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Abstract

The discovery of gravitational waves (GWs) from compact binary coalescences

in 2015 unlocked new possibilities for studying the Universe. As their intrinsic

loudness can be predicted by General Relativity, GWs provide a direct measure-

ment of the luminosity distance, making them standard sirens. To complement

this information and use them as cosmological probes, it is necessary to break the

degeneracy between the redshift and the binary masses. In the absence of an elec-

tromagnetic counterpart, galaxy catalogues can be used to break this degeneracy,

and in this case GWs are referred to as dark sirens.

In this Thesis, I used GW events as dark sirens to constrain parameters of

different binary black hole mass function (MF) models. I investigated two mock

GW catalogues simulating the current O4 and future O5 observing runs by the

LIGO-Virgo-KAGRA network, and explored the capability of discriminating be-

tween the different MF models with future data. I implemented a new MF model

and a nested sampling-based posterior sampling method in the CHIMERA code to

estimate Bayesian evidence of different MFs. In addition, I developed code to

compute statistical diagnostics such as logB, DIC, and PPC for model selection.

Analysing the GW catalogues with available MFs, I constrained their parameters,

compared them, and identified the best-fitting model along with the capability

to distinguish them. Simultaneously, I conducted a sizing analysis to estimate

computational time for GW data analysis. In the last part, I investigated the

potential effects of different catalogue assumptions on results, including errors in

galaxy catalogue redshift, GW event data smoothing methods, and varying GW

event samples.

This work paves the way for the optimisation of future GW analysis, propos-

ing strategies to maximise the scientific return and computing capabilities and

providing forecasts on expected performances achievable with future GW data.

i

https://github.com/CosmoStatGW/CHIMERA/
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Preface

Scientific Framework The discovery of the accelerated expansion of the Uni-

verse represents a significant milestone in modern cosmology. To understand

which are the underlying mechanisms driving this expansion, over the years,

different cosmological probes, such as the Cosmic Microwave Background,

Type Ia Supernovae, and Baryon Acoustic Oscillations, have been studied in

depth and used. At present, these probes are being pushed to their limits,

and impressive constraints have been obtained allowing us to shape the con-

cordance cosmological model. However, the recent achievement of precision

at the percentage level has shown tensions between measurements obtained

through different methodologies, the main one being the H0 tension between

the values obtained with Type Ia supernovae (Riess et al., 2022) and the

CMB (Aghanim et al., 2020). These tensions may be an indication of sys-

tematic effects that are not accounted for or of the first proof of new physics

to be discovered. Thus, new cosmological probes are now being used in order

to confirm or eliminate these tensions and increase the accuracy and robust-

ness of parameter constraints (Moresco et al., 2022).

Since the first direct detection of a gravitational wave (GW) event, i.e.

GW150914 (Abbott et al., 2016), and the later one of GW170817 (Abbott

et al., 2017b), which opened the era of multimessenger astronomy, GWs

have started to be used as alternative cosmological probes (Schutz, 1986;

Holz and Hughes, 2005; Dalal et al., 2006). Indeed, since their loudness

comes directly from assuming the validity of general relativity, they provide

a model-independent estimate of the luminosity distance without the need

for further calibrations. This is opposite to what is done with supernovae,
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2 PREFACE

which require a distance ladder calibration. For this reason, GWs emerge

as promising standard sirens. In particular, compact binary coalescences

(CBCs) are amongst the most favourable systems that are expected to pro-

duce well-detectable GW signals. However, to obtain a measurement of the

luminosity distance dL(z) from these signals, information on the redshift of

the source is needed. The main problem of this approach is that with these

signals it is not possible to measure directly the redshift z: high masses at

high z produce the same signal as low masses at low z. Therefore, there

is a degeneracy between z and the source binary system masses. Resolving

this degeneracy is essential for obtaining constraints on various cosmological

parameters (such as H0) and on the characteristics of Binary Black Hole

(BBH) populations (such as their mass distribution).

Method To break the degeneracy between the GW parameters, three different

approaches have been developed to obtain cosmological constraints from GW

observations (Moresco et al., 2022). In these approaches, GWs are identified

as bright, dark, and spectral sirens. We refer to them as bright sirens when

the GW signal has an associated electromagnetic counterpart. To date, there

is only one example, GW170817, which is associated with the detection of

a kilonova. This event enabled precise measurement of the source redshift

through the observation of the host galaxy spectrum, providing the first GW

measurement of H0 and other constraints on modified gravity theories (Ab-

bott et al., 2017a,b, 2019). Unfortunately, the majority of the GW events

detected so far are merging BBH, which are not expected to produce de-

tectable EM signals. For this reason, these events are called dark sirens.

In this case, the redshift information can be obtained by cross-correlating

the GW signals with galaxy catalogues. In practice, all galaxies within the

GW localisation volume are used as potential hosts to obtain the redshift

information through a statistical analysis (Del Pozzo, 2012). Finally, another

approach relies on GW data alone. Here we refer to them as spectral sirens

and the knowledge of the redshift is obtained including prior knowledge of

the astrophysical properties of the GW emitters (mass distribution and rate

evolution).
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In this Thesis, I studied two mock catalogues, one reproducing GW de-

tections with LIGO-Virgo-KAGRA O4 detector network and one with O5

detector network, to explore the constraints that can be obtained from GWs

used as dark sirens. In particular, I have studied the constraints on BBH

mass function parameters, the possibility or not to find a single preferred

model, and the dependence of the constraints on H0 given different analysis

parameters. For this reason, the work has been divided into four steps.

Firstly, I have studied three publicly available samplers: emcee (Foreman-

Mackey et al., 2013), zeus (Karamanis et al., 2021) and dynesty (Spea-

gle, 2020), characterising their performances and how they scale with in-

put parameters. Secondly, I used the publicly available Python software

CHIMERA (Borghi et al., 2024) to constrain and study the source popula-

tion, at fixed cosmology, by developing the code further to include a not

implemented mass function. To perform model comparison, I used Bayesian

hierarchical analyses implementing a nested sampling analysis by combin-

ing CHIMERA with dynesty. Then, I compared the results implementing

model selection methods, namely Bayesian evidence, Deviance Information

Criterion, and Posterior Predictive Checks. Lastly, I explored how selecting

different values of galaxies’ redshift uncertainty and KDE bandwidth, as well

as different subsamples of the O5 dataset, influence the final mass posterior

distribution of H0.

Scientific Objective The main objectives of this dissertation are the following:

1. Characterisation of three publicly available parameter space samplers

studying their differences when constraining parameters of a test model

and how they scale when changing some of their parameters.

2. Development and validation of a new module in , to include a BBH

mass function model that extends the models already included.

3. Development of a new module to perform a nested sampling analysis

combining the dynesty nested sampler with .

4. Estimation and comparison of the mass function parameters from two

mock catalogues simulating the future O4 and O5 GW datasets.

https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
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5. Comparison of the different mass functions with three robust model

comparison criteria, namely Bayesian evidence, Deviance Information

Criterion, and Posterior Predictive Checks; aiming to assess the possi-

bility of finding strong evidence of a favoured model with future data

accuracies.

6. Study of possible biases and dependences on different parameters and

sample selection of the H0 posterior distribution.

Outlook The structure of the Thesis is summarised here with a brief description

of the contents of each Chapter:

• In Chapter 1 the general cosmological framework, in which GWs are em-

bedded, is presented, along with a description of how they can be used

as cosmological probes and their analysis state of the art. Specifically,

after a first introduction on the concordance cosmological model, the

theory behind GWs will be discussed. Then, the methods to use them

as standard sirens are presented. In the last part of the Chapter a brief

description of the two main GW events, GW150914 and GW170817,

will be presented, followed by a recap of the present-day GW dataset

and of the future observing runs and detectors.

• In Chapter 2 the statistical framework is described, together with a

presentation of BBH mass distributions and methods to sample the pa-

rameter space. In particular, a brief recap of the hierarchical Bayesian

statistic basis is presented, followed by a more complete picture of

Bayesian inference: likelihood and selection effects. After that, four

mass function models are described, namely: truncated power law, bro-

ken power law, power law plus one Gaussian peak, and power law with

two Gaussian peaks. In the last part of the Chapter, the affine invariant

and nested sampling methods are described with a description of three

samplers.

• In Chapter 3 the data used for the analyses are presented. Specifically,

in the first part it is described how the two datasets have been generated,

then, it follows their characterisations.
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• In Chapter 4 the results will be presented. In the first section, the mass

function parameters constraints are reported and discussed along with

the computational scaling of these analyses and model comparison and

selection. The second section presents the results obtained by studying

how the posterior distributions of H0 are affected by the variation of

some parameters and the sample selection.

• In Chapter 5 all the results are summarised along with the future per-

spectives of this work.
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Chapter 1

Introduction

This first chapter introduces the theoretical framework within which my disser-

tation project unfolds. In the first section, the basic equations describing the

general cosmological context are presented. Then, different aspects of Gravita-

tional Waves (GW) are discussed, starting from how they are embedded in the

cosmological model up to how they can be used as probes in both cosmology and

astrophysics.

1.1 Cosmological framework

Thanks to Einstein’s General Relativity theory we have the possibility to model

and test our Universe. Over the last century many different models have been pro-

posed, all based on Einstein’s theory, but nowadays the community has come up

with a concordance model of cosmology (Dodelson and Schmidt, 2003) known as

flat ΛCDM. In this model, the Universe is shaped as a flat Euclidean spacetime in

accelerated expansion, whose dynamic is determined by the different energy-matter

components that permeate it, such as the baryonic matter and radiation. Nowa-

days, the Universe is dominated by the cosmological constant Λ, associated with

Dark Energy, and Cold Dark Matter, which is non-baryonic matter. Even though

this model is supported by different probes and observational evidence, such as

the cosmic microwave background (CMB) and large-scale structures, many of its

ingredients are not known yet. For example, the two dominating components of

7
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the local Universe go beyond the Standard Model of particle physics. In addition,

the inflation mechanism, introduced to explain the generation of the initial per-

turbations that explain the formation of large structures and CMB anisotropies,

is largely undetermined.

1.1.1 Basic Equations of Cosmology

The geometry of the Universe can be described by a metric in which, as we are

dealing with an expanding Universe, it is introduced the scale factor a(t). Using

for convenience polar coordinates, we can express the metric as:

gµ,ν =


−1 0 0 0

0 a2(t)
1−κr2

0 0

0 0 a2(t)r2 0

0 0 0 a2(t)r2sin2θ

 . (1.1)

This is the so-called Friedmann-Lemaitre-Robertson-Walker metric where the scale

factor a(t) curves the space part of the spacetime while κ its curvature. In par-

ticular, the Universe can be flat (κ = 0), open (κ = −1), or closed ((κ = 1). The

concordance model selects a flat Universe. The form of this metric arises from

the cosmological principle, that implies the homogeneity and isotropy of the Uni-

verse (Weinberg, 1972). It is now possible to define the interval, which is a metric

invariant, directly from the FLRW metric:

ds2 = −c2dt2 + a2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2 θdϕ2)

]
(1.2)

Because of the time dependence of the scale factor we can not measure distances in

the classical way so we need to define some quantities that represent them (Coles

and Lucchin, 2003)(Fig.1.1). The first one is directly related to a(t) and is the

proper distance:

dpr(t) = a(t)r (1.3)
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Deriving the previous equation with respect to t, we obtain the Hubble-Lemaitre

law:

Vr(t) =
˙a(t)

a(t)
dpr(t), (1.4)

from which we recognize the Hubble parameter H(t) and the Hubble constant

H0(t), that is the present-day value of H(t):

H(t) =
˙a(t)

a(t)
, H0 =

˙a(t0)

a(t0)
. (1.5)

The scale factor can be linked to the redshift z with the expression:

a(t) =
1

1 + z
(1.6)

where for simplicity a(t0) = 1. Another distance used in cosmology is the comoving

distance, defined in the comoving frame of reference, which is not sensitive to the

expansion of the Universe:

dc = c

∫ t0

t

dt′

a(t′)
= c

∫ z

0

dz′

H(z′)
= a(t0)r (1.7)

where we have used eq. 1.6 to change the integration variable from dt′ to dz′.

Eqs. 1.3-1.7 can not be directly used in Cosmology as they depend on time through

the expansion factor a(t): a photon leaving a galaxy at z = 3 starts travelling with

a different value of a with respect to the present time. To solve this problem,

some known quantities can be adapted. In astronomy, a classic way to determine

the distance of an object is by measuring the angular size ∆θ of the object itself

knowing its size L. In this way, we obtain the angular diameter distance dA = L
∆θ

.

In the comoving frame, the size of the object becomes L
a
and the distance is given

by eq. 1.7 so we have that ∆θ = L
a

1
dc
. Comparing the two expressions, we come

up with the cosmological angular diameter distance:

dA =
1

1 + z
dc (1.8)
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Another distance definition is the luminosity distance that derives from the ex-

pression of the flux F = L
4πdL

. As we are in an expanding Universe the energy of

the emitted photons will be smaller today with respect to the emission time by a

factor of a, then the energy per unit time passing through a comoving shell, thus

the flux, will be smaller by a factor of a2. Therefore, comparing the two relations

we have the luminosity distance expression:

dL = (1 + z)dc (1.9)

Figure 1.1: The three different kinds of distances as a function of redshift z in
the concordance cosmological model: the comoving distance dc (black line), the
angular diameter distance dA (green line), and the luminosity distance dL (red
line).

The dynamic of the Universe is determined by the Einstein field equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1.10)
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where Rµν is the Ricci Tensor, R is the Ricci scalar and Tµν is the energy-

momentum tensor. First of all, I want to focus on Tµν which describes the content

of the Universe. In the concordance model, because of the cosmological principle,

the Universe is modeled at first order as a perfect fluid (Weinberg, 1972), thus the

form of the energy-momentum tensor is forced to be the following one:

T µν =


−ρc2 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 , (1.11)

where ρ is the energy density while P is the pressure of the fluid. In the ΛCDM

model, both the total pressure and the total energy density include a contribution

from the cosmological constant Λ, namely PΛ = −ρΛ = − Λ
8πG

. A conservation law

can be written applying the covariant derivative on Tµν :

∂ρ

∂t
− ρ

[
−3

ȧ

a
(1 + wi)

]
= 0 , (1.12)

where w = P
ρ
takes different values for radiation (= 1

3
), matter (= 0), and the

cosmological constant Λ (= −1). From this expression, the following relation

between density and redshift can be obtained:

ρi(z) = ρi,0a
−3(1+wi) = ρi,0(1 + z)3(1+wi) . (1.13)

Considering now the left-hand part of eq. 1.10, it is possible to derive the other

two main equations of Cosmology, the Friedmann equations:(
ȧ(t)

a(t)

)2

=
8πG

3
ρ (1.14)

ä(t)

a(t)
= −4πG

3
(ρ+ 3P ) (1.15)

Eq.1.14 is obtained considering only the time-time components of eq.1.10, while

eq.1.15 comes from the space-space components. From eq.1.14 we can define the

critical density ρcr,0 = 3
H2

0

8πG
, that is the quantity that nullifies the equation, from
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which in turn we can define the density parameters Ωr, Ωm, ΩΛ as:

Ωi =
ρcr,0
ρi,0

. (1.16)

In the flat ΛCDM model, the sum of the three density parameters is equal to 1

and represents the total energy density of the Universe. By combining the two

Friedmann equations with those for H0 and ρcr,0, we obtain an expression for H(z)

as a function of Ωi:

H(z) = H0[Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ]
1/2 (1.17)

1.2 The theory behind gravitational waves

From the theoretical point of view, GWs are the solution of the Einstein field

equation(eq.1.10), in particular they are a solution of its linearized version. Grav-

itational waves can be associated to ripples in the space-time that are no less than

a very small field perturbing the metric. In the linearized theory, the field equation

is expanded around the Minkowski flat space-time metric which is perturbed by

this small field:

gµν = ηµν + hµν , |hµν | ≪ 1 (1.18)

With this expression of the metric at linear order, the new field equations are:

Rµν −
1

2
ηµνR = 8πGTµν (1.19)

Writing down the full expressions for the linearized Ricci’s scalar and tensor and

choosing the Lorentz gauge, it is possible to retrieve a simple wave equation (Mag-

giore, 2007): {
2hµν = −16πGTµν

∂νh
µν = 0

(1.20)

where 2 = ∂µ∂µ is the D’Alambertian operator. To solve this system of equations

the compact-source approximation is assumed, in other terms the source is near the
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origin of the coordinate system and the point at which the field is evaluated is at

a distance r = ∥x∥ much larger than the extension of the source. Considering also

the fact that we are dealing with an isolated system, the generic final expression

for a GW is:

hij(ct, x) = −2G

c6r

[
d2I ij(ct′)

dt2

]
ct′=ct−r

(1.21)

and where i, j indicate the spatial components and I ij(ct) is the quadrupole-

momentum tensor of the source. It is important to highlight the fact that hij

is a very small quantity due to the constant 1
c6
. In vacuum (2hµν = 0), eq. 1.21

reduces to the simpler equation:

hµν(ct, x) =

∫
Aµν(k)eikρx

ρ

d3k (1.22)

which is the superposition of plane-wave solutions where Aµν is a 4x4 matrix

which defines the amplitude of the GW. The physical solutions corresponding to

propagating GWs in an empty space are obtained by taking the real part of hµν .

Note that k = (ω
c
, k1, k2, k3) = (ω

c
, k) is the 4-wavevector, and from the wave

equation it results that |k| is equal to 0, this leads to the fact that both phase and

group velocities of GWs are equal to c.

1.2.1 Gravitational waves propagation

In order to study the propagation of GWs the assumption of being in an empty

space is held, thus a possible solution of eq. 1.20 in vacuum will be hµν = Aµνeikρx
ρ
.

In addition to the Lorentz gauge, there is still the freedom to use a further gauge

transformation (Hobson et al., 2006) of the type h′µν = hµν − ∂µξν − ∂νξµ where

ξµ satisfies the Lorentz gauge if 2ξµ = 0. Wrapping all together this new gauge

condition with the Lorentz one and the symmetry of the amplitude matrix, the

independent components of a GW propagating in vacuum reduce to just two and

they will be the two possible GWs polarizations. This new adopted gauge is called

transverse-traceless gauge (TT gauge); indeed if we consider a GW propagating

along the x3 direction only and applying all the above considerations to the plane-
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wave solution we obtain that:

Aµν
TT =


0 0 0 0

0 h+ hx 0

0 hx −h+ 0

0 0 0 0

 (1.23)

Aµν
TT = h+e

µν
+ + hxe

µν
x , eµν+ =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 eµνx =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 (1.24)

where it is possible to distinguish the plus and the cross polarizations. Notice that,

as the name itself of the gauge explains, the trace is null as well as the components

not transverse to the propagation’s direction. Obviously the TT gauge can be

generalized to a generic direction.

