Palumbo, Leonardo Pio
(2024)
Predicting Ticket Resolution Time in IT Support Systems: A Machine Learning Approach.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Informatica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
| Contatta l'autore
|
Abstract
The evolution of support ticket management in software companies has become crucial in the era of digitization, where the volume of reports is constantly increasing. Automating ticketing systems has become imperative to improve technical support management and meet growing customer needs. This study addresses two key questions: first, whether by analyzing historical information from a ticketing system, it is possible to predict resolution times in advance, and how features influence such predictions. Second, how predictive algorithms can be integrated into operational processes to proactively manage spikes in activity, optimizing resource allocation and improving workload management. Using data provided by CINECA, this paper aims to identify key factors in predicting the time to resolution of a ticket, leveraging both existing and temporal features specifically introduced for this analysis. The goal is to provide useful insights to improve efficiency and customer satisfaction in the area of service ticket management.
Abstract
The evolution of support ticket management in software companies has become crucial in the era of digitization, where the volume of reports is constantly increasing. Automating ticketing systems has become imperative to improve technical support management and meet growing customer needs. This study addresses two key questions: first, whether by analyzing historical information from a ticketing system, it is possible to predict resolution times in advance, and how features influence such predictions. Second, how predictive algorithms can be integrated into operational processes to proactively manage spikes in activity, optimizing resource allocation and improving workload management. Using data provided by CINECA, this paper aims to identify key factors in predicting the time to resolution of a ticket, leveraging both existing and temporal features specifically introduced for this analysis. The goal is to provide useful insights to improve efficiency and customer satisfaction in the area of service ticket management.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Palumbo, Leonardo Pio
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM A: TECNICHE DEL SOFTWARE
Ordinamento Cds
DM270
Parole chiave
IT Support,Prediction,Machine Learning,Regression,Data science,TTR
Data di discussione della Tesi
14 Marzo 2024
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Palumbo, Leonardo Pio
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM A: TECNICHE DEL SOFTWARE
Ordinamento Cds
DM270
Parole chiave
IT Support,Prediction,Machine Learning,Regression,Data science,TTR
Data di discussione della Tesi
14 Marzo 2024
URI
Statistica sui download
Gestione del documento: