.2008.13180.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13180.x
http://dx.doi.org/10.1111/j.1365-2966.2004.08505.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.356.1222N
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1142/S0219887807001928
https://ui.adsabs.harvard.edu/abs/2007IJGMM..04..115N
http://dx.doi.org/10.1103/PhysRevD.78.046006
https://ui.adsabs.harvard.edu/abs/2008PhRvD..78d6006N
http://dx.doi.org/10.1103/PhysRevD.77.026007
https://ui.adsabs.harvard.edu/abs/2008PhRvD..77b6007N
http://dx.doi.org/10.1016/j.physrep.2011.04.001
https://ui.adsabs.harvard.edu/abs/2011PhR...505...59N
http://dx.doi.org/10.1016/j.physletb.2009.09.045
https://ui.adsabs.harvard.edu/abs/2009PhLB..681...74N
http://dx.doi.org/10.1093/pasj/62.3.811
http://dx.doi.org/10.1093/pasj/62.3.811
https://ui.adsabs.harvard.edu/abs/2010PASJ...62..811O
http://dx.doi.org/10.1093/mnras/stx1514
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.4434P
http://dx.doi.org/10.1093/mnras/stt1836
http://dx.doi.org/10.1093/mnras/stt1836
http://dx.doi.org/10.1051/0004-6361/201833481
https://ui.adsabs.harvard.edu/abs/2018A&A...619A..38P
http://dx.doi.org/10.1051/0004-6361/201935949
http://dx.doi.org/10.1086/307221
https://ui.adsabs.harvard.edu/abs/1999ApJ...517..565P
http://dx.doi.org/10.1103/PhysRevLett.83.670
http://dx.doi.org/10.1103/PhysRevD.93.063524
http://dx.doi.org/10.1103/PhysRevD.93.063524
http://dx.doi.org/10.1103/PhysRevD.95.123503
http://dx.doi.org/10.1103/PhysRevD.95.123503
http://dx.doi.org/10.1088/0264-9381/30/21/214007
http://dx.doi.org/10.1088/0264-9381/30/21/214007
https://ui.adsabs.harvard.edu/abs/2013CQGra..30u4007P
http://dx.doi.org/10.1093/mnras/stu1399
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443.3238P
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443.3238P
http://dx.doi.org/10.48550/arXiv.1903.05161
https://ui.adsabs.harvard.edu/abs/2019BAAS...51c..40P
https://ui.adsabs.harvard.edu/abs/2016IAUS..308..546P
http://dx.doi.org/10.1103/PhysRevD.92.083531


Planck Collaboration, Ade, P. A. R., Aghanim,
N., et al. 2016a, Astron. Astrophys., 594, A20

Planck Collaboration, Ade, P. A. R., Aghanim,
N., et al. 2016b, Astron. Astrophys., 594, A13

Planck Collaboration, Ade, P. A. R., Aghanim,
N., et al. 2016c, AA, 594, 594

Planck Collaboration, Aghanim, N., Akrami, Y.,
et al. 2020a, Astron. Astrophys., 641, A6

Planck Collaboration, Aghanim, N., Akrami, Y.,
et al. 2020b, Astron. Astrophys., 641, A5

Platen, E., Van De Weygaert, R., & Jones, B.
J. T. 2007, Monthly Notices of the Royal As-
tronomical Society, 380, 380

Poulin, V., Boddy, K. K., Bird, S., &
Kamionkowski, M. 2018, Phys. Rev. D, 97,
123504

Press, W. H. & Schechter, P. 1974, Astrophys. J.,
187, 425

Puchwein, E., Baldi, M., & Springel, V. 2013,
Mon. Not. R. Astron. Soc., 436, 348

Qin, J., Melia, F., & Zhang, T.-J. 2021, Monthly
Notices of the Royal Astronomical Society, 502,
502

Refregier, A., Kacprzak, T., Amara, A., Bridle, S.,
& Rowe, B. 2012, Mon. Not. R. Astron. Soc.,
425, 1951

Riess, A. G., Casertano, S., Yuan, W., Macri,
L. M., & Scolnic, D. 2019a, Astrophys. J., 876,
85

Riess, A. G., Casertano, S., Yuan, W., Macri,
L. M., & Scolnic, D. 2019b, Astrophys. J., 876,
85

Riess, A. G., Filippenko, A. V., Challis, P., et al.
1998, Astron. J., 116, 1009

Riess, A. G., Filippenko, A. V., Challis, P., Cloc-
chiatti, A., & Diercks, A. e. o. 1998, The As-
trophysical Journal, 116, 116

Roncarelli, M., Baldi, M., & Villaescusa-Navarro,
F. 2018, Mon. Not. R. Astron. Soc., 481, 2497

Roncarelli, M., Moscardini, L., Borgani, S., &
Dolag, K. 2007, Mon. Not. R. Astron. Soc., 378,
1259

Ronconi, T. & Marulli, F. 2017, Astron. Astro-
phys., 607, A24

Ryden, B. 2016, Introduction to Cosmology

Saito, S., Takada, M., & Taruya, A. 2008, Phys.
Rev. Lett., 100, 100

Sakstein, J. & Trodden, M. 2020, Phys. Rev.
Lett., 124, 161301

Sánchez, C., Clampitt, J., Kovacs, A., et al. 2017,
Mon. Not. R. Astron. Soc., 465, 746

Scaramella, R. 2014, in Building the Euclid Clus-
ter Survey - Scientific Program, 1
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