1.2.2 Gravitational waves interaction with test masses

Now we have an expression for hµν thus it is possible to study the effect of the

interaction of a GW with test masses. If we take only one free particle at rest it

could resemble that the GW does not produce any effect, but this is only because

we are choosing the TT gauge. So to study the effect it is essential to consider a

set of test particles, in particular to simplify things we pretend them to be all in

the x1 − x2 plane. The spatial distance between them can be expressed through

the 4-vector ξi = (ξ1, ξ2, 0) and after introducing the new quantity ζ i = ξi+ 1
2
hikξ

k

the physical separation becomes l2 = δijζ
iζj. It is useful to check how the two

polarizations behave separately. Let us consider first the plus polarization, with

simple computations it can be obtained that:

ζ = (ξ1, ξ2, 0) +
1

2
h+cos[k(x

0 − x3)](ξ1,−ξ2, 0) (1.25)
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Figure 1.2: The three panels show the interaction of GWs, with three different
polarization states, with test masses. In all three panels, the initial configuration
of the particles is shown by the open dots and from left to right k(x0−x3) is equal
to 2nπ, (2n+ 1

2
)π, (2n+1)π, (2n+ 3

2
)π. a) In the top panel the GW has Aµν = aeµν+ ,

i.e. the plus polarization. b) In the central panel the GW has Aµν = beµνx , i.e.
the cross polarization. c) In the bottom panel the GW has Aµν = a(eµν+ + ieµνx ),
i.e. the right-handed circular polarization. Illustrations taken from Hobson et al.
(2006)

where the cosine part represents the time variation (top panel Fig. 1.2). On the

other hand, the cross polarization produces (central panel Fig. 1.2):

ζ = (ξ1, ξ2, 0) +
1

2
hxcos[k(x

0 − x3)](ξ2, ξ1, 0) (1.26)
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The general solution is a combination of the 2 polarizations, for example if hx is

chosen such that hx = ±ih+, we obtain the two circular polarizations shown in

the bottom panel of Fig. 1.2.

1.2.3 Gravitational waves generation

The generation of a GW is obtained directly from eq.1.21, so what is needed is

an explicit expression for hij. To do this we can simplify things assuming to

be in the compact source approximation and in a slow-moving particle regime.

This last assumption allows us to express the quadrupole-momentum tensor as

the quadrupole-momentum of the matter density distribution:

I ij = c2
∫
ρ(ct, x)xixjd3x (1.27)

Considering a binary system, in which two objects rotate in a circular orbit, it

can be shown that the two polarization signals measured by an observer of the

two-body system behaves as:

h+ =
4

r

(
GMc

c2

) 5
3
(
πfGW

c

) 2
3
(
1 + cos2(i)

2

)
cos(2πfGW t)

hx =
4

r

(
GMc

c2

) 5
3
(
πfGW

c

) 2
3

cos(i) sin(2πfGW t)

(1.28)

where i is the angles formed between the direction of the observer and the normal

to the orbital plane; fGW is the frequency of the GW and it corresponds to two

times the frequency of the binary system; Mc is called chirp mass and corresponds

to µ
3
5m

2
5
tot with µ and mtot the reduced and total mass of the rotating system. To

be more accurate an inspiraling binary system should be considered, indeed the

system loses energy because of the GW emission. In light of this, the quasi-circular

orbit approximation can be introduced too, therefore both the separation and the

angular frequency of the rotating system are time-dependent, in particular the

last one increases as the first one gets smaller and smaller. It is necessary now to
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introduce the quantity:

Φ(t) = 2π

∫ t

t0

fGW (t)dt (1.29)

that enters in the trigonometric functions of eq:1.28 that then become:

h+ =
4

r

(
GMc

c2

) 5
3
(
πfGW (t)

c

) 2
3
(
1 + cos2(i)

2

)
cos(Φ(t))

hx =
4

r

(
GMc

c2

) 5
3
(
πfGW (t)

c

) 2
3

cos(i) sin(Φ(t))

(1.30)

It is possible to observe the typical shape of a GW generated by an inspiral binary

if we move from the standard time coordinate t to the so-called time to coales-

cence τ = tcoal − t; indeed rewriting eq.1.30 with the dependence to τ it can be

seen that both frequency and amplitude increase while approaching tcoal Fig.1.3.

As described at the beginning of this chapter we want to embed the propagation

Figure 1.3: The time evolution of the GW amplitude in the inspiral phase of a
binary system. Illustration taken from Maggiore (2007).

of a GW, produced by a compact binary system, in the ΛCDM model. Eq.1.30

are expressed assuming that the binary system is close to the observer, but now

we want to see what happens if we move the GW source at cosmological distance
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and consider the expansion of the Universe. First, the physical distance r has to

be modified in a(t0)r. Then, due to the fact that at cosmological distances the

observed frequency is not the same of the emitted one (f obs
GW =

fem
GW

1+z
) a depen-

dence on the redshift has to be introduced. It is worth thinking that there is no

reason that h+ and hx remain decoupled even in an expanding Universe, it can

be demonstrated that they actually don’t mix. Grouping all the new terms and

remembering eq. 1.9, we obtain the expressions for GWs propagating in a ΛCDM

Universe:

h+ =
4

dL

(
GMc

c2

) 5
3
(
πf obs

GW (t)

c

) 2
3
(
1 + cos2(i)

2

)
cos(Φ(t))

hx =
4

dL

(
GMc

c2

) 5
3
(
πf obs

GW (t)

c

) 2
3

cos(i) sin(Φ(t))

(1.31)

whereMc =Mc(1+z). The typical amplitude of these signals is roughly O(10−21).

1.3 Gravitational waves as standard sirens

The measurement of the GW signals is opening new doors both in the field of as-

trophysics and cosmology. In the works of Schutz (1986); Holz and Hughes (2005);

Dalal et al. (2006) it is enlightened how GW signals coming from merging black

holes and neutron stars can be used as cosmological probes, in particular because

they can be used in the same way as standard candles. Indeed it can be easily

seen from eq. 1.31 that by measuring both the GW amplitude and frequency, it is

possible to obtain the distance dL of the source without any additional calibration.

The main problem of this approach is that the signal is degenerate with the red-

shift z: high masses at high redshifts produce the same signal as low masses at low

redshifts. Therefore, it is impossible to obtain both redshift and luminosity dis-

tance from GW data alone. Nevertheless, if the z information is somehow available

cosmological parameters can be constrained thanks to the distance-redshift rela-

tion in eq. 1.9. Due to the fact that the loudness of these kinds of sources comes

directly from assuming the validity of general relativity, they provide a model-

independent estimate of the luminosity distance, hence they have been defined as
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standard sirens. Moreover GW signal depends on dL as 1
dL

instead of 1
d2L
, like the

majority of electromagnetic signals, thus they can be used to prob higher redshifts.

However, recovering the redshift of the source producing the detected GW is not a

simple task, therefore three different approaches (Moresco et al., 2022) have been

developed to maximise the usage of the continuously increasing GW catalogues,

which nowadays extend up to dL ≳ 5Gpc and will soon go beyond 10Gpc, allowing

to probe the expansion history out to z > 1.

1.3.1 Bright sirens

The straightforward case, but also the less probable to happen, is the case when

multimessenger observations provide an electromagnetic counterpart to the GW

signal giving the possibility to precisely assign a host galaxy to the event. In this

eventuality, the GW event is said to be a bright siren. In this case, the redshift

of the source is obtained from the host galaxy spectrum and combined with the

estimate of the luminosity distance obtained from the GW signal. This is the

optimal case but nowadays even the rarest one, as just 1
90

of events can provide

this opportunity. Indeed, in order to produce an EM counterpart the emitting

event must involve a neutron star whose merging with another neutron star or

a black hole produces a gamma-ray burst (GRB) and/or a kilonova. The only

example of a bright siren is the GW170817 event, which was associated with the

detection of the GRB 170817A. This event has an outstanding importance as it

opened the doors to multimessenger astronomy providing the first standard siren

measurement of the Hubble constant and other constraints on modified gravity

theories (Abbott et al., 2017a,b, 2019).

1.3.2 Dark sirens

Unfortunately, the majority of the detected GW events were emitted by the merg-

ing of Binary Black Hole (BBH), thus any kind of EM signal could be produced.

In this case, the events are called dark sirens.

Without an EM counterpart, one may think of identifying a unique host galaxy

localising the GW event in the sky and this would be essentially equal to a bright
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siren. Unfortunately, the detected events have a too large localisation area to follow

this approach but a similar procedure can be used taking advantage of galaxy cat-

alogues. Galaxies within the GW localisation area are considered possible hosts

of the event and then, thanks to Bayesian statistics, as described in Del Pozzo

(2012), used to obtain the correct values of cosmological parameters. Obviously,

the smaller the localisation area, the more informative will be the inferred val-

ues. Spectroscopic galaxy catalogues are not very often available at the typical

distances of GW events, but photometric catalogues can still be useful when they

overlap with the GW skymap.

A second path that can be followed when there are no complete galaxy catalogues

available, but the detected event is well localised, is to match the spatial cluster-

ing of GW sources as a function of the luminosity distance with the clustering of

galaxies as a function of the redshift. The matching between these two spatial

clustering measurements is cosmological dependent and can be used to constrain

cosmological parameters. Finally, another extension of the statistical dark siren

method is to use prior knowledge on the merger redshift distribution, derived from

measurements of the star formation rate and time delay distribution of binary

mergers, that has to be compared against the distribution inferred from GW data.

1.3.3 Spectral sirens

The last proposed procedure relies only on GW data, without the need for any

other dataset that provides information on redshift. The knowledge on z is ex-

tracted directly from some relevant features in the source population, in particular

the BBH one as they are the most detected but also binary neutron stars are a

promising and useful population. In this case, GW events are referred to as spec-

tral sirens (Ezquiaga and Holz, 2022). At present time, the strongest feature of

this approach is the steep drop-off in the black hole mass distribution, observed

at ∼ 40 − 65M⊙, interpreted as the imprint of the pair-instability mechanism,

which may be accompanied by a pile-up of black hole immediately below the gap

at ≳ 35M⊙. Due to the expected independence on z of the pair-instability physics,

the location of such feature can be inferred together with the z − dL relation by

observing a set of GWs that provide the redshifted mass distribution as a func-
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tion of luminosity distance. This is not the only feature studied and used, other

possible properties can be for example the spin distribution or the rate evolution.

Nowadays this method is not able to produce competitive constraints on cosmo-

logical parameters. However, population models are improving with the increasing

number of data, leading to a better calibration of these features and therefore to

be considered robust cosmological probes.

1.3.4 Cosmological interest

As mentioned at the beginning of this section, there is a strong relation be-

tween the study of GWs and the estimation of cosmological parameters thanks

to the independence of the luminosity distance estimate from any cosmological

model. The parameter that is currently under the lens is H0 because of the in-

terest in the H0 tension between the value H0 = (67.27 ± 0.60) km/s/Mpc ob-

tained studying the CMB (Aghanim et al., 2020), so at high redshift, and H0 =

(73.04± 1.04) km/s/Mpc based on the Supernovae calibrated by Cepheids (Riess

et al., 2022), therefore at low z and because the present day measurements are

mainly in the low redshift regime which allows to simplify eq.1.9 in:

dL =
cz

H0

+O(z2) (1.32)

Until now all the results obtained with the three different methods including the

one extracted from the bright siren GW170817 (H0 = 70+12
−8 km/s/Mpc)) can not

solve the tension as they are too broad (Abdalla et al., 2022). It is obviously ex-

pected that with future detectors and measurements, the constraints will be more

precise; for example, it has been predicted that around 50 additional observations

of bright sirens are needed to discriminate between CMB and SN measurements

of H0 with a precision of 1–2%. With GW standard sirens it is also possible to

probe the Universe at cosmological redshifts and as a consequence to be sensitive

to other parameters besides the Hubble constant such as Ωm and w(z). Another

important opportunity is to test general relativity and put new constraints on

modified gravity theories.
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1.3.5 Astrophysical interest

The detection of GW events is not a cosmological interest only, but it has many

implications in the astrophysical framework too, in particular in the investigations

on GW sources. From the last observing run it has been possible to study in more

depth the binaries population and their features (Abbott et al., 2023b). The most

studied binaries are the black hole ones (BBH) as they are the sources with the

most detected events. It has been possible to draw two conclusions about their

mass distribution. The first one is that the distribution itself is not a simple power

law but there is evidence, obtained with different analysis, suggested by overden-

sities in the chirp mass distribution, of the presence of a peak at masses around

35M⊙ and one between 8 and 10M⊙. The second one is that the results obtained

by the observed data provide inconclusive evidence of the population gap between

50 and 120M⊙ due to pair-instability SN predicted by stellar evolution models.

The evolution of the merger rate density of BBH has been constrained to be at

least an increasing power-law as a function of redshift. The black hole population

is not the only one that is studied even neutron star-black hole (NSBH) and neu-

tron star (BNS) binaries cover an important role. In addition, combining results

from both populations has challenged the inferred neutron star mass distribution

with a peak obtained from radio observations. Last but not least more detailed

studies on the final stages of supernovae explosions have been carried on because

of the scarcity of observations between the heaviest neutron star and the lightest

black hole leading to two main different models that have to be validated by fu-

ture data. One model predicts the gap between 2-5M⊙ due to a rapid timescale

(∼10ms instead of ∼100ms) SN instability (Belczynski et al., 2012); the second

model instead fills the gap predicting a delayed timescale (∼200ms) due to an

accretion of the proto-neutron star before the explosion (Zevin et al., 2020).

1.4 State of the art of GW analysis

Achieving the current state of GWs detections was not a straightforward journey

because both of the poor knowledge of the topic and the weakness of the signals.

The path towards present-day detectors and analysis started in 1966 with the res-
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onant detector of Joe Weber (Weber, 1960) which however never detected any

signal. Then, the community in parallel moved to the solution of interferometric

detectors; the first one was TAMA300 located in Japan which took data between

1999 and 2004, but with a too-low sensitivity. The same sensitivity problem was

found in the German detector GEO600, which started to take data in 2003. It has

been now updated and it is still working but just as a testing facility. At present

time, the majority of resources are spent on interferometers; the three main run-

ning detectors are LIGO, Virgo, and KAGRA.

LIGO is located in the USA and it is composed of two identical interferometers

placed 3002 km far from each other, one in Livingston, Louisiana, and one in

Hanford, Washington. Virgo is the Italian interferometer placed near Pisa, while

KAGRA is the newest one and it is placed under a mountain in Japan. The advan-

tage of having many instruments around the world is that data can be combined

giving a higher probability that detected events are really GW signals and not just

noise, and moreover to better localise the event in the sky.

The first evidence of the existence of GW is an indirect one. In 1974, Hulse and

Taylor detected the binary pulsar PSR 1913+16 for which they were able to com-

pute the shrinking of its orbit and to compare it with the value predicted by general

relativity(Hulse and Taylor, 1975). In order to have the first direct evidence we

had to wait until 2015. In the following paragraphs, I describe the first direct

detections and the future perspective of GW detection and analysis.

1.4.1 GW150914

The first-ever direct detection of a GW is GW150914 (Abbott et al., 2016) that

has been detected on September 14, 2015 thanks to the two interferometers of

the LIGO observatory located at Hanford and Livingston. The signal started at

a detected frequency fGW ≃ 30Hz, followed by eight cycles of the inspiral phase

characterised by a steady increase in frequency and amplitude. The GW signal

reached its maximum amplitude at fGW ≃ 144Hz, at which the merging occurred,

followed by the ringdown phase. After a complete statistical analysis, it was con-

cluded that this event, which was only subsequently classified as GW150914, was

produced by two BHs with initial masses m1 ∼ 36M⊙ and m2 ∼ 29M⊙, that
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coalesced at a luminosity distance of dL ∼ 440Mpc to form a 62M⊙ black hole.

Assuming the cosmological parameters from Planck (Aghanim et al., 2020), it is

obtained that the source is located at z ≃ 0.09.

The properties obtained from the analysis of this event give us the opportunity

to further investigate the characteristics of compact binary coalescences and in

particular of BBH systems, to which GW150914 belongs. This is particularly im-

portant since no BBH system had ever been discovered before the observation of

GW150914, as it is not expected to produce an electromagnetic counterpart. One

of the most important pieces of information about the black hole-black hole binary

population obtained from GW150914 was the first observation of two BHs with

masses of ∼ 30M⊙ and the birth of a black hole with a mass of ≥ 60M⊙. The

novelty of this result is related to the fact that the only BHs with stellar mass that

had been observed until then mostly had masses in the range of 5− 10M⊙, with

some exceptions, but always with masses smaller than 20M⊙. Due to the need

to observe electromagnetic emission, these observations were exclusively X-ray bi-

naries. Therefore, it is clear that the discovery of GW150914 has significantly

extended the mass range of stellar-mass BHs.

The observation of GW150914 provided evidence that BBH systems can form and

merge at a detectable rate within the time scale of the universe. The observation

of such an event was not obvious, because a black hole-black hole system might

not form at all, due to some processes that could effectively suppress the two main

formation mechanisms:

• The BBH arises from the development of an isolated binary system. In this

case, the suppression mechanism is associated with the interaction between

a first black hole and a companion star that undergoes massive expansion

during its post-main sequence phases. In particular, due to the extended

envelope of the star, the binary system enters a phase of joint envelope evo-

lution in which the black hole moves through the envelope of its companion.

This motion within the envelope generates a certain friction that leads to

the merger of the two objects before the formation of the second black hole,

thus blocking the possibility of the formation of a BBH system.

• The BBH is formed thanks to the dynamic interaction between pre-existing
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isolated BHs in a dense cluster. In this case, the main suppression mechanism

is due to the dynamic ejection of central objects as a result of three-body

interactions.

1.4.2 GW170817

In section 1.3.1 I have already mentioned the event GW170817. It has been de-

tected on August 17, 2017 by both the LIGO and Virgo interferometers. It has

been associated with a neutron star-neutron star coalescence, the first ever neutron

star-neutron star merger detected. As mentioned before, a short γ-ray burst was

observed independently by Fermi-GBM and was later associated with the same

merger event. The signal reached the detectors at a frequency of fGW ≃ 30Hz

and reached its maximum amplitude at fGW ≃ 400Hz.

After a complete statistical analysis, it was possible to deduce the astrophysical

properties of the compact objects responsible for the emission. In particular, it

was found that the masses of the two objects composing the binary system are

m1 ∼ 1.48M⊙ and m2 ∼ 1.27M⊙, respectively, while the luminosity distance

dL ∼ 40 Mpc, corresponding to a redshift z ≃ 0.008.

The masses obtained, which are much smaller than those of GW150914, were the

first evidence that this event was generated by two NSs, and not a neutron star-

black hole binary system or a black hole-black hole merger. Furthermore, the

discovery of the electromagnetic counterpart was a piece of additional evidence

that GW170817 was a binary neutron star (BNS) merger. The fact that the event

was detected by three interferometers enables the localisation of the event within a

sky region of ∼ 28deg2, just for comparison, the localisation area of GW150914 is

∼ 600deg2. Soon after this observation, the Fermi-GBM telescope detected a short

γ-ray burst (GRB170817A) coming from the same region identified for GW170817.

The time interval between the GW detection and the GRB observation was (Mag-

giore, 2018):

∆t = 1.734± 0.054s (1.33)

which is in accordance with the theoretical time difference expected for such events.

In fact, the most accredited theory believes that GRBs are produced by internal
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processes, such as shocks or magnetic reconnection, in an ultra-relativistic and

highly collimated jet, which just follows from the merger of the compact objects.

Moreover, the Fermi-GBM observation, combined with other optical/IR obser-

vations, identified GRB 170917A at a location on the sky with right ascension

α(J2000) = 13h09m48s.085± 0.018 and declination δ(J2000) = −23◦22′53”.343±
0.218 from the centre of the galaxy NGC 4993. Thanks to the observation by

MUSE/VLT, it was possible to measure the redshift of the galaxy: z = 0.009783,

corresponding to a luminosity distance dL = 40.4± 3.4Mpc (Hjorth et al., 2017),

which is consistent with the GW estimate, therefore confirming that GW170817

occurred in NGC 4993. Therefore, the detection of a short GRB spatially and

temporally associated with GW170817 gave us the first proof that GRBs can be

produced during a BNSs merger event. Furthermore, thanks to the independent

measurement of the redshift it was possible to use the event as a bright siren and

to infer cosmological parameters. In particular, the inferred Hubble constant is

H0 = 70± 12km/s/Mpc.

These results that followed the detection of just one GW event gave birth to multi-

messenger astrophysics and showed how powerful it can be.

1.4.3 GWTC-3

Every GW instrument doesn’t work continuously but there are time windows in

which observational runs are planned. This strategy has been chosen in order to

allow improvements of the used technologies aimed to achieve always better sen-

sitivities. With time windows, each collaboration (LIGO, Virgo, KAGRA) knows

when to stop and restart the interferometers, preserving the simultaneous data

taking. For each run of observations, defined with capital O and a progressive

number (e.g. O3), a new catalogue of transient GW signals is produced updating

the previous one.

At the time in which I am writing, interferometers have just started the fourth ob-

serving run O4, and the most comprehensive set of GW observations presented to

date is the Gravitational Wave Transient Catalogue 3 (GWTC-3) (Abbott et al.,

2021), which collects signals detected in the second part of the third run (O3b),

i.e. in the period between 1 November, 2019 and 27 March, 2020. In the previous
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catalogue, i.e. O2, as well as for the majority of the time of O3, only LIGO and

Virgo were collecting data (Fig.1.4). The duty cycles for the three interferometers

in this period were: 79% (115.7 days) for LIGO Hanford, 79% (115.5 days) for

LIGO Livingston, and 76% (111.3 days) for Virgo. Furthermore, for 96.6% of the

time (142.0 days) at least one interferometer was observing, while for 85.3% (125.5

days) at least two detectors were observing. While KAGRA joined only for the

final part of the run by completing a two-week observation run combined with

GEO 600.

The catalogue contains 90 possible GW candidates from compact binaries coales-

cence of which 35 were added from O3b. Events have been chosen with a prob-

ability to be an astrophysical source greater than 50%. The previous catalogues,

i.e. GWTC-1 (O1+O2) in which there were both GW150914 and GW170817,

GWTC-2.1(O3a), contained respectively 11 and 55 candidates. It is therefore

possible to notice a strong increase of GW candidates, thanks to the improved

sensitivity of the detectors network. Indeed, by virtue of the improvements to

LIGO and Virgo not only did the sensitivity get better but also it was possible to

probe the Universe up to BNS ranges, i.e. the average distance at which a fiducial

1.4M⊙ + 1.4M⊙ BNS could be detected with a signal-to-noise ratio (SNR) of 8,

is ∼ 140Mpc with LIGO and up to ∼ 50Mpc with Virgo, while during the first

observing runs the farthest we could go was ∼ 100 and ∼ 30Mpc, respectively. All

the 35 new events introduced in GWTC-3 are signals that have been evaluated to

come from BBHs mergers with the exception of 2 of them, GW200105 162426 and

GW200115 042309, which are consistent with originating from neutron star–black

hole binaries (NSBHs) as they have an estimated secondary massm2 ≃ 1.9M⊙ and

m2 ≃ 1.5M⊙ (Abbott et al., 2021), respectively, that are within the mass range

of known NSs, and primary masses well above this range. Another event worth

mentioning is GW200210 09224, because it has an estimated secondary mass of

m2 ≃ 2.83M⊙ which is right above the NSs mass range, and therefore it could be

either the lightest black hole or the heaviest neutron star ever detected.
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1.4.4 Future observing runs: O4 and O5

The network of detectors is now in the O4 phase. This observing run started on

May 24, 2023 and it is planned to end on January 2025. Until March 2024 only

LIGO Hanford and LIGO Livingston will collect data, and then Virgo will join

the run too. In the meantime, KAGRA has been stopped at the beginning of

summer 2023 and will restart in spring 2024 and then it is planned to stop again

in order to allow its sensitivity to get higher than 10Mpc (BNS range). In this

run, LIGO is expected to reach a BNS range greater than 160Mpc. Due to the

reached high sensitivity, already in the testing phase there have been alerts of

possible candidates.

After O4 another observing run will be launched, called O5, it is planned to start

at the beginning of 2027 and to stop in 2030 (Fig.1.4). Collaborations have already

started to plan strong enhancements to push further the reduction of noise to reach

∼ 3300Mpc of BNS range. With these improvements, it is expected that detectors

will be crowded with real GW signals and, thanks to the cooperation between the

4 interferometers, to increase the rate of multi-messenger sources.

Figure 1.4: Past and future observing runs of the LVK collaboration. The
coloured regions show the periods in which data have been and will be col-
lected, while the grey regions indicate the periods in which the instruments will
be under maintenance. The distances reported over every observing run are the
BNS range for a single detector SNR threshold of 8. Illustration taken from
https://observing.docs.ligo.org/plan/.

https://observing.docs.ligo.org/plan/
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1.4.5 Future detectors

The existing detectors have intrinsic limitations, such as their arms length or

even their location, therefore the gains on noise reduction are limited. To go

beyond the current facilities, it is necessary to push the limit of all the technologies,

significantly increase the arms length, and explore new solutions. To move in this

direction we are approaching the era of the 3rd generation of GW observatories that

are already being planned and that will constitute a new global 3G network for GW

detection and observation. There are three planned and under discussion detectors:

two ground-based interferometers, i.e. Einstein Telescope (ET) (Punturo et al.,

2010) and Cosmic Explorer (CE) (Evans et al., 2021), and one that will operate

in space, i.e. Laser Interferometer Space Antenna (LISA) (Amaro-Seoane et al.,

2017). Actually, it exists also a Chinese counterpart of LISA which is called

Taiji (Luo et al., 2020).

ET is going to be built in Europe, even if the location and the configuration

are under debate. In particular, a deep study has been carried on in Branchesi

et al. (2023) to define what are the scientific advantages and disadvantages of

one configuration over the others. In general, it is planned to have at least two

detectors with arms length of 15 km and each of them to have 2 interferometers,

one for high and one for low frequencies.

CE the US 3G interferometer. It is based on the current LIGO concept but it will

be 10 times longer and 10 times more sensitive.

There are fundamental facility and technology differences between CE and ET,

but there is a strong overlap for everything related to astrophysics, data analysis,

calibration, and computing. It is predicted that with these two observatories it

will be possible to approach z ∼ 100 and therefore to study BBH with masses of

about 30M⊙ (Fig.1.5).

LISA will be a space-based GW observatory. It is an ESA and NASA project

that will consist of three spacecraft separated by 2.5 million km in a triangular

formation, following the Earth in its orbit around the Sun.

The synergy between these three detectors will open the possibility to probe the

era of the formation of the first astronomical objects with unmatched statistics

and SNR. In addition to this, the merger events would be monitored from the
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Figure 1.5: Redshift horizon at which a detection with SNR= 8 could be made with
current and future ground-based interferometers for 1.4M⊙ neutron stars binaries
(orange dots on the left) and 30M⊙ black holes binaries (black dots on the right).
The violet and green lines represent the forecast horizons for Cosmic Explore and
Einstein Telescope, respectively. Illustration adapted from Evans et al. (2021).
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early stages of the merging, opening the possibility to foresee and plan in advance

follow-up observations with EM facilities.
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Chapter 2

Methods

This chapter describes the data analysis process. In the first part, the statisti-

cal framework and its implementation in the pipeline are presented. Then, the

astrophysical models that have been used in the inference. The full analysis has

been carried out using CHIMERA (Combined Hierarchical Inference Model for Elec-

tromagnetic and gRavitational Wave Analysis), a novel Python code for the joint

analysis of GW transient catalogues and galaxy catalogues (Borghi et al., 2024),

allowing one to carry on cosmological studies combining GWs and catalogues of

potential host galaxies. The workflow of CHIMERA will be briefly described in the

last section of this Chapter.

2.1 Statistical framework

The first aim of this work is to study different BBH mass models and potential

biases that may arise from their misinterpretation. This is obtained by adopting

a hierarchical Bayesian inference approach, as this method allows one to simulta-

neously perform parameter estimation and model selection (Adams et al., 2012;

Thrane and Talbot, 2019). Bayesian inference is now widely used in the gravita-

tional wave field as there is a direct link between data and models. For example,

it is used to reconstruct the sky localisation of a GW event, to determine the Hub-

ble constant, and to study the formation mechanism of black hole binaries. The

term hierarchical arises because the analysis has two levels: at the highest level,

33
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there is the space of models being considered, while at the lower level, there are

the parameters of the models themselves. The general problem is that we have a

population of events, which are described by a set of event-level parameters θ (i.e.

those appearing in eq.1.31), from which we want to determine the set of hyper-

parameters λ that describe the source population, so that the number density of

sources follows the equation:

dN

dθ
(λ) = Nppop(θ|λ) (2.1)

where ppop is the distribution of the properties of the individual event called popu-

lation function and it is usually modeled analytically as we will see later (Mandel

et al., 2019). In CHIMERA, the population-level parameters are divided into three

different sets: BH mass function parameters λm; BH rate parameters λr; cosmo-

logical parameters λc; while the event-level parameters are θ = {dL, Ω̂,m1,m2},
where dL is the luminosity distance to the source, Ω̂ is the sky localisation, and

are m1,2 the binary masses. A definite and unique value of λ cannot be obtained;

the best that can be done is to obtain a posterior probability which, in the usual

Bayesian formalism, is given by:

p(λ|{di}) =
p({di}|λ)π(λ)

p({di})
(2.2)

where {di} are the measured data, π(λ) is the prior probability that contains the

previous knowledge on λ, p({di}|λ) is the likelihood function L, i.e. the probability
to obtain the data given the parameters. The term p({di}) is the so-called evidence

and is later denoted as Z. This quantity is no less than the likelihood marginalised

over all the parameters and therefore it is just a normalisation factor that is not

considered in parameter inference; however, when it comes to model comparison,

it is a crucial quantity that needs to be measured and I will describe later how.

2.1.1 Likelihood

The core part of statistical analysis is the construction and evaluation of the likeli-

hood. Assume to have a set of Nev of independent GW events dGW = {dGW
i } from

https://github.com/CosmoStatGW/CHIMERA/
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which we can measure the luminosity distance, the total likelihood is proportional

to the product of all single events’ likelihood times the population function:

L(dGW |λ) = p(dGW |λ) ∝ 1

ξ(λ)Nev

Nev∏
i=1

∫
p(dGW

i |θi, λc)ppop(θi|λ)dθi (2.3)

the term ξ(λ)Nev is introduced with the purpose of taking into account the selection

bias; the meaning of this term will be described in the next section. Notice that the

single event probability depends on the cosmological hyperparameters, since the

data contain information on the parameters in the detector frame θdet, and thus

to work in the source frame, parameter conversions are required. The luminosity

distance dL is given by eq.1.9 while mdet
1,2 = m1,2(1 + z).

Let us now see how the different components can be expressed. The single event

likelihood p(dGW
i |θi, λc), following the Bayes theorem, can be expressed as:

p(dGW
i |θi, λc) ∝

p(θi|dGW
i , λc)

π(θi)
(2.4)

where p(θi|dGW
i , λc) is obtained from p(θdeti |dGW

i , λc) which is the distribution that

provides the sets of event level parameters samples, while π(θi) is the prior prob-

ability.

The population function can also be divided into the product of two other distri-

butions:

ppop = p(m1,m2|λm)p(z, Ω̂|λz, λc) (2.5)

this expression can be used only under the assumption that p(m1,m2|λm) does not
evolve over time. This last probability is the distribution of m1 and m2 given a

well-shaped mass function of the sources that will be described in detail in section

2.2. The other term can be expressed as the product of two other distributions:

p(z, Ω̂|λz, λc) ∝ pgal(z, Ω̂|λc)prate(z|λz) (2.6)
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pgal is the probability to find a galaxy at redshift z and RA, DEC coordinates Ω̂.

This probability can be expressed as the weighted sum of two other distributions:

pgal(z, Ω̂|λc) = fRpcat(z, Ω̂|λc) + (1− fR)pmiss(z, Ω̂|λc) (2.7)

The first one, pcat, is the probability distribution built from galaxies in the cata-

logue while pmiss is introduced to encode in the likelihood the completeness of the

catalogue itself and includes information on both the number of missing galaxies

as a function of redshift and sky position and how these missing galaxies are dis-

tributed (Gair et al., 2023; Borghi et al., 2024).

prate instead is the probability that at redshift z there is a galaxy hosting a GW

event. This distribution is as follows:

prate(z|λz) ∝
ψ(z, λz)

(1 + z)
(2.8)

where the denominator is introduced for the conversion between the source and de-

tector frame while the numerator represents the merger rate evolution of compact

objects with redshift. In my work ψ(z, λz) is modelled following the parametrisa-

tion proposed in Madau and Dickinson (2014):

ψ(z, λz) =
(1 + z)γ

1 +
(

1+z
1+zp

)γ+κ (2.9)

Wrapping up all the pieces, i.e. eq.2.4-2.8, the final expression of the full likelihood

is:

p(dGW |λ) ∝ 1

ξ(λ)Nev

Nev∏
i=1

∫
dzdΩ̂KGW,i(z, Ω̂|λc, λm)pgal(z, Ω̂|λc)

ψ(z, λz)

(1 + z)
(2.10)

KGW,i(z, Ω̂|λc, λm) ≡
∫
dm1dm2

p(z,m1,m2, Ω̂|dGW
i , λc)

π(dL)π(mdet
1 )π(mdet

2 )

p(m1,m2|λm)
ddL
dz

(z;λc)(1 + z)2

(2.11)

where the (1 + z)2 and ddL
dz

(z;λc) =
dL
1+z

+ c(1+z)

H(z,λc)
terms are the Jacobian factors

coming from the passage from detector to source frame. It is worth to say that in
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CHIMERA the prior probabilities included in eq.2.4 are assumed to be flat for m1

and m2, π(m1,2) = 1, while for luminosity distance is imposed to be π(dL) ∝ d2L.

2.1.2 Selection effects

To have a complete view of the likelihood, it is key to characterise and understand

the meaning of the normalization factor ξ(λ). As I said at the beginning of the

previous section, this term is fundamental to provide a proper posterior distribu-

tion, as in general some events are easier to observe than others due to intrinsic

properties or instrument limitations. If this bias is not included in the analysis, it

would eventually lead to a wrong evaluation of uncertainties and a wrong shaping

of the posteriors. The selection effect can be accounted for by introducing a de-

tection probability pdet, thus the selection function can be expressed as (Mandel

et al., 2019):

ξ(λ) =

∫
dθpdet(θ, λc)p(m1,m2|λm)pgal(z, Ω̂|λc)

ψ(z;λz)

1 + z
(2.12)

Considering a dataset of GW events the detectability is considered deterministic,

therefore an event is considered detectable if the data exceeds a certain threshold

rthr. In the context of this work, the threshold is the signal-to-noise ratio (SNR)

of the event, thus pdet is essentially the likelihood distribution of observed SNRs

and can be expressed as:

pdet(θ, λc) =

∫
SNR

(dGW )
>rthr

p(dGW |θ, λc)ddGW (2.13)

A GW event has an intrinsic SNR due to the properties of the system emitting

the signal, for example the amplitude of the signal itself has a strong dependence

on the compact objects’ masses, but also the inclination and the sky localisation

affect the SNR. Moreover, there are stochastic fluctuations in the interferometers

that may change the intrinsic SNR which is then different from the observed one.

We must also consider that the present-day interferometers are sensitive only to a

certain range of GW signal frequencies and this is a bias that must be considered

when inferring population distributions.

https://github.com/CosmoStatGW/CHIMERA/
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2.2 Black Hole Binaries mass function models

A crucial part for using GWs as standard sirens is the modeling of the ppop prob-

ability (eq.2.5) and in particular of the piece that encodes information on the

compact object masses distributions: p(m1,m2|λm). With the increasing amount

of data from the recent observing runs, it has been seen, as I have already men-

tioned in section 1.3.5, that the derived black hole mass function is not a simple

power-law but it shows different features. Many models have been proposed to

fit the data; in my work, I have analysed those mentioned in the article of the

LIGO-Virgo Collaboration about the population properties of compact objects

derived from GWTC-2 (Abbott et al., 2021), used in Abbott et al. (2023a) for a

cosmological analysis with the GWTC-3 data. These models are the Truncated

Power-Law (TPL), the Broken Power Law (BPL), the Power Law + 1 Gaussian

Peak (PLP), and the Power Law + 2 Gaussian Peaks (PL2P). The TPL, PLP

and PL2P models were already present in the CHIMERA code and validated with

the public available code MGCosmoPop (Mancarella et al., 2022b; Mancarella and

Genoud-Prachex, 2022), therefore, I had to expand the model library of CHIMERA

implementing the BPL model. In general, all of the following models are built as

the product of a primary and a secondary mass probability distributions.

2.2.1 Truncated Power Law

This model is the simplest one. The primary mass distribution is a power law with

a sharp cut-off at the lower and upper ends. The full model is completed by the

secondary mass distribution, which is modelled as a simple power law.

p(m1|α,ml,mh) ∝
{
m−α

1 if ml < m1 < mh

0 otherwise
(2.14)

p(m2|β,ml,m1) ∝
{
mβ

2 if ml < m2 < m1

0 otherwise
(2.15)

Thus the hyperparameters λm for the TPL are:

• ml, the minimum mass of the power law component;

https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
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• mh, the maximum mass of the power law component;

• α, the spectral index of the m1 distribution;

• β, the spectral index of the m2 distribution.

Figure 2.1: Truncated Power Law model for the primary mass distribution.

2.2.2 Broken Power Law

The BPL model is an extension of the TPL one. The primary mass distribution

follows a broken power law instead of a simple power law to reproduce a possible

tapering at high masses due to the pair-instability super-novae mass gap. In

addition, it employs a smoothing function to prevent a sharp cut-off at low masses.

p(m1|α1, α2, δm,ml,mh, b) ∝


m−α1

1 S(m1|ml, δm) if ml < m1 < mbreak

m−α2
1 S(m1|ml, δm) if mbreak < m1 < mh

0 otherwise

(2.16)
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where mbreak = ml + b(mh −ml) represents the mass at which there is the break

in the spectral index while S(m|ml, δm) is the smoothing function:

S(m|ml, δm) =


0 if m < ml[

exp
(

δm
m−ml

+ δm
m−ml−δm

)
+ 1

]−1

if ml < m < ml + δm

0 if m ≥ ml + δm
(2.17)

The secondary mass distribution still follows a power law shape but with the

addition of the smoothing function:

p(m2|β,ml,m1) ∝
{
mβ

2S(m2|ml, δm) if ml < m2 < m1

0 otherwise
(2.18)

Thus the hyperparameters λm for the BPL are:

• ml, the minimum mass of the power law component;

• mh, the maximum mass of the power law component;

• α1, slope of the m1 distribution for masses < mbreak;

• α2, slope of the m1 distribution for masses > mbreak;

• β, slope of the m2 distribution;

• δm, range of mass tapering on the lower end of the mass distribution;

• b, fraction of the way between ml and mh at which the primary mass distri-

bution undergoes a break.

2.2.3 Power Law + Gaussian Peak

This model is another extension of the truncated mass function, it has a Gaussian

peak feature that tries to take into account the empirical pile-up of BBH events

with primary mass m1 at ≃ 35M⊙. This concentration of events could be due to

the gap caused by pair-instability supernovae that should be located at masses right

after the pile-up (Talbot and Thrane, 2018). Consequently, the m1 distribution is
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Figure 2.2: Broken Power Law model for the primary mass distribution.

shaped as follows:

p(m1|λp, α, δm,ml,mh, µg, σg) =

= [(1− λp)P(m1| − α,mh) + λpG(m1|µg, σg)]S(m1|ml, δm)
(2.19)

where P is a normalized truncated power law distribution as in eq.2.14; meanwhile

G is a Gaussian distribution with mean µg and width σg. Lastly, S is the same

smoothing function as in eq.2.17. The secondary mass distribution follows the

same distribution of eq.2.18. Combining all of these components the resulting

hyperparameters λm for the PLP model are:

• ml, the minimum mass of the power law component;

• mh, the maximum mass of the power law component;

• λp, is a mixing fraction determining the relative prevalence of mergers in T

and G, i.e. the fraction of BBH systems in the Gaussian component. By

definition, its value is included between 0 and 1;

• α, slope of the m1 power law distribution;

• β, slope of the m2 distribution;
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• δm, range of mass tapering on the lower end of the mass distribution;

• µg, mean of the Gaussian component;

• σg, width of the Gaussian component.

Figure 2.3: Power Law + Gaussian peak model for the primary mass distribution.

2.2.4 Power Law + 2 Gaussian Peaks

This model is basically the same as the PLP one, but has an additional Gaussian

feature in the primary mass distribution. This second peak is introduced to repro-

duce another possible sub-population. In Abbott et al. (2021) it was introduced to

investigate a possible concentration of events at high masses, but in Abbott et al.

(2023b) it has been seen that it best fits the data if moved to lower masses and

supports the findings of the peak-like feature at ∼ 10M⊙ in the mass distribution.

Thus eq.2.19 is modified as:

p(m1|λp, λ1, α, δm,ml,mh, µ1, σ1, µ2, σ2) =

= [(1− λp)P(m1| − α,mh) + λpλ1G(m1|µ1, σ1) + λp(1− λ1)G(m1|µ2, σ2)]S(m1|ml, δm)

(2.20)
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where we have the two Gaussian components and the parameters λp and λ1 rep-

resents respectively the fraction of mergers in any G component and the fraction

under G(m1|µ1, σ1), hence the hyperparameters λm of the PL2P model are:

• ml, the minimum mass of the power law component;

• mh, the maximum mass of the power law component;

• λp, is a mixing fraction determining the relative prevalence of mergers in T

and G;

• λ1, is a mixing fraction determining the relative prevalence of mergers in

G(m1|µ1, σ1) and G(m1|µ2, σ2);

• α, slope of the m1 power law distribution;

• β, slope of the m2 distribution;

• δm, range of mass tapering on the lower end of the mass distribution;

• µ1, mean of the first Gaussian component;

• σ1, width of the first Gaussian component;

• µ2, mean of the second Gaussian component;

• σ2, width of the second Gaussian component;

2.3 Posterior sampling

In the previous sections, I have presented how the likelihood, hence the posterior

is built and which are the parameters that I want to estimate. Constraints on

these parameters can be obtained theoretically by finding the maximum of the

likelihood analytically and performing integrals over the likelihood to obtain the

proper marginalised error bars. Unfortunately, the complexity of 2.10 does not

allow one to proceed in this way, and doing a brute force estimation on a grid of

points is unfeasible, hence I need to rely on algorithms that, given any posterior,

return points, which from now on I will call samples, in the hyperparameters space.

These samples exhibit statistical independence from each other and adhere to a

distribution consistent with the posterior. These methods, commonly known as
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Figure 2.4: Power Law + 2 Gaussian peaks model for the primary mass distribu-
tion.

Monte Carlo Markov Chains (MCMC), sample the parameter space with random

steps; Monte Carlo refers to the fact that there is a random number generator,

while Markov Chains indicate that to generate a sample λ′ only the previous one

λ is used as input so that the algorithm does not have memory of the previous

samples. There are different implementations that have been developed to sample

the parameter space; in my work, I have mainly used nested sampling but also

affine invariant sampling. In general, all the methods are required to satisfy a

condition called detailed balance:

P (λ)K(λ′|λ) = P (λ′)K(λ|λ′) (2.21)

where K is the transaction probability. This requirement ensures that, sample

after sample, the algorithm continues to return points from the correct distribu-

tion (Dodelson and Schmidt, 2003; Goodman and Weare, 2010).
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Figure 2.5: The two panels represent a schematic representation of different
MCMC methods. In the left panel, it is represented an example of affine invariant
sampling. In the right panel, it is represented an example of nested sampling.
Illustration taken from Handley (2022)

2.3.1 Affine Invariant Sampling

The affine invariant sampling is a variation of the standard Metropolis-Hasting

MCMC algorithm. What distinguishes this kind of sampler from the other methods

is that this sampler is invariant under affine transformations, that is, if we consider

a variable x with probability density p(x) and perform the transformation from

RN to RN y = Ax + b then the variable y will have probability density p(y) =

p(Ax + b) ∝ p(x). This means that an MCMC algorithm is affine invariant if the

probability K(x′|x) is proportional to K(y′|y).
The simplest algorithm based on the affine invariant sampling rules is the one

informally called ”stretch move”.

What follows is an outline of the procedure (Goodman and Weare, 2010):

• The first step of this algorithm is to draw from the parameter space the

so-called ensemble sampler that is a set of nwalk walkers X = (x1, ..., xnwalk
).

Each walker xk is in RN where N is the number of parameters.
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• One step X(t) → X(t + 1) of the procedure consists of updating the entire

ensemble. The walkers are updated one at a time, and for every single walker

xk uses the position of all the other walkers, which form the complementary

ensemble sampler X[k](t) = (x1(t+ 1), ..., xk−1(t+ 1), xk+1(t), ..., xnwalk
(t)).

The single walker is moved accordingly to the stretch move (Fig.2.6): xk is

updated using a random complementary walker xj, xj ∈ X[k], j ̸= k, with

the following proposal:

xk(t) → y = xj + Z(xk(t)− xj) (2.22)

where Z is a scaling random variable drawn from the density distribution

g(z):

g(z) =

{
1√
z

if z ∈
[
1
a
, a
]

0 otherwise
(2.23)

where a > 1 is the stretch factor parameter that can be adjusted to improve

performance.

• This definition of g(z) satisfies the condition g(1
z
) = zg(z) and therefore

the proposal 2.22 is symmetric, hence the detailed balance condition for the

move xk(t+ 1) = y is satisfied using as acceptance probability the following

one:

min

{
1, ZN−1 p(y)

p(xk(t))

}
; (2.24)

if instead the move is rejected, then xk(t+ 1) = xk(t).

This procedure is repeated for all walkers and until a certain stopping criterion is

reached. In the literature, many different algorithms of affine invariant sampling

can be found that can be better suited for particular models, i.e. parameter space.

2.3.2 Nested Sampling

The nested sampling algorithm is a Monte Carlo integration technique devel-

oped with the main purpose of providing an estimation of the Bayesian evi-

dence (Skilling, 2004). As it has already said in the introduction of section2.1
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Figure 2.6: A stretch move. The light dots represent the walkers not participating
in this move. The proposal is generated by stretching along the straight line
connecting xj to xk. Illustration taken from Goodman and Weare (2010).

the evidence is the probability at the denominator of eq.2.2 and it is the likelihood

marginalised over all the parameters:

Z = p({di}) =
∫

L({di}|λ)π(λ)dλ (2.25)

Obviously, this algorithm simultaneously estimates the posterior parameters. The

focus of nested sampling is to solve the multidimensional integral of eq.2.25. It is

important to note that the integrand, from eq.2.2, can be expressed as:

L({di}|λ) · π(λ) = Z · p(λ|{di}) (2.26)

so basically is decomposed in a magnitude Z and a shape p(λ|{di}) which is

the posterior. The method (Skilling, 2006; Ashton et al., 2022) is based on the

simplification of the traditional Riemann-style integration in which the integration

space is decomposed into small volume elements, and then the result is obtained

by summing over them:

Z =

∫
L({di}|λ)π(λ)dλ = lim

|∆λ|→0

∑
L({di}|λ)π(λ)∆λ (2.27)
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Due to the infeasibility of such computation in the case of a multi-dimensional

space with smaller and smaller volume elements, the approach followed in the

nested sampling algorithm is to combine volumes in which the integrand is almost

constant (Fig.2.7).

This is reached through an integral transformation (for a formal proof, see box2

of Ashton et al. 2022) and in the end the integral to compute is:

Z =

∫ 1

0

L(X)dX =
∑

L(X)∆X (2.28)

where X is the prior volume (or prior mass) defined as:

X(L⋆) =

∫
L>L⋆

π(λ)dλ (2.29)

where L⋆ is the iso-likelihood contour. In practical terms the nested sampling

Figure 2.7: In both panels it is represented the same two-dimensional parameter
space (the θ parameters correspond to our λ parameters). The colours represent
the regions with the same likelihood. The left panel represents the decomposition
of the space in small cubes, while in the right panel the decomposition is performed
using volumes containing a constant likelihood as done with nested sampling. Il-
lustration taken from Ashton et al. (2022).

algorithm follows the subsequent steps (Fig.2.8):



2.3. POSTERIOR SAMPLING 49

• The volume is initialized to X = 1 while the integral to Z = 0. A factor t,

called compression factor, is chosen.

• An ensemble of nlive samples is drawn from the prior and their likelihood is

computed.

• The smallest one (L⋆) is discarded and the remaining samples are distributed

in the volume compressed by t.

• Hence a new sample is drawn from the following prior:

π(λ)⋆ =

{
π(λ) ifL({di}|λ) > L⋆

0 otherwise
(2.30)

• The estimation of Z is updated to Z = Z + L⋆(1− t)X.

• The volume is now compressed.

All these steps are repeated until a criterion stop is reached. The integral is

updated by adding the product of the final volume with the average likelihood

among the remaining samples. As presented before, nested sampling allows one

to obtain the posterior of the parameters too, indeed at every iteration of the

algorithm a sample of the posterior can be easily computed by applying the Bayes

theorem, i.e., eq.2.2.

2.3.3 Assessing the scaling performances of different sam-

plers

The algorithms described before in sections 2.3.1 and 2.3.2 have been implemented

in many different codes, e.g. for nested sampling see Table 2 of Ashton et al. (2022).

Three of the main used in the fields of Astrophysics and Cosmology, and in partic-

ular in the GW field, are: emcee (Foreman-Mackey et al., 2013), zeus (Karamanis

et al., 2021), dynesty (Koposov et al., 2023; Speagle, 2020). All three of them are

Python-based codes, the first and the second one are two different employments of

the affine invariant sampling algorithm while the last one is an implementation of

the nested sampling procedure. emcee and zeus differ from each other because
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Figure 2.8: Scheme of the nested procedure. In the left panel, it can be observed
how the volume X shrinks around the points that are not discarded. The right
panel shows a one-dimensional representation which allows us to see at every step
the elimination and substitution of the lowest likelihood points. Illustration taken
from Skilling (2006).

of the different algorithms of sampling; while emcee uses the affine invariant sam-

pling method described in Goodman and Weare (2010), zeus is an application of

an algorithm called slice sampling (Karamanis and Beutler, 2021) that basically,

differently from the procedure described in section 2.3.1, doesn’t sample from the

entire parameter space but from slices, along a single dimension, defined by the

probability density function.

Before implementing the usage of these three samplers with CHIMERA I have com-

pared the results obtained sampling the parameter space of the model of H(z)

with the w0−wa parameterisation (Linder, 2003) of the equation of state for dark

energy:

H(z) = H0

√
Ωm(1 + z)3 + ΩΛ(1 + z)3(1+w0+wa)e−3wa

z
z+1 + (1− Ωm − ΩΛ)(1 + z)2.

(2.31)

Then, using the same model as a reference, I have performed some scaling tests

of all three codes: in the case of emcee and zeus I have investigated how they

scale changing the number of walkers and the number of iterations, while in the

https://github.com/CosmoStatGW/CHIMERA/
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case of dynesty the only parameter that was worth changing was the number of

live points which is directly linked to the number of iterations needed to reach the

stopping criterion. For these tests I have used a dataset of H(z) values taken from

different works with cosmic chronometers (see Tab.2.1).

From Tab.2.2 it can be seen that the three samplers return posterior values con-

sistent with each other as they are all within the 1σ confidence level of the other

two. This can also be observed in the corner plot of Fig.2.9 where the distribu-

tions produced by the three samplers are overlapped. It can be noticed that in

general the results obtained with dynesty have a larger 1σ error and that the 1-

dimensional distributions are less peaked with respect to the other two. This can

be attributed to the fact that dynesty is an evidence-oriented sampler that leads

to larger posterior errors, however in spite of this they are still satisfying. It can

be concluded therefore that if one is interested in both posterior estimation and

evidence of the studied model, he can rely on the usage of dynesty still taking

into consideration that, with affine invariant samplers, better posterior parameters

constraints can be obtained.

Concerning the scaling tests, comparing the affine invariant samplers with the

nested sampler is more challenging because of the absence of common parameters

for tuning. Consequently, I opted to perform two distinct scaling tests: one involv-

ing only the emcee and zeus samplers, with a fixed number of algorithm iterations

while varying the number of employed walkers; the other varying the number of

iterations, facilitating comparison among the three samplers. It is important to

note that for emcee and zeus, the number of iterations can be predetermined,

while with dynesty, this quantity is directly linked to the number of live points

used: a higher count of live points necessitates more iterations. Accordingly, in

this test, I initially executed the code using nested sampling, increasing the num-

ber of live points, and subsequently used the corresponding iteration counts for

the affine invariant sampler runs fixing the number of walkers to 32. In the top

panel of Fig.2.10 it can be seen that, as a general trend, both the running times of

emcee and zeus, with the number of iterations fixed to 5000, increase with the

number of employed workers as expected. Moreover, although in Karamanis et al.
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Table 2.1: H(z) measurements (in units of [km/Mpc/s]) and their errors at the
corresponding z. This dataset can be downloaded from https://apps.difa.

unibo.it/files/people/Str957-cluster/astro/CC_data/

z H(z) errH(z) Reference

0.07 69 19.6 (Zhang et al., 2014)
0.09 69 11.9991 (Simon et al., 2005)
0.12 68.6 26.2 (Zhang et al., 2014)
0.17 83 8.00037 (Simon et al., 2005)
0.1791 74.91 3.8069262 (Moresco et al., 2012)
0.1993 74.96 4.9001352 (Moresco et al., 2012)
0.2 72.9 29.6 (Zhang et al., 2014)
0.27 77 13.9986 (Simon et al., 2005)
0.28 88.8 36.6 (Zhang et al., 2014)
0.3519 82.78 13.94843 (Moresco et al., 2012)
0.3802 83 13.54 (Moresco et al., 2016)
0.4 95 16.9955 (Simon et al., 2005)

0.4004 76.97 10.18 (Moresco et al., 2016)
0.4247 87.08 11.24 (Moresco et al., 2016)
0.4497 92.78 12.9 (Moresco et al., 2016)
0.4783 80.91 9.044 (Moresco et al., 2016)
0.47 89.0 49.6 (Ratsimbazafy et al., 2017)
0.48 97 62.0024 (Stern et al., 2010)
0.5929 103.8 12.49752 (Moresco et al., 2012)
0.6797 91.6 7.961872 (Moresco et al., 2012)
0.75 98.8 33.6 (Borghi et al., 2022)
0.7812 104.5 12.19515 (Moresco et al., 2012)
0.8754 125.1 16.70085 (Moresco et al., 2012)
0.88 90 39.996 (Stern et al., 2010)
0.9 117 23.0022 (Simon et al., 2005)
1.037 153.7 19.6736 (Moresco et al., 2012)
1.3 168 17.0016 (Simon et al., 2005)
1.363 160 33.58 (Moresco, 2015)
1.43 177 18.0009 (Simon et al., 2005)
1.53 140 14 (Simon et al., 2005)
1.75 202 39.996 (Simon et al., 2005)
1.965 186.5 50.43 (Moresco, 2015)

https://apps.difa.unibo.it/files/people/Str957-cluster/astro/CC_data/
https://apps.difa.unibo.it/files/people/Str957-cluster/astro/CC_data/
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Table 2.2: H(z) model posterior parameters, eq.2.31, and their 1σ confidence levels
obtained with the three samplers.

Sampler H0 Ωm ΩΛ w0 wa

emcee 68.7+8.0
−6.2 0.22+0.15

−0.12 0.49+0.24
−0.26 −1.58+0.82

−0.91 −0.6± 1.7
zeus 68.8+8.4

−6.3 0.21+0.15
−0.11 0.49+0.23

−0.26 −1.60+0.86
−0.92 −0.7+1.7

−1.6

dynesty 67.9+12.2
−8.8 0.28+0.31

−0.16 0.49± 0.29 −1.44+0.98
−1.01 −0.7+1.8

−1.6

(2021) it is reported that in problems related to Baryon Acoustic Oscillation and

exoplanet radial velocity fitting zeus is way faster than emcee, my tests show

that in this case of study the latter is approximately 5 times faster than the first

one. These two trends for the affine invariant samplers can be seen also in the

bottom panel of Fig.2.10 where the running time is plotted against the number of

iterations, in addition in this plot it is possible to observe the scaling of dynesty:

its running time seems to be quite constant or at least slowly growing up, with

fluctuations, as the amount of live points accretes. Hence in general the nested

sampler is slower than emcee, especially with few iterations, but it is faster than

zeus.

These tests not only provide me an overview of the performances of these three

samplers but with them I also had the opportunity to create a code structure, that

after I have implemented in the analysis code of CHIMERA, that allows selecting

which of these three sampler used for the analysis and that automatically returns

the sampling time, some preliminary plot and the evidence in the case of dynesty.

Last but not least they also help the decision of which sampler, between emcee

and zeus, to use for the analysis in Borghi et al. (2024).

2.4 CHIMERA

Speaking in practical terms, all the aforementioned equations have to be encoded

in a programming language in order to be used for an actual analysis. This is what

has been done in Borghi et al. (2024) where CHIMERA is presented. As already said

at the beginning of this Chapter, CHIMERA is a new Python code designed to fit

cosmological and astrophysical population parameters implementing bright, dark,

and spectral sirens methods, hence by also using information from galaxy cata-

HTTPS://GITHUB.COM/COSMOSTATGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
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Figure 2.9: This corner plot shows the 2-dimensional and 1-dimensional posterior
distributions of the H(z) model posterior parameters, eq.2.31, obtained with the
three samplers. The blue regions are those obtained with emcee, the green regions
are those obtained with zeus and the red ones are those obtained with dynesty.
The black dashed lines represent the true values of the parameters taken from
Aghanim et al. (2020).

logues. The main goal of this code is to compute efficiently the result of eq. 2.10.

The code flowchart is displayed in Fig. 2.11. CHIMERA is built around two core

modules Likelihood.py and Bias.py, that are in the violet boxes in Fig. 2.11, which

https://github.com/CosmoStatGW/CHIMERA/
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are respectively devoted to the computation of the integrals in eq. 2.10 and to the

computation of the selection bias term ξ(λ). The Likelihood.py module basically

stores all the population models, i.e. mass, rate, and spin models, and the GW

and galaxy data. In parallel, the Bias.py module stores all the population models

and the GW injection catalogue data, which are simulated GW events. Finally,

following eq. 2.3, the complete likelihood is computed. This involves initially com-

puting the log-likelihood for each event and subsequently subtracting the log-bias

term, which is computed once and multiplied by the number of events.

HTTPS://GITHUB.COM/COSMOSTATGW/CHIMERA/
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Figure 2.10: Top panel: scaling of emcee, blue line, and zeus, green line, as a
function of the number of walkers. Bottom panel: scaling of emcee, blue line,
zeus, green line, and dynesty, red line as a function of the number of iterations.
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mass (λm) spin (λs) cosmo (λc)

GW.py DataGW.py

Bias.py Likelihood.py

rate (λr)

DataEM.pyEM.pyDataInj.py

Completeness

Figure 2.11: The flowchart of CHIMERA. The main modules include functions related
to the full likelihood computation (violet), computation of probabilities (red), data
file I/O (yellow), and model functions (gray). Illustration taken from Borghi et al.
(2024).

HTTPS://GITHUB.COM/COSMOSTATGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
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Chapter 3

Data

This Chapter introduces the GW data and the galaxy catalogue used in the hierar-

chical Bayesian analyses of the binary black holes mass functions and the studies on

the parameters’ dependencies of the H0 posteriors performed with 1-dimensional

analyses. The GW data used are not those collected by the LVK Collaboration

so far, but are mock data generated to validate the CHIMERA code and forecast

the constraints on cosmological and population parameters from the ongoing O4

and future O5 runs. In the first part, the generation of the two GW event mock

catalogues and the characteristics of the mock galaxy catalogue are described. The

second section summarises the main features of the two GW catalogues.

3.1 Catalogues generation

The primary goal of CHIMERA is to utilise GW events as Dark and Spectral sirens.

Therefore, it is essential to possess not only a catalogue of GW events but also one

of galaxies; thus, in particular, in Borghi et al. (2024) the code has been tested

using a mock galaxy catalogue created from the MICE Grand Challenge light-cone

simulation v2 (Fosalba et al., 2015; Crocce et al., 2015; Fosalba et al., 2014; Car-

retero et al., 2014) which covers one octant of the sky. The same galaxy catalogue

is adopted in the following analyses. Not the entire MICE galaxy catalogue has

been used, but only a subsample, obtained by imposing a uniform in comoving vol-

ume distribution and selecting only those galaxies with stellar masses greater than

59
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M⋆/M⊙ > 1010.5. This cut in mass is reasonable as merger events are expected

to occur in massive galaxies. Indeed, the binary merger rate is strictly related to

the stellar mass. Due to the fact that we want to derive constraints using GWs as

dark sirens in combination with galaxy catalogues, the GW catalogues need to be

built in such a way that every event has an associated host galaxy in the galaxy

catalogue. Therefore, from this parent sample the sources of GW events have been

sampled using a weight proportional to the merger rate parametrisation described

in eq.2.9. In particular, the assumed λz hyperparameters are those of Tab.3.1. In

γ κ zp
2.7 3 2

Table 3.1: Fiducial values of the merger rate parametrisation used to select the
potential hosts of the GW events from the parent sample.

this way, a total of approximately 4 × 105 potential hosts have been identified.

To each potential host, we assign a GW merger event in which the binary source

frame properties, such as the masses m1,2 are drawn from a fiducial population

distribution. Then, these quantities are converted into detector frame ones by

assuming the same fiducial ΛCDM model with H0=70 and Ωm,0=0.25 used in the

MICEv2 simulation. The masses are assigned using as mass distribution the PLP

model described in section 2.2.3 that has been employed with the hyperparameters

λm obtained in Abbott et al. (2023b) (see Tab.3.2).

ml mh λp α β δm µg σg
5.1 87 0.039 3.4 1.1 4.8 34 3.6

Table 3.2: Fiducial parameters of the PLP mass distribution used to assign masses
to the GW events.

Then, the observed signal, the corresponding SNR, and the parameter estimation

(PE) samples have been simulated using the GWFAST pipeline (Iacovelli et al.,

2022a,b). Two different network configurations have been selected to do that, one

for the O4-like catalogue and the other for O5-like one (from now on they will be

denoted just as O4 and O5). The first configuration used the two LIGO interfer-

ometers, Virgo, and KAGRA detectors, while the second configuration, in addition
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Figure 3.1: Sky localisation area at 1σ and 2σ of the best 100 events of the O4
catalogue (left panel) and O5 catalogue (right panel) overlapped to the map of
the potential host galaxies (gray dots) extracted from MICEv2. Illustration taken
from Borghi et al. (2024).

to the aforementioned, also included the planned LIGO interferometer in India.

In both cases, public-available (https://dcc.ligo.org/LIGO-T2000012/public)

sensitivity curves created by the LIGO-Virgo-KAGRA (LVK) collaboration have

been used: one for the first configuration with expected sensitivities of O4, one for

the second configuration with expected sensitivities of O5. Each catalogue con-

tains 5000 PE posterior samples for each event and the associated signal-to-noise

ratio. Not all the events are used in the analyses, but only a subsample of them.

Indeed, only the best 100 events that can be observed over approximately one year,

are chosen. The sub-catalogues are obtained by selecting those events that have a

SNR> 12 for the O4 catalogue and a SNR> 25 for the O5 catalogue. The differ-

ent cuts in SNR are due to the different network sensitivities. The choice to select

only 100 events is mainly due to computational reasons. Indeed, the likelihood of

eq. 2.10 is computationally expensive, thus, it is necessary to select a number of

events of this order of magnitude.

3.2 Catalogues characterisation

In Fig.3.1 it can be seen how the GW events are distributed in the RA-DEC co-

ordinate system.

The redshift range of both O4 and O5 events is roughly the same, 0.05 ≲ z ≲ 1

https://dcc.ligo.org/LIGO-T2000012/public
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(see Tab.3.3). The events are similarly distributed in redshift even if the two sen-

zmin zmax

O4−like 0.07 0.84
O5−like 0.10 0.97

Table 3.3: Maximum and minimum values of the event redshifts of the two cata-
logues. These values correspond to the maximum/minimum median of the 5000
samples from each event.

sitivities are different. In particular, the 05 configuration is expected to detect

events at higher redshift than the O4 one. However, the similar redshift distri-

bution can be explained by the different cuts in SNR described in the previous

section. The improvement in signal detection with the O5 network can be trans-

lated into improved localisation capabilities. This is due to both the addition of a

fifth interferometer and the increased sensitivities of those already existing. Fig.3.1

shows indeed that the sky localisation areas are much smaller in the O5 catalogue

(right panel).

In the improved network, there are 10 times more events with SNR> 50 and the

maximum SNR is 3 times greater than the O4 case (see Tab.3.4). This is directly

connected to the SNR cuts that, in the case of O5 allow to observe better than

in the O4 case events at the same redshift. The best event in the O4 catalogue

is an outlier of the general distribution of events, and it can be thought of as a

statistical fluctuation. Nevertheless, it is still a possible detection of this network

configuration. The same can be said for the two O5 events with SNR> 100.

SNRmax nev SNR> 25 nev SNR> 50 SNR> 100
O4−like 54.03 12 1 –
O5−like 142.79 100 12 2

Table 3.4: Maximum signal-to-noise ratio and number of events with SNR> 25,
SNR> 50 and SNR> 100 for the two catalogues.

A tracker of an event’s localisation goodness is the number of galaxies per

localisation volume (Ngal,vol), where the localisation volume is obtained from the

sky localisation Ω̂(RA,DEC) and the luminosity distance uncertainty δdL. In fact,
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Figure 3.2: Distribution of the relative uncertainty on the luminosity distance and
sky localisation area as a function of the number of galaxies per localisation volume
(Ngal,vol) for the O4 (top panel) and O5 (bottom panel) catalogues.

as the relative uncertainties of both Ω̂ and dL increase, Ngal,vol also increase. Note

that in the O4 case (left panel of Fig.3.2), both the axis and the colormap have

values that are an order of magnitude higher than those of the right panel, i.e. O5

events. As can be qualitatively seen from Fig.3.3, the events included in the O4

catalogue (blue histogram) have a number of potential host galaxies equal to, or

even an order of magnitude higher than the worst cases of the O5 catalogue (red

histogram). In particular, the worst localised event of O4 has 6 times the number

of galaxies per localisation volume of the worst one detected by the improved

network (see Tab.3.5). The O5 catalogue has three events with Ngal,vol < 10, while

the best O4 event has Ngal,vol = 17. Finally, it is worth noticing that while only the

40% of events detected with the enhanced network have more than 500 galaxies in

their localisation volume, in the O4−like catalogue this percentage increases up

to 91%. This remarkable reduction of possible hosts is of primary importance for

the usage of GW events as dark sirens, as discussed in sec.1.3.2.

Nmin
gal,vol Nmax

gal,vol nev Ngal,vol > 50 nev Ngal,vol > 500

O4−like 17 59531 99 91
O5−like 4 9727 92 40

Table 3.5: Maximum and minimum number of galaxies per localisation volume
(Ngal,vol) of the events of both catalogues and number of events with Ngal,vol > 50
and Ngal,vol > 500 for both catalogues.
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Figure 3.3: Distribution of the GW events as a function of the number of galaxies
per localisation volume for both catalogues: O4 (blue); O5 (red).



Chapter 4

Results

In Sect. 1.3 it has been described how GWs can be used as cosmological probes;

then in Sect. 2.1 their statistical treatment for this purpose has been discussed.

In this Chapter, the results obtained with dark sirens analyses through the GW

and galaxy data described in Chapter 3 will be presented, exploiting the dynesty

nested sampler discussed in Sect. 2.3.3.

The Chapter is divided in two main parts: one in which the results obtained

in the analyses of the BBH mass functions are presented and discussed; one in

which, instead, the dependencies of the H0 posterior distribution on the cata-

logues assumptions are presented and discussed. In particular, in Sect. 4.1 the

codes implementations for the analyses and the analyses’ results are displayed; in

Sect. 4.2 the considerations on the H0 posterior distribution obtained by varying

several parameters are shown off.

4.1 The Black-Holes Binaries Mass Function

To achieve even more precise results for cosmological parameters like H0, we need

not only additional observations, but also a better understanding of the properties

of the astrophysical sources of these GW events. Since most of the signals we

detect are believed to come from BBH mergers, it is of paramount importance to

study the BBH population in its entirety. For example, we need to study how

the component masses are distributed. This information is intrinsically related to
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their formation mechanisms. Eventually, a feature in the mass distribution (e.g.,

break, peak, or change in slope) can be used to obtain cosmological information,

see Ezquiaga and Holz (2022).

In the literature, there are no established theoretical models that describe the mass

distribution of BBH systems. Thus, in order to study their properties and to use

them as dark and spectral sirens it is important to empirically find the model that

best fits the available data. With the increasing number of detected GW events,

it is and will be possible to distinguish more substructures underlying the general

shape. Many different models have been proposed to reproduce the data distribu-

tions in the best possible way, and they have already been presented in Sect. 2.2.

In the work of Abbott et al. (2021) it is shown that using the O2 catalogue the

TPL model is highly disfavoured, while the BPL is only marginally disfavoured

with respect to the power-law with one or two Gaussian peaks models. This was

also confirmed in Abbott et al. (2023b). Currently, the most favoured model is the

PLP, which includes a Gaussian feature peaking at around 34M⊙. However, the

PL2P model is also being considered, as there are hints supporting the presence

of a second peak around 10M⊙. Therefore, it is important to understand how

much the future datasets will be able to constrain these mass functions, as with

GWTC3 it was possible to obtain parameter constraints with ∼ 60% of accuracy

that does not allow one to have strong evidence of the existence of this peak, and

hence the best fitting model. Thus, I will explore the data described in Chapter 3

combining different actions:

• extend the CHIMERA mass functions library implementing the BPL model;

• develop a code structure that allows to use CHIMERA with a Bayesian nested

sampler;

• run the code with different configurations assessing its performances and

results;

• develop a code that allows to use model comparison criteria.

CHIMERA In particular, the different code runs have been performed fixing all the

rate and cosmological parameters. This has been done as the parameter under

https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
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study are the mass hyperparameters displayed in Sect. 2.2 and to save some com-

putational time.

4.1.1 Extending the Binary Black Holes Mass Function

Models

Before starting the analyses, I had to expand the mass functions library of CHIMERA

including also the Broken Power Law (BPL) (2.2.2), which was not present. Since

the structure of the mass function modules is standardised, I had to implement

only the primary mass distribution as both the smoothing function and the sec-

ondary mass distribution are the same as the PLP. To follow the code structure

and notation of the already present mass functions, I defined all the probability

functions in logarithmic form. This choice is computationally motivated and it is

made in order to deal with smaller values. Thus, firstly I defined the primary mass

distribution using the definition of eq. 2.16. In order to ensure a smooth transition

between the two power-laws it is necessary to include the term m
(−α1+α2)
break in the

mbreak < m1 < mh regime which connects the two parts. Then, I defined the nor-

malisation function of p(m1), which basically is its integral in the range of masses

between ml and mh. Finally, I summed the log-probability of the primary and

secondary mass distributions with the respective normalisations and defined the

full probability distribution function of the BPL model by taking the exponential

of this sum.

I have then tested and validated the new model by comparing its shape with those

already present, an example is present in Fig. 2.2.

4.1.2 Model selection criteria

In the field of Astrophysics, a common problem is selecting a single model that

best represents a dataset, among many others. Indeed, different models may all

return a reasonable fit but they can be formally different, for example with a

different number of parameters, or even based on completely different theoretical

assumptions. To compare different models, many statistical methods have been

developed over the years, with the ability of correctly weighting the evidence of

https://github.com/CosmoStatGW/CHIMERA/
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every considered model. In this dissertation, I have taken into account just three

of them, namely: Bayesian evidence (Trotta, 2008), the Deviance Information

Criterion (DIC) (Spiegelhalter et al., 2002) and the Posterior Predictive Check

(PPC) (Gelman et al., 2013). To use them I have developed a code that gets

the results obtained with different models and applies one or more of these three

methods returning afterwards the desired comparison metric. Actually, the PPC

is not a real metric to evaluate the goodness of fit, but it is a powerful visual check

extensively implemented also in the LIGO-Virgo-Kagra analysis.

Bayesian evidence

I have already introduced the Bayesian evidence in Sect. 2.3.2. It comes directly

from Bayesian statistics, and is thus the preferred criterion to use as it speaks in

terms of model probability. Indeed, it is widely used in the field of gravitational

waves, e.g. for the selection of the model that best reproduces the detected wave-

form (Thrane and Talbot, 2019). In general, we can directly compare the evidence

values of different models, since the higher the value, the better the model repro-

duces the data (Liddle et al., 2006; Liddle, 2007). To compare two models, it is

usually computed the so-called Bayes factor, which is the ratio of the two model

evidences:

B =
Z1

Z2

, (4.1)

The value B directly provides the information on which model is favoured: if B > 1,

model 1 is preferred to model 2, and vice versa for B < 1.

Deviance Information Criterion

The Deviance Information Criterion (DIC) is a method for comparing models,

specifically developed for Bayesian hierarchical models. It uses a quantity called

Bayesian complexity (Kunz et al., 2006), pD, which is a measure of the number of

parameters that the data can constrain. It is defined as:

pD = D(θ)−D(θ) (4.2)
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where D(θ) = −2lnL(θ). The DIC is then defined as:

DIC = D(θ) + pD = −2
[
lnL(θ)− var(lnL(θ))

]
(4.3)

where var indicates the variance. To compare the DICs of two models, it is

used the difference of the two values ∆DIC = DICA − DICB, where a positive

value indicates a preference for model B, since a lower DIC indicates a favoured

model (Edelman et al., 2022). Even though this criterion has some limitations

(see Spiegelhalter et al. 2014), it provides a fast and quite reliable evaluation of

the goodness of fit for models. More importantly, it does not require the computa-

tion of the Bayesian evidence Z, therefore it can be obtained directly from affine

invariant posterior samples (Liddle, 2007).

Posterior Predictive Checks

The Posterior Predictive Checks are a visual way to evaluate models allowing

to check if the inferred population is consistent with the observed one (Edelman

et al., 2022), even though they don’t provide a quantitative way to compare them.

The predicted population is obtained through the so-called injections. They are

simulated events with associated detector frame event-level parameters θ. Starting

from a set of simulated events, with parameters that cover the whole parameter-

space they are selected simulating their detectability with a given detector network.

To generate the plots of the Posterior Predictive Checks I created a code performing

the following steps:

• One random sample is drawn from the hyperparameters’ posteriors.

• The θ parameters of both the observed and predicted events are converted

from detector to source frame.

• One sample of the event-level parameters is selected for each of the Nevents

events using a rejection sampling procedure which uses the following weights:

w =
ppop
π(θ)

(4.4)



70 CHAPTER 4. RESULTS

where ppop is the one described in eq. 2.5 and π(θ) are the redshift, primary

and secondary masses priors.

• Nevents injections are selected using the same rejection sampling of the pre-

vious step.

• All the previous steps are repeated for a total of Ndraws, thus in the end each

observed event will have a total of Ndraws samples and Ndraws sets of Nevents

predicted observations will be obtained from the injections.

In this way, both the observed and the predicted events are reweighted to the

inferred population model. Then to compare the two sets of data the cumulative

distribution functions (CDFs)of every Ndraws are computed. Then the 90% confi-

dence interval (CI) is computed and plotted against the primary mass distribution.

In this way, a model represent a good representation of the data if the 90% CI of

the observed CDFs is entirely enclosed inside the one of the predicted CDFs.

4.1.3 Constraining the BBH mass function parameters

In this Section, the results obtained are presented. As a first step, I integrated

the current version of CHIMERA in a code that defines the likelihood, priors and

posterior, and sample the posterior with dynesty. I setup dynesty to run with

500 live points using the ”multi” bounding method which is indicated as the most

adaptive one. I ran it in the Static nested sampling modality in order to give

more relevance to the model Bayesian evidence estimation with respect to the

model’s parameters. Furthermore, I set it up in order to be executed in parallel

using the computational resources from the parallel computing cluster of the Open

Physics Hub (https://apps.difa.unibo.it/wiki/oph:cluster) at the Physics

and Astronomy Department in Bologna.

The parameters of the models considered are described in Sect. 2.2. The cos-

mological and rate hyperparameters have been fixed because I noticed, with a first

run, that a full nested sampling analysis requires an elevated computational time.

Nevertheless, we do not expect this to significantly impact our result, since it is a

common assumption also in the literature (Abbott et al., 2023b).

The uncertainty on the galaxies’ redshift have been fixed to zerr = 0.001, which in

https://github.com/CosmoStatGW/CHIMERA/
https://apps.difa.unibo.it/wiki/oph:cluster
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Borghi et al. (2024) is referred to as spectroscopic redshift (zspec). It is the accuracy

that it is expected to be reached with the next large spectroscopic surveys that

will be performed for example with the ESA mission Euclid (Laureijs et al., 2011)

or the Dark Energy Spectroscopic Instrument (DESI) (Collaboration et al., 2016).

However, in Sect. 4.2.1 it will be explored in detail how this assumption affects the

results, and how a different redshift uncertainty propagates to the cosmological

parameters derived.

The priors used for the λm were all assumed to be flat and are displayed in Tab. 4.1.

Parameter ml mh α α1 α2

Range U(2,50) U(50,200) U(1.5,12) U(1.5,12) U(1.5,12)

Parameter β δm b λp λ1
Range U(-4,12) U(0.01,10) U(0,1) U(0.01,0.99) U(0.1,0.99)

Parameter µg σg µ1 σ1 µ2 σ2
Range U(2,50) U(0.4,10) U(2,50) U(0.4,10) U(5,100) U(0.4,10)

Table 4.1: Prior choices of the mass functions’ hyperparameters.

To compare the different models we consider only the common parameters

between them, namely: α, β, ml and mh. Moreover, along with ml and mh

parameters, I also derived m5 and m95, which are the 5% and 95% percentile of the

mass distribution. The percentiles were obtained from the cumulative distribution

functions of the primary mass probability distribution. This choice was made to

have a consistent quantity to compare, as ml and mh do not always have the same

meaning for all the models.

In the following sections, the median values of all the parameters along with their

68% (1σ) CI are presented. The obtained primary mass distributions are also

displayed. The corner plots with the two and one-dimensional distributions are

shown in Appendix A. This work was also crucial to assess the performance of the

nested sampling code, and perform a sizing analysis presented in the following. In

this context, I underline that the analyses of the BPL, PLP and PL2P functions

with the O5 dataset and of the PL2P function with the O4 data are not converged
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yet, despite the long computing power assigned; thus, for these models partial

parameter constraints are reported.

Constraints on the Truncated Power Law model

The first mass distribution presented is the Truncated Power Law (TPL). The

results obtained by fitting the two mock catalogues data with this model are sum-

marised in Tab. 4.2 and shown in Fig. A.1. In Fig. 4.1, the marginalised prob-

α β ml mh m5 m95

O4 3.05+0.14
−0.16 3.19+0.58

−0.97 6.13+0.21
−0.29 75.5+4.4

−2.6 6.28+0.21
−0.30 24.8+2.1

−2.2

O5 2.90+0.11
−0.19 1.97+0.63

−0.41 6.79+0.21
−0.28 85.6+4.0

−2.2 6.96+0.21
−0.27 29.6+4.0

−1.8

Table 4.2: Parameter constraints of the TPL model plus the computed m5 and
m95 values. The results are presented with their median values and the 68% CI
values.

abilities of the primary mass, obtained with the values in Tab. 4.2, are shown.

The first thing that we observe is that, as expected, the TPL model is not a good

representation of the fiducial mass function, because it cannot represent the over-

density of objects at mass ∼ 30M⊙. However, it is capable of reproducing well

the overall shape. It is possible to observe, from both Fig. 4.1 and the parameters

in Tab. 4.2, that the mass function obtained from the O4 data better reproduces

the slope of the primary mass distribution with respect to the one obtained with

O5 that is a bit shallower. The other way around the O5 mass function has the

mass upper limit consistent with the fiducial one. It is also worth nothing that,

despite the improved accuracy between O4 and O5 data, we do not observe an

improvement in the parameters’ constraint. This is also partly expected, since the

constraining power in this case is driven by the statistics of BBH event (to be able

to reproduce in detail the shape of the MF), and we decided to keep the number

of events equal between O4 and O5.

Constraints on the Broken Power Law model

The second mass function analysed is the BPL. The median and the 1σ interval

values are collected in Tab. 4.3. The distributions of these results are shown in
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Figure 4.1: Probability distribution function of the TPL primary mass for the two
catalogues obtained with the parameters in Tab. 4.2. The shaded bands represent
the CI at 68%, while the solid lines represent the median values.

Fig. A.2. In Fig. 4.2, the marginalised probabilities of the primary mass, obtained

α1 α2 b β δm
O4 2.21+0.25

−0.27 8.4+1.5
−1.2 0.282+0.115

−0.076 2.63+0.78
−0.73 4.8+3.1

−2.9

O5 2.07+0.30
−0.29 5.99+0.44

−0.77 0.341+0.053
−0.124 1.62+0.68

−0.23 3.4+3.6
−1.8

ml mh m5 m95

O4 4.1+1.1
−1.2 127+45

−36 6.14+0.47
−0.62 32.5+1.9

−2.3

O5 5.49+0.49
−1.80 104+52

−16 7.02+0.42
−0.58 37.0+2.5

−4.5

Table 4.3: Parameter constraints of the BPL model plus the computed m5 and
m95 values. The results are presented with their median values and the 68% CI
values.

with the values in Tab. 4.3, are shown. In this case, it can be noticed that the

change in the slope of the power law allows for more flexibility than the TPL
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Figure 4.2: Probability distribution function of the BPL primary mass for the two
catalogues obtained with the parameters in Tab. 4.3. The shaded bands represent
the CI at 68%, while the solid lines represent the median values.

model, and seems to mimic the Gaussian peak. This, however, at the expense of

not reproducing the real distribution slope. The m95 values are consistent with

each other but they do not reconstruct well the steep down of the mass function

at high mass values.

Constraints on the Power Law + Gaussian Peak model

The third model studied is the Power Law plus one Gaussian Peak (PLP), which

corresponds to the fiducial distribution used to construct the mock catalogues.

The median parameters and their 68% CI are reported in Tab. 4.4 while their

distributions are in Fig. A.3. In Fig. 4.3, the marginalised probabilities of the

primary mass, obtained with the values in Tab. 4.4, are shown. As the PLP is

the model used as the fiducial one for the creation of the two mock catalogues,

it reproduces in details the fiducial mass function, shown with the black line in
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λp α β δm µg σg
O4

(
19.3+16.1

−6.5

)
× 10−3 3.90+0.32

−0.29 2.16+0.79
−0.68 7.3+1.6

−2.5 33.1+1.9
−3.1 5.2+2.3

−1.7

O5 0.041± 0.022 3.42+0.13
−0.18 1.81+0.59

−0.18 3.9+4.9
−1.6 34.93+0.72

−0.86 4.00+1.41
−0.90

ml mh m5 m95

O4 4.33+0.56
−0.50 102+62

−20 6.51+0.37
−0.42 34.1+1.6

−2.0

O5 5.33+0.76
−1.65 114+25

−22 6.88± 0.52 36.31+0.64
−0.91

Table 4.4: Parameter constraints of the PLP model plus the computed m5 and
m95 values. The results are presented with their median values and the 68% CI
values.

Figure 4.3: Probability distribution function of the PLP primary mass for the two
catalogues obtained with the parameters in Tab. 4.4. The shaded bands represent
the CI at 68%, while the solid lines represent the median values.

Fig. 4.3, as expected. Furthermore, it is possible to observe an improvement of

the fit using the O5 data, even if the analysis has not yet converged. Indeed with

this dataset, all the parameters are consistent with the fiducial ones. Moreover,

excluding δm and ml distributions which remain flat, the 1σ CIs get narrower
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with respect to those obtained with O4: this is very promising since it shows the

relative improvement that we are expecting just with 100 BBH events from O4

to O5, where the accuracy on the determination of the Gaussian peak increase by

a factor 3. Comparing the m5 and m95 values it is possible to say that they are

consistent with the TPL and BPL values.

Constraints on the Power Law + 2 Gaussian Peaks model

The last analysed mass distribution function is the power law plus two Gaussian

peaks. The distributions of the parameters are shown in Fig. A.4, while the median

values and their 1σ error are collected in Tab 4.5. In Fig. 4.4, the marginalised

λp λ1 α β δm
O4 0.120+0.335

−0.087 0.53+0.32
−0.35 3.77± 0.51 2.35+1.19

−0.89 5.3+3.1
−3.2

O5 0.100+0.218
−0.058 0.54+0.34

−0.35 3.29+0.40
−0.39 1.77+0.87

−0.67 3.4+2.8
−2.1

µ1 σ1 µ2 σ2
O4 25.9+8.4

−18.3 5.7+2.9
−2.6 28.1+6.2

−18.6 6.0+2.7
−2.5

O5 32.4+3.4
−24.1 4.7+2.3

−1.9 33.4+3.1
−23.5 4.6+2.6

−1.7

ml mh m5 m95

O4 4.48+0.85
−0.97 118+54

−32 6.39+0.58
−0.68 33.7+2.3

−3.0

O5 5.46+0.81
−1.39 115+54

−25 6.91+0.47
−0.67 36.7+2.0

−2.2

Table 4.5: Parameter constraints of the PL2P model plus the computed m5 and
m95 values. The results are presented with their median values and the 68% CI
values.

probabilities of the primary mass, obtained with the values in Tab. 4.5, are shown.

Looking at both Fig. 4.4 and the results obtained for µ1 and µ2, it is possible

to notice that the flexibility of this model allows the fit to reproduce the fiducial

model, producing two degenerate peaks at the same position of the fiducial one.

This is very reassuring, since it suggests that this model might also be sufficiently

sensitive to detect further deviation in the distribution of the data. Providing a

prior that covers the the lower half part of the masses range for the µ1 distribution

and almost all the range for the µ2 distribution, a second weak peak centred at a

mass near the lower mass limit arises. Actually, I have also performed an analysis
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Figure 4.4: Probability distribution function of the PL2P primary mass for the two
catalogues obtained with the parameters in Tab. 4.5. The shaded bands represent
the CI at 68%, while the solid lines represent the median values.

on this model, for both catalogues with a more restrictive prior on the second

Gaussian peak, centred around 10M⊙ as suggested in Abbott et al. (2021) and

done in Mancarella et al. (2022a). This has been tested to see if informing more the

posterior on the position of the two peaks would retrieve some artificial structure,

questioning hence the constraints obtained in Abbott et al. (2023b). What I have

found is that the double peak in the µ1 and µ2 distributions disappears and µ2

corresponds to ml. This means that the likelihood implemented in CHIMERA, see

eq. 2.10, which is the same used in Abbott et al. (2023b), it is not affected by

systematic effects that generate non real substructures. We can thus conclude

that the second peak found in Abbott et al. (2023b) is a real substructure and

does not arise from systematic errors.

Both the analyses with the O4 data and O5 data are not finished yet; at the

moment, it is not possible to observe strong differences between the two catalogues

https://github.com/CosmoStatGW/CHIMERA/
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constraints. Comparing the m5 and m95 values it is possible to say that they are

consistent with those of the BPL and PLP .

Comparing the performances of different posterior samplers

To characterise the dynesty nested sampler implemented in CHIMERA, I compared

its results and performances against those obtained with the emcee sampler in

the work of Borghi et al. (2024), considering the same PLP mass distribution. In

Fig. 4.5 the marginalised probabilities of the primary mass parameters obtained

using the two samplers, for both the mock catalogues, are shown. In the corner

plots in Fig. A.5 and Fig. A.5 the parameter distributions are compared.

Looking at all the plots and the data, it is possible to conclude that in the case

of O4 the results are highly consistent with each other. The parameters obtained

with dynesty are all within the 1σ CI of those obtained with dynesty. The only

parameter that has a slightly different distribution is the power-law slope of the

secondary mass distribution β. In both cases the fiducial value its outside the 1σ

CI of the retrieved values. Moreover, computing their difference as the quadrature-

sum of their sigma values, the obtained value differs of ∼ 1σ.

In the case of the O5 results, it is not possible to perform a direct comparison as the

analysis with dynesty has not reached the converging criteria yet. Nevertheless,

looking at Fig. 4.5 it seems that the obtained partial constraints are in agreement

with those of the full emcee analysis. Moreover, Fig. A.6 suggests that the partial

distributions are starting to recover the emcee ones for most of the parameters.

4.1.4 Sizing tests

While studying the different models, I kept track of the running times of all the

analyses to check the feasibility of these kinds of analyses with CHIMERA with the

upcoming catalogues of gravitational waves events and galaxies.

The computational times in Tab. 4.6 are reported as CPU time, obtained by

dividing the total amount of sampling time by the number of CPUs used, and

CPU Hours, obtained by multiplying the hours of sampling time by the number

of CPUs used. It can be seen immediately that, as expected, models with higher

complexity and a larger number of parameters need more computational time to

https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
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Figure 4.5: The PLP primary mass function obtained with dynesty and emcee.
In the top panel are represented the results obtained with the O4 catalogue; in
blue the dynesty constraints, in green the emcee ones. In the bottom panel
are represented the results obtained with the O5 catalogue; in red the dynesty

constraints, in orange the emcee ones.

reach the convergence of the nested sampling algorithm. At the time of writing,

some of the analyses are not finished yet, as reported in Tab. 4.6 with the > sign.

Moreover, I also noticed that for some cases from a certain point on the sampler
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O4 CPU time CPU hours
[s/nCPU ] [h× nCPU ]

TPL 290.3 1260
BPL 1332.0 5781.25
PLP 10462.3 29062
PL2P >57369.6 >249000

O5 CPU time CPU hours
[s/nCPU ] [h× nCPU ]

TPL 32729.2 2327.36
BPL >12441.6 >54000
PLP >88992.0 >247200
PL2P >58752.0 >255000

Table 4.6: Computational time of every model reported as CPU time and CPU
hours, in the left table in the case of the O4 catalogue and in the right table in
the case of the O5 catalogue. The data have dimensions [s/nCPU ] and [h×nCPU ].
The models that have CPU time and CPU hours with the > sign are still running
at the time of writing.

was not evolving anymore. The reason for that is still under investigation. Even

though a priori the analyses with the O5 data are thought to be faster than those

with the O4 dataset, due to the higher accuracy in the gravitational wave events

localisation, it seems that, at least with dynesty, they necessitate much more

computational time with respect to their corresponding O4 analyses. This is may

be caused by the fact that the used dynesty’s settings do not perform well with

event posteriors as narrow as those of O5.

4.1.5 Disentangling different BBH mass function models

with O4 and O5 data

Thanks to the usage of dynesty, I managed to obtain the Bayesian evidence for

every mass function model. This allows me to compare and assess which model

the data prefers. Furthermore, knowing the log-likelihood of every sample allows

me to compute the DIC of the models providing another way to compare them.

Finally, I estimated the PPCs as a further term of comparison between them. For

each of this methods I have developed a code which is aimed to be integrated in

CHIMERA.

It is important to remember that the data catalogues have been built using the

PLP model as fiducial distribution, which is hence expected to be the best model.

The Bayes factors are summarised in Tab. 4.7, the DIC values in Tab. 4.8, while

the PPCs are shown for O4 in Fig. 4.6 and for O5 in Fig. 4.7. In Tab. 4.7, three

https://github.com/CosmoStatGW/CHIMERA/
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different values are displayed: the first is the logarithm of the Bayesian evidence

estimated with dynesty, the second and the third are the Bayes factor and its

logarithm, that are computed using as reference model the one with the lowest

Bayesian evidence, i.e. the BPL for O4 and the PLP for O5. In Tab. 4.8 two

values for each model are displayed: the absolute value of the DIC (first column),

and the difference computed as reference value the lowest one, i.e. the PL2P for

O4 and the PLP for O5 (second column). In Fig. 4.6 and Fig. 4.7 are shown four

panels representing the PPCs of each mass function. The mass function is specified

in the title of the panel along with the respective logarithm of the Bayes factor

(log(B)) and the ∆DIC. The dark coloured bands are the 90% CI of the observed

population’s CDF, while the light coloured bands are the 90% CI of the predicted

population’s CDF.

Model (O4) log(z) B log(B)
TPL -375.55 3.72× 10−8 -17.11
BPL -358.44 1 0
PLP -358.96 0.60 -0.51
PL2P -359.67 0.29 -1.22

Model (O5) log(z) B log(B)
TPL -170.51 1.32× 10−7 -15.84
BPL -164.49 5.44× 10−5 -9.82
PLP -154.67 1 0
PL2P -156.37 0.18 -1.7

Table 4.7: Evidences and Bayes Factors. The three columns represent respectively
the logarithm value of the Bayesian evidence estimated with dynesty, the Bayes
factor, and its logarithm value.

Model (O4) DIC ∆DIC
TPL 735.42 -68.68
BPL 694.90 -28.16
PLP 691.60 -24.86
PL2P 666.74 0

Model (O5) DIC ∆DIC
TPL 325.64 -52.17
BPL 284.31 -10.84
PLP 273.47 0
PL2P 283.21 -9.74

Table 4.8: DIC values for the different models, where ∆DIC is defined as the
difference between the considered model and the one with the smallest DIC.
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Figure 4.6: Posterior Predictive Checks of the four studied mass functions with
the O4 data. The dark coloured bands represents the 90% CI of the observed
population’s CDF, the light coloured bands represents the 90% CI of the predicted
population’s CDF. In the panels’ titles are displayed the logarithm of the Bayes
factor and the ∆DIC. In the top left panel is shown the TPL’s PPC; in the top
right panel is shown the BPL’s PPC; In the bottom left panel is shown the PLP’s
PPC; in the bottom right panel is shown the PL2P’s PPC.

In the case of the O5 catalogue, all the model selection criteria agree with

each other saying that the best fitting model is the power law plus Gaussian peak,

as expected. Indeed, both the Bayesian evidence and the DIC are the lowest

values among those of the other models and in the PPC the observed curve is well

contained in the expected one. It is interesting to notice that the PL2P presents a

very small difference with respect to the PLP: this is expected since, as discussed

in Sect. 4.1.3, also that model basically converged to the PLP. On the other hand,

O5 data allows to significantly discard the BPL and TPL models, since they show

a very low Bayes factor and a ∆DIC< −10 that in the Jeffreys’ scale is rated as a

”decisive” evidence against the model with higher criterion value (Liddle, 2007).

Furthermore, their PPCs show that the 90% CI of the observed population’s CDF

is not contained and reproduced by the predicted population’s one.
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Figure 4.7: Posterior Predictive Checks of the four studied mass functions with
the O4 data. The dark coloured bands represents the 90% CI of the observed
population’s CDF, the light coloured bands represents the 90% CI of the predicted
population’s CDF. In the panels’ titles are displayed the logarithm of the Bayes
factor and the ∆DIC. In the top left panel is shown the TPL’s PPC; in the top
right panel is shown the BPL’s PPC; In the bottom left panel is shown the PLP’s
PPC; in the bottom right panel is shown the PL2P’s PPC.

This is extremely interesting since, at the moment, we have only used 100 high

SNR BBH in O5, while the analysis could be extended to a significantly higher

statistic. This represents a significant step forward with respect to the analysis of

GWTC3 (Abbott et al., 2023a), since with current data only the TPL model could

be robustly discarded. On the other hand, for the O4 catalogue the indications of

the various criteria implemented are not in agreement. In particular, both for the

DIC there is a preference for the PL2P model, while according to the Bayesian

evidence, the BPL is slightly favoured with respect to the PLP and the PL2P.

This is strange, since looking at the PPCs we could conclude, oppositely to the

Bayes factor, that the BPL is not the favoured model. This issue is still under

investigation. Instead, it is possible to observe that for both the PLP and PL2P

models the inferred population well reproduce the observed one indicating that
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both are good model even if the PLP seems slightly better as the predicted band

is more close to the observed one with respect to the PL2P. This suggests that it

is very likely that we will need data more GW events at the sensitivity of O4 or

data with the O5 accuracy to be able to have clear hints of which is the best BBH

mass function. In general, it is possible to confirm that the TPL can be safely and

significantly disfavoured, as already said in Abbott et al. (2021) and Abbott et al.

(2023b).

4.2 Assessing the dependence of the results on

the catalogues assumptions

In the previous Sect., it was explored what future GW data will be able to tell us,

in terms of our capability to discriminate between different BBH mass functions.

Here, I perform a more detailed analysis on how particular assumptions or

conditions of our galaxy and GW catalogs might impact on the results.

With the upcoming gravitational wave data and galaxy surveys, it is important

to find a way to optimise data usage and to understand a priori possible biases in

the analyses performed with CHIMERA. With this aim, I have in particular studied

how results are affected by varying several parameters, namely:

• the error on the redshift zerr;

• the bandwidth of the 3D weighted KDE used to compute the integral in

eq. 2.11.

• the number of GW events considered, applying a cut based on the number

of galaxies per localisation volume (i.e. on their quality);

Given that in Sect. 4.1.4 I assessed that the time needed for a full MCMC analysis

would be prohibitively large for this task, it was decided to only perform a one-

dimensional analysis, fixing each time all parameters except one. This is equivalent

to slicing the posterior instead of marginalising over the other parameters, but for

the purpose of this exercise this will give us some differential results that could be

useful for future potential follow-up analyses.

In the following sections, I discuss the various findings in detail.

https://github.com/CosmoStatGW/CHIMERA/
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4.2.1 Dependence on zerr

Intending to use gravitational waves as dark sirens, it is important to know how

much the constraints on the parameters improve or degrade depending on the

redshift accuracy of the galaxy catalogue. In Borghi et al. (2024), this has been

explored by using only two different zerr, one referred to as spectroscopic (zspec =

0.001) and one referred to as photometric (zphot = 0.05). In the analysis of

Sect. 4.1.3, all the results have been derived in the best-case scenario of a spectro-

scopic redshift.

Here, I explore how the constraints on H0 change using six different values of

zerr, keeping zspec as the best uncertainty and going above the value of zphot. I then

used CHIMERA and derived the constraints on H0 considering both the O4-like and

O5-like catalogues and a galaxy catalogue whose redshift errors have been degraded

on the grid zerr = [0.001, 0.1]. To derive the posterior distributions of H0 in these

cases, all parameters except H0 were fixed at their fiducial values, while H0 varied

in the range 60 < H0 < 150 [km/s/Mpc]. The resulting posterior distributions

are shown in Fig. 4.8 and 4.9. While in Fig. 4.10 the estimated values with their

error bars and the percentage errors against the zerr values are plotted. In Fig. 4.8

the posterior distributions obtained with the same catalogue are represented in

the same panel with different colours for different redshift accuracy. It is also

plotted the fiducial value with a black line to better observe the deviations from

it. In Fig. 4.9 the same distributions are shown, but with different zerr in different

panels in order to compare the posterior obtained with the two catalogues. The

two panels in Fig. 4.10 represent respectively the estimated H0 posterior values

with their error bars and their percentage errors plotted against the zerr values for

both catalogues. The error bars represent the 68% CI of the resulting values. The

percentage errors are computed by dividing the difference between the 84th and

the 16th percentile values by two times the median value, see eq. 4.5.

errH0 =
H84th

0 −H16th
0

2Hmedian
0

(4.5)

It is interesting to notice that, both for O4-like and O5-like configurations, for

very large redshift errors a bias appears in the determination of H0, shifting it to

https://github.com/CosmoStatGW/CHIMERA/
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larger values. From Fig. 4.8 and 4.9 it can be seen that up to a certain threshold

(zerr < 0.02) the H0 constraint is mostly unbiased (as also obtained in Borghi et al.

2024) and with a lower uncertainty, but then both the value and the error drift to

higher values.

I investigated the possible causes of this bias, trying to perturb the redshift

catalogue according to the redshift uncertainty as done in Borghi et al. (2024),

but it persists in all the analyses. Qualitatively, the cause of this effect could be

traced to how the redshift distribution is treated in the code when it is convolved

with an expected ”uniform in comoving volume” distribution (see eq. 2.6), but

this needs further investigations. Indeed, in the case of larger values of zerr we

approach the spectral siren case, that in Borghi et al. (2024) is shown to produce

H0 distributions biased towards values smaller than the fiducial one. In general,

Figure 4.8: H0 posterior distributions. Different colours represent distributions
obtained with the different values of zerr. The black vertical lines indicate the
fiducial values of the two catalogues, i.e. H0 = 70 [km/s/Mpc]. The distributions
obtained from the O4 catalogue are represented on the left panel. In the right
panel are represented the distributions obtained from the O5 catalogue.

the posterior distributions obtained with the O5 catalogue show a smaller effect

than their equivalents obtained with O4 data, remaining closer to the fiducial value
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and having narrower uncertainties, as it can be seen from Fig. 4.8 and Fig. 4.9.

This is clearer from Fig. 4.10 where it can be immediately seen that the best

Figure 4.9: H0 posterior distributions. Every panel shows the result obtained with
both O4 and O5 using different zerr. The black vertical lines indicate the true
value, i.e. H0 = 70 [km/s/Mpc].

values obtained from O4 are higher than those of O5. It can be noticed that

the O5 results are less sensitive to the worsening of zerr even if with error values

grater than zerr = 0.02 the values steeply increase. Indeed, with zerr < zphot the

values remain constant around H0 ≃ 71 [km/s/Mpc], while with the worst redshift

accuracy zerr = 0.1 the value rise up to H0 ≃ 81 [km/s/Mpc], being consistent

with the O4 value. Looking instead at the percentage errors, it can be observed

the with the best redshift accuracy, in the case of O5, it is reached a 1% accuracy

on the H0 estimation, which is ∼ 4.5% lower than the one obtained with O4.

This discrepancy remains until zerr = zphot is reached and this difference drops

down to just 2%. Moreover, comparing these results with those obtained with the

MCMC analyses of Borghi et al. (2024) it is possible to observe that with the best

uncertainty on z the values are consistent with each other, while in the case of zphot

the 1-dimensional results have a lower percentage error. This can be attributed to

the fact that in the 1-dimensional analyses all the hyperparameters except H0 are
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fixed to their fiducial values.

4.2.2 Dependence on the smoothing of the GW localisation

volumes

The bandwidth of a Gaussian KDE is a free parameter of strong importance for

the determination of the data probability density distribution. Indeed, it deter-

mines the smoothness of the distribution as it basically represents the standard

deviation of the Gaussian curves assigned to every data sample. The two extreme

cases are when it is equal to 0 or to ∞: in the first case, the estimation consists

of a summation of n delta functions positioned at the coordinates of the examined

samples, while in the second case a Gaussian centred in the mean of the data

samples is obtained. Thus using a too small bandwidth the obtained probability

distribution will show too many artefacts, while using a too large bandwidth all

the substructures are cancelled away. I probed how the H0 distribution changes

using seven different values of the bandwidth, namely 0.01, 0.05, 0.1, 0.3, 0.5, 1.0,

and 1.5. The central value, 0.3, is the one used in Borghi et al. (2024). In Fig. 4.11

and Fig. 4.12 it is shown how the different bandwidths influence the shape of the

estimated probability distributions. In each panel is represented the event samples

distribution in the form of a histogram over which are overlapped the respective

3D KDE estimated distribution, one for each pixel in the localisation area. Every

panel corresponds to a different value of the KDE bandwidth. It is possible to

see that with low values of the bandwidth, the event samples distribution is not

sampled properly as the estimated distributions have too high narrow peaks. On

the other hand, with high values of the bandwidth, the real distribution is over

smoothed by the KDE, again returning a broader (and wrong) estimated distri-

bution. It can be seen that for the O5 events the best value among those studied

here is 0.3, the one used in Borghi et al. (2024); for O4, instead, both 0.3 and 0.5

seem to reproduce well the data distribution. Thus, in general, there may be not

a single best value for the KDE bandwidth as different bandwidth values may be

the best suited for different events.

From Fig. 4.13 it can be observed that in the case of the O5 analysis what changes

the most is the fact that the distributions are significantly narrower; in particular,
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with the two lowest values of the bandwidth, the distributions result highly peaked.

On the other hand, looking at the O4 results it can be observed that with the three

lowest bandwidth values, the H0 probability distribution is highly disturbed. In

addition, increasing the bandwidth the distributions are centred around values

closer and closer to the fiducial one. Inspecting Fig. 4.14, we can also see that all

the best values obtained in O5 are consistent with each other, while those of O4,

as already commented, move away from the fiducial value. On the other hand, as

expected, the percentage errors increase in both cases; this is due to the enlarge-

ment of the posterior distribution that is directly connected to the oversmoothing

with high values of the bandwidth. Considering only the posteriors of H0, it is

not clear which is the best bandwidth value to choose since, with the exception

of the lowest values, the distributions are well shaped. Thus it is important to

see how, actually, the estimated distributions with different bandwidths reproduce

the data samples. In general, with this two GW catalogues the selection of 0.3 as

KDE bandwidth value for the analysis is justified but, all in all, it is necessary to

optimise a similar analysis in the context of the future GW analyses.

4.2.3 Dependence on the subsampling

With the upcoming observation runs we expect to have an always increasing num-

ber of gravitational waves events, with 3G network we expect to have O(105)

events (see Branchesi et al. (2023)). Therefore, in order to optimise the use of the

facilities for the possible analyses, it is important to understand what kind of data

is driving the results and whether it is possible to reduce the computational time

by discarding part of the less informative events, potentially with minimal or no

impact on the analysis.

To explore this, I have studied different subsamples of the O5 catalogue, which I

recall comprises only 100 events, considering the two regimes of zspec (zerr = 0.001)

and zphot (zerr = 0.05). It was decided to explore different cuts depending on the

number of galaxies per localisation volume Ngal,vol, which is also a proxy of the

quality of the data. Other cuts were also considered (based on the SNR of the

GW event or on the accuracy of the determination of the luminosity distance), but

we preferred this one since it is directly linked to the best GW event that can be
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obtained, and we wanted to explore if the ”golden events” with few galaxies in the

localisation volume were the ones dominating the constraining power. The different

cuts, with the corresponding number of GW events associated, are summarised in

Tab. 4.9. In the case of the spectroscopic redshift, it can be seen from the left panel

Sample cuts Nevents

Ngal,vol < 10 3
Ngal,vol < 40 8
Ngal,vol < 70 12

40 < Ngal,vol < 500 32
Ngal,vol < 100 17
Ngal,vol < 500 40
Ngal,vol < 1000 66

Table 4.9: Subsample used for this analysis and their total number of GW events.

of Fig. 4.15 that all the values are consistent with each other and in particular

with the fiducial value and the full MCMC analysis of Borghi et al. (2024). It can

be noticed that keeping only the few best-localised events does not improve the

results. On the other hand, looking at the subsample with 40 < Ngal,vol < 500,

it can be said that excluding both the best and worst localised produces a worse

result, suggesting that very well localised events give a significant contribute to

the parameter estimation. Nevertheless, as it can be observed in the right panel

of Fig. 4.15, even discarding the best events, those with less than 40 galaxies in

the localisation volume, the uncertainty on H0 is not worse than the one obtained

when considering them.

This is an important result because it suggests a potential strategy for future

analysis. In particular, discarding the GW events with a number of galaxies in

the localisation volume larger than 103 does not have a significant impact on the

analysis, suggesting that one could focus only on the best events. On the other

hand, the result obtained in the case 40 < Ngal,vol < 500 suggests that even if

the ”golden events” with just a few galaxies in the localisation volume were not

observable, still the cosmological constraints can be retrieved reducing only slightly

the accuracy. It is important to remark that this conclusion is valid only if one

is interested in the cosmological parameters as, for example, in the case of the

mass function parameters more are the considered events better are the resulting
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constraints.

In the case of the photometric redshift, it can be observed from Fig. 4.16 that it

is more relevant to have a sufficient number of events instead of a few well-localised

events. Studying also the complementary subsample, I have seen confirmation of

this result. This can be attributed to the fact that in the case of poor accuracy

on the galaxies’ redshift, the information is dominated by the gravitational wave

events number and the information on the source population such as the BBH

mass function.

Finally, comparing these results with the two obtained with the full MCMC

analysis of Borghi et al. (2024) we can conclude that in the zspec case the results

uncertainties are compatible, while in the case of zphot the constraints on H0 are

better in my analysis. This can be attributed to the fact that among all the fixed

parameters there is especially µg which, as it can be seen in figure 8 of Borghi

et al. (2024), has a strong degeneracy with H0 that is broken by assigning to it its

fiducial value.
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Figure 4.10: In the top panel are represented the median values of H0 with their
errorbars obtained with different zerr. The single dark points represent the values
obtained with the complete MCMC analyses of Borghi et al. (2024). In the bottom
panel are represented the percentage errors of the values in the top panel. In both
panels the blue points are obtained from the O4 dataset while the red ones from
the O5 dataset.
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Figure 4.11: KDE probability distributions overlapped to the samples distribution
of an O4 GW event. Each panel corresponds to the result obtained with a different
KDE bandwidth
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Figure 4.12: KDE probability distributions overplotted with the samples distribu-
tion of an O5 GW event. Each panel corresponds to the result obtained with a
different KDE bandwidth.
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Figure 4.13: H0 posterior distributions. Every panel shows the result obtained
with both O4 and O5 using different KDE bandwidth. The black vertical lines
indicate the true value, i.e. H0 = 70 [km/s/Mpc].
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Figure 4.14: In both panels the blue points are obtained from the O4 dataset while
the red ones from the O5 dataset. In the top panel, the median values of H0 are
represented with their error bars obtained with different KDE bandwidth. The
single points in dark blue and red represent the values obtained with complete
MCMC analyses of Borghi et al. (2024). In the bottom panel, the percentage
errors of the values in the top panel are represented.
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Figure 4.15: On the left panel the H0 results obtained with the different samples
using zerr = 0.001 are shown. The grey band represents the 1σ CI of the full
MCMC analysis. On the right panel, the percentage errors of the corresponding
values shown in the left panel are displayed. The dashed black vertical line repre-
sents the value corresponding to the full MCMC analysis. In both panels, different
colours represent different subsamples.

Figure 4.16: In the left panel are represented the H0 results obtained with the
different samples using zerr = 0.05. The grey band represents the 1σ CI of the full
MCMC analysis. In the right panel, the percentage errors of the corresponding
values shown in the left panel are displayed. The dashed black vertical line repre-
sents the value corresponding to the full MCMC analysis. In both panels, different
colours represent different subsamples.
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Chapter 5

Conclusions and Future Prospects

Since the first detection of GW150914 (Abbott et al., 2016), BBHs become a hot

topic in both the fields of Astrophysics and Cosmology. Thus, always new methods

have been developed in order to extract information from their detected signals

and to the improvement of the technologies for the instruments, i.e. interferome-

ters, that allow their detection. The subsequent detection of GW170817 (Abbott

et al., 2017b) opened the doors to multi-messenger astronomy, further increasing

the interest in these signals. With the LIGO-Virgo-KAGRA detector network,

an increasing number of events have been detected and collected in catalogues.

From the cosmological point of view, GWs have become an interesting model-

independent new cosmological probe, as the loudness of these sources is directly

from assuming the validity of general relativity, therefore, they provide a direct

measurement of the luminosity distance dL. The issue is that this measurement is

degenerate with the redshift (a more massive binary at higher redshift produces

the same signal as a lower massive one at lower redshift), and hence to derive

cosmological constraints it is crucial to break this degeneracy by including in the

likelihood the information about the redshift distribution of the sources, either di-

rectly detecting the electromagnetic counterpart (e.g. for BNS) or by statistically

associating it with the help of a galaxy catalogue (as for BBH). This makes them

standard sirens (bright and dark sirens, respectively, Moresco et al. 2022).

To maximise their scientific return, new methods to use GW events as cosmo-

logical probes have been developed. In order to obtain more accurate results on

99
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cosmological parameters, such as H0, it is fundamental not only to rely only on

the accuracy of the data but also to study and understand better the underlying

astrophysics. Therefore, it is fundamental to learn as much as possible about the

astrophysical population generating GWs. Thus, since the majority of the current

detected signals come from the merging of binary black holes (up to the Observing

Run 3, we have roughly one hundred BBHs and only one BNS with detected elec-

tromagnetic counterpart), it is of primary importance to study their population

and, in particular, their mass distribution as a function of redshift. Many proba-

bility mass functions have been proposed to reproduce the available data; thanks

to the increasing number of detected events and to the improved measurement

accuracy, it has been possible to better characterise the distribution and obtain

better cosmological constraints (Abbott et al., 2023a).

Current measurements have made huge leaps forward, yet our ability to discern

features in the BBH mass distribution remains limited. It is therefore crucial to

assess whether future measurement will allow us to better disentangle between

mass function models, understand more about the distribution of BBH masses,

and hence derive physical models about their origin. In parallel, it is also crucial

to develop robust model selection algorithms to distinguish between the various

proposed models.

With this aim, on one hand using mock catalogues of GW events that simu-

late the next O4 and O5 catalogues, I have studied four proposed mass function

modelsAbbott et al. (2021) using the CHIMERA code in combination with a nested

sampler of the posterior (dynesty) to obtain parameter constraints and the mod-

els’ Bayesian evidence. On the other hand, the field of GWs is a relatively novel

topic; thus, it is important not only to study if and how results improve with

the newest and more accurate data, but even to assess how these results are im-

pacted by systematics. Therefore, I have studied how the posterior distribution

of cosmological parameters (in particular the Hubble constant H0) changes when

different assumptions are made in considering the galaxy and GW catalogues. In

particular, I explored using different values of the galaxies’ redshift error, different

KDE bandwidths for the events posterior distributions evaluation, and different

subsamples of the data mock catalogues.

https://github.com/CosmoStatGW/CHIMERA/
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5.1 Main results

In this section, the main results obtained within this work are summarised.

1. Samplers profiling

The first part of my work is devoted to the study of different techniques

to sample the likelihood. As presented in sec. 2.3, there are many different

methods to sample the parameter space and many more codes that apply

these methods, therefore, it is important to test these samplers to understand

their strengths and weaknesses and assess which is the best one for your own

analysis. In particular, I tested three different samplers emcee (Foreman-

Mackey et al., 2013), zeus (Karamanis et al., 2021) affine samplers and

dynesty (Speagle, 2020) nested sampler, focusing on their sampling effi-

ciency from a computational time point of view and accuracy in constraining

parameters.

• As a preliminary test, I have checked the samplers’ performances by

analysing (as a test bed) the measured values of the Hubble parameters

H(z) with a cosmological model where the dark energy equation of

state can vary with time (i.e. the w0 − wa parameterisation). The

results are summarised in Tab. 2.2. I found that the three samplers

return consistent parameter constraints. Actually, a slight difference is

observed between the 1σ confidence levels obtained with the two affine

samplers and those obtained with the nested sampler, where the last

ones are found to be a bit larger than the others. This can be explained

by taking into account the fact that dynesty is an evidence-orientated

sampler, therefore, the assessments of parameters constraints its slightly

worse than what can be obtained through affine sampling.

• Using the same dataset, I have performed two different scaling tests:

in the first one, I changed the number of walkers of the two affine

samplers and checked how their running time changed; in the second

one, I changed the number of iterations of all the three samplers and

checked again how their running time changes. The results are shown in

Fig. 2.10. I have seen that, at least for this specific model, despite what
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is written in Karamanis et al. (2021), emcee results to be approximately

5 times faster than zeus in both tests. In addition, I have seen that, in

this case of study, the sampling time of dynesty remains quite constant

when increasing the number of iterations. Thus, even if it is always

slower than emcee, with few iterations it is slower than zeus but with

more iterations it becomes faster.

2. Codes development

In addition to the actual data analysis, I needed to implement new codes to

perform it, integrating them with the actual CHIMERA pipeline.

• Building on the code structure of the tests described before, I imple-

mented the dynesty sampler in the analysis code of CHIMERA (Borghi

et al., 2024). This implied in particular the redefinition of the parameter

prior probability function because, differently from the affine samplers,

dynesty needs to have the priors scaled to the D-dimensional unit cube,

where D indicates the number of parameters. In parallel, I have imple-

mented a code structure in the CHIMERA analysis code that allows the

user to select the preferred sampler.

• The CHIMERA’s mass function library was lacking the broken power law

model. Therefore, before starting the analysis, I needed to implement it.

To do it, I followed the structure and the notation of the already present

mass functions. I split the total probability distribution in the primary

mass function, its normalisation, the secondary mass function, and its

normalisation. Actually, these last two parts were already present as

they are common to other mass distributions. For the primary mass

probability distribution I followed the definition of eq. 2.16 adding in

the regime mbreak < m1 < mh the term m
(−α1+α2)
break . This addition was

necessary to ensure a smooth transition between the two power laws.

• For the model comparison part of my analysis, I needed to encode the

procedure for the production of the Posterior Predictive Checks. I fol-

lowed the steps described in Edelman et al. (2022) implementing the

functions of CHIMERA.

https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
https://github.com/CosmoStatGW/CHIMERA/
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3. Exploring the constraints on the BBH mass functions with O4 and

O5 data The first objective of this work was to study the different BBH

mass functions using simulations of the future O4 and O5 datasets.

• The studied mass functions are those mentioned in sec. 2.2, namely:

Truncate Power Law, Broken Power Law, Power Law plus one Gaussian

Peak, Power Law plus two Gaussian Peak. To derive constraints for the

population parameters, a nested sampling code was run for each mass

distribution and each catalogue. It is important to remember that the

two catalogues are made of mock data that have been generated using

the PLP model as fiducial distribution. Therefore, it is possible to

directly compare the common parameter, as shown Tab. 5.1. I noticed

that the PLP model, as expected, is the one that better retrieves the

fiducial parameters. It can be noticed that, in general, β, that is the

slope of the secondary mass distribution, is not well reconstructed. This

does not much affect the global shape of the mass functions that are well

reconstructed. Furthermore, it is possible to see that the accuracy of

the results obtained with the O5 data is indeed greater than in the case

of O4. Last but not least, the PL2P model actually is a competitive

model, as in this case it identifies the second peak as the first one hence

returning to be basically a PLP, which is the real distribution of the

analysed data.

• I kept track of the CPU time needed for the different analyses to con-

verge. As expected, as can be seen from Tab. 4.6, the higher the number

of parameters, the higher the CPU time. In addition, it can be noticed

that the O5 analyses took more time than their O4 equivalent, despite

what one may think a priori. Actually, at the time of writing some of

the analyses are still running.

• To analyse the results more quantitatively, the different models were

compared considering three implemented model selection criteria: Bayesian

evidence, Deviance Information Criterion (DIC), and the Posterior Pre-

dictive Checks. In the case of the analysis performed on the O4 data,

this criterion produces conflicting results. Indeed, the Bayesian evidence
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Model (O4) α β m5 m95

Fiducial 3.4 1.1 6.93 35.36
TPL 3.05+0.14

−0.16 3.19+0.58
−0.97 6.28+0.21

−0.30 24.8+2.1
−2.2

BPL 2.21+0.25
−0.27 2.63+0.78

−0.73 6.14+0.47
−0.62 32.5+1.9

−2.3

PLP 3.90+0.32
−0.29 2.16+0.79

−0.68 6.51+0.37
−0.42 34.1+1.6

−2.0

PL2P 3.77± 0.51 2.35+1.19
−0.89 6.39+0.58

−0.68 33.7+2.3
−3.0

Model (O5) α β m5 m95

Fiducial 3.4 1.1 6.93 35.36
TPL 2.9+0.11

−0.19 1.97+0.63
−0.41 6.96+0.21

−0.27 29.6+4.0
−1.8

BPL 2.07+0.30
−0.29 1.62+0.68

−0.23 7.02+0.42
−0.58 37.0+2.5

−4.5

PLP 3.42+0.13
−0.18 1.81+0.59

−0.18 6.88± 0.52 36.31+0.64
−0.91

PL2P 3.29+0.40
−0.39 1.77+0.87

−0.67 6.91+0.47
−0.67 36.7+2.0

−2.2

Table 5.1: Common mass functions parameters obtained from the nested sampling
analysis for both the O4 and O5 catalogue.

indicates that the best model is the BPL while the DIC indicates as

favoured model the PL2P. From the PPCs, instead, we can see that the

PLP and the PL2P predicted curves reproduce well the observed one,

while the BPL is slightly in contrast with the observations. Therefore,

we can conclude that with O4 the TPL model can be safely discarded

while the other ones remain less distinguishable. On the other hand,

in the O5 case, all the criteria agree with each other on the fact that

the best-fitting model is the PLP. Nevertheless, the PL2P model has

to be kept in consideration as the comparison criteria do not provide

decisive evidence that it can be discarded, in agreement with what has

been concluded by looking at the parameter constraints.

4. Assessing the dependence of the results on the catalogs assump-

tions

In parallel with the study of the mass functions, I have performed 1-dimensional

analyses to investigate how the resulting posterior distributions of hyperpa-

rameters are affected by: the selection of different values of the error on

the galaxies redshift zerr, the selection of different KDE bandwidths, and

the choice of different cuts of the number of galaxies per localisation volume
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Ngal,vol. The posteriors of H0 are obtained on a fixed grid of hyperparame-

ters, keeping each time all fixed except the one of interest (to minimise the

CPU time). Here in particular I focused on the constraints on the Hubble

constant H0.

• Using a series of zerr, that goes from the best one zerr = 0.001 to the

worst one zerr = 0.1, it is possible to observe that the probability dis-

tributions shift toward values of H0 higher than the fiducial one when

increasing the galaxies redshift errors. The cause of this effect could be

traced to how the redshift distribution is treated in the code when it

is convolved with an expected ”uniform in comoving volume” distribu-

tion (see eq. 2.6), but this needs further investigations. The O5 results

are less sensitive to the worsening of the redshift accuracy, the above-

described effect does not appear until zerr < zphot = 0.05 as the values

remain constant around H0 ≃ 71 [km/s/Mpc] then increasing rapidly

with the worst accuracies. Indeed, with low zerr they have percentage

errors lower than ∼ 5 − 4% than the O4 results, while with high zerr

they are consistent with each other. Comparing the 1-dimensional re-

sults with those obtained with the full MCMC analyses of Borghi et al.

(2024), it can be seen that, in the case of zerr = zphot, the 1-dimensional

results have lower percentage errors, while with zerr = zspec = 0.001

they are consistent with each other. This can be due to the fact that in

my analyses all the parameters but H0 are fixed to their fiducial values,

removing some degeneracies such as the one with µg.

• Different values of the KDE bandwidth estimate differently the prob-

ability distribution of the GW events. This affects the resulting H0

posterior distribution. It can be seen that the O5 results are not af-

fected much by the choice of the bandwidth, even though, as can be seen

from Fig. 4.12, not all the values can reproduce well the event samples

distribution. On the other hand, the O4 results depend heavily on the

KDE bandwidth choice; in particular, low values of it create artifacts

in the H0 probability distribution.

• I have studied different subsamples of the O5 catalogue using different
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Ngal,vol cuts, i.e. those displayed in Tab. 4.9, using both zerr = zphot

and zerr = zspec. In the case of zspec the results obtained from the differ-

ent subsamples agree with the fiducial and the best full MCMC value.

Analyses that consider only the best three events are not as constrain-

ing as those that include events with a higher Ngal,vol. On the other

hand, excluding the worst localised events improves the accuracy of the

results. Thus, for future analyses with galaxy catalogues that provide

redshift with zerr = zspec, events with very few Ngal,vol are not manda-

tory to obtain competitive constraints and events with a high number

of Ngal,vol can be discarded to reduce the computational load. Studying

also the complementary subsamples, it is possible to see that consider-

ing only events with Ngal,vol > 40 we can obtain results consistent with

the results of the entire MCMC analyses. On the other hand, in the

case of zerr = zphot it is more relevant also to have a sufficient number of

events instead of a few well-localised events, indeed the best constraints

are obtained using the subsample Ngal,volo < 1000, this is due to the

fact that with this kind of redshift accuracy the information is mainly

given by the BBH events instead of by the galaxies. Therefore, for fu-

ture analyses with galaxy catalogues that provide this redshift accuracy,

it is important to have a high number of events, thus including even

the worst localised, in order to improve the constraints’ accuracy. This

study paves the way to define an optimal sample of GW BBH data to

be used as standard dark sirens to derive cosmological constraints.

5.2 Future prospects

Given all the results obtained, it is finally possible to discuss some of the possible

future developments of this work.

First of all, as the analyses’ running times of this work are not satisfactory,

it is necessary to integrate more efficiently the nested sampling algorithm. This

could be done by optimising its parallelisation and integrating it with other public

codes, e.g. Bilby (Ashton et al., 2019).
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Furthermore, the 1-dimensional analyses on the posterior distributions of H0

expose a bias on H0 toward high values when increasing the error on the redshift.

This bias has to be explored in more detail to be accounted for in future analyses.

One possible path to follow is to test if a different function describing the redshift

galaxy distribution could help in removing this issue.

Moreover, in the literature, BBH mass function models different from those

used in this work can be found. Therefore, it would be interesting to finalise

MCMC analyses with them also applying the presented model selection criteria

in order to compare them with those already studied. In particular, it would be

useful to implement more general and less parametric mass functions, as those

presented in Abbott et al. (2023b).

Moreover, considering that my analyses have been performed on GW mock

data, that have been generated assuming as fiducial BBH mass distribution the

PLP model, I already knew which was the mass function that has to be retrieved.

Therefore, in the future it could be explored a new analysis by generating new

simulations, possibly within a blind challenge, to properly assess if a generic BBH

probability mass distribution can be retrieved.
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Fosalba, P., Gaztañaga, E., Castander, F. J., and Crocce, M. (2014). The MICE

Grand Challenge light-cone simulation – III. Galaxy lensing mocks from all-sky

lensing maps. Monthly Notices of the Royal Astronomical Society, 447:1319–

1332.

Gair, J. R. et al. (2023). The Hitchhiker’s Guide to the Galaxy Catalog Ap-

proach for Dark Siren Gravitational-wave Cosmology. The Astrophhysical Jour-

nal, 166:22.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin,

D. B. (2013). Bayesian Data Analysis, Third edition. Chapman and Hall/CRC.

Goodman, J. and Weare, J. (2010). Ensemble samplers with affine invariance.

Communications in Applied Mathematics and Computational Science, 5:65–80.

Handley, W. (2022). Next generation cosmological analysis with nested sampling.

In Tensions in Cosmology, Corfù.
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Appendix A

Corner plots

This Appendix includes full corner plots for the O4 and O5 analyses assuming four

different BBH mass functions: truncated power law (TPL; fig. A.1), broken power

law (BPL; fig. A.2), power law + peak (PLP; fig. A.3), and power law + 2 peaks

(PL2P; fig. A.4). Then, it includes corner plots comparing the results using nested

sampling (dynesty) and affine-invariant sampling emcee) for the O4 (fig. A.5) and

O5 (fig. A.6) runs.
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Figure A.1: Corner plot of the TPL parameters distributions. In blue the distri-
butions obtained with the O4 data, in red the distributions obtained with the O5
data
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Figure A.2: Corner plot of the BPL parameters distributions. In blue the distri-
butions obtained with the O4 data, in red the distributions obtained with the O5
data

Figure A.3: Corner plot of the PLP parameters distributions. In blue the distri-
butions obtained with the O4 data, in red the distributions obtained with the O5
data
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Figure A.4: Corner plot of the PL2P parameters distributions. In blue the distri-
butions obtained with the O4 data, in red the distributions obtained with the O5
data
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Figure A.5: Corner plot of the PLP parameters distributions obtained with the
O4 data with the dynesty and emcee samplers. In blue the distributions obtained
with dynesty, in green the distributions obtained with emcee

Figure A.6: Corner plot of the PLP parameters distributions obtained with the
O5 data with the dynesty and emcee samplers. In red the distributions obtained
with dynesty, in yellow the distributions obtained with emcee
